
N A S A  

c 
00 

z c 
4 
m 
4 z 

T E C H N I C A L  N O T E  NASA  TN D-618 
c. J 
- - .  

- 
si 
- -I 

0 
I 

m 

EFFECT  OF VELOCITY SLIP AT 
A  POROUS BOUNDARY ON THE PERFORMANCE 
OF A N  INCOMPRESSIBLE POROUS  BEARING 

B 

by Marvin E. Goldstein and Willis H. Braun 

; Lewis Research  Center 
!I cleuehnd, Ohio 44135 1 1 

NATIONAL  AERONAUTICS  AND  SPACE  ADMINISTRATION WASHINGTON,  D. C. FEBRUARY 1971 
I.; 
I, 
3 



TECH LIBRARY KAFB, NM 

l w u n m w u ~ ~ n l  
01332'34 

3. Recipient's Catalog  No. 

5. Report Date 
February 1971 

6. Performing Organization Code 

8. Performing Organization Report No. 
E - 5906 

~" -~ - ~ ~ ~~~ ~ 

1. Report No. I 2. Government Accession No. 

4. Title and Subtitle 

~ ~~~ ~ 
~ ~~~ 

NASA TN D-6181 "_ . - - . 
~~ 

EFFECT  OF VELOCITY SLIP AT A POROUS 
. -~ ~~ 

BOUNDARY  ON THE PERFORMANCE OF AN INCOMPRESSIBLE 
POROUS BEARING 
"~ "" ~ _" " - ~~~ ~ ~~~ 

7. Author(s) 

Marvin E. Goldstein  and Willis  H. Braun 
~~~ ~ - 
9. Performing Organization Name and Address 

Lewis Research  Center 
National  Aeronautics  and  Space  Administration 
Cleveland, Ohio 44135 

~~~~ ~ 

12. Sponsoring Agency  Name and Address 

National Aeronautics  and  Space  Administration 
Washington, D. C. 20546 

10. Work Unit No. 

129-01 
11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Note 
14. Sponsoring Agency  Code 

"~ ~ ~- . 

6. Abstract 
-~ 

There is an  effective  slip in  velocity of a fluid flowing over a porous  surface.  The  effect of this 
slip on the  performance of a porous  bearing is established by  obtaining  solutions  for  the  short 
bearing limit. The  slip  has a significant  effect  on  bearing  performance of small,  high-speed, 
low-load bearings.  A  simple  correction is given to  the  bearing  friction  formula  to  take  into  ac- 
count the  effects of slip. 

Journal  bearings 
Porous  media 
Reynolds  equation 

18. Distribution Statement 
"" ~ 

Unclassified - unlimited 

9. Security Classif. (of  this  report) 20. Security Classif. (of this page) 
- I 21. NO. ;;Pages 

~~ 

Unclassified  Unclassified __ _ _  ~~ .~ - "" ~-~ ~ 

For sale by the  National  Technical  Information Service, Springfield,  Virginia 22151 

I I 1  l l l I l l l l I l l l l  I l l 1  



EFFECT  OF VELOCITY SLIP AT A POROUS  BOUNDARY ON THE 

PERFORMANCE O F  AN INCOMPRESSIBLE POROUS BEARING 

by Marvin  E.  Goldstein  and Willis  H. Braun 

Lewis  Research  Center 

SUMMARY 

There is an  effective  slip  in  velocity of fluid  flowing  over a porous  surface.  The ef- 
fect of this  slip  on  the  performance of a porous  bearing is established by obtaining  solu- 
tions  for  the  short  bearing  limit.  The  slip  has a significant  effect  on  bearing  perform- 
ance of small,  high-speed,  low-load  bearings.  Other  things  being  equal,  the  slip  effects 
usually  reduce both the  load-carrying  capability  and  the  coefficient of friction of the 
bearing.  For  the  larger  eccentricity  ratios  this  reduction  in  the  coefficient of friction 
can  be very  large.  The  reduction  in  the  load-carrying  capability  can  be as much as 30 
percent.  However,  the  slip  has little effect on the  attitude  angle.  A  simple  correction 
is given  to  the  bearing  friction  formula to take  into  account  the  effects of slip. 

INTRODUCTION 

Porous  metal  bearings  have  proved so practical  for  many  applications  that  they are 
produced at   the  rate of about 20 million a day (ref. 1). The low initial  cost of such  bear- 
ings,  combined  with  the  design  simplicity which they  provide, has made  them  popular  for 
aircraft  and  automotive  accessories,  home  appliances,  small  motors,  business  ma- 
chines,  instruments,  and  farm  and  construction  equipment.  These  bearings are avail-  
able  in  thousands of sizes  for  shafts  ranging  from 1/32 to 6 inches  in  diameter  and  with 
lengths  varying  from 1/32 to 4 inches. 

Most  porous  metal  bearings are made of either  bronze or   i ron with  interconnecting 
pores.  The  porosity  ranges  from  about 10 to 40 percent  and  for  the  majority of applica- 
tions a porosity  from 25 to 35 percent is used (ref. 2). 

High-porosity  bearings are used  for  high-speed,  light-load  applications,  such as 
fractional-horsepower  motor  bearings.  The  low-porosity  bearings are more  satisfac- 
tory  for  applications  where  oscillating  and  reciprocating  motions  occur  and it is 
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difficult  to  build up an  oil  film. 

We shall be  concerned  in  this  report  with  the  highly  porous  bearings which are oper- 
ated  with a hydrodynamic  film.  The first analysis of bearings of this  type  was  perform- 
ed by Morgan  and  Cameron  in  reference 2. In that paper  the  short-bearing  approxima- 
tion  (ref. 3) was  used  and  one  additional  approximation  (discussed  subsequently) was in- 
troduced.  More  recently  Rouleau (ref. 4) corrected  Morgan  and  Cameron's  analysis by 
including a load  component  which  had  been  neglected  and  recalculating  the  coefficient of 
friction on the  basis of total  load  and  actual  eccentricity  and  attitude  angle. In a second 
paper  (ref. 5) Rouleau  removed  the  additional  restriction  imposed by Morgan  and  Cam- 
eron with a considerable  increase  in  the  complexity of the  analysis.  The  results of this 
analysis show that  for  those  bearing  configurations  which  occur  in  the  majority of appli- 
cations  the  approximation  used by Morgan  and  Cameron  leads  to  only  an  insignificant er- 
ror (see  remarks by discussors appended to ref. 5). Rhodes  and  Rouleau  (ref. 6) ana- 
lyzed  the  effect of sealing off the  ends of a short  bearing  and found that the  load  could  be 
increased. 

Shir  and  Joseph (refs. 7 and 8) analyzed  the  infinitely  long  porous  bearing.  The 
principal  difficulty  with  their  analysis is that  they  assumed  that  the  hydrodynamic  film 
extends  the ful l  360' around  the  bearing (full  Sommerfeld  condition)  thus  allowing  large 
negative  pressure  regions  in  the  film.  This  almost  never  occurs  for  bearings  under  the 
usual operating  conditions.  The  finite  partial  porous  bearing was analyzed  in  reference 9 
by Rhodes  and  Rouleau.  They also  assumed that the  hydrodynamic  film  extends  around 
the  entire  bearing; but since  the  largest  bearing  arc  which  they  considered  was 180°, 
this was not a bad  assumption.  Finally,  the  porous  gas-lubricated  bearing was analyzed 
in a ser ies  of three  papers by Sneck,  Yen,  and  Elwell (refs. 10  to  12). 

In all the  analyses  described  in  the  preceding  paragraphs, it was assumed  that  the 
tangential  velocity  in  the  film  vanishes  at  the  porous  bearing  surface.  However, it was 
proved  experimentally by Beavers  and  Joseph in reference  13  that, when a fluid  flows 
over a porous wall, the  tangential  velocity  does not vanish at the  boundary but satisfies 
some  sort of sl ip condition. A particular  model  for  the  slip  condition was proposed, but 
the  experiments  performed  in  that  study  were not accurate enough  to  verify  the  model or 
to  determine  the  empirical  slip  coefficient which appeared  in  the  model.  However,  very 
accurate  experiments  were  reported  in a very  recent  paper by Beavers,  Sparrow,  and 
Magnuson  (ref. 14) which  did  indeed  verify  the  model  proposed  in  reference  13  and  de- 
termined  for  one  porous  material  the  value of the  slip  coefficient. 

In the  present  report we shall  study  the  effect of the  slip at the  porous  metal  surface 
on  the  performance of porous  metal  bearings. In the first section  the  general  porous 
bearing  problem is formulated  (for  the fu l l  bearing)  and  the  generalized  Reynolds'  equa- 
tion  for  porous  bearings  with  the  effects of sl ip included is derived.  The  short-bearing 
approximation is then  made,  and  the  approximation  introduced by Morgan  and  Cameron 
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is then  adapted  to  obtain a closed-form  solution.  The effects of slip  introduce two addi- 
tional  parameters  into  the  problem.  The results show that for  the  values of the  param- 
eters corresponding  to  small  bearings  operated at high speeds  and  light  loads  the  slip 
can  have a significant  effect  on  the  bearing  performance. 

ANALYSIS 

Formulation 

Figure 1 shows a solid  journal  running in a cylindrical  porous  bearing of inside ra- 
dius ro, outside  radius rl and  length 2. The  bearing is mounted  in a solid  housing, 
as shown in  the  figure.  We  suppose  that  the  film  region  and  the  pores of the  bearing a r e  
completely  filled  with  an  incompressible Newtonian fluid of constant  viscosity r] and 
that  the  assumptions of conventional  lubrication  theory  apply  to  the flow within  the  film. 
Thus,  it is assumed that the  film is so  thin  that  the  motion of the  fluid is laminar,  the 
inertial  terms  and  the  curvature  can  be  neglected,  and  the  pressure p is uniform 
across  the  film.  Therefore, if x is the  coordinate  measured  along  the  inner  bearing 
surface (with x = 0 at the point of maximum  film  thickness)  in  the  circumferential  di- 
rection, z is the  coordinate  measured  along  this  surface  in  the  axial  direction  (with 
z = 0 at  the  center of the bearing)  and  y is the  coordinate  normal  to  this  surface, as 
shown in  figure  2,  and if the  velocity  components  in  these  directions of the  fluid  film  re- 
gion a r e  u,  v, and w,  respectively,  then  the  Navier-Stokes  equations  become 

The  integrated  volume fluxes in  the  x-  and  z-directions  in  the  film, q and qz, 
X 

respectively, are defined by 



where h(x) is the  local  film  thickness shown  in figure 2. The  integrated  continuity equa- 
tion  for  the  film (ref. 15, p. 60) can now be  written as 

Suppose  then  the  porous  material is homogeneous  and  isotropic.  Let Q be the 
-c 

Darcy  velocity (flow divided by total  cross-sectional area, not just open area),  let P 
denote  the  pressure  within  the  porous  region,  and let K denote  the  permeability of the 
bearing  material.  Then 

and  conservation of mass  implies  that 

V *  Q = O  

Let r and 8 be  the polar coordinates  shown  in  figure 1. The  angle 8 is meas- 
ured  from  the  position of maximum  film  thickness.  Then,  the r ,  8, and  z  components 
of the  Darcy  velocity  Q are denoted by Vr, Ve, and Vz, respectively. It is necessary 
to  obtain  the  conditions  which  match  the flow in  the  porous  bearing to the flow in  the  film 
region. .To this end  notice  that  figures 1 and 2 show 
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x = r  8 0 (9) 

Since  the  pressure  and  (from continuity) the  normal  component of the  velocity  must be 
continuous across  the  boundary of the  porous  bearing, it follows  (in view of eq. (3)) that 

In addition to these  conditions it is necessary  to  impose a condition on the  tangential 
velocity at the  bearing.  In all previous  work  on  porous  bearings it has been  assumed 
that the  tangential  film  velocity  vanishes at the  surface of the  porous  bearing (refs. 2, 
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and 4 to 12). However, it has been  shown  in  references 13 and 14 that  in  reality  the 
tangential  velocity  components  satisfy  the  following  slip  conditions at the  bearing s u r -  
face: 

where CY is an  effective  slip  coefficient.  Notice that when Y -c 0 these boundary con- 
ditions,  together  with  Darcy's law (eq. (7)), imply  that  u(x,O,z) = v(x,O,z) = 0, which is 
the  no-slip  boundary  condition  used  in  previous  analyses. On ther  other hand these con- 
ditions  also  imply that u(x,O, z )  = ve(ro, e, z) and  v(x,O, z )  = Vz(ro, 8 ,  z )  when (Y - 03. 
It has been  shown  in  reference 13 that a is probably a property of the  porous  material 
and  does not depend  on  the  type of fluid  which is flowing  through  it.  The  experiments 
performed  in  reference 13 were not accurate enough to  determine a. However,  the  ex- 
periments  described  in  reference 14 show that  for  Foametal  (General  Electric Company) 
the  value of a is 1/10. 

The  remaining  boundary  conditions  for  the flow in  the  film  region  follow  from  the 
no-slip  condition at the  shaft  surface  and  the  requirement that the  pressure  in  the  film  be 
equal  to  zero at the  ends of the  bearing.  Thus, if us is the  surface  speed of the shaft 
then 

v [X, h(x), Z] = 0 0 5 x 5 2sr0 

and  (since  the  ends of the  bearing are open) the  vanishing of the  pressure  curve at the 
ends of the  bearing  implies  that 

p ( x, 2) = p  ( x, - k) = 0 for  0 s x  5 2nr0 

Two additional  boundary  conditions are needed  to  determine  the flow in  the  porous re- 
gion. The first of these  follows  from  the  fact  that  the  bearing is mounted  in a solid 
housing.  Hence, 
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The  remaining  boundary  condition  depends  on  the  nature of the  ends of the  porous  bear- 
ing. If the  ends of the  bearing are open  to  the  atmosphere,  then  this  boundary  condition 
is 

If the  ends of the  bearing are closed  off,  then  the  boundary  condition is 

r o 1 r 5 r  1 

o s e 5 2 a  

Finally,  the usual small  clearance  approximation  for  the  film  thickness 

h = c + e c o s e  (16) 

where  c is the  concentric  clearance  and  e is the  eccentricity  (see  fig. l), is valid  in 
the  present  context. 

Derivation of boundary-slip  Reynolds  equation. - Upon integrating  equations (1) 
and  (2)  and  using  the  boundary  conditions (12)  we obtain 

7 
u(x,y,z) = - -- (y - h)2 + (y - h)f v Y1 2 ax ap 

77 Y1 2 az ap 
v(x,  y, z) = - - - (y - h)2 + (y - h)g] 

where f and g a re   a rb i t r a ry  functions of x and  z  which are to  be  determined  from 
the  slip  conditions (11). In order   to  do this,  notice  that  equation (7) shows 
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Hence,  equations (9) and (10) show that 

I 

Upon inserting  equations (17) and (18) into  condition (11) we find that the functions f and 
g a r e  

where we have put 

Substitute  these results into  equations (17) and  then substitute the  result of this  equa- 
tions (4) and (5) to  obtain the following  expressions for the integrated  components of the 
volume  flux: 

. . " 
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3 
q 2 = - - -  ap (1 + El) 127 az J 

Notice  (see ref. 15, p. 290,  e.g.) that these  reduce  to  the  usual  expressions  for  the 
fluxes in  nonporous  bearing when El and Eo are put equal  to  zero. If El and zo 
are zero,  these  expressions would also apply  to  porous  bearings if there   were no slip at 
the  surface of the  porous  bearing. 

The  expressions  for  the  velocity  distribution  in  the  x-direction  can  also  be  used  to 
obtain  expressions  for  the  shear stress T~ acting  on  the  shaft  and  the  shear  stress T~ 

acting  on  the  bearing.  Thus, 

In order  to  obtain  the  porous-bearing  Reynold's  equation,  the  second  boundary con- 
dition (10) and  equations (20) are first  substituted  into  equation ( 6 )  to  obtain 

On using  equation (7) 

This is the  appropriate  form of Reynolds  equation for porous  bearings.  Equation (24.10) 
on  page 549 of reference  15 is the  porous-bearing  Reynolds  equation when slip at the 
bearing  interface is neglected. A comparison of these two equations  shows  that  equation 
(22) reduces  to  the  no-slip  equation when E ,  and Zo are put equal  to  zero.  Thus,  the 
effects of sl ip at the porous-bearing/liquid-film interface are accounted  for by the 
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factors El and Zo. The term aP/ar 

film  region  with  the  flow  in  the  porous b 

in  equation (22) connects  the  flow in the r =ro 
bearing. Hence, it is necessary  to  consider  the 

equations  for  the flow in  the porous region  before  the  Reynolds  equation (22) can  be 
solved. 
- Mathematical _ _ . - ~  description of ~- the - flow  within  the  porous  region. - When  equation (7) 

is substituted  into  equation (8), we  obtain  the well-known result that the  pressure  within 
the  porous  region is governed by Laplace's  equation.  Thus, 

-~ 

v P = O  2 

which  when written out in polar  coordinates is 

r ar r2 ao2 az 2 

It also follows from equation (7) that the  boundary  condition (14) is 

It follows  from  the first condition (10) and  equation (9) that the  Reynolds  equation 
(22) provides  the  boundary  condition  for  equation (23) on  the  surface r = ro. The bound- 
a r y  conditions  on  the  remaining  surfaces are given  either  by  equation (1%) o r  (15b). 
Thus,  the  pressure  distribution  in  the  bearing (and,  in view of the first eq. ( lo),  the 
pressure  distribution  in  the  film) is completely  determined by equation (23) and  these 
boundary  conditions. 

Nondimensional  formulation. - Before  proceding it is convenient to  introduce  the 
following standard  nondimensional  quantities 
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* z  z =-  

rO 

* r  r =-  

rO 

* '1 

rO 
rl =-  

* P C  
2 

P =  
6us T o  

* PC2 P =  

E = -  
C 

e 

KrO 

C 
3 

Then  equations (16), (22), and (23)  become,  respectively, 

h = 1 + E  COS 8 
* 
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a 
ae 
- 

1 a lr* ap*\ 1 a 2 P * a2p* 
" - +--+-=o 

(27) 
r =1 * 

where after using  equation (16) the  nondimensional  slip  terms E, and Eo can now be 
written as 

"0 = - S 

1 + S  + E  COS e 

"I (1 + E COS e)(s + 1 + E COS e) 

The first condition (10) becomes 

The  boundary  condition (24) becomes 

* *  
r =r 1 c 2  2 

p* (e, f )  = p* (e, - $) = o 

11 
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qotice t 

* *  
151- 'rl 

( 3 3b) 

o s e - = 2 n  

:hat in view of condition (31) the  boundary  condition (33b) implies  the  boundary 
condition (33a) provided it is required that the  pressure be  continuous at the points 

(1 ,  e, $) and (l, e,  - f). (Notice  that this would not be  the  case if the condition (15b) 

was  imposed.)  Hence,  the  boundary  condition (33a) can  be  replaced by a pressure con- 
tinuity  condition.  We  shall use these boundary  conditions  in a somewhat  different way 
and it is therefore  convenient  to  retain  them  in  their  present  form. 

Equations (26) to (33b) completely  determine  the  boundary  value  problem  for  the 
pressure  distribution  within  the  bearing  and  film  region.  Notice that the  parameter s 
enters  these  equations only  through  the t e r m s  Eo and El and that Eo and E ,  equal 
zero when s is equal  to  zero.  Hence,  the  effect of the  slip at the  bearing  surface  goes 
to  zero when s goes  to  zero. 

Instead of obtaining  the  complete  solution  to  the  boundary  value  problem we shall 
consider  the  short-bearing  approximation. 

Short-bearing  approximation. - The  short-bearing  approximation  consists of assum- 
ing  the  pressure  gradient  in  the  circumferential  direction is negligibly small  compared 
with  the  pressure  gradient  in  the  axial  direction (ref. 3). This  assumption is usually 
valid for   l /d   ra t ios   less   than 1. Many porous  bearings fall into  this  geometric  cata- 
gory. When this  approximation is made  (since  eqs. (26) and (30) show that h  and El 
a r e  independent of z ), equations (27) and (28) become 

* 
* 

" 1 a fr* ap*\ - +-=o a2p* 
(3 5) 

These  equations  must  be  solved  subject  to  the  boundary  conditions  (32),  (33a),  and 
(33b). This  boundary  value  problem has been  solved  exactly  for  the  limiting  case of 
zero  s l ip  in reference 5 in   terms of infinite series.  However, a much  simpler  approxi- 
mate  solution was obtained  for  this  problem  in  the  zero  slip  case by Morgan  and  Cameron 
in reference 2. It was pointed  out  by Pinkus in his discussion of reference 5 (appended 
to  ref. 5) that for  the  values of the  parameters  which  correspond  to the majority of 
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bearings  there is practically no difference  between  these  solutions. We shall therefore 
simplify  the  problem by introducing  the  approximation of Morgan  and  Cameron.  This 
approximation  consists of imposing  only  the  boundary  condition (33a) and not the bound- 
a ry  condition (33b), and of using  the  arbitrariness  introduced by this  means  to  obtain a 
simple  expression for the  solution.  This  approximation is equivalent to  imposing  the 
boundary  condition (33b) only  along a single  line at the  edge of the  bearing  instead of 
over the  entire  edge.  Since  this  line is adjacent  to  the  film,  this  turns  out  to  be a good 
approximation  for  the  bearing  geometries  usually  used  in  practice. 

W e  shall, therefore,  seek a solution  to  equation (35) subject  to  the  conditions (31), 
(32),  (33a),  and (34). This  problem possesses a solution of the  form 

* *  * * * 
P (r , e, z ) = R(r , e) + Z(z , e) 

where  the  functions R and  Z  can be determined so that all the  conditions are satisfied. 
In order  to  prove  this it is only necessary  to  find  the  functions  R  and Z which satisfy 
equation (35) together  with  conditions  (31),  (32),  (33a),  and (34). To this end,  insert 
equation (36) into  equation (35) to  obtain 

a2z 
* *  

r ar 

Since  the  left  side of this  equation is independent of z and  the  right  side is independent 
of r , there  exists a function 0 of e only such that 

* 
* 

Hence, upon carrying  out  the  integrations,  we  find that 

And equation  (3 5) will  be  satisfied  provided 

13 
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R = - ( r  ) O(0) +In r e l ( @  + 02(e) 1 * 2  * 
4 

where O1 to e4 can be  any  functions of 8. It follows  from  equation (37) that the 
boundary  condition (32) will  be satisfied if we put 

Hence,  equations. (36),  (37), and (39) show that 

Equations (36) and (38)  show that condition (31) is satisfied if we set  

p (e ,z  ) = 05(e) + 03(e)z - - (2 1 o(e) * *  * 1 * 2  
2 

where we have put 

0 - - 0 + 0 2 + 0 4  1 
5 - 4  

The  boundary  condition (33a) will  be satisfied if we  choose  the  functions O3 and O5 of 
8 in  equation (41) so that 

r 1 

Finally, it follows  from  equations (40) and (42) that  equation (34) will  be satisfied if we 
choose  the  function 0 so that 

14 
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where  we  have put 

Hence, the differential  equation and boundary  conditions are all satisfied  and we find 
from  equations (26),  (29),  (42), and (43) that the  pressure in the  film  region is given by 

The  pressure  distribution  within  the  porous  region  itself is of little  interest  and  we shall 
therefore not write out an  expression  for  it  explicitly.  Thus,  the  solution  to  the  porous 
bearing  problem  in  the  short-bearing  limit is given by equation (44). This result, of 
course,  reduces  to  the  equation  obtained in reference 2 when s is put equal  to  zero. 
Having  obtained an  expression  for the pressure  distribution  in  the  film, it is now neces- 
sary  to  use  this  result  to  calculate  the  quantities of principal  interest.  The first of these 
is the load  supported by the bearing. 

tion of the  external  load  which  will  equilibrate  the  pressure  generated  in  the  film.  The 
X and  Y  axis  are as shown  in figure 3. The  components of the  load are obtained by in- 
tegrating  the component of the  pressure  force  over  the  surface of the  bearing. In calcu- 
lating  the  loads  on  short  porous  bearings it has always been  assumed  in  previous  analy- 
ses that  the  half-Sommerfeld  condition is appropriate (refs. 2, and 4 to 6).  We shall 
also follow this  procedure.  Thus, it is assumed that the  pressure  distribution  for 
0 5 8 5 n is given by equation (44) and  the  pressure is put equal  to  zero  for n -= 8 5 2s. 
When this condition is used, the X and Y components of the load Wx and Wy are 

Load  on short  bearing. - We shall now find  expressions  for  the  magnitude  and  direc- 

Wx = J"'21s pro  cos e dB dz 
-1 /2 I (4 5) 

Wy = / 1/21s pro  s in  8 de dz 
-1 /2 J 
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Or upon defining the dimensionless  load  components Wx and Wy by 
* * 

equations (45) become 

Upon inserting  equation (44) into these expressions  and  performing  the  integration with 
respect  to z we get 

* 

The  magnitude W of the  load  on  the  bearing is 

w = d 2  wx +wy 2 
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and  the  Sommerfeld  number A is 

Hence 

The  attitude  angle I) shown  in  figure 3 is defined by 

wY 

-wX 
tan I) = - 

or 

The  other  important  quantity  that  must  be  calculated is the  friction  in  the  bearing. 
Friction  in  short  bearings. - The  shear  stress Th acting on the  shaft for any po- 

rous bearing is given by equation (21a). However, as indicated  in  reference 16 (p. 85), 
it is consistent  with  the  short-bearing  approximation  to  neglect  the  circumferential  pres- 
sure  gradient  term  in  this  equation.  Thus,  in  the  short-bearing  limit 

The  circumferential  friction  force F acting  on  the shaft is then 
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Upon substituting  equations (9), (16) and (29) this  becomes 

de 
2 C 1 + s  + E  COS 8 

Performing  the  integration  gives 

The  coefficient of friction ,u of the bearing is defined as the frictional force on the  shaft 
divided by the  total  load  supported by the  bearing.  Thus, upon using  equation (47) 

RESULTS AND  DISCUSSION 

An analysis  has  been  carried out to  determine  the  effect of slip observed  in refer- 
ences 13 and 14 on  the  performance of porous  metal  journal  bearings.  To  simplify  the 
results, the  short-bearing  approximation  was used and  the  technique  developed by 
Morgan  and  Cameron  for  the  case  with no slip  was  adapted  to  obtain  approximate solu- 
tions.  Expressions  were  obtained  for  the  total  load  carried by the  bearing,  the  attitude 
angle,  and  the  coefficient of friction.  Before  discussing  the  numerical values of these 
quantities it will be helpful to get some  idea of the  numerical  values of the  parameters 
appearing  in  the  solutions which correspond  to  the  most  frequently  used  porous  bearings. 

As  indicated  in  reference 2 the  majority of porous  bearings  have a porosity  between 
25 and 35 percent. In this  reference a curve of permeability as a function of porosity is 
plotted for  porous  bronze,  one of the  most  commonly  used  porous  bearing  materials. 
This  curve (without graphite)  shows that when the  porosity is between 25 and 35 percent 
the  permeability is between 10'' and 2x10" square  centimeter. Figure 24.7 on page 57 
of reference 15 shows that for  the  smaller  bearings (shaft diameter, 1 in. (2.5 cm) o r  
less) the  clearance is of the  order  of centimeters. Using a value of Q! equal  to 
1/10 as given in reference 14 we see that a reasonable  value for the  parameter 
s = f i / ac  is between 0.25 and 0.5 for  the  smaller  porous  bearings.  For a bearing 
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1 inch  (2.5 cm) in diameter  or less, a reasonable  length (ref. 15, p. 305) is about 1/2 
inch or 1 centimeter. Now, as pointed  out by Pinkus  in  his  discussion of reference 5, 
the thickness r1 - ro is approximately  one-tenth  the  length of the bearing.  Hence,  for 
a 1-inch  (2.5  cm)  shaft r1 - ro is of the order of one-tenth of a centimeter.  For 
r1 - ro << ro, the  parameter qo is approximately (rl - rO)~/c3;   o r   for  the values 
given  above, \Ira is of the  order of 1/10. Hence, for  the  smaller  sizes of porous  bear- 
ings (shaft diameters 1 inch (2.5) or less)  reasonable  values for the  parameter s lie 
between 1/4 and 1/2 and  the  value of the  parameter @o is of the order of 1/10. 

The  total  load  carried  by  the  porous  bearing is given by equation (30) and  equations 
(46) to (48) as a function of the parameters e, @o, s, and a. When s is put equal  to 
zero,  the  solution  with  the slip neglected  which  was  obtained  in  referenced 2 and 4 is re- 
covered.  The  dimensionless load A is referred to as the  Sommerfeld  number  and  the 
dimensionless  load A(ro/Z)2 is sometimes  referred  to as the  Ocvirk  number (ref. 5). 
The  ocvirk  number is plotted  in  figures 4 to 7 as a function of the  permeability  param- 
eter  9, for  various  values of the  eccentricity  ratio E .  In each  figure  the  curves  for 
the  no-slip  case (s = 0) are shown dashed for  comparison  purposes.  Curves are pre- 
sented  for  the  typical  values of the  slip  parameter s of 0.5 and 0.25 determined  pre- 
viously.  Values of a, of 0.1 and 1 are used. 

These  figures show  that  increasing the permeability or  the  bearing  thickness de- 
creases the  load-carrying  capacity.  The  figures  also show that  for a given  speed  and 
eccentricity  ratio  the  effect of increasing  slip  (measured by increasing s) is generally 
to  decrease  the  load-carrying capacity. However, for high  enough eccentricity  ratios 
this  effect is actually  reversed  and the slip  actually  results in a slight  increase in  load- 
carrying  capacity  over  the case where no slip  occurs. 

In figure  8,  the  fractional  error due to  neglecting  slip  in  the  calculations is plotted 
as a function of eccentricity  ratio  for the typical  values of the  parameters  for  small, 
high-speed,  low-load  bearings  which were stated  previously. This figure  shows  that  the 
error  incurred  can be as much as 30 percent. 

The  attitude  angle @ (see  fig. 3) is calculated  from  equations (30), (46),  and (49). 
The results of these  calculations  (for the same  ranges of parameters as used  for  the 
load) are shown as a function \Ira in  figures 9 to 11. The results show that the attitude 
angle  increases with increasing  permeability  parameter 9, and  decreasing  eccentricity 
ratio E .  The  figures  also show that for  low values of 9, the effect of slip is to  in- 
crease  the  attitude  angle  slightly,  whereas  for high values of 9, the effect of slip is to 
decrease  the  attitude  angle  slightly. In any case the  slip  has only a relatively  small ef- 
fect on  the  attitude  angle. 

reference 15 (p. 551) that, if the  effects of slip are neglected,  the  formula  for  the  coef- 
ficient of friction is the  same  for  porous  bearings as it is for nonporous  bearings: 

The  coefficient of friction of the  bearing is given by equation (51). It is shown  in 
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namely , 

Thus,  the effects of slip  can  be  taken into  account by replacing  the  term (1 - E ~ ) ~ / ~  in 
this  formula by the  term [(l + s)  - c2]1/2. This  does not mean,  however, that the  slip 
always  reduces  the  coefficient of friction,  since,  other  things  being  equal,  the  slip will 
in most  cases  reduce A. The  effect of sl ip on the  coefficient of friction  can  be  calcula- 
ted by using  equations (30), (46), (48), and (51). The results of these  calculations  are 
shown  in  figures 12 and 13. It can  be  seen  from  these  figures that increasing  the  porck- 
ity  parameter @o or decreasing  the  eccentricity  ratio E increases  the  coefficient of 
friction.  Also  the  effect of sl ip is to  decrease  the coefficient of friction at large  values 
of @o and  to  increase  the  coefficient of friction at small  values of q0. In figure 14 the 
fractional  error due to  neglecting  slip in calculating  the  coefficient of friction is plotted 
as a function of eccentricity  ratio  for  the  typical  value of the  parameters  for  small, high- 
speed,  light-load  bearings  obtained  above  (curve  with \Ira = 0.1). Also  shown in the  fig- 
ure is a curve  corresponding  to  larger  sized  bearings  (curve  with @o = 1). This  figure 
shows that for  the  higher  eccentricity  ratios  very  large  errors  in  the  predicted  value of 
the  coefficient of friction will result if the  effects of slip are neglected. For q0 2 1 
the  factor A -in  equation (51) is relatively  unaffected by the  slip.  Hence,  the  reduction 
in  the  coefficient of friction is due almost  entirely  to  the  term d m .  This 
shows that the  curve  drawn  for 9, = 1 in  figure 14 also  applies  for all values of 4, 
larger  than 1 and that the results obtained  with sl ip ne  lected  with @, > 1 merely need 
be corrected by the  factor (1 - E ~ )  1/2/[(1 + s ) ~  - E 2 ] 182 . 

CONCLUDING  REMARKS 

An analysis  has  been  performed  to  determine  the  effects of slip at a porous  surface 
on  the  performance of porous  metal  bearings.  Other  things  being  equal,  the  slip  effects 
usually  reduce  both  the  load-carrying  capability  and  the  coefficient of friction of the 
bearing. For the  larger  eccentricity  ratio  this  reduction  in  the  coefficient of friction  can 
be  very  large.  However,  the  slip  has  little  effect  on  attitude  angle. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, October 29,  1970, 
129-01. 
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APPENDIX - SYMBOLS 

C 

e 

F 

f 

g 

h 

h* 

2 

2 *  

P 

P* 

P 

P 
* 

6 

qx 

qY 

R 

r 

rO 

rl  * 
r 
* 

rl 
S 

U 

concentric  clearance 

eccentricity 

friction  force on shaft 

function  defined  on p. 7 

function  defined  on  p. 7 

film  thickness 

h/c 

length of bearing 

2 /ro 
pressure within  porous  bearing 

(above  ambient) 
2 

P C  /6Usrlro 

pressure within  film  (above 
ambient) 
2 

PC /6usrlro 

Darcy  velocity  in  porous  bear- 
ing 

x-component of integrated vol- 
ume  flux 

y-component of integrated vol- 
ume f l u x  

defined by eq. (36) 

radial  coordinate 

inner  radius of porous  bearing 

outer  radius of porous  bearing 

rdro  
slip  parameter @/ac 

x-component of velocity  in  film 

vr 

ve 

VZ 

V 

W 

wX 

wY 

w; 

w; 

W 

X 

X 

Y 

Y 

Y 
Z 

* 

z 

* 
Z 

(Y 

A 

surface  speed of shaft 

radial component of Darcy  ve- 
locity 

azimuthal  component of Darcy 
velocity 

axial component of Darcy  veloc- 
ity 

z-component of velocity  in  film 

total  load  supported by bearing 

X-component of load  supported 
by bearing 

Y-component of load  supported 
by bearing 

w,/l (;)2 

!F ($ 
7 

7 
y-component of velocity  in  film 

coordinate  for  external  load 

coordinate  for  film 

coordinate  for  external  load 

coordinate  for  film 

Y/ro 

defined by  eq. (36) 

axial coordinate  for  film  and in- 
te r ior  or porous  bearing 

z/ro 

sl ip coefficient 

Sommerfeld  number, - - 
w/z 77 (;y 
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E eccentricity ratio, e/c 

77 absolute viscosity 

0, (31’ 
02, . . . function of e 

8 azimuthal coordinate 

K permeability of bearing material 

3-p E1 

I-( coefficient of friction, F/W 

” functions  defined by equations 
(29) and (30) 

‘h shear stress on shaft 

shear stress on bearings ‘0 
KI’()/c3 

K 
*O 

porosity parameter, - 
C 3 2r0 * attitude angle 
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Figure 1. - Porous  bearing  configuration. 
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Figure 3. - Configuration for load components. 
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Figure 5. - Bearing load  at slip  coefficient of 1.0 and  slip  parameter of 0.5. 
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F igure  6. - Bearing  load at sl ip  coeff icient of 0. 1 and sl ip  parameter of 0. 25. 
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Figure 7. - Bearing load  at  slip  coefficient of 1. 0 and  slip  parameter of 0.25. 
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Figure 8. -Fract ional   er ror  in load  due  to  no-slip  con- 
dition.  Porosity  parameter, 0. 1; sl ip  coeff icient, 0. 1; 
slip  parameter, 0.5. 
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F igure 9. - Attitude  angle  at  sl ip  coefficient of 0. 1 and  slip  parameter  of 0. 5. 
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Figure 10. - Attitude  angle at slip  coefficient of 1. 0 and  slip  parameter of 0.25. 
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Figure 11. - Attitude  angle  at slip coefficient of 0. 1 and  slip  parameter of 0.25. 
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Porosity  parameter, qo 

Figure 13. - Normalized  coefficient of f r i c t i on  as func t i on  of porosity  parameter for slip  coefficient of 0. 1 and  slip 
parameter of 0. 25. 
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Figure 14. - Error  in normalized  coefficient of f r i c t i on  
due to no-slip  condition,  at  slip  coefficient of 0. 1 and 
slip  parameter of 0.5. 
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