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EFFECT OF VELOCITY SLIP AT A POROUS BOUNDARY ON THE
PERFORMANCE OF AN INCOMPRESSIBLE POROUS BEARING
by Marvin E. Goldstein and Willis H. Braun

Lewis Research Center

SUMMARY

There is an effective slip in velocity of fluid flowing over a porous surface. The ef-
fect of this slip on the performance of a porous bearing is established by obtaining solu-
tions for the short bearing limit., The slip has a significant effect on bearing perform-
ance of small, high-speed, low-load bearings. Other things being equal, the slip effects
usually reduce both the load-carrying capability and the coefficient of friction of the
bearing. For the larger eccentricity ratios this reduction in the coefficient of friction
can be very large. The reduction in the load-carrying capability can be as much as 30
percent. However, the slip has little effect on the attitude angle. A simple correction
is given to the bearing friction formula to take into account the effects of slip.

INTRODUCTION

Porous metal bearings have proved so practical for many applications that they are
produced at the rate of about 20 million a day (ref. 1). The low initial cost of such bear-
ings, combined with the design simplicity which they provide, has made them popular for
aircraft and automotive accessories, home appliances, small motors, business ma-
chines, instruments, and farm and construction equipment. These bearings are avail -
able in thousands of sizes for shafts ranging from 1/32 to 6 inches in diameter and with
lengths varying from 1/32 to 4 inches.

Most porous metal bearings are made of either bronze or iron with interconnecting
pores. The porosity ranges from about 10 to 40 percent and for the majority of applica-
tions a porosity from 25 to 35 percent is used (ref. 2).

High-porosity bearings are used for high-speed, light-load applications, such as
fractional-horsepower motor bearings. The low-porosity bearings are more satisfac-
tory for applications where oscillating and reciprocating motions occur and it is



difficult to build up an oil film,

We shall be concerned in this report with the highly porous bearings which are oper-
ated with a hydrodynamic film. The first analysis of bearihgs of this type was perform-
ed by Morgan and Cameron in reference 2. In that paper the short-bearing approximé.-
tion (ref. 3) was used and one additional approximation (discussed subsequently) was in-
troduced. More recently Rouleau (ref. 4) corrected Morgan and Cameron's analysis by
including a load component which had been neglected and recalculating the coefficient of
friction on the basis of total load and actual eccentricity and attitude angle. In a second
paper (ref. 5) Rouleau removed the additional restriction imposed by Morgan and Cam-
eron with a considerable increase in the complexity of the analysis. The results of this
analysis show that for those bearing configurations which occur in the majority of appli-
cations the approximation used by Morgan and Cameron leads to only an insignificant er-
ror (see remarks by discussors appended to ref. 5). Rhodes and Rouleau (ref. 6) ana-
lyzed the effect of sealing off the ends of a short bearing and found that the load could be
increased.

Shir and Joseph (refs. 7 and 8) analyzed the infinitely long porous bearing. The
principal difficulty with their analysis is that they assumed that the hydrodynamic film
extends the full 360° around the bearing (full Sommerfeld condition) thus allowing large
negative pressure regions in the film, This almost never occurs for bearings under the
usual operating conditions. The finite partial porous bearing was analyzed in reference 9
by Rhodes and Rouleau. They also assumed that the hydrodynamic film extends around
the entire bearing; but since the largest bearing arc which they considered was 1800,
this was not a bad assumption. Finally, the porous gas-lubricated bearing was analyzed
in a series of three papers by Sneck, Yen, and Elwell (refs. 10 to 12).

In all the analyses described in the preceding paragraphs, it was assumed that the
tangential velocity in the film vanishes at the porous bearing surface. However, it was
proved experimentally by Beavers and Joseph in reference 13 that, when a fluid flows
over a porous wall, the tangential velocity does not vanish at the boundary but satisfies
some sort of slip condition. A particular model for the slip condition was proposed, but
the experiments performed in that study were not accurate enough to verify the model or
to determine the empirical slip coefficient which appeared in the model. However, very
accurate experiments were reported in a very recent paper by Beavers, Sparrow, and
Magnuson (ref. 14) which did indeed verify the model proposed in reference 13 and de-
termined for one porous material the value of the slip coefficient.

In the present report we shall study the effect of the slip at the porous metal surface
on the performance of porous metal bearings., In the first section the general porous
bearing problem is formulated (for the full bearing) and the generalized Reynolds' equa-
tion for porous bearings with the effects of slip included is derived. The short-bearing
approximation is then made, and the approximation introduced by Morgan and Cameron
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is then adapted to obtain a closed-form solution. The effects of slip introduce two addi-
tional parameters into the problem, The results show that for the values of the param-
eters corresponding to small bearings operated at high speeds and light loads the slip
can have a significant effect on the bearing performance.

ANALYSIS
Formulation

Figure 1 shows a solid journal running in a cylindrical porous bearing of inside ra-
dius ros outside radius ry and length 2. The bearing is mounted in a solid housing,
as shown in the figure. We suppose that the film region and the pores of the bearing are
completely filled with an incompressible Newtonian fluid of constant viscosity 7 and
that the assumptions of conventional lubrication theory apply to the flow within the film.
Thus, it is assumed that the film is so thin that the motion of the fluid is laminar, the
inertial terms and the curvature can be neglected, and the pressure p is uniform
across the film, Therefore, if x is the coordinate measured along the inner bearing
surface (with x = 0 at the point of maximum film thickness) in the circumferential di-
rection, z is the coordinate measured along this surface in the axial direction (with
z = 0 at the center of the bearing) and y is the coordinate normal to this surface, as
shown in figure 2, and if the velocity components in these directions of the fluid film re-
gion are u, v, and w, respectively, then the Navier-Stokes equations become

gu_10p (1)
8y2 7 ox
v _1 @)
ayz 1 02
% _p (3)
ay

The integrated volume fluxes in the x- and z-directions in the film, a4y and q,>

h(x)
o = [ a(x, y,2)dy (@)

respectively, are defined by



h(x)
q, = v(x,y, z)dy (5)
0

where h(x) is the local film thickness shown in figure 2. The integrated continuity equa-
tion for the film (ref. 15, p. 60) can now be written as

dq, dq
—Z+ 2 -w(x,0,2) (6)
ox 0z

Suppose then the porous material is homogeneous and isotropic. Let (3 be the
Darcy velocity (flow divided by total cross-sectional area, not just open area), let P
denote the pressure within the porous region, and let x denote the permeability of the
bearing material. Then

Q--Xvp (7
n
and conservation of mass implies that
V.Q=0 (8)

Let r and 6 be the polar coordinates shown in figure 1. The angle ¢ is meas-
ured from the position of maximum film thickness. Then, the r, 9, and z components
of the Darcy velocity 6 are denoted by Vr’ Vg, and V., respectively, It is necessary
to obtain the conditions which match the flow in the porous bearing to the flow in the film
region. .To this end notice that figures 1 and 2 show

X =140 9)

Since the pressure and (from continuity) the normal component of the velocity must be
continuous across the boundary of the porous bearing, it follows (in view of eq. (3)) that

p(X,Z) =P(I‘O,9,Z) 0=6=<2r
(10)
w(x,0,z) = - Vr(ro, 6, 2z) -1/2=z=<1/2

In addition to these conditions it is necessary to impose a condition on the tangential
velocity at the bearing. In all previous work on porous bearings it has been assumed
that the tangential film velocity vanishes at the surface of the porous bearing (refs. 2,
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and 4 to 12). However, it has been shown in references 13 and 14 that in reality the
tangential velocity components satisfy the following slip conditions at the bearing sur-
face:

~
_C!_ [u(x,O,z) - VB(rO' GQZ)J = ﬂ 0=<9<2m
VK oy y=0

( (11)
a _ov 1 -5 <1
2 [v(x,0,z) —Vz(ro,e,z)] =22 L egz=tl
VK oy y=0 ] 2 2

where « is an effective slip coefficient. Notice that when « -~ 0 these boundary con-
ditions, together with Darcy's law (eq. (7)), imply that u(x,0,z) = v(x,0,z) = 0, which is
the no-slip boundary condition used in previous analyses. On ther other hand these con-
ditions also imply that u(x,0,z) = ve(ro, 9,2z) and v(x,0,2) = VZ(rO, 0,z) when o — o,

It has been shown in reference 13 that o is probably a property of the porous material
and does not depend on the type of fluid which is flowing through it. The experiments
performed in reference 13 were not accurate enough to determine «. However, the ex-
periments described in reference 14 show that for Foametal (General Electric Company)
the value of o is 1/10.

The remaining boundary conditions for the flow in the film region follow from the
no-slip condition at the shaft surface and the requirement that the pressure in the film be
equal to zero at the ends of the bearing. Thus, if ug is the surface speed of the shaft
then

=2 =

ux,h(x),z] =u - L L
s 2 2
(12)
v[x,h(x),z] =0 0 =x=2mr,

and (since the ends of the bearing are open) the vanishing of the pressure curve at the
ends of the bearing implies that

px,l_ =p x,-l; =0 for O0=x<2mr (13)
2 2 0

Two additional boundary conditions are needed to determine the flow in the porous re-
gion. The first of these follows from the fact that the bearing is mounted in a solid
housing. Hence,



V.(ry,6,2) =0 (14)

(A
N
A

Do [~
D [~

The remaining boundary condition depends on the nature of the ends of the porous bear-
ing. If the ends of the bearing are open to the atmosphere, then this boundary condition
is

rOSrSrl

P(r,0, L} =P(r,0, -L)=0 (152)
2 2 0=g9=27

If the ends of the bearing are closed off, then the boundary condition is

rOSrSr1

v, (r,B, %) =V, (r,@, - %) =0 (15b)
0=9=27

Finally, the usual small clearance approximation for the film thickness

h=c+ecos g (16)
where c is the concentric clearance and e is the eccentricity (see fig. 1), is valid in
the present context.

Derivation of boundary-slip Reynolds equation. - Upon integrating equations (1)
and (2) and using the boundary conditions (12) we obtain

.
u(X,Y7Z) =l[l@ (y - h)2 +(y - h)f] +uS y
nl2 ox h
. (17)
v(x,,2) =1[1@ v-02+@- h)g]
nL2 oz )

where f and g are arbitrary functions of x and z which are to be determined from
the slip conditions (11). In order to do this, notice that equation (7) shows



v, =-2_°=
6 nr a9
Kk 0P

V, =-=—
n 02

Hence, equations (9) and (10) show that

VG(rO’ 97 Z) == 5_32
7 X
(18)

0
VZ(rO’ 9, Z) == 'E_E
n 0Z

Upon inserting equations (17) and (18) into condition (11) we find that the functions f and

g are

where we have put

VK R
= o=
0 ﬂ+h
o
. (19)
3<2K+ﬁh>
E]_E a
h(YK +n
a o

Substitute these results into equations (17) and then substitute the result of this equa-
tions (4) and (5) to obtain the following expressions for the integrated components of the

volume flux:



3 ug
g =- 2Lz i + )
12n ox 2

(20)

3
ap
127 oz

Notice (see ref. 15, p. 290, e.g.) that these reduce to the usual expressions for the
fluxes in nonporous bearing when o and EO are put equal to zero. If El and EO
are zero, these expressions would also apply to porous bearings if there were no slip at
the surface of the porous bearing.

The expressions for the velocity distribution in the x-direction can also be used to
obtain expressions for the shear stress Th acting on the shaft and the shear stress o
acting on the bearing. Thus,

!
=8 =l@h<1+151> +—2(1- 5y (21a)
ayy:h 2 ox 3 h
i
TO=77-a—u =+li_h 151- > +_S(1-EO) (21b)
oy y=0 2 ox 3 h

In order to obtain the porous-bearing Reynold's equation, the second boundary con-
dition (10) and equations (20) are first substituted into equation (6) to obtain

3 3 u
4 [h ap(1 +E,1)} +-a—’:h @-(1 + El)} =5 —a—[h(l +Eg +V.(rg ,z)]
ox L1271 ox oz | 127 oz ox

On using equation (7)

3
a[h ap(1+_1)
oxlLn ox

3
[h % (1 +51)] = 6u axi h(1 +=) - 12 3P (22)

7 or

This is the appropriate form of Reynolds equation for porous bearings. Equation (24. 10)
on page 549 of reference 15 is the porous-bearing Reynolds equation when slip at the
bearing interface is neglected. A comparison of these two equations shows that equation
(22) reduces to the no-slip equation when Eq and EO are put equal to zero. Thus, the
effects of slip at the porous-bearing/liquid-film interface are accounted for by the
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factors El and EO. The term oP/dr in equation (22) connects the flow in the

r=r
film region with the flow in the porous bear?ng. Hence, it is necessary to consider the
equations for the flow in the porous region before the Reynolds equation (22) can be
solved. :

Mathematical description of the flow within the porous region. - When equation (7)
is substituted into equation (8), we obtain the well-known result that the pressure within
the porous region is governed by Laplace's equation. Thus,

v2p _ 0

which when written out in polar coordinates is
2

9 .
li(ra_P>+_1_a__1_).+a_I_)=0 (23)
ror ar r2 362 aZZ

It also follows from equation (7) that the boundary condition (14) is

3P
or

=0 (24)

I'=I‘1

It follows from the first condition (10) and equation (9) that the Reynolds equation
(22) provides the boundary condition for equation (23) on the surface r = ro. The bound-
ary conditions on the remaining surfaces are given either by equation (15a) or (15b).
Thus, the pressure distribution in the bearing (and, in view of the first eq. (10), the
pressure distribution in the film) is completely determined by equation (23) and these
boundary conditions.

Nondimensional formulation. - Before proceding it is convenient to introduce the

following standard nondimensional quantities



Then equations (16), (22), and (23) become, respectively,

10

*
h

To
* r
To
* Ty
0
* 1
To
¥ h
c
p = pe”
6us77r0
2
*
P = Pc
6us"rO
€:g
c
Kr
g=_20
C3
_VE
S =
ac J

=1+€cos @

(25)

(26)



ap*

* *k
al %3 ~ ) 3p . d
A2 gz + - | 32 @z =L, ®_
80[( ) 0( + 1)jl+ " [(h)3 *( + 1):| de[h (1+.:,0):|-12\It * (27)
0z o0z or
I‘=1
* 9 % 9 %
_1*1*<r*aP*>+iaP +af -0 (28)
r¥ ar ar’) 2% 2™

where after using equation (16) the nondimensional slip terms ”,:','1 and Eo can now be

written as
s
= (29)
0 1+s +€cos@

Il

3[201252 +8(1 + € cos 9)] (30)
(1 +€ cos 6)(s +1 +¢€ cos 0)

1l

1

The first condition (10) becomes

0=9=27
* * * *
p(B,Z)=P(1,9,Z) * * (31)
A
2 2
The boundary condition (24) becomes
0=9=27
P
— = 0 %K * (32)
* l * 1
ar %k % - =Z =
r =rp 2 2

We shall not consider the boundary condition (15b). The boundary conditions (13) and

(15a) are, respectively,

* * * *
p (o,£2—>=p (e,-l?)=o 0=<g<2r (332)

11



L3 *
p* (r , 0, L) =P (r*, 9, - L) =0 (33b)

0=g9<27m

Notice that in view of condition (31) the boundary condition (33b) implies the boundary
condition (33a) provided it is required that the pressure be continuous at the points

%
<1, 9, l?> and <1, 9, - %—) (Notice that this would not be the case if the condition (15b)

was imposed.) Hence, the boundary condition (33a) can be replaced by a pressure con-
tinuity condition. We shall use these boundary conditions in a somewhat different way
and it is therefore convenient to retain them in their present form.

Equations (26) to (33b) completely determine the boundary value problem for the
pressure distribution within the bearing and film region. Notice that the parameter s
enters these equations only through the terms Eo and ',El and that EO and El equal
zero when s is equal to zero. Hence, the effect of the slip at the bearing surface goes
to zero when s goes to zero.

Instead of obtaining the complete solution to the boundary value problem we shall
consider the short-bearing approximation.

Short-bearing approximation. - The short-bearing approximation consists of assum-
ing the pressure gradient in the circumferential direction is negligibly small compared
with the pressure gradient in the axial direction (ref. 3). This assumption is usually
valid for 7/d ratios less than 1. Many porous bearings fall into this geometrlc cata-
gory. When this approx1mat10n is made (since eqs. (26) and (30) show that h and =4
are independent of z ), equations (27) and (28) become

2 * *
* - *
032 +z) T2 v120 21 L W14 g) (34)
82*2 or | * 1 26
r =
* 2_ %
12 ((* ), TP (35)
* * * *92
r or or 0%

These equations must be solved subject to the boundary conditions (32), (33a), and
(33b). This boundary value problem has been solved exactly for the limiting case of
zero slip in reference 5 in terms of infinite series. However, a much simpler approxi-
mate solution was obtained for this problem in the zero slip case by Morgan and Cameron
in reference 2. It was pointed out by Pinkus in his discussion of reference 5 (appended
to ref. 5) that for the values of the parameters which correspond to the majority of

12
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bearings there is practically no difference between these solutions. We shall therefore
simplify the problem by introducing the approximation of Morgan and Cameron., This
approximation consists of imposing only the boundary condition (33a) and not the bound-
ary condition (33b), and of using the arbitrariness introduced by this means to obtain a
simple expression for the solution. This approximation is equivalent to imposing the
boundary condition (33b) only along a single line at the edge of the bearing instead of
over the entire edge. Since this line is adjacent to the film, this turns out to be a good
approximation for the bearing geometries usually used in practice.

We shall, therefore, seek a solution to equation (35) subject to the conditions (31),
(32), (33a), and (34). This problem possesses a solution of the form

P'(c*,0,2") =R, 6) +2(z,6) (36)

where the functions R and Z can be determined so that all the conditions are satisfied.
In order to prove this it is only necessary to find the functions R and Z which satisfy
equation (35) together with conditions (31), (32), (33a), and (34). To this end, insert
equation (36) into equation (35) to obtain

1 <3&> oz
Fort or 92.+2

*
Sincegk the left side of this equation is independent of z and the right side is independent
of r , there exists a function © of g only such that

12 < 1R_> - o(0)
* * *
or

= - ©(0)

Hence, upon carrying out the integrations, we find that

*BR__1
r ot z(r )26 +61(9) (37
r

And equation (35) will be satisfied provided

13



R = i.(r*)ze(e) +In 1 ©,(6) +Oy(6) (38)

* *
Z=- .zl(z )29(9) +03(0)z +040)
where 61 to 64 can be any functions of 4. It follows from equation (37) that the

boundary condition (32) will be satisfied if we put

1, %2
Hence, equations (36), (37), and (39) show that

*
P Lo - )] (40)
x 2

%*
or =1

Equations (36) and (38) show that condition (31) is satisfied if we set

* * * 1, %
p(6,27) = 05(6) + O4(0)2” - (") 0(0) (a1)
where we have put

_1

The boundary condition (33a) will be satisfied if we choose the functions 63 and 65 of
g in equation (41) so that

*\2
p (9,27 = - L o) |(z)? - (l—) (42)
2 2

Finally, it follows from equations (40) and (42) that equation (34) will be satisfied if we
choose the function © so that

- L b+ =)
o(6) = —2 (43)
(0531 + =) + 120 ]

14



where we have put

2 2
v, E%[(r;)z - 1w =L3E1?rl)
c 0

Hence, the differential equation and boundary conditions are all satisfied and we find
from equations (26), (29), (42), and (43) that the pressure in the film region is given by

p'(0,2" = [1 . ( s )2] sin 0 [(lz_*)z i (z*)z]

l1+8 +€co80 (1 + € COS 9)3El +El(9)]+ 12‘I’O (44)

The pressure distribution within the porous region itself is of little interest and we shall
therefore not write out an expression for it explicitly. Thus, the solution to the porous
bearing problem in the short-bearing limit is given by equation (44). This result, of
course, reduces to the equation obtained in reference 2 when s is put equal to zero.
Having obtained an expression for the pressure distribution in the film, it is now neces-
sary to use this result to calculate the quantities of principal interest. The first of these
is the load supported by the bearing.

Load on short bearing. - We shall now find expressions for the magnitude and direc-
tion of the external load which will equilibrate the pressure generated in the film., The
X and Y axis are as shown in figure 3. The components of the load are obtained by in-
tegrating the component of the pressure force over the surface of the bearing. In calcu-
lating the loads on short porous bearings it has always been assumed in previous analy-
ses that the half-Sommerfeld condition is appropriate (refs. 2, and 4 to 6). We shall
also follow this procedure. Thus, it is assumed that the pressure distribution for
0 = p =7 is given by equation (44) and the pressure is put equal to zero for 7 < § = 27.
When this condition is used, the X and Y components of the load Wy and Wy are

1/2 pm 3
WX = / / prq cos 6 dg dz
1/2 J0

1/2 pm
Wy = / / pry sin  do dz

> (49)

15



Or upon defining the dimensionless load components W;; and W;. by

Wx
- 2
%

Wy = l (E)
ugn \2
Wy
I 2

()
ugn \ 2

equations (45) become
2
%
WX___ p cos@df)dz
(2 ) -1 /2

* *
p sin 9 dgdz

A AP

Upon inserting equation (44) into these expressions and performing the integration with

respect to z we get

~

7 2 '
vt )] ham v
2 / 1+s +€coso (1 +€ cos 9)3[1 +El(9)] +12¥,

r (46)

T 2 in2
w;{:E [14_( s >J sin®9 dg
2 1+s +€cos b (1 +€ cos 9)3[1 + E4(0)] + 129 J
0

The magnitude W of the load on the bearing is

2 2
W = WX+WY

16



and the Sommerfeld number A is

L 2
a=-_t (& (47)
usn rO
Hence
To 2 * 2 * 9
A<_l_> = ‘/ Wy +(Wy) (48)

The attitude angle Y shown in figure 3 is defined by

w

tan lp = .—Y
X
or
W*
Y = tan™1 Z (49)
_WX

The other important quantity that must be calculated is the friction in the bearing.
Friction in short bearings. - The shear stress Th acting on the shaft for any po-

rous bearing is given by equation (21a). However, as indicated in reference 16 (p. 85),
it is consistent with the short-bearing approximation to neglect the circumferential pres-
sure gradient term in this equation. Thus, in the short-bearing limit

m
Thz.__E(l-
h

Inl

0

The circumferential friction force F acting on the shaft is then

1/2 2nr 1/2 27r
F = / / O, dz dx = 1 / 01(1-50)dzdx
“1/72 L1/2 0 h

17
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Upon substituting equations (9), (16) and (29) this becomes

_F_=7’r0us 2m do
l c 0 1 +s +€cos @

F_ 1 (50)
L I
a +s)2 p

The coefficient of friction p of the bearing is defined as the frictional force on the shaft
divided by the total load supported by the bearing. Thus, upon using equation (47)

u 0 (EX?_’) _2r 1 (51)
c W/\¢c A [—-(1+s)2—€—2

RESULTS AND DISCUSSION

An analysis has been carried out to determine the effect of slip observed in refer-
ences 13 and 14 on the performance of porous metal journal bearings. To simplify the
results, the short-bearing approximation was used and the technique developed by
Morgan and Cameron for the case with no slip was adapted to obtain approximate solu-
tions. Expressions were obtained for the total load carried by the bearing, the attitude
angle, and the coefficient of friction. Before discussing the numerical values of these
quantities it will be helpful to get some idea of the numerical values of the parameters
appearing in the solutions which correspond to the most frequently used porous bearings.

As indicated in reference 2 the majority of porous bearings have a porosity between
25 and 35 percent. In this reference a curve of permeability as a function of porosity is
plotted for porous bronze, one of the most commonly used porous bearing materials.
This curve (without graphite) shows that when the porosity is between 25 and 35 percent
the permeability is between 1079 and 2x10~2 square centimeter. Figure 24.7 on page 57
of reference 15 shows that for the smaller bearings (shaft diameter, 1 in. (2.5 cm) or
less) the clearance is of the order of 10'3 centimeters. Using a value of o equalto
1/10 as given in reference 14 we see that a reasonable value for the parameter
s = \/E/ac is between 0.25 and 0.5 for the smaller porous bearings. For a bearing

18



1 inch (2.5 cm) in diameter or less, a reasonable length (ref. 15, p. 305) is about 1/2
inch or 1 centimeter. Now, as pointed out by Pinkus in his discussion of reference 5,
the thickness ry-Tg is approximately one-tenth the length of the bearing. Hence, for
a 1-inch (2.5 cm) shaft ry-rg is of the order of one-tenth of a centuneter. For
ry-Tg << ry, the parameter ¥, is approximately (r; - rg) x/c ; or for the values
given above, ¥, is of the order of 1/10. Hence, for the smaller sizes of porous bear-
ings (shaft diameters 1 inch (2. 5) or less) reasonable values for the parameter s lie
between 1/4 and 1/2 and the value of the parameter ¥, is of the order of 1/10.

The total load carried by the porous bearing is given by equation (30) and equations
(46) to (48) as a function of the parameters ¢, ¥, S, and . When s is put equal to
Zero, the solution with the slip neglected which was obtained in referenced 2 and 4 is re-
covered. The dimensionless load A is referred to as the Sommerfeld number and the
dimensionless load A(ro/z )2 is sometimes referred to as the Ocvirk number (ref. 5).
The ocvirk number is plotted in figures 4 to 7 as a function of the permeability param-
eter v, for various values of the eccentricity ratio €. In each figure the curves for
the no-slip case (s = 0) are shown dashed for comparison purposes. Curves are pre-
sented for the typical values of the slip parameter s of 0.5 and 0.25 determined pre-
viously. Values of o of 0.1 and 1 are used.

These figures show that increasing the permeability or the bearing thickness de-
creases the load-carrying capacity. The figures also show that for a given speed and
eccentricity ratio the effect of increasing' slip (measured by increasing s) is generally
to decrease the load-carrying capacity. However, for high enough eccentricity ratios
this effect is actually reversed and the slip actually results in a slight increase in load-
carrying capacity over the case where no slip occurs.

In figure 8, the fractional error due to neglecting slip in the calculations is plotted
as a function of eccentricity ratio for the typical values of the parameters for small,
high-speed, low-load bearings which were stated previously. This figure shows that the
error incurred can be as much as 30 percent.

The attitude angle ¥ (see fig. 3) is calculated from equations (30), (46), and (49).
The results of these calculations (for the same ranges of parameters as used for the
load) are shown as a function ¥, in figures 9 to 11. The results show that the attitude
angle increases with increasing permeability parameter ¥ and decreasing eccentricity
ratio €. The figures also show that for low values of ¥ the effect of slip is to in-
crease the attitude angle slightly, whereas for high values of %, the effect of slip is to
decrease the attitude angle slightly. In any case the slip has only a relatively small ef-
fect on the attitude angle.

The coefficient of friction of the bearing is given by equation (51). It is shown in
reference 15 (p. 551) that, if the effects of slip are neglected, the formula for the coef-
ficient of friction is the same for porous bearings as it is for nonporous bearings:
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namely,

u(ﬁ) N
c a1 - 62)1/2A

Thus, the effects of slip can be taken into account by replacing the term (1 - 62) 1/2 in
this formula by the term [(1 + s)‘?' - 62]1/2. This does not mean, however, that the slip
always reduces the coefficient of friction, since, other things being equal, the slip will
in most cases reduce A. The effect of slip on the coefficient of friction can be calcula-
ted by using equations (30), (46), (48), and (51). The results of these calculations are
shown in figures 12 and 13. It can be seen from these figures that increasing the por(;s-
ity parameter \Iro or decreasing the eccentricity ratio € increases the coefficient of
friction. Also the effect of slip is to decrease the coefficient of friction at large values
of ¥, and to increase the coefficient of friction at small values of ¥, In figure 14 the
fractional error due to neglecting slip in calculating the coefficient of friction is plotted
as a function of eccentricity ratio for the typical value of the parameters for small, high-
speed, light-load bearings obtained above (curve with ¥, = 0.1). Also shown in the fig-
ure is a curve corresponding to larger sized bearings (curve with ¥, = 1). This figure
shows that for the higher eccentricity ratios very large errors in the predicted value of
the coefficient of friction will result if the effects of slip are neglected. For ¥, = 1
the factor A in equation (51) is relatively unaffected by the slip. Hence, the reduction
in the coefficient of friction is due almost entirely to the term V 1+ s)2 - €2, This
shows that the curve drawn for ‘Ifo =1 in figure 14 also applies for all values of \Ifo
larger than 1 and that the results obtained with slip neglected with ¥ o > 1 merely need
be corrected by the factor (1 - 62)1/2/[(1 + s)2 - 62]lf2.

CONCLUDING REMARKS

An analysis has been performed to determine the effects of slip at a porous surface
on the performance of porous metal bearings. Other things being equal, the slip effects
usually reduce both the load-carrying capability and the coefficient of friction of the
bearing. For the larger eccentricity ratio this reduction in the coefficient of friction can
be very large. However, the slip has little effect on attitude angle.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 29, 1970,
129-01.

20



o

=2 = N

L

APPENDIX - SYMBOLS

concentric clearance
eccentricity

friction force on shaft
function defined on p. 7
function defined on p. 7
film thickness

h/c

length of bearing

l/rg

pressure within porous bearing
(above ambient)

2
Pc /6usnr0

pressure within film (above
ambient)

2

pc /6us77r0

Darcy velocity in porous bear-
ing

x-component of integrated vol-

ume flux

y-component of integrated vol-
ume flux

defined by eq. (36)

radial coordinate

inner radius of porous bearing
outer radius of porous bearing
r/r0

rl/r0

slip parameter /x/ac

x-component of velocity in film

N < < d X X =

N

surface speed of shaft

radial component of Darcy ve-
locity

azimuthal component of Darcy
velocity

axial component of Darcy veloc-
ity

z-component of velocity in film

total load supported by bearing

X-component of load supported
by bearing

Y-component of load supported
by bearing

Wx/z (£>2
usn l

WY/z cr 2
o (2)
y-component of velocity in film
coordinate for external load
coordinate for film

coordinate for external load
coordinate for film

y/Tg

defined by eq. (36)

axial coordinate for film and in-
terior or porous bearing

z/r0

slip coefficient

2
Sommerfeld number, Wi (e
ugn \r,
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eccentricity ratio, e/c

absolute viscosity

function of ¢

azimuthal coordinate
permeability of bearing material

functions defined by equations
(29) and (30)

coefficient of friction, F/W
shear stress on shaft

shear stress on bearings

lcro/c3
K (r% - r(z))
porosity parameter, — ~—— %
c3 2r0

attitude angle
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Figure 1. - Porous bearing configuration.
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Figure 4. - Bearing load at slip coefficient of 0. 1 and slip parameter of 0. 5.
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Figure 5. - Bearing load at slip coefficient of 1. 0 and slip parameter of 0.5.

27



28

3.0
r Eccentricity

ratio,
€ \\
0.9~ \
3 Slip
25— \ parameter,
\ 3
\\\\ \ —_— 0.5
2.0
o
-
-
3
w L5
@
=
k=3
g
E
(=]
Lo

Porosity parameter, W

Figure 6. - Bearing load at slip coefficient of 0. 1 and slip parameter of 0. 25.
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Figure 7. - Bearing load at slip coefficient of 1. 0 and slip parameter of 0. 25.
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Figure 8. - Fractional error in load due to no-slip con-
dition. Porosity parameter, 0. 1; slip coefficient, 0. 1;
slip parameter, 0.5.
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Figure 9. - Attitude angle at slip coefficient of 0. 1 and slip parameter of 0. 5.
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Figure 10. - Attitude angle at slip coefficient of 1. 0 and slip parameter of 0. 25.
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Figure 11, - Attitude angle at slip coefficient of 0. 1 and slip parameter of 0. 25.
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Fiqure 12. - Normalized coefficient of friction as function of porosity parameter for slip coefficient of 0. 1 and slip
parameter of 0.5.
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slip parameter of 0, 5.
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