

COMPUTER PROGRAM FOR STATIC AND DYNAMIC AXISYMMETRIC NONLINEAR RESPONSE OF SYMMETRICALLY LOADED ORTHOTROPIC SHELLS OF REVOLUTION
by Wendell B. Stephens
Langley Research Center
Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1970

0133268

1. Report No. NASA TN D-6158
 4. Title and Subtitle COMPUTER PROGRAM FOR STATIC AND DYNAMIC AXISYMMETRIC NONLINEAR RESPONSE OF SYMMETRICALLY LOADED ORTHOTROPIC SHELLS OF REVOLUTION
 7. Author(s)
 Wendell B. Stephens
 2. Government Accession No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, Va. 23365
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Washington, D.C. 20546
. Recipient's Catalog No.
5. Report Date

December 1970
6. Performing Organization Code
8. Performing Organization Report No.

L-6299
10. Work Unit No.

124-08-15-02
11. Contract or Grant No.
13. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code
15. Supplementary Notes
16. Abstract

A computer program has been developed which determines the nonlinear behavior of symmetrically loaded elastic orthotropic shells of revolution. The loading can be due to either mechanical or thermal forces and can be applied statically or dynamically. The analysis is based on Sanders' equations for shells with small strains and moderately small rotations and allows for variable stiffness properties of the shell along the meridian. Spatial derivatives are approximated by finite differences, and integration with respect to time is carried out by the Houbolt method. For static behavior, or dynamic response at each point in time, a Newton-Raphson method is applied for convergence to the nonlinear solution. The boundary conditions are presented in a general form which allows either classical or elastic constraints to be used. The program, which is written in FORTRAN IV language, is described in detail and sample calculations are included.
17. Key Words (Suggested by Author(s))

Elastic orthotropic shells of revolution
Nonlinear analysis
Symmetric static or dynamic loads
FORTRAN IV computer program
19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
18. Distribution Statement

Unclassified - Unlimited

21. No. of Pages	22. Price*
98	$\$ 3.00$

Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 2
ANALYTICAL FORMULATION 7
Shell Geometry 7
Equilibrium Conditions 8
Rotational and Strain-Displacement Relationships 8
Constitutive Equations 9
Temperature Profile 11
Finite-Difference Formulation of Governing Equations 11
Boundary Conditions 13
Computational Procedure 13
COMPUTER PROGRAM 15
Program Organization 15
Input Data 18
User-Prepared Function Subprograms 21
Program Output 22
Program Limitations 22
Analytical Limitations 23
SAMPLE PROBLEMS 23
Spherical Cap With Dynamic Loading 23
Thermally Loaded Clamped Cylinder 27
CONCLUDING REMARKS 29
APPENDIX A - REDUCTION TO SIX GOVERNING EQUATIONS 30
APPENDIX B - TIME DERIVATIVES AND INITIAL CONDITIONS 34
APPENDIX C - DEFINITION OF BOUNDARY CONDITIONS 36
APPENDIX D - DEFINITIONS OF A, B, C, D, E, AND q MATRICES 38
APPENDIX E - RECURRENCE EQUATIONS 41
APPENDIX F - PROGRAM LISTING 44
APPENDIX G - SAMPLE PRINTOUT 76
APPENDIX H - CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS 84
REFERENCES 85
TABLES 87
FIGURES 90

COMPUTER PROGRAM FOR STATIC AND DYNAMIC AXISYMMETRIC NONLINEAR RESPONSE OF SYMMETRICALLY LOADED ORTHOTROPIC SHELLS OF REVOLUTION

By Wendell B. Stephens
Langley Research Center

SUMMARY

A computer program has been developed which determines the nonlinear behavior of symmetrically loaded elastic orthotropic shells of revolution. The loading can be due to either mechanical or thermal forces and can be applied statically or dynamically. The analysis is based on Sanders' equations for shells with small strains and moderately small rotations and allows for variable stififness properties of the shell along the meridian. Spatial derivatives are approximated by finite differences, and integration with respect to time is carried out by the Houbolt method. For static behavior, or dynamic response at each point in time, a Newton-Raphson method is applied for convergence to the nonlinear solution. The boundary conditions are presented in a general form which allows either classical or elastic constraints to be used. The program, which is written in FORTRAN IV language, is described in detail and sample calculations are included.

INTRODUCTION

The analysis of shells of revolution subjected to static, thermal, or time-dependent loads is an important problem in the design of missiles and space vehicles. A finitedifference solution for the linear bending behavior of an isotropic shell subjected to an arbitrary static load is contained in reference 1 and is modeled after the analysis procedure found in reference 2. Geometrically nonlinear terms are included for essentially the same problem in reference 3. However, there remains a need for a program which accounts for dynamic loads and material orthotropy. Such a dynamic response analysis is useful for practical aerospace applications such as the study of launch, staging, and water-impact loadings of aeroshells. In addition, such an analysis would provide a means of determining the nonlinear prebuckling stress distributions required for accurate stability analyses. In this report a computer program is described which has been developed to determine the axisymmetric nonlinear static and dynamic response including axisymmetric static and dynamic buckling of an arbitrary elastic orthotropic shell of revolution
subjected to axisymmetric loads. The analysis, programing techniques, and the computer program documentation are presented as well as representative sample problems.

The analysis is based on Sanders' nonlinear equations (ref. 4) with material orthotropy added as in reference 5 . The governing partial differential equations are written in terms of first-order spatial derivatives and solved numerically by using central differences for derivatives along the meridian and backward differences for time derivatives. Integration with respect to time is started by using the Houbolt technique (refs. 6 and 7). For the boundary conditions, either classical or elastic constraints may be used. The nonlinear difference equations are solved for each time step or static load increment by the Newton-Raphson method (ref. 8). "Top-of-the-knee" static buckling is determined from the lack of convergence of the Newton-Raphson procedure.

The program is divided into nine subroutines and seven user-supplied function subprograms. A maximum of 101 equal stations is provided requiring an octal storage of 70000 memory words. The program is written in CDC version of FORTRAN IV language for operation in the CDC 6600/6400 digital computer at the Langley Research Center. The output consists of a problem description together with displacements, rotations, and moment and force resultants in tabular form.

In order to present both the analysis and the computer program, appendixes are frequently used to simplify the text. Appendixes A, B, C, D, and E are used to clarify the presentation of the analysis, and appendixes F and G contain the program listing and a sample of the program output, respectively.

SYMBOLS

The units for physical quantities defined in this paper are given both in the U.S. Customary Units and in the International System of Units (SI). Factors relating the two systems are given in appendix H.
a reference (or characteristic) length
$\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{22}$ nondimensional orthotropic extensional material constants defined in equations (14); for example, $\mathrm{C}_{11}=\frac{\overline{\mathbf{C}}_{11}}{\mathrm{E}_{\mathrm{O}} \mathrm{H}_{\mathrm{O}}}$
$\overline{\mathrm{C}}_{11}, \overline{\mathrm{C}}_{12}, \overline{\mathrm{C}}_{22} \quad$ orthotropic extensional material constants
$\mathrm{D}_{11}, \mathrm{D}_{12}, \mathrm{D}_{22}$ nondimensional orthotropic bending material constants defined in equations (14); for example, $D_{11}=\frac{\lambda^{2} \bar{D}_{11}}{E_{0} H_{o}^{3}}$

$\mathrm{M}_{11}, \mathrm{M}_{22}$ bending-moment resultants in principal directions, meridional and circumferential, respectively
$\mathrm{m}_{11}, \mathrm{~m}_{22}$ nondimensional bending-moment resultants in principal directions; for example, $\mathrm{m}_{11}=\frac{\mathrm{aM}_{11}}{\sigma \mathrm{H}_{\mathrm{O}}^{3}}$
$\mathrm{N}_{11}, \mathrm{~N}_{22}$ membrane stress resultants, meridional and circumferential directions, respectively
n number of stations along meridian
$\mathrm{n}_{11}, \mathrm{n}_{22}$ nondimensional membrane stress resultants, meridional and circumferential, respectively; for example, $\mathrm{n}_{11}=\frac{\mathrm{N}_{11}}{\sigma \mathrm{H}_{\mathrm{O}}}$
P, P_{S}
lateral and meridional forces per unit area, respectively
$\mathrm{P}_{\mathrm{cr}} \quad$ critical symmetric buckling load
$P^{*}=\frac{\mathrm{p}}{\mathrm{p}_{\mathrm{cl}}}$
$\mathrm{p}, \mathrm{p}_{\mathrm{S}} \quad$ nondimensional lateral and meridional forces per unit area, respectively; for example, $p=\frac{P a}{\sigma H_{O}}$
$p_{c l} \quad$ nondimensional classical buckling pressure of complete spherical shell (see eq. (30))

Q transverse shear resultant
q nondimensional transverse shear resultant, $\mathrm{Q} / \sigma \mathrm{H}_{\mathrm{O}}$
$R \quad$ radial distance from axis of symmetry to shell reference surface
$\mathrm{R}_{1}, \mathrm{R}_{2}$ principal radii of curvature, meridional and circumferential directions, respectively
nondimensional radial distance from axis of symmetry to shell reference surface, R / a
r_{1}, r_{2} nondimensional principal radii of curvature; for example, $r_{1}=\frac{R_{1}}{a}$
S distance measured along shell meridian

S
nondimensional distance measured along meridian, S / a
$\Delta s \quad$ nondimensional meridional difference increment
$\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{\mathbf{2}}$ temperature quantities defined with equation (17)
t
real time
$\Delta t \quad$ real time increment
$\mathrm{t}_{1}^{\mathrm{m}}, \mathrm{t}_{2}^{\mathrm{m}}$ nondimensional thermal moment resultant in principal directions, defined in equations (16)
nondimensional thermal force resultant in principal directions, defined in equations (16)

U,W meridional and normal displacement, respectively
u,w nondimensional meridional and normal displacement, respectively; for example, $\quad u=\frac{\eta U}{a}$

X
force vector with elements $\mathrm{n}_{11}, \mathrm{q}$, and m_{11}
displacement vector with elements u, w, and β
vector composed of x and y vectors
$\alpha_{1}, \alpha_{2} \quad$ coefficients of linear thermal expansion in principal directions, meridional and circumferential, respectively
$\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta} \quad$ coefficients of the acceleration difference equation (21)
$\beta \quad$ nondimensional rotation, $\eta \widetilde{\beta}$
$\widetilde{\beta} \quad$ meridional rotation
$\Delta \quad$ average deflection of spherical cap in sample problem
$\delta_{\mathrm{pg}} \quad$ Kronecker delta
$\epsilon_{11}, \epsilon_{22} \quad$ membrane strains
$\zeta \quad$ coordinate normal to reference surface of shell, positive outward, with origin at reference surface and nondimensionalized by H_{O}
η
ratio of reference elasticity modulus to reference stress, $\mathrm{E}_{\mathrm{O}} / \sigma$
$\theta \quad$ circumferential coordinate
${ }^{\kappa_{11}}, \kappa_{22}$ nondimensional principal curvatures; for example, $\kappa_{11}=a \eta \mathrm{k}_{11}$
$\lambda \quad$ ratio of reference thickness to characteristic length, H_{0} / a
$\lambda_{\mathrm{S}} \quad$ shell parameter defined by equation (31)
ν_{12}, ν_{21} Poisson's ratios for meridional and circumferential directions, respectively
$\rho \quad$ mass density
σ
reference stress
$\tau \quad$ nondimensional time, $\sqrt{\frac{\mathrm{E}_{\mathrm{O}}}{\rho \mathrm{a}^{2}}} \mathrm{t}$
$\Delta \tau \quad$ nondimensional time increment
$\phi \quad$ colatitude angle, angle between shell axis and normal to shell middle surface

Subscripts:
i
spatial station number, that is, $1,2, \ldots, n$
j matrix number, that is, 1, 2, .., 2n
$k \quad k t h$ equation of set of equations at a point
m time step, that is, $1,2, \ldots$
$\max \quad$ maximum

Matrices:
z,e $\quad 6 \times 1$
$\left.\begin{array}{l}\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \\ \mathrm{F}_{1}, \mathrm{~F}_{3}, \mathrm{P}, \mathrm{Q}\end{array}\right\} \quad 3 \times 3$
$\left.\begin{array}{l}\mathrm{XOLD}, \mathrm{X}, \\ \mathrm{R}, \mathrm{x}, \mathrm{y}, \mathrm{q}, \mathrm{l}\end{array}\right\} \quad 3 \times 1$
$\hat{\mathrm{H}}, \tilde{\mathrm{H}}, \mathrm{M} \quad 6 \times 6$

A prime indicates a derivative with respect to the nondimensional meridional distance s.

A dot indicates a derivative with respect to nondimensional time τ.

ANALYTICAL FORMULATION

The shell analysis procedure is summarized in this section. Also included are the geometric description, derivation of the nonlinear equilibrium conditions, compatibility equations, and differencing scheme as well as the Newton-Raphson procedure for solution of the governing equations.

Shell Geometry

The shell geometry and coordinate system for the reference surface of a general shell of revolution are shown in figure 1. The geometry of the shell reference surface is defined by ϕ and R. Any point in the shell may be located by specifying the orthogonal coordinates s, θ, and ζ where $s=\frac{s}{a}$ and is the nondimensional meridional coordinate, S is the meridional shell coordinate, a is the reference length of the shell, θ is the circumferential coordinate, and ζ is a coordinate normal to and originating at the shell
reference surface, positive outward. The nondimensional principal radii of curvature, r_{1} and r_{2}, are (ref. 1)

$$
\left.\begin{array}{l}
\frac{1}{r_{1}}=\phi^{\prime} \tag{1}\\
\frac{1}{r_{2}}=\frac{\sin \phi}{r}
\end{array}\right\}
$$

where the prime indicates a derivative with respect to the nondimensional meridional distance s. The radii are nondimensionalized by use of the reference length a.

Equilibrium Conditions

By utilizing the results in reference 4 and the nondimensional variables described in reference 2, the nondimensional equilibrium equations become

$$
\begin{align*}
& \mathrm{n}_{11}^{\prime}+\frac{\cos \phi}{\mathrm{r}} \mathrm{n}_{11}+\phi^{\prime} \mathrm{q}-\frac{\cos \phi}{\mathrm{r}} \mathrm{n}_{22}+\frac{1}{\eta} \phi^{\prime} \beta \mathrm{n}_{11}-\mathrm{h} \ddot{\mathrm{u}}=-\mathrm{p}_{\mathrm{s}} \tag{2}\\
& \mathrm{q}^{\prime}-\phi^{\prime} \mathrm{n}_{11}+\frac{\cos \phi}{\mathrm{r}} \mathrm{q}-\frac{\sin \phi}{\mathrm{r}} \mathrm{n}_{22}+\frac{1}{\eta}\left[\left(\beta \mathrm{n}_{11}\right)^{\prime}+\frac{\mathrm{r}^{\prime}}{\mathrm{r}} \beta \mathrm{n}_{11}\right]-\mathrm{h} \ddot{\mathrm{w}}=-\mathrm{p} \tag{3}\\
& \mathrm{~m}_{11}^{\prime}+\frac{\cos \phi}{\mathrm{r}} \mathrm{~m}_{11}-\frac{\cos \phi}{\mathrm{r}} \mathrm{~m}_{22}-\frac{q}{\lambda^{2}}=0 \tag{4}
\end{align*}
$$

where n_{11} and n_{22} are the stress resultants, m_{11} and m_{22} are the bendingmoment resultants, u and w are the displacements, p_{S} and p are the surface loads, q is the shear resultant, and β is the meridional rotation. These quantities are defined in figure 2. The term λ is a nondimensional constant representing the ratio of the reference thickness H_{O} to the reference length a. The dots indicate derivatives with respect to nondimensional time τ.

Rotational and Strain-Displacement Relationships

The nondimensional rotation, strain-displacement relationships, and curvatures from reference 4 are

$$
\begin{align*}
& \beta=w^{\prime}-\phi^{\prime} u \tag{5}\\
& \mathrm{e}_{11}=\mathrm{u}^{\prime}+\phi^{\prime} \mathrm{w}+\frac{1}{2 \eta} \beta^{2} \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{e}_{22}=\frac{\cos \phi}{\mathrm{r}} u+\frac{\sin \phi}{\mathbf{r}} \mathrm{w} \tag{7}\\
& \kappa_{11}=-\beta^{\prime} \tag{8}\\
& \kappa_{22}=-\frac{\cos \phi}{\mathbf{r}} \beta \tag{9}
\end{align*}
$$

The terms e_{11} and e_{22} are the nondimensional principal strains and κ_{11} and κ_{22} are the nondimensional principal curvatures.

Constitutive Equations

For symmetrically loaded orthotropic shells of revolution nondimensional elasticity relationships obtained from reference 5 can be written as

$$
\begin{align*}
& \mathrm{n}_{11}=\mathrm{C}_{11} \mathrm{e}_{11}+\mathrm{C}_{12} \mathrm{e}_{22}+\mathrm{K}_{11}{ }^{\kappa}{ }_{11}+\mathrm{K}_{12} \kappa_{22}-\mathrm{t}_{1}^{\mathrm{n}} \tag{10}\\
& \mathrm{n}_{22}=\mathrm{C}_{12} \mathrm{e}_{11}+\mathrm{C}_{22} \mathrm{e}_{22}+\mathrm{K}_{12} \kappa_{11}+\mathrm{K}_{22} \kappa_{22}-\mathrm{t}_{2}^{\mathrm{n}} \tag{11}\\
& \mathrm{~m}_{11}=\lambda^{-2} \mathrm{~K}_{11} \mathrm{e}_{11}+\lambda^{-2} \mathrm{~K}_{12} \mathrm{e}_{22}+\lambda^{-2} \mathrm{D}_{11} \kappa_{11}+\lambda^{-2} \mathrm{D}_{12} \kappa_{22}-\mathrm{t}_{1}^{\mathrm{m}} \tag{12}\\
& \mathrm{~m}_{22}=\lambda^{-2} \mathrm{~K}_{12} \mathrm{e}_{11}+\lambda^{-2} \mathrm{~K}_{22} \mathrm{e}_{22}+\lambda^{-2} \mathrm{D}_{12}{ }^{\kappa} 11+\lambda^{-2} \mathrm{D}_{22} \kappa_{22}-\mathrm{t}_{2}^{\mathrm{m}} \tag{13}
\end{align*}
$$

Since only axisymmetric behavior is considered, only these four relationships are required. The nondimensional stiffnesses are given by

$$
\left.\begin{array}{l}
\mathrm{C}_{11}=\frac{\mathrm{E}_{10}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~d} \zeta \\
\mathrm{C}_{12}=\frac{\nu_{12} \mathrm{E}_{10}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~d} \zeta \\
\mathrm{C}_{22}=\frac{\mathrm{E}_{20}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~d} \zeta \tag{14}\\
\mathrm{~K}_{11}=\frac{\lambda \mathrm{E}_{10}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \zeta \mathrm{~d} \zeta
\end{array}\right\}
$$

(Equations continued on next page)

$$
\left.\begin{array}{l}
\mathrm{K}_{12}=\frac{\lambda \nu_{12} \mathrm{E}_{10}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \zeta \mathrm{~d} \zeta \\
\mathrm{~K}_{22}=\frac{\lambda \mathrm{E}_{20}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \zeta \mathrm{~d} \zeta \\
\mathrm{D}_{11}=\frac{\lambda^{2} \mathrm{E}_{10}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \zeta^{2} \mathrm{~d} \zeta \tag{14}\\
\mathrm{D}_{12}=\frac{\lambda^{2} \nu_{12} \mathrm{E}_{10}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \zeta^{2} \mathrm{~d} \zeta \\
\mathrm{D}_{22}=\frac{\lambda^{2} \mathrm{E}_{20}}{1-\nu_{12} \nu_{21}} \int_{\zeta_{1}}^{\zeta_{2}} \zeta^{2} \mathrm{~d} \zeta
\end{array}\right\}
$$

where ζ is positive outward and ζ_{1} and ζ_{2} are the distances to the inner and outer shell surfaces, respectively, from the reference surface.

Because of the symmetry of the orthotropic constants, use has been made of the relationship

$$
\begin{equation*}
\mathrm{E}_{10} \nu_{12}=\mathrm{E}_{20} \nu_{21} \tag{15}
\end{equation*}
$$

The nondimensional thermal forces and moments in the meridional and circumferential directions, respectively, due to a temperature $T(s, \zeta)$ are (ref. 1)

$$
\left.\begin{array}{l}
\mathrm{t}_{1}^{\mathrm{n}}=\frac{\mathrm{E}_{10} \eta}{1-\nu_{12} \nu_{21}}\left(\alpha_{1}+\nu_{12} \alpha_{2}\right) \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~T} \mathrm{~d} \zeta \\
\mathrm{t}_{2}^{\mathrm{n}}=\frac{\mathrm{E}_{20} \eta}{1-\nu_{12} \nu_{21}}\left(\alpha_{2}+\nu_{21} \alpha_{1}\right) \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~T} \mathrm{~d} \zeta \\
\mathrm{t}_{1}^{\mathrm{m}}=\frac{\mathrm{E}_{10} \eta}{1-\nu_{12} \nu_{21}}\left(\alpha_{1}+\nu_{12} \alpha_{2}\right) \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~T} \zeta \mathrm{~d} \zeta \tag{16}\\
\mathrm{t}_{2}^{\mathrm{m}}=\frac{\mathrm{E}_{20} \eta}{1-\nu_{12} \nu_{21}}\left(\alpha_{2}+\nu_{21} \alpha_{1}\right) \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~T} \zeta \mathrm{~d} \zeta
\end{array}\right\}
$$

where α_{1} and α_{2} are the orthrotropic coefficients of thermal expansion in the principal directions.

Temperature Profile

The temperature is allowed to vary through the thickness of the shell and along the meridian as follows

$$
\begin{equation*}
\mathrm{T}(\mathrm{~s})=\mathrm{T}_{1}(\mathrm{~s})+\mathrm{T}_{2}(\mathrm{~s}) \zeta^{\mathrm{j}} \tag{17}
\end{equation*}
$$

where the T_{1} defines the temperature change from a standard temperature at the reference surface and T_{2} is the difference between the temperatures of the shell outer and inner surfaces at ζ_{2} and ζ_{1}. The exponent j is used to define the temperature thickness profile as a constant ($\mathrm{j}=0$) or as a linear variation through the thickness $(\mathrm{j}=1)$ or as a nonlinear variation through the thickness ($\mathrm{j} \geqq 2$).

Finite-Difference Formulation of Governing Equations

It is shown in appendix A that equations (2) to (13) can be written as six partial differential equations. These equations are first order in spatial derivatives and second order in time derivatives. The set of equations in matrix form is

$$
\begin{equation*}
\mathrm{Iz}^{\prime}+(\hat{\mathrm{H}}+\tilde{\mathrm{H}}) \mathrm{z}=\mathrm{e}+\mathrm{M} \ddot{\mathrm{Z}} \tag{18}
\end{equation*}
$$

where

$$
z=\left\{\begin{array}{c}
n_{11} \\
q \\
m_{11} \\
u \\
w \\
\beta
\end{array}\right\}
$$

Here z is the solution vector of six variables, I is the 6×6 identity matrix, \hat{H} and $\tilde{\mathrm{H}}$ are the linear and nonlinear 6×6 coefficient matrices of z, respectively, M is the 6×6 mass matrix of z, and e is the six-element load vector. The elements of \hat{H}, \tilde{H}, e, and M, are listed in appendix A.

The governing equations are converted into difference equations by utilizing central differences for the spatial derivatives and backward differences (refs. 6 and 7) for the time derivatives. As shown in reference 7, this backward-difference scheme is
numerically stable. The spatial finite-difference representations are written at a point halfway between stations as shown in figure 3 and are of the form

$$
\begin{align*}
& z_{i-1 / 2}=\frac{z_{i}+z_{i-1}}{z} \tag{19}\\
& z_{i-1 / 2}^{\prime}=\frac{z_{i}-z_{i-1}}{\Delta s} \tag{20}
\end{align*}
$$

The second-order time derivative in equations (18) is approximated at the ith station by

$$
\begin{equation*}
\ddot{z}_{i, m}=\frac{1}{(\Delta \tau)^{2}}\left(\bar{\alpha}_{m} z_{i, m}+\bar{\beta}_{m} z_{i, m-1}+\bar{\gamma}_{m} z_{i, m-2}+\bar{\delta}_{m} z_{i, m-3}\right) \tag{21}
\end{equation*}
$$

where $i=1,2, \ldots, n$ and $m=1,2, \ldots$ In equations (19), (20), and (21) the subscripts i and m indicate spatial and time stations, respectively, and Δs and $\Delta \tau$ are the spatial and time increments, respectively. The coefficients $\bar{\alpha}_{m}, \bar{\beta}_{m}, \bar{\gamma}_{m}$, and $\bar{\delta}_{\mathrm{m}}$ depend on the time step and initial conditions and are given in appendix B. Application of these finite-difference approximations (eqs. (19) to (21)) to the governing equations (18) leads to the following set of nonlinear algebraic equations at the mth time step:

$$
\begin{equation*}
F_{i-1 / 2} z_{i-1, m}+G_{i-1 / 2} 2_{i, m}=L_{i-1 / 2} \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{F}_{\mathrm{i}-1 / 2}= & \frac{1}{2}\left(\hat{\mathrm{H}}_{\mathrm{i}-1 / 2}+\tilde{\mathrm{H}}_{\mathrm{i}-1 / 2}-\frac{\mathrm{M}_{\mathrm{i}-1 / 2} \bar{\alpha}_{\mathrm{m}}}{(\Delta \tau)^{2}}\right)-\frac{\mathrm{I}}{\Delta \mathrm{~s}} \\
\mathrm{G}_{\mathrm{i}-1 / 2}= & \frac{1}{2}\left(\hat{\mathrm{H}}_{\mathrm{i}-1 / 2}+\tilde{\mathrm{H}}_{\mathrm{i}-1 / 2}-\frac{\mathrm{M}_{\mathrm{i}-1 / 2} \bar{\alpha}_{\mathrm{m}}}{(\Delta \tau)^{2}}\right)+\frac{\mathrm{I}}{\Delta \mathrm{~s}} \tag{23}\\
\mathrm{~L}_{\mathrm{i}-1 / 2}= & \mathrm{e}_{\mathrm{i}-1 / 2}+\frac{\mathrm{M}_{\mathrm{i}-1 / 2}}{(\Delta \tau)^{2}}\left(\bar{\beta}_{\mathrm{m}} \mathrm{z}_{\mathrm{i}-1 / 2, \mathrm{~m}-1}+\bar{\gamma}_{\mathrm{m}} \mathrm{z}_{\mathrm{i}-1 / 2, \mathrm{~m}-2}\right. \\
& \left.+\bar{\delta}_{\mathrm{m}} \mathrm{z}_{\mathrm{i}-1 / 2, \mathrm{~m}-3}\right)
\end{align*}
$$

and $i=2,3, \ldots, n$ and $m=1,2,3, \ldots$ These equations with three boundary conditions at each edge of the shell define the problem to be solved and must be solved simultaneously to determine z at the mth time step.

Boundary Conditions

As shown in reference 4 the classical shell boundary conditions at either edge, $s=0$ and $s=\frac{S_{\max }}{a}$, are defined by either force resultants n_{11}, q, and m_{11} or displacements u, w, and β, so that

$$
\begin{equation*}
\Omega \mathrm{x}_{\mathrm{i}}+\Lambda \mathrm{y}_{\mathrm{i}}=l \tag{24}
\end{equation*}
$$

Here the subscript i is either 1 or n and the $3 \times 3 \Omega$ and Λ matrices and the $3 \times 1 \quad$ vector are required to define the boundary conditions. The vectors x_{i} and y_{i} are

$$
x_{i}=\left\{\begin{array}{c}
n_{11} \tag{25}\\
q \\
m_{11}
\end{array}\right\}_{i} \quad y_{i}=\left\{\begin{array}{l}
u \\
w \\
\beta
\end{array}\right\}_{i}
$$

These vectors define the force and displacement subvectors of z, respectively. Typical boundary conditions including general elastic constraints are discussed in appendix \mathbf{C}.

Computational Procedure

The nonlinear set of equations (22) and (24) are linearized by use of an iterative Newton-Raphson procedure (ref. 8). This is done by placing the $L_{i-1 / 2}$ term and the l term on the left-hand side of equations (22) and (24), respectively, and writing the kth equation at the ith station as

$$
\begin{equation*}
f_{k}\left(z_{i}, z_{i-1}, s\right)=0 \tag{26}
\end{equation*}
$$

where k is $1,2, \ldots, 6$ for equation (22) and $k=1,2,3$ for equations (24). Use of the first two terms of a Taylor's expansion for equation (26) together with an approximate solution vector \bar{z} gives

$$
\begin{equation*}
f_{k}\left(z_{i}, z_{i-1}, s\right)=f_{k}\left(\bar{z}_{i}, \bar{z}_{i-1}, s\right)+\left.\frac{\partial f_{k}}{\partial z_{i}}\right|_{z_{i}=\bar{z}_{i}} \delta z_{i}+\left.\frac{\partial f_{k}}{\partial z_{i-1}}\right|_{z_{i-1}=\bar{z}_{i-1}} \delta z_{i-1}=0 \tag{27}
\end{equation*}
$$

where $i=1,2, \ldots, n$ and where δz_{i} is the correction vector which must be added to the approximate solution vector \bar{z}_{i} so that equation (26) is satisfied.

The iterative procedure consists of adding the correction vector to the approximate solution vector to obtain an improved approximate solution. Thus

$$
\begin{equation*}
\bar{z}_{i}^{j+1}=\bar{z}_{i}^{j}+\delta z_{i} \tag{28}
\end{equation*}
$$

where the superscript j indicates the j th iteration cycle. When δz_{i} becomes sufficiently small, convergence has been obtained.

For convenience in the solution of the simultaneous equations, the correction vector δz_{i} is partitioned into the two three-element ordered subvectors δx_{i} and δy_{i}. Thus the set of governing equations (27) including the appropriate boundary conditions take the following form of a five-diagonal-banded matrix where each element is a 3×3 matrix.

For brevity, $\delta \mathrm{x}_{\mathrm{i}}$ and $\delta \mathrm{y}_{\mathrm{i}}$ are written as x_{i} and y_{i} in equation (29). The first and last rows are the boundary conditions at $s=0$ and $s=\frac{S_{m a x}}{a}$, respectively, and are obtained from equations (24). The six first-order governing equations from equations (18) and (27) correspond to the pair of rows at $2(\mathrm{i}-1)$ and $2 \mathrm{i}-1$, respectively. Here n is equal to the number of spatial stations. The definitions of the A, B, C, D, E, and q matrices in terms of equations (2) to (13), (22), and (27) are given in appendix D.

The set of equations (29) is solved by using a modified Potters method (refs. 2 or 9) for banded matrices. A presentation of the recurrence equations required for the Potters method is contained in appendix E. For each time step, the elements in the 3×3 matrices A, B, C, D, and E and the three-element vector q are functions of the shell properties, and the new displacement and stress state for the last three time steps.

The vectors $z_{i, 0}$ and $\dot{z}_{i, 0}$ at the initial time $\tau=0$ must be given. Both the incorporation of the initial conditions into the problem and the definition of the $\bar{\alpha}_{m}, \bar{\beta}_{\mathrm{m}}$, $\bar{\gamma}_{\mathrm{m}}$, and $\bar{\delta}_{\mathrm{m}}$ coefficients for \ddot{z}_{m} are contained in reference 7 and appendix B. Appendix B also includes nonhomogeneous initial conditions.

This analysis and numerical solution has been programed in FORTRAN IV and the resulting computer program (SADA $\varnothing \mathrm{S}$) includes the input provisions of general shell shape, thermal and mechanical loads, structural orthotropy, and arbitrary boundary conditions at each end of the shell.

COMPUTER PROGRAM

This section contains the description of the computer program SADAøS and is intended to be a user's document. A listing of the program is contained in appendix F and a sample printout in appendix G. In writing this program, various options on types of analyses, geometry, and boundary conditions have been included to eliminate the necessity of having the user develop subroutines. However, should these options be inadequate, the program is subdivided into separate subroutines so that further options can be exercised without a detailed knowledge of the program. Certain function subprograms are required to be programed by the user. These function subprograms define the loading, shell thickness, temperature integrals, and initial conditions. In addition, input data and computer subroutine preparation are explained in detail in later sections.

Program Organization

The flow chart is presented in the following block diagram. As an aid in reading the block diagram, a list of subroutines and their description is presented in table 1. In table 2 the variables and constants are listed with their program names.

Block diagram of SADAØS

A detailed description of the computing in each block of the block diagram is as follows: BLCCK (1): Namelist GIVEN containing basic input data is read in. If requested, the optional information on boundary conditions will be read in through namelists ELB $\varnothing \mathrm{L}$ and ELB \varnothing R.

BLOCK (2): Shell geometry is defined at the $\mathrm{i}-1 / 2$ increment midpoints along the shell meridian. The values defined by GE \varnothing MTY are r, ϕ, and ϕ^{\prime}.

BLOCK (3): Boundary conditions at each end are set. Matrices $C_{1}, D_{1}, E_{1}, q_{1}$, $\mathrm{A}_{2 \mathrm{n}}, \mathrm{B}_{2 \mathrm{n}}, \mathrm{C}_{2 \mathrm{n}}$, and $\mathrm{q}_{2 \mathrm{n}}$ in equation (29) are defined.

BLOCK (4): Matrices A, B, C, D, E, and q from equation (29) are calculated. These matrices are further defined in appendix D. These matrices are calculated for each $i=2,3, \ldots, n$ and, in turn, call the subroutines DYNAMIC (if IDYM = 1) and STIF. STIF sets the C, D, and K values from equations (14). DYNAMIC sets $\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}$ of equations (21).

BLOCK (5): From equation (27) the term $f_{k}\left(\bar{z}_{i}, \bar{z}_{i-1}, s\right)$ is calculated and placed on the right-hand side of that equation. This corresponds to the q vector in equation (29).

BLOCK (6): The Potters method or Gaussian elimination scheme described in appendix E is used to solve equation (29) for the vector $\delta \mathrm{z}$ where $\delta z_{i}=\left\{\begin{array}{l}\delta \mathrm{x}_{\mathrm{i}} \\ \delta y_{i}\end{array}\right\}$. The improved approximate vector is given by equation (28).

BLOCK (7): If the norm of δz is very small compared with the norm of the improved vector \bar{z}, then the problem has converged. If $\delta \mathrm{z}$ is not sufficiently small, a return is made to block (3), and blocks (3) to (7) are repeated until convergence is obtained. If a static buckling problem (IDYM $=2$) is being attempted, and after 20 iterations there is still no convergence, a return is made to the last converged load solution and a smaller load increment step is attempted.

BLOCK (8): After convergence there is a tabular printout of the following variables at each station $i: n_{11}, q, m_{11}, u, w, \beta, n_{22}, m_{22}, p$, and p_{S}.

BLOCK (9a): If the analysis is a static stress analysis (IDYM =0), the program terminates.
(9b): If the analysis is a dynamic response (IDYM =1) problem, the $\dot{\mathbf{z}}$ and \ddot{z} vectors are calculated and an increment in time and time step is taken. This procedure is continued until KMAX steps are taken.
(9c): If static buckling load (IDYM = 2) is desired, the load is increased. If from block (7) the load increment has not been decreased five times, the problem returns to block (3). If five load increment reductions have taken place, the problem terminates.

Input Data
The following quantities in namelist GIVEN must be defined: N, NTYPE, CHAR,
 KMAX, DTAU, ALFA1, ALFA2, T1, T2, ITEMP, LBCL, LBCR, SL, SR, IFREQ, and ISTART. The format for the input data contained in a namelist is given in reference 10. The first column of the data cards cannot be used. The definitions of these quantities are as follows:

Name	Type	Interpretation
N	integer	n , number of stations along the meridian
NTYPE	integer	sets type of shell geometry to be analyzed: NTYPE = 1 denotes a cylindrical shell. $R \varnothing$ is the radius from the shell axis to the shell reference surface. PHI \varnothing, the colatitude angle, is 90°. $S \varnothing$ is the shell length. NTYPE $=2$ denotes a conical shell. $R \varnothing$ is the radial distance to the first station at $S=0$ from the shell axis. $S \varnothing$ is the length along the shell meridian. PHI \varnothing is the colatitude angle (i.e., 90° - Semivertex angle). NTYPE $=3$ denotes a spherical cap. $R \varnothing$ is the shell radius. $P H \Pi$ is the colatitude angle at $S=S_{\text {max }}$. $S \varnothing$ is calculated internally and is read in as zero. NTYPE $=4$ denotes that the user will read in a special geometry by adding statements to GE \varnothing MTY as required to define r, ϕ, and ϕ^{\prime} at each i-1/2 station. Input constants R \varnothing, PHI \varnothing, and $S \varnothing$ can be used as desired by the programer. The statements are placed after the card labeled 50 and before the card labeled 60.
CHAR	real	a, reference shell dimension to be selected by user and used internally for nondimensionalizing the geometry and output quantities
нф	real	H_{0}, reference thickness

Name	Type	Interpretation				
S \varnothing	real	input quantity defined by NTYPE				
Rø	real	input quantity defined by NTYPE				
РНП \varnothing	real	input quantity defined by NTYPE and read in degrees				
PP	real	constant used to define p, the normal pressure, in FUNCTION PL(I)				
PPS	real	constant used to define p_{S}, the meridional pressure, in FUNCTION PS(I)				
E \varnothing	real	E_{O}, reference elasticity modulus				
E1	real	\mathbf{E}_{1}, elasticity modulus in meridional direction				
E2	real	E_{2}, elasticity modulus in circumferential direction				
NU12	real	ν_{12}, Poisson's ratio in the meridional direction				
NU2 1	real	ν_{21}, Poisson's ratio in the circumferential direction				
SIG \varnothing	real	σ, reference stress level; normally $\operatorname{SIG} \varnothing=1$.				
NØNLIN	integer	If a linear solution is desired, set $\mathrm{N} \varnothing \mathrm{NLIN}=0$. If nonlinear terms are to be included, set $\mathrm{N} \varnothing$ NLIN $=1$.				
C \varnothing NV	real	convergence criteria. Compares the error norm with the norm of the approximate solution vector $\left(\right.$ i.e., $\left.\frac{\\|\delta z\\|}{\\|\bar{z}\\|}\right)$, to insure convergence to proper order of magnitude. Usually $C \not \subset N V=1 . \times 10^{-3}$.				
IDYM	integer	If static stress analysis is desired, set $\operatorname{IDYM}=0$. If dynamic response analysis is desired, set $\operatorname{IDYM}=1$. If static buckling analysis is desired, set IDYM $=2$.				
KMAX	integer	number of time steps desired when $\operatorname{IDYM}=1$. Maximum number of static-load solutions when $\operatorname{IDYM}=2$. (Provides an upper limit on iterations when snap-through buckling (IDYM $=2$) does not occur.)				
DTAU	real	$\Delta \tau$, size of the nondimensional time increment. $\quad \Delta \tau=\sqrt{\frac{\mathrm{E}_{\mathrm{O}}}{\rho \mathrm{a}^{2}}} \Delta \mathrm{t}$.				
ALFA1	real	α_{1}, coefficient of thermal expansion in the meridional direction				
ALFA2	real	α_{2}, coefficient of thermal expansion in the circumferential direction				

Name	Type	Interpretation
T1	real	constant used to define T_{1} in equation (17)
T2	real	constant used to define T_{2} in equation (17)
ITEMP	integer	j , integer exponent used in equation (17)
LBCL	integer	sets boundary condition at the $i=1 \quad(S=0)$ edge (see eqs. (C2) to (C5)): $\mathrm{LBCL}=1$ is a pole point LBCL $=2$ is a pinned edge $\mathrm{LBCL}=3$ is a fixed edge LBCL $=4$ is a free edge LBCL $=5$ elastic constants in namelist ELB $\varnothing \mathrm{L}$ must be given
LBCR	integer	sets boundary conditions at the $i=n \quad\left(S=S_{\text {max }}\right)$ edge (see eqs. (C2) to (C5)): $\mathrm{LBCR}=1$ is a pole point LBCR $=2$ is a pinned edge LBCR $=3$ is a fixed edge $\mathrm{LBCR}=4$ is a free edge LBCR $=5$ elastic constants in namelist $\operatorname{ELB} \varnothing$ R must be given
SL	real	three-element array equated to values defined by LBCL (see appendix C), equivalent to l_{1} in equations (24) and (C1)
SR	real	three-element array equated to values defined by LBCR (see appendix C), equivalent to l_{n} in equations (24) and (C1)
IFREQ	integer	frequency of printout at time steps of dynamic-load problems (IDYM $=1$) or at load steps in the static buckling problem (IDYM = 2)

ISTART integer Normally ISTART = 0. If ISTART = 1, user must supply nonhomogeneous initial values to FUNCTION DV for deflections and velocities u, w, \dot{u}, and \dot{w}.

The first input quantity in namelist GIVEN is preceded by \$GIVEN and the last input quantity is followed by $\$$. For example, the first input card could be

$$
\text { \$GIVEN N = 21, NTYPE = 3, H } \varnothing=1 .,
$$

and the last namelist card could be

$$
S L(1)=0 ., 0 ., 0 ., S R(1)=0 ., 0 ., 0 ., \operatorname{IFREQ}=4, \operatorname{ISTART}=0 \$
$$

Finally, one input card may contain a description of the problem. All 80 columns may be used. If no description is desired, a blank card must be included after the last namelist GIVEN data card.

If $\mathrm{LBCL}=5$, then namelist $\mathrm{ELB} \varnothing \mathrm{L}$ must be included in the input. Two 3×3 matrices Ω_{L} and Λ_{L} are read in columnwise. Their elements specify the elastic constraints at the first boundary of the meridian ($i=1$). For example, a simply supported edge of a shell free to displace in a horizontal plane and with an applied edge moment yields the boundary conditions

```
\(\mathrm{n}_{11} \cos \phi_{\mathrm{O}}+\mathrm{q} \sin \phi_{\mathrm{O}}=0\)
\(u \sin \phi_{O}-w \cos \phi_{O}=0\)
\(\mathrm{m}_{11}=\mathrm{m}_{\mathrm{o}}\)
```

where ϕ_{0} is the colatitude angle at the boundary. Thus, the Ω, Λ, and SL matrices become

$$
\Omega_{\mathrm{L}}=\left[\begin{array}{ccc}
\cos \phi_{\mathrm{O}} & \sin \phi_{\mathrm{O}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \Lambda_{\mathrm{L}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\sin \phi_{\mathrm{O}} & -\cos \phi_{\mathrm{O}} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \mathrm{SL}=\left\{\begin{array}{c}
0 \\
0 \\
m_{\mathrm{O}}
\end{array}\right\}
$$

If $\mathrm{LBCR}=5$ the namelist ELB $\emptyset \mathrm{R}$ must be included in the input. Two 3×3 matrices Ω_{R} and Λ_{R} are read in columnwise. Their elements specify the elastic constraint at the last boundary of the meridian ($\mathrm{i}=\mathrm{n}$).

User-Prepared Function Subprograms

In addition to the input data, the user must prepare certain function subprograms. These function subprograms must be written and included in the program by the user to calculate the quantity at each half-station, $i-1 / 2$. For example, at $i=2$ the FUNCTION $P L(I)$ will define the lateral nondimensional pressure at a point halfway between $i=1$ and $i=2$. The $\mathrm{i}-1 / 2$ station is shown in figure 3. The following table describes the function subprograms.
FUNCTION

$\operatorname{PL}(\mathrm{I})$$\quad \frac{\text { Quantity }}{(\mathrm{p}} \quad$| computes the nondimensional lateral |
| :--- |
| pressure |

FUNCTION
PS(I)
$\operatorname{TDZ}(\mathrm{I}) \quad \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~T}_{\mathrm{i}-1 / 2} \mathrm{~d} \zeta \quad(\mathrm{i}=2,3, \ldots, \mathrm{n})$ $\operatorname{TZDZ} \quad \int_{\zeta_{1}}^{\zeta_{2}} \mathrm{~T}_{\mathrm{i}-1 / 2} \zeta \mathrm{~d} \zeta \quad(\mathrm{i}=2,3, \ldots, \mathrm{n}) \quad \begin{aligned} & \text { computes the nondimensional thermal } \\ & \text { moment integral }\end{aligned}$ T(I)

IP(KøUNT)

DV(M,I)
Quantity
$p_{S, i-1 / 2} \quad(i=2,3, \ldots, n)$
computes the nondimensional meridional pressure
computes the nondimensional thermal force integral computes the nondimensional shell thickness
locates time stations where a load is suddenly applied or removed
prescribes the nonhomogeneous initial conditions:
$M=1$ denotes the u displacement at station i
$\mathrm{M}=2$ denotes the w displacement at station i
$\mathrm{M}=3$ denotes the $\dot{\mathrm{u}}$ velocity at station i
$\mathrm{M}=4$ denotes the $\dot{\mathrm{w}}$ velocity at station i

Program Output

The output is divided into two parts. The first part is a printout of the input data and shell geometry. The second part is the printout of $n_{11}, q, m_{11}, u, w, \beta, p$, p_{S}, n_{22}, and m_{22} at all stations for the converged solution. If the problem varies with time, then the second part is repeated KMAX times. At a time station where there is a sudden change in load (i.e., step loads denoted by $I P=1$ in FUNCTION IP(KøUNT)) there is an additional printout of the vectors u, w, \dot{u}, and \dot{w}.

Program Limitations

The program is limited to 101 spatial stations and 70000 octal storage locations. At present there is no programed mechanism for allowing the orthotropic coefficients of thermal expansion α_{1} and α_{2} to vary through the thickness. This could be accomplished by the user by writing FUNCTION TDZ and FUNCTION TZDZ to include variable thermal coefficients $\alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$.

In subroutine STIF these constants are set up for a general orthotropic shell with the reference surface at the middle surface. The stiffnesses, that is, the $C_{i j}, D_{i j}$, and K_{ij} defined in equations (14), are general. Thus, the user could, with minimal knowledge of the computer program and equations (14), alter subroutine STIF to include a shell stiffened by rings or stringers smeared over appropriate increments (ref. 11) and using any reference surface.

Analytical Limitations

For static buckling problems (IDYM = 2) the buckling is limited to "top-of-the-knee" axisymmetric buckling loads. A detailed discussion of top-of-the-knee buckling is contained in reference 12.

Errors in results will normally be one of two types: (1) inconsistency of input data or (2) numerical error inherent in the analysis. The first type of error can be eliminated by careful scrutiny and checking of the input data and user-prepared function statements. The second type of error can only be minimized by taking the increments in time and space small enough to guarantee that a sufficient number of stations exist for an accurate solution. A comparison test of the results for various increment sizes is an adequate means of determining appropriate increment sizes.

SAMPLE PROBLEMS

Spherical Cap With Dynamic Loading

The first problem to be solved is one considered in references 12 and 13. An isotropic shallow spherical cap with clamped edges is subjected to a step pulse compressive pressure applied at $\tau=0$ and removed at $\tau=5$. The compressive nondimensional lateral pressure is taken as 60 percent of the classical buckling pressure $p_{c l}$ applied to a complete spherical shell where

$$
\begin{equation*}
\mathrm{p}_{\mathrm{cl}}=\frac{2 \eta \lambda\left(\frac{\mathrm{~h}}{\mathrm{r}_{\mathrm{o}}}\right)^{2}}{\left[3\left(1-\nu^{2}\right)\right]^{1 / 2}} \tag{30}
\end{equation*}
$$

and $r_{0}=\frac{R}{a}$ (fig. 4). The remaining shell properties are

$$
\begin{aligned}
& \mathrm{R}=100 \mathrm{in} . \quad(2.54 \mathrm{~m}) \\
& \mathrm{H}=1 \mathrm{in} . \quad(0.0254 \mathrm{~m})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}_{1}=\mathrm{E}_{2}=10 \times 10^{6} \mathrm{psi} \quad\left(68.95 \mathrm{GN} / \mathrm{m}^{2}\right) \\
& \phi=15.8094^{\mathrm{o}} \\
& \nu_{12}=\nu_{21}=0.3
\end{aligned}
$$

These parameters correspond to a shallow-shell parameter of $\lambda_{S}=5$ where

$$
\begin{equation*}
\lambda_{S}=2\left[3\left(1-\nu^{2}\right)\right]^{1 / 4}\left(\frac{\overline{\mathrm{H}}}{\mathrm{H}}\right)^{1 / 2} \tag{31}
\end{equation*}
$$

and $\overline{\mathrm{H}}$ is the maximum shell rise. The reference length CHAR or a is set at 100 in . $(2.54 \mathrm{~m})$ and E_{O} is taken as $10 \times 10^{6} \mathrm{psi}\left(68.95 \mathrm{GN} / \mathrm{m}^{2}\right)$ with H_{O} and σ set at unity. In addition, spatial increments are set at $1 / 25$ of the meridian and the time increment (DTAU) is set at 0.25 . The number of spatial stations and size of the time increment for this problem were established by comparing increasingly small spacings until stable solutions were obtained. The time response is desired out to $\tau=10$ and a printout is requested at every fourth time increment. A complete listing of the program along with the results for this sample problem is contained in appendixes F and G.

The namelist GIVEN quantities become

$$
\begin{aligned}
& \mathrm{N}=26 \\
& \mathrm{NTYPE}=3 \\
& \mathrm{CHAR}=100 . \\
& \mathrm{H} \varnothing=1 . \\
& \mathrm{S} \varnothing=0 . \\
& \mathrm{R} \varnothing=100 . \\
& \mathrm{PHI} \varnothing=15.8094 \\
& \mathrm{PP}=-0.6 \\
& \mathrm{PPS}=0 . \\
& \mathrm{E} \varnothing=10 . \times 10^{6} \\
& \mathrm{E} 1=10 . \times 10^{6} \\
& \mathrm{E} 2=10 . \times 10^{6} \\
& \mathrm{NU} 12=0.3 \\
& \mathrm{NU} 21=0.3 \\
& \mathrm{SIG} \varnothing=1.0 \\
& \mathrm{~N} \varnothing \mathrm{NLIN}=1 \\
& \mathrm{C} \varnothing \mathrm{NV}=0.001 \\
& \mathrm{IDYM}=1 \\
& \mathrm{KMAX}=40
\end{aligned}
$$

DTAU $=0.25$
ALFA1 $=0$.
ALFA2 $=0$.
$\mathrm{T} 1=0$.
$T 2=0$.
ITEMP = 0
$\mathrm{LBCL}=1$
LBCR $=3$
$S L=0 ., 0 ., 0$.
$S R=0 ., 0 ., 0$.
IFREQ $=4$
ISTART $=0$
The descriptive card comment is
SAMPLE PROBLEM FOR A CLAMPED SPHERICAL CAP WITH LAMBDA $=5$.
The namelists ELB $\varnothing \mathrm{L}$ and $\operatorname{ELB} \not \subset \mathrm{R}$ are not needed since neither LBCL or LBCR is set equal to five.

The FUNCTION IP sets the time steps m at which there are step load changes. The input data (DTAU) was selected to have an incremental size, $\Delta \tau=0.25$. Therefore, the abrupt or sudden load changes occur at stations $m=0$ and $m=20$ for $\tau=0$ and $\tau=5$, respectively. In the program the subscript m is represented by K $\varnothing \mathrm{UNT}$. If there is no sudden change in load, IP is set equal to zero. If there is sudden change in load, IP is set equal to one at that time station. The user-supplied statements for FUNCTION IP(K \varnothing UNT) become
$\mathrm{IP}=0$
IF (KøUNT .EQ. 0) IP = 1
IF (KøUNT .EQ. 20) IP = 1
The user-supplied information to FUNCTION T(I) is
$T=1.0 / H \varnothing$
where T defines h at a station i-1/2.
FUNCTION PL(I) and FUNCTION PS(I) set the lateral and meridional loads. For the sample problem a compressive uniform lateral load is used. Thus, in FUNCTION $\operatorname{PS}(\mathrm{I})$ the user-supplied statement is

$$
\text { PS }=0
$$

Common statements provide the values for ETA (η), LAM (λ), NU12 (ν_{12}), NU21 (ν_{21}), ROA (r_{0}), PP, and K $\varnothing U N T$ to be set in the function statement. Therefore, the user-supplied statements for FUNCTION PL(I) become

PCL $=2 . *$ LAM $* E T A /(3 . *(1-\mathrm{NU} 12 * \mathrm{NU} 21)) * * .5 *(\mathrm{~T}(\mathrm{I}) / \mathrm{ROA}) * * 2 * \mathrm{E} 10$
PLL $=\mathrm{PP} * \mathrm{PCL}$
$\mathrm{PL}=\mathrm{PLL}$
IF (KøUNT .EQ. 0) $\mathrm{PL}=0$.
IF (KøUNT .GT. 20) PL $=0$.
IF (IACC .NE. 1) GO TO 1
IF (KøUNT .EQ. 0) PL = PLL
IF (KøUNT .EQ. 20) PL $=0$.
1 C \varnothing NTINUE
Here IACC is computed internally at time points where the load changes abruptly (i.e., a step load) leaving the load doubly defined at that point in time. The first definition of a doubly defined load point at the mth time station (represented by K \varnothing UNT) is placed before the IACC statement card and the second definition of PL at that time-step point m is placed after the IACC statement. In this sample problem the abrupt load changes occur at $K \varnothing U N T$ equal to 0 and 20 . Therefore, at $K \varnothing U N T$ equals 0 the statement before the IACC statement is

IF (KøUNT .EQ. 0) PL $=0$.
and after the IACC statement is
IF (KøUNT .EQ. 0) PL = PLL
At time station $m=20$ the statement before the IACC statement is
IF (KøUNT . GT. 20) PL $=0$.
and after the IACC statement is
IF (KøUNT .EQ. 20) $\mathrm{PL}=0$.
At $m=20$ the load is being suddenly removed so that initially the loading is equal to PLL and finally is equal to zero. The negative sign in the namelist GIVEN quantity PP makes the loading compressive.

Since $\operatorname{ISTART}=0$, the $F U N C T I O N D V(M, I)$ will not be called. It is interesting to note that since the initial conditions are zero, ISTART could be either one or zero. Since $z_{i, 0}=\dot{z}_{i, 0}=0$, the input to FUNCTION DV for ISTART $=1$ would have been $D V=0$.

FUNCTION TDZ and FUNCTION TZDZ are completely contained as defined by equations (16) and input constants for use in defining $\alpha_{1}, \alpha_{2}, \mathrm{~T}_{1}, \mathrm{~T}_{2}$, and j are provided for in the namelist GIVEN through ALFA1, ALFA2, T1, T2, and ITEMP, respectively.

The statements appearing in appendix F for these subroutines assume that the reference surface is located at the mid surface.

A listing of the program with this sample problem is contained in appendix F. A special nondimensional value Δ, the average inward deflection, is computed and printed for ease of comparison with references 12 and 13 . The value Δ will be printed whenever $\operatorname{NTYPE}=3$. The output to K K UNT $=4$ is contained in appendix G .

The results for 60 percent of classical buckling load (this sample problem) and other percentages are summarized in figure 5. The agreement with the results in reference 12 is quite good. The discrepancies are attributed to differences in problem formulation and time increment sizes. The agreement with reference 13 is also good for $\mathrm{P}^{*}=0.4$ but poor for $\mathrm{P}^{*}=0.6$ and $\tau>2$. The discrepancy between the present results and those of reference 13 for $P^{*}=0.6$ is attributed to the use of a five-degree-of-freedom analysis in that study as compared with 26 finite-difference stations in the present study. Reference 13 reports a dynamic buckling load of $P_{c r}=0.52$. In reference 12 the $P_{\text {cr }}$ is 0.65 which agrees closely with the present result of 0.68 as shown in figure 6.

An extensive study utilizing the program for both static and dynamic buckling has been made in reference 14. Also contained in reference 14 is a thorough discussion of both static and dynamic buckling criteria.

Thermally Loaded Clamped Cylinder

This sample problem demonstrates the use of the program for analyzing thermal loads. The problem chosen is that one contained in reference 15 where an isotropic cylinder clamped at the first station and clamped and on rollers in the longitudinal direction at the final edge undergoes a linear temperature rise of $350^{\circ} \mathrm{F}$ (194.4 K) from one end of the shell to the other. The analysis is linear and the shell dimensions are

$$
\begin{aligned}
& \mathrm{S}_{\max }=48 \text { in. } \quad(1.2192 \mathrm{~m}) \\
& \mathrm{R}=12 \mathrm{in} . \quad(0.3048 \mathrm{~m}) \\
& \mathrm{H}=2 \text { in. } \quad(0.0508 \mathrm{~m}) \\
& \nu_{12}=\nu_{21}=0.3 \\
& \mathrm{E}_{1}=\mathrm{E}_{2}=28 \times 10^{6} \mathrm{psi} \quad(193 \mathrm{GN} / \mathrm{m} 2) \\
& \alpha_{1}=\alpha_{2}=9.5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\mathrm{O} \mathrm{~F}} \quad\left(17.1 \times 10^{-6} \mathrm{~m} / \mathrm{m} / \mathrm{K}\right)
\end{aligned}
$$

Thus, namelist GIVEN becomes

$$
\mathrm{N}=21
$$

NTYPE = 1
CHAR $=1$.
$\mathrm{H} \varnothing=1$.

$$
\begin{aligned}
& \mathrm{S} \varnothing=48 . \\
& \mathrm{R} \varnothing=12 . \\
& \mathrm{PH} \varnothing=90 . \\
& \mathrm{PP}=0 . \\
& \mathrm{PPS}=0 . \\
& \mathrm{E} \varnothing=1 . \\
& \mathrm{E} 1=28 . \times 10^{6} \\
& \mathrm{E} 2=28 . \times 10^{6} \\
& \mathrm{NU} 12=0.3 \\
& \mathrm{NU} 21=0.3 \\
& \mathrm{SIG} \varnothing=1.0 \\
& \mathrm{~N} \varnothing \mathrm{NL}, \mathrm{IN}=0 \\
& \mathrm{C} \varnothing \mathrm{NV}=.001 \\
& \mathrm{IPYM}=0 \\
& \mathrm{KMAX}=0 \\
& \mathrm{DTAU}=0 . \\
& \mathrm{ALFA} 1=9.5 \times 10^{-6} \\
& \mathrm{ALFA} 2=9.5 \times 10^{-6} \\
& \mathrm{~T} 1=350 . \\
& \mathrm{T} 2=0 . \\
& \mathrm{ITEMP}=0 \\
& \mathrm{LBCL}=3 \\
& \text { LBCR }=5 \\
& \mathrm{SL}=0 ., 0 ., 0 . \\
& \text { SR }=0 ., 0 ., 0 . \\
& \mathrm{IFREQ}=1 \\
& \text { ISTART }=0
\end{aligned}
$$

The FUNCTION $T(I)$ requires the statement

$$
T=2 . / H \varnothing
$$

The FUNCTION TDZ(I) requires the statement
$\mathrm{TDZ}=\mathrm{T}(\mathrm{I}) * \mathrm{~T} 1 *((\mathrm{FL} \varnothing \mathrm{AT}(\mathrm{I})-1.5) / \mathrm{FL} \varnothing \mathrm{AT}(\mathrm{N}-1)) * * 2$
Since equation (17) is now simply $T=T_{1}$ then $T_{1}=350\left(\frac{S}{48}\right)^{2}$
The description card comment becomes
THERMAL PROBLEM OF MENDELSON PG 186.
Since $L B C R=5$ then namelist ELB \varnothing R becomes
$\operatorname{OMEGAR}(1,1)=1.0,8 * 0$.
$\operatorname{ALAMDAR}(1,1)=4 * 0 ., 1 ., 3 * 0 ., 1$.
where the elements are read in columnwise. These input data correspond to the boundary conditions at $\mathrm{i}=\mathrm{n}$.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
n_{11} \\
q \\
m_{11}
\end{array}\right\}_{\mathrm{n}}+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
\mathrm{u} \\
\mathrm{w} \\
\beta
\end{array}\right\}_{\mathrm{n}}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

The right-hand side of this equation is supplied by the vector SR in the namelist GIVEN.
Functions PL, PS, IP, DV, and TZDZ require only the following cards, respectively:

$$
\begin{aligned}
& \mathrm{PL}=0 . \\
& \mathrm{PS}=0 . \\
& \mathrm{IP}=0 . \\
& \mathrm{DV}=0 . \\
& \mathrm{TZDZ}=0 .
\end{aligned}
$$

The results of this analysis are compared with those of reference 15 in figure 7. The comparison is good; the differences are attributed to the fact that in reference 15 the isotropic shell is approximated by a six-layered shell and the u deformations are neglected.

CONCLUDING REMARKS

A computer program has been developed to analyze thin shells of revolution which are both elastically and thermally orthotropic and are subjected to either mechanical or thermal loads. These loads can be applied either statically or dynamically. The program has many options concerning geometry, boundary conditions, and loading built into the subroutines. In addition, the basic subroutines of the program allow stiffness and geometry changes to be made easily without a detailed knowledge of the entire program. The present report describes the numerical analysis procedure and serves as the user's manual for the resulting computer program.

A sample problem of the dynamic response of a spherical cap is included. The sample problem demonstrates the input data preparation for the program as well as the accuracy of the results obtained. A second example of a cylinder loaded thermally is included to show the input data required for that problem. Here again the agreement with existing results is good.

Langley Research Center,
 National Aeronautics and Space Administration, Hampton, Va., September 18, 1970.

APPENDIX A

REDUCTION TO SIX GOVERNING EQUATIONS

The six governing equations comprising equations (18) are derived in this appendix. Equations (2) to (13) are reduced to six equations for the six unknowns n_{11}, q, m_{11}, u, w , and β. Equations (10) and (12) are rewritten to define e_{11} and κ_{11} as

$$
\begin{align*}
& \mathrm{e}_{11}=\frac{D_{11}}{\lambda^{2} G} n_{11}-\frac{K_{11}}{G} m_{11}-N_{12} e_{22}-\lambda^{2} N_{3} \kappa_{22}+\frac{D_{11}}{\lambda^{2} G} t_{1}^{n}-\frac{K_{11}}{G} t_{1}^{m} \tag{A1}\\
& \kappa_{11}=-\frac{K_{11}}{\lambda^{2} G} n_{11}+\frac{C_{11}}{G} m_{11}-\frac{M_{12} e_{22}}{\lambda^{2}}-M_{3} \kappa_{22}+\frac{C_{11}}{G} t_{1}^{m}-\frac{K_{11}}{\lambda^{2} G} t_{1}^{n} \tag{A2}
\end{align*}
$$

When these expressions for e_{11} and κ_{11} are substituted into equations (11) and (13) the following equations result:

$$
\begin{align*}
& \mathrm{n}_{22}=\mathrm{N}_{12} \mathrm{n}_{11}+\mathrm{M}_{12} \mathrm{~m}_{11}+\left(\mathrm{E}_{12}+\mathrm{C}_{22}\right) \mathrm{e}_{22}+\left(\overline{\mathrm{K}}_{21}+\mathrm{K}_{22}\right) \kappa_{22}+\mathrm{N}_{12} \mathrm{t}_{1}^{\mathrm{n}}+\mathrm{M}_{12} \mathrm{t}_{1}^{\mathrm{m}}-\mathrm{t}_{2}^{\mathrm{n}} \tag{A3}\\
& \mathrm{~m}_{22}=\mathrm{N}_{3} \mathrm{n}_{11}+\mathrm{M}_{3} \mathrm{~m}_{11}+\left(\mathrm{E}_{3}+\frac{\mathrm{K}_{22}}{\lambda^{2}}\right) \mathrm{e}_{22}+\left(\mathrm{K}_{3}+\frac{\mathrm{D}_{22}}{\lambda^{2}}\right) \kappa_{22}+\mathrm{N}_{3} \mathrm{t}_{1}^{\mathrm{n}}+\mathrm{M}_{3} \mathrm{t}_{1}^{\mathrm{m}}-\mathrm{t}_{2}^{\mathrm{m}} \tag{A4}
\end{align*}
$$

where the coefficients are

$$
\begin{align*}
& \mathrm{N}_{12}=\frac{1}{\lambda^{2} \mathrm{G}}\left(\mathrm{C}_{12} \mathrm{D}_{11}-\mathrm{K}_{11} \mathrm{~K}_{12}\right) \\
& \mathrm{M}_{12}=\frac{1}{\mathrm{G}}\left(\mathrm{C}_{11} \mathrm{~K}_{12}-\mathrm{C}_{12} \mathrm{~K}_{11}\right) \\
& \mathrm{E}_{12}=\frac{1}{\lambda^{2} \mathrm{G}}\left(2 \mathrm{C}_{12} \mathrm{~K}_{11} \mathrm{~K}_{12}-\mathrm{C}_{12}^{2} \mathrm{D}_{11}-\mathrm{C}_{11} \mathrm{~K}_{12}^{2}\right) \\
& \overline{\mathrm{K}}_{21}=\frac{1}{\lambda^{2} \mathrm{G}}\left(\mathrm{C}_{12} \mathrm{D}_{12} \mathrm{~K}_{11}-\mathrm{C}_{12} \mathrm{D}_{11} \mathrm{~K}_{12}+\mathrm{K}_{11} \mathrm{~K}_{12}^{2}-\mathrm{C}_{11} \mathrm{D}_{12} \mathrm{~K}_{12}\right) \tag{A5}\\
& \mathrm{N}_{3}=\frac{1}{\lambda^{4} \mathrm{G}}\left(\mathrm{D}_{11} \mathrm{~K}_{12}-\mathrm{D}_{12} \mathrm{~K}_{11}\right) \\
& \mathrm{M}_{3}=\frac{1}{\lambda^{2} \mathrm{G}}\left(\mathrm{C}_{11} \mathrm{D}_{12}-\mathrm{K}_{11} \mathrm{~K}_{12}\right)
\end{align*}
$$

(Equations continued on next page)

APPENDIX A

$$
\left.\begin{array}{l}
\mathrm{E}_{3}=\frac{\overline{\mathrm{K}}_{21}}{\lambda^{2}} \\
\mathrm{~K}_{3}=\frac{1}{\lambda^{4} \mathrm{G}}\left(2 \mathrm{D}_{12} \mathrm{~K}_{11} \mathrm{~K}_{12}-\mathrm{D}_{11} \mathrm{~K}_{12}^{2}-\mathrm{C}_{11} \mathrm{D}_{12}^{2}\right) \tag{A5}\\
\mathrm{G}=\frac{1}{\lambda^{2}}\left(\mathrm{C}_{11} \mathrm{D}_{11}-\mathrm{K}_{11}^{2}\right)
\end{array}\right\}
$$

The quantities e_{22} and κ_{22} are eliminated from equations (A1) to (A4) by using equations (7) and (9). Then substituting equations (A3) and (A4) into the equilibrium equations (2), (3), and (4) yields the first three equations in equations (18). Substitution of equations (A1) and (A2) into equations (6) and (8) yields the fourth and sixth equations of equations (18). Finally, equation (5) can be utilized as the definition of β for the fifth equation of equations (18). Thus, the elements of the \hat{H}, \tilde{H}, and M matrices and of the e vector in equations (18) are defined as follows. The elements of the \hat{H} matrix are

$$
\left.\begin{array}{ll}
\mathrm{h}_{11}=\frac{\cos \phi}{\mathrm{r}}\left(1-\mathrm{N}_{12}\right) & \mathrm{h}_{12}=\phi^{\prime} \\
\mathrm{h}_{13}=-\frac{\cos \phi}{\mathrm{r}} \mathrm{M}_{12} & \mathrm{~h}_{14}=-\frac{\cos ^{2} \phi}{\mathrm{r}^{2}}\left(\mathrm{E}_{12}+\mathrm{C}_{22}\right) \\
\mathrm{h}_{15}=-\frac{\cos \phi \sin \phi}{\mathrm{r}^{2}}\left(\mathrm{E}_{12}+\mathrm{C}_{22}\right) & \mathrm{h}_{16}=\frac{\cos ^{2} \phi}{\mathrm{r}^{2}}\left(\overline{\mathrm{~K}}_{21}+\mathrm{K}_{22}\right) \\
\mathrm{h}_{21}=-\left(\phi^{\prime}+\frac{\sin \phi}{\mathrm{r}} \mathrm{~N}_{12}\right) & \mathrm{h}_{22}=\frac{\cos \phi}{\mathrm{r}} \\
\mathrm{~h}_{23}=-\frac{\sin \phi}{\mathrm{r}} \mathrm{M}_{12} & \mathrm{~h}_{24}=-\frac{\cos \phi \sin \phi}{\mathrm{r}^{2}}\left(\mathrm{E}_{12}+\mathrm{C}_{22}\right) \\
\mathrm{h}_{25}=-\frac{\sin ^{2} \phi}{\mathrm{r}^{2}}\left(\mathrm{E}_{12}+\mathrm{C}_{22}\right) & \mathrm{h}_{26}=\frac{\cos \phi \sin \phi}{\mathrm{r}^{2}}\left(\overline{\mathrm{~K}}_{21}+\mathrm{K}_{22}\right) \\
\mathrm{h}_{31}=-\frac{\cos \phi}{\mathrm{r}} \mathrm{~N}_{3} & \mathrm{~h}_{32}=-\lambda^{-2} \\
\mathrm{~h}_{33}=\frac{\cos \phi}{\mathrm{r}}\left(1-\mathrm{M}_{3}\right) & \mathrm{h}_{34}=-\frac{\cos ^{2} \phi}{\mathrm{r}^{2}}\left(\mathrm{E}_{3}+\lambda^{-2} \mathrm{~K}_{22}\right) \\
\mathrm{h}_{35}=-\frac{\cos \phi}{\mathrm{r}^{2}}\left(\mathrm{E}_{3}+\lambda^{-2} \mathrm{~K}_{22}\right) & \mathrm{h}_{36}=\frac{\cos ^{2} \phi}{\mathrm{r}^{2}\left(\mathrm{~K}_{3}+\lambda^{-2} \mathrm{D}_{22}\right)}
\end{array}\right\}
$$

(Equations continued on next page)

APPENDIX A

$$
\begin{array}{ll}
\mathrm{h}_{41}=-\frac{\mathrm{D}_{11}}{\lambda^{2} \mathrm{G}} & \mathrm{~h}_{42}=0 \\
\mathrm{~h}_{43}=\frac{\mathrm{K}_{11}}{\mathrm{G}} & \mathrm{~h}_{44}=\frac{\cos \phi}{\mathrm{r}} \mathrm{~N}_{12} \\
\mathrm{~h}_{45}=\phi^{\prime}+\mathrm{N}_{12} \frac{\sin \phi}{\mathrm{r}} & \mathrm{~h}_{46}=-\lambda^{2} \frac{\cos \phi}{\mathrm{r}} \mathrm{~N}_{3} \\
\mathrm{~h}_{51}=\mathrm{h}_{52}=\mathrm{h}_{53}=\mathrm{h}_{55}=0 & \mathrm{~h}_{54}=-\phi^{\prime} \\
\mathrm{h}_{56}=-1 & \mathrm{~h}_{61}=-\frac{\mathrm{K}_{11}}{\lambda^{2} \mathrm{G}} \\
\mathrm{~h}_{62}=0 & \mathrm{~h}_{63}=\frac{\mathrm{C}_{11}}{\mathrm{G}} \\
\mathrm{~h}_{64}=-\frac{\cos \phi}{\mathrm{r} \lambda^{2}} \mathrm{M}_{12} & \mathrm{~h}_{65}=-\frac{\sin \phi}{\mathrm{r} \lambda^{2}} \mathrm{M}_{12} \\
\mathrm{~h}_{66}=\frac{\cos \phi}{\mathrm{r}} \mathrm{M}_{3} &
\end{array}
$$

The elements of the $\tilde{\mathrm{H}}$ matrix are all zero except

$$
\left.\begin{array}{l}
\tilde{\mathrm{h}}_{11}=\frac{\phi^{\prime}}{\eta} \beta \\
\tilde{\mathrm{h}}_{21}=\frac{\cos \phi}{\mathbf{r} \eta} \beta+\frac{\beta^{\prime}}{\eta} \\
\tilde{\mathrm{h}}_{26}=\frac{\mathrm{n}_{11}^{\prime}}{\eta} \tag{A7}\\
\tilde{\mathrm{h}}_{46}=\frac{\beta}{2 \eta}
\end{array}\right\}
$$

The elements of the e vector are

$$
\left.\begin{array}{l}
\mathrm{e}_{1}=\frac{\cos \phi}{\mathrm{r}}\left(\mathrm{~N}_{12} \mathrm{t}_{1}^{\mathrm{n}}+\mathrm{M}_{12} \mathrm{t}_{1}^{\mathrm{m}}-\mathrm{t}_{2}^{\mathrm{n}}\right)-\mathrm{p}_{\mathrm{s}} \\
\mathrm{e}_{2}=\frac{\sin \phi}{\mathrm{r}}\left(\mathrm{~N}_{12} \mathrm{t}_{1}^{\mathrm{n}}+\mathrm{M}_{12} \mathrm{t}_{1}^{\mathrm{m}}-\mathrm{t}_{2}^{\mathrm{n}}\right)-\mathrm{p} \tag{A8}\\
\mathrm{e}_{3}=\frac{\cos \phi}{\mathrm{r}}\left(\mathrm{~N}_{3} \mathrm{t}_{1}^{\mathrm{n}}+\mathrm{M}_{3} \mathrm{t}_{1}^{\mathrm{m}}-\mathrm{t}_{2}^{\mathrm{m}}\right)
\end{array}\right\}
$$

(Equations continued on next page)

$$
\left.\begin{array}{l}
e_{4}=\frac{D_{11}}{\lambda^{2} G} t_{1}^{n}-\frac{K_{11}}{G} t_{1}^{m} \\
e_{5}=0 \tag{A8}\\
e_{6}=\frac{t_{1}^{n}}{\lambda^{2}{ }^{2}} K_{11}-\frac{t_{1}^{m}}{G} C_{11}
\end{array}\right\}
$$

The only nonzero elements of the mass matrix M are

$$
\begin{equation*}
M_{14}=M_{25}=1 \tag{A9}
\end{equation*}
$$

APPENDIX B

TIME DERIVATIVES AND INITIAL CONDITIONS

It is seen from equations (18) and (A9) that the time derivative terms arise only in the displacement vector y_{i}. Thus, as shown in reference 7 , the $\ddot{y}_{i, m}$ terms can be written as

$$
\begin{equation*}
\ddot{\mathrm{y}}_{\mathrm{i}, \mathrm{~m}}=\frac{1}{(\Delta \tau)^{2}}\left(\bar{\alpha}_{\mathrm{m}} \mathrm{y}_{\mathrm{i}, \mathrm{~m}}+\bar{\beta}_{\mathrm{m}} \mathrm{y}_{\mathrm{i}, \mathrm{~m}-1}+\bar{\gamma}_{\mathrm{m}} \mathrm{y}_{\mathrm{i}, \mathrm{~m}-2}+\bar{\delta}_{\mathrm{m}} \mathrm{y}_{\mathrm{i}, \mathrm{~m}-3}\right) \tag{B1}
\end{equation*}
$$

where m indicates a time step. The constants $\bar{\alpha}_{m}, \bar{\beta}_{m}, \bar{\gamma}_{m}$, and $\bar{\delta}_{m}$ are defined in reference 7 by use of Houbolt's initial starting procedure for homogeneous initial conditions of $y_{i, 0}=\dot{y}_{i, 0}=0$. The procedure is presented here for general nonhomogeneous initial conditions where $y_{i, 0}$ and $\dot{y}_{i, 0}$ are given. From equations (2) and (3), $\ddot{y}_{i, 0}$ can be calculated. Also the following difference equations at $m=0$ can be used to define $\dot{\mathrm{y}}_{\mathrm{i}, 0}$ and $\ddot{\mathrm{y}}_{\mathrm{i}, 0}$ as

$$
\begin{align*}
& \dot{\mathrm{y}}_{\mathrm{i}, 0}=\frac{1}{6(\Delta \tau)}\left(2 \mathrm{y}_{\mathrm{i}, 1}+3 \mathrm{y}_{\mathrm{i}, 0}-6 \mathrm{y}_{\mathrm{i},-1}+\mathrm{y}_{\mathrm{i},-2}\right) \tag{B2}\\
& \ddot{\mathrm{y}}_{\mathrm{i}, 0}=\frac{1}{(\Delta \tau)^{2}}\left(\mathrm{y}_{\mathrm{i}, 1}-2 \mathrm{y}_{\mathrm{i}, 0}+\mathrm{y}_{\mathrm{i},-1}\right) \tag{B3}
\end{align*}
$$

These two equations can be rewritten to define the fictional time points $y_{i,-1}$ and $y_{i,-2}$. Then use can be made of the general backward-difference equation

$$
\begin{equation*}
\ddot{y}_{i, m}=\frac{1}{(\Delta \tau)^{2}}\left(2 y_{i, m}-5 y_{i, m-1}+4 y_{i, m-2}-y_{i, m-3}\right) \tag{B4}
\end{equation*}
$$

Therefore, by using equations (B2) and (B3) to eliminate the fictional points from equation (B4) at $m=1$ and $m=2$, values of $\bar{\alpha}_{m}, \bar{\beta}_{m}, \bar{\gamma}_{m}$, and $\bar{\delta}_{m}$ of equation (B1) are obtained as follows:

At $m=0$

$$
\bar{\alpha}_{0}=\bar{\beta}_{0}=\bar{\gamma}_{0}=\bar{\delta}_{0}=0
$$

APPENDIX B

At $m=1$, equation (B1) becomes

$$
\begin{equation*}
\ddot{\mathrm{y}}_{\mathrm{i}, 1}=\frac{1}{(\Delta \tau)}\left(6 \mathrm{y}_{\mathrm{i}, 1}-6 \mathrm{y}_{\mathrm{i}, 0}\right)+\frac{6}{\Delta \tau} \dot{\mathrm{y}}_{\mathrm{i}, 0}-2 \ddot{\mathrm{y}}_{\mathrm{i}, 0} \tag{B5}
\end{equation*}
$$

and

$$
\bar{\alpha}_{1}=6 \quad \bar{\beta}_{1}=-6 \quad \bar{\gamma}_{1}=\bar{\delta}_{1}=0
$$

At $m=2$, equation (B1) becomes

$$
\begin{equation*}
\ddot{\mathrm{y}}_{\mathrm{i}, 2}=\frac{1}{(\Delta \tau)^{2}}\left(2 \mathrm{y}_{\mathrm{i}, 2}-4 \mathrm{y}_{i, 1}+2 \mathrm{y}_{\mathrm{i}, 0}\right)-\ddot{\mathrm{y}}_{\mathrm{i}, 0} \tag{B6}
\end{equation*}
$$

and

$$
\bar{\alpha}_{2}=2 \quad \bar{\beta}_{2}=-4 \quad \bar{\gamma}_{2}=2 \quad \bar{\delta}_{2}=0
$$

At $m \geqq 3$, equations (B1) and (B4) are identical and

$$
\bar{\alpha}_{\mathrm{m}}=2 \quad \bar{\beta}_{\mathrm{m}}=-5 \quad \bar{\gamma}_{\mathrm{m}}=4 \quad \bar{\delta}_{\mathrm{m}}=-1
$$

Equations (B4) to (B6) completely specify all time derivatives and initial conditions. Similar results for nonhomogeneous initial conditions were obtained in reference 16.

This procedure of using initial conditions is employed at every time point where there is a sudden change in load.

APPENDIX C

DEFINTTION OF BOUNDARY CONDITIONS

The system of equations defined in equations (18) and appendix A requires three boundary conditions at each edge. These conditions are derived in reference 4 and are defined by a combination of the following variables:

$$
\left\{\begin{array}{c}
n_{11} \\
q \\
m_{11}
\end{array}\right\} \quad \text { or } \quad\left\{\begin{array}{l}
u \\
w \\
\beta
\end{array}\right\}
$$

Thus, z is a six-element vector and the boundary matrix contains only three equations at each end. Therefore z_{i} is divided into two subvectors x_{i} and y_{i} where

$$
x_{i}=\left\{\begin{array}{c}
n_{11} \\
q \\
m_{11}
\end{array}\right\}_{i} \quad y_{i}=\left\{\begin{array}{l}
u \\
w \\
\beta
\end{array}\right\}_{i}
$$

as shown in figure 3 the left boundary is at station $i=1$ and the right boundary is at $\mathrm{i}=\mathrm{n}$. Therefore

$$
\left.\begin{array}{l}
\Omega_{1} \delta \mathrm{x}_{1}+\Lambda_{1} \delta \mathrm{y}_{1}=l_{1} \tag{C1}\\
\Omega_{\mathrm{n}} \delta \mathrm{x}_{\mathrm{n}}+\Lambda_{\mathrm{n}} \delta \mathrm{y}_{\mathrm{n}}=l_{\mathrm{n}}
\end{array}\right\}
$$

where the subscripts 1 and n refer to the first ($s=0$) and last $\left(s=\frac{S_{\max }}{a}\right)$ stations, respectively. In the program the vector l at $i=1$ is $S L$ and at $i=n$ is SR. Both SL and SR are three-element arrays. The following conditions can be applied to either boundary:

For a pole point where $\mathrm{u}=\mathrm{q}=\beta=0$, the matrices Ω, Λ, and l become

$$
\Omega=\left[\begin{array}{lll}
0 & 0 & 0 \tag{C2}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \Lambda=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad l=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

APPENDIX C

For a pinned boundary where $u=\mathrm{w}=\mathrm{m}_{11}=0$, the matrices Ω, Λ, and l become

$$
\Omega=\left[\begin{array}{lll}
0 & 0 & 0 \tag{C3}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \Lambda=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad l=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

For a clamped boundary where $u=w=\beta=0$, the matrices Ω, Λ, and l become

$$
\begin{equation*}
\Omega=\text { Null matrix } \quad \Lambda=\mathrm{I} \quad l=\text { Null vector } \tag{C4}
\end{equation*}
$$

For a free edge where $n_{11}=q=m_{11}=0$, the matrices become

$$
\begin{equation*}
\Omega=\mathrm{I} \quad \Lambda=\text { Null matrix } \quad l=\text { Null vector } \tag{C5}
\end{equation*}
$$

Finally, for a boundary with general elastic constraints, Ω and Λ must be defined by the particular problem and read in through namelists ELB \varnothing L and ELB \emptyset R. The vector l is always read in through namelist GIVEN. For these boundary conditions, the elastic boundary conditions on the left ($i=1$) edge are read in through namelist $E L B \emptyset L$ and on the right ($i=n$) edge through ELB $\varnothing R$. In other words, all nine elements of both Ω and Λ must be specified.

APPENDIX D

DEFINITIONS OF $A, B, C, D, E, A N D q$ MATRICES

Equations (22), (26), (27), and (29) are related in the following manner:

$$
f_{k}=F_{i-1 / 2}\left\{\begin{array}{l}
x_{i-1} \tag{D1}\\
y_{i-1}
\end{array}\right\}+G_{i-1 / 2}\left\{\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right\}-L_{i-1 / 2}
$$

where $k=1,2, \ldots, 6$ and $i=2,3, \ldots, n$. For $k=1,2,3$

$$
\begin{array}{ll}
A_{2(i-1)}=\text { Null matrix } \\
B_{2(i-1)}=\frac{\partial f_{k}}{\partial x_{i-1}}=\left(F_{i-1 / 2}+\delta_{2, j+1} \frac{\beta_{i-1 / 2}}{\Delta s \eta}\right)_{k j} & (j=1,2,3) \\
C_{2(i-1)}=\frac{\partial f_{k}}{\partial y_{i-1}}=\left\{F_{i-1 / 2}+\delta_{1, j-5} \frac{\left(n_{11} \phi\right)_{i-1 / 2}}{2 \eta}+\delta_{2, j-4}\left[\frac{n_{11}}{\eta}\left(\frac{\cos \phi}{2 r}-\frac{1}{\Delta s}\right]_{i-1 / 2}\right\}_{k j}\right. & (j=4,5,6) \\
D_{2(i-1)}=\frac{\partial f_{k}}{\partial x_{i}}=\left(G_{i-1 / 2}+\delta_{2, j+1} \frac{\beta_{i-1 / 2}}{\Delta s \eta}\right)_{k j} & (j=1,2,3) \tag{D2}\\
E_{2(i-1)}=\frac{\partial f_{k}}{\partial y_{i}}=\left\{G_{i-1 / 2}+\delta_{1, j-5} \frac{\left(n_{11} \phi\right)_{i-1 / 2}}{2 \eta}+\delta_{2, j-4}\left[\frac{n_{11}}{\eta}\left(\frac{\cos \phi}{2 r}+\frac{1}{\Delta s}\right)\right]_{i-1 / 2}\right\}_{k j} & (j=4,5,6) \\
q_{2(i-1)}=-f_{k}\left(\bar{x}_{i-1}, \bar{y}_{i-1}, \overline{x_{1}}, \bar{y}_{i}, s\right) &
\end{array}
$$

where the barred vectors indicate the approximate solutions. For $k=4,5,6$

$$
\left.\begin{array}{ll}
A_{2 i-1}=\frac{\partial f_{k}}{\partial x_{i-1}}=\left(F_{i-1 / 2}\right)_{k j} & (j=1,2,3) \\
B_{2 i-1}=\frac{\partial f_{k}}{\partial y_{i-1}}=\left(F_{i-1 / 2}-\delta_{4, j-2} \frac{\beta_{i-1 / 2}}{4 \eta}\right)_{k j} & (j=4,5,6)
\end{array}\right\}
$$

APPENDIX D

$$
\begin{array}{ll}
C_{2 i-1}=\frac{\partial f_{k}}{\partial x_{i}}=\left(G_{i-1 / 2}\right)_{k j} & (j=1,2,3) \\
D_{2 i-1}=\frac{\partial f_{k}}{\partial y_{i}}=\left(G_{i-1 / 2}-\delta_{4, j-2} \frac{\beta_{i-1 / 2}}{4 \eta}\right)_{k j} & (j=4,5,6) \tag{D3}\\
E_{2 i-1}=\text { Null matrix } \\
q_{2 i-1}=-f_{k}\left(x_{i-1}, y_{i-1}, x_{i}, y_{i}, s\right)
\end{array}
$$

Equations (C1) are related to equations (24) and (29) in the following manner. For $\mathrm{i}=1$

$$
\left.\begin{array}{l}
\mathrm{C}_{1}=\Omega_{\mathrm{L}} \\
\mathrm{D}_{1}=\Lambda_{\mathrm{L}} \\
\mathrm{E}_{1}=\text { Null matrix } \tag{D4}\\
\mathrm{q}_{1}=l_{\mathrm{L}}
\end{array}\right\}
$$

For $\mathrm{i}=\mathrm{n}$

$$
\left.\begin{array}{l}
\mathrm{A}_{2 \mathrm{n}}=\text { Null matrix } \\
\mathrm{B}_{2 \mathrm{n}}=\Omega_{\mathrm{R}} \\
\mathrm{C}_{2 \mathrm{n}}=\Lambda_{\mathrm{R}} \tag{D5}\\
\mathrm{q}_{2 \mathrm{n}}=l_{\mathrm{R}}
\end{array}\right\}
$$

APPENDIX D

The complete set of equations becomes

$$
\left[\begin{array}{ccccccc}
C_{1} & D_{1} & E_{1} & F_{1} & & & \tag{D6}\\
B_{2} & C_{2} & D_{2} & E_{2} & & & \\
A_{3} & \mathrm{~B}_{3} & C_{3} & D_{3} & E_{3} & F_{3} & \\
& & \cdot & & & & \\
& & & & & & \\
& & & \cdot & & & \\
& A_{2(i-1)} & B_{2(i-1)} & C_{2(i-1)} & D_{2(i-1)} & E_{2(i-1)} & \\
& & A_{2 i-1} & B_{2 i-1} & C_{2 i-1} & D_{2 i-1} & E_{2 i-1} \\
& & & & \cdot & & \\
& & & & & & \\
\cdot \\
\cdot \\
x_{i} \\
y_{i} \\
\cdot \\
\cdot \\
\cdot \\
x_{2} \\
y_{1} \\
\cdot \\
x_{n} \\
y_{n}
\end{array}\right\}=\left\{\begin{array}{c}
x_{1} \\
q_{3} \\
q_{2(i-1)} \\
q_{2 i-1} \\
\cdot \\
\cdot \\
\cdot \\
q_{2 n-1} \\
q_{2 n}
\end{array}\right\}
$$

where F_{1} and F_{3} are null matrices added for a later programing convenience as discussed in appendix E. Since they are null matrices at this point, they do not affect any of the previous definitions in equation (29).

APPENDIX E

RECURRENCE EQUATIONS

If for convenience δx_{i} and δy_{i} are represented by x_{i} and y_{i}, a recurrence solution to equation (D6) can be obtained based on the Potters method (ref. 9). To insure nonsingularity, elements c_{11}, c_{22}, and c_{33} of matrix C_{1} must not be zero. If either c_{11} or c_{33} is zero in C_{1}, then row one or three of $C_{1}, D_{1}, E_{1}, F_{1}$, and q_{1} must be interchanged with row one or three, respectively, of $\mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{D}_{2}, \mathrm{E}_{2}$, and q_{2}. If c_{22} is zero, then several row manipulations must take place. First, row two of $C_{1}, D_{1}, E_{1}, F_{1}$, and q_{1} is placed in row two of $B_{2}, C 2, D_{2}, E_{2}$, and q_{2}; row two of $B_{2}, C_{2}, D_{2}, E_{2}$, and q_{2} is placed in row three of $A_{4}, B_{4}, C_{4}, D_{4}, E_{4}$, and q_{4}; row three of $A_{4}, B_{4}, C_{4}, D_{4}, E_{4}$, and q_{4} is placed in row three of A_{3}, B_{3}, C_{3}, D_{3}, E_{3}, and F_{3}; and row three of $A_{3}, B_{3}, C_{3}, D_{3}, E_{3}$, and q_{3} is placed in row two of $\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}, \mathrm{E}_{1}, \mathrm{~F}_{1}$, and q_{1} to complete the cycle. Simpler substitutions could be made for specific shells and boundary conditions but the preceding row interchanges yield nonsingularity for all shells. Elements can exist in the F_{1} and F_{3} matrices of equation (D6) as a result of the row interchanging. Since C_{1} is nonsingular then

$$
\begin{equation*}
x_{1}=P_{1} y_{1}+Q_{1} x_{2}-C_{1}^{-1} F_{1} y_{2}+R_{1} \tag{E1}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\mathrm{P}_{1}=-\mathrm{C}_{1}^{-1} \mathrm{D}_{1} \tag{E2}\\
\mathrm{Q}_{1}=-\mathrm{C}_{1}^{-1} \mathrm{E}_{1} \\
\mathrm{R}_{1}=\mathrm{C}_{1}^{-1} \mathrm{q}_{1}
\end{array}\right\}
$$

and, in general

$$
\left.\begin{array}{l}
x_{i}=P_{2 i-1} y_{i}+Q_{2 i-1} x_{i+1}+R_{2 i-1} \tag{E3}\\
y_{i}=P_{2 i} x_{i+1}+Q_{2 i} y_{i+1}+R_{2 i}
\end{array}\right\}
$$

APPENDIX E

where

$$
\begin{align*}
& G_{r}=\left[\left(A_{r} P_{r-2}+B_{r}\right) P_{r-1}+A_{r} Q_{r-2}+C_{r}\right] \\
& P_{r}=G_{r}^{-1}\left[\left(A_{r} P_{r-2}+B_{r}\right) Q_{r-1}+D_{r}\right] \tag{E4}\\
& Q_{r}=-G_{r}^{-1} E_{r} \\
& R_{r}=G_{r}^{-1}\left[q_{r}-A_{r} R_{r-2}-\left(A_{r} P_{r-2}+B_{r}\right) R_{r-1}\right]
\end{align*}
$$

The exceptions (in addition to eqs. (E1) and (E2)) are as follows:

$$
\text { At } r=2
$$

$$
\begin{equation*}
\mathrm{Q}_{2}=-\mathrm{G}_{\mathrm{r}}^{-1}\left(\mathrm{E}_{2}-\mathrm{B}_{2} \mathrm{C}_{1}^{-1} \mathrm{~F}_{1}\right) \tag{E5}
\end{equation*}
$$

At $r=3$

$$
\left.\begin{array}{l}
\mathrm{P}_{3}=\mathrm{P}_{\mathrm{r}}+\mathrm{G}_{3}^{-1} \mathrm{~A}_{3} \mathrm{C}_{1}^{-1} \mathrm{~F}_{1} \tag{E6}\\
\mathrm{x}_{2}=\mathrm{P}_{3} \mathrm{y}_{2}+\mathrm{Q}_{3} \mathrm{x}_{3}-\mathrm{G}_{3}^{-1} \mathrm{~F}_{3} \mathrm{y}_{3}+\mathrm{R}_{3}
\end{array}\right\}
$$

At $r=4$

$$
\begin{equation*}
\mathrm{Q}_{4}=\mathrm{Q}_{\mathrm{r}}+\mathrm{G}_{4}^{-1}\left[\left(\mathrm{~A}_{4} \mathrm{P}_{2}+\mathrm{B}_{4}\right) \mathrm{G}_{3}^{-1} \mathrm{~F}_{3}\right] \tag{E7}
\end{equation*}
$$

At $r=5$

$$
\begin{equation*}
P_{5}=P_{r}+G_{5}^{-1} A_{5} G_{3}^{-1} F_{3} \tag{E8}
\end{equation*}
$$

Also at $r=2 N, A_{2 N}, D_{2 N}, E_{2 N}$, and $E_{2 N-1}$ are null matrices and equations (E3) reduce to

$$
\left.\begin{array}{l}
y_{n}=R_{2 n} \tag{E9}\\
x_{n}=P_{2 n-1} y_{n}+R_{2 n-1}
\end{array}\right\}
$$

Thus, the procedure of solving equation (D6) is to sweep down the diagonal to solve for y_{n} and x_{n} and then back up the diagonal using equation (E3) to solve for all x_{i} and y_{i}.

APPENDIX E

The 3×3 matrix multiplications, additions, and inversions are performed by the CDC library subroutine MATRIX as detailed in reference 17.

APPENDIX F

PROGRAM LISTING

The program listing for the sample problem is as follows:


```
IF LaCL = + Tre Leri rl 1: m JuLr. pulvT
```



```
IFLMCL=, 1+ELEFI ML INFI^EU
```



```
IF L-C= = THE 人IUAT MC 1 - . rUl_t HUlmJ
```



```
    1 \(こ)=, (1)
```



```
    1-(Z -..)
```


APPENDIX F

```
    DIMENSIUN x(2C2,3)
    OIMENSICN XE(202,3)
    REAL LAMS
    REAL NUl2, NU21, Kl1, K12, K22
    KEAL N12, N3, N12, N3, KR12. K3
    REAL LAN.
    l FURMAT (12x, %THE LEFT GMEGA MATRIX*,40X*THE LEFT LAMBDA MATRIX*,
    1//5\lambda*(* 3(E12.5, 5X),*)(N) +(*3(E12.5, 5X)*)(U) =* El2.5/
    2 5x*(* 3(E12.5, 5x),*)(Q) +(*3(E12.5, 5x)*)(W) =* E12.5/
    2 5X*(* 3(E12.5, 5X),*)(M) +(*3(E12.5, 5X)*)(B) =* F12.5)
    2 FURMAT(12X, *THE RIGHT OMEGA MATRIX*,40X*THE RIGHT LAMBUA MATRIX*,
    l//5X*(* 3(t12.5, 5X),*)(N) +(*3(E12.5, 5X)*)(U) = * E12.5/
    2 5x*(* 3(E12.5, 5x),*)(Q) +(*3(E12.5, 5x)*)(w) = * El2.5)
    2 5X*(* 3(E12.5, 5X),*)(M) +(*3(EL2.5, 5X)*)(B)=*E12.5)
    O FURMAT(10X, [5, 2(4X, F11.5), 2(9X, I6), E15.5)
    l FLRMAT(80F
        1 1
13 FORMAT(/5x,*STATIGN VU*5x*U DOT*15x*W UUT* 15x*U DUTOOT* 12x*W DOTDU
    1T*//(5x,I 5, 4(5x, El5.8) ))
BU FURMAT (3UX*IF IEYM=O THF SHELL IS LOADEO STATICALLY*/3OX*IF IDYM=1
    ITHF SHELL IS LCADEf DYNAMICALLY*/3OX*IF IOYM=2 THE SHELL STATIC BU
    2CKLING LLAU IS CALCULATED*//30X*FJR THIS RUN, IOYM=*I2O//30X*NUMBE
    3k UF STATILNS =*I19//30X*MERILIAN/REFERENCE RATIO = * F20.6 //3CX
    4 *んADIUS/HEFEKFNCE RATIO =*,F22.6//30X,*THICK/ REF RAD KATIU =*
```



```
    O, L3X*NUZ1 =*F24.G//lכX*FU/SO =*F20.6.2.jx*REF DIST =*F20.6//40X*IF
    SNUNLIN = O CNLY LINEAR TERMS ARE USEO*/4OX%IF NONLIN = I NONLINEAR
    6 TERMS USER*//4CX的OR THIS RUN NONLIN = *I6/1
O 「CRMAT (//4X, *STATIOV N!I*,7X,*V-S RESULTAVT*,
    1 5x,*5HIAR FURCF*,7x, *N-S RESULTANT*, 5X,*U-DEFORMATION*, 5X,
    2*W-SEFMRMATIGN*, 5x, *BETA ROTATIUN*//(4X,IG.6X,6(3X,E1b.7))/)
!/ FCRNAT(ILX*M!. OF ITERATIONS=*IG, l!X*ERRDK NORM = *E15.8, 1CX*CYC
    lLE) |HIS Iff'2ATIUN=*&&I
```



```
    2F9.6,5x*ITFKATIGNS =*It,4X*NO LF CYCLFS =*I4,4X*XNOMM = * 12.5)
117 FGRMAT(4ux,*THE MAXIMUN SHELL RISE IS *F17.8)
110 + LRMAT(4ux, *THE SFHLL THICKNESS = % 「17.3)
```



```
    l 4X*~FRIUIAN LIS* RX*RACIAL DIS*IOX*ANGLFIRADJ*1OX*CURVATURF(CFI/D
    25)*/1
24< F.)RMaT(5x, 1%,4(5x, E15.6))
```


APPENDIX F

```
<4j+i,BMAT(/10X*KCLNT* luX*TAU* 12X*OEL* 12X *TTERATIUNS* 5X
    1*CYCl_ES* 4X * XPGRM*)
\angle44FUSNAT(%1*)
        AMMELIST/CIVIN/NTYPE, N, RT, SU, HC, EO, EL, EP, NULZ, NUZI, SIGO,
    LNCN!IN, CCNV, PFIC, LSTL, LBCR, PP, PPS, SL, SK, GHAR,
    2.IJYM, foAX, rTAL, II, T2, ALFAI, ALFAL, ITEMP, IFREQ, ISTART
        NA ALLIST/ELHTL/ LNESAL, ALAMEAL
        WAMELIST/ELRCR/ GMESAR, NLAMDAR
        OATA PI / 5.241592653589793/
Lul meAU GIVEN
        lf (ECF, b) 2Cl, 302
SUL STTP
3uc <|VTI:NUt
    サKINTGIV&A
    <EAL7
    PKINT7
    IF (LI:CL IG. 5) REAO ELYEL
    IF (LFSC: E&. 巨) KFAU EL:3CK
    LA** HC/LトAド
    SUA=S!J/Cr.\DeltaF
    <LA=LU/CHAK
    E|A=「U/ぶEC
    ElD= 匕l/tL
    EZO=& 2/EL
    Ivi: \C.1!NV=1
    ILUKK=20
    KSTLK=0
    IAC,C=0
    SAVE=0.
        1.N1I=0
    KいうNI=C
    ITFG=C
    LCHAN.GE=C
    xMUNル=?.
    ij
    UPs=PPS
    USL=SL\L1
    DS22=SL(%)
    U)}3=SL(3
    0) 1=0.
    OT2=0.
    PRINT >44
    CALL GECMIY(NTYPE)
```


APPENDIX F

```
    PKINT &C, IRYN, N, SUA, RCIA, LAN,ELO, E2O, NUJIP, NUJl, ETA, CHAR,
    l MEivLIN
        US2=[JS/2.
        SMER=-ES
        DEL = (HHI(2)- PHI(1))/?.
        FKINT 2.41
        DU 240 I=1,N
        KI=k(I)+DS2*CCS(PHIII))
        FI= PitI(I)+CFL
        SAEF=SMEん+CS
<4U PKINT 24Z̈,I, SNFF, RI, FI, DPHI(I)
    IF(NIYPE.NF.3) On TG Ll1
    ZU = RCA*(1.-CNS(RPH[))*FTA
    ZSUN = lU*2C*RCA/(ETA*Z.)
    ZUA= LC/ETA
    PRINT 117, ICA
211 CONTIMLL
    f T=T(1)
    PKINT 11ध, TT
    L=2*N
        LL=L-1
    LPO=0TAC
    FPSP=0TAU**2
    U 2l J=1,l
    UC <1 N=1,2
    x\cupLO(J,M)=C.
    XE(J,M)=0.
\angle1\times(J,M)= L.
    D(.) 25, I=1,N
    UH: 25 M=1,2
    X1(1, 4)=0.
    x 2(I,M)=C.
2) 人3([,M)=U.
    ITFK=0
    ivCYCLE=「:
    TAU=-FPS
i< LlER = ITER+1
    NCYCLF=NLYCIF+1
    CALL BCCLN (LHCL, LBC, X, ITER)
    If (ITrk.NF. 1) GO T'j ll
    PRINT 1, ((C(1,N,NN), NN=1,3), (O(1,M,MN), MM=1,3),SL(N),N=1,3)
    PRINT 2, ((!:(L,N,MM), MM=1,3), (C(L,M,MM),NM=1,3), SR(M),M=1,3)
1L CONTIJUE
```


APPENDIX F

```
    IF (ISTART .EG. l ) CALL INITIAL(X, LBCL)
    IF (ISTART NE I ) GO TO 10
    IF (ITER = EG. 1) GG TC 93
10 00 84 I= 2,N
    CALI ABCUES(X, I, NCYCLE)
84 CONTINUE
    CALL FLNCT(X,N)
    CALL PCTTER(X)
    IF (ITEK .EG. I) GG TO 94
    XN\capRM=0.
    DXSUM=0.
    OO Sל J=1,L
    Du 95 N=1,3
    XNISRM=XNURN+XCLD(J,M)**2
95 UXSUM= EXSUN+X(J,M)**2
    IF (XNGKin eEQ. O.) G3 TC }9
    XNORM= SWRT(EXSUM/XNTRM)
G4 100 90 J=1,L
    DG 90 N=1,3
90 X(J,M)=XLL[(J,N)
    IF (ICYM.EG. C)
    1YKINT &5, (1, (X(2*I-1,J),J=1,3),(X(2*I,J),J=1,3),I=1,N)
    IF ((ICYM EU. O) .ANO. (NCNLIN .EQ. O)| G'] TO 105
    If ((ILYM, fr. O) . MVD. IITER .EQ. I|) CU TO 92
    If (XNukin .FQ. O.) G! TO 93
        IF (ITEP.FC. I) GOTC 92
    IF ((NCYCLE GT. IBLCK).ANO. (IUYM .EQ. Z))GO TO 201
    IF (XNCRN-CCNV) 93, Э3, Э2
G) GUNFINLE
        TAL=TAU+EFS
    IF ( MCQ(K[lOT,IFREQ) . NE. O) GC TO g
    PRINT Br, {I, (X(2*I-1,J),J=1,3),(X\2*I,J),J=1,3),I=1,N)
luS CALL ANSWEKS(ATYPE, X, LBCL, LRCR)
    IF (IP(KLLNT) EEQ. 1) GL TO 103
    IF ((ICYA -FG. 1) .AND. IMCE(KOUNT,IFREQ) .EQ. OI) PRINT 243
lus CovTINUE
    IF (IUYM .EG. OJ CO TU 101
9 CONTINUE
    IF(MTYPE.NE.3) GO TC 206
    WSUM= C.
    DC! 5 I=?, N
        J=2* 1
3 WSUN=wSUAT+(X(J,2)+X(J-2,2))/2.*R(I)*COS(PHI(I))*DS
```


APPENDIX F

```
        DAVE=WSUM/ LSUN
200 CDNTINLE
    IF(IDYN.EG.2) GO TO 204
    IF (ISTART .EG. 1) GO TO 12
    IF (IP(KGUNT).NE. ll GU TO 3
    DO 4 J=4,L,2
    DC 4 M=1,2
    I= J/2
    XJ=(X(J,M)+X(J-2,M)//2.
    XD =(11.*XJ-18.*Xl(I,M)+9. *X2(I,M) - 2.*X3(I,M))/(EPS*6.)
    XI(I,M)=XJ
    4 X2(I,M)= XD
1L ISTART=0
    NCYCLE=C
    INIT=KOUNT
    IACC=1
    DU 26 I=2,N
    CALL ABCLFS{X, I, NCYCLE)
    J=?*I-1
    DU <O M=1,2
        AX=0.
        Bx=0.
        Cx=0.
        LX=0.
        Ex=0.
    DO ?4 NN=1,?
    AX=AX+A(J,N,NM)*X(J-2,MM)
    isX=BX+B(J,N,NM)*X(J-1,NM)
    CX=CX+C(J,N,MM)*x(J,MM)
    UX=[OX+L(J,N,NM)*X(J+1,MM)
    IF (I .LG.N) CU TO 2.4
    t X={X+t(J,N,N,4)*x(J+2,MM)
24 (UvTINUF
20 xs(I,M)=Ax+FX+Cx+Ex+EX-S(J,M)
```



```
    HKINT <4y
    1ACC=1)
    3 covTINUF
    IF (IUY& .tG. l) PKINT 6, KCUNT, TAU, DAVE, ITER, NCYCLE, XNORM
    NCYCLF =O
    KUUNT=KR.LNT+1
    If (K,jUNT .fC. (KM^X+1)) GO TO 10?
```


APPENDIX F

```
234 (CaIMINUF
    1F IIIYN . NF & L GG T\cap 102
    P:IMI Gll, Tl, T?
```



```
    n'max=0.
    DL. }230\quadI=1,
    J=?*1
    1F(X(J,L) EEE. WMAY) GL TO 230
    1心:=1
    WMAXX = X(J,7)
zsu CuNTIFL!
    PHINT 2&1,hMAX, IO
    KLUNT = KとしんT+1
    IF (NTYPE .NE. 3) GAVL= NMAX
    Pi:INT 2U`, fF, PPS, (SL(I), I=1,3), LCHANGE, LAVE, ITER, NCYCLF,
    1 Xubsin
    IF ((NTYHE .FG. 3) .AND. (AOS(DAVE) .GT. 2.0)) GO RO 101
20j JNE=L.
    IF (K\U\T .CT. KMnx) G|j TO 102
    IF (LCHMNCE.[G. 5) \NF=-1.
    Pr=p尸+0\mu*CAE
    HPS=PやS+UトS*LへE
    SL(1)=SL(1)+DS1*ONF
    SL(\angle)=SL(<)+LSS22*CNE
    SL(z)=SL(3)+1) \ 2*し\N
    11=Tl+CTl*CNE
    T2= (2+i) 12*CNE
    IF (1KSTLP .FC. (KNUNT-2)) . ANO. {LCHANOE .[0. 51) UNE=-.5
    IF ((KSTUF .FG. (KGLVT-2)) . AND. (LCHANGE . EQ. 5)) GU TO 22t
    NuNCINNV=1
    If INCYCLt .LE. IPUCK ) GO TO 202
    0! 205 I=1,N
    J=2*I-1
    DO<0; 
    XCL)(J,1)=xl(I,N)
    X\cupL.O(J,2)= X2(I,M)
    x|l.0)(J,3)=x2(I,M)
205 J=J+1
22t CONTINUE
    KSTOP= KLLLAT
    NONCUNV=0
    PP=PP-C|*2.*CNF
    PPS=PPS-LPS*2.*CNE
```


APPENDIX F

```
    SL(1)=SL(1)-nS1*2.*)NE
    SL(2)=SI(2)-DS22*?.*1)NE
    SL(3)=SL(3)-DS3*2.*ONC
    T1=T1-DT1*2.*CNE
    12=12-DT2*2.*CAE
    DPS=DPS/5.
    UP=DP/5.
    US1=0S1/5.
    DS2=DS22/5.
    US3=DS3/5.
    DTl=DT1/5.
    DT2=UT2/b.
    LCHANGE=LCFANGF+1
    IF(LCHANGE.EG.S) GO TOU 215
    IF (LCHANGE .EG. 6) GO TO 101
    Gu TO 224
215 CCNTINLE
    PP=PP-DP
    PPS=PPS-DPS
    SL(1)=SL(1)-\GammaS1
    SL(2)=SL(2)-5S22
    SL(3)=SL(3)-CS3
    Tl=T1-DTl
    12=12-C12
<U४ DO 216 I= L,N
    J=L*I-1
    UG 21% M=1,2
    X(J,1)=X1(I,M)+5.*(X1(1, 1)-XP(J,1))
    x(J,2) =x< (1,N)+5.*(x2(I,M)-x日(J,2))
    x(J,3)=x今(I,M)+5.*(x3(I,M)-XH(J,3))
    XCLD(J,l)=x(J,1)
    xuLU(J,?)=x(J,2)
    xULD(J,3)=x(J,3)
2lu J=J+l
224 CGNIINLF
    PH=PP+DP
    PPj=FPS+LPS
    sL(1)=SL(1)+!S S 
    SL\L)=SL(2)+CS22
    SL(3)=SL(3)+CS3
    Il=T1+CT1
    T2=T2+CTZ
C)2 iNCYCLE =0
```


APPENDIX F

```
    DO 207 I=I,N
    J=2*I-1
    vO 207 M=1,2
    IF (NONCGNV .EQ. O 1 GO TO 209
    XB(d,l)=X1(I,M)
    XB}(J,2)=X2(I,N
    XB(J,3)=X3(I,N)
    X1(I,M)=X(J,1)
    X2(I,M)=X(J,2)
X3(I,M)=X(J,3)
20; x(J,1)=XLLE(J,1)
x(J,2)=x\cupLD(J,2)
X(J,3)=XUL[(J,2)
207 J=J+1
    GU TO 92
10L GO TO 101
    LN! OF PKCGRAN
```


APPENDIX F

SURROUTINE PCTTER(X)
C THIS SUBROUTINE SOLVES A FIVE ELEMENT BANDWIOTH OIAGCNAL MATRIX
WHERE EACH ELEMENT IS ITSELF A 3X3 MATRIX. THE SOLUTION IS BASED
CN POTTERS METHCD.
CCMMON/BLI/ ROA, N, PHIO, SOA, DS, DR
COMMDN/BL5/A(202,3,3),B(202,3,3),C(202,3,3),D(202,3,3),F(202,3,3),
l S(202,3)
COMMON/BL7/XCLD(2C2,3), EPS2, EPS
COMMON/BL8/ LAM, F1O, E20, NU12, NU21, ETA
CCMMON/BLG/ IDYA, KMAX, NCNLIN, GHAR
CCMMCN /BLIO/ R(101),PHI(101),DPHI(101)
[IMENSION X(202,3)
CIMENSION AA(3,3), BB(3,3), CC(3,3), DO(?,3), EE(3,3), FF(3,3)
CIMENSION SS(3),F1(3,3),F3(3,3),P(3,3), Q(3,3), AR(3),G(3,3)
L=2*N
LI=L-1
DO 46 M=1,3
CO 46 MM=1,3
F1(M,MM)=0.
46 F3(M,MM)=0.
IF (NONLIN.EQ. O) GO TO 11
IF (C(1,2,2) .EQ. 1.1 D(1,2,3)= D(1,2,3)+X(1,1)
IF (C(1,2,2) EQ. 1.) C(1,2,1)=C(1,2,1)+X(2,3)
IF (B(L,2,2) .EG. 1.) B(LI,2,l)=B(LI,2,1)+X(L,3)
IF (B(L,2,2) .FQ. 1.) C(L,2,3)=C(L,2,3)+X(Ll,?)
OC 23 J=2,L1
C(J,1,3)=C(J,1,3)+(X(J+2,3)+X(J,3) I/(4.*ETA)
E(J,2,3)=E(J,1,2)+(X(J+2,3)+X(J,3))/(4.*FTA)
J=J+1
I=(J+1)/2
[FI= DPHI(I)
C.SR= COS(PHI(I))/R(I)
D(J,1,3)=D(J,1,3)+ DFI/(2.*ETA) \# X(J,i)
C(J,l,l)=C(J,l,1)+ DFI/(?.*ETA)*X(J+1,3)
R(J,1,3)=R(J,1,3)+ DFI/(?.*ETA)*X(J-2,1)
A(J,l,1)=A(J,1,1)+ DFI/(2.*ETA)*X(J-1,3)
C(J,2,3)=D(J,2,2)+(CS:/(2.*FTA)+1./(ETA*OS))*x(J,`)
[(J,2,1)=C(J,2,1)+(CSR/(2.*ETA)+1./(ETA*CS))*x(J+!,3)
E(J,2,3)=B(J,2, 2)+(CS?/(2.*ETA)-1./(FTA*DS))*x(J-?,l)
23A(J,?,1)=A(J,?,1)+(CSR/(2.*ETA)-1./(ETA*חS))*x(J-!,2)
ll CONTINUE
[076 K=1,3,?

```
```

 IF (C (1, K,K) .EG. 1.) GO TC 76
 CO \(77, M=1,3\)
 \(F(K, M)=C(1, K, N)\)
 \(G(K, M)=C(1, K, M)\)
 \(C(1, K, M)=B(2, K, M)\)
 \(\Gamma(1, K, M)=C(?, K, M)\)
 \(F(2, K, M)=D(2, K, N)\)
 \(F 1(K, M)=E(2, K, N)\)
 \(F(2, K, M)=P(K, M)\)
 \(C(7, K, M)=Q(K, M)\)
 \(\Gamma(?, K, 4)=0\).
 $77+(2, K, M)=0$.
$A R(K)=S(1, K)$
$S(1, K)=S(2, K)$
$s(?, K)=A R(K)$
75 CONTINJF
IF (CI1,2,2) EG. 1.1 GO TC 79
[$\cap 7 B M=1,3$
$F(2, N)=C(1,2, M)$
G(?,N)=D(1,2,M)
$((1,2,4)=A(3,3, M)$
$\Gamma(1,2, M)=B(3, Z, M)$
$F(1,2, M)=C(2,3, M)$
$F 1(2,4)=D(3,3, M)$
$\Delta(3,3,4)=0$.
$F(2, ?, 4)=A(4,3, N)$
$C(3,3, M)=8(4,2, N)$
$\Gamma(3,3, M)=C(4,3, N)$
$E(3,3, M)=D(4,3, N)$
$F 3(3, M)=E(4,3, N)$
$f(4,2, M)=C(2,2, M)$
$F(4,3, M)=0(2,2, N)$
$C(4,3,4)=E(2,2, N)$
$C(4,3,4)=0$.
$F(4,3,4)=0$.
$E(2,2, M)=P(2, M)$
$((2,2, M)=Q(2, M)$
$[(2, ?, M)=0$.
$79 \mathrm{E}(?, ?, 4)=0$.
$\operatorname{AR}(2)=S(1,2)$
$S(1,2)=S(3,2)$
$5(3,3)=5(4,3)$
$S(4,3)=S(2,2)$

```

\section*{APPENDIX F}

〔(2,2)=AR(2)
79 CONTINUE
[0 \(51 \mathrm{M}=1,3\)
CO 52 \(M M=1,3\)
CC(N,MM) \(=C(1, N, M M)\)
DD(M,MM)=-D(I, N,NM)
\(52 \operatorname{FF}(M, M M)=-E(1, N, N M)\)
51 SS(M)=S(1,M)
CALL MATRIX(10, 2, 3, 2, CC, 3, CFF)
CALL MATRIX120, 3, 2, 3, CC, 3, OD, 3, DD, 31
CALL MATRIX \(20,3,3,3, C C, 3, \mathrm{EE}, 3, \mathrm{EE}, 21\)
CALL MATRIX \(170,3,3,3, \mathrm{CC}, 3, \mathrm{Fi}, 3, \mathrm{FI}, 31\)
CALL MATRIX(20, 3, 3, !, CC, 3, \(55,3,5 S, 31\)
LO \(54 \mathrm{M}=1\), 3
r. \(055 M M=1,3\)
\(D(1, M, M M)=D C(M, N N)\)
\(F(1, M, M M)=F E(M, N N)\)
\(C(1 M, M 4)=C(2, M, N N)\)
\(55 \mathrm{BB}(\mathrm{M}, \mathrm{MM})=\mathrm{B}(2, N, N M)\)
\(545(1, M)=S S(M)\)
CALL MATRIX(20, 3, 3, 1, RE, 3, SS, ?, SS, 3)
CALL MATRIX(20, 3, 3, 3, BR, 3, DD, 3, G, 3)
rall matrix (21, 3, 3, \(), \mathrm{G}, 3, \mathrm{CC}, 3, \mathrm{G}, 21\)
CALL MATRIX(10, \(3,3,0, C, 3, G E E)\)
CALL MATRIX(20, 3, 3, 2, RR, 3, ᄃr, 3, D, 31
CALL NATRIX120, 3, 3, 3, RB, 3, Fi, ?, \(A A, 21\)
[0 \(58 \mathrm{M}=1,3\)
ก) \(50 \mathrm{MM}=1,3\) \(D D(M, M M)=-C D(M, N M)-D(2, M, M M)\) \(F E(M, M M)=A D(M, N M)-E(2, M, N M)\) \(\operatorname{SS}(M)=-\operatorname{SS}(N)+5(2, M)\)

CALL MATRIX \((20,3,3,3,6,3, E E, 3, F F, 2)\)
CALL MATRIX170, 2, 3, 1, G, 3, S5, 3, SS, 31
L! \(=\mathrm{L}-1\)
[ \(164 \mathrm{~J}=3, \mathrm{LI}\)
DO \(65 \quad \mathrm{M}=1\). ?
no \(55 ~ M N=1,3\)
D(J-1, M, MN) \(=\) CR(M,MA)
\(\mathrm{E}(J-1, N, N N)=E E(M, M \times)\)
\(\Delta A(M, M M)=A(J, N, N M)\)
\(B B(M, M M)=E(J, N, M M)\)
\(P(M, M M)=D(J-Z, N, M N)\)

\section*{APPENDIX F}
```

65 Q(M,MM)=E(J-\hat{2},N,MM)
AR(M)=S(J-2,N)
65 S(J-1,M)= SS(N)
CALL MATRIXI20, 3, 3, 3, AA, 3, P, 3, P, 3)
CALL MATRIX\20, 2, 3, 3, AA, 3, Q, 3, Q, 3)
CALL MATRIX(20, 3, 3, 1, AA, 3, AR, 3, AR, 3)
IF (J..EQ. 3) CALL MATRIX(20, 3, 3, 3, AA, 3, F1, 3, AA, 3)
IF (J,FO. 5) CALL MAT?IX(20, 3, 3, 3, AA, 3, F3, 3, AA, 3)
CALL MATRIX(21, 2, 3, 0, P, 3, RB, 3, BR, 3)
IF (J.EQ. 4) CALL MATRIX(20, 3, 3, 3, BR, 3, F3, 3, AA, 3)
C.ALL MATRIX(20, 3, 3, 2, RR, 3, DD, 3, DC, 3)
C.ALL NATRIX(20, 3, 2, 3, PE, 3, EE, 3, EE, 3)
CALL MATRIX(20, 2, 2, 1, BB, 3, SS, 3, SS, 3)
DO 60 M=1,3
DO 67 MN=1.3
C(M,MM)= DC(M,NN)+ O(Y,MM)+C(J,M,MM)
DD(M,MM) =-EE (M,NM)-D(J,N,MM)
IF (J.EQ. 3) DC(M,MM)= DD(M,MM)+AA(M,MN)
IF (J.EQ. 5) CC(M,NM)= DC(M,NM)+AE(M,MN)
FF(M,MM)= -E (J,N,NN)
IF (J.EQ.4) FE(N,MN)= - E(J,N,MM)+\triangleA(N,NM)
67 CCNTINUE
GJ SS(M)= S(J,M)-AR(N)-SS(M)
CALL MATRIX(10, 3, 3, O, G, 3, GEE)
(ALL MATRIX120, 3, 3, 3, G, 3, DO, 3, DD, 3)
CALL MATRIX(20, 3, 3, 3, G, 3, EF, 3, FE, 3)
CALL MATRIX(20, 2, 2, 1, G; 3, SS, 2, 5S, 31
IF (J.FO. 3) CALL MATRIX(20, 2, 3, 3, G, 3, F2, 3, F3, 3l
G4 CONTINUE
CO 68 A=1,3
\Gamma06? MM=1,2
r.(LI,M,NN)= CO(N,NM)
P(M,MM)= O(L-2,N,NM)
G(N,MN})=E(L-2,N,NN
PB(M,MM)= B(L,N,NN)
\Delta(N,MM)=A(L,M,NN)
67 CC(M,MM)=C(L,M,NN)
AR(M)=S(L-2,M)
63 S(L1,M)=SS(N)
CALL MATRIX(20, 3, 3, 3, AA, 3, P, 3, F, 3)
CALL MATRIX(20, 3, 3, 3, AA, 3, 0, 2, 6, 2)
CALL MATRIX120, 3, 2, 1, AA, 3, AR, 2, AF, 3)
CALL NATRIX(21,3,3,3, P, 3, BB, 3, BR, 3)

```

\section*{APPENDIX F}

CALL MATRIX \(20,3,3,1, B E, 3, S S, 3, S S, 3)\)
CALL MATRIX \(20,3,3,3, B B, 3, D D, 3, D D, 3)\)
CC \(70 \mathrm{M}=1,3\)
\(\mathrm{CO} 71 \mathrm{MM}=1,3\)
\(71 G(M, M M)=D D(N, N M)+Q(M, M M)+C(L, M, M M)\)
\(70 S S(M)=S(L, M)-A R(N)-S S(M)\)
CALL MATRIX \(110,3,3,0, G, 3, G F E)\)
CALL MATRIXI20, 3, 3, 1, G, 3, SS, 3, SS, 31
CO \(30 \mathrm{M}=1,3\)
CO \(32 M M=1,3\)
\(32 \operatorname{CD}(M, N M)=O(L 1, N, M H)\)
\(30 \times(L, M)=S S(M)\)
CALL MATRIX \(120,3,3,3, D C, 3,55,3,5 S, 31\)
CD \(33 \mathrm{M}=1,3\)
\(33 \times(L 1, M)=S S(N)+S(L 1, N)\)
CO \(34 K=2, L 1\)
\(J=L-K\)
CO \(35 M=1,3\)
[O \(35 \mathrm{MM}=1\), ?
\(F(N, M N)=D(J, M, N N)\)
\(36 G(M, M M)=E(J, M, N M)\)
\(A R(M)=X(J+1, M)\)
\(35 \mathrm{SS}(\mathrm{M})=\mathrm{X}(\mathrm{J}+2, \mathrm{~N})\)
CALL MATRIX \(20,2,3,1, P, 2, A R, 3, A R, 2)\)
CALL MATRIX \(20,3,3,1,6,3, S S, 3, S S, 31\)
CO \(39 \mathrm{M}=1,3\)
\(39 \times(J, M)=A R(M)+S S(M)+S(J, M)\)
IF (J.GT. 3 ) GC TO 34
IF (J •EQ. 2 ) GC Tก 34
Co \(38 \mathrm{M}=1,3\)
\(38 \leq S(M)=X(J+3, M)\)

IF (J.EQ. 3) CALL MATRIX (20, 3, 3, 1, F?, \(\left.{ }^{2}, 5 S,{ }^{2}, 5 S, 3\right)\)
[ \(140 \mathrm{M}=1,3\)
\(40 \times(J, M)=X(J, M)-S S(M)\)
34 CCNTINUE
DO \(22 \mathrm{~J}=1, \mathrm{~L}\)
CD \(22 \mathrm{M}=1,3\)
\(22 \times\) OLD \((J, M)=X(J, M)+X D L D(J, M)\)
FETURN
END AF SUBRCUTIAF PCTTER

\section*{APPENDIX F}
```

Sl.3nliJT INE ARCLES(X, I, NCYCLE)
THIS SlGmiltiNE CEFiNES all elenevTS off the a, b, C, D aND E
MATRICES AS NELL. AS THE S VECTUR wHICH IS EqUIVALENT TO THE Q
VECTUR I* ItE LSERS MANUAL

```

```

 COM*OH/RL3/PP, IACC, INIT
 CuW*L心/BL4/HPS
    ```

```

1 S(202,3)
LUAHUN/PL\&/ (11, C12, C22, K11, K12, K<<, D11, D12, 022
C\&VMCN/SL7/XCL[(?O?,3), EFS2, EPS
CuMPMCl/rLo/ LAN, E10, E20, NU12, NUZl, ETA
CLGVNA/ELG, ICYN, KNAX, NCNLIN, CHAK

```

```

 乚UMMGN/&LlI/ALTAI, ALFAZ, TL, TZ, ITEMP
 C:M"N!`|/4Ll</KCLNT
UINLSSH:N x(2C.2,3)
NEAL AL12,NLPL, K11, K12, K22
KEAL NIL,N3,*12,N3, K3l2, K3
KLAL LAN
J=2*(I-1)
CALL STIF(I, LAM, ElJ, E>0, NU12, NU21)
COK=(C11*U11-K11**2)/LAM**2
ETANUS= ETA/(1.-NL21*VULl)
LTAL= ETA/LAN
GLZ=CLK*LAN%*?
GL4=GL<<LDN**2
NI)=(CI)*[11-K11*K1?)/GL?
M12=(K12*C11-K11*C12)/COK
L12=(2.*C12*K11*K12-C12*C12*D11-C11*K12*K12)/GL2
KH12=(C12*K11*E12-\&12*E11*K12+K12*K12*K11-K12*C11*D12)/GL2
v3=(K12*L11-K11*U121/GL4
M3 = (D12*(11-K11%K12)/GL2
t 3=(K11*K12*K12-C12*O11*K12 +C12*O12*K11-C11*012*K17)/GL4
K3=(2.*F1<*K11*K12-.)11*K12*K12-C11*1)12*D)12)/GL4
UE=(011*C12-K11*K12)/GL2
UK= (K11%L17-C11*K1 \)/GL2
3t=(K11*C12-C11*K12)/GL)
BK=(C11*LIII-K11*K12)/GL2
KI=R(I)
FI= PHI(l)
UFI=1JPFI(I)

```

\section*{APPENDIX F}
```

CS= COS(FI)
SN= SIN(FI)
CSP=CS/RI
SAR=SN/RI
TN1=F10*FTANLS*(ALFA1+VU12*ALFA2)* TOZ(I)
TN2=F?O*ETANUS*(ALFA2+NU? L*ALFA1)* TO7(I)
TM1=F10*ETAL *(ALFA1+NU12*ALFA2)*TZDZ(I)
TM2=F20*FTAL *(ALFAZ+VUZ1*ALFFA1)*TZO7(I)
A(J,l,1)=0.
A(J,1,2)=C.
A(J,1,3)=0.
A(J,2,1)=C.
A(J,2,2)=0.
A(J,2,3)=0.
A(J,3,1)=0.
A(J,3,2)=0.
A(J,3,3)=0.
R(J,1,1)=-D11/(GL?*2.)
P(J,1, 2)=C.
R(J,1,3)=K11/(C.CK*2.)
F(J,?,1)=0.
P(J, ', ') =0.
F(J, ',2)=0.
P(J,3,1)=-K11/(GL2*).1
F}(J,3,?)=0
P(J,3,3)=C11/(CLK*2,)
C(J,1,1)= -1./DS+LE*CSR/2.
C(J,2,?)=(DFI+LE*SNR)/2.
(1J,l,3)= CSR*UK/2.
C(J,?,1)= - חFI/2.
C.(J,2,2)= -1./DS
C (J,2,3)=-.5
C(J,Z,1)= BF*CSP/?.
C(J,3,2)= BF*SNR/2.
C(J,3,3)= -1./DS+RK*C.SR/?.
n(J,1,1)=-D11/(cl?*?.)
D(J,1,2)=0.
[(J,1,3)=K11/(CLK*2.)
[(J,2,1)=0.
C(1, ?,2)=0.
\Gamma(J,2,3)=0.
C(J,3,1)=-K11/(CL2*).)
[(J,3,2)=0.

```

\section*{APPENDIX F}
```

D(J,3,3)=C11/(CDK*2.)
$F(J, 1,1)=1 . / D S+U F * C . S R / 2$.
$E(J, 1,2)=(D F I+L E * S N R) / 2$.
$E(J, 1,3)=C S R * U K / 2$.
$E(J, 2,1)=-$ DFI/2.
$F(J, 2,2)=1 . / \square S$
$E(1,2,3)=-.5$
$F(J, 3,1)=B E * C R / 2$.
$F(J, 3,2)=B E * S A R / 2$.
$E(J, 3,3)=1 . / D S+E K * C S R / 2$.
S(J, I) $=$ DII/(LAM**2*CDK)*TN1 -K11/COK*TMI
$s(J, 2)=0$.
S(J,3)=K11/(LAN**2*COK)*TN1-C11/CDK*TM1
IF INONLIA .EQ. C) GO TO 10
$S(J, 1)=S(J, 1)-(x(J+2,3)+X(J, 3)) * * 2 / E T A / 8$.
$10 \mathrm{~J}=\mathrm{J}+1$
$A(J, 1,1)=-1 . / D S+C S R *(1 .-N 12) / 2$.
$A(J, 1,2)=D F I / 2$.
$A(J, 1,3)=-C S R * N 12 / 2$.
$A(J, 2,1)=-(D F I+S A R * N 12) / 2$.
$\mathrm{A}(\mathrm{J}, 2,2)=(-1, / \mathrm{CS}+\mathrm{CSR} / 2$.
A(J,2,3) $=-$ SAR*N12/2.
$A(J, 3,1)=-C S R * N E / 2$.
$A(J, 3,2)=-.5 / L \Delta N * * 2$
$\Delta(J, 3,3)=-1 . / 5 S+C S R *(1 .-M 3) / 2$.
$\left.\mathrm{F}(\mathrm{J}, 1,1)=-1 E 1 \overline{2}+\mathrm{C}^{2} 2\right) * \mathrm{C}$ SR*CSR/2.
$P(J, 1, ?)=-(E 1 \bar{c}+\mathrm{C} 22) * C S R * S N R / 2$ 。
P(J, 1,3) $=(K$ R12 + K22) $\%$ CSR*CSR/2.
P(J, 2, 1) = -(E1 $2+C 22) *(S R * S N R / 2$.
F $(\mathrm{J}, ?, 2)=-(E 12+\mathrm{C}=2) * S N R * S N R / 2$.
P(J,2,3) $=(K 91 \bar{c}+\mathrm{K} 22) * C S R * S N R / 2$.
F(J, 3,]) $=-$ CS $2 * C S R *(E 3+K 22 / L A M * * 2) / 2$.
E(J,2,2) $=-\mathrm{CSR*SNR*}(E 3+K ? 2 / L A M * * 2) / 2$.
$\mathrm{P}(\mathrm{J}, 3,3)=\mathrm{CSR*CSR*}(\mathrm{~K} 3+\mathrm{D})$? / LAM**2)/2.
($(\mathrm{J}, 1,1)=1 . / \mathrm{DS}+\mathrm{CSR}(1 .-\mathrm{N}) \mathrm{l}) / 2$.
C(J,l,?) $=$ DFI/2.
($(\mathrm{J}, 2,2)=-\mathrm{CSR}$ * N $12 / 2$.
$C(J, 2,1)=-(D F I+S N R * N 121 / 2$.
$C(J, ?, 2)=11 . /[S+C, S R / 2.1$
$C(J, 2,3)=-S N R * N 12 / 2$.
C(J,3,1)=-CSR*Nシノこ。
C $(\mathrm{J}, 3,2)=-.5 / \mathrm{LA}$ M**?
$C(J, 3,3)=1 . / 05+C S P *(1,-43) / 2$.

```

\section*{APPENDIX F}
```

 U(J,1,1)= -(E12+C22)*CSR*CSR/2.
 D(J,1,2)= -(E12+C22)*CSR*SNR/2.
 D(J,1,3)=(KB12+K22)*CSR*CSR/2.
 D(J,2,1)= -(E12+C22)*CSR*SNR/2.
 U(J,2,2)= -(E12+C22)*SNR*SNR/2.
 D(J,2,3)=(KR12+K22)*CSR*SNR/2.
 U(J,3,1.)= -CSR*CSR*(E3+K22/LAM**2)/2.
 J(J,3,2)= -CSR*SNR*(L3+K22/LAM**2)/2.
 D(J,3,3)= C.SR*CSR*(K3+U22/LAM**2)/2.
 E (J,1,1)=0.
 E(J,1,2)=C.
 E (J,1,3)=0.
 E(J,2,1)=C.
 E(J,2,2)=0.
 E(J,L,3)=C.
 E (J,3,1)=0.
 E(J,3,2)=C.
 E(J,3,3)=C.
 S(J,l) = -PS(I) +CSR*(N12*TN1+M12*TM1-TN2)
 S(J,2)= -PL(I) +SNR*(N12*TN1+M12*TM1-TN2)
 S(J.3)=C5F*(N3*TN1+M3*TM1-TM2)
 IF (IDYM.NE. 1) GO TO 83
 If (IACC .EC. 1) GC TO 82
 AL= \angle./EPS2*T(I)
 IF (KUUNT .EG. INIT) AL=O.
 IF (KUUNT .EQ. LNIT+I) AL=6./EPS2*T(I)
 E;(J,L,1)=e(J,1,1)-AL/2.
 U(J,1,l)=L(J,l,1)-AL/2.
 b(J,Z,2)=E(J,2,2)-AL/2.
 D(J,2,2)=i)(J,2,2)-AL/2.
 \&3 CuINTIVUE
IF (IUYN .tr. II CALL EYNAMIC(S,N,J, I, NCYCLF)
OL 1F (INJNLIA .FG. O) GOT TO }3
S(J,1)= S(J,1)-DF1/FTA*(X(J+1, 3)*x(J,1)+X(J-1,3)*X(J-2,1))/2.

```

```

 1 (X(J+1,3)*x(J,1)-X(J-1,3)*x(J-2,1))/ETA/OS
 34 ClivTlNUE
RETUKis
EN% LIF SUBROUTINE AHCDES

```

\section*{APPENDIX F}
```

 SUPROUT INF GFEMTY (NTYPFI
 C THIS SURROUTINE CALCULATES THE GEGNETRY AT THE STATION MIDPQINT(I-1/2)
C IF NTYPE = 4 THE LSER NUST DEFINE R(II, PIII(I) AND DPUIII) 36
20 ГPHI(I) = 0.O
CO TO 50
10 IF INTYPE .NE. 2 1 G) TO 30
THE SMELL IS A CCNF WIEN NTYPE IS ?
TS = STA/ AN
rR = DS * CCS(RFFI)
P(I)=RMA-DP/Z.
FHI(1)= RPHI
CPHI(1) = O.C
\Gamma040 I = 2. N
F(I) = R(I-I) + CR
FHI(I) = RPHI
40 CPHI(I) = 0.0
COT060
30 IF (NTYPF .NE. 3) GC TO 50
THE SHFLL IS A SFFFRICAL CAP WHEN NTYPE IS 3
SOA = RDA*RPHI
[.S = SOA/ AN
IFI=RPHI/AN
A\capR=1./ROA
CPHI(1)=ACR
FHI(1) = -DFI/2.
F(1)= ROA*SIN(FFI(1))
C0 70 I =2,N
FHI(I) = PHI(I -1) + DFI
F(I) = ROA * SIN(PHI(I))
70 [PHI(I)=ACR
GO TO 50
5O IF \NTYPE NE . 4) GC TO 6O
60 RETURN
END OF SUBROLTIAE GFCMTY

```

\section*{APPENDIX F}

SUBROUTIAE ROCCN（LRCL，LBCR，X，ITER）
C EOCCIN OEFINES THE BMUNDARY CONDITICNS TO RE USED． CCMMON／RLI／RCA，A，PHIO，SOA，DS，DR
CCMMCN／BL2／CNEGAL（3，3），ALAMDAL（3，3），OMFGAR（3，3），ALAMOAR（3，3），
1 SL（3），SR（3）

\(15(202,3)\)
CCMMCN／BLIO／R（101），PHI（1C1），DPHIILO：）
CIMFNSION \(\times(202,3)\)
「ATA PI／3．1415c2t535997c？／
L＝？＊\(N\)
\(11=L-1\)
［0 \(1 \mathrm{~J}=1,3\)
［．7 \(2 k=1,3\)
\(A(1, J, K)=0\) ．
\(R(1, J, K)=0\) ．
\((11, J, K)=C\) ．
\([(1, j, k)=0\) ．
\(F(1, J, K)=C\) ．
\(A(? * N, J, K)=0\) ．
\(\mathrm{E}(2 * V, J, K)=0\) ．
\(C(2 * N, J, K)=C\) ．
［ \((2 * N, J, K)=0\) 。
\(2 F(2 * N, J, K)=C\) ．
\(S(1, J)=S L(J)\)
\(15(\supset * N, J)=S R(J)\)
IF（LBCL ．NE． 1 ）COTO 3
If（ITER EQ．I）PRINT 4
4 FORMAT（40X，＊THE LEFT BDUNEARY CCNDITICN IS A FCLF POINT＊）
「（1，1，T）＝1．
\(C(1, ?, ?)=1\) ．
\(\Gamma(2,3,3)=1\) ．
COTM 9
3 IF（LBEL ．NF． 21 CO TO 5
IF（ITER ．EQ． 11 FRINT 6
5 FCFMAT（4OX，＊THE LEFT STUNDARY CUNOITION IS PINNFD＊I
\([(1,1,1)=1\).
\([(1,2,2)=1\) ．
\(C(1,3,3)=1\) ．
COTO 9
5 IF（LBCL ．NF． 2 ）COTO
IF（ITER ．FQ． 11 PRINT a

\section*{APPENDIX F}

8 FORMATI40X, *THE LEFT BOUNDARY CCNEITICN IS FIXED*)
C(1,1,1)=1.
\(\mathrm{n}(1,2,2)=1\).
\([11,3,3)=1\).
0109
7 IF (LBCL .NE 4) CO TO 19
IF ITTER •EO. 1\()\) PRINT 10
i) FORMATI40X, *THE LEFT RDUNCARY CONDITIUN IS FREF*)

C \((1,1,1)=1\).
\((11,2,2)=1\).
\((12,3,3)=1\).
\(5(1,2)=S(1,2)-x(1,1)+x(2,3)\)
CC T0 9
19 IF (LBCL .NE. 5) GO TO 9
IF (ITER .EQ. 1 ) FRIAT 20
20 FBPMAT(40X, *TFF LFFT BOUNCARY IS AN ELASTIC CGNSTEAIMT*)
Dn \(21 M=1,3\)
DO \(21 \mathrm{MM}=1,3\)
C(1,M,MM)=CHEGAL(M,NM)
21 D(2,M,MNI=ALANCAL (M,MM)
? IF (LBCR .NE. LI GO TO 11 IF (ITER .EG. 11 PRINT 12
12 FCRMATI4OX, *THE RIGHT BOUNDARY CONDITIOA IS A PCLE OOTAT*I
C(2*N, 1, 1)=1.
\(F(2 * N, 2,2)=1\).
\(\mathrm{C}(2+\mathrm{N}, 3,2)=1\).
60 TH17
11 IF (LBCE NE. 21 GO TO 13 IF IITER .FQ. 11 PRIAT 14
1+ FORMAT(4OX, ETHE RIGHT BOUNDARY CONDITION IS PINUSOM) \(((2 * N, 1,1)=1\).
( \((2 * N, 2,2)=1\).

C口 1017
13 IF (LPCR .NE 31 COTO 15
IF (ITER EEQ. 11 PRINT 15
15 FORMAT (4OX, FTFE RIGHT BOUNOARY CONDITIDN IS FTXES*)
C(?*N, 1,1\()=1\) -
\(\mathrm{C}(2 * N, 2,2)=1\) 。
\(C(? * N, 3,3)=1\).
GOTG17
13 IF (LECR . NE. 4 ) CO TO?
IF (ITER EQ. 11 PRINT 13

\section*{APPENDIX \(F\)}

18 FORMATI40X, *THE RIGHT BOUNDARY CONDITICN IS FREE\%1 \(\mathrm{E}(2 * \mathrm{~N}, 1,1)=1\).
E \((2 * N, 2,2)=1\) 。 E \((2 \div N, 3,3)=1\).
\(S(L, 2)=S(L, 2)-X(L 1,1) \neq X(L, 3)\) co TO 17
22 IF (LBCR. NE. 51 GO TH 17
IF (ITER .EQ. 11 PRINT 23
23 FORMATI \(40 X\), *THE RIGHT BOUNDARY IS AN ELASTIC CONSTRAINT*)
DO \(24 \mathrm{M}=1,3\)
CO \(24 \mathrm{MM}=1,3\)
\(B(L, M, M M)=Q N E G A F(M, N M)\)
\(24 C(L, M, M M)=A L A M E A R(M, M M)\)
17 FETURN FND ITF BOCON

\section*{APPENDIX F}

SURROUTINE FUNCT（X，NI
C This subrolitine calculates the negative of \(S=a x+\rho x+c x+D x+E x-S\)
（CNMON／BL5／A（202，2，3），P1202，3，3），C（202，3，3），D（20？，3，2），E（202，2，3）， 1 S（202，3）

CIMENSION AA \((3,2), \operatorname{BB}(2,3), C C(3,3), ~ D D(3,2), F E(3,3)\)
DIMFVSIDN XA（3），XR（3），XC（3），XD（2），XE（3）
C．IMFNSION XI202，31
\(L=2 * V\)
\(11=\mathrm{L}-1\)
กロ \(1 \mathrm{~J}=1, \mathrm{~L}\)
IF（J．NE．1）GC TO 2
［O \(3 N=1,3\)
\(x \Delta(M)=0\) ．
\(X P(M)=0\) ．
\(X C(M)=X(1, M)\)
\(X D(M)=X(2, M)\)
\(3 X F(M)=X(3, M)\)
COTO 10
2 IF（J．NE． 21 GC TO 4
［0 \(5 M=1\) ，？
\(X \wedge(M)=0\) ．
\(X B(M)=X(1, M)\)
\(X C(M)=X(2, M)\)
\(X[(M)=X(3, M)\)
\(5 X E(M)=X(4, M)\)
C口 TO 10
\(\Varangle\) IF（J．NE．L）GC In \(\in\)
กП \(7 \mathrm{M}=1,3\)
\(X A(M)=X(L-2, N)\)
\(X R(M)=X(L-1, M)\)
\(X \subset(M)=X(L, M)\)
\(X D(M)=0\) ．
\(7 \times E(M)=0\) ．
GOTO 10
5 IF（J．NE．（L－1））SC T円 9
［0 \(9: M=1,3\)
\(x \Delta(M)=X(L-3, N)\)
\(X E(M)=X(L-2, M)\)
\(X C(M)=X(L-1, N)\)
\(X C(M)=X(L, M)\)
\(9 X E(M)=0\) ．
ro TO 10

\section*{APPENDIX F}
```

3 CO 11 M=1,3
XA(M)=X(J-2,M)
XE(M)=X(J-1,M)
XC(M)=X(J,M)
XC(M)=X(J+1,M)
11 XF(M)=X(J+2,M)
10 CO 12 M=1,3
C[12 MM=1,3
AA(M,MM)=AlJ,M,NM)
PB(M,MM)=R(J,M,NN)
CC(M,NM)=C(J,M,NN)
CD(M,MM)=D(J,M,NN)
12 FE(M,MM)=E(J,M,NN)
CALL MATRIX(20, 3, 3, 1, AA, 3, XA, 3, XA, 31
CALL MATPIX(20, 3, 3, 1, RR, 3, XR, 3, XB, 21
CALL MATRIX\20, 3, 3, 1, CC, 3, XC, 3, XC, ?)
CALL MATPIX(20, 3, 3, 1, DD, 3, XD, `, X[, 31
(ALL MATRIX\20, 3, 3, 1, EE, 3, XF, 3, XE, 3)
[\cap 12 M=1,3
13S(J,M)=S(J,M) -XA(M)-XR(M)-XC(M)-XD(M)-XE(M)
1 CCNTINUE
RFTURN
FND OF SURRCUTINE FUNCT

```

\section*{APPENDIX \(F\)}
```

 SUBROUTINE ANSWERS(NTYPE, X, LBCL, LBCR)
 THIS SUBROUTINE CALCULATES AND PRINTS N-THETA AND M-THETA.
 C
THE LOAD VECTORS ARE ALSO PRINTED WITH THESE VALUES.
CCMMON/BLI/ ROA, N, PHIO, SOA, DS, DR
CCMMON/BL6/ C11, C12, C22, K11, K12, K22, D11, 012, D22
COMMON/BL8/ LAM, ElO, E20, NU12, NU21, ETA
CCMMGN /BLIO/ R(1CI),PHI(101),DPHI(101)
COMMON/BL11/ALFA1, ALFA2, T1, T2, ITFMP
CCMMON/BLI4/ DSZ, DEL, RPHI, AN
DIMENSION X(202,3)
REAL LAM, K11, K12, K22
REAL N12, N3, M12,N3, KB12, K3
REAL NU12, NU21
CALL GECMTY(NTYPE)
L=2*N
l FOPMAT\/5X*STATICN*7X*NTHETA*14X*MIHETA*14X *RADIAL LOAD*7X*MFRIOI
1 AN LOAD*)
PRINT I
CO2 I=1,N
CALL STIF(I)
FTAL= ETA/LAN
(TANUS= ETA/(1.-NL21*NU12)
1N1=E10*ETANUS*(ALFAI + VUL2*ALFA2)* TDZ(I)
TN2=520*ETANUS*(ALFA2+NU21*ALFA1)* TOZ(I)
TM1=E10*ETAL *(ALFA1+NU12*ALFA2)*TZDZ(I)
TM2=F20*ETAL *(ALFA2+NU21*ALFA1)*TZOZ(I)
LI=X(2*I,1)
hI=X(2*I,2)
FI=X(2*I, 2)
IF(I.NE.1) GO TC 1C
FI=PHI(I)+DFL
DFI= DPHI(1)
RI= (R(1)+R(2))/2.
COTO ll
10 FI=PHI(I)+DFL
CFI= DPHI(I)
FI= R(I)+DS2*CCS(PHI(I))
11 CONTINUE
IF (I .NE. I) GC TO 3
IF (LBCL .NE. 1) CO TO 12
l.P=(-3.*X(2,1)+4.*X(4,1)-X(6,1))/(2.*0,S)
PF=(-3.*x(2,3)+4.*x(4,3)-x(6,3))/(2.*\capS)

```

\section*{APPENDIX F}
```

 GO TO 15
 3 IF (I .NE.N) GC TO 12
 IF (LBCR .NF. 11 GO TO 12
 LP=(x(L-4,1)-4.*)(L-2,1)+3.*x(L,1))/(2.*DS)
 BP= (X(L-4,3)-4.**(L-2,3)+3.*X(L,3))/(?.*DS)
 15 AK22=-BP
EM22=UP +DFI*WI + EI**2/(?.*ETA)
GO TO 13
12 SNR= SIN(FI)/RI
CSR=COS(FI)/RI
EM22= CSR*UI + SNR *WI
AK22= -CSR*BI
13 CDK = (C11*D11-K11**2)/LAM**2
CL2= CDK*LAM**2
CL4=GL2*LAM**2
N12=(C12*D11-K11*K12)/GL2
N12= (K12*C11-K11*C121/CDK
E1?=(2.*C12*K11*K12-C12*C12*011-C11*K12*K12)/GL2
KB12= (C12*K11*D12-C12*D11*K12+K12*K12*K11.-K12*C11*O12)/GL?
N3=(K1?*D11-K11*D12)/GL4
N3=(D12*C11-K11*K12)/CL2
E3=(K11*K12*K12-C12*Di1*K12 +C12*D1?*K11-C11*012*K121/GL4
K3=(2.*D12*K11*K12-D11*K12*K12-C11*012*012)/GL4
AN22=N12*X(2*I-1,1)+M12*X(2*I-1,3)+(El2+C?2)*EM22+(K@1?+K??)*AK2?
2 +N12*TN1+M12*TN1-TN2
AM22=N3*x(2*I-1,1)+M3*X(2*I-1,3)+(F3+K22/LAM**こ)*F*2?
1 +(K3+D22./LAM**2)*AK?2
2 +N3*TN1+M3*TM1-TM2
FPL=PL(I,N)
PPS=PS(I,N)
FRINT 5, I, AN22, AM22, PPL, PPS
f FCPMAT(4X,I5,4(5X, F15.8))
2 rONTINUE
RETURN
FND OF ANSWERS SLPROUTINE

```

\section*{APPENDIX F}
```

C THIS SUBROUTINE DFFINES C11, C12, C2?, K11, K12, K2?, D11, D12
AND E?2.
CCMMON/BLG/ C11, C12, C??, KIL, K12, K?2, [11, D:2, D2?
COMMON/BLE/ LAN, F1O, F2O, NU12, NL?1, ETA
CCNMCN/BL12/KCUNT
CCMMON/BL15/ Ч0
peAl mulC, mULD
PEAL LAM, NU12, NLZ1, K11, K12, K22
C E1O= EI/EO AND ELC= E?/EO
NULC= T(I)/(1.-NL12*NU21)
MULD= LAM**2*T(1)**2*MILC/12.
K11=0.
k1?=0.
k?2=0.
r11=F10*NULC
C12= NU12*F1C*NLLC
O2?=F2O*NULC
[1!= [10*NULD
「12= NU12*E10*MLLD
C.22= E?O*NULD
FETURN
FNI IF SURRCUTINE STIF

```

\section*{APPENDIX F}
```

 SUBKGULTIME CYADMIC(S,N, J, I, NCYCLE)
 THIS SUBRCLTINE SETS ALPHA, EETA, GAMMA AND DELTA FOK THE
 GACKWARE TINE CERIVATIVES AND SAVES THE BACKWARD TIME STATIUR
 SULUTICNS LF L ANE W.
 COMMLN/EL3/PP, IACC, INIT
 CCMMCN/BL7/XOLD(202,3), EPS?, EPS
 COMm|N/PL12/KCLNT
 CummUN/&゙L3/x1(101,2), x2(101,2), x3(101,2)
 UIMENSICN S(7O?,3)
 IF (KLLLNT .NE. INIT) GO TO I
 BE=\!.
 GA=0.
 UE=1.
 IF (IH(K(CNT) .EG. 1) CO TO 4
 IF (NCYCLF .CT. 1) G? TO 4
 GU TU 4
 1 IF (KUUNT -NF. (INIT+1)| GO IO 2
 IF (NCYELE .GT. 1) GO TC 10
 DU G M=1,2
 0 XI(I,:V)={X[LL(J+1,N)+ X(ID(J-1,M))/2.
 lu EE= -6./LPS?*T(I)
 七A= -6./EPS *T(I)
 LE=-L.
 心C}10
 <IF (KCLNT,NF. (INIT+>)) GC TC 3
 If (NCYCLE .OT. 1) G) TO ll
 Du }7\textrm{M}=1,
 x 2(I,M)=x1(I,N)
 7 XI(I,M)=(XCLC(J+1,N)+ XCLD(J-1,M))/2.
 1l KE= - 4./EPS?*T(I)
GA= <./tPS2*T(I)
DE=-1.
GU IU 4
s IF (NCY(LE •GT. 1) O.J TC 12
DUS \& M=1,2
x (I,M)= x2(I,N)
X2(I,N)=x1(I,N)
0 Xl(I,M)=(XCLD(J+1,M)+ X(LLD(J-1,M))/2.
1< bL= -b./tP\leq2*1(I)
GA= 4./EPS2*T(I)
1)上=-1./[PS2*I(I)
+ UO G M=1,2
\primeG S(J,M)=S(J,N)+BF*X1(I,N)+GA* X2(I,M)+\times3(I,M)*DL
KETしKN
LN) OF DYNANTC

```

\section*{APPENDIX F}
```

 SUBRCUTINE INITIAL(X, LBCL)
 C THIS SUBROUTINE INITIALIZES THE }x\mathrm{ AND }x\mathrm{ DOT VECTORS
C THIS SUBRQUTINF IS REQUIRED IF X OR XOOT (INITIAL CONDITIONSI ARE
C CTHER THAN ZERC FCR DYNAMIC PROBLENS.
COMMIN/BLI/ ROA, N, PHIO, SOA, DS, DR
COMMON/BL6/ C11, C12, C2?, K11,K12, K22, D1I, D12, D22
COMMON/BL8/ LAM, ELO, E2O, NU:2. NU21, ETA
CCMMCN/BL9/ IDYN, KMAX, NCNLIN, CFAR
COMMON /BLIO/ R(IC1),PHI(101),DPHI(101)
CCMMON/BL13/X1(1C1,2), X2(101,2), X3(101,2)
EIMENSION X(202,3)
REAL LAM, K11, K1E, K22
CO 16 I=IN
J=2*I
x(1,1)= DV(1,I)
x(J,2)=D\vee(2,I)
x 2(1,1)=DV{3,I)
16 <2(I, 2)=DV(4,1)
CO 1 I=1,N
J=2*I
IF (1 .NE. 1) GC TO 3
KP=(-3.**(2,2)+4.*)*(4,2)-x(6,2))/(2.*05)
CC TH 5
3 IF (1 .NE.N) OC TO 4
WP=(x(J-4,2)-4.* X (J-2,?)+2.* (J, 2))/(2.*0S)
CFI=DPHI(N)+(DPFI(N)-DPHI(N-1))/2.
G0 TO 1
4nP=(x(J+2,2)-x(J-2,2))/(2.*DS)
5 \GammaFI=(DPHI(I)+DPFI(I+1))/?.
I < (J,3)=WP-DF[*<(J,I)
Cn 2 I=1,N
J=?*I
CALL STIF(I, LAN, FIO, ElO, NUI2, NH21)
IF (I .NE. I) GC TM 6
LP=(-3.*x(2,1)+4.*x(4,1)-X(6,1))/12.*0S)
f
@T TO 9
IF (I .NE.N) GC TN ?
UP=(X(J-4,1)-4.*X(J-2,1)+3.*X(J,1))/(2.*CS)
FP=(X(J-4,3)-4.tx(j-2,3)+3.*X(J,3))/(2.tcc)
RI=R(N)+CCS(PHI(N))*[S/2.
FI=PHI(N)+(PHI(N)-PHI(V-I))/2.

```

\section*{APPENDIX F}
```

 CFI=OPHI(N)+(DPHI(N)-DPHI (N-1))/2.
 GOTO 9
 7LP=(x(J+2,1)-x(J-2,1))/(2.*DS)
BP={X(J+2,3)-X(J-2,3))/(?.*DS)
8 FI=(R(I)+R(I+1))/2.
FI=(PHI(I)+PHI(I+1))/2.
CFI=(CPHI(I)+DPFI(I+1))/?.
9 IF (LBCL -NE. 1) GO TO 10
IF (I . EQ. 1) GC TO 11
10 SNR=SIN(FI)/RI
CSR=CCS(FI)/RI
FM22=CSR*X(J,1)+SNR*X(J,?)
AK22=-CSR*X(J,3)
11 FM11=UP +DFI*X(J,2)
IF (NONLIN.EG. 1) EM11= EM11+X(J,3)**2/(2.*ETA)
AK11=-BP
IF (LBCL .NE. II GO TO 12
IF (I .NE. 1) GC TO 12
EM2? = FM11
AK?2=AK11
12 N=J-1
*{M,: }=C11*EM11+C12*EA22+K11*AK111+K12*AK22
x(M,3)=(K11*EM11+K12*E42? +D11*AK11+D12*AK22)/LAM年*?
IF (LBCL .NE. 11 GO TO 17
IF (I .EQ. 1) X(N,3)=0.
CO TO 2
17 X(M, 2)=CSR*(X(N,?)-(K12*EM11+K22*E422+D!2*AK:1+\Gammaフつ*AK22))
2 CCNTINUE
CO 13 I=1,N
J=2*I-1
IF (I .NE. 1) GC TO 14
X(J,?)=X(J,2)+LAM**2*(-3.*)(2,3)+4.*x(4,2)-x(E, 2))/(2.*05)
CO 10 13
14 IF (I .NE.N) GC TM 15

```

```

 ro rn 13
 15x(J,2)= X(J,2)+LAN**?*(X(J+2,3)-X(J-?, ?))/(2.*DS)
13 rCNTINUF
FETURN
END OF INITIAL

```

\section*{APPENDIX F}
```

FUNCTION PL(I)
COMMON/RLI/ ROA, N, PHIO, SOA, DS, DR
RCNMCN/BLZ/PP, IACC, INIT
COMMON/BLE/ LAN, F:1O, E20, NU12, NU21, [TA
CCNMON/BLI2/KGUNT
PEAL LAM
PEAL NUI2, NU2l
FCL = 2.*LAN*ETA/(3.*(1.-NU12*NU21))**.5*(T(I)/E|A)**2*F:O
PLL=PO*PCL
FL=PLL
IF (KCUNT . FG. C) PL=?.
IF (KOINT .GT.2C) PL=0.
IF (I\triangleCC .NE. 1 , GC T') !
IF (KNUNT.FQ. C)PL=PLL
IF (KRUNT .FG.2C) PL=O.
l creminue
hETURN
FNO

```
FLACTIMN PSEI)
CCAMCN/BLI/ RCA, N, D4IO, SOA, DS, DK
C[NMCN/BL3/PF, IACC, IVIT
CCMMON/BL4/PPS
COMMr'v/BLE/ LAM, El0, \(=20\), NU12, NU2l, ETA
CC*MCN/RLI2/KCLNT
\(F S=P P S\)
FETURN
FND
```

FUNCTION IP(KCLAT)
IP=0
IF (KRUNT .FQ. O) IP=?
IF (KUUNT .EQ. 2C) IP=1
FETURN
ENO

```

\section*{APPENDIX F}
```

 FUNCTICN DV(N,I)
 C DV(I,II SETS THF INITIAL U DISPLACENENT
C DV(2,I) SETS TFE INITIAL N DISPLACFMFNT
C DV(3,I) SETS THE INITIAL U VFLCCITY
C DV(4,I) SETS THE INITIAL * VELOCITY
IV=0.
R=TURN
END CF DV

```
    FIJNCTIJN T(I)
    CCMMDN/BL15/ 4C
C TII MLST BE NENRINENSICNAL THICKNESS, THFPEFGRF DIVIIF PY •!
    \(T=1 . / 4 ?\)
    PFTURN
    [ND
    FUNCTION TOZ(I)
    CCMMON/BLI/ RCA, A, PUID, SCA, DS, DR
        COMMCN/RLII/ALFAI, ALFA?. T1, T?, ITFMP
    \(I T=1 T E M P+1\)
    \(A=I T E M P+1\)
        \(4=T(I) / 2\).
    \(T C Z=T 1 * T(I)+T Z *(1 * * T-(-H) * * I T) / A N\)
    FETURN
    FND

FUNCTION TZDZII）
C．CMMON／BLI／RCA，N，PitID，SOA，DS，DR COMMON／BLII／ALFAl，ALFAつ，T1，T2，ITEMP
\(1 T=1 T F M P+2\)
\(A N=I T F M P+2\)
\(H=T(I) / 2\) ．
TZDZ＝T？＊（ト＊＊ITー（－ト）＊＊IT）／AN
RETURN
END

\section*{SAMPLE PRINTOUT}

The printout for the sample problem is as follows:
SGIVEN
NTYPE \(=3\),
\(\mathrm{N}=26\),
\(R 0=0.1 E+03\),
\(\mathrm{SO}=0.0\),
\(H O=0.1 E+C 1\)
\(\mathrm{EO}=0.1 \mathrm{E}+08\),
E1 \(=0.1 E+C Q\),
\(E 2=0.1 E+C B\)
NU12 \(=0.3 E+00\),
NU21 \(1=0.3 E+00\).
SIGO \(=0.1 E+01\)
NONLIN \(=1\),
CONV \(=0.1 E-C 2\),
\(\mathrm{PHIO}=0.158 \mathrm{C} 54 \mathrm{E}+02\),
L.BCL \(=1\),

LACR \(=3\),
PP \(=-0.6 E+00\),
PPS \(=0.0\),
SL \(\quad=0.0,0.0,0.0\),
\(S R \quad=0.0,0.0,0.0\)
CHAR \(=0.1 E+C 3\),
IDYM \(=1\).
KMAX \(=40\),
DTAU \(=0.25 E+00\)
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
If idym \(=0\) the shell is luad \\
IF ICYM=1 THE SHELL IS LOADE \\
if inym=2 the shell static
\end{tabular} & \[
\begin{aligned}
& \text { CALLY } \\
& \text { CALLY } \\
& \text { LOAD IS CAL }
\end{aligned}
\] & \\
\hline & FCR this run, icym & 1 & \\
\hline & number of statiuns = & 26 & \\
\hline & rfridian/reffrence ratio = & . 275926 & \\
\hline & RADIUS/REFERENCE RATIO \(=\) & 1.000000 & \\
\hline & THICK/ REF RAD RATIO \(=\) & . 010000 & \\
\hline E1/E0 \(=\) & 1.000000 & E2/EO \(=\) & 1.000000 \\
\hline NU12 \(=\) & . 300000 & NU21 \(=\) & . 300000 \\
\hline EU/SO \(=\) & 10000.300030 & REF DIST = & 0.000000 \\
\hline
\end{tabular}

If NONLIN \(=0\) UNLY LINEAR TERMS ARE USED
If NONLIN \(=1\) NCNLINFAR TERMS USFD
FOR THIS RUN NCNLIN = 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\bigcirc\) & STATION N & NO & N-S RESULTANT & SHEAR FCRCE & M-S RESULTANT & U-DEFORMATION & W-DEFOPMATION & BETA RCTATION \\
\hline & 1 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 2 & & 0. & 0. & 0. & 0 . & 0 . & 0. \\
\hline & 3 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 4 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 5 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 6 & & 0. & 0. & C. & 0 . & 0. & 0. \\
\hline & 7 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 8 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 9 & & 0. & 0. & C. & 0. & 0 . & 0. \\
\hline & 10 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 11 & & 0. & 0. & 0. & 0. & 0 & 0. \\
\hline & 12 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 13 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 14 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 15 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 16 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 17 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 18 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 19 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 20 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 21 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 22 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 23 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & 24 & & 0. & 0. & 0. & 0. & 0. & c. \\
\hline & 25 & & 0. & 0. & C. & 0. & 0. & 0. \\
\hline & 26 & & 0. & 0. & 0. & 0. & 0. & 0. \\
\hline & STATION & & NTHE TA & MTHETA & RADIAL LOAD & MERIDIAN LIAD & & \\
\hline & \[
1
\] & 0. & & 0 0. & 0.0 & O. & & \\
\hline & 2 & 0. & & 0. & 0. & \[
0 .
\] & & \\
\hline & 3 & 0. & & 0. & 0. & 0 . & & \\
\hline & 4 & 0. & & 0. & 0. & 0. & & \\
\hline & 5 & 0. & & 0. & 0. & 0. & & \\
\hline & 6 & 0. & & 0. & 0. & 0. & & \\
\hline & 7 & 0. & & 0. & 0. & 0. & & \\
\hline & 8 & 0. & & 0. & 0. & 0. & & \\
\hline & 9 & 0. & & 0. & 0. & 0. & & \\
\hline & 10 & 0. & & 0. & 0. & 0. & & \\
\hline & 11 & 0. & & 0. & 0. & 0. & & \\
\hline & 12 & 0. & & 0. & 0. & 0. & & \\
\hline & 13 & 0. & & 0. & 0. & 0. & & \\
\hline & 14 & 0. & & 0. & 0. & 0. & & \\
\hline & 15 & 0. & & 0. & 0. & 0. & & \\
\hline & 16 & 0. & & 0. & 0. & 0. & & \\
\hline & 17 & 0. & & 0. & 0. & 0. & & \\
\hline & 18 & 0. & & 0. & 0. & 0. & & \\
\hline & 19 & 0. & & 0. & 0. & 0. & & \\
\hline & 20 & 0. & & 0. & 0. & 0. & & \\
\hline & 21 & 0. & & c. & 0. & 0. & & \\
\hline & 22 & 0. & & 0. & 0. & 0. & & \\
\hline & 23 & 0. & & 0. & 0. & 0. & & \\
\hline & 24 & 0. & & 3. & 0. & 0. & & \\
\hline & 25 & 0. & & 0. & 0. & 0. & & \\
\hline & 26 & 0. & - & 0. & 0. & 0. & & \\
\hline
\end{tabular}

W BOT
u ORTDOT
w Dotnot
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & C. & & 0 & \\
\hline 2 & C. & & C. & \\
\hline 3 & C. & & C. & \\
\hline 4 & C. & & c. & \\
\hline 5 & C. & & c. & \\
\hline 6 & C. & & 0. & \\
\hline 7 & C. & & 0. & \\
\hline 8 & C. & & C. & \\
\hline 9 & C. & & 0. & \\
\hline 10 & C. & & c. & \\
\hline 11 & C. & & 0. & \\
\hline 12 & C. & & 0. & \\
\hline 13 & C. & & 0. & \\
\hline 14 & C. & & 0. & \\
\hline 15 & C. & & C. & \\
\hline 16 & C. & & 0. & \\
\hline 17 & C. & & C. & \\
\hline 18 & C. & & 0. & \\
\hline 19 & C. & & 0. & \\
\hline 20 & C. & & c. & \\
\hline 21 & C. & & 0. & \\
\hline 22 & C. & & c. & \\
\hline 23 & C. & & 0. & \\
\hline 24 & C. & & 0. & \\
\hline 25 & C. & & C. & \\
\hline 26 & C. & & 0. & \\
\hline K OUNT & & tau & & OEL \\
\hline 0 & & 0.00000 & & 0.00000 \\
\hline 1 & & .25000 & & -.00955 \\
\hline 2 & & .50000 & & -. 03342 \\
\hline 3 & & .75000 & & -. 06606 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 0. & \multicolumn{2}{|c|}{0.} \\
\hline 0. & \multicolumn{2}{|r|}{\(-7 . ? 6273030 \mathrm{~F}+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7.26273039E+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7.26273039E+04} \\
\hline C. & \multicolumn{2}{|r|}{-7.26273039E+04} \\
\hline C. & \multicolumn{2}{|r|}{-7. \(26.27303 \mathrm{GF}+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7. \(2+27\) 2030F +04} \\
\hline C. & \multicolumn{2}{|r|}{-7.262730305+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7.26 \(273039 E+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7.2F273039F+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7. \(26273030 \mathrm{~F}+\mathrm{C} 4\)} \\
\hline 0. & \multicolumn{2}{|r|}{-7.2t.27303cE+04} \\
\hline C. & \multicolumn{2}{|r|}{-7.26273020F+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7. \(26273030 \mathrm{~F}+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7.26773039E+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7.26.272030F+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7.26273039F+04} \\
\hline C. & \multicolumn{2}{|r|}{-7.26.273039F+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7. \(2+27303 c 5+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7.2627303CF+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7. \(2 \in 273039 F+04\)} \\
\hline 0. & \multicolumn{2}{|r|}{-7. \(96273039 F+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7. \(282730305+04\)} \\
\hline 0. & \multicolumn{2}{|r|}{-7. \(26273039 \mathrm{E}+04\)} \\
\hline C. & \multicolumn{2}{|r|}{-7.26273035E+04} \\
\hline 0. & \multicolumn{2}{|r|}{-7.26373039 +04} \\
\hline I TERATIONS & CYCLES & XNORM \\
\hline 1 & 0 & 0. \\
\hline 4 & 3 & 5.13873E-08 \\
\hline 7 & \(?\) & 1. \(50563 \mathrm{E}-06\) \\
\hline 10 & 3 & \(5.68624 \mathrm{E}-06\) \\
\hline
\end{tabular}
\(-2.953608 C E+C 4\) \(-2.9536507 E+C 4\) \(-2.9547457 E+C 4\) \(-2.9569003 E+C\) \(-2.9604770 \mathrm{~F}+\mathrm{C} 4\) \(-2.9659037 \mathrm{~F}+\mathrm{C} 4\) \(-2.9735975 E+C 4\) \(-2.9838686 \mathrm{E}+\mathrm{C4}\) －2．98986121E＋ \(-2.9968121 E+C 4\) \(-3.0122001 E+C 4\) \(-3.0293913 \mathrm{E}+\mathrm{C} 4\) \(-3.0472829 F+C 4\)
\(-3.0643271 E+C 4\)
\(-3.0786302 \mathrm{E}+\mathrm{C4}\) \(-3.0881279 E+C 4\) \(-3.0908078 \mathrm{E}+\mathrm{C} 4\) \(-3.0849245 \mathrm{~F}+\mathrm{C} 4\) \(-3.0691517 E+C 4\) \(-3.0426504 \mathrm{~F}+\mathrm{C} 4\)
\(-3.00508 \mathrm{C} 8 \mathrm{E}+\mathrm{C4}\) \(-2.9566361 E+C 4\) \(-2.8981643 \mathrm{E}+\mathrm{C4}\) \(-2.8313785 \mathrm{E}+\mathrm{C4}\) \(-2.7590540 \mathrm{E}+\mathrm{C} 4\) \(-2.6950751 F+C 4\) \(-2.6142115 F+C 4\)
0.

1．0823427E＋C2 2． \(0092919 E+C\) ？ 2． \(\mathrm{t} 2847 \mathrm{C} 2 \mathrm{~F}+\mathrm{C} 2\) 2．7904913E＋02 2． \(3625043 E+C 2\) I． \(2494226 \mathrm{~F}+02\) \(-5.7701113 \mathrm{~F}+01\) 5．7701113F＋01 \(-3.0459378 \mathrm{E}+\mathrm{C} 2\) \(-5.9597947 E+02\) \(-5.9818545 E+C 2\) \(-1.1649886 \mathrm{E}+\mathrm{C} 3\) \(-1.3424182 \mathrm{E}+03\) \(-1.377 .512 \mathrm{E}+\mathrm{C} 3\) \(-1.22757 \mathrm{CBE}+03\) \(-8.7532111 E+C 2\) \(-3.3416 E 54 \mathrm{E}+\mathrm{C} 2\) 3． \(4728171 E+02\) 1． \(0515345 \mathrm{E}+\mathrm{C}\) 1．0515345E＋C3 － 40954 C9F +03 \(2.4095469 F+03\) 2． \(9424471 E+C\) 3． \(09074 C 8 E+03\)
\(3.1792266 E+C\) \(3.1539024 \mathrm{E}+03\) 3．\(C 494946 E+03\)

M－S
BETA ROTATIIN

2． \(2678369 \mathrm{~F}+04\) \(2.8651020 \mathrm{~F}+04\) \(4.2857752 \mathrm{~F}+04\) 6． \(3857895 F+04\) 9． \(79425 \mathrm{CRF}+04\) \(1.1007962 E+05\) \(1.2393358 F+C 5\) 1．2291078［＋C5 － 2 ？ \(950515 \mathrm{E}+05\) －15967595＋04 \(5.15967595+04\) \(-2.5753728 F+04\) \(-1.2997822 E+05\) － \(2.5491794 F+05\) \(-2.95527: R F+105\) \(-5 . C 750267 F+05\) －E．CO： \(7726 F+05\) \(-6.4395012 \mathrm{~F}+\mathrm{C}_{5}\) \(-6.2287211 F+n 5\) \(-5.2789742 E+05\) － \(3.5997507 F+05\) \(-3.58975975+0\) 1． \(2521299 \mathrm{E}+05\) －． \(5719226 E+05\) 4． \(6877244 E+05\) 7． \(1114827 F+05\) \(1.1101973 F+06\) \(1.4164056 F+05\)

7 \(1.4401813 \mathrm{E}+0\) ？ \(2.1825654 E+02\) \(2.9205258 E+02\) 2． \(6900004 \mathrm{E}+0\) ？ \(4.5022388 \mathrm{~F}+02\) \(5.35255+4 F+0\) ？ 5． \(2627881 \mathrm{~F}+0\) ？ 6．2627881F＋02 7．？ \(402612 E+02\) \(8.3139418 F+0 ?\)
\(3.4749537 F+02\) \(9.4749537 F+02\)
\(1.0704409 \mathrm{E}+0\) ？ \(1.0704409 E+07\)
\(1.19 E .9946 E+0\) ？ 1． \(3200325 E+C 3\) 1．4285678E＋0？ 1． 50 P3152F＋03 \(1.5435201 E+02\) 1． \(5207502 \mathrm{~F}+03\) \(1.5207502 E+03\) \(1.4314766 E+03\) ． \(2760124 E+03\) 1．0627499E＋03 \(8.1143943 F+07\)
\(5.2909405 F+0\) ？ \(2.6487187 E+02\) ワ．
\(-2.7217544 F+04\) -2.7 ？ 32 bTFE +04 －？．7776970E＋04 \(-2.7 .26950 F+04\) －？． \(7534351 E+0^{\prime}\) \(-? .77 c 8572 \mathrm{~F}+14\) －2． \(9195572 E+14\) \(-2.97 C 54.75 F+04\) \(-2.97 \mathrm{CS4}\) NEF＋C －2．036307CF＋1） \(-2.01: 4017 F+J 4\) \(-2.08072 \times 4 c+04\)
\(-3.16133415+04\) \(-3.16123415+04\)
\(-3.2131420 \mathrm{~F}+04\) \(-3.21314205+04\)
\(-2.2204726 F+04\) \(-2.2204726 F+04\) －3． 195 F． 4 ACF +0 －2．0961237F＋04 \(-2.9205544 E+04\) －？． 66 E \(15 \in 4 \mathrm{~F}+0\) \(-2.3250092 \mathrm{E}+1\) \(-1.5120232 \mathrm{~F}+0\)
 －．073555 PF＋ 0 -6.52 ？ \(9535 F+0\) -3.18 RA67nE +0 －8．4675365E＋ 0 の。
0.
\(-2.3794093 E+03\) \(-5.8643852 E+C 3\) \(-1.1267 \in 50 E+04\) －1． \(1114122 \mathrm{E}+04\) \(-2.0427727 F+C 4\) \(-4.15033585+04\) \(-5.425 c 595 F+C 4\) － \(5336673 F+C 4\)
 －7．209635E＋04 \(-6.0141339 E+04\) －3． \(57567265+C 4\) 3．1727272F＋03 \(5.63319645+04\) －． \(2126179 E+C 5\) \(1.032 .2207 \mathrm{~F}+0.5\) 2． \(6544018 \mathrm{E}+\mathrm{C5}\) 3．？ 9750 ：1E＋05 3． \(7754024 F+05\) 4． \(1082387 F+C 5\) 3． \(0319638 F+05\) 3． \(5037444 E+05\) 2． \(7030573 E+C 5\) 1．52173625＋05 0 ．

NTHETA
\(-2.95441172 \mathrm{~F}+04\) -2.c5428186E+04 \(-2.55769316 E+04\) \(-2.96507017 E+04\) \(-2.97841122 E+04\) \(-2.99999064 E+04\) - \(12176440 \mathrm{E}+04\) -3.C317E440E+04 \(-3 . C 7465333 E+04\)
\(-3.12775841 \mathrm{~F}+04\) \(-3.12775841 E+04\)
\(-3.18763917 E+04\) \(-3.24784323 E+04\) \(-3.25889603 E+04\) \(-3.22891747 \mathrm{E}+04\) \(-3.32490901 F+04\) \(-3.27457223 F+04\) \(-3.16833667 \mathrm{~F}+04\) \(-3.00117691 \mathrm{E}+04\) \(-2.77385172 \mathrm{E}+04\) \(-2.49339923 \mathrm{~F}+04\) -2.17298197F+04 \(-1.83136057 E+04\) -1.4 4229158E+04 \(-1.18401095 \mathrm{E}+04\) \(-9.38800207 \mathrm{E}+03\) -7. \(92555514 \mathrm{E}+03\) \(-7.92555514 \mathrm{E}+03\)
\begin{tabular}{rc} 
KOUNT & TAU \\
4 & 1.00000 \\
5 & 1.25000 \\
6 & 1.50000 \\
7 & 1.75000
\end{tabular}
.2500 1.75000

MTHETA
\(2.05951423 E+04\) \(2.65597227 \mathrm{~F}+04\) \(3.49924742 \mathrm{~F}+04\) 4.75047834E+04 6. \(24386209 F+04\) 7.7401C341F+04 - 94421377 +0 8. \(94421377 E+04\) . \(52912993 E+04\)
-. \(15545 \mathrm{C} 595+04\) 7. \(57877822 \mathrm{~F}+04\) 4.5961CC77E+C4 \(2.08351564 E+03\) \(-5.33394 \mathrm{CO} 3 \mathrm{~F}+04\) \(-1.17487979 \mathrm{E}+0\) \(-1.82388537 E+05\) \(2.40531281 \mathrm{E}+0\) 2. \(40531281 E+C\) -2.83414555E+05 \(-3.03365017 E+05\) \(-2.94860568 E+05\) -2.55514C43E+05 -1.36413570E+05 \(-9.15657540 F+04\) 2. \(27596554 \mathrm{E}+04\) 1. \(50496473 E+05\) 2. \(35004291 \mathrm{E}+05\) 4. \(24921677 \mathrm{~F}+\mathrm{C}=\)
\begin{tabular}{rl} 
& \(D E L\) \\
-.10287 \\
-.13994 \\
-.17430 \\
-.20398
\end{tabular}

RADIAL LOAD
MERIDIAN LTAJ -7. 2 E \(27303 \mathrm{CF}+04\) 0 \(-7.262730395+04\) \(-7.262730375+04\) -7.2 6273039F+C4 \(-7.262730395+04\) -7.2E \(273039 E+04\) \(-7.2 \epsilon 277030 \mathrm{E}+04\) -7.2 E273039F+04 \(-7.26 こ 73037 F+C 4\) \(-7.262730395+04\) \(-7.26273039 E+04\) -7. 2t \(273039 \mathrm{E}+04\) \(-7.26273039 \mathrm{~F}+04\) \(-7.2 \in 27303\) CE + C4 \(-7.26273039 E+04\) \(-7.26273039 E+C 4\) \(-7.26273039 \mathrm{~F}+04\) \(-7.2627303 \mathrm{cF}+04\) \(-7.2 \in 273039 \mathrm{C}+\mathrm{C}\) \(-7.26273039 \mathrm{~F}+0\) -7. \(2 \mathrm{E} 273039 \mathrm{E}+\mathrm{C} 4\) \(-7.2627303^{\circ} \mathrm{E}+\mathrm{C} 4\) \(-7.2 t 27303\) CE +04 \(-7.2627303 .75+C 4\)
 \(-7.2 \epsilon 273030 \mathrm{E}+04\) ITERATICNS

\section*{12
16}

19
19
22
0.
0.
0.
0.
0.
0.
0.
3.
0.

\section*{CYCLES}
\(\begin{array}{ll}3 & 9.30392 E-06 \\ 2 & 1.32932 F-r 5\end{array}\)
I. \(18932 \mathrm{E}-\mathrm{C} 5\)
\(1.31620 \mathrm{~F}-\mathrm{O}\)
1.06050E-C5

\section*{APPENDIX H}

\section*{CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS}

The International System of Units (SI) was adopted by the Eleventh General Conference on Weights and Measures in 1960. (See ref. 18.) Conversion factors for the units used in this report are given in the following table:
\begin{tabular}{|c|c|c|c|}
\hline Physical quantity & U.S. Customary Unit & Conversion factor & SI Unit (**) \\
\hline Leng & in. & \(2.54 \times 10^{-2}\) & meter (m) \\
\hline Modulus of axial stress, elasticity & ps & \(6.895 \times 10^{3}\) & newton/meter \({ }^{2}\) ( \(\mathrm{N} / \mathrm{m}^{2}\) ) \\
\hline Temperature & degree Fahrenheit & \(\mathrm{K}=\left({ }^{\circ} \mathrm{F}+459.67\right) / 1.8\) & kelvin (K) \\
\hline
\end{tabular}
\({ }^{*}\) Multiply value given in U.S. Customary Unit by conversion factor to obtain equivalent value in SI unit.
\({ }^{* *}\) The prefix giga (G) is used to indicate \(10^{9}\) units.

\section*{REFERENCES}
1. Schaeffer, Harry G.: Computer Program for Finite-Difference Solutions of Shells of Revolution Under Asymmetric Loads. NASA TN D-3926, 1967.
2. Budiansky, Bernard; and Radkowski, Peter P.: Numerical Analysis of Unsymmetrical Bending of Shells of Revolution. AIAA J., vol. 1, no. 8, Aug. 1963, pp. 1833-1842.
3. Ball, R. E.: A Geometrically Nonlinear Analysis of Arbitrarily Loaded Shells of Revolution. NASA CR-909, 1968.
4. Sanders, J. Lyell, Jr.: Nonlinear Theories for Thin Shells. Quart. Appl. Math., vol. XXI, no. 1, Apr. 1963, pp. 21-36.
5. Ambartsumyan, S. A.: Theory of Anisotropic Shells. NASA TT F-118, 1964.
6. Houbolt, John C.: A Recurrence Matrix Solution for the Dynamic Response of Aircraft in Gusts. NACA Rep. 1010, 1951. (Supersedes NACA TN 2060.)
7. Johnson, Donald E.; and Greif, Robert: Dynamic Response of a Cylindrical Shell: Two Numerical Methods. AIAA J., vol. 4, no. 3, Mar. 1966, pp. 486-494.
8. Sylvester, R. J.; and Meyer, F.: Two Point Boundary Problems by Quasilinearization. J. Soc. Ind. Appl. Math., vol. 13, no. 2, June 1965, pp. 586-602.
9. Potters, M. L.: A Matrix Method for the Solution of a Linear Second Order Difference Equation in Two Variables. MR 19, Math. Centrum (Amsterdam), 1955.
10. Anon.: Control Data 6400/6500/6600 Computer Systems FORTRAN Reference Manual. Publ. No. 60174900B, Control Data Corp., Nov. 1967.
11. Jones, Robert M.: Buckling of Circular Cylindrical Shells With Multiple Orthotropic Layers and Eccentric Stiffeners. AIAA J., vol. 6, no. 12, Dec. 1969, pp. 2301-2305.
12. Archer, Robert R.; and Lange, Charles G.: Nonlinear Dynamic Behavior of Shallow Spherical Shells. AIAA J., vol. 3, no. 12, Dec. 1965, pp. 2313-2317.
13. Budiansky, Bernard; and Roth, Robert S.: Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells. Collected Papers on Instability of Shell Structures - 1962, NASA TN D-1510, 1962, pp. 597-606.
14. Stephens, Wendell B.; and Fulton, Robert E.: Axisymmetric Static and Dynamic Buckling of Spherical Caps Due to Centrally Distributed Pressures. AIAA J., vol. 7, no. 11, Nov. 1969, pp. 2120-2126.
15. Mendelson, Alexander: Plasticity: Theory and Application. Macmillan Co., c.1968, pp. 186-190.
16. Rossettos, J. N.; and Parisse, R. F.: The Dynamic Response of Cylindrical and Conical Panels. Trans. ASME, Ser. E: J. Appl. Mech., vol. 36, no. 2, June 1969, pp. 271-276.
17. Anon.: Control Data 6000 Series Computer Systems Matrix Algebra Subroutines Reference Manual. Publ. No. 60135200, Control Data Corp., June 1966.
18. Comm. on Metric Pract.: ASTM Metric Practice Guide. NBS Handbook 102, U.S. Dep. Com., Mar. 10, 1967.

\section*{TABLE 1.- SUBROUTINE DESCRIPTIONS}
\begin{tabular}{|c|c|}
\hline FORTRAN name & Description \\
\hline GE \(\chi_{\text {MTY }}\) & Calculates shell geometry, that is, r, \(\phi\), and \(\phi^{\prime}\) \\
\hline B \(\varnothing\) C \(\varnothing \mathrm{N}\) & Sets proper boundary conditions \\
\hline ABCDES & Calculates coefficients of A, B, C, D, E, and q matrices \\
\hline FUNCT & Calculates negative of \(\mathrm{f}_{\mathrm{k}}\left(\overline{\bar{z}}_{\mathrm{i}}, \bar{z}_{i-1}, \mathrm{~s}\right)\) in equation (27) \\
\hline PØTTER & Calculates \(\mathbf{P}, \mathbf{Q}\), and \(\mathbf{R}\) matrices and then solves for the NewtonRaphson corrections \(\delta z\) \\
\hline DYNAMIC & Calculates \(\bar{\alpha}, \bar{\beta}, \bar{\gamma}\), and \(\bar{\delta}\) and stores \(\mathbf{X}_{\mathrm{m}, l-1}, \mathbf{X}_{\mathrm{m}, l-2}\), and \(X_{m, l-3}\) \\
\hline ANSWERS & Calculates \(\mathrm{n}_{22}\) and \(\mathrm{m}_{22}\) and prints \(\mathrm{n}_{22}, \mathrm{~m}_{22}, \mathrm{p}\), and \(\mathrm{p}_{\mathrm{S}}\) \\
\hline STIF & Calculates constitutive coefficients in equations (14) \\
\hline INITIAL & Initializes \(y_{i, 0}\) and \(\dot{y}_{i, 0}\) vectors when the initial conditions are other than zero \\
\hline MATRIX & Perform basic matrix operations as detailed in reference 16 \\
\hline
\end{tabular}

TABLE 2.- GLOSSARY OF FORTRAN VARIABLE NAMES
\begin{tabular}{|c|c|c|}
\hline Variable & Program name & Description \\
\hline a & CHAR & Reference length \\
\hline \(\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{22}\) & C11, C12, C22 & Constants in equations (10) and (11) \\
\hline \(\mathrm{D}_{11}, \mathrm{D}_{12}, \mathrm{D}_{22}\) & D11, D12, D22 & Constants in equations (12) and (13) \\
\hline \(\mathrm{E}_{\mathrm{O}}\) & E \(\varnothing\) & Reference modulus of elasticity \\
\hline \(E_{1} / E_{0}, \quad E_{2} / E_{1}\) & E10, E20 & Nondimensional moduli of elasticity \\
\hline \(\mathrm{e}_{11}, \mathrm{e}_{22}\) & EM11, EM22 & Membrane strains, used in ANSWERS \\
\hline \(\mathrm{H}_{\mathrm{O}}\) & H \(\varnothing\) & Reference shell thickness \\
\hline h & T(I) & Nondimensional shell thickness \\
\hline j & ITEMP & Temperature exponent in equation (17) \\
\hline \(\mathrm{K}_{11}, \mathrm{~K}_{12}, \mathrm{~K}_{22}\) & K11, K12, K22 & Constants in equations (10) to (13) \\
\hline m & K \(\varnothing\) UNT & Step in time \\
\hline n & N & Number of stations \\
\hline \(\mathrm{p}, \mathrm{p}_{\mathrm{S}}\) & PL, PS & Nondimensional loads, see FUNCTION PL and FUNCTION PS \\
\hline \(\mathrm{r}_{\mathrm{i}}\) & R (I) & Nondimensional radial distance at station i-1/2 defined in GE \(\emptyset\) MTY \\
\hline s & SMER & Nondimensional meridional distance \\
\hline x (1st element) & X \((\mathrm{J}, 1)\) & \(\mathrm{n}_{11}\) when j odd \\
\hline x (2d element) & \(\mathrm{X}(\mathrm{J}, 2)\) & q when j odd \\
\hline x (3d element) & X (J, 3) & \(\mathrm{m}_{11}\) when j odd \\
\hline y (1st element) & X (J, 1) & u when j even \\
\hline y (2d element) & \(\mathrm{X}(\mathrm{J}, 2)\) & w when j even \\
\hline y (3d element) & X (J, 3) & \(\beta\) when j even \\
\hline z & XOLD & Matrix of unknown \\
\hline \(\delta \mathrm{z}\) & X & Matrix of Newton-Raphson corrections to z \\
\hline \(\alpha_{1}, \quad \alpha_{2}\) & ALFA1, ALFA2 & Constants in equations (16) \\
\hline \(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}\) & AL, BE, GA, DE & Constants in equation (21) \\
\hline
\end{tabular}

TABLE 2.- GLOSSARY OF FORTRAN VARIABLE NAMES - Concluded
\begin{tabular}{|c|c|c|}
\hline Variable & Program name & Description \\
\hline \(\eta\) & ETA & \(\mathrm{E}_{\mathrm{O}} /{ }^{\text {/ }}\) \\
\hline \(\kappa_{11}, \kappa_{22}\) & AK11, AK22 & Nondimensional principal curvatures \\
\hline \(\nu_{12}, \nu_{21}\) & NU12, NU21 & Poisson's ratios \\
\hline \(\lambda\) & LAM & Ratio of \(H_{0} / \mathrm{a}\) \\
\hline \(\lambda_{s}\) & LAMS & Shell parameter \\
\hline \(\mathrm{t}_{1}^{\mathrm{m}}, \mathrm{t}_{2}^{\mathrm{m}}\) & TM1, TM2 & Thermal moment resultants \\
\hline \(\mathrm{t}_{1}^{\mathrm{n}}, \mathrm{t}_{2}^{\mathrm{n}}\) & TN1, TN2 & Thermal force resultants \\
\hline \(\Delta \tau\) & \(\Delta \mathrm{TAU}\) & Nondimensional time increment \\
\hline \(\Delta \mathrm{s}\) & DS & Nondimensional meridional increment \\
\hline \(\phi_{\mathbf{i}}\) & PHI(I) & Colatitude angle at i-1/2 \\
\hline \(\phi_{1}^{\prime \prime}\) & DPHI(I) & Colatitude angle change at i-1/2 \\
\hline
\end{tabular}


Figure 1.- Surface geometry and coordinates.

(a) Membrane and transverse force resultants.

(b) Moment resultants.

(c) Load per unit area.

(d) Displacements and rotation.

Figure 2.- Positive sense of forces, moments, loads, displacements, and rotations.

(a) Shell meridian divided into equal increments.

Figure 3.- Locations of boundaries, stations, and midpoints of shell and shell meridian increments.


Figure 4.- Spherical cap geometry.


Figure 5.- Deflection response of clamped spherical cap for various uniformly distributed pressures. (Load duration is from \(\tau=0\) to \(\tau=5\).)


Figure 6.- Dynamic buckling of clamped spherical cap subjected to uniformly distributed step pulses. (Load duration is from
\[
\tau=0 \quad \text { to } \quad \tau=5 .)
\]


Figure 7.- Outer surface thermal stress variation along shell length.

(b) Circumferential stress.

Figure 7.- Concluded.

ATTE:LOU BCWNAN, CHIFF, TECH. LIBRARY

\title{
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
}
- National Aeronautics and Space Act of 1958

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIÓNS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.```

