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A MATHEMATICAL PROCEDURE FOR PREDICTING THE TOUCHDOWN 

DYNAMICS OF A SOFT-LANDING VEHICLE 

By George A. Zupp, Jr.,  and Harold H. Doi ron 
Manned Spacecraft Center 

SUMMARY 

A mathematical procedure for predicting the touchdown dynamics of a soft-landing 
vehicle is presented. The vehicle is idealized as a pseudorigid structure to which a 
landing gear system is attached. The landing gear system is made up of telescoping 
s t ruts  which house shock-absorbing mechanisms and connect the vehicle structure with 
footpads that contact the landing surface. The forces acting on the idealized vehicle 
during landing a r e  from the vehicle landing gear system, the reaction control system, 
the descent-stage rocket engine thrust, rocket-engine-nozzle-crushing loads, and grav- 
ity. Forces acting on footpads a r e  due to forces from the landing gear s t ru ts  and from 
the landing surface. 
gear system a r e  approximated by assuming that the structure deforms linearly with the 
applied load. 
1/6-scale lunar module model. 

The elastic properties of the vehicle structure and of the landing 

Correlation between analytical and experimental data is presented for a 
Conclusions from these data a r e  presented. 

I NTRODUCTI ON 

A primary objective of the Apollo Program is to soft-land a manned spacecraft, 
the lunar module (LM), on the lunar surface. During the f i rs t  critical seconds of touch- 
down, the landing gear system must absorb the kinetic and potential energies of the 
spacecraft without causing the LM to topple and must attenuate the landing loads to pre-  
clude damage to the spacecraft structure o r  possible injury to the astronauts. 
sure  that the  landing gear system has the capability to a r r e s t  the spacecraft motion 
safely, landing gear performance must be established. Although methods of determin- 
ing landing gear performance for aircraft  systems a r e  well established, these methods 
a r e  not directly applicable to spacecraft, primarily because of the differences in con- 
figurations. Consequently, development of new analytical and experimental procedures 
has been necessary to determine LM landing performance, as well as to aid in the de- 
velopment of the landing gear system. One of the more elaborate analytical procedures 
that has been developed for simulation of touchdown dynamics and for landing gear  de- 
velopment is discussed in this report. Although developed for the LM, the procedure 
is applicable to other soft-landing spacecraft. 

To en- 

In the initial development phase of the Apollo LM landing gear system, analytical 
simulations of touchdown dynamics by a NASA contractor (ref. 1) and by the NASA 



Manned Spacecraft Center (MSC) (ref. 2) were primarily restricted to landings on rigid 
surfaces that resulted in planar motion. These types of landings were considered cri t-  
ical for vehicle stability and landing gear energy absorption. Analysis of the touchdown 
dynamics of rigid models at  the NASA Langley Research Center (refs. 3 and 4) indi- 
cated that, from a stability standpoint, nonplanar landings could be more severe than 
planar landings. As a result  of this finding, more emphasis was placed on the simula- 
tion of nonplanar landings for LM touchdown analysis; consequently, the touchdown 
analysis presented in this paper evolved. 

The purpose of this report is twofold: 

1. To document the analytical procedures used in developing a mathematical 
model in the LM lunar landing dynamics 

2. To make these procedures available to others who may be confronted with the 
task of mathematically modeling the touchdown dynamics of a soft-landing vehicle 

This report includes a definition of pertinent coordinate systems and coordinate trans- 
formations. The equations of motion governing both rigid-vehicle and landing-gear- 
footpad dynamics a r e  presented, together with the numerical procedure employed to 
solve the equations. Considerable detail is provided in defining the kinematic relation- 
ships used to model the articulating landing gear geometry. Various forces generated 
in the landing gear s t ruts  and the manner in which these forces a r e  computed a r e  dis- 
cussed. A general description of the techniques used to model a reaction control s y s -  
tem (RCS), descent engine rocket thrust, and descent engine nozzle crushing is also 
provided. Both rigid and nonrigid landing surface models are discussed, and consid- 
erabie detail is provided on the manner in which various surface irregularit ies and 
footpad constraints a r e  simulated. Data from the digital simulation analysis and a 
1/6-scale LM model drop-test program a r e  compared, and conclusions regarding the 
accuracy of the simulation technique a r e  made. 

The authors a r e  particularly indebted to Joseph A. Reid, formerly of ITT Federal 
Electric Corp., for his efforts in the assembly and preparation of this report. The 
authors also wish to express sincere appreciation to John A. Schliesing and Ben W. 
Holder, MSC, for their technical comments and suggestions. 

SYMBOLS 

AMP 

AP 

A P  F 

2 

amplification factor for the descent propulsion system 
rocket thrust due to the nozzle exit plane approaching 
the landing surface 

2 area  of the bottom of a footpad, in 

2 frontal a rea  of a footpad in contact with soil, in 



2 

AB 

ACM 
A 

A 

j 

instantaneous vector directed from the nth footpad center to 
a fixed point on the j th  surface curb 

vector directed from footpad A to footpad B 

vector connecting the rigid-vehicle center of mass  and a 
landing gear footpad 

unit vector normal to the jth surface curb and directed 

from the initial surface contact point of the nth footpad 

cos WALANGny j 
an, = DWALLIn, 

2 

BPn 

vector directed from the origin of the body coordinate sys-  
tem to the primary-to-secondary -strut  attachment point 
of the nth landing gear assembly 

vectors directed from the origin of the body coordinate sys-  
tem to the rigid-structure attachment points of the pr i -  
mary and secondary s t ruts  in the nth landing gear 
assembly 

th unit vector directed along the j th  surface curb of the n 
footpad 

vector directed from the origin of the body coordinate s y s -  

tem to the footpad of the nth landing gear assembly 

b = DWALLI sin WALANGn, 
n, j n, j 

CLUEWn 

CP 

computer program input clue used to define the curbs on the 

landing surface for the nth footpad 

constant used to compute primary s t rut  stroking-velocity- 

dependent force, ( lb/( f t /sec )) yP 

cs constant used to compute secondary s t rut  stroking-velocity- 
rS dependent force, (lb/(ft/sec)) 

COX’ COY’ CO2 commanded values for the Euler angles used in the RCS 
simulation, deg 

CWX’ c w y ,  cwz commanded attitude ra tes  used in the RCS simulation, 
deg/sec 

3 



C 
3 constant used in numerical integration (eq. (20)), ft /sec 

In 

D2n 

DIST 

DWALLn, 

DWALLIn, 

DOx,DO ,DOZ 

E1 

EX, EY, EZ 

Y 

EXM, EYM, E Z M  

EOx,EO ,Edz  

E w ~ , E w  , E w  

Y 

Y Z  

F1 

F F FB,x’ B,y’  B , z  

Fs 

Fw 

l n  

2n 

4 

th length of the n pr imary s t rut  inner cylinder, f t  

initial bearing separation in the nth primary strut, f t  

desired maxim-um allowable movement per  integration step 
between the footpads and the rigid-vehicle center of 
mass, f t  

instantaneous distance between the nth footpad center and 

the jth constraining curb, f t  

th normal distance between the nth footpad center and the j 
curb when the footpad initially contacts the surface, f t  

deviations in Euler angles f rom the commanded values, deg 

2 constant bending stiffness of a primary strut ,  lb-ft 

combined attitude and attitude ra te  e r r o r s  used in RCS 
simulation 

deadband widths for RCS simulation 

attitude e r r o r s  for  the body axes used in RCS simulation, 
deg 

attitude ra te  e r r o r s  used in RCS simulation, deg/sec 

magnitude of descent engine thrust a t  touchdown, lb 

components of sloshing force vector (eq. (115)), lb 

force per  unit vertical tank acceleration caused by a unit 
2 sloshing amplitude, (lb/ft)/(ft/sec ) 

total force applied to the tank wall by the sloshing propel- 
lant, lb 

force at bearing 1 of the primary s t rut  (fig. 14), lb 

force a t  bearing 2 of the primary strut  (fig. 14), lb 

- .- - -.-I-. .. .. .- .-. ..... . . _ I  



F31n, F41, 

FBR 

FBR, 

FC31n, FC41n 

FCP, 

FP1, FP2 

FRCSZ 

FSC1, FSC2 

FST1, FST2 

FV31n, FV41n 

F V P  

FVP, 

FX, FY, F Z  

FXP,, FYP,, FZP, 

F ZIn 

th instantaneous axial force in the secondary s t ruts  of the n 
landing gear assembly, lb 

friction forces present during strut  stroking, lb 

primary s t rut  bearing friction force in the nth primary 
strut ,  lb 

secondary s t rut  stroke-dependent forces  in the nth landing 
gear assembly, lb 

stroke-dependent force in the nth primary strut, lb 

first- and second-stage crushing forces  of the honeycomb 
shock absorbers in the primary struts,  lb 

A 
Z-component of FRCS, lb 

compression stroking forces of the secondary s t ruts  for 
the f i r s t -  and second-stage honeycomb cartridges, lb 

tension stroking forces of the secondary s t ruts  for the 
f i rs t -  and second-stage honeycomb cartridges, lb 

stroking-velocity-dependent forces  in the nth landing gear 
secondary struts,  lb 

viscous forces present during s t rut  stroking, lb 

stroking-velocity-dependent force in the nth landing gear 
primary strut ,  lb 

forces on the idealized rigid vehicle resolved along the X-, 
Y-, and Z-axes, respectively, lb 

forces  on the nth footpad in the X-, Y-, and Z-directions, 
which a r e  independent of the instantaneous sliding direc- 
tion of the footpad, lb 

force component normal to the landing surface applied to 
th the n footpad by the landing gear, lb 



A 

F 

-.- 
F2Pn 

L 
FCMG 

L 
FDRAGn 

FDRAG;~ 

-\ 

FFL 

L 
FGRNDn 

FMn 

FNn 
2 

2 

FPn 

FPI, 
A 

4 

FRCS 

FRCSI 
L 

3 

FSn 

A 
FT FI 

total force vector acting on the idealized-vehicle center of 
mass  

total force vector due to engine thrust  and the nozzle failing 
load 

instantaneous axial force in the pr imary s t rut  inner cylinder 

of the nth landing gear  assembly, produced by compres- 
sion stroking of the pr imary s t rut  

total landing gear forces  acting on the vehicle center of mass  
expressed in the inertial coordinate system 

soil drag force acting on the nth footpad 

frictional drag force on the bottom of the nth footpad 

nozzle failure load vector 

drag force on the nth footpad with direction opposite to the 
instantaneous sliding direction of the footpad in the 
X-Y plane 

force normal to the primary s t rut  a t  the nth footpad 

component of the secondary s t rut  forces normal to the 

nth primary strut  

resultant force on the nth footpad due to landing gear forces  

resultant of the nth landing gear forces  acting on the rigid- 
vehicle center of mass ,  expressed in the inertial coordi- 
nate system 

net force vector produced by the RCS jets 

RCS jet force in the inertial coordinate system 

vector sum of the secondary s t rut  forces  acting on the 

nth primary s t rut  

force vector on the rigid-vehicle center of mass  due to en- 
gine thrust and nozzle failing load, expressed in the in- 
ert ial  coordinate system 

6 



L 
FTHRUST 

L 

FwFn, j 

d 

FXYPn 

Goxx, - O X Y ,  Goxz, 
GoYX, -GoYY, -GoYZ, 
-Gozx, GOZY, Gozz 
2 

G 

HOLEn 

I I IXX,f’ yy,f’ ZZ,f 

I 
XY 

IXZ 

I 
YZ 

thrust force of the descent propulsion system rocket 

friction force between the nth footpad and the jth surface 
curb 

force vector on the nth footpad independent of the instantan- 
eous sliding direction of the footpad 

components of the body coordinate system to inertial coor- 
dinate system transformation matrix (eq. (2)) 

gravitational acceleration vector expressed in inertial 
coordinates 

components of the gravitational acceleration vector ex- 
pressed in the inertial coordinate system along the X-, 

Y -, and Z-axes, respectively, ft/sec 2 

parameter which defines the surface elevation for the 

nth footpad, ft 

mass  moments of inertia about the X -, Y -, and Z -axes, B B  B 2 respectively, slug-ft 

modified mass  moments of inertia in the body coordinate 
system of the rigid vehicle, corrected for exclusion of 

2 the sloshing mass,  slug-ft 

c ros s  product of inertia with respect to the X -Y B B  plane, 
2 slug-ft 

c ross  product of inertia with respect to the X - Z  B B  plane, 
2 slug-ft 

c ros s  product of inertia with respect to the Y - Z  B B  plane, 
2 slug-ft 

indices 

constant characterizing the thrust tailoff properties, l /sec  

bearing strength of the soil at the surface, psi  

increase in soil bearing strength with depth, psi/ft 

7 



K3 

K4 

Kg 

Kg 

K7 

Kg 

KSC, B 

KSC, 0 

KST, B 

KST, o 

KTP 

K T S  

increase in soil bearing strength with footpad velocity, 
psi/@ t/sec) 

increase in soil  bearing strength with the square of the foot- 
2 pad velocity, psi/(ft/sec) 

static s o i l  resistance to horizontal movement, psi 

increase in soil  resistance to horizontal motion with re- 
spect to footpad lateral displacement, psi/ft 

increase in lateral  resistance of the soil with respect to 
the depth of penetration of the footpad, psi/ft 

increase in soil resistance with respect to the square of 
2 the footpad horizontal velocity, psi/(ft/sec) 

spring constant representative of the elastic property of 
the honeycomb shock-absorber material, lb/ft 

primary strut  backoff spring rate  without trunnion-point 
elasticity, lb/ft 

primary s t rut  onset spring ra te  without trunnion-point 
elasticity, lb/ft 

spring constant representative of the slope of the load- 
deflection curve of the spacecraft structure a t  a trunnion 
point, lb/ft 

secondary strut  backoff spring rate  in compression stroking 
without trunnion-point elasticity, lb/ft 

secondary s t rut  onset spring rate  in compression stroking 
without trunnion-point elasticity, lb/ft 

secondary s t rut  backoff spring rate  in tension stroking with- 
out trunnion-point elasticity, lb/ft 

secondary s t rut  onset spring rate  in tension stroking without 
trunnion-point elasticity, lb/ft 

trunnion-point spring ra te  a t  the primary strut-structure 
attachment point, lb/ft 

trunnion-point spring rate  a t  the secondary strut-structure 
attachment point, lb/ft 

8 



modified backoff compression spring rate for the primary 
struts,  lb/ft Kb, B 

K’ modified onset compression spring rate  for the primary 
s t ruts ,  lb/ft p, 0 

modified backoff compression spring rate for  the secondary Kk, B struts,  lb/ft 

Kk, 0 
modified onset compression spring ra te  for  the secondary 

s t ruts ,  lb/ft 

modified backoff tension spring ra te  for the secondary 
struts,  lb/ft KbT, B 

modified onset tension spring rate for  the secondary struts,  
lb/ft o 

KB3,, KB4, spring rates for  secondary s t ru ts  as a result  of primary 
s t rut  bending, lb/ft 

kll ,  k12, k21, k22, kgl, k32 constants which model a given RCS control mode 

L21, 

L31n, L41,, L2Pn 

distance along the nth primary s t rut  f rom the upper attach- 
ment point to the secondary s t rut  attachment point, ft 

undeformed lengths of the secondary and primary s t ruts  of 
the nth landing gear assembly, f t  

Q 

Q 1  

any given distance below the quiescent propellant surface 
(fig. 28), ft 

distance from the spacecraft center of mass  to the plane of 
the quiescent propellant surface (fig. 29), f t  

distance from the spacecraft center of mass  with propellant 
to the spacecraft center of mass  without propellant 
(fig. 29), f t  

M mass  of the idealized rigid vehicle, slugs 

5)’ 5’ M2 constants characterizing the rocket engine thrust tailoff 
properties 

fixed mass  of residue propellant, slugs Mf 

sloshing mass  of residue propellant, slugs MS 
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L 
MRCS 

2 

MSn 

d 
MTF 

m 

OBST, 

'n 

PFRCn, 

PMASS 

PR 

n, j 
PSTRK 

q 
.. 
qB 

R1, R2, R3 

2. 

RF 

S2Pn 

S3 ln, S4 ln 

bending moment as a function of length along the primary 
strut ,  ft-lb 

RCS torque vector 

moment vector perpendicular to the nth primary strut ,  
caused by action of secondary s t ru ts  

moment vector acting on the idealized vehicle due to the 
rocket thrust and nozzle failure load 

number of landing gears  

parameter which defines the height of constraining obstacles 

for the nth footpad, ft 

point where the primary s t rut  is joined to the nth footpad 

crushing force of the nth footpad against the jth surface 
curb, lb 

effective mass of each footpad, slugs 

undeformed footpad radius, ft 

variable indicating the amount of nth footpad crushing normal 

to the j th  curb ,  f t  

sloshing amplitude, ft 

rigid-vehicle acceleration of the propellant tank normal to 
2 the vertical axis of the tank, ft/sec 

distances from the center line of the LM defining the landing 
gear geometry (fig. 23), f t  

vector from the origin of the body coordinate system to the 
centroid of the nozzle failure load 

vector from the origin of the body coordinate system to the 
centroid of the nozzle exit plane 

compression stroke of the nth primary strut ,  f t  

s troke of the secondary s t ruts  in the nth landing gear assem- 
bly, ft 
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"n 

SD 
2 

Tf, x' Tf, y 

TORQX 

TRCSX, TRCSY, TRCSZ 

A 

T 

T A F  
/ 

A 
TCMG 

lateral translation of a footpad, f t  

vector directed from the rigid-vehicle center of mass  
normal to a vertical plane through two adjacent footpads 

position coordinate along the length of the primary strut ,  ft 

transformation used to transform body angular rates to 
Euler angular ra tes  

transformation used to transform vector components from 
body system coordinates to inertial system coordinates 

transformation used to transform Euler angular ra tes  to 
body angular ra tes  

transformation used to transform vector components from 
gravity system coordinates to inertial system coordi- 
nates 

transformation used to transform 
inertial system coordinates to 
nates 

transformation used to transform 
inertial system coordinates to 
nates 

vector components in the 
the body system coordi- 

vector components from 
gravity system coordi- 

torques about the X - and YB-axes, respectively, due to B 
propellant sloshing, ft-lb 

resultant torques about the XB-, Y -, and Z -axes, B B respectively, f t  -1b 

magnitude of the torque generated about the XB-axis b y  
RCS thrusters,  ft-lb 

RCS torques about the XB-, Y -, and Z -axes, respec- B B tively, ft-lb 

net torque about the idealized-vehicle center of mass  

total engine thrust force, the product of the amplification 

factor A M P  and the normal thrust force FTHRUST 
- 

resultant torque about the rigid-vehicle center of mass 
due to landing gear s t rut  loads 

t 

I 

time, sec 
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tl 

t2 

tk 

t 
P 

vh 

vO 

vV 

VEL 

A 
V 

a 
v21, 

- 2 2  
V2Pn, V31,, V41, 

WALANGn, 

time of L M  descent engine thrust termination command, sec 

time at which descent engine thrust starts to tailoff, sec  

time at the beginning of the kth integration step, sec  

reference start time for engine thrust tailoff curve, sec 

time at which the LM footpad touches the surface, sec  

coefficient of sliding friction between the nth footpad and 
the landing surface 

coefficient of friction between the nth footpad and surface 
curbs 

horizontal touchdown velocity, ft/sec 

overturning velocity, which is a measure of the degree of 
instability of an unstable landing, ft/sec 

vertical touchdown velocity, ft/sec 

absolute value of the maximum relative velocity between 
the rigid-vehicle center of mass  and the landing gear  
footpads, ft/sec 

translation velocity vector of the rigid-vehicle center of 
mass  

vector directed along the center line of the nth primary 
strut from the upper end of the strut  to the secondary 
strut  attachment point 

th vectors defining the instantaneous s t rut  geometry of the n 
landing gear assembly (fig. 5(b)) 

position vector locating the intersection point of 
DWALLI with a curb 

n, j 

angle from the positive X-axis to a line in the X-Y plane 
normal to a curb, deg 

inertial coordinate system axes 
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XBY yBY body coordinate system axes 

xGY yGY ‘G 

XB4,, YB4,, ZB4,,XB3,, 
YB3,, ZB3,,XB2,, YB2,, 
ZB2,,XBl YBl,, ZBl,, 

XBP,, YBP,, ZBP, 

XPn’YP,’ ZPn  

gravity coordinate system axes 

XB, YB, and ZB coordinates of several points defining 
landing gear geometry (eq. (26)) 

n, 

instantaneous position coordinates of the nth footpad in the 
inertial coordinate system, f t  

XPI,’ YPI,’ ZPI, 

z1, z 2 , z 3 ,  zc 
ZNOZ 

ZPEN, 

A t  

%, n’ 4, n 

6C 

6 

i, n 6 

inertial coordinates of the nth footpad when it first contacts 
the landing surface, f t  

spacecraft geometrical parameters,  f t  

surface clearance of the centroid of the rocket-engine- 
nozzle exit plane, f t  

vertical penetration of the nth landing gear footpad, f t  

slope of the landing surface, deg 

angle defining secondary strut geometry (fig. 23(b)), deg 

exponents of the primary and secondary s t rut  stroking ve- 
locities used to compute stroking-velocity-dependent 
forces 

numerical integration step size, sec 

bending deflections of the primary strut due to secondary 
s t ru t  loading, f t  

deflection of a secondary s t rut  trunnion point due to com- 
pression loads (fig. ll(b)), f t  

apparent change in  length of the ith secondary s t rut  due to  
nth primary strut bending, f t  

deflection of the primary strut trunnion point (fig. 11 (a)), f t  

deflection of a secondary strut trunnion point due to tension 
loads (fig. ll(b)), f t  
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rl 

2 
(u 

Operators: 

I1 

bending deflection of the center line of an idealized primary 
strut ,  f t  

th bending deflection of the n pr imary strut at the secondary- 
to-primary-strut attachment point due to  s t rut  loading, 
f t  

Euler angles, deg 

primary s t ru t  bearing friction coefficient 

natural sloshing frequency, rad/sec 

angular rate vector components of the rigid vehicle, ex- 
pressed in the body coordinate system, deg/sec 

sloshing frequency squared per  unit vertical tank acceler- 
2 2 ation (eq. (log)),  (rad/sec )/(ft/sec ) 

first derivative with respect to t ime 

second derivative with respect to time 

vector quantity 

first derivative of a vector with respect to time 

second derivative of a vector with respect to time 

unit vector 

matrix 

[ 1-1 matrix inverse 

c I T  matrix or  column vector transpose 

Symbols that represent vectors a r e  also used without the vector notation in this 
paper; omission of the vector notation indicates absolute value of the vector. 
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GENERAL DISCUSSION OF THE MATHEMATICAL MODEL 

The formulation of the mathematical model fo r  predicting touchdown dynamics 
of a soft-landing system starts with the definition of the governing dynamics equations. 
In this case, the soft-lander cab is given three degrees of freedom in translation and 
three degrees of freedom in rotation. Each landing gear  footpad is allowed three de- 
grees  of freedom in translation. The governing dynamics equations a r e  the well-known 
Euler's equations for  rotation and Newton's equations for  translation. A numerical 
integration technique is employed to obtain the solution of these dynamics equations. 

The significant forces  acting on the idealized soft-landing vehicle are assumed 
to be those from the landing gear  struts, the thrusting rocket engine, the RCS, the 
collapsing rocket engine nozzle, and gravity. The forces acting on the idealized foot- 
pads are due to surface-footpad interaction and forces  f rom the landing gear struts. 
Propellant sloshing forces  are also usually present during touchdown. When the pro- 
pellant sloshing masses  are small, the sloshing forces are considered to be negligible, 
and the propellant mass  is treated as a rigid part of the vehicle structure. 
appendix, a linear sloshing model is developed. ) Care must be exercised in the appli- 
cation of linear sloshing models to touchdown dynamics problems because of the large 
sloshing amplitudes experienced during some touchdown conditions. 

(In the 

The landing gear  is idealized as an arrangement of tubular struts with telescop- 
ing members, and the s t rut  forces  a r e  assumed to be a function of Coulomb friction, 
s t rut  stroke, and s t rut  stroking rate .  
is approximated by the analogy that the structure deforms linearly with an applied load. 
However, the present model has  been adapted for use with a more complex dynamic 
elastic model of the spacecraft structure which is described in reference 5. 

The landing gear and vehicle structural  elasticity 

The RCS and engine thrusting forces are guidance and control parameters and 
are functions of the landing procedure. A general discussion of the methods by which 
these forces a r e  modeled is included. 

Forces  on the footpads result  from landing gear s t rut  forces and from resisting 
forces  generated by the landing surface. Various landing surface models a r e  dis- 
cussed. In the early stages of the Apollo Program, the uncertainty of the composition 
of the lunar surface, from a bearing capacity standpoint, resulted in considerable work 
by a NASA contractor to define realistic soil surface models. The soil models devel- 
oped by this contractor were incorporated into the mathematical touchdown simulation 
described in this report  and were used to evaluate footpad penetrations for  LM landings 
on postulated lunar surfaces (ref. 6). The soil model discussed in this report is a 
general model that allows the prediction of soil-footpad forces  as a function of footpad 
movement and velocity. A rigid landing surface is also considered where the footpad 
is constrained upon surface contact or is allowed to slide under the influence of fric- 
tion and constraining curbs. 
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COORDINATE SYSTEMS AND TRANSFORMATIONS 

= 

Three basic coordinate systems are used in the formulation of the mathematical 
simulation of the touchdown dynamics. Each coordinate system is an orthogonal right- 
hand system. 

i o  

0 cos cy sin cy 

1 n e r t i a l  Coordinate System (X-, Y -, and Z-Axes) 

The inertial coordinate system is defined such that the X-Y plane forms the land- 
ing surface. The Z-ax i s  is perpendicular to and directed up from the X-Y plane. Al l  
of the rigid-vehicle and landing-gear-footpad equations of motion a r e  expressed in the 
inertial coordinate system. 

Gravity Coordinate System (X -, Y -, and ZG-Axes) G G  

Figure 1. - Gravity and inertial co- 
ordinate s y  s te m orientation. 
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Since equation (1) is an orthogonal transformation 
from the gravity system to the inertial system is 

Landing 
gear 1 

IT GI] 
matrix, the transformation 

xB 

Initial-touchdown-velocity input data are expressed in the gravity system and then 
transformed to the inertial system by the transformation CTGI] * 

Body Coordinate System (XB-, YB-, and ZB-Axes) 

The body coordinate system is fixed in the landing vehicle so that the origin coin- 
cides with the idealized-rigid-vehicle center of mass, and the Z -axis is directed up- 

ward parallel to the vehicle vertical center line (fig. 2). The body system is.related 
to the inertial system by the set  of Euler angles Ox, 0 and B z  illustrated in fig- 
ure  3. 

B 

Y' 

I Landing 

gear 2 

I Vehic le  center  

(a) Top view. (b) Side view. 

Figure 2. - Orientation of the body coordinate system in the rigid vehicle. 
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z 

(a) Body and inertial systems coinciding. (b) Rotation about XB-axis ( 0  X ). 

(c) Rotation about YB1-axis ( 6  ). (d) Rotation about ZB"-axis (eZ).  
Y 

z 
i 

(e) Final orientat ion. 

Figure 3.  - Euler angle definition. 
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I 

The rotation order  is Ox, 0 , and Bz, with each successive rotation taken about 
Y 

the indicated body axis in its position after the previous rotation. For example, the 
two coordinate systems can be oriented so that they coincide as shown in figure 3(a). 
The first rotation Ox is about the XB-axis as shown in figure 3(b). The next rotation 
O is about YB’, the new YB-axis position, as illustrated in figure 3(c). For the 

final rotation, the angle B z  is rotated about Z ?’, the new ZB-axis position, as in- 

dicated in figure 3(d). The final orientation of tine body coordinate system with respect 
to the inertial coordinate system is shown in figure 3(e). 
sidered to be a pitch-roll-yaw sequence for a pilot facing in  the direction of the posi- 
tive Y -axis. B 

Y 
B 

These rotations can be con- 

which transforms vector components in the body 
LTBd 

The transformation 
system to vector components in the inertial system is 

GOXX -GOXY GOXZ 

= GOYX -GOYY -GOYZ ! -GOZX GOZY GOZZ 

where GOXX = COS 0 COS Bz 

GOXY = cos 8 sin Bz 

GOXZ = sin 8 

GOYX = sin Ox sin 8 cos Q z  + cos Ox sin OZ 
Y 

GOYY = sin ex sin 8 sin B z  - COS ex cos eZ 
Y 

GOY2 = sin 8 cos 8 
X Y 

GOZX = cos e sin 8 cos 0 - sin e sin e 
X Y Z X Z 

GOZY = cos ex sin 8 sin B z  + sin Ox cos ez 

GOZZ = COS e COS e 

Y 

Y 

Y 

Y 

X Y 

(3) 

This transformation is also orthogonal, and [TIB] which transforms inertial system 
coordinates to body system coordinates is given by 



Another important matrix transformation, which is employed, re la tes  the rigid- 
vehicle angular rate vector components expressed in the body system to Euler angular 

rate components. The Euler angular rate components (s 
along the axis about which the respective Euler rotation (0 0 o r  0 ) is made. This 

transformation is not orthogonal because the Euler angular ra te  components are not 
mutually orthogonal. 

and BZ) are directed x’ y’ 

x’ y’ z 

The transformation from body angular rates to Euler angular rates is given by 

sin 8 
( 

z cos 0 

cos 0 
-- z 

COS e 
Y Y 

sin BZ COS ez c 

sin 0 cos eZ sin 8 sin 8 

Y Y ’  
Y y -  z 1  

cos 8 C O S  e 

The transformation from Euler angular rates to body angular ra tes  is given by 

Thus 

cos 0 cos 8 z s i n g Z  0 
Y 

- C O S  8 sin BZ COS 8 0 Y z 

sin 8 0 1 
Y - 

(5) 

where e , e  d, = Euler angular rate components 
X Y Z  

Y Z  
( O x 7 ( 0  ’(0 = body angular rate components 
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A time derivative of equation (7) yields an expression for the time rate of change 
of Euler angular rate components. 

For programing purposes, equation (8 )  can be reduced to the following more efficient 
form: 

ct cos e - ci, sin ez - 28 t j  + t j  (I) 

( 9 4  X Z Y  Z Y  Y Z  
.. e =  

X COS e 
Y 

.. e =ci ,  s i n e  +ii, c o s e  + i i  c o s e  
Y X  Z Y  z x z  Y 

.. .. . .  e = - e  sin e - e 8 COS e + Wz 
Z X Y X Y  Y 

Equations (sa) to (9c) express the angular acceleration components h 

in a form that can be numerically integrated to yield the angular coordinates 8 

and Bz (the three Euler angles), which are used to describe the orientation of the 
rigid vehicle in the inertial coordinate system. 

d, and hZ x' y' 
8 x' y' 

A more common procedure for computing Euler angles is to integrate io & x' y' 
and a, and then to transform these angular ra tes  by 

The Euler angular ra tes  a r e  then integrated to obtain Euler angles. 

The formulation given by equations (sa) to (9c) is more convenient for  the par-  

Z 
and 6 to obtain wX, 

means of equation (7) to obtain equations for Euler angular ra tes  (for example, as in 
reference 4). 
However, this approach is not used in the mathematical procedure developed in this 
report. 
ticular numerical integration procedure used to solve the equations of motion. This 
numerical integration procedure is discussed in a subsequent section of this report. 

Z 

EQUATIONS OF MOTION 

The landing vehicle is idealized as a rigid body of constant mass  to which landing 
gear  assemblies that have identical geometry and mass  characterist ics are attached. 
The mass  of each landing gear assembly is assumed to be a point mass  concentrated 
at the footpad of the assembly. Instead of using the actual mass  of the landing gear  
assembly as the footpad mass,  an "effective footpad mass" is computed so  that the 
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effective footpad mass  located at the footpad position approximates the inertia charac- 
ter is t ics  of the landing assembly. The effect of this approximation on the simulated 
landing dynamics has  been studied in depth in reference 7. The conclusions in  refer- 
ence 7 imply that if the mass  ratio of the vehicle landing gear  assembly to the vehicle 
is small  (approximately 1: 50 for the LM), the effect of this approximation on the sim- 
ulated landing performance is negligible. 

The instantaneous position coordinates of the rigid-vehicle center of mass  (X, 
Y, and Z)  together with the instantaneous values of the Euler angles (8 

specifying the orientation of the rigid vehicle, and the instantaneous position coordi- 

8 , and BZ) 
x' Y 

+L 
nates of the nL'l landing gear  footpad XP,, YP,, and ZPn in the inertial coordinate 

+L 

system allow for  determination of the instantaneous geometry of the nLl1 landing gear 
assembly. A s  will be explained in more detail in the following sections, a knowledge 
of instantaneous landing gear geometry allows the computation of the instantaneous 
forces  acting on the rigid vehicle and on each of the landing gear footpads. Therefore, 
the equations of motion which must be solved in the simulation of the landing impact 
dynamics a r e  the three translational equations of motion of the rigid-vehicle center of 
mass,  the three rotational equations of motion of the idealized rigid vehicle, and the 
three translational equations of motion for each landing gear footpad. 

The three translational equations of motion of the rigid-vehicle center of mass  
are obtained by the summation of all forces acting on the rigid vehicle and by the appli- 
cation of Newton's Laws of Motion. 

* -  FX x = - + g  M x  

F Y  y = -  
M + g y  

where FX, FY, F Z  = summation of forces  on the idealized rigid vehicle resolved along 
the X-, Y-, and Z-axes, respectively 

M = mass  of the idealized rigid vehicle 
.. .. .. 
X, Y, Z = inertial accelerations of rigid-vehicle center of mass  

gx, g , g = components of the gravitational acceleration vector expressed in 
the inertial coordinate system 

The three rotational equations of motion express the time rate of change of the 
angular momentum vector of the rigid spacecraft in t e rms  of Euler angles and Euler 
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angular rates. These equations of motion given as follows were developed in the pre- 
vious section. 

.. cos ez - cir sin ez - 26 6 + 6 
X Y z Y Y"Z e =  cos 0 X 

Y 

.. * .  

0 = GX sin 0 + & cos eZ + eZex cos 0 
Y Z Y  Y 

.. .. . .  
0 = -0  s i n 0  - 0 0 c o s 0  + G Z  

Z X Y X Y  Y 

where Gx, G 
pressed in the body coordinate system. 
the following Euler moment equations for  rigid bodies (ref. 8). 

and Gz are the components of the angular acceleration vector ex- 
Y' 

These components a r e  determined by solving 

T = I  * - 1  ' 
x xxUx xywy - Ixzhz + (-1xy"x - Iyzmy +Izz"z)'oy 

- (-Ixymx + I  yyUy - I  yz'Dz)"z 

T = - I  * 

y xymx + IyyGy - Iyz'uz + ( L a x  - Ixy"y - 1yz"z)"z 

+ (Ixzmx + Iyz"z - 1zz"z)"y 

T Z = -IxzcOx - IyzcOy + IzzcOz + (-Ixy'ox + Iyy'oy - 1yz"z)'ox 

+ (-Ixx'ox + Ixy'oy + 1xz'oz)'oy 

where ( o ~ ,  (O , (O = angular ra te  vector components of the rigid vehicle expressed in 
Y Z  the body coordinate system 

I I = mass  moments of inertia about the X -, YB-, and ZB-axes, B respectively I x X 7  yy' zz 

I 
XY 

= c ross  product of inertia with respect to the XB-YB plane 

= c ross  product of inertia with respect to the XB-ZB plane 
IXZ 
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I = c ross  product of inertia with respect to the Y - Z  plane 
YZ B B  

Tx, T , TZ = sum of the torques about the XB-, Y -, and Z -axes, respectively Y B B 

The footpad equations of motion describe translational footpad motion only and 
a r e  obtained by summing all forces  acting on the effective footpad masses  and by apply- 
ing Newton's Laws of Motion. The' equations have the general form given in the follow- 
ing three equations, although the actual equations solved may vary with the specific type 
of landing surface postulated. The actual equations used for  various types of landing 
surfaces are explained in detail in later sections. 

.. 
xpn 

.. 
ypn 

where XP,, YP,, Z P n  = 

PMASS = 

FGRNDn = 

- - 
PMASS 

1 (FZPn) + gz (18) 
.. 

Z P  = n PMASS 

instantaneous position coordinates of the nth footpad in the 
inertial coordina.te system 

effective mass  of each footpad 

magnitude of a drag force on the nth footpad with direction 
opposite to the instantaneous sliding direction of the footpad in 
the X-Y plane 

FXP , F Y P  , FZP, = forces on the nth footpad in the X-, Y-, and Z-directions, re-  
spectively, which a r e  independent of the instantaneous sliding 
direction of the footpad 

n n 

gx, g , g = components of the gravitational acceleration vector expressed 
in the inertial coordinate system 

The equations of motion (eqs. (sa) to (12) and (16) to (18)) are solved by a numer- 
ical integration procedure. The initial conditions for these equations a r e  specified in 
the following manner. The spacecraft attitude at the instant of impact is specified by 
the three Euler angles Ox, 8 , and OZ.  These angles determine which footpad is ini- 

tially in contact with the landing surface, and this initial point of contact is taken to be 
the origin of the inertial coordinate system (0, 0, 0). The position of each footpad in the 

Y 
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body coordinate system prior  to impact can be specified by known vehicle geometry. 
Let the vector expressed in body coordinates and directed from the origin of the body 

coordinate system to the footpad in contact with the surface be denoted by en. Then, 
the vector joining the origin of the inertial coordinate system and the origin of the body 
coordinate system is given by the vector transformation 

2 
since the tip of BPn is located at inertial system coordinates (0, 0,O). 
locity components of the rigid-vehicle center of mass  a r e  specified in the gravity coor- 
dinate system and are then transformed into inertial system components by means of 
the transformation given in equation (2). Thus, the three initial inertial coordinates of 
the rigid-vehicle center of mass  given by equation (19), together with the three velocity 
components at impact, comprise the initial conditions for  the numerical integration of 
equations (10) to (1 2). 

The three ve- 

The angular ra te  vector components of the spacecraft at impact are initially spec- 

These Euler ra tes ,  together with the initially specified Euler angles, pro- 
Equations (13) to (15) 

ified in the body coordinate system and are then transformed to Euler angular ra tes  by 
equation (7). 
vide initial conditions for the integration of equations (sa) to (9c). 
a r e  solved as a set  of simultaneous algebraic equations for the quantities ci, 

and G Z  at each integration step pr ior  to the numerical integration of equations (sa) 
to (9c). After equations (Sa) to (9c) a r e  integrated, new values of ax, and C U ~  

a r e  computed by transforming the new Euler ra tes  by means of the transformation 
given in equation (6). 

ci, x’ y’ 

cu 
Y’ 

The positions and velocities of the landing gear  footpads are determined by inte- 

gration of equations (16) to (18) only if the nth footpad is in contact with the surface. If 

the n 
a r e  computed by assuming the footpad to be rigidly connected to the vehicle. 
conditions for  equations (16) to (18) are taken to be the inertial position and velocity of 
each footpad at the instant the Z-coordinate of the respective footpad is computed to be 
l e s s  than o r  equal to  zero. If a footpad breaks contact with the surface, the landing 
gear  geometry is assumed to remain unchanged from the instant the footpad leaves the 
surface until it recontacts the surface, and during the period of no contact with the sur-  
face, the position and velocity of the footpad are computed as though the footpad were  
rigidly connected to the vehicle. At the instant of recontact with the surface, the foot- 
pad equations of motion are initialized as before. 

th footpad is not in contact with the surface, the position and velocity of the footpad 
The initial 
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NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION 

It has been mentioned that the equations of motion a r e  solved by a numerical inte- 
gration procedure. There are many factors which should be considered in the selection 
of a particular method of numerical integration. Among these factors are the accuracy, 
speed, stability, integration-step-size control, and ease of adaptation of the method to 
the particular equations to be integrated. Among the more sophisticated methods now 
popular are (1) predictor-corrector methods that use  backward difference formulas and 
that maintain a specified accuracy in the integration and (2) the well-known Runge-Kutta 
formulas. The predictor-corrector methods are cumbersome to use  in problems where 
frequent changes in the integration step s ize  are desirable. In attempting to maintain 
a specified accuracy, these methods will often perform an integration step forward, in- 
cur excessive integration e r ro r ,  and then waste the associated computations by making 
the same integration forward with a smaller step size. It was reasoned that because of 
the large number of computations involving the determination of landing gear geometry 
and forces necessary for each integration step, wasted integration steps could lead to 
unjustifiable amounts of computer time for landing simulations. Consequently, the 
predictor-corrector method was not used. 
for  the integration of the rigid-vehicle equations of motion, it would be necessary to 
evaluate the landing gear geometry and associated force determination equations four 
t imes for each integration step. Since this large number of evaluations would also lead 
to very large amounts of computer time for the landing simulations, Runge-Kutta for- 
mulas were not used. A compromise integration scheme which was finally selected 
sacrifices a guaranteed numerical accuracy for a considerable gain in integration 
speed, while maintaining the desirable feature of variable step-size control. 

To use  a fourth-order Ftunge-Kutta formula 

The selection of the numerical integration method presented in the following para- 
graphs w a s  influenced by several factors which a r e  peculiar to the landing simulation. 
Firs t ,  it was recognized that small integration steps would be necessary because of the 
abrupt on-off nature of some of the forces which occur during landing impact, such as 
those obtained from RCS jets, multiple landing gear impacts, and rocket engine nozzle 
impact with the landing surface. Second, if integration were performed with relatively 
large integration steps and if a footpad impacted the surface during an integration step, 
then the integration step would have to be discarded and attempted again with a smaller 
step size. Another characteristic of the forces experienced by the vehicle during land- 
ing is that except for the discrete occurrences of abrupt force level changes, there a r e  
intermediate periods where the force levels remain fairly, constant. 

These characterist ics suggested that a simple method which assumed constant 
forces  (or acceleration) over short integration steps could be expected to give reason- 
ably accurate results.  To accommodate those integration steps where abrupt force 
changes take place, it was assumed instead that the acceleration on the center of mass  
is a linear function of time during the integration step. 

Taking equation (10) as an example, a linear variation of acceleration over time 
step A t  implies 
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where tk is the time at the beginning of the kth integration step, and c is a constant 
for the integration step. If A t  = \+l - tk, then the acceleration during the time step is 
described by 

A first integration of equation (21) f rom \ to \+l = \ -t- A t  yields 

A second integration of equation (21) yields 

2 1  3 (At) + 6  c(At) 

An estimate of X and X at tk + A t  is obtained from equations (22) and (23) by 
assuming c = 0. With these estimates, new vehicle geometry, forces, and accelera- 
tions a r e  computed, and the coefficient c is evaluated by computing FX/M at \ + At 
and then using equation (20) to obtain 

Then, equations (22) and (23) are used to obtain corrected values for X and X. A 
similar scheme is used for the integration of equations (Sa) to (Sc), (ll), and (12). The 
footpad equations of motion a r e  integrated by a standard fourth-order Runge-Kutta 
method where the magnitude of all forces  on the footpads is assumed to be constant 
over an integration step, but where the variation in direction of the sliding velocity of 
the footpad during the integration step is taken into account. 

The logic used to control integration step size for this particular touchdown dy- 
namics problem is based on an "engineering decision, '' rather than on the usual trun- 
cation e r r o r  checks used for  determining step s ize  for many variable step integration 
methods. This engineering decision is founded on the belief that as long as the amount 
of landing gear stroke or footpad movement is kept small (approximately 0 .1  inch for 
an  LM landing) during an integration step, the forces on the vehicle and the footpads 
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will not vary sufficiently so as to violate significantly the assumption of linear varia- 
tion in acceleration over an integration t ime step. If the desired maximum allowable 
movement between footpads and the rigid-vehicle center of mass  per  integration step 
is specified by the input value DIST, then at any point in  the integration, the integra- 
tion step s ize  for  the next step A t  is computed from the relation 

DIST A t  = - VEL 

where VEL is the absolute value of the maximum relative velocity between the rigid- 
vehicle center of mass  and the landing gear footpads. The value for  A t  computed by 
equation (25) is used, unless this value exceeds a specified maximum integration step 
size o r  is less than a specified minimum step size. 

IDEALIZATION OF LANDING GEAR GEOMETRY 

It has been mentioned previously that once the instantaneous forces acting on the 
rigid vehicle a r e  determined, solution of the equations of motion is possible. 
significant forces  which act  on the rigid spacecraft during touchdown a r e  generated in 
the landing gear struts.  
necessary to produce an accurate simulation of the vehicle landing dynamics. 
resent landing gear strut forces accurately? a detailed simulation of landing gear art ic- 
ulation during impact is necessary. 

The most 

Therefore? detailed representation of these s t rut  forces is 
To rep- 

The mathematical model of the soft-landing gear  system considers two basic 
types of landing gear assemblies. One type is the cantilever gear presently used for  
the LM landing gear system (fig. 4(a)), and the other is the inverted tripod gear 
(fig. 4(b)). (The te rm "cantilever" in the name "cantilever gear" is incorrect in that 

the gear is not a cantilever in the geomet- 
r ic  sense. The designers of this landing 
gear originally referred to it as the "bend- 
ing gear" because of the bending of the 
primary s t ru t  under secondary s t rut  load- 
ing. The name "bending gear" was not 
selected because it erroneously implied 
that strut bending w a s  a primary function 
of the landing gear system. ) 

(a) Cantilever (b) Inverted tripod 
assembly. assembly. 

Figure 4. - Two types of landing gear 
assemblies. 
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The landing gear s t rut  assembly in 
either of the two arrangements is composed 
of one primary s t rut  and two secondary 
s t ruts .  
is composed of an outer cylinder and an 
inner cylinder, with the inner cylinder 
telescoping into the outer cylinder. In the 
cantilever arrangement, the lower end of 
the secondary s t ru t s  is attached to the 
lower end of the primary s t rut  outer 

Each secondary and primary s t rut  



cylinder. For  the tripod assembly, the lower ends of the secondary s t ru ts  a r e  attached 
to the lower end of the pr imary s t rut  inner  cylinder. Since the mathematical simulation 
of the tripodal arrangement is a special case of the cantilever arrangement, the follow- 
ing analysis of the landing gear geometry is developed for the more general cantilever 
configuration. A typical cantilever assembly is depicted in figure 5 by a set of vectors. 

zB 1 
yB 

The landing gear represented in 
figure 5 is applicable to each of n land- 
ing gear  assemblies; hence, n = 1, 2, 
3, . . . . All numbered points in figure 5(a) 
a r e  assumed to be ball-joint connections. 
Points 2, 3, and 4 a r e  trunnion points 
where the pr imary strut and the secondary 
struts are joined to the idealized rigid 
structure.  In the present discussion, 
these points are considered to be fixed 
points on the body. The point Pn, where 
the primary strut is joined to the footpad, 
can move in any direction as a result  of 
stroking of primary and secondary struts.  
If the coordinates of Pn are known con- 

tinually during a touchdown simulation, 
then vector equations can be constructed 
to define the instantaneous s t rut  geometry, 
and subsequently, strut stroking velocities 
and strut lengths can be determined. 

1 n 

(a) Orientation of landing gear  assem-  
bly in body coordinate system. 

(b) Strut vectors. 

Figure 5. - Landing gear  s t rut  vector 
diagram. 

Every point in figure 5(a) can be 
represented by a position vector joining 
that point with the origin of the body coor- 
dinate system. Then the vector equiva- 
lents of points 4, 2, 3, 1, and Pn are 
B4,, B2,, B3,, Bl,, and 8Pn, respec- 
tively, with body coordinates defined by 

- 2 3 -  2 

YB3,, ZB3 

YBP,, ZBP 

YBl,, ZB1 
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For the present, assume that the components of BP  are known. (The solution of the 

footpad equations of motion will yield the position vector BP,. ) The vectors B2,, 

B3,, and B4n are known from geometric definition of the vehicle. The vector between 

points 2 and Pn is VBP,, where 

n -  -5 

--A -2 

V2Pn = XBP, - XBZn), (YBP, - YB2,), (ZBP, - 2BZn)] - [( 
A 

The modulus of the vector V2Pn, denoted by V2Pn, determines the instantaneous 

length of the primary strut .  The vector V2Pn unitized is given by 
2 

A 

A- V2Pn 
V2Pn = - V2Pn 

2 
The vector Bln is determined from the vector equation 

2 - 2  

Bln = V21, + B2n 

where 

-2 A 
v21, = V2Pn ( L21 n> 

and the distance L21, between points 2 and 1 is constant. In the tripodal arrangement, 

point 1 coincides with point Pn; therefore, Bln  is equal to 
-1 

and equations (29) 

and (30) are not necessary. (Of course, in the tripodal arrangement, L21, is not 
constant. ) The vectors joining points 3 and 4 to point 1 a r e  computed from 

V31, = Bln - B3n - V41, = - Bln - -1 B4n 
A d 2  
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2 2 
The lengths of vectors V31, and V41, yield the instantaneous secondary s t rut  lengths. 
The following equations define the unit vectors of equations (31). 

d 

A 
V31, = - 

V41 
V41n = - 
A "I V41 

The amount of stroke in each s t rut  of the landing gear is required for determining 
Figure 6 shows the primary and secondary s t ruts  in stroked 

and unstroked positions. If the undeformed 
lengths of the primary and secondary 
s t ruts  are denoted by L2Pn and by L31, 

axial forces in the struts.  

Undeformed and L41,, respectively, the instantaneous 
strokes of each a r e  given by 

primary strut 

Compression 
stroke 

(33) S2Pn = V2Pn - L2Pn 

(a) Primary strut .  

and 

I 
Tension stroke L T j  I 3 ...... . i............. S31, = V31, - L31, ..... 

- I t -  
L " 1 n - l  Lin 

Undeformed secondary stroke 
S41, = V41, - L41, 

Compression stroke 'hi zn7 t s 3 1 ,  

The compression stroke of a secondary 
s t rut  is a negative quantity, and a tension 
stroke is a positive quantity. 

(b) Secondary strut .  

Figure 6. - Stroked and unstroked pri-  
mary and secondary s t ruts .  

FORCES IN  THE LANDING GEAR STRUTS 

The problem of accounting for axial forces in the landing gear s t ruts  is rather 
involved because of force contributions from various sources. The various sources 
contributing to the landing gear  s t rut  forces  a r e  analyzed separately, summed, and 
resolved at the landing gear footpad. 
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Crushable-Type Shock Absorbers 

The pr imary type of shock-attenuation mechanism for the LM landing gear system 
is a sequence of crushable metal honeycomb cartridges housed inside the landing gear 
struts. These cartridges collapse at a constant load when the landing gear s t ruts  are 
stroked. Several honeycomb strengths may be stacked in ser ies  to form a desired 
load-stroke output. The present analysis provides f o r  a maximum of three cartridges 
in the pr imary s t ru ts  and four cartridges in each secondary strut .  The primary s t rut  
has shock-attenuation capability in compression stroking only, and the secondary s t ruts  
have shock-attenuation capability in both tension and compression stroking. Figure 7 
illustrates a typical honeycomb configuration f o r  a primary and secondary s t rut  .~ 

assembly. 

f 

S t r u t  bearings- 

honeycomb cartr idges 

Figure 7 .  - Primary and secondary s t rut  
crushable shock absorbers.  

Honeycomb material can be designed 
to fail a t  a constant load as the honeycomb 
material  is crushed. If this constant load 
is predetermined, characteristic relation- 
ships between s t rut  axial loads and s t rut  
strokes can be described by a load-stroke 
diagram. A typical load-stroke diagram 
for  the primary s t rut  is shown in figure 8. 

Figure 8. - Primary s t rut  load-stroke 
diagram. 

The primary s t ru ts  have only compression-type crushing of the honeycomb car-  
The honeycomb cartridge loads a r e  mod- tridges. 

eled in the following manner. In figure 8, the unstroked primary s t rut  begins at 
station 0 and undergoes compression stroking. 
with stroke to the station A. The plateau denoted between stations A and B represents 
the failure load of the weakest or first-stage honeycomb cartridge. When the primary 
s t rut  is stroked to station B, the f i r s t  stage of the honeycomb cartridge has been ex- 
hausted. As the primary strut  is stroked past station B, the load will again build up 
linearly with stroke until the second plateau is reached a t  station C. The plateaus be- 
tween stations C and D and between stations E and F represent failure loads of the 
second- and third-stage honeycomb cartridges. If the primary s t rut  begins to extend 
after undergoing compression stroking, the honeycomb load in the s t rut  will reduce 
linearly. This reduction in load is shown in figure 8 along the path from station F to 
station G. If the primary s t ru t  continues to extend, the honeycomb load will go to zero 
at station G and will remain a t  zero if further elongation occurs. If the primary s t rut  

Tension loads a r e  due to friction. 

The s t rut  load will increase linearly 
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starts to compress again, the s t rut  will compress under zero load until station G is 
reached, whereupon the load will increase linearly f rom station G to station F. The 
unloading of the honeycomb from station F to station G is associated with elastic r e -  
bound of the honeycomb cartridge and may occur at any point in the load-stroke 
diagram. 

The secondary s t ruts  are designed such that compression and tension honeycomb 
forces  can be generated. A typical secondary s t rut  load-stroke diagram is shown in 
figure 9. The secondary s t ru t  load-stroke characterist ics are s imilar  to those of the 

primary strut .  The undeformed second- 
a ry  s t rut  starts with zero honeycomb load 
at station zero and strokes in  tension or 
compression with a linear buildup in load 
to station A or F. The plateaus defined 
by stations A and B, stations C and D, 
stations F and G, and stations H and I 
represent the failure load of the particular 
honeycomb cartridge. The elastic rebound 
is denoted by the paths f rom stations D 
to E and from stations I to J. A zero load 

-Stroke. S31, 

D C  

between stations E and J is produced after 

and J has been crushed. 
Figure - Secondary strut the honeycomb material  between stations E diagram. 

Modi f icat ion of t h e  S t r u t  Load-Stroke Diagrams 
Because of S t r u c t u r a l  Elasticity 

The position of the primary and the secondary strut  attachment points (or  trunnion 
points) on the spacecraft structure are assumed to be fixed in the body coordinate sys-  
tem. In reality, landing gear s t rut  loads a r e  transmitted through these attachment 
points, deforming the spacecraft structure and subsequently causing changes in the posi- 
tion of the attachment points in the body coordinate system. This deformation is im- 
portant in that it effectively softens the elastic character of the honeycomb shock 
absorbers and has the capability to s tore  energy. The influence of the structural  de- 
formation on the spacecraft touchdown dynamics can be approximated by idealizing the 
strut-structure system to be as shown in figure 10. This idealization allows for the 

modification of the honeycomb cartridge 
load-stroke diagram to account for the 

Honeycomb structural  deformation. 
KH material 

In figure 10, the spring constant % KS 

A is representative of the slope of the load- 
deflection curve of the spacecraft structure 
at the trunnion point and is assumed to be 

representative of the elastic property of 
the honeycomb shock-absorber material. 

FVP, FBR constant. The spring constant % is 

Figure 10. - Idealized landing gear  strut .  
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The t e rms  FVP and FBR are the viscous and friction forces,  respectively, present 
during s t rut  stroking. Points A and B in figure 10 are analogous to the end points of 
the struts.  

For the secondary struts,  the structural  spring constant Ks is made up of two 

factors,  the spacecraft structural  elasticity and the primary s t rut  bending elasticity. 
The primary s t rut  bending characterist ics are functions of strut length and s t ru t  loads, 
which vary during a landing. The primary s t ru t  bending and its influence on s t ru t  load- 
stroke properties a r e  discussed later in this section. 

The honeycomb cartridge load-stroke diagram is first modified to account for  the 
spacecraft structural  deformation by computing an equivalent spring rate for springs 
(Ks and K ) in se r ies .  The following equation is used to compute the modified onset H 
honeycomb spring rates. 

J - - YrsKsc, 0 
sc,O K T S  -!- KSC,o 

Kl 

where K' = modified onset compression spring rate  for  the primary s t ru ts  

= modified onset tension spring ra te  for the secondary s t ru ts  
p, 0 

%T, o 
= modified onset compression spring rate  for the secondary s t ruts  

Yrp = trunnion-point spring rate  at the primary strut-structure attachment 

Yrs = trunnion-point spring ra te  a t  the secondary strut-structure attachment 

%c, 0 

point 

point 

K = primary s t rut  onset spring rate without trunnion-point elasticity 

= secondary s t rut  onset spring ra te  in tension stroking without trunnion- 
p, 0 

K s ~ ,  0 point elasticity 

= secondary s t rut  onset spring ra te  in compression stroking without 
K ~ ~ ,  0 trunnion-point elasticity 
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Similarly, the modified primary and secondary strut  backoff spring ra tes  are given by 
the following equations. 

K' - %PKP, B 
P'B - %P + KP, B 

Kl - %SKSC, B 
B- %'S + KSC, B 

= modified backoff compression spring rate  for  the primary s t ru ts  

= modified backoff tension spring ra te  for the secondary s t ruts  

= modified backoff compression spring rate  for the secondary s t ruts  

= primary s t rut  backoff spring rate  without trunnion-point elasticity 

= secondary s t rut  backoff spring rate  in tension stroking without 

EP, B 

KkT, B 

%C, B 

where 

p, B 
K 

K ~ ~ ,  B trunnion-point elasticity 

= secondary s t rut  backoff spring rate in compression stroking without 
K ~ ~ ,  B trunnion -point elasticity 

The primary and secondary s t rut  load-stroke diagrams which have been modified 
to include the structural  deformation a r e  shown in figure 11. 

The delta displacements shown on figure 11 represent the deformation of the 
spacecraft structure a t  the trunnion points caused by loading of the primary and second- 
a r y  struts.  
is calculated by the equation 

The delta displacement of the modified primary s t rut  load-stroke diagram 

FP1 6 =- 
KTP 

(37) 

where FP1 is the first-stage crushing force of the honeycomb cartridge in the primary 
s t ruts .  Similarly, the delta displacements for the tension side of the modified second- 
a ry  strut  load-stroke diagram are calculated by 

6 =- FSTl (38) 
KTS 
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(a) Modified primary s t ru t  load-stroke diagram. 

- Without structural elasticity --- With structural elasticity 

Secondary strut crushing 
force. FC31n or FC41n K i C . o  7 

7 - 7  

. . . . - . . . -. - . . . . . . . -. . 

With structural elasticity ----- 

(b) Modified secondary s t ru t  load- stroke diagram. 

Figure 11. - Structural elasticity modification for  s t rut  load-stroke diagram. 
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and for the compression side are calculated by 

FSCl 6 =- 
KTS 

(39) 

where FSTl and FSCl are the first-stage crushing forces  of the honeycomb car -  
tridges for  tension and compression stroking, respectively, of the secondary struts.  
The modified s t rut  load-stroke diagrams as shown in figure 11 are used as input data 
to the computer. 

A second modification in the secondary s t rut  load-stroke diagram is made to 
account for the bending influence of the primary strut .  This modification is made in- 
ternally and continuously during the computer simulation. The position of the attach- 
ment point of the secondary s t ruts  on the primary s t rut  is assumed to be fixed on the 
idealized rigid primary s t rut  axis. However, because of the primary and secondary 
s t rut  loads on the primary strut ,  the primary s t rut  will undergo bending. The bending 
of the primary s t rut  wi l l  cause the secondary s t rut  attachment point to be deflected off 
the idealized rigid primary s t rut  axis. If the assumption is made that the attachment 
point deforms elastically and linearly under load and according to the idealization as 
shown in figure 10, the primary s t rut  bending influence on spacecraft touchdown dynam- 
ics  can be approximated by a modification of the secondary s t ru t  load-stroke diagram. 

The primary strut  is treated as a uniform beam whose elastic axis is defined by 
simple beam theory. The governing differential equation that defines the shape of the 
beam is 

E1 d2v = M(s) (40) 
ds  

where s = position coordinate along the length of the primary s t rut  

q = deflection of the center line of the beam 

E1 = constant bending stiffness 

M(s) = bending moment 

The forces  on the primary s t rut  are idealized as shown in figure 12. 

The force F2Pn is an axial force 
produced by the compression stroking of 

normal component of the secondary s t rut  
honeycomb forces  acting on the primary 
s t rut  at the secondary-to-primary s t rut  
attachment point. This attachment point 

Rpn the primary strut .  The force FNn is the 

V2Pn -4 
Figure 12. - Primary s t rut  bending mode. 
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corresponds to s = L21 . By writing the bending moment M(s) as a function of n 
F2Pn, FNn, and s, equation (40) is expanded to 

EI 2 -t- (F2Pn)17 = (FNn) (1- 2) for 0 < s < L21, 
d s  

and 

Solving equations (41) and (42) for the deflection 
yields 

and evaluating 7 at s = L21, 

FNn(L2 1n)2 
17, = (43) 

As the axial force F2Pn approaches zero,  the f i r s t  and second t e rms  of equa- 

tion (43) approach plus and minus infinity, respectively. 
numerical e r r o r  in the calculation of 7) when using equation (43). Therefore, when the 
primary s t rut  compression force F2Pn becomes arbitrari ly small, it is assumed to be 

zero  and equations (41) and (42) reduce to 

This situation introduces 

E1 - - 
d s  

for  O <  s cL21, 2 

and 

(44) 
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Solving equations (44) and (45) for  the deflection q at s = L21, yields 

q n = -  6 V 2 P  ( FNn n) E1 [( V2Pn - L21n)(L21n]2 

Hence, if the primary s t rut  compression force is large, equation (43) is used to com- 
pute the primary s t rut  deflection at s = L21n, and if  the primary s t rut  compression 
force is small, equation (46) is used to compute the primary s t rut  deflection. 

The deflection of the primary s t rut  caused by axial and normal forces is assumed 
to be in the direction of the normal force. When a static bending deflection is produced 
in the primary s t ru t  at its secondary s t rut  attachment point, an apparent change in the 
length of each idealized secondary s t rut  is produced. This change in length 6i, 

the ith secondary s t ru t  in the nth landing gear assembly is computed by 
of 

6 3 ,n  = q n ( f i n  V%*) 
(47) 

q = primary s t rut  deflection a t  point s = L21 on the nth primary n n 
s t rut  (computed from eqs. (43) or  (46)) 

where 

A 2 

F N  = unit vector directed along the normal force FN 
A A  
V31n, V41, = unit vectors directed along the secondary s t ruts  

I1 n 

th 6 = apparent change in length of ith secondary strut  as a result  of n 
primary s t rut  bending i, n 

The deflection of the primary s t rut  as a result  of bending caused by secondary 
strut  forces  is assumed to be a linear function of the secondary strut  honeycomb force. 
This assumption along with the idealization presented in figure 10 allows for the calcu- 
lation of an equivalent spring ra te  for the secondary-to-primary-strut attachment points 
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to account for  primary s t h t  bending. The spring ra tes  kB3, and KB4, for each sec-  

ondary s t rut  V31, and V41,' which account for primary s t rut  bending, are calculated 

by the following equations. 

FC 3 ln 

' 3n 
KB3, = 

FC41n 
KB4 =- 

'4n 

where FC31 and FC41n are secondary s t rut  honeycomb forces  n 

The secondary s t rut  bending spring rates  KB3, and KB4, change during the 

landing because of landing gear s t rut  articulation and because of varying primary and 
secondary s t rut  shock-absorber loads. For this reason, the bending spring rates  and 
the secondary s t rut  load-stroke diagrams a r e  continually updated throughout a landing 
simulation by computing qn from either equation (43) o r  equation (46) and then evalu- 

ating equations (47) and (48). 

Viscous Forces 
The mathematical model of the landing gear s t rut  force attenuation mechanism has 

velocity-dependent forces.  These forces act in a direction opposite to the s t rut  strok- 
ing velocity and a r e  added algebraically to other axial forces  occurring in the s t ruts .  
This arrangement gives considerable flexibility in modeling a landing gear strut  shock- 
absorption characteristic. The landing gear strut  velocity-dependent forces a r e  de- 
scribed by the equations 

FVP, = CP(V2Pn)yp 1 

where 

FV31n = CS(Viln[s } 
ys I FV41n = CS(V4lJ 

FVP, = stroking-velocity-dependent force in the nth landing gear 
primary strut  

(49 1 
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FV31n, FV41n = stroking-velocity-dependent forces  in the nth landing gear 
secondary s t ruts  

V2Pn, V31n, V41, = stroking velocities of the primary and secondary s t ruts  

given force-velocity characteristic 
CP, CS = coefficients of the s t rut  stroking velocities used to model a 

= exponents of the s t rut  stroking velocities used to model a 
"' ys given force-velocity characterist ic 

Each landing gear strut is allowed to have individual velocity-dependent force charac- 
terist ics defined by data input for  the various parameters  in equation (49). 

RESOLUTION OF FORCES AT THE FOOTPADS 

Unit vectors which yield the instantaneous direction of each s t rut  in the body coor- 
dinate system have previously been given by equations (28) and (32). If these unit vec- 
to rs  a r e  multiplied by the scalar  magnitudes of the axial forces  determined for  each 
strut, the force vectors applied to the footpads by the landing gear can be determined. 

A 
Let F2Pn be the instantaneous axial force in the primary s t rut  inner cylinder of 

the nth gear assembly. I ts  magnitude is composed of 

F2Pn = FCP, + FVP, + FBR, (50) 

where FCP, = force determined from primary s t rut  shock-absorber load-stroke 
characterist ics 

F V P  = primary s t ru t  viscous o r  stoking-velocity-dependent force 

FBR = primary s t rut  bearing friction force (developed in the following section) 

n 

n 

Let the instantaneous axial forces  in the inner cylinder of the secondary s t ruts  be de- 
noted by F31, and F41,. The directions of these forces are colinear with the previ- 

ously defined vectors V31, and V41, shown in figure 5(b), and their magnitudes a r e  
given by 

A - 
2 A 

i F31, = FC31n -I- FV31n 

F41, = FC41n + FV41n 
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where FC31n, FC41n = forces from secondary s t rut  load-stroke characterist ics 

FV31 , FV4 ln = secondary s t rut  viscous or stroking-velocity-dependent forces n 

These forces are applied to the lower end of the pr imary s t rut  outer cylinder. 
u re  13(a) shows the axial s t rut  forces.  
determined from the normal loads on the pr imary s t rut  bearing surfaces.  
for computing bearing loads is developed la ter  in this section. 

Fig- 
The pr imary s t rut  bearing friction forces are 

The method 

Let 

d A 2  

FSn = F31, + F41, (52) 

be the vector sum of the secondary strut  forces acting on the pr imary s t rut  (fig. 13). 
The inertia properties of the landing gear assembly are represented by a mass  concen- 
trated at the ball joint of the landing gear footpad. This concentrated mass  is referred 
to as the effective footpad mass.  The magnitude of the effective footpad mass  is deter- 
mined to approximate the inertia characterist ics of the landing gear  assembly. 
assumptions involved in this idealization of the mass  properties of the landing gear  as- 
sembly are discussed in reference 7. 

The 

-A \ 
e, \ F41, 

\Gn 

(a) Axial s t rut  
forces. 

(b) Forces  and mo- (c )  Resolution of 
ments on the forces  a t  
pr imary strut  footpad . 
caused by sec-  
ondary s t rut  
forces.  

Figure 13. - Forces  applied to the footpad. 

The idealization considers the gear s t ruts  to be massless  s o  that moments on the 
primary s t rut  are computed without regard to rotational accelerations. Thus 

L A  2 -  

V2Pn X FMn = -V21 n X FS n 
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A 

v21, x sn = Gn (54) 

2 2 

where MSn is a moment vector perpendicular to the primary s t rut  and to FSn as 
shown in figure 13(b). 
modulus of the left-hand side of equation (53) is 

2 

Since FMn is normal to the primary s t rut  at the footpad, the 

and FMn is givenby 

MSn 
V2Pn FMn = ~ 

A 
The components of FMn in the body coordinate system can be obtained by constructing 

a unit vector normal to both the primary s t rut  and the moment vector MS,. Thus 
> 

and 

FMn = FMn FMn - (7 
Bearing Friction Analysis 

The outer cylinder of the pr imary s t rut  houses the stroking piston and bearings 
2 --L 

as shown in figure 14. 

the bearings, and their magnitudes depend on the magnitude of FMn. 
and FMn a r e  coplanar, scalar  moment equations for static equilibrium of the inner 

The forces Fln and F2n a r e  the normal forces generated at  
- 4  

Since Fl,, F2,, 
---\ 
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Figure 14. - Primary s t ru t  internal 
bearings. 

cylinder may be written. Summing mom- 
ents about bearing 1 yields 

FMn(”ln) - F2,(D2,) = 0 (59) 

where Dln and D2, are the distances 

defined in figure 14. The length of the 
inner cylinder Dln  is a constant, and 

D2 is determined from an initial bearing n 
separation and from the compression stroke S2Pn of the primary strut .  The mag- 

nitude of the bearing force F2n is computed from 

Summing moments about bearing 2 yields 

and 

FM Dln - D2,) 
F1 = n( 

n D2n 

The magnitude of the bearing friction force FBR, can now be calculated from 

FBR, = pB(Fln + F2,) (63) 

where p B  is the bearing friction coefficient for  both bearings. The direction of the 

bearing friction force is taken to be opposite to the stroking direction of the strut. 
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Total Forces and Moments From Landing Gear 

With the bearing friction force now determined, all the t e rms  on the right-hand 
A 

side of equation (53) a r e  known, and subsequently, F2Pn can be obtained from 

- A  
F 2 P n = V 2 P  F2P 4 n) 

n 
where the unit vector V2Pn is given by equation (28). The total instantaneous force 
transmitted to the footpads by primary and secondary s t ru ts  (fig. 13(c)) can therefore 
be represented by 

FPn = F2Pn + FMn (65) 

L 
The resultant torque 
s t ru t  loads is calculated by the following equation. (For the LM landing system, m = 4. ) 

TCMG on the rigid-vehicle center of mass  due to landing gear 

L m-2.  2 

TCMG = c ( B P n  X -FPn) 
n= 1 

2 

where BPn is the vector f rom the rigid-vehicle center of mass  to the footpad of the 
nth gear assembly, and -FP- is the reaction force applied to the vehicle as a result  

3 

3 L '1 

of FP,. The vector TCMG is expressed in the body coordinate system. 

The translational equations of motion for the rigid-vehicle center of mass  are 
written with respect to the inertial coordinate system; therefore, it is necessary to 

express the resultant force -FPn in the inertial system to obtain the inertial acceler- 
ation of the rigid-vehicle center of mass.  
tion (3), 

2 

By using the transformation given by equa- 
-FPn expressed in the inertial system is 

2 A 

FPI, = - LITBI] FPn 

45 



The sum of the landing gear  forces  acting on the rigid-vehicle center of mass  expressed 
in the inertial coordinate system is then 

L m -  
F C M G = C  FPI, 

n= 1 

The forces  and torques applied to the rigid-vehicle center of mass  by the landing 
gear have now been developed. Landing gear forces  applied to the footpads have also 
been determined and will be used in the discussion of footpad motion on various landing 
surfaces in a later section. 

ENGINE THRUST AND NOZZLE-CRUSHING FORCES 

Certain spacecraft landing procedures may result  in the descent-stage rocket en- 
gine thrust forces  being present during the touchdown. Since these forces  can be sig- 
nificant, their influence on spacecraft landing performance must be considered. The 
engine thrust forces  are usually in a shutdown transient phase a t  some point in the 
touchdown. The form the thrust tailoff curve will take is a function of the t ime at which 
the command is given to  terminate engine thrust, electrical-mechanical delays in the 
engine systems once the command to terminate engine thrust is given, and the thrust 
tailoff properties of the particular rocket engine. A typical engine thrust tailoff history 
is shown in figure 15. 

The landing procedure used for  the 
Elec t r i ca l -mechan ica l  delays LM is one where a commanded descent 

ra te  is given such that the vehicle ap- 
proaches the landing site at  a constant ve- 
locity. (In this situation, the rocket thrust 

I I  is equal to the spacecraft weight. ) A t  
I !  some preset  height above the surface, the 

to 11 12 ‘p rocket engine thrust termination command 
is given. This t ime is represented by t, 

5 E L -  3 0  i; Ff;\ 

Time. 1. set 
- - 1  Figure 15 .  - Rocket engine thrust tailoff in figure 15. The station on the time 

characterist ics . D 
axis represents the position on the thrust 
curve when the footpad touches the surface. 

The thrust curve in figure 15 is approximated in the range from t to t2 by a 
constant F1 and f rom t2 to t by a polynominal o r  exponential function. The thrust 

force FTHRUST is given by the equation 

0 

FTHRUST = F1 to < t <  t2 (69) 
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(70) 
2 - K t  t 

( -  2 ) + M o  +Ml(t - t + M  t - t2) -E . . . t > t2 
2) 2( 

FTHRUST = Fle 

where the constants F1, K, Mo, M1, e t  cetera  a r e  determined by fitting the appro- 
priate function to empirically developed rocket engine thrust tailoff data. 

If the location of the rocket engine on the spacecraft is such that the nozzle exit 
plane of the engine comes close to the landing surface while the engine is thrusting, an 
amplification in the engine thrust  will occur. 
function of such factors as surface geometry, rocket engine design, and engine-surface 
orientation. The amplification factor can be determined by experimental or ,  in some 
special cases,  by analytical means. A typical amplification factor AMP variation with 
nozzle clearance for the LM descent-stage rocket engine thrusting near a flat surface 
is shown in figure 16. 

clearance occurs when the rocket engine 
exit a rea  is l e s s  than the throat area.  

The thrust amplification is a complex 

The plateau in the thrust amplification curve around zero nozzle 

The total thrust on the vehicle is 
computed by establishing the distance of 
the centroid of the rocket engine nozzle 
exit plane above the surface (ZNOZ) and 
by determining the corresponding ampli- 
fication factor by evaluating a function 
which describes the characterist ics in fig- 

used to multiply the thrust force 
FTHRUST of equations (69) and (70) to 
obtain the total thrust TAF. 

- 
I 

0 1 u r e  16. The amplification factor is then 
Nozzle clearance, ZNOZ. 11 

\ 

Figure 16. - Engine thrust  amplification 
factor for the LM. 

A d 
TAF = AMP (FTHRUST) 

L 

The thrust force TAF is directed through the vehicle center of mass.  

An additional force is involved i f  the nozzle of the descent-stage rocket engine 
This force is due to the compressive failure forces of contacts the landing surface. 

the rocket nozzle structure.  
under constant load as the nozzle structure is forced onto the surface. 

The rocket nozzle structure is assumed to compress 

The forces produced on the vehicle because of nozzle crushing a r e  distributed 
around the nozzle exit perimeter in proportion to  the nozzle perimeter in contact with 
the landing surface. These forces a r e  directed up the center line of the vehicle. 
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A 
The total force vector F due to the engine thrust and nozzle crushing load is T F  

> - A  
FTF = TAF + FFL 

where FFL is the nozzle crushing load vector. These vectors are referenced to the 

body coordinate system. The moment vector MTF acting on the idealized vehicle be- 
cause of the rocket thrust and nozzle crushing load is 

L 

- A  L A  J 

MTF = RT X TAF + RF X FFL (73)  

--% 

where the vector RT is drawn from the origin of the body coordinate system to the 

centroid of the nozzle exit plane and where the vector RF is drawn from the origin of 

the body coordinate to the centroid of the nozzle crushing load. The translational force 

vector FTFI (due to engine thrust and the nozzle crushing load) on the idealized vehi- 
c le  in the inertial coordinate system is given by 

3 

d 

L 

FTFI = pBI] FTF (74) 

FORCES AND MOMENTS FROM REACTION CONTROL SYSTEMS 

The forces and moments applied to a landing vehicle by the vehicle RCS a r e  func- 
tions of the particular control system design. The equations used in this analysis for  
determining when control thrusters  a r e  activated a r e  simplified approximations to the 
control logic used for the LM. Because of the large attitudes and attitude rates  experi- 
enced by the landing vehicle during touchdown, the typical control thruster operation is 
for  the thruster to be turned on and to remain on for  a large portion of the time interval 
of interest. For  this reason, the finer points of control system operation involving 
limit cycles, minimum jet  on-time, and onboard computer sampling rates  a r e  not of 
prime importance in determining forces  and moments applied to the vehicle. Conse- 
quently, relatively simplified control laws a r e  used for  landing dynamics simulation. 

Three basic modes of control system operation are considered, including (1) atti- 
tude hold, (2)  ra te  command, and (3) downward translation. The first two modes a r e  
basic modes used in the LM control system, and the third is a special landing mode 
which has been studied but has not been implemented for  the LM. 

It is assumed that the control system applies a positive o r  negative torque of 
fixed magnitude to the X -, YB-, o r  ZB-axes, depending on the value of a linear B 
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combination of attitude and attitude ra te  e r r o r s  associated with the respective body 
axis. The attitude ra te  e r r o r s  are computed from 

- 

E U x -  Ux - c U x 7  
Y Y  
= O  - c U y  I (75) 

where Cux, CU and Cuz a r e  specified commanded attitude rates .  The determina- 
tion of attitude e r r o r s  used in the simplified control laws involves treating attitude 
e r r o r s  as components of a vector, so that deviations in the values of the Euler angles 
f rom the commanded values may be transformed into attitude e r r o r s  which can be com- 
pared with body ra te  e r ro r s .  

Y’ 

The commanded values for the Euler angles a r e  specified by data input and a r e  
denoted by COX, Cf3 and COZ. The deviations in Euler angles from the commanded 
values a r e  computed from 

Y’ 

DO = 0 x x  

z 

DO = 0 - CB 
Y Y  

DO = o  - ce z z  

The deviations a r e  assumed to be small. With this assumption, these deviations can be 
treated like components of a vector, so  that they may be transformed by means of the 
transformation of equation (6) to corresponding attitude e r r o r s  associated with the body 
system axes. The attitude errors for the body system axes are given by 
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For the attitude-hold mode, the following e r r o r  equations are evaluated. 

EX = kllEOx + k12EUx 

E Y = k  E8 + k  Em 21 y 22 y 

E Z = k  E8 + k g 2 E a Z  31 z 

k22, kgl, and kS2 are constants, given by data input, which where kll ,  

model a given control mode and where the commanded attitude rates are zero. The 
e r r o r s  EX, EY, and EZ are compared to upper and lower bounds given by data input 
to determine i f  RCS thrusters  should fire to produce a torque on the given axis. Let 
EXM, EYM, and EZM be positive numbers given by data input. The torque applied 
to the X -axis by RCS thrusters  is determined from the following logic. 

k12’ k21’ 

B 

I -TOR- if EX > EXM 

(79) 

where TORQX is the magnitude of the torque which can be generated on the XB-axis 

by the RCS thrusters .  Similar logic is used to determine TRCSY and TRCSZ, the 
RCS torques about the Y - and Z -axes, respectively. The RCS torque vector is de- 
fined as B B 

TRCSX 
-A 

-s 
The net force vector FRCS due to the RCS would be the null vector fo r  this case. 

The rate-command control mode is a special case of the attitude-hold mode where 
the attitude e r r o r  bias is removed by setting kll,  kZ1, and kgl equal to zero in 

equations (78) and where the commanded attitude ra tes  are not necessarily zero. Ap- 
propriate bounds EXM, EYM, and EZM for attitude rate e r r o r s  are specified, and 
the control logic of equation (79) is used to determine control torques. 
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I The third control mode, downward translation, is more effective in preventing 

vehicle toppling during touchdown than either of the two modes discussed previously. 
The control logic consists of continuously firing those RCS thrusters  which produce 
forces  directed downward along the center line of the vehicle. In general, the vehicle 
would be flown in either of the two previously discussed modes for  some specified time 
(approximately 1 second for lunar environment) after first contact with the surface; 
then, control would be switched to the downward translation mode. The delay in firing 
downward translation thrusters  would avoid contributing to the effective weight of the 
vehicle during the period of maximum energy-absorption requirements on the landing 
gear. 

The downward translation mode is simulated in the landing analysis by specifying 
a delay time from the instant of surface contact for  initiation of the downward transla- 
tion. During this delay period, control torques on the vehicle a r e  computed according 
to either of the two previously discussed logics. After the delay period, no pure couple 
torques a r e  applied to the vehicle by the control system, and a force of magnitude 
FRCSZ is applied vertically down the center line of the vehicle. 
F'RCSZ is determined from the number of control je ts  available and from the thrust 

magnitude of each jet. The net force vector FRCS in the body coordinate system as 
a result of this landing mode is 

The magnitude of 

A 

and then by transformation 

L L 

FRCSI = [TBI] FRCS (82) 

L 

where the vector FRCSI is the control jet  force in the inertial coordinate system. 
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NET FORCE AND TORQUE VECTORS 

2 

The total force vector F (excluding gravity forces)  acting on the idealized rigid- 
vehicle center of mass  is the sum of individual external force vectors and is given by 
the equation 

Similarly, the net torque on the idealized rigid-vehicle center of mass  is given by the 
equation 

3 

T =  
-'.1 

d u d  

= TCMG + MTF + MRCS 

Thenet  vehicle forces  FX, FY, and F Z  and torques Tx, T , and T are used in 

conjunction with equations (10) to (12) and (13) to (15) to calculate the vehicle transla- 
tional and rotational accelerations. 

Y Z 

FORCES ON LANDING GEAR FOOTPADS 

Descript ion of Sur face Models 

It has been shown in the preceding sections that, given the position of each land- 
ing gear footpad in the body coordinate system, the instantaneous landing gear geometry 
and landing gear stroking forces  can be determined. The position of each landing gear 
footpad is obtained by numerically integrating the equations of motion for each footpad. 
In the following paragraphs, the forces applied to the footpads by the landing surface 
are analyzed, and the equations of motion for  the footpads a r e  derived. 

The mathematical surface models developed in this analysis a r e  divided into two 
categories: (1) rigid surface models and (2) nonrigid surface models o r  soil models. 
A footpad that contacts a rigid surface model is capable only of sliding on the surface, 
and there is no footpad penetration into the surface. However, when a footpad contacts 
a nonrigid surface, the footpad penetrates the surface because of the plastic deformation 
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which the model is capable of simulating. 
of landing surface can be specified for any footpad. Consequently, a wide variety 
of surface conditions can be modeled for a touchdown simulation. 

For  a given landing simulation, either type 

For  both surface models, the landing surface coincides with the X-Y plane of the 
inertial coordinate system. This plane is oriented with respect to the gravity vector by 
the transformation 
holes and obstacles on the landing surface plane can be specified for each footpad in or- 
der  to simulate a given surface topography. .Figure 17 defines the surface irregularity 
parameters  HOLEn and OBSTn which a r e  specified for each footpad by data input. 

The variable HOLEn denotes the surface 

of equation (2), which uses  an input slope value. Various PGI] 

Z G t  f z  

I '  
/7 

<< OBST, 

I I 

Figure 17 .  - Landing surface hole-obstacle 
definition. 

elevation of each footpad at the point it 
first s t r ikes  the surface. 

For the rigid surface model, sever- 
al types of constraints for lateral  motion 
of a footpad along the surface may be 
specified. A positive value for the input 
parameter OBSTn in figure 17  denotes a 
complete lateral  constraint on footpad mo- 
tion. This constraint might be visualized 
as a vertical cylindrical wall  with its 
height equal to OBSTn. 

footpad contacts the surface, it cannot 
move laterally until it r i s e s  above the wall. 
With this option, it is assumed that the 
footpad is rigid and that the sides of the 

Thus, after the 

wall produce a force equal and opposite to the s t rut  forces resolved a t  the footpad. If 
a negative value of OBSTn is selected, the footpad is allowed to slide on the surface 

under the influence of coulomb friction, with the friction coefficient specified by the 
variable Un. 

Another type of constraint for sliding footpads a r e  curbs which can be placed ar- 
bitrarily on the rigid surface. Two curbs may be specified for  each footpad. The curb 
option is specified by using a positive value for  the input parameter CLUEwn. Normal 
forces  between the pads and the curbs a r e  developed by using a load-deflection table for  
the footpad. Forces  parallel  to the curbs a r e  developed by a coefficient of friction UW n 
and the normal force between the footpad and the curb. The direction of this frictional 
force is considered to be opposite to the sliding velocity of the footpad along the curb. 
U s e  of the curb option allows for  simulation of crushable footpads, since a load- 
deflection table for  footpad crushing normal to each curb is specified. When simulating 
landings where the footpads slide along the surface, the bottoms of the footpads are as- 
sumed to be rigid. 

The nonrigid surface model is used to simulate landings on surfaces of various 
bearing strengths. Obstacle and curb options are omitted when this model is selected. 
The simulation of nonrigid models involves equations which are used to generate vertical 
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and lateral  forces  on a footpad as it translates into the soil. Various forms  of these 
equations can be used, and they primarily reflect the variation of bearing strength with 
the position and velocity of a footpad. A detailed discussion of the various landing sur -  
face models and derivations of the footpad equations of motion are given in the following 
sections. 

Rigid Surface Analysis 

In the rigid surface model, there is no movement of a footpad in a direction nor- 
mal to the surface when it is in contact with the surface. Therefore, there is no need 
for  an equation of motion for  footpad motion in the Z-direction. Likewise, if a footpad 
is completely constrained in lateral movement, no equations of motion are needed in 
the X- and Y-directions. 

Since there is no equation of motion to be solved for  vertical  footpad motion, the 
vertical footpad position is determined through logic in the computer program. At each 
integration step, a tentative Z-position coordinate for each footpad is computed by as- 
suming that the footpad is rigidly connected to the rigid-vehicle center of mass  and by 
using landing gear geometry computed in the previous integration step. If this compu- 
tation indicates that the footpad is beneath the local surface plane, the footpad is in sur-  
face contact and the Z-position coordinate is adjusted so  that the footpad is on the local 
surface plane. If the computation reveals that the footpad is above the surface and if no 
previous surface contact has been made, then all footpad position coordinates and ve- 
locities a r e  computed as though the footpad were rigidly connected to the vehicle. If 
the footpad is above the surface and if previous surface contact has been made, the 
Z-position coordinate is adjusted so  that the footpad is back on the surface as long as 
compressive forces  remain in the primary $rut. (Placement of the footpad back on the 
surface effectively elongates the primary s t rut  and thus unloads the honeycomb shock 
absorbers,  ) When all compressive forces  in the primary s t ru t  have been relieved, the 
tentative Z-position coordinate of the footpad is used as the t rue footpad position. On 
simulations with lateral  footpad constraints, the footpad is not completely f ree  until the 
computed Z-position coordinate of the footpad indicates that the footpad is above the 
constraining obstacle. When the obstacles a r e  cleared, footpad position and velocity 
a r e  computed in the same manner as before surface contact by using newly deformed 
landing gear geometry. 

As mentioned previously, the surface forces  on a sliding footpad a r e  determined 
from a coefficient of sliding friction and f rom forces  generated between the footpad and 
a curb which it may contact. It is assumed that frictional forces  on the bottom of a 
footpad occur in a direction opposite to the instantaneous sliding direction in the iner- 
tial X-Y plane, and this frictional drag force is computed by the equation 
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A 

where FZI, = inertial Z-component of the vector FPI, on the nth footpad (computed 
in eq. (67)) 

A 
SP = velocity vector of the nth footpad n 

n U = coefficient of sliding friction between the nth footpad and the landing 
surface 

To determine the forces  generated between a footpad and a curb, it is necessary 
to describe the lateral  crushing characterist ics of the footpad by data input. A typical 
crushing characteristic for  a footpad is shown in figure 18. 

Curbs a r e  oriented on the surface with respect to the initial footpad contact point. 
Two curbs can be designated for each footpad by the parameters  shown in figure 19. 

Figure 18. - Force-deflection diagram 
for footpad crushing. 

The inertial coordinates of a footpad 
a r e  used to compute the distance from the 
center of the footpad to a curb at  any time 
while the footpad is on the surface. If this 
distance is less  than the original footpad 
radius, the amount of footpad crushing 
normal to the curb can be determined. 
The force between a footpad and a curb is 
then obtained from the footpad force- 
deflection diagram in figure 18. 

When a f o o t p a d  f i r s t  c o n t a c t s  
the surface, the inertial position coor- 
dinates of the f o o t p a d  a r e  d e n o t e d b y  
[XPIn, YPI,, -HOLEnIT. These coordi- 

nates a r e  determined by transforming 
footpad coordinates in the body system 
to inertial coordinates. The coordinates 

X 

(or curbl 

DWALLIn . = the normal distance from 
th , J  

nth footpad center to j 
curb when footpad initially 
contacts the surface 

= the angle from the positive 
X-axis to a line in the 
X-Y plane normal to the 

j th  curb of the nth footpad 

WALANGn’ j 

Figure 19. - Schematic diagram of curb 
parameters  on rigid surface. 
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3 

of position vectors W which locate the intersection point of DWALLI with a curb 

are computed from 
n, j' n, j 

-I 

wn, = QXmn + an , j) 9 (YPIn + bn, j) o] 
where 

a =DWALLI . c o s  WALANG . 
n, j n, J ( " 9  J> 

=DWALLI s in  WALANG . 
bn, j n , j  ( "9 3) 

Figure 20 i l lustrates a typical initial footpad-curb position. 

= Y  Consider a unit vector which 

is normal to  the curb and can be construc- 
ted by 

n, j 

~~ 

1 h 

n, j 
j = DWALLI 

/ X 

Then, a unit vector 8 
curb can be constructed by the vector 
c ros s  product 

lying along the Figure 20. - Initial footpad-curb position n, j 
on rigid surface. 

En, = AI,, * x[O,O, l ]T  (9 0) 
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A t  any time after a footpad initially contacts the surface, vector 2 
pad center with the point located by W 

joining the foot- 
A n, j 

can be constructed so that 
n, j 

- 
XPI, +an  - XP, 

, j  

YPI, + b  . - YPn 
n, J 

0 - 

where XPn and YPn are the instantaneous inertial coordinates for the footpad center. 
The current distance between the footpad center and the curb can then be computed from 
the vector dot product 

bY 
Given the undeformed footpad radius PR, the variable PSTRK is computed 

n, j 

PSTRK . = PR - DWALL (93)  n, J n, j 

If PSTRK 

PSTRK 
the j 
ple impacts between footpads and curbs. 

is a negative quantity, the footpad is not in contact with a curb; but if 
n, j 

is positive, its value represents the amount of footpad crushing normal to 
th n, j 

curb. Appropriate logic is used to retain deformed footpad geometry for multi- 

A crushing force value PFRC is obtained from the footpad force-deflection 
n, j 

diagram (fig. 18) by using PSTRK Since PFRC ac ts  on the footpad in a direc- 

tion normal to the curb, PFRC 
n, j '  n, j 

can be written as the force vector 
n, j 

L A 

PFRC . = -(PFRC,, j)AIn, 
n, J (94) 
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Other forces  on the footpads are generated at the curbs by friction between the 
footpad and curb. These frictional forces are computed from PFRC and a coeffi- 

cient of friction UW,. 
but opposite to the velocity of the footpad along the curb. A sca la r  product of sp  and 

the unit vector E 
tion force. The curb frictional force FWF on a footpad is then given by 

n7 j 
Frictional forces  are applied to the footpad parallel to the curb 

along the curb is performed to obtain the proper sign for  the fr ic-  
n, j A 

n7 j 

L 

FWF n, J . = ( U W ~ ) ( P F R C ~ ,  j) En, (95) 

L 

It is assumed that the direction of FWF does not change during a numerical inte- 
gration step. n, j 

L 

All the instantaneous forces  FPIn7 FDRAGn, PFRCn7 and FWFn acting on a 
footpad are now accounted for, and the instantaneous vector equation of motion of a 
footpad is obtained from a vector sum of all forces  acting on the footpad. 

FPI, + PFRCn + 
n PMASS 

where PMASS = effective mass of a footpad 
> 

G = gravity vector in inertial coordinates 

For  computation purposes, equation (96) must be reduced to component form. 
the equation becomes 

Then, 

.. FXP, FDRAGP,~P, 
XP = n PMASS- 

I 

PMASSJXP~)' \ "/ 

.. Fy 'n FDRAGPnYPn 
yp E--- 

n PMASS _ .  

.. 
ZPn = 0 

(97) 
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where 

+PFRCn+FWFn * [ 1 , O , O ]  T -1 
+ FWF, * [ 0,1,0] T -1 

(98) 

(99 1 

and gx = component of gravity acceleration in the inertial system X-direction 

= component of gravity acceleration in the inertial system Y-direction 
gY 

Equations (97) a r e  integrated by a Runge-Kutta method, where FXP,, FYP,, 
and FDRAGP have constant values over the integration interval. However, because 

of changes in footpad velocity components during the integration step, this method of 
solution does account for  changes in direction of the drag force.  Equations (97) have a 
singularity if the footpad velocity SPn becomes zero. Since the equations a r e  solved 
numerically over discrete time intervals, it is unlikely that the net result  of any inte- 
gration time step would yield a velocity value of exactly zero at the end of the interval. 
Instead, the numerical integration would actually change the direction of the velocity 
component. Such an occurrence would imply that the frictional force is capable of de- 
celerating the footpad to zero  velocity and then accelerating it in the opposite direction 
during the integration interval. Since in reality, a frictional force should not be able 
to accelerate a motionless footpad, the following special logic is used to avoid this 
problem. 

n 

2 

If the sign of either XPn o r  YPn is reversed during any integration step, it is 

assumed that the particular component of velocity is integrated to zero during the in- 
terval. The position of the footpad is then adjusted by determining an average velocity 
for the component during the integration interval. If the signs of both XPn and YPn 

a r e  changed during an integration time interval, then the footpad has stopped, and it 
is assumed that it remains at r e s t  until the forces applied to it by the landing gear and 
the curbs are sufficient to overcome the friction force. The vector which represents 
the sum of the X- and Y-forces applied to the footpad by the landing gear and curbs is 
defined by 

FXYPn = [ FXP, FYP, O I T  (100) 

- 
The magnitude of FXYPn is compared with FDRAGPn. Whenever FXYPn is larger 
than FDRAGPn, one integration step is made, with X- and Y-components of FDRAGP, 

- 
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determined by assuming FDRAGPn acts  in a direction opposite to FXYPn. 
integration step, nonzero values for XPn and YPn a r e  obtained, and equations (97) 
can again be used. 

After this 

Numerical integration of the footpad equations of motion yields values for  each 
footpad coordinate in the inertial system. These coordinates are transformed back into 
the body system, thus allowing for  computation of new landing gear s t rut  geometry and 
landing gear forces  for  the next integration interval. 

No n r ig id S u r f.ac e An a I y s i s  

The physics of the response of soil media to projectile impacts is not a well- 
developed science. Until recently, the best available knowledge of forces  produced in 
soils could be obtained only from texts oriented to the study of building foundations 
(ref.  9). An interest  in the ability of spacecraft to land on the lunar surface and spec- 
ulation about the bearing properties of the lunar surface have fostered a considerable 
amount of research devoted to understanding the soil impact phenomena (refs.  6 and 
10 to 12). Most of this research has been experimental, and only empirical methods 
of predicting forces  which a r e  applied to an impacting body by a soil medium have been 
developed. These methods generally attempt to relate soil forces on the impacting body 
with the penetration velocity of the body, along with the physical properties of the soil 
(such as density, relative density, cohesion, internal angle of friction, etc. ). To gain 
some insight into the dynamic behavior of vehicles landing in various types of soils, 
mathematical soil  models a r e  useful. 

Although several  different mathematical soil models have been used in spacecraft 
landing simulations, only one of these models is discussed in this report. In this 
model, no attempt is made to relate the forces  generated by the soil to the physical 
properties of the soil. Instead, the soil forces  a r e  related to footpad penetration and 
footpad velocity by constants, which represent penetration-resistance characterist ics 
of the soil. 

Forces  in the inertial Z-direction, exerted on the footpad by the soil, a r e  com- 
puted from an equation of the form 

FZP, = A P b l  + K2(ZPENn) + K3(ZPn) + Kg(ZPJI 

where AP = a r e a  of the bottom of a footpad 

K = bearing strength of the soil  a t  the surface 

K - increase in soil bearing strength with depth 

ZPEN = penetration of a footpad in the inertial Z-direction 

K - increase in soil  bearing strength with footpad velocity 

1 

2 -  

n 

3 -  

60 



K4 = increase in soi l  bearing strength with the square of the footpad velocity 

Z P  = penetration velocity of a footpad n 

The forces  applied to the footpad in the X-Y plane a r e  obtained from a similar equation 

2 - 
(102) 

"n 

"n 
FDRAGn=-APF [ K 5 + K  6( SP n) + K  7( ZPEN n) + K  8(.  SP n)? 

where APF = frontal area of a footpad in contact with soil (assuming the footpad is 
cylindrically shaped, and computing area as a function of penetration) 

K = static soil  resistance to horizontal movement 

K - increase in soil  resistance to horizontal motion with respect to footpad 
- lateral  displacement 

5 

SP = lateral  translation of a footpad 

K = increase in lateral  resistance of the soil with respect to the depth of 
n 

penetration of the footpad 

K = increase in soil resistance with respect to the square of the footpad 
horizontal velocity 

a 
SP = instantaneous horizontal velocity of a footpad n 

By changing the constants in equations (101) and (102), numerous soil  characterist ics 
may be simulated. If lunar and planetary landings are to be studied, equations (101) 
and (102) can be as useful as some of the more complex soil impact models 
(ref.  6), since soil  properties a t  a particular landing s i te  wil l  not be well defined and 
since it is desirabie to simulate surface strength characterist ics of a widely varying 
nature. 

The equation of motion for  inertial Z-translation of a footpad is obtained from the 
summation of forces  in the Z-direction 

1 .. 
ZP n = ( n  FZP - F Z I ~ ) ~ ~ ~ ~ ~  + gz 

Equation (103) is solved numerically by assuming constant forces over an integration 
interval. The X and Y translation equations of motion are identical to equations (97), 
since FDRAGn has the same form as FDRAGPn in these equations. 
- A 
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A new variable 
- 
FGRNDn is defined by 

. -  . 
FGRNDn = FDRAGn + FDRAGPn 

- 
and is substituted for FDRAGPn in equations (97). This substitution allows for fric- 

tional forces on the underside of the footpads to be added to the soil  forces of equa- 
tion (102). Equations (97) a r e  integrated in the same manner described previously. 

STABIL ITY  C R I T E R I A  

A performance evaluation of a soft-landing system requires the simulation of 
many touchdown conditions. When a large number of touchdown simulations are re- 
quired, the speed a t  which the computer can execute these simulations becomes a fac- 
tor in the problem. In the evaluation of a soft-landing system for stability (tipover) 
performance, the computer running time can be reduced by defining stability cr i ter ia  
such that the computer can make the decision as to whether the landing being simulated 
wi l l  eventually be stable or unstable. Upon making this decision, the computer simula- 
tion is terminated. 

A parameter representative of the state of stability of a particular landing is the 
The stability distance is the shortest  magnitude of the minimum "stability distance. 

distance-between the rigid-vehicle center of mass  and a plane parallel to the gravity 
vector that passes  through two adjacent landing gear footpads. This plane is defined 
as the "stability wall. ' I  Presented in figure 21  is the vector definition of the stability 

7 Slability wa l l  

S'D & ,  1 e I 

I \  I 

Landinq surface Yi 
,-tanding gear footpad '6' 

Figure 21. - Vector definition of the 
stability distance. 

-2. 

distance. The length of vector SD is the 
stability distance. The stability distance 
SD is calculated by the equation 

2 

where AB = vector connecting two adja- 
cent landing gear footpads 

L 

ACM = vector connecting the rigid- 
vehicle center of mass  and 
a landing gear footpad 

A 

G = gravity vector 
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The stability distance vector is calculated by the equation 

SD(Z X 6 )  SD = 
) 6 x A B I  

A stability distance is computed in this manner for  each stability wall. 

If the rigid-vehicle center of mass  is within an enclosure defined by stability 
walls passing through adjacent landing gear footpads, then the gravity action on the ve- 
hicle dynamics is stabilizing. (The center of mass  and center of gravity are assumed 
to  be coincident. ) If the rigid-vehicle center of mass  is outside of this enclosure, the 
gravity action on the vehicle dynamics is destabilizing, and the landing is declared un- 
stable. If the vehicle is unstable, the degree of instability can be gaged by the magni- 
tude of the "overturning velocity" at the instant the rigid-vehicle center of mass  passes  
through the stability wall. The overturning velocity V is calculated by the equation 

0 

where 3 is the translational velocity vector of the rigid-vehicle center of mass.  

Also, instantaneous values of the stability distance, overturning velocity, and 
vehicle kinetic energy can be used in determining if the landing will eventually be sta- 
ble. At the instant a landing gear footpad contacts the landing surface, the vehicle has 
a given kinetic energy. Subsequent motion will increase o r  decrease the initial vehicle 
kinetic energy, depending on the amount of energy dissipated by the landing gear sys-  
tem o r  the energy gain due to the lowering of the rigid-vehicle center of mass.  When 
the vehicle kinetic energy has been dissipated to the point that it is less than approxi- 
mately 10 percent of the initial vehicle kinetic energy a t  touchdown, the landing gear 
s t ru ts  have usually undergone maximum stroking. 
landing gear  s t ru ts  occurs, the resulting vehicle motion will generally be rigid-body 
rotation about two adjacent landing gear footpads on the landing surface. ,After com- 
puting the minimum stability distance to each stability wall, a landing can be declared 
stable if  it satisfies the following conditions: 

After maximum stroking of the 

1. 
kinetic energy. (This constraint can be replaced by not declaring a landing to be stable 
until landing gear s t ru ts  have completed stroking. ) 

The vehicle kinetic energy is less than 10 percent of the initial touchdown 

2. The rigid-vehicle center of mass  is inside the stability walls. 

3. The two adjacent landing gear  footpads for  which the minimum stability dis-  
tance is computed are on the landing surface. 

4. The rigid-vehicle center of mass  is moving away f rom the stability wall with 
some preselected minimum velocity. 
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An index of the degree to which the landing was stable can be judged by the magnitude 
of the minimum stability distance obtained during the landing. 

The capability of the computer program to decide whether a landing is stable o r  
unstable enables the program to be operated in a mode where a "stability boundary'' 
can be defined with a minimum number of landing simulations. The stability boundary 
is a curve of vertical touchdown velocity Vv compared to horizontal touchdown veloc- 

ity Vh; this curve separates the Vv-Vh plane into regions of velocity conditions that 

result in either stable o r  unstable landings, The generation of the stability boundary 
is accomplished through program logic, which enables the program to choose touch- 
down velocity conditions to be simulated, based on the stability resul ts  of previous 
landing simulations in the same computer run. 
portance when extensive studies of landing stability performance are required. 

This capability is of considerable im- 

ANALYTI CAL-EXPER I MENTAL DATA CORRELATION 

The degree to which the mathematical model of a soft-landing system represents 
physical reality depends primarily upon the assumptions made in the analysis. In eval- 
uating landing performance of a soft-landing system, factors such as vehicle stability 
and landing gear energy-absorption characterist ics a r e  of prime importance. In light 
of the complexities of a soft-landing system, some approximations a r e  inevitable, and 
f o r  this reason, experimental verification of the analysis is desirable. 

Several experimental programs have been conducted to develop landing dynamics 
data. Various LM models have been drop tested a t  the Langley Research Center, a t  
MSC, and at  NASA contractor facilities. References 13 to 15 present some of the data 
from these test  programs. Reference 15 contains comparisons of experimental results 
of full-scale LM drop tes t s  and theoretical predictions of the mathematical analysis 
presented in this report. 

The analytical-experimental data correlation presented in this report  is restr ic-  
ted to landing dynamics simulations of a 1/6-scale LM model. The experimental data 
were developed by a NASA contractor (ref. 13) by dropping a 1/6-scale LM model on a 
plywood surface (fig. 22). Critical stability and landing gear energy-absorption data 
were obtained by varying the model touchdown conditions. 

The forces  acting on the 1/6-scale model during landing a r e  gravity forces and 
landing gear s t m t  forces.  The landing gear s t rut  forces a r e  due to friction and to the 
deformation of the honeycomb cartridges housed inside the struts.  The landing gear 
footpads a r e  spikes that penetrate into the plywood landing surface and constrain the 
footpad from lateral  motion during impact. The effects of the landing gear footpad 
penetration into the landing surface on the model touchdown dynamics a r e  accounted 
fo r  by modifying the primary s t rut  load-stroke diagram. 

A schematic drawing of the 1/6-scale LM model is presented in figure 23. 
Landing gear s t rut  load-stroke diagrams a r e  presented in figure 24. 
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Figure 22. - The 1/6-scale LM model. 
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Footpad C ? 
Roll axis 

z1 
I 

Yaw axis 

Pitch axis 

Footpad A 

(a) Side view. (b) Top view. 

Figure 23. - The 1/6-scale LM model geometry. 

44 712 lblft 

I I  
Distance, ft 

,00747 .a8 .34a 
21547 

(a) Pr imary s t rut  load-stroke 
diagram for a 1/6-scale 
LM model. 

134 880 lblft 

Distance. ft ,09667 
Y 

167 

(b) Secondary strut  load-stroke 
diagram for a 1/6-scale 
LM .model. 

The geometric parameters and s u r -  
face deformation properties for the model 
are as follows: e mw 192 Wo lblft 

0) 

L 

Y R1 = 1.639 f t  Z 1  = 0.490 f t  
I R2 = 1.562 ft 2 2  = 0.806 f t  

.0417 .na R3 = 2.221 f t  2 3  = 1.351 f t  
Z C  = 0.952 f t  

I 
I 

4w Distance, f t  

2 /3 = 19.72' 
(c) Landing surface load- = 0.994 slug-ft 

YY 2 I I = 0 slug-ft 

deformation charac - I Z Z  2 I = 1.397 Slug-ft terist ics.  

Figure 24. - Model physical Ixy7 xz7 yz 
characteristics. Bearing friction coefficient cLB = 0.10 

Bearing overlap = 0.396 ft 
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TWO model touchdown orientations were tested and simulated. These touchdown 
orientations resulted in planar motion of the model. One orientation is the planar 2-2 
landing mode. This type of landing occurs when the two trailing landing gear footpads 
s t r ike the surface simultaneously, followed by the simultaneous impact of the two lead- 
ing footpads. 

The second orientation is the planar 1-2-1 landing mode. This type of landing 
occurs when the trailing landing gear footpad contacts the landing surface and is fol- 
lowed either by simultaneous contact of the two midgear footpads o r  by contact of the 
leading footpad. The 2-2 landings pose cri t ical  problems for  stability and for  second- 
a ry  s t rut  compression stroking. The 1-2- 1 landings present cri t ical  primary s t ru t  
compression stroke-out problems. 

Figure 25 shows a comparison of the analytically predicted and the experimen- 
tally measured model vertical acceleration during the f i r s t  0. 16 second of a landing. 
The 1/6-scale LM model was  oriented such that a planar 2-2 landing occurred. After 
the first 0. 12 second of the landing, the resulting motion of the model is rigid-body 
rotation about the two downhill landing gear footpads. The model was initially pitched 
up 5" with respect to the horizontal, with horizontal velocity in the downhill direction. 
The landing surface was sloped 5", with 4-inch depressions superimposed on the slope 
under the downhill landing gear footpads. 

0 

i\ Experimental-analytical time history: 2-2 landing 
Model: 5"nOSe-up; V, * 10 ff/SeC: v h  6 fl/ sec 
Surface 5'downhiII slope: 4-inch depressions at 

forward gear; a l l  footpads fully constrained 

--- 

1 I I I 

.M .08 
Time, sec 

.12 .16 

Figure 25. - Analytical-experimental correlations of the vertical acceleration 
of a 1/6-scale LM model. 
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The major difference between the analytical and experimental time histories 
shown in figure 25 is the spiked oscillation of the experimental curve. The cause of 
this phenomenon has not been established, but a likely reason may be that excessive 
binding of the primary s t rut  inner cylinder occurred during stroking. Some binding is 
expected and is accounted for  in the analysis by bearing friction forces. However, a 
constant bearing friction coefficient is assumed, and possible deviations from this 
idealization could occur if manufacturing tolerances of the model landing gear a r e  not 
equivalent to prototype hardware. Some wearing of the bearing surface could also 
occur after several  drops in the drop-test se r ies .  

The following explanation of the various features of the acceleration time history 
in figure 25 is made with reference to the analytical curve. 
pulse shown in figure 25 is due to the initial impact of the trailing landing gear footpads. 
Subsequent model rotational and translational motion brings the downhill landing gear 
footpads in contact with the surface, which produces the second acceleration pulse. 
After the f i rs t  acceleration pulse, the model goes into a free-flight period of approxi- 
mately 0. 02 second. The f i r s t  acceleration pulse is produced predominantly by the 
first-stage honeycomb-crushing forces  in the trailing landing gear primary s t ruts .  The 
second acceleration pulse is predominantly due to the primary s t rut  loads of the down- 
hill landing gears.  The f i r s t  plateau of the second acceleration pulse is mainly due to 
the first-stage honeycomb-crushing force of the primary strut .  The second plateau in 
the second acceleration pulse is due to the secondary s t rut  forces  acting on the primary 
strut ,  producing an increase in the primary s t rut  bearing friction force. The final peak 
in the acceleration pulse is due to the primary s t ru t  stroking into the second stage of 
the honeycomb shock absorber.  In this case,  the primary s t ruts  stroked a distance of 
0.01 foot into the second-stage honeycomb shock absorber.  Shown in figure 26 is a 
comparison of analytical and experimental model pitch ra tes  for the same landing. The 

The f i rs t  acceleration 

0 

2 

MSC analysis --- Experiment 

- 6  

I 
.04 

Experimental-analytical time history: 2-2 landing 

Surface: 5" downhill slope: 4-inch depressions 
at forward gear: all  footpads fully constrained 

Model: 5" nOSe-Up V, = 10 ft/SeC: v h  6 ft/SeC 

1 
.08 

1 
.12 

I 
16 

Time, sec 

Figure 26. - Analytical-experimental pitch ra te  correlation of a 1/6-scale L M  model. 
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initial rise in pitch rate is predominantly due to the forces of the trailing landing gear 
primary struts.  As the model rotates, the vertical forces are diminished to the point 
that the lateral  constraining forces  produce a positive pitching acceleration before the 
model goes into the period of f r e e  flight. At approximately 0.06 second, the downhill 
landing gear footpads s t r ike the landing surface. 
ra te  from -5 .5  rad/sec to -2.0 rad/sec. After 0.12 second, the model has experienced 
maximum stroking in the landing gear struts,  with the resulting motion being near- 
rigid-body rotation about the two forward footpads. 

The resulting forces  reduce the pitch 

The model drop-test data used in the detailed correlation shown in figures 25 
and 26 were the only detailed time-history data available f rom this particular model 
tes t  ser ies ,  and the data were not selected because they represented the best analytical- 
experimental correlation. In fact, these data probably represent one of the poorest 
correlations expected, since the model did not overturn in the test, while the computer- 
simulated landing did overturn. As shown in figure 27, the computer program correctly 

predicted stability resul ts  for the other 
model drops in the test  ser ies .  The 

15 r touchdown attitudes, surface slope, and 
LM stability profile: 

2-2 landing 

~ " s I o ~ .  5" nose-up 
Bearing friction coefficient = 0. 10 
4-inch depressions at 

forward gear 

0 

3t 
0 Experimentally stable 

0 Experimentally unstable 

1 %% MSC analytical stability boundary 'I 
1 1 1 1 1 1 1 1 1 1  

0 1 2 3 4 5 6 7 8 9  
Horizontal velocity. ftlsec 

Figure 27. - Analytical-experimental 
stability correlation of a 1/6-scale 
LM model. 

surface depressions for  the test r e su l t s  
in figure 27 a r e  the same as those of the 
drop-test data in figures 25 and 26. 

The predicted stability boundary is 
within 1 ft/sec of the experimental bound- 
a ry  a t  the vertical  touchdown velocity of 
10 ft/sec. For other values of vertical 
velocity, the analytical profile is within 
the bounds of the experimental profile. 
The overall correlation between analy ti- 
cal  and experimental stability resul ts  
seems good. The data indicate that the 
stability profiles for an LM-type landing 
gear system can be computed to within 
1 ft/sec for landings on rigid surfaces 
with fully constrained landing gear foot- 
pads. Correlations of computer simula- 
tions and drop tes t s  for  maximum primary 
and secondary compression strokes a r e  
presented in table I. 

The overall correlation between the 
predicted and the measured parameters 
of the 1/6-scale LM model landings was  
good because the load-stroke properties 
of the landing gear s t ru ts  and the landing 
surface force-deformation properties 
were well defined. If the same degree of 
definition can be obtained for  a full-scale 
landing vehicle, the predicted landing per-  
formance would have comparable accuracy. 

k .  
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TABLE I. - CORRELATION OF ANALYTICAL AND EXPEFUMENTAL 

LANDING GEAR STRUT STROKE DATA 

7. 0 

8 . 0  

6 . 0  

6 . 0  

Touchdown velocity , 
Landing I ft/sec 

1. 16 

1. 86 

2. 33 

2. 72 

1-2- 1 

1-2- 1 

1-2- 1 

1-2- 1 

2-2 

2-2 

2-2 I 

. .  

-5.0 

- 7 . 0  

-10.0 

- 1 3 . 0  

. . - 

- 4 . 0  

-6.  0 
- 8 . 0  

- 1 0 . 0  

1 . - -  

Amount of stroke, in. 

Experimental data data 

Pr imary s t rut  

I 
7 . 0  
6 . 2  

4 . 0  
1 . 2  

3 . 8 1  

3 .88  

4 . 0 7  

3 . 9 1  

I 
3.934 

4.264 

4 . 0 5 0  

3.988 

1.007 

1.804 

2.358 

2.771 

a l -2-1  landing: 5' nose-up; downhill landing; 5" surface slope; 4-inch depres- 
sions under midgear and downhill gears.  2-2 landing: 
5" surface slope; 4-inch depressions under trailing gears.  

5" nose-down; uphill landing; 

CONCLUDING REMARKS 

The equations governing the touchdown dynamics of a soft-landing spacecraft have 
been derived and presented. A digital computer simulation based on these equations 
has been developed. The computer program has been utilized successfully in the de- 
velopment of the Apollo lunar module landing gear system and for  predicting the lunar 
landing performance of the lunar module. 

The accuracy of the computer simulation of the lunar module landing was estab- 
lished through correlation with data measured during tests of a dynamically scaled 
model. Comparison of data indicates that touchdown velocities which result  in space- 
craft overturning can be predicted to within 1 ft/sec. Landing gear s t rut  stroking can 
be predicted to within 10 percent, provided significant stroking occurs. 

70 



Theoretical methods have proved to be satisfactory for guiding landing gear sys- 
tem development and for  determining spacecraft landing performance. This fact, cou- 
pled with the problems associated with providing an adequate test environment, will 
undoubtedly result  in more emphasis being placed on theoretical procedures, such as 
the ones presented in this paper, for future spacecraft landing system development. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, September 4, 1970 
9 14- 50-20- 89-72 
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APPEND I X 

PRO PE LLANT S LO S H I N G 

It is likely that future spacecraft with a soft-landing capability, like the Apollo 
LM, will use  liquid propellants in their primary propulsion systems. During the de- 
scent and subsequent touchdown of the spacecraft, liquid propellant is consumed, re-  
sulting in partially filled propellant tanks at the instant of touchdown. Upon initial 
spacecraft contact with the landing surface, the residue propellant is subjected to a 
sloshing phenomenon which influences the touchdown performance of the spacecraft 
landing system. 

The mathematical model used to simulate the propellant sloshing during the 
spacecraft touchdown is based on "linear sloshing theory" (refs.  16 and 17). Linear 
sloshing,theory is used to compute the sloshing force on the side of the propellant tank. 
If the assumption is made that the sloshing force on the tank walls is due to the f i r s t  
sloshing mode (as defined in refs. 16 and 17 and fig. 28) and that the higher sloshing 
modes a r e  negligible, then the sloshing forces can be calculated by 

F w = F Z q  s B  

where F = total force applied to the tank 
W zB 

I-..- ~ . ~ 

wall by the sloshing propel- 
lant, lb Undisturbed 

F = force per  unit vertical tank 
acceleration caused by unit 
sloshing a m p  1 i t u d  e ,  

(lb/ft)/(ft/sec ) 

S 

2 

Figure 28. - Sloshing force distribution 
on propellant tank wall (first sloshing 
mode). 

q = sloshing amplitude, f t  

Z = vertical acceleration of the 
propellant tank in the body 

coordinate system, ft/sec" 

The force Fs is determined from linear sloshing theory (ref.  18) by integrating the 

force distribution on the propellant tank wall due to a unit sloshing amplitude. Fig- 
u r e  28 illustrates a typical sloshing force distribution on the tank wall. The force Fs 

is located at the centroid of the force distribution, a distance II below the undisturbed 
f r ee  surface level. 
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The equation which governs the sloshing amplitude is given by 

where = B 

2 w =  

.. 
ZB = 

rigid-vehicle acceleration of the propellant tank normal to the vertical 
axis of the tank, ft/sec 

sloshing frequency squared per unit vertical  tank acceleration (rad/sec) / 
2 (ft/sec ) 

vertical acceleration of the propellant tank 

2 

2 

The frequency te rm w is determined from linear sloshing theory (ref. 18) and is a 
function of such factors as propellant tank shape, propellant loading, and gravity field. 
Numerical integration of equation (109) gives the sloshing velocity and amplitude-time 
histories which a r e  used in equation (108) to calculate Fw. 

When a partially filled propellant tank is subjected to a constant lateral  accelera- 
tion, the inertial resistance of the sloshing propellant is reflected as a force on the side 
of the propellant tank. 
fixed mass Mf and a sloshing mass Ms. When residue propellant mass is considered 
to be two masses, a linear spring-mass system can be constructed which is analogous 
to the sloshing dynamics. 

Consider the residue propellant mass as being comprised of a 

In the linear spring-mass system, the force on the propellant tank wall  as a re -  
sult of sloshing is 

2 F = M U  q 
W s n  

where M = sloshing mass,  slugs 
S 

= natural sloshing frequency, rad/sec wn 
2 2.. By equating equations (108) and (110) and by noting that wn = w ZB, then 
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and 

FS 
M S = - Z  w 

Once the sloshing mass  is determined, modifications to the total spacecraft mass  char- 
acterist ics must be made in order to account for  the separation of the sloshing mass  
from the remaining vehicle mass. 

Figure 29 illustrates the location of the propellant masses  and the rigid-vehicle 
center of mass, with and without propellant sloshing mass.  The propellant tank is as- 

ZB 
I dealized-r igid -veh icle 
(spacecraft) center of mass, 
without sloshing mass 

M. rigid-vehicle (spacecraft) 

1 
e2 

I------- 6;;:te;;f ;;E.;, with 

L& MI, f i xed  center propellant d mass of 

MS. center of mass of 
sloshing propellant 

Quiescent propellant 
surface 

Figure 29. - Influence of sloshing pro- 
pellant on the rigid-vehicle center 
of mass.  

sumed to be symmetric about the Z 

The center of mass  of the sloshing pro- 
pellant Ms is distance l below the 
quiescent propellant surface, as is the 
centroid of the sloshing force F By 

taking moments about the center of mass  
of the rigid vehicle with sloshing propel- 
lant, Q 2  is obtained from 

axis. B- 

W '  

where M is the total mass  of the space- 
craft, including the propellant 
mass.  

At this point, the idealized rigid 
spacecraft is considered to be a two- 
mass  system; the two independent masses  
are the mass  of the rigid vehicle exclud- 

ing the sloshing mass  (M - Ms) and the sloshing mass  itself. The influence of one 

mass on the other is the propellant sloshing force. M a s s  characterist ics for  landing 
vehicles a r e  most often available in a form which assumes the propellant to be a rigid 
par t  of the spacecraft. To properly incorporate this type of data into landing dynam- 
ics  simulations which consider propellant sloshing, the mass  data require some 
modification. 

Modification of the vehicle mass  moments of inertia involves only those mass 
and YB-axes, because the sloshing mass  is allowed essen- moments about the X 

tially two degrees of freedom (motion in the X -Y B B  

B- 
plane). The change in the mass  
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moment of inertia about the Z -axis is assumed negligible because of small-amplitude 

displacements. The following equation gives the new mass  moments of inertia for a 
rigid spacecraft, corrected for  removal of the sloshing mass.  

B 

l x x ) f = l x x - (  M - M  s) P 2 2 - M  s( P 1 + P  )2 

M - M  e 2 - M  
I YY,f  = I  YY - (  s) 2 

- 
L , f  - IZZ 

I I = modified mass  moments of inertia in the body system of the where f’ yy’ f’ ”’ rigid vehicle with the sloshing mass  excluded 

I I = mass  moments of inertia in the body system of the rigid ve- 
hicle, including the total residue propellant mass  IXX, yy’ zz 

1 

The sloshing force vector Fw, which is the interacting force between (M - Ms) 

and Ms, has body system components given by 

-L 

F =  
W 

FPB, x 

F 

0 

PB, Y 

The body system components a r e  transformed into inertial coordinate system compo- 
nents by 

= [TBI] 

FPB, x 

F 

0 

PB) Y 

[ T BI 3 = transformation matrix given by equation (3) where 

= sloshing force components in the inertial  coordinate system FB, x’ FB, y’ FB, z 
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The sloshing forces  create torques about the center of mass  of the idealized rigid 
vehicle. The torques T and T about the X - and Y -axes are calculated from f ,  x f ,  Y B B 

The sloshing forces  and torques a r e  considered to be external forcing functions in the 
solutions of the rigid-vehicle equations of motion. 
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