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INTRODUCTION

Many physical properties of an atom or molecule can be expressed

R
in terms of the summations, known as sum rules,

L
RY) = ey Ve,
S(R) Zé vy Y4y
where vqj is an oscillator strength corresponding to a transition from
state ¢ to state j, qu being the corresponding energy shift. If all the
vqj's are positive for a particular q, for example q = o, then such a

family of summations (as k ranges over all real wvalues such that S(k) is

convergent) is a particular example of a sum rule function. More gen-

erally, when the first N of the vqj's for a fixed ¢ are negative, as
would occur, for example, in the case of dipole oscillator strengths
with ¢ > o, then S(k) takes the form of a sum rule function plus an

N—sum rule function. Thus, there is an immediate interest in the

nature of sum rule functions and of N-sum rule functions. This is
discussed in this paper.

For atoms the dipole oscillator strengths have been especially
studied and it is usually possible to calculate or’measure various of
the corresponding S(k)'s directly*. For example, the Reiche-Thomag-

Kuhn Sum Rule gives S(0) = number of electrons of the atom (using

*See '"Advances in Quantum Chemistry" Vol. 1 Academic Press Inc. New York
(1964) 'Recent Developments in Perturbation Theory' by Joseph O.
Hirschfelder, W. Byers Brown and Saul T. Epstein.

Ry
It is preferable to write S(B) :‘;Z:} %’% \'/!\/é since then

S(0) has a value independent of the choice of energy scale.
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atomic units.) This motivates the current interest in the problem of
bounding sum rules in terms of other sum rules and in the problem of
interpolation between sum rules. Dalgarno and Kingston (1970 Proc. Rov.
Soc. A259, 424) have found that for the ground state (g = 0) the S(k)'s
can be approximated by the expression
-

o(ky= n [ Eio + & (25 KV 4 o (5K J
providing the fqj's are dipole oscillator strengths. Here n is the
number of electrons in the atom or molecule, "1" is the first excited
state with nonvanishing oscillator strength, and the constants a and b
are adjusted to make this equation éorrect for two selectad values of
k (usually k = -1 and k = ~2)g‘ However, it must be stressed that this
is only an approximate éxpression, with no bounding properties; In
this paper We show how the problém of sum rule interpolation can be

approached in such a way that the very best possible bounds to all

(quantum mechanical) sum rules‘(based on any given set of sum rules).
For a large class of given seté of sum rules we present an explicit
construction for the appropriate interpolation functioms. We also show
the manner din which suéh constructions may be applied to other sets of
given sum rules.

Let us digress briefly to give an example of precisely what is

meant by "best pogsible'. Suppose we are told that a certain function

of a real variable is a sum rule function which we shall call S(R).

Suppose moreover that we are gilven the following information

{5{,&2}} gfﬁﬁ; !l%@} 1%5 % where B8 and 9.,{ are finite veal numbers.
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Then we can consitruct, given only this information
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any lower bound except zerc). In the case of wore than twe gilven sum
rules the best possible statement becomes slighily altered, but no less
poverful. In general we shall be able to obtain both upper and lover
bounds throughout various closed intervals, although in such cases we

shall of course be forced to use mere than two known sum rules.

The rigovous upper and Lowey bounds to sum vules that we can obtain

may often be remarkable close; also they have applications. For exauple,

Russell T. Pack {Chemical Phyvsics Letters, Volume 5, Numbexr 5, P. 257~

258 has given a simple fo _bound to the Van der Waals
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force constant in the interaction between any two a
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Sum Rules' which will be publighed din J. C. P.). Again, the Hylleraas
variational principle has been applied by Davison (J. Phy. B (1968)
Series 2, Vol. 1, 567-604) to vield lower bounds to the Van der Waal's

force constants in terms of sum rules. Use of alternative trial

&3
iyl

functiong to the ones used by Davison yields lowsy bounds in terms

various non-integer sum luLéb}dna bounds on these yields bounds on the

congtants. Similar vemarks apply to a variational principle given by
Epstein (Journal of Chemical Physics 48). Finally, Barnsley has obtained
excellent simple approximations to the Van der Waals force constants by
using the interpolation functions directly. It is among the purposes

of this paper to establish an initial reference to the theory of sum

rule functions on which results concerning the sbove mentioned applica-
tions may be based.

1
i

More generslly, sum rule functions arise whenever & gevies of

Stieltjes occurs and hence the appllcaLlons of their t heo;g nust shas

\1Y m{k’k&é
be numerous. More precisely, if %‘?f%} ﬁ mi},@%@@}éﬁiﬁ glw) 3
a series of Stieltjes then the function S(B) = 51kF¥¥§L“f ig

a sum rule function.
We vemark that this paper can only serve as an introductlion and

that there is much work yet to be done. The proofs themselves are be-

lieved to be complets although a knowledge of eclementary real analysis
iz often agsumed, [3}. There ie no doubt that the final formal theory

will be fav more
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ABBREVIATION

The following abbreviations are used:
follows that"

" Zﬁ§> " meaning "it
" i;? " meaning ‘there exists'
Tos.t. " meaning “such that"
meaning "on the basis of the given information"

" meaning "continucus"

" cts.
meaning "converges'

Ty



L. Unrestrained N-Sum Rule Functions and N-Sum Rule Fundtions

DEFINITION:

DEFINITION:

THEOREM 1:

PROOF

if a function of a real variable /% can be written
N
&
in the form ﬁmvﬁwﬂzwav“jﬁﬁ where
Va5 © 5 Ym  is veal,ono O0<E < 2 B

then i%m'(ﬁSE is an unvestrained N-sum rule function.

1f a function of a real variable ﬁ% can be written in
the form ﬁr@({%} = Zﬁn:a Vu / En where Va > 0,Vn
is real, and O<CE,; < E,<....<E,N ;5 then Su ()

igs an N-sum rule function.

Unless otherwise SﬁataigfgﬁiQ%E will denote an un-—

restrained N-sum rule functionm; %}ﬁiﬁ%j will denote

an N-sum rule function.

igyg(féﬁ has at most (N~1) zeros, the zeros at o0

not being counted.

We prove this by induction.
True for the case N = 1.
Suppose true N = 1,2,...,K.

Consider the zevos of f% (fé) where

5 ’7 Sl ‘e‘/ gﬂyyu@»h y ' %
“ (Y = ] Vo /52 = Vifgal ] talv Voo et
é‘ﬁi%%k’i%} - ‘Laéﬂ:;; e ‘é; é;z%; e, g:“m’é%;%} i _j

which hag the form:




Since Wi /gg!% o O T Fatews ThA Jéﬁaqfé} has as
many Zeros as g%ﬁsf} where %}({%} :?f(; ggfg Qj%} %""%T}s
Now notice that @'%ﬂ({%ﬁ /5[’% is an unrestrainad
m-sum rule function with m ,;f n. Hence Eﬁ§(5>/&f6
has at most (K-1) zeros, by the inductive hypothesis.
Hence §§(ﬁ&> has at most K zeros. Hence "g%%,% (R)

'd

has at most K =zeros. This completes the induction.

THEOREM 2: Any ‘E‘%Niﬁ) is uniquely defined by the valuas SNQELE

Lﬁﬂj‘....‘,li\!‘ where = o < (3@ <Ll \/: {gﬁ,!\f <'§@ @
o~
PROOF ¢ Suppose Sﬁ,(f&) is an unrestrained N-sum rule function

which agrees with éi\! () for (’%*:2(‘%& S o=ty 2N
Then SM ([’f)ﬁ SN(/%B ngﬂ () is either an unrestrained
M-sum rule function with | MEAN having AN  zeros
or else gm(fs}{;—f:() . The first alternative is not

possible by Theorem 1. Hence “?SN (/$> is unique.

THEOREM 3: If SN-H {J%E is an arbitrary (NH1)~-sum rule
function and %k,([s) is an arbitrary N-sum rule function;

then Q%N.MQ{‘S‘} - SN((%B > has at most 2N zeros.

PROOF : (San(pY — Sn (ﬁ§> = ‘Sm(fzﬂ with M < AN

Hence by Theorem 1, ( gg\jﬁ(ﬁ;} — S (AY > has at

THEOREM 4: Given any Jy{/5), and any closed interval I = |

iy L & O s v % S oren )
then 4 an  pdey 853 b e L elpihio pe




PROOF:

THEOREM 5:

PROOF :

THEOREM 6

o P i — A
for all Ze l 5 | O é; 53— Sad L33

where 1 > € DO b 2%.50 arve
prescribed numbers; M > Ll is an arbitrarily large

prescribed number.

3k

Take Vil @Q@ /%E{@ /l% VX‘} NH = {“@;/4é%>
and then let %Nﬂ (A) = Sy B + Van /EH‘@

@

”Sb '»-w

Given any %N <[§‘>T§ and any closed interval I = [a,b],

then J an %Naygj‘:(‘%ﬁ 3.7 5%&\(([55 "”‘Sﬁ,ﬁaaﬁf&r}% <%§

for all /Bef_fj %%N(ﬁ\)@gm‘%ﬁﬁ“}i > M, forac (Se gb-%%&f@}
ano | SRy - Snysa(R) | > M, vor pic [%% é;@gj&j, E%E
where 0 < €, < | | © e <V ane 0K € <
are arbitrarily small prescribed numbers; and @%@ >% 5
M;L > b are arbitrarily large prescribed numbers.
Define "{%N‘H () as in Theorem 4, replacing €,

by @i/% . Take Wraug, = (@i/%\}(gm%/@@ §w/%% p
Enta, = QZ%M&/%@;}\/%% and then let

Y E
St = Swn (B) + Vnea /Ewea

Given any S‘}f%f {{?ﬁ;‘z} and any closed interval I = [a,b];

then for any integer Ry Nt , Fav Sa(@d s

| SN(BY=Sptp) | £ 8, mrace Be T %%Mg%‘*;w%g;(%,g} M
FoR Ay gggib%‘eij@}; L Satpy=3rim ] > M,
pe e, a- “@‘&E% where

K@\

5 T e gy g e o s SO0 T g s b -
FoLBRLEe Dezcllibed Dnuihneds .,



T,

e .
PROOF ¢ Construct Nt £f3> as in theorem 4, replacing %ig

by {;Qaj"i\ . Choose . REAL YomTWE NWMBER € 3ucw THAT
s

E%Um ‘E,Q“SQ:/O - \33:? < (ﬁ\/1>,Then we can find an gmq}%iﬁ"}

3. 1 Snan (BY— Sweatr)| € @ For BeL Aise An Drg B
.7, 15;\{4&@ (PY = 3p4s (3 ; Q" ror BeX | Atso AN ...

e e s AnD Fivay O ()
R-N -2,

3.7 | SR (RY — S (B i < e oo e

3
where each SN%“S ({53 is constructed from %N%“g@\ ({%\)
as in theorem 4. Then ESR\<€£> has the required

properties.

Theorems 4, 5, and 6 are presented primarily to illustrate the
nature of N-sum rule functions.

N-gum rule functions and unrestrained N-sum rule functions are the
fundamental structures of sum rule function theory. It is their proper-
ties which dictate the nature of sum rule functions.

We stress the following points: an (unrestrained) N-sum rule
function is & smooth infinitely differenciable function on the whole
real line having at most N-1 zeros (which follows from the important
detail that o<E\<.._. . . {En ) so that no (unrestrained) N-sum rule
function can ever vanish identically.

The nomenclature and notation for these functions (and for sum rule

functions) stresses their comnection with quantum mechanical sum rules.



Pictures of (unrestrained) N-sum rule functions
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II. SUM RULE FUNCTIONS

w ¥

Definition: S(ﬁ}) is a sum rule function on the interval [ Ro, 3y |,
where —o0 < Po < B, <t2O | if there exists a sequence of
N-sum rule functions {SN({B)}:;‘ such that
(1) S(p) is finite for all Be L fo, A
(ii) sN([z) tends uniformly to s(/s') for (3¢ {/’-?zc.)/?.]
as N —» ©O |
If S((E‘:) is a sum rule function on [ /2., 3, ] for all /‘3:;
such that /.JJc, < (3.'\/00 then we say that S(/a’) ig a sum
rule function on the interval [ /Sc)a&)). If S(/s) is a
sum rule function on [ /50) /3, ] for all f3o such that
~20< e < [3) » then we say that $(A) is a sum rule
function on (— 20 (3, 1.
‘)N
Sometimes a sequence {jf%@(ﬁ)}Nm can be shown to converge uniformly to
S(ﬁ}) directly on the interval [ﬁ%)oo ) in which case the same sequence
converges uniformly to S(/@) on every | /?m)ﬁ, ] where /3, ig such
that ﬁo<{3,<00 . However, the converse of this is not true. Namely,
it is not true that if {gu ({5)3:10:‘ converges uniformly to S(ﬁ)
on every interval [ (50, (3; ] with (3, such that Bo<A <A then
'{SNC@}": converges uniformly to S([é) directly on [/:30 >P9 ). This
can be understood from the examples of sum rule functions (given in
Theorem 7) which follow, and also in terms of sum rule scaling which
we shall discuss later.
Our main interest iz in sum vule function on intevvals of the form
[{go)a@ '}9 and in particular, in those sum rule functions which ave

described in Theorem 7.
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Theorem 7 If ${/4Y can be written in the form:

(i) monotone non decreasing
(i1) and taking ©© many values on | Eo, <0 IS
Then S‘([C—,) is a sum rule function on [ /2,20 )
Proof: We will construct a requisite {gmiﬂg@\? "QECIL&@QCE in & particularx
case and then indicate how this is generalized.

Particular case: Suppose Eo = 2 and that the integral can be
]

= (€} A .
decomposed into S(/‘% )= Zvﬁks’\ 5*\/ &) de for fie {{%@W) s

W=

where
(1) ¥n >0 5 N=g2,5 . ..
(i1) A ;éE;) En < En“ Y l}\via@ k. < =
(iii) VCEI PO and is a continuous function for [= & & o0
o ')W 4
We will establish the existence of an {‘DN(&)JM sequence as required
=1

by the definition of a sum rule function, with the uniform convergence

taking place dirvectly on the interval [[/36, 50 ).

Let €79 be prescribed.
oG o A
. S T " o R .
Consider &j‘!%i—?& de . Since 5“/@35 de exists there must
£

also exist an  >E  such that f\’(%)(}@ < v(@)ﬁg{‘? for

€ Po “+ -
all e [ fo, ). £ f?‘
f° v o
. F (V) Ae . . .
Consider J =3 . Define a sequence of equipartitions
o -

ig&ﬁliwfg , of the interval [E,F], L3 being the set of (M + 1

e

equally spaced points B =



Define two M-sum rule function on fi\% e

= %fv’” =t
@ San (> = Z, V(- a1 /L 3!
m g Mg

(11) Gp () = ? vt fan a1/ [aa )

Where [ Vi = Max{viE)] ¢ ean o) ¢
QM = Mo ey € ¢ {’umaﬁjg

Then ¢ (b} > jfvée‘ de > E’QN (5 for ol pe [ Rosc0) @:}

Since j\"rkg)d@. —% O &3 (g"“‘ﬁ’w 3 ‘2‘> 3 & (‘S‘é ({éﬁ‘s;"@‘\i

&
) i . N o % :
e e SR St 26 e [p) @
E F } - 3
Hence ¢ < V“%}mﬁ - %%Nif%"} < ﬁi @ for ol i pelpo
4

Now suppose 2 € Lo, ol ]
San (B - S5 P SZFE”;;@]B + {ar{‘i} ( o1 %}
Since Y(€} is continuous on the compact set [ £, = ], there
exists an N

1 . y
& V}, V& V;\ Vﬂ e ‘Q SRR P W IR A
s.t. N}/N’\ > o = mﬁg g,ﬂsa ~ % (F £Y ?

for all e Lﬁ@)ﬁk}

Since \/(€> is cte. on the compact set {E}E ], there exists

a V>0
st 0 CVEOSY ferall ¢ lE,F]

, .-
Since £ is cte. on the compact set [F.,F ], there exists an N

2
! i
NYN, <2 o< fiap = Twp < & A JRT
7 N =2 al a1/ S for all
E need £ " \/g;ot“} &
Hence for N }} max N, W2 ¢ we have
o7 A F
o < f}ﬁﬁﬂp} p Loy 70 5

7

Hence, by (2




. ¢ L
o fviee de — Sy (A< ‘@/:;% Sor all pe (pa.p

Combining the last statement with @ and CB/) we see that,

for N }y max {?«,JNQE we have:

oy
VIEY dp S 2 oLl & gﬁ,&,}wﬁ?é} s
o<E§—g7: € -Shu(py< T T fo £ (>
— ”
Since 2¢ v“‘“—“ ) is Convergent there existe an N
- % A i
s.t. N }/’ N3 “’)v 0/29\}\45::% ""24 U“&TR “a kg’ %(ﬁ{,@{\%‘y f%ougj{agj l\%

where we have also used the monotonicity of the sums as functions
of {5
. S P
Hence, if N J max N15 NZ, N 3 then
0 < S~ aEiP- S5y <“~e for all pelpo,m)

iz
Hence, for each ¥ )0 there exists an N-sum rule function

5, () such thar 0 < SAY=SI(RICE Lo all pefpe,0)

~ - 3 - e {
Hence we can find a sequence N, < N2 <(Nr';f ----- of integers and

1

B
a sequence of Ne-sum rule functions, S (/5) s> such that
0 < SIA =S, (fy < I ST
for all pe [ o, 0 )
It is easily seen from the theory of N-sum vule functions that
we cam now congfruct a sequence { SN(ﬁ)} N=1 which is
uniformly convergent on {/5.:,)03 ), such that
o o = e -
%N? (P ,gw(m go& P=12,3
, : 3 N . ’

The existence of 7 SN(fzs ,)§N=l’ proves that S((}) ig a sum rule
function. We notice that the particular sequence we have
constructed satisfies Sj{"

Extension of prool to the genersl cage:

Most generally we can write:



S

/
sy = Il R T 2y e
where either or both of M,N may be infinite but if the
second sum does not exist (i.e., M = 0) then N = &5 :
and if N is finite then Nv 3 1; and where
(Ve S0 3 fisnu Ny o, B .o .
(11) By = (ewlon) il Ko gad!
(i41) vn(€3§?63 is continuous on InS taking at least
one non zerc value in this interval.
I+ should be clear that corresponding to sach integral, for example,
the integral over the intexval In5 we can find a sequence of Nesum
e AR ’
rule functions %;f}wiﬁggﬂ which converges uniformly to that integral
¢
at least on every interval [ ﬁ%~ 3 /%; ] for all fﬁ such that
{3c<(%x<333 o In fact it will be necessary to establish the uniform
convergence on such intervals { /50 , 3y ] only in those cases where
In fj [1,0] %kég . Hence we can find a sequence of N-sum rule
functions tending uniformly to the overall sum on any interval [ /.,

where {%( iz such that {%a<{%xﬁi@3 . This completes the proof.
Theorem 7 can be weakened slightly, for it is easily ghown that
WA
if the integral g W &émé is convergent for fbiﬁ’/gé then it is
Eo ’
convergent for all f% & E:@QQGQE .

It is believed that the converze

Conjecture 1. If S{f%} is a sum rule

can be written din the form S5{

i 7 " ; 4
e p U s the integrval being converg

by o0
where G7(uy is




{.

(i) monotone non~decreasing
(ii) and taking <O many values on [ Ee ;@0 ).
Noticing that if S(/&) is a sum rule function on [/"3»03 A )
then S(- [5), which we call the reflection of S(/—},), is a sum rule
function on ( — 5 - //50 1, we are now able to extend Theorem 7 to

the following

Theorem 8. If S(/g) can be;?written in the form:
S(/g) = o\fwﬂfj\é)w} the integral existing for
fo= {303 (31 > and where <})(u) is
(i) monotone non-decreasing
(ii) taking infinitely many values on [ & @O )
then S(/.b) is a sum rule function on | /’:\,g > /:3.].
Proof: We first notice that if the integral exists for /5:—'/3%[‘3; then
it exists for all /‘b € [;/3*«0) ﬁz} . )
We can write SC/?;;} = ;f U»'POW’M + jﬁ;&“ﬁ f/‘éﬂk\

Sl (ﬁ) + Sﬁ(ﬁ§

[

It is clear that Sy (/3) is a convergent integral for all

ﬁé ﬁ, , and that SII(/‘J') is & convergent integral for all
/3>//§o . In order to treat the most general case we will
suppose that C}J (u) in fact takes infinitely many values both
in (Oy{ ] and in (1} , ©J ). The extension of the proof to all
other possible cases should be clear from what now follows.
Since g;‘ (u) takes infinitely many values in ( { , o0 ) it

follows from Theorem 7 that SII(/’%} is a sum rule function

on [Po)ai} ).




12,

(4%

et B (p) = 5(=2) = (uPdPay Soo pe (= o
Consider 51(/%} S %{ /E) 5§U &@%j %’m s & L~ )5&,}

We can write this as: o0
o~ b AN “Poh (- i
%I{(E3 = S%( d@(,ud = 51)» o ( g)(/(l:{j
4 69 4
But if @ (u) satisfies
(i) monotone non~decreasing
(i1i) taking & many values in (0, 1)
A - "
Then it is eacily seen that @ (W) = ~ (;) (1/1) satisfies
(i) monotone non-decreasing
(ii) taking ¢© many values in [1, &> ).
a4
Hence SI(/.%) is a sum rule function on [~ /3, , &0 ) by Theorem 7.
Hence SI(/E) is a sum rule function on (-~ €0 /%, ]
It is now easy to show, since SII<P> is a sum rule function
on [(gcjgo ), that_S([g) = SI(/Q) + SII(P) is a sum rule function on
[ [-30) {'35 ]J. This completes the proof.
It is believed that the converse of this theorem (conjecture 2)

is also true; and if this is the case then Theorem 8 together with its

converse represents a complete characterization of sum rule functions.

Conjecture 2: If S(/@,) is a sum rule funct;on on [/QQ,J/?:Q] then it
can be written in the form S(/?>) =ajw(3d é’(% with
the integral being convergent for /3%[/%)(3;3 , where (]ﬁ) (u) is

(i) monotone non-decreasing

(ii) taking infinitely many values in the interval Gé\%(“@

We will now restrict our attention to those sum yule functions

which can be written in the form given in Theorem 8. It emerged



naturally from the proof of Theorem 8 that all "Theorem 8" sum rule
functions can be written in the form S(/}) R( /?;) + T(/"% where one
or other or both of R(/s) and T(/?;) are sum rule functlons, but which
can be written in the special form jwﬁ‘d? tw and f‘w Fdd Tew
where q) RCu), é‘gT(u} satisfy the conditions of Theorem 7, with the
rider that one or other but not both of %} (u)3 ? (1) m:y igw;:nlq.e
spectrum, and where we take Ego=] . We call R(/g) a right hand
convergent sum rule function and T(-—ﬁ) a left hand convergent sum
rule function. R(/%) ig in general a monotone decreasing function and
T(—ﬂ;) is a monotone increasing function. Neither function need
diverge to infinity (for example, if the spectrum of @R(u) is bounded
above then convergence of the integral anywhere ensures its convergence
everywhere). From the above decomposition we can see that a sum rule
function can have at most one turning point and this is a minimum.
There is much more we could say about sum rule functions, but for the
moment we will content ourselves with a brief mention of two important
transformations. We will discuss them in terms of "Theorem 7" sum rule

functions.

Sum Rule Scaling.

Definition: If S(/&) = fwﬁdé)fu) is a sum rule function

Eo

on [ f503 J ), then by the E-scaled sum rule functions S (!'3) we

shall mean:

SE(py = g*ﬁgw*’*&@m where = 0

TF g((fz) is a sum vule function on f[g“ #3 ) then so is Sh( AY for we

= /
have: £- ﬁjw f‘o%éem ﬁd@(i@fg ) and it is seen that if i;f)(h
,!{Q at@.g
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satisfies the conditions of Theorem 7, then so does é)(u/E} with
Eo =2 EE .

1f we are given S(/}) on [/3oyﬁ>) in the form of Theorem 7,
then by choosing E = l/EO we can ensgure that SE(/a) is a monotone
decreasing function on | oo, o0 Y, i.e., we can ensure that SE(/z) is
of the form of RQ}%) given above. Sum rule scaling may well be a useful

. , ' omdwy IV
device for establishing convergence propert1es.<g€e also Bppondix )

POSITIVE LINEAR CHANGE OF VARIABLE

A positive linear transformation on the variable ¢ R s
L(& =o‘l(5“§'23> ~where D0 and 0(33) are finite real numbers.
: L .

If S(/g,)- is a gum rule function on {/ég »@0) then S5(/3) =GLAY 1
a sum rule function on | Lfygojda ).

It should be clear that there 'is one to one correspondence
between the set of all sum rule functions defined on an interval [a,b]
and the set of all sum rule functions defined on any other interval
[ey,d]y the transformation which effects this correspondence being
merely the positive linear transformation relating these intervals.

We will make repeated use of positive linear change of wvariable,
and of reflection (i.e., the mapping /3*“‘:*“[3 ). (32¢ also ﬂ?!sf’“é\;‘ﬁ)

We have so far been concerned with trying to characterize
sum rule functions from their definition. Why do we use this definition?
The answer is simple. It contains the weakest possible conditions on
S(ﬁ%) such that (1) it will at least be a reasonable function, namely,
that it is coutinuous*3 and (ii) sum rule interpolation theory may be

% This is ensured by the existence of a sequence of continuous functions

which are uniformly convergent to S(/Q) on the interval of definition.
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Condn

developed on the basis of such a definition. Until our con
have been established it will remain difficult to decide quite what a
sum rule function is. This question will be to some extent answered
later when we deal with sum rule interpolations. The existence and
bounding properties of the interpolation functions themselves will in
fact tell us a great deal about sum rule functions.
We will now present what are probably the most important
theorems concerning sum rule functions. They will allow us later,
when we are dealing with interpolating sum rule functions using N-sum
rule functions, to establish that our results are best possible.
Theorem 9: If SN(/E) is any given N-sum rule function and I is any of
the following intervals
(i) I = [/391) [3\, ] for any given/sé)(z: such that
-y < /BL <& /%1( R0
(ii) I = L(”;; ,do ) for any given /5‘ gsuch that -20< fgv(m
(iii) I = ("00;;'52 ] for any given /@: such that ~@<F:<®
then there exists a sum rule function {EJ(/ES) on the interval I such that
?(/3) is arbitrarily close to SN(/%) for all /%QI, and such that

S(ﬁ*) - SN(/% %) is arbitrarily large at any given point /355’#1;/3%3”‘?‘3

Theorem 10: If SN(//%) is any given N- sum rule function and I is either
of the following intervals
i
(1) T = [ﬂ;)ﬂi] for any given :Jﬁ‘, such that wéOC(;O”{(%‘ <

. ¢ . . 4 !
(11) I = [ﬁ?&*}‘?@ y for any given H such that -3¢ /&J"G’Q

#Thie is-ensured by-—theexistence-vf o sequence—of-eontinusus

N . s N oy : p . .
fFuncttons—whieh e _&;L“Axy.n.gzz‘ COTIVETgei o S JUnTT e E I TETva o

i

e ftdd -



e
then there exists a sum rule function S({%) on the interval I satd

the conditions of Theorem 7 such that S(/%) is arbitrarily close to S (
for all (geig and such that S(/}*) - 8y ( [5%) is avbitrarily large

at any given point Pf(%jf} [3;## 100, .

Theorem 11. If SN(/A) is any given N-sum rule function and 1 is either

of the following intervals

i i
(i) I = | /3,0‘ ; (351 ] for any given . /@o )ﬁ: such that
—0C i< BL 0

. . { ,
(ii) 1 = IQ“’ , o0 ) for any given (%Q such that

- < {504—%@

then there ex:Lsts a Theorem 7 sum rule function S(/’l‘)) of the special

form s((g) = ngneﬂf" ¥ jvcem Fhe here

n=
(a) Va0 N=i,2,% - ~ -
n 3

- <=
() 6< &< Eaae ) b BEnS

(c) Y(&y  is continuous in [E, &9 ), non negative, and
taking at least one non-zero value in [E, o© );
o~
such that S(/&) is arbitrarily close to SN<P> for
all fAel , and such that 8(3%) - s (p*) is arbi-

trarily large at any given point /%’% I )(5){’# t o0 .

Proofs of Theorems 9, 10 and 11

The most important, oxr strongest, statement in these theorems
is the one which conerns the interval (i) or Theorem 9. The proof of
this is immediate from Theorem 6. Namely, if we take the limit of

SR((?S) (described in Theorem 6) as R —% A0 s i.e., take

x([g,) = fue S0 ()

]

sfying

%)



O ) , . . :
we see that S( {:’;) is a sum rule function with the required properties,

S
providing we take (?;,;ﬁ a, {3: =b. 1In fact, S(/B) thus constructed could

look something like this:

U I A

o SC{?f)
I«‘ ’ ’ ;{/ CUNS’TRV\ \5}

-
L . s
. z e‘(e . -
. G\ e
| l \ng\'\m( wkenal ' | { 3
I
‘ >£: S G i |
S PRescairep INTERUAL T &= =
$ P &

Ct!f‘faika/viha Svaedl, Astom e «——j}
Diagram illustrating Theorem 9 with interval I = [ [bo. ,{3i

The proofs of all the other results are similar, constructions
like those given in Theorems 4, 5 and 6 being used. We note that given
any and any €00 , we can find a positive continuous function \,}(6‘)5

=]
€ ¢ [E)oﬂ> , such that Efg“ﬁ" V(e de < '€ and that in such
a case the sum rule function thus defined satisfies S(ﬁB <e for
all @@[ﬁ: )aO\> . We can make use of the reflection of such functions.

At the end of Section IV we will be carrying out some of these con-

styructions.
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Definition: If S(f&) is a sum rule function on the interval I then the

value of S((Ef) for any (Bgéjt is called a sum rule.

Definition: If S(/B) is known to be a sum rule function of a particular
‘form* or of the most general form, and I is a set of further

information concerning S(/&), then a set of bounds B(/%) on

S(/%) is said to be best possible 0.B.G.I. if and only if the

bounds B({@) satisfy the following conditions:
(i) B(/s) is extensive; that is, for /é.CR the set B(/&)
supplies at least either an upper or a lower bound to
S(/E) 0.B.G.I.;
(ii) B(/g) is exclusive; that is, 0,B.G.I. no other non-trivial
bounds can be imposed on S(/s), where zero and infinity
are considered to be the trivial bounds;
(iii) B(/%) is optimal; that is, 0.B.G.I. no improvement can be

made on any bound contained in the set B(/&).

* For example, the different and more restricted types of sum rule
function mentioned in Theorems 10 and 11 are particular forms of sum
rule functions. The most general form is that given in the definition
of a sum rule funtion. "0.B.G.I." stands for "on the basis of the

given information'.
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TIT. Best Possible Upper and Lower Bounds To ALL Sum Rules Using Only
Two Known Sum Rules.

THEOREM 12: (i) If %31(55‘} is an arbitrary Z-sum rule functon,

o < 3 are real numbers, then there is a unique

dEp—py—find—a l-sum rule function such that

S = a(BeY 5 S(R)=S,06))

-

(ii) Moreover: S (R)< %, (B g%_ fie tyg@}/@"} U({%w‘ﬁ‘)
gx{ﬁJ >5Q_ ) ‘%(; {BQ’ (@% (‘3\3

PROOF : We will prove the theorem for the case fﬁg‘z“@ NN 1.
It is then easy to see that it is true for arbitrary
/50’( [g, by making use of linear changes of
variable.

Proof of (i):

_ 6 |
Suppose SLC[‘B\} = \"/Es{g J"'\J'?',//ai::q, . Then
set 5‘(/5\)~:: \//6 ? where V= S,(0)
and £ = S () /gict) . The general interpolation
2.y el
formula is then % (p) = S.(f8s) BV BA
S (|

This proves (i).

Proof of (ii):

Since 22(B) amel 3&([%) y as constructed are

(N+1) & N—sum rule functiens with N=1, it follows
from theorem %with N=1 that (giif@? f%s {’;g‘}\)

can have at most two zeros. Hence, in this case,
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o

(gi(ﬁ@ﬁﬂf%{fgg} has exactly two zeros. Sinc §%*§§‘§ﬂ%§

2

e

i

S;QQfSE are continuous functions of f% (being
differenciable), it follows that the inequalities
in (ii) are either true as they stand or else true
with both the inequality signs reversed. Thus, it
suffices as a completion of the procf to show that
in the {3@;—39 j ;{3‘3 1 case, 525 (%3}?5,(’1“) .
i.e. wish to show that
VogaeVea 5 [N/ pNa /e f{v\&xﬁipﬁwi

/E\ = > { E Fa -
This is true <= \“’\VE(E/Ei“VEL\} > O which

is true since Elﬁﬁ E,. This proves (ii).

Finally, that Sl(fg) is Unique follows from Theorem 2.

This completes the proof.

THEOREM 13: (i) 1If g(/§§ is known to be a sum rule function;
and S(/ﬁg\}JS(ﬁJ ; are known finite sum rules
for some ﬁﬁgiff%‘ ; then there is a unique l=sum

rule function such that:

%g ( g@@\)?—’ S(ﬁ@) ) Sc(ﬁﬁ = 'S(?[g%\}
(ii) Moreover:
SR IR) 1§ Be ooy BV(f 0D
SR PS> L Be(fayp)

PROOF : Suppose Sp () is any N-sum rule , with
: ’ [
. - ) y e “a
Vs aNEy e yEn known. i.e. gﬁsiﬁﬁwg Enl®
Let 539 < [ be veal numbers.

Since V. ,Vu, gﬂw!; =,y are known. te

- €& s e .
to form the = {AD approximation to

which is exact at f%WE%@ as in Theoren

this approximation as ~WA~—! /¢




[N ff o o L,
Now let o P % v;‘“*‘i Yo A
g {4 = * AR WOA
wd ppef NS ’ T A L
= é (4] L kS Jf

Then it is immediate that:

ot (B5(BYE Be (o0 BNV e0)

FA™d
- s N . Vs -~ %
N i . 4 1 o 'ﬂ}l S H
Su(8)>Sy(B)ie =B, B,
with equadity at éia /? .
// o i

V- 2 éﬁiv from

Now form

V-2 Aot

3 = ] 7 % 1 5 5 fa g~y i3 4=
,»fwk‘wm&'% V&,zg’ g in the same way as before.
Kot
et & S A
_Aét 5..' d s ¥y ’ j _——
Snea (B)= > 2y Mz
oy Ca A3

= |

Then
ue\; ;z,(/3)< gm»((ﬁx"*ﬁ‘:\,(ﬂ)
?% A& (“ oo, Kg@}{j{“ﬁ )
2 (8) >6N93<’/9>>5Nm>
i Ae (B, B)

s

with sguality at
qu Yy Aﬁﬁ
L, . X Vi N [
Proceed in this mauner until <& { A= 192
- ; el j/f'“’f;f”
&

e

it
Do

A

e

is obtained.

Then

§<ﬂ\<§ (,@)\Mws L (B)S (4)
) ) 51{‘ é(mm @/v"{: ,1’{:3;/

CM /3);”..:;; w1 (B> S (8)if e (B,

D \\

with eauality at /7 £
Y 1 g j/ /}N f»j[: .

o

el
/3;

Y

)
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But (/ﬁ J is uniquely defined by its
values at /B, . /3, i.e. it is completely

defined by SN (’,670}) Su {jﬂj) with no knowladge
of \"/x e “/:\; Es““" E

§

P %

e 5y PelllZ

nsace 5 (4)2 6, (8) {Sn (B 1R
)

The point Gf going through the proceedure described

above was to show that < (/ﬁ) has the bounding
i

properties .

Now suppose that S(?S) is known to be a sum rule
function & that g(,{ff@) \ are known finite
sum rules. Since 5({5} is & sum rule function,

[ o]
there exists a saquence Z(gf‘} {./3’))2 V=i of N-sum
rule functiens such tha ~' < NG sy for
rule functions such that Mf:;?o 5’\](@’;W§{{j) o

any fixed /4 oo the interval of definition.

- (W)
Let Si )(E) be the I-sum rule approximation to

Sm(ﬁj}exact at ﬁ@J ﬂi o

. e )
gy tet S (4)= {{m S(N’ A /”’ (4 %
2 N oo /) o (g’ }

Thei 5;(’\”(//3)< SN'(/Q) if Aeg ;57‘3),/3‘@)-{,,3{,/3“5@?}

A

Ty Gy W, o, (N, /J) SN (ﬁ)

;-—a

@@C/g@j /:{,)

Taking limits as N —% w0 we obtain



-~ Fine € fa ™ en OFrn N QN L Crm Yy
(grom{2)) Si{po) =S(pS 5 S (B = SIAG
This completes the proof.
R
Theorem 13 : The set of bounds B(R) = ﬁi{/%} where g]g/g} is the
PO IS { A ads

o

(%

interpolation function to S{ &) constructed in Theovem 1
{

are best pogsible 0.B.G.I. where the dinformation we have

concerning S(/@) ig:

(i) S(ﬁ%} is a sum rule function either of the wmost
general form or of the particular form given in

Theorem 10 or of the particulay form given in
& &

Theorem 11

/2
Taking N = 1 in eithey Theorem 9 or Theorem 10 or Theorem

according vespectively to the information that we ave give

ey

P oL . . i oAt
in (i) above, and writing I in the form ﬁE; 3 5§s 1,

=%

construct the S{/A) corresponding to a prescribed € > O

has the properties ascribed to it by the respective Theore

~
, A ; . SR . ,
Then O & S /2y) =S5, ( [30) =€ £ € for 1 = o,1
{ (AR
s o~y # @ g
where the "o £ " follows from the manner in which it was

o
suggested that the construcktion of S(/%} ba ¢

Now form the

11,

T

which
T .
3



PN 4

i

where G<<> o and B are chosen so that
i iy T . o~
AETS RSy = TPy - o
£y oy,
A & BN e n“‘g%'}“\g%

BT P
P

o= .
Then S{ /3) agx ith 8, (R) - 0 and /A ; is arbi-
en 5([5) agrees wi l(/‘) at fbo ar [>y5 is arb
trarily closed to SI(/%) on the interval T and is srbitrarily
divergent from it at any prescribed point cutside. L. Alter-
natively SI(/E} ig the l-sum pule interpolation function to

o
”Té’(i%j, which is

[

tself a sum rule function oﬁ regpectively
either the most general form of of one of the two particular
formg given in Theorems 10 and 11, which has the ususl bouanding
properties {Theorem 13). Hence, we can neither improve our

lower bounds or ouyr upper beounds 0.B.G.I. {i.e. guch bounds

as Slgfé) imposes are optimal). Moreover, since we neither

can impose non-trivial upper bounds on Si/%) outgide | /%c){%é];

0.B.G.L.; nor, as can easily be demonstrated, can we impose

non~trivial lower bounds inside | /%@35%1] 0.8.6.1., it
follows that the set of bounds is exclusive. It is clear that

they are extensive. This completes the proof.



Theorem % has already beepn presented by H. L. Kramer [1], although
the best possible statement was omitted. He shows that direct applica-
tion to quantum mechanical sum rules leads to useful bounds on integer
& non integer sum rules using any two known sum rules. My purposes in
repeating the presentation are several. The statement and structure are
here more formal & complete; the position of the theorem in a general
theory of sum rule functions is. expected to be correct; & the proof used
in this paper should elucidate the nature & proofs of later theorems.

A particular case of theorem 13 has been given by B. Weinhold [2].

He shows that the matrix

G= | 5(ai) S(i7) .- S(ivk)
S () S(2q)----5(4+k)

g(éﬁ#@ 5(3'“*'@) - -S(2k)

must always be positive non~definite, where 1,3,...k are any set of
real numbers. This leads immediately to bounding relations on various
sets of sum rules. Moreover the implied bounds must be optimal
possible since G must be a metric matrix; & a both necessary and
sufficient condition for this is that it be positive. Hence, vherever
Weinhold's results are compatable with the results presented here, they

must agree. Whereas Weinhold's bounds will always be optimal,

our ng (fgﬁ bounds are best possible which, as already has been
o i it f



explained, is inclusive of optimal. For example, starting
with only two sum vules known, G yields the optimal on

exactly one other sum rule whereas theorem 13 yields the optimal Yo owncl

on each of all other sum rules including of course the bound given by G.

Similar remarks will later be seen to apply to any number of sum rules

known.

Two Sum Rules Known

Weinhold: 6’(@)5(/3(»{5 (Ai»—%é'j\j

| Theorem 13: g(ﬁ ) 5 (ﬁ) %c
© E§“E;573 ;} ES((/S)

Qur p=(PorP)/n o olokas Weibohd's Reule)

It is remarked that Weinhold's formalization may well have con-

siderable relevance to a general theory of sum rule functions.

IV. Best Possible Upper & Lower Bounds To All Sum Rules Using Four

Known Sum Rules.

THEOREM 14: (1) 1If fgg(;g} is an arbitrary 3-sum rvule function
N I s Fimdta vanl nimh e
& /;ﬁtiq/gié; /gz e /%‘g dre finite real numbers,

then there is a unique Z2-sum rule function



2LF.

such that

L (5)=S508) ; 5.08)-5, (B,),
2 (8,)= 9, (8,5 S5 (Bs)=5,(5)
(ii) Moreover:

3B)<5B) 1 B € (e p)0(8, 8)u(g, )

52(8)> 5, () 1t pe (8,8 0 (A B

PROOF: First we will prove the theorem in the case ﬂo =0

/:’;” - I} 52;2 , /4‘5)3: 3 « In this case the

explicit construction is given. The extension to the

case /97,7;/50’7"1’70@) n=o,1,2,3, Bo and o #O
being real numbers,is then immediaste using linear

change of variable.

@; The case 4:()) 6,:/; /3;3925 /5%:3 R
suppose G (0)=5,., 5,0)°S, , 5,(2)=S, ,5,(3)=5, .

Let E’ ) gl be the roots of the quadratic equation:
(555-5,7)E% (5,5,-5,5,)€ + (5,5,-5,%) = 0

Let X;(§b§1—512)27(50~92§1£/ HI’%‘,S:Z>), 9= ngx

Define & (g) = :x:/g!@ + ﬁ/g;/{

Then it is a matter of substitution to verify that:

g -~

S (0)=S,  S,()=s,  S(a)xS,, S,(3)=5;.

&y A Ea - =



28.
To complete the proof of (i) we must verify that
o0

JL(,@} thus defined is indeed a 2-sum rule function.

That is, we must show that X >0 y>@; é: >0)‘ £z>o;
£, +€,,

Suppose that S (/3) V/E: :@-f»\/y/g A i"/E 3

where V. >0; \, >0, v, 2O} OLE L[, L Es,

Hence g = (5=55‘”S;)>C’)‘ ~b=(5%5:5-55,)>0;
C= (So§z’s,z“> >0

e et g {a’:é o P
— 2 LT ) z‘f::“ e, f (,w){mj ,,z(»—-)é }3{}3
Let A= %‘i{ “"/E& : Bil/g?‘w%g; ;
so that —(A+B) = /{t’:‘gﬂ, /L/E

f @

then A, B(A+B) >0 and

baw. é?a@ = {v! ‘%ﬁ(;; /é?%u V& ijg 5§ ;g,;u
F2[ gy, (48| [y Br A >0

S0 13’{ > bl‘*’!/QQ’L >0
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Hence the roots of the quadratic equation
2 , . \
A€ -Le +C =0 are positive & non equal.

i-e. g">0) ga:}O‘) gl‘;ﬁgzi

N (6-25,8545,6° )
Finally, since $,5,~2,°>0 = (Se= 5\, +2

is a positive definite fn. of & . Hence X >O
By symmetry Y >® . Hence ‘f}; (//j;) is a sum rule

function. That it is unique follows from Theorem 2.

We now prove (ii). By theorem 3, %(ﬁ)— 5; (@) has 'at most
four zeros. Hence in this case 53 (8)- 5, (4) Thas exactly four
zeros. Hence, since 51(6)) 33[5) are gtg. fns. of g the inequalities
in (ii) are either true as they stand or else true with all the inequality
signs reversed. Moreover, if they are true in any particular case (i.e.

r} f * & ‘__.)(. 'K'
for some choice of \/) >0, V) >0 ; Vs >0 ; 0<t, <E;< E;\’— )
then they are true in all cases. To see this we first notice that if
V‘ 30, Vz_>0; \/3)0; 045, £ Ez_ Z EB are given, then we can
find a continuous transformation {7 AT = i ~
Vi @Y\, @) Vy @) £ () E, @) 5 E ()

. . » L e X o~
defined on the interval acé[o) {] st Vi(o)= Ve Ec‘ (O):E;%‘

ot /':J 1 ] Y -

Ve ()= Ve Er(=E : (=1,a,3 ,and such that V, () >0 V:,(OU}O;
Ad
V3 (@) >0; 0<E () LE, (£ 4 E5 (#) for allk &[0, (] . If the
inequality signs became reversed as x goes from 0 to 1, then for
some 066(0} l) the condition that 63 (3)~ S:z., (4 hag at most 4
zeros would be violated. So we need only verify the inequalities for
one particular case & at one value of fg; B (=0,1,2,3,

[or else see P. 3| T.



A particular case: Define a 3~sum rule function by:

S5(8)= 5 + J0)8 + s

Find: = . = ' S =i = p . - -
‘ SD 5} 5[ é') a /4) 53 3éj‘ (5052.*5;12)::6} (5[53.—512-‘) :—-__“'2)0)‘
(95355,)=249; £320.544998975 ; £,=0-355051025
X= 14998713 5 y= /sg’OﬁlZZ?; S5 (£)=4. 1463, 5, &)=4. 1493
Hence in this case g; (ﬂ,;\, is an upper bound to ‘53 (3) at g ::3’,
This completes the proof of (ii) in the ﬂosoj- A= 1 ﬁzg%; 8,3
case. [Note: considering the dincrease in 53 (A?) as 4 goes from
0 to 1, the closeness of S3(4) & S, (%) is remarkable.
At g= 34 the results are indistinguishable within desk caleculator
accuracy] .

@ ‘ We now extend the arpument to the case of general interpolation
points ﬂv <, 61 4/52 4&3 | . We will concern ourselves with
the existence of the interpoclation function.

Given a 3-sum rule function O, (3D then there exists a 2-sum
rule function 'Dl (/j,) such that 5f(ﬂ): S (/3) for A= 0, lj:Z,7
& such that S X4y S, () for Be (a2,00) . This follows

#
from the first part of the theorem. In fact we could take the g} (B)

defined by S&%(B) = ff:»g (ﬁ) for = w/} o, 1,2, assuming we
had known 53 (- /) . We are proving existence.

Now construct g:f%(ﬁug C?) such that 3;\4&(55 dg):sj(ﬁ)
for /§: o, 1,2 & Q;‘%(fgjbﬁ):m fgf‘(g ) +§ } where

(}) =} }Q’D‘) o0 > (see appendix 1).
& 7 }%M 3 Y 2 P s i £ Go o o N o4 3 - Z
Then 5} "*(6) 6‘J> is a continuous function of } {see

appendix).



Moreover i;;%%(/ /30 ) < {’55 () foxr f¢ ( Z,0°)
) ;)(- % s o . .
and S;z, (ﬁ) ()U) —p oD s 2}) — OO for /3’ g(;zﬂ/aa/;)

(see appendix).

Let /336}3 (;Z} &9 ) be given.

3 ex s

Then since §l (6320>< 33 ('63>j S;: (@3)3‘}) >53 fﬂs\)
for sufficiently large J) s & S;(%<ﬂ3 ) dj) is a continuous
function of 5‘) , it follows that 3- a d») 'g‘é‘ (O) oo ) s.t.

P -
S (B ) = S, (8,

o S » A
We have constructed a 2-sum rule function, S’l 7‘*(}5; OU ) such
) % % A
that 5,7 (B, ¢ )= S, (B) for B=o, Lo, pae(a, o)
Moreover it follows from continuity that 9;%%(/44 5’)*) has similar
J

interlacing properties to the Sz (/3) which equals 35 C/:]) at
B=0,1,

S;L K*Cﬁj d)*)must be a lower bound when /3 é CO) ﬂsj
9

Z,3 - [This can be also seen in the following way:

simply because, by theovem ', it could not possibly be known to be

always an upper bound & it must be always either an upper or a lower
bound (see P.Qﬁ)j Using the linear change of variable ﬂ e W/:*f y
) §
it follows now that given 55(/5) it is pogsible to find an Sz(/;%)
‘ -
such that 535 (8): i)g(ﬁ) for g;ﬂcé(/&@J }); f) Q;; 3;
with the usual bounding properties.
s a . < + (

Hence, it is possible to find an 2 <ﬁ> such that
S, M) = Ss(p) tor B= ,2,8, (2 8,-2)
i.e. at A= §) ;7;} At (@5“’£ )jQ; + 2 (ﬁg”’az :‘; , simply by

B

again making use of linesr change of varisble on an ‘t”;;? (ﬁ} type of

interpolation.



32,

Then gf'(/g;j satisties 5,1 (A)= S3(A8) for =12, B
& §j&(/3) < S.(0R) tor A€ (~o0 ), |
Now construct S T (B; p) such that Cj;*(ﬁj ¢ )= S;’(ﬁ)
for A= 1,2, By & S, (0;9) = (ST(0) )
wvhere €[ 0, ©0), (see appendix).
Then St (0,) &) is a continuous function of ¢
(see appendix).
Moreover S, T+ (30)< 5, ( A) for Be (-0 1)
and S, B0 P) —p 0@ a f —>
for 4e 6,&0) /> (see appendix)
et 3 e (~ao, |) be given.
Then since <, +7F (&) 0 -)< 53 ( o ); SLMZ@%%)}SB,(AO)
for sufficiently large J) , and
Sat*(/8,; y) i a continuous function of P ; it follovs that o
such that S (3, YY) =S, (4)
We have constructed a 2-sum rule function s.t.
S8 7= S;(A) tor p- Lo, l, 2, B3
where 3, € (—20,1) ; B, € (a, o).
Clearly it has the expected bounding properties, from consideratiorn of

number of zeros.

Linear change of variable now completes the proof in its entivity.

THEOREM géi_ 1f E;{/g) is known to be a sum vule function, & if
for some 0@@ £ ﬁ} 4 /32 < 633‘ S (/3&)) §(ﬁ, >}
< 3

Pel & \ e .
- ( ﬂﬁgwjj - ( /gg ) are known Iinite sum ruleg,

then there is a unique Z~sum rule Ffunction



PROOF ¢

CONSTRUCTION:

%
Theorem 15:

such that %l(faﬁsﬁ:%(ﬁgﬁ gc& {=o,t,2,%
Moreover: & (B> < SIBY i A€ (-o0, VIR, B2V Ips )
2a(py ¥ SRy f Belpe, gy v, )
Follows exactly the same lines as Theorem 13. For
completeness we will give the construction for Sz( /3 )
intMaBgﬁo;/%:\3ﬁ1:1 y faz= D case, from
which, by linear change of variable, the construction in

the case f5n’: T 4N yn=o,1,2;,% is easily derived.

Let 3(0) = G, 5 Siy=S, 5 S(2)=Sa 5 S(33= 33

Let &, €4 be the roots of the equation:

(58,-3 )%~ (8052~532)E + (%Sa=SID) = O

Then form: 9C = (SeSg -3*) /1S =298, +32 %)
3 = (%c—2)

Then 3, (RY = T r * 3/ B

has the desired properties. Other constructions are

given in an appendix.

‘ . \ 5
5 , b “~ 3 - . .
The sget of bounds B(!@) =§Sa(ﬁ>\)> Sy L2253

where Sz(f;) is the interpolation function to S(/%) constructed

i

in Theorem 15, and where the Sl (/%)'s are l-sum rule inter-

polation functions made exact at adjacent interpolation points,

+



f%imi and f34i; are best possible 0.B.G.I. where the information
we have concerning S(g%) ig:
(i) S?@) ig a sum rule function either of the most
general form or of the form given in Theorem 10 ox
of the form given in Theorem 11;
(ii) The finite sum rules SC/Ei), 1= 0,1,2,3: and the
respective points - o0 < (3o < < [Fe Sfrg = OO
Before giving the basic result necessary for the proof of
this theorem we refer the reader to the appendix on sum rule
transformations. { Agpendix ¥ N

PROOF OF THEOREM 15x: We will content ourselves with consideration of

the case of interpolation points /% = 0,1,2,3.

Let 82(/%) be any given 2-sum rule function.

Our object will be to construct a sum rule function S(/%)
which (i) agrees with szc/g) at /3 = 0,1,2,3:

(ii) is such that ! 82(/3) - S(/&)g( € for all /;‘ti
where € O hag been prescribed and where I = [a,b] is any
closed real interval containing the points ﬁ% = (0,1,2,3.

(iii) S(/’E‘;é) - 52(/5*) is arbitrarily large at any
prescribed point /%f %' I. Without loss of generality suppose
@*) b.
We first observe that there is a trivial proof in the case

of the most general type of sum rule function. Asg follows: if

())O@

S a ule functions (not N

é\ is a sequence of sum rule functions (not N~sum
é‘b‘i ‘‘‘‘‘‘‘

rule functions) that is uniformly convergent on an interval 1 then it

converges to a sum rule function on that interval. This can be proven



directly from the definition of 2 sum rule function. Thus, after the
manner of Theorem 9, we could find a sum rule function which agrees
with S (fé) on the interval I and is arbitrarily divergent from it at
any other given point.

However, we will not rest our proof on this almost too re-
markable construction. [What such a function looks like is zimple: but
its analyiic nature ig most puzzling!]

o
w

Instead, let us start with any monotone increasing sum rule

function which is convergent on (= &0 00 ); 8(12)

Let I = [a,b] be any closed interval which contains the points
P> = 2,3; and let f%§> b be any such given point. TLet e® » 0 and
M :> 0 be arbitrarily small and arbitrarily large prescribed numbers
respectively. Choose a el and g;&E; s.t.

(1) Sy = a B Fw) = %%}2

i (B aé?sv%)

o~
Let S(/%) = Ei SCj@,ﬂ Now form the reflection of b(fi)

]

43

i .
through %(a + b), S(- {5 + L(a + b).
p N N .
Let S'(f%) ;,S(/%) + 5(~- f% + %(a 4+ b).
Then S'(/%) is 5 symmetric sum rule funcition, and must take
ite minimum value at %{(a + b).

%

Moreover S'{a) = S'(b) < e
;A . &
SUCA) =8 (= B akatb)) D M

*# This sum rule function may be chosen to be one of the particular forms

which are mentioned in Theorems 10 and 11. Then anv A, E, or R trans-

formation will neither alter the Lorm nor the interval of definition,

(-0 09 ).



o

i I - - L P
Having constructed b(;@) thus we will now forget about it for

a while and consider another construction.

oI . ] oS
Let S, () be any given 2-sum rule function. Denote S, (i) =

NG

Si for i = 0,1,2,3. As we saw in Theorem 15, an arbitrary Z-gum rule

function 52(/%) is itself a continuous function of the parameters

Sj = SZ (1), ¢ = 0,1,2,3; which are themselves subject to the restraiuts

i 2
5.8, — S5, >> 0, etc.
L
These left hand side of each of these restraints is aleo a continuous

OS Slﬁ 523

hood of radius ©0 , where ¢ is suitably small, centered on

function of S SB“ Hence there exists a spherical neighbour-

~ ~
s, sl,"\sfz, 5,) such that if

5. s G 2
(Sys Sp5 5,5 S50 € ;{SO’ S5 5,5 54 then the
above restraints are still satisfied, and %}/%) exists.

Now Let I = [a,b] be any closed interval which containe the
points f% = 0,1,2,3: and let

NS Aet
S S S = Mas -~ ety

G(ooS Sls 9 Sq Max %} 82(/3) Sz(fg)g V I3

Q@{» g0 510 Sye 53?% hen G(SO3 Sly 5 SS) is ditsel

a continuous function and takes the value zero uniquely at

A ~ =
(S., S,, S,, S,). Hence there exists a new spherical neighbourhood
0 1 2 3

Cyfsys 5,5 5,5 8,k such that

(Sgs 815 5,5 85) € <®g {So’ 8,5 S, S ?

£ if A P g
Zg!%) exist
.

i

(11) [, (p) - 8,(f!

implies (i) that S

been prescribed.

We are now ready

I {V? !” " o - . ;
Find kﬁgEEGS Sis Sy &i

&



Construct S'(juv). Construct S,(/2) defined by
S, =8, - 8'(1), i =0,1,2,3.
. g ! — i A
Finally let S({%) = SZ(/E) + S (/S)Q
Then S( /%) has the required properties.

We will check this briefly.

L

3 ; ~ a I
(i) S(i) = Si’ where i = 0,1,2,3.

g3 s § 7 . . g . oa \& -
(1i) 8'(f) < e throughout I and | Szgf%} Dzkfgj R
thoughout 1, so that | S( ) - 5(p)| < 2e throughout I

oughout I, so tha %[3 &/é <. 2e throughou
(iid) S'(ﬁgﬁ ig arbitrarily large so that S(/§3 is also

arbitrarily large.

The theorem can now be established, using arguments similar to those

3.

used in Theorem lwa



U

V: Best Possible Upper And Lower Bounds To All Sum Rules Using Any

Number of Known Sum Rules.

One sum rule known: 5<£0> . It is impossible to say anything about
any other sum rules, apart from the trivial statement

that they are positive.

. 4 ¥ A ; < a0

Two sum rules known: S(ﬁs>) S(/g, )'Then we can use an =, (A )
function to obtain upper bounds for /4 éCga} /Q))
& lower bounds elsewhere. These bounds are bast

possible. (Jee remarks following theorem 8).

Three sum rules known: & (’60')) Q(Bx), g (62_) . We know that

there exist numerous 52_ (6) functions through the
points, but we can say nothing about their bounding
properties with no more information. Since there
exists an g(/ﬁ) arbitrarily close to each of these
§2 (/3) )5 onn any closed interval it follows that
the best possible bounds that we can put on an
arbitrary S(B) through these three points are
identical with the best possible bounds that we can
put on an arbitrary 2( /:3) function through these
points (see Theorem 5 & appendix) & these are easily
seen to be given by §, (/3) functions; one made
exact at /3= ﬁﬁj éi ) & one made exact at ﬁ‘:i/%éj /‘2

These will give best upper and lower bounds to S A}

O



e g 0 e . »
Loy /AE ([ G ) & best lower bounds @,
0, s S
. B o e o e a N
. . . : =, » g e
Four sum rules known: = {/3@}} (/5 }} >{ 4, }/ S8
. <A ,
The = ( A) made exact at 4= 4
2 < O, X jj&iﬁ

gives best possible lower bounds for

’6{‘}(”@@1 Be) u(ﬁ%) ﬁ‘;) U(/ﬁg, as

& best possible upper bounds fov fﬁ@;{}%@
A

By similar reasoning to that used in the case of
"three sum rules known' we see that best possible
upper bounds for @@ (,ﬁ:’é /31\ are obtainsd from
= ' / iy S I
‘ 3
an g"(l/%) funetion made exact at ,g, , Pa ;&

similarily for the remaining lower bounds.

Five sum rules known: S (/60) S fS(/gq)gBy similar reasoning
5 ,
to the case of 'three sum rules known' we see that best

possible bounds are given by ég)g‘ﬂgp funetions.

Any even number of sum rules known: ) < /56) L %}£={ﬁzawa@}a
Certainly 1f an S;N {fﬂg) cain be found, exact
at /5@) -——y 6‘1,&1 "y , then it will have

best bounding propertieg. It is believed that it is¢ in

fact always pogsible to find such a function.

providing such

1524




F. Wienhold presgents best possible bounds using
particular sets of known sum rules. His results
give bounds on a few other sum rules when various
sum rules are known. Certainly the results he
obtains in the cases of 2,3,4 & 5 sum rules known
must be particular cases of the results given here

since our resulis also are best possible.

273



Appendix T

THEOREM: If % { 4] is an arbitrary 2-sum vule function,
with 31 {n)= Sﬂ for N=9©,1,2, ; then
S; > Szl/g*i ) S. > 9, a/gl . Moreover, for
any > © there exists a 2-sum vule function %%”(@}35@
S.*C)=s, S.(2)=s, , S.N3)=(S75 )4
with élo, oo ). Similarily, there exists a Z-sum

. e . X [N e )

rule function SE (/3) such that §Z (0):(5%/3;)% ﬁ)
% % i B , .

S n=s, ; S,%%(2)=5; S *%(z).q.

=

Moreoverjs;*(ﬁ)__‘k oD gs <}) —t O ) §@w /:}g:»(';z; @@)
[S8) —vco as & , for B e (oo 1)

In particular, ? an g%k;{—(,@) &Z; 75::94/*’ Gj 5’Lﬂ é*Jj

O()z‘f {:O)CO); SQ*W(O):“:-SO“*‘(})} , S %%;(C;> =5

2.
Sj‘*ﬁ@);%; g’axxﬁe(;%);,gﬁ-f—ﬂd’?zj and
S0 (g) —# 00 as f, —v 02 for Be(-e,1)

Moreover, the various 2-sum rule functions thus

'y

alv

. 3
obtained are continuous functions of the 5 Ly

PROOF : that Sy (S, 25 Jand So > (S,%/2, )

is an immediate consequence of theorem 12.

If we parametrically solve the set of equatious
’ e PR 2 P
ﬁyw%ﬂﬁ/f rY/E, =S, WEF+d/E7 = 5,
3
x/g Yy /e, S,



then we obtain the relations

€= (58,750 g,= (5&-5)
(5.6 _s) (5.¢ -5)

In particular;
. Z - 4 =) > Y
S3= 5,765~ 5 G€ +(5%S %)
E; (S,€, ~So)
So that f;g can be shown to be motone decreasing as

7
a function of ¢ in the domain (\é@a @c?) .
~{ s, / s

going from <+ &0 to S;‘/gj . Moreover if
€, € (So/S,, @) then

E. 20, x>0 , Y>0 -
Hence we can f£ind a 2-sum rule function gz%(\‘,@) g"{i

for any G%V >0 we have gi*(@);go; %*(;}-: Sa ;
e [ . 2. ) y
LAY =S, 5,7B)= 5 s, v £
It is clear that § ™ ( 8) will be a continuous
5 U/

function of (i)

We will show that 3, 7~ (B)—# &2 as § —# <%

P
for /5&:192j@©>.

I

Let £ > O be prescribed.
Take Efjg = Sﬁ/ §§ -+ ff!- where ff}g S S wilil

be chosen later on.



w
.
"‘2"‘“‘;
L

. = <y
Then & = i £
= @
> Z N L gn -
{%@32; B 53 J 5”‘3;4& &

Notice (5@5 gz . S;; ?;j j& & .

Moreover; Yy = €, (j 55!83 - ’SG;)

Hence if we take

Sﬁ*.ﬂ‘(,/g :;m&d .
- / g@@+?%’g

2.

we see that 5‘2‘”7‘*@(‘;&&}_ ﬁ) N Y =
g Z 4
2.

But y é‘;Z?yﬁ _ (glgi - S)
gl(gﬁ @52)625‘

= %1€ f;@@%“&z)wa%%}} e
572, (6, ~ee, e 0

Whatever the choice of ¢ > O was, we can ensure
by taking fz A O sufficiently small, that
gg‘%’{ 2+ 5} is arbitrarily large.
Hemes S, ¥ (8) —+ @0 as §—ro0 for Ae (2,00).
Similarily gfj*"é’( /3) can be shown to exist. [For

example, we could make use of a linear change of varisble




on a sultably chosen fi;'%kfzg} type of function).
The results corncerning Sigﬁﬂ%*é(ﬁg) follow at once.

This completes the proof.
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Appendix IT

General proceedure for finding the §;1= interpolation function through

various sets of integer interpolation points.

We will suppose that the values of four sum rules are given for
integer points. By means of a linear change of varisble we can transfornm

the interpolation points to be A=y

) ! )= y} l i Ef‘?, o

3 <
Practical proceedures in different cases vary, but the method deseribed

by examples below is the basic format which such proceedures must follow.

Example: Interpolation points A=9, [ 2,4

In the usual notation, & (’/g) = X Y
* &4 g4

Let SE ) o) §§2) Eig be the given sum rules.

Using the parametric representations

£,=(5€,-5,) ; §=0586-5)  x= E (S E.~S,)
(5:6,75,) (5.8,-5,) (. &3

etc.; express f%@(é) in terms of fi@ S;é ggﬂéfi fzy@

Obtain: —

: ! { . | ‘ S ) } | : 1
>, =94= 2 [g3tEr 2 e T e i T2 1 (D)
2 (4 ) 4 gg 3 El E& Elga Cy “ é E;;; gg< 55"‘2” Egg& ; 59
He asic: What ie the value of ﬁ%Jéjg:> it i;){g}f: §x5?
£ 5 gh < : S » 5 . & &
If Sii<]3> passes through “d@j%g!} 5., %%a (3) then &,



A6

H

are the roots of
. . n = o L , -
(5,5, (8) =57 )= (5,5, (3)—5,5,)€ +(5,5,-5,%*)=0 @
Using "sum of roots", "product of roots' from @ in @ we obtain the
following condition on §a(§):
) Sz‘ wc\‘?gggz 52{3)}‘5;@[552:1(30(3 wgezjijﬁ
_ ~ AT
Whence
. A
S.(2)y = &S, © < 2N R - YA
2 L2 mé%%&{m é%agq««-% ) Cgag&wgi{)g
o S@
The value of §2 (3) together with S, , S, ) S, ) are now

used in the standard 0 1 2 3 interpolation formulae to vield the

required ‘52 (/3) function.

Example:  Interpolation points B= [ 2 4 ( .

Use a linear change of variable so the interpolation points become

;{i) | ) 2,) 3 K know sum rules S{) )Sj , qu ] 53 . Suppose
+ = N o2 e . ‘ .
that 53, (o) = Sg /5‘% + 2 with oG M¢y - Find

0, 1, 2, 3 interpolation function & look at 512 (“’ij@C,}

, / - Y- :
Increase 0  until S; <”§:; a )"Séj + Then S& (,3} oé)

is the required function.

In general it will be found necessary to solve

& L v s
PRAYE ,y/{ iy + }fl/é &
wji // 5”22@,
Sn,E Ko Ne L oy/ n?
5 e



5. (8= 25 v X

That they are solveable was proven (see appendix I).



Appendix ITT

Upper & Lower Bounds for Some Hydrogenic Sum Rules.

H
/3 Lower Bound toS (’/3) Upper Bound toSH(ﬁ)
0.1 0.972 0.992
0.5 0.974 0.981
0.7 0.9813 0.9846
1.1 1.00764 1.00822
1.5 1.04955 1.05071
1.7 1.07681 1.07763
1.9 1.10799 1.10828
2.1 1.14265 1.14292
2.3 1.18073 1.18147
2.5 1.22256 1.22354
2.7 1.26816 1.26907
2.9 1.31758 1.31801
3.2 1.3978 1.3990
3.5 1.4852 1.4895
3.9 1.614 1.625
5 H oo = 7' (& H /5 ("
Here we take 5 (@> = ,,24 50 /(gﬁz ) where gg{f

#
is the energy & /)CQJ is the dipole oscillator strength for the ex-

citation of a neutral hydrogen atom from its ground state to a state

3
Vo



Eunergies are expressed Rydberg & all other quantities in Atomlic units

[4].

SR
We present upper and lower bounds for S (ﬁ?) at various podls

By ©
- v e e g o s valuea A i <:r {(\j >y
2 e LQﬁ"S‘j . To obtain these, the exact v lues)[ﬂ})@:r ARSI

K

5‘(‘(2}> )5%(%5 ) g WA} were used to gve S&(f§>i,n,t6K§salat:iaﬁrz

functions, exact at four points. The point is not to give a complete

listing, but rather to demonstrate the closeness of ths bounds.



Appendix TV. Sum Rule Trangformations

We will discusg in more detail those invertable

which take sum rule functions into sum rule functions.

Let & denote the set of all sum rule functions.

(1) Scalar Transformations: The mapping & : § —> §
defined by (¢l )S%ﬁs) = C{S(/%) for any o0 and any S(g%} e 8 is
called a scalar transformation. If A denotes the set of all scalar
transformations then it is sasily seen that if olé A then %fl & A
A scalar transformation alsc maps (unrestrained) Nesum rule functions
invertably into (unrestrained) N~sum rule functions. The most important

properties of a scalar transformation are that it 1s invertable

that bounding relationships between [{unrestrained) N-] sum rule

functions are invariant to it. TFor example, if 398 3 ?3 chjgj for
some /36@ , then for that /% 'S S(/&) >g{ SN(/%).,

(ii) Sum rule scaling transformations: we have already

[

mentioned these. We denote by the operator zj, the mapping £ : & =—> 8

which takes S((S) ¢ S into é;siféa = S<E)(/3) = Emféifg} where

E > 0. If B denotes the set of all sum rule scaling trancformations
then it is easily seen that if %gﬁééi then EZJG %« In fact
Esp) = st p) - Ei%S(/§} for any S(A) € . A sun rule
scaling transformation also maps {(unrestrained) Ne-sum rule functions

invertably dinto (unrestrained) N-sum rule functions. The most impor—

. i
, : SIATL , c
tant properties of any g{~%§5 are that it ie
prop b =

-

bounding welationships between [{unrestrained) N-]

%

are Invariant to it.



involves a change in the wvariable f% s rather, they map & sum rule
function on an interval T into a new sum rule function on I and

pregerve all bounding relationships on that interval

two types of transformation map sum vule functions
functions on new intervals.

(ii1) ©Positive Linear Change of Variable: we have already

mentioned the transformations which are effected in this manner.
Briefly, if L € do then LS(/) z,S(Lf%) where S(A) & § is defined

-1

on the interval I and LS(A) is defined on the interval L, "I. I

=

e ., -1 A : T »
L éds then L ¢ gg . L also maps any (unrestrained) N-sum rule
function into an {unrestrained) N-sum rule functicn. The nost
important property of any L §§; ig that it is iwnvertable and that

any bounding relationship between [(unrestrained) N-] sum rule

functions on the interval T also hold on the transform of that

interval between the transforms of the [ (unrestrained) N-] sum rule

functions.

(iv) Reflection: If S{f&} & 8§ then RSCf%) = S{mi%} ig

tion of S({%}. Notice that R is its own inverse and that bounding

relationships sre preserxved in the obvious sense.

-,
R

We notice the following two properties of (K-} sum ru

o

£
foed

o

i t{fé} are {(N=) sum rule functions defined on

intervals I , I respectively, then so are (S{S5) + t{/3) ) and
8 & : { /
N %': PN B
S iela ) on X 71 1%
{ o gf & Loa i




[2]

[3]

[4]

H. L. Kramer:

F. Weinhold:

Buclk:

Rudin:

Bell & Kingston:
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