CALCULATED PRESSURE-INDUCED VIBRATIONAL ABSORPTION IN H₂ - H₂ COLLISIONS IN HYDROGEN GAS

by R. W. Patch

Lewis Research Center
Cleveland, Ohio 44135
The coefficient for pressure-induced vibrational absorption in H₂ - H₂ collisions was calculated for temperatures from 298 to 7000 K and wave numbers between 100 and 40 000 cm⁻¹ for transitions with a net change of +1 vibrational quanta. The absorption occurs principally in the infrared. The model included many refinements. The integrated absorption coefficient at 298 K was 87 percent of the experimental value. The integrated absorption coefficient at 3000 K was 2.1 times the previous theoretical value. For pressures from 100 to 1000 atm (1.013×10⁷ to 1.013×10⁸ N/m²) the Planck and Rosseland mean opacities were increased by factors as high as 18.9 and 303, respectively, over previous estimates. An approximate formula for the spectral absorption coefficient is given for rapid calculation for temperatures from 600 to 7000 K.
CALCULATED PRESSURE-INDUCED VIBRATIONAL ABSORPTION

IN H₂ - H₂ COLLISIONS IN HYDROGEN GAS

by R. W. Patch

Lewis Research Center

SUMMARY

The coefficient for pressure-induced vibrational absorption in H₂ - H₂ collisions was calculated for temperatures from 298 to 7000 K and wave numbers between 100 and 40 000 reciprocal centimeters for local thermodynamic equilibrium. Because only transitions with a net change of +1 vibrational quanta were considered, the absorption was centered near the fundamental at 4161 reciprocal centimeters in the infrared. The model included electronic configuration interaction, mechanical anharmonicity, vibration-rotation interaction, excited vibrational states, and more realistic intermolecular potential and line shapes than previously used. The integrated absorption coefficient at 298 K was 87 percent of the experimental value. The integrated absorption coefficient at 3000 K was 2.1 times the previous theoretical value. For pressures from 100 to 1000 atmospheres (1.013×10⁷ to 1.013×10⁸ N/m²) the Planck and Rosseland mean opacities were increased by factors as high as 18.9 and 303, respectively, over previous estimates. An approximate formula for the spectral absorption coefficient is given for rapid calculation for temperatures from 600 to 7000 K.

INTRODUCTION

The need for reliable heat-transfer calculations for high-temperature high-pressure hydrogen gas occurs in gaseous-core nuclear rockets (refs. 1 and 2), in outer layers of late-type stars, and in high-speed entry of spacecraft into certain planetary atmospheres. Such calculations require accurate pressure-induced vibrational absorption coefficients for H₂ - H₂ collisions. This absorption occurs in the infrared region and is principally due to transitions with a net change of +1 vibrational quanta for the two molecules. The special case where the vibrational quantum number of one molecule jumps from 0 to 1 is known as fundamental vibrational absorption.
Considerable theoretical work has been performed on pressure-induced $H_2 - H_2$ fundamental vibrational absorption. Isolated H_2 molecules do not possess an electric dipole moment, but a necessary condition for pressure-induced vibrational absorption is an electric dipole moment. This moment is induced during collisions. Van Kranendonk and Bird (ref. 3) gave a theory which assumed that the induced dipole moment was the sum of a contribution due to the overlap of orbitals and a contribution due to the electric quadrupole moment of each molecule inducing a dipole moment in the other molecule. This is called the large-R approximation in this report. They evaluated the overlap contribution by a distorted-orbital method. Britton and Crawford (ref. 4) improved Van Kranendonk and Bird's theory by including components of the dipole moment perpendicular to the intermolecular axis and by including an additional exchange effect in calculating the overlap dipole moment. Van Kranendonk (refs. 5 and 6) extended his theory to cryogenic temperatures by considering quantum effects in the translational motion of the gas molecules. Linsky (ref. 7) extrapolated Van Kranendonk's (ref. 6) theory to temperatures up to 3000 K although the theory neglected excited vibrational states. All theories have assumed a Lennard-Jones 6-12 intermolecular potential (ref. 8).

A great deal of experimental work has also been performed on pressure-induced $H_2 - H_2$ fundamental vibrational absorption. Experimental measurements of absorption coefficients have been made at temperatures up to 423 K (refs. 9 to 11) and are in general agreement with each other and with theory (refs. 4 and 6).

At temperatures several times higher than existing experimental data, several effects can be expected to be important that were not important in the experiments or theories. Excited vibrational states may be more important than their relative populations would indicate, and mechanical anharmonicity and vibration-rotation interaction should also have appreciable effects. In addition, as temperature is raised, collisions become harder so that induced dipole moment and intermolecular potential must be known for smaller intermolecular distances. It is not safe to extrapolate dipole moment from values for intermolecular distances important at room temperature because electronic configuration interaction is important at small intermolecular distances but not at large intermolecular distances. It is well known not to be safe to use a Lennard-Jones 6-12 intermolecular potential at high temperature because it gives excessive potentials for small intermolecular distances. Lastly, at high temperature the absorption coefficient must be reduced because of the effect of stimulated emission, which follows Kirchhoff's law. This has not been done correctly in some previous theories.

The object of this report was to calculate more realistic values of absorption coefficient for transitions with a net change of +1 vibrational quanta for temperatures up to 7000 K. All the above high-temperature effects were included as realistically as currently possible. The induced dipole moment was obtained from orthogonalized valence-bond configuration-interaction calculations for small intermolecular distances (ref. 12)
and by the large-R approximation for large intermolecular distances (ref. 13). The effects of excited vibrational states, mechanical anharmonicity, and vibration-rotation interaction were based on a new analysis presented in this report. (Configuration interaction, excited vibrational states, mechanically anharmonicity, and vibration-rotation interaction were not included in previous pressure-induced absorption theories.) More recent line shapes were used than Linsky (ref. 7) used. The temperature range 298 to 7000 K was covered. At higher temperatures other processes are much more important. This report is limited to densities where ternary collisions are not important (ref. 10).

ANALYSIS

In this section the integrated absorption coefficient is obtained for pressure-induced vibrational transitions including the effects of excited vibrational states, mechanical anharmonicity, and vibration-rotation interaction. The relation of this coefficient to several other absorption coefficients is then given, and realistic line shapes are selected based on experiments in the literature and on theoretical considerations.

Absorption Coefficients in Terms of Einstein Coefficients

The first step in getting the integrated absorption coefficient in useful form is to relate the linear absorption coefficient, the Einstein coefficients for absorption, and the integrated absorption coefficient. Consider a gas containing only H₂ molecules. We are interested in the pressure-induced vibrational absorption occurring during binary collisions of pairs of these molecules. Let \(\nu_i, J_i, \text{ and } m_i \) be the vibrational quantum number, total angular momentum quantum number, and quantum number for the component of total angular momentum along the intermolecular axis, respectively, for the \(i^{th} \) molecule. (Symbols are given in the appendix.) A state \(\rho \) of the pair thus has the quantum numbers \(\nu_1, \nu_2, J_1, J_2, m_1, \text{ and } m_2 \) provided the molecules are far enough apart. We define a spectral Einstein coefficient of absorption \(B_{\rho \rho' \nu} \) in such a way that the probability of a pair of molecules in state \(\rho \), exposed to radiation of wave number \(\nu \), absorbing a quantum \(h\nu \) in time interval \(dt \) and wave number interval \(d\nu \) and making a transition to state \(\rho' \) is given by \(B_{\rho \rho' \nu} \rho \nu \ dt \ d\nu \), where \(\rho \nu \) is the radiation energy density per unit wave number.

According to Chandrasekhar (ref. 14), the linear absorption coefficient \(a_\nu \) (excluding stimulated emission) is related to the spectral Einstein coefficient by

\[
a_\nu = \rho \nu B_{\rho \rho' \nu} \frac{h\nu}{\nu}
\]

(1)
where V is the volume of homogeneous gas considered, p_{ρ} is the number of pairs in state ρ, and h is Planck's constant. The integrated Einstein coefficient of absorption for the transition $\rho \rightarrow \rho'$ is

$$B_{\rho\rho'} = \int_0^\infty B_{\rho\rho'} \, d\bar{\nu}$$

(2)

The integrated absorption coefficient with the wave number removed is defined by

$$s_{\rho\rho'} = \int_0^\infty \frac{a_{\bar{\nu}}}{\bar{\nu}} \, d\bar{\nu}$$

(3)

Combining equations (1) to (3),

$$s_{\rho\rho'} = \frac{p_{\rho} \hbar B_{\rho\rho'}}{V}$$

(4)

However, $B_{\rho\rho'}$, actually depends on the intermolecular distance R of the pair of molecules (fig. 1), so equation (4) must be corrected by averaging over R. For a dilute system the averaging may be accomplished by (ref. 15)

$$s_{\rho\rho'} = \frac{p_{\rho} \hbar B_{\rho\rho'}}{V^2} \int_B^{\rho\rho'} e^{-\Phi/kT} 4\pi R^2 \, dR$$

(5)

where Φ is the intermolecular potential averaged over orientations so that it depends only on R. For neutral molecules Φ decreases rapidly with increasing R, so the integration may be extended to $R = \infty$ without loss of accuracy.

More useful versions of equation (5) are obtained by replacing p_{ρ} by number densities and summing. The number of pairs of H_2 molecules is $N(N-1)/2$, where N is the number of such molecules in volume V. For $N >> 1$ this is essentially $N^2/2$. The quantity p_{ρ} is thus

$$p_{\rho} = \frac{N^2}{2} P(v_1, J_1, m_1)P(v_2, J_2, m_2)$$

(6)
where \(P(v, J, m) \) is the probability of an \(\text{H}_2 \) molecule having quantum numbers with values \(v, J, \) and \(m \). States with the same \(v_1, v_2, J_1, \) and \(J_2 \) but any values of \(m_1 \) and \(m_2 \) all have the same energy. Likewise, states with the same \(v'_1, v'_2, J'_1, \) and \(J'_2 \) but any values of \(m'_1 \) and \(m'_2 \) all have the same energy. Consequently, transitions between these primed and unprimed states all have the same wave number. Thus for convenience their integrated absorption coefficients (eq. (5)) may be added.

\[
s_{\xi \xi'} = \frac{n^2 \hbar}{2} \sum_{m_1 = -J_1}^{J_1} \sum_{m_1' = -J_1}^{J_1'} \sum_{m_2 = -J_2}^{J_2} \sum_{m_2' = -J_2'} \frac{P(v_1, J_1, m_1) P(v_2, J_2, m_2)}{P(v_1', J_1', m_1') P(v_2', J_2', m_2')}
\]

\[
\int_0^\infty B_{\rho \rho'} e^{-\Phi/kT} 4\pi R^2 dR
\]

where subscript \(\xi \) stands for the quantum numbers \(v_1, J_1, v_2, \) and \(J_2 \); a prime indicates quantum numbers after the transition; and \(n \) is the number density corresponding to \(N \).

Wave Functions and Expansions

The Einstein coefficient and hence \(s_{\xi \xi'} \) may be expressed in terms of the wave functions and of expansion coefficients of the dipole moment. First a set of coordinates are needed. We neglect translation of the molecules and choose Cartesian coordinates fixed in space half way between the molecules (fig. 1).

The integrated Einstein coefficient is related to the components \(\left(\mu_x \right)_{\rho' \rho}, \left(\mu_y \right)_{\rho' \rho}, \) and \(\left(\mu_z \right)_{\rho' \rho} \) of the electric dipole matrix elements for these coordinates by (ref. 16)

\[
B_{\rho \rho'} = \frac{2\pi^2}{3h^2 \epsilon_0 c} \left[\left(\mu_x \right)_{\rho' \rho} \right]^2 + \left(\left(\mu_y \right)_{\rho' \rho} \right)^2 + \left(\left(\mu_z \right)_{\rho' \rho} \right)^2
\]

where \(\epsilon_0 \) is the electric permittivity of free space, \(c \) is the velocity of light, and the equation is in SI units. The \(x \) and \(y \) contributions to equation (8) can be expected to be considerably smaller than the \(z \) contribution for two reasons: (1) The electric quadrupole moment of each molecule may induce a dipole in the other molecule. The average magnitudes of the \(x \) and \(y \) components of the electric fields due to these quadrupole
moments are much less than the z components. (2) The distortion of the orbitals due
to overlap is principally in the z direction. Therefore the x and y contributions to
equation (8) are neglected here. If equation (8) is substituted into equation (7), we get

\[s_{\ell_1\ell_2} = \frac{\pi^2 n^2 P(v_1, J_1, 0) P(v_2, J_2, 0)}{3hc\epsilon_0} \times \int_0^T \sum_{m_1} \sum_{m_1'} \sum_{m_2} \sum_{m_2'} \sum_{J_1} \sum_{J_1'} \sum_{J_2} \sum_{J_2'} \left(\frac{(\mu_z)}{\rho, \rho'} \right)^2 e^{-\frac{\Phi}{kT}} 4\pi R^2 dR \]

(9)

where the fact that \(P(v, J, m) \) is independent of \(m \) has been used.

The relation between the matrix element \((\mu_z)_{\rho, \rho'}\) and the system wave functions \(\psi_\rho \) and \(\psi_{\rho'} \) is

\[(\mu_z)_{\rho, \rho'} = \int \psi_{\rho'}^* \left(-\sum_i eZ_i + \sum_j eZ_j z_j \right) \psi_\rho \, d\tau \]

(10)

where \(z_i \) is the z coordinate of the \(i^{th} \) electron, \(z_j \) is the z coordinate of the \(j^{th} \) nucleus, \(e \) is the charge of an electron, \(eZ_j \) is the charge of the \(j^{th} \) nucleus, and the summations cover all electrons and nuclei. If the relative motion of the two molecules is slow compared to the motion of the electrons, the Born-Oppenheimer approximation (ref. 17) may be applied to the pair of molecules collectively.

\[\psi_\rho = \psi_e(X_1, R, r_1, r_2, \theta_1, \phi_1, \theta_2, \phi_2) \psi_n(R, r_1, r_2, \theta_1, \phi_1, \theta_2, \phi_2) \]

(11)

where \(\psi_e \) is the electronic wave function, and \(\psi_n \) is the nuclear wave function. In equation (11) \(X_1 \) stands for the position coordinates of the electrons, \(r_1 \) for the internuclear distance of molecule 1, and \(r_2 \) for the internuclear distance of molecule 2. It has been observed that the wave numbers of lines in pressure-induced transitions can be calculated from term values for isolated diatomic molecules. Consequently, it is reasonable to approximate \(\psi_n \) by (ref. 3)

\[\psi_n \approx \frac{\psi_{v_1 J_1}(r_1)}{r_1} \frac{\psi_{v_2 J_2}(r_2)}{r_2} Y_{J_1 m_1}(\theta_1, \phi_1) Y_{J_2 m_2}(\theta_2, \phi_2) \]

(12)
where \(\psi_{vJ} \) is the vibrational wave function. In the past harmonic oscillator wave functions have been used for \(\psi_{vJ} \), but in this report mechanical anharmonicity is included by using a wave function calculated from the Rydberg-Klein-Rees potential energy for an isolated \(\text{H}_2 \) molecule. In addition, vibration-rotation interaction in \(\text{H}_2 \) is included by adding \(\hbar^2 J(J + 1)/8\pi^2m_r r^2 \) to the potential energy (ref. 18) before calculating the vibrational wave function. In equation (12) \(\psi_{Jm} \) is the spherical harmonic given by

\[
\psi_{Jm}(\theta, \phi) = (2\pi)^{-1/2} \Theta_{Jm}(\cos \theta)e^{im\phi}
\]

For \(m \geq 0 \) the normalized associated Legendre functions \(\Theta_{Jm} \) are given by Pauling and Wilson (ref. 19). For \(m < 0 \) they are

\[
\Theta_{Jm}(\cos \theta) = (-1)^m \Theta_J |m| (\cos \theta)
\]

From equations (10) to (12)

\[
\left(\mu_z \right)_{p_1p_2} = \int_0^{2\pi} \int_0^{\pi} \int_0^{2\pi} \int_0^{\pi} \int_0^\infty \int_0^\infty \int_0^\infty \psi_{v1}^* J_1 J_2 \psi_{v2}^* J_1^* m_1 J_2^* m_2 \mu_z
\]

\[
\times \psi_{v1}^* J_1 \psi_{v2}^* J_2 Y_{J1}^* m_1 Y_{J2}^* m_2 \sin \theta_1 \sin \theta_2 \mathrm{d}r_1 \mathrm{d}r_2 \mathrm{d}\theta_1 \mathrm{d}\theta_2 \mathrm{d}\phi_1 \mathrm{d}\phi_2
\]

where the \(z \) component of the electric dipole moment is given by

\[
\mu_z = \int \psi_e^* \left(-\sum_i e z_i + \sum_j e Z_j z_j \right) \psi_e \mathrm{d}r_e
\]

Because \(z_i \) is a linear, Hermitian operator, \(\mu_z \) must be real. The dipole moment \(\mu_z \) may be expanded in a Taylor series about the equilibrium internuclear distances \(r_{10} \) and \(r_{20} \) of the molecules.

\[
\mu_z(R, r_1, r_2, \theta_1, \phi_1, \theta_2, \phi_2) = \mu_z^0(R, \theta_1, \phi_1, \theta_2, \phi_2) + \mu_1(R, \theta_1, \phi_1, \theta_2, \phi_2)(r_1 - r_{10})
\]

\[
+ \mu_2(R, \theta_1, \phi_1, \theta_2, \phi_2)(r_2 - r_{20})
\]
where \(\mu^o_z \) is the value of \(u_z \) for \(r_1^o \) and \(r_2^o \), \(\mu_1 \) is \(\partial u_z / \partial r_1 \), and \(\mu_2 \) is \(\partial u_z / \partial r_2 \), both evaluated for \(r_1^o \) and \(r_2^o \). The quantities \(\mu^o_z \) and \(\mu_1 \) can be expanded in spherical harmonics.

\[
\mu^o_z(R, \theta_1, \varphi_1, \theta_2, \varphi_2) = \sum_{l_1=0}^{\infty} \sum_{\xi_1=-l_1}^{l_1} \sum_{l_2=0}^{\infty} \sum_{\xi_2=-l_2}^{l_2} 2\pi \xi_1 l_1^2 \xi_2 (R) \\
\quad \times Y_{l_1}^{\xi_1}(\theta_1, \varphi_1) Y_{l_2}^{\xi_2}(\theta_2, \varphi_2)
\]

(18)

\[
\mu_1(R, \theta_1, \varphi_1, \theta_2, \varphi_2) = \sum_{l_1=0}^{\infty} \sum_{\xi_1=-l_1}^{l_1} \sum_{l_2=0}^{\infty} \sum_{\xi_2=-l_2}^{l_2} 2\pi D_{l_1}^{\xi_1 l_2 \xi_2} (R) \\
\quad \times Y_{l_1}^{\xi_1}(\theta_1, \varphi_1) Y_{l_2}^{\xi_2}(\theta_2, \varphi_2)
\]

(19)

where \(C_{l_1 \xi_1 l_2 \xi_2} \) and \(D_{l_1 \xi_1 l_2 \xi_2} \) are expansion coefficients to be determined.

Molecular Symmetry and Configurations

Considerable simplification of equations (18) to (19) is possible. Some of the expansion coefficients are zero because of molecular symmetry. The operation

\[\varphi_i \rightarrow \varphi_i + \pi \]

\[\theta_i \rightarrow \pi - \theta_i \]

which is equivalent to interchanging the two identical nuclei, should not change \(\mu^o_z \) or \(\mu_1 \) for \(i = 1 \) or \(2 \). In addition, \(\mu^o_z \) and \(\mu_1 \) should have azimuthal dependence solely on \(\varphi_2 - \varphi_1 \) because the orientation of the \(x \) and \(y \) axes should have no effect. Thus, the only nonzero \(C_{l_1 \xi_1 l_2 \xi_2} \) are \(C_{0000}, C_{2000}, C_{0020}, C_{2020}, C_{2-121}, C_{212-1}, C_{2-222}, C_{222-2} \), and \(C_{l_1 \xi_1 l_2 \xi_2} \) with \(l_1 \geq 4 \) or \(l_2 \geq 4 \). Also, \(C_{2-121} = C_{212-1} \) because \(\mu^o_z \)
must not depend on what direction about the z axis ϕ_1 and ϕ_2 are measured. Similarly $C_{2-222} = C_{222-2}$. All the preceding findings apply to the $D_{1\xi_1 l_2 \xi_2}$ as well.

Further simplification of equations (18) to (19) is necessary because calculations of μ_z are time consuming even on a high-speed digital computer. This is especially true if small values of R are involved, which occurs at high temperature. Thus it is necessary to limit the number of configurations $\theta_1, \phi_1, \theta_2, \phi_2$ to as few as possible. The ones selected are shown in figure 2. The Θ_{21} and Θ_{2-1} are zero for all these configurations, so C_{2-121}, C_{212-1}, D_{2-121}, and D_{212-1} cannot be determined. There are just enough configurations to determine all remaining nonzero $C_{l_1 \xi_1 l_2 \xi_2}$ and $D_{l_1 \xi_1 l_2 \xi_2}$ with $l_1 < 4$ and $l_2 < 4$. Neglect of expansion coefficients with $l_1 \geq 4$ and/or $l_2 \geq 4$ is reasonable because, if such coefficients were nonzero they would allow transitions with J_1 or J_2 changing by ± 4 or more, which have never been observed. For $r_1 = r_1^o$ and $r_2 = r_2^o$, μ_z is zero for configurations 1, 2, and 5 by symmetry and differs only in sign for configurations 3 and 4. Hence equation (18) gives

\[
0 = \frac{1}{2} C_{0000} + \frac{\sqrt{5}}{2} C_{2000} + \frac{\sqrt{5}}{2} C_{0020} + \frac{5}{2} C_{2020} + OC_{2-222}
\]

\[
0 = \frac{1}{2} C_{0000} - \frac{\sqrt{5}}{4} C_{2000} - \frac{\sqrt{5}}{4} C_{0020} + \frac{5}{8} C_{2020} + \frac{15}{8} C_{2-222}
\]

\[-\mu_z, 4 = \frac{1}{2} C_{0000} + \frac{\sqrt{5}}{2} C_{2000} - \frac{\sqrt{5}}{4} C_{0020} - \frac{5}{4} C_{2020} + OC_{2-222}\]

\[\mu_z, 4 = \frac{1}{2} C_{0000} - \frac{\sqrt{5}}{4} C_{2000} + \frac{\sqrt{5}}{2} C_{0020} - \frac{5}{4} C_{2020} + OC_{2-222}\]

\[0 = \frac{1}{2} C_{0000} - \frac{\sqrt{5}}{4} C_{2000} - \frac{\sqrt{5}}{4} C_{0020} + \frac{5}{8} C_{2020} - \frac{15}{8} C_{2-222}\]

This has the solution $C_{0000} = C_{2000} = C_{2-222} = 0$, $C_{2020} = -C_{0020}$.

The derivative μ_2 can be expressed in terms of μ_1. To do this, an arbitrary configuration is reflected in a plane bisecting the intermolecular axis, with the result

\[
\mu_2(R, \theta_1, \phi_1, \theta_2, \phi_2) = -\mu_1(R, \pi - \theta_2, \phi_2, \pi - \theta_1, \phi_1)
\]

where the order of the arguments of μ_1 has the significance given in equation (19). Substituting equation (21) into equation (17) gives
The quadruple sum of the squares of the dipole matrix elements in equation (9) can be expressed simply in terms of vibrational overlap integrals, vibrational matrix elements, expansion coefficients, and Kronecker delta functions.

The first step is to combine equations (15), (18), (19), and (22) with the result

\[
\left(\mu_z^{(2)}\right)_{\rho'\rho} = M_1 A_{00}^{(1)}A_{00}^{(2)} + M_2 A_{20}^{(1)}A_{00}^{(2)} + M_3 A_{00}^{(1)}A_{20}^{(2)} + M_4 A_{20}^{(1)}A_{20}^{(2)}
+ M_5 A_{2-2} A_{22}^{(2)} + M_5 A_{22}^{(1)}A_{2-2}^{(2)}
\]

where

\[
A_{ij}(k) = \delta(m_k', j + m_k) \int_0^{\pi} \Theta_{j k} \Theta_{m_k} \Theta_{i j} \Theta_{k m_k} \sin \theta_k d\theta_k
\]

\[
M_1 = (\Delta_1 Q_2 - Q_1 \Delta_2) D_{0000}
\]
\[
M_2 = Q_1 Q_2 C_{2000} + \Delta_1 Q_2 D_{2000} - Q_1 \Delta_2 D_{0020}
\]
\[
M_3 = -Q_1 Q_2 C_{2000} + \Delta_1 Q_2 D_{0020} - Q_1 \Delta_2 D_{2000}
\]
\[
M_4 = (\Delta_1 Q_2 - Q_1 \Delta_2) D_{2020}
\]
\[
M_5 = (\Delta_1 Q_2 - Q_1 \Delta_2) D_{2-222}
\]

\[
Q_k = \int_0^\infty \psi_{v, k}^* \psi_{v, k} \, dr_k
\]
The quantities Q_k and Δ_k are the vibrational overlap integral and vibrational matrix element, respectively. The quantity $\delta(m'_k, j + m_k)$ is the Kronecker delta function. The $A_{ij}(k)$ are readily evaluated by using the properties (ref. 20) and orthogonality of the normalized associated Legendre functions.

\[A_{00}(k) = 2^{-1/2} \delta(m', m) \delta(J', J) \]

\[A_{20}(k) = \frac{\sqrt{10}}{4} \left(\frac{(J + 1)^2 - m^2 (J + 2)^2 - m^2}{(2J + 1)(2J + 3)^2(2J + 5)} \right)^{1/2} \delta(J', J + 2) + \frac{2J(J + 1) - 6m^2}{(2J + 3)(2J - 1)} \delta(J', J) \]

\[+ 3 \left(\frac{(J - 1)^2 - m^2}{(2J + 1)(2J - 1)^2(2J - 3)} \right)^{1/2} \delta(J', J - 2) \delta(m', m) \]

\[A_{22}(k) = \frac{\sqrt{15}}{4} \left[\frac{(J + m + 4)(J + m + 3)(J + m + 2)(J + m + 1)}{(2J + 5)(2J + 3)^2(2J + 1)} \right]^{1/2} \delta(J', J + 2) \]

\[- 2 \left[\frac{(J + m + 2)(J + m + 1)(J - m)(J - m - 1)}{(2J + 3)^2(2J - 1)^2} \right]^{1/2} \delta(J', J) \]

\[+ \left[\frac{(J - m)(J - m - 1)(J - m - 2)(J - m - 3)}{(2J + 1)(2J - 1)^2(2J - 3)} \right]^{1/2} \delta(J', J - 2) \delta(m', m + 2) \]
\[A_{2-2}(k) = \frac{\sqrt{15}}{4} \left(\frac{(J - m + 4)(J - m + 3)(J - m + 2)(J - m + 1)}{(2J + 5)(2J + 3)^2(2J + 1)} \right)^{1/2} \delta(J', J + 2) \]

\[- 2 \left(\frac{(J - m + 2)(J - m + 1)(J + m)(J + m - 1)}{(2J + 3)^2(2J - 1)^2} \right)^{1/2} \delta(J', J) \]

\[+ \left(\frac{(J + m)(J + m - 1)(J + m - 2)(J + m - 3)}{(2J + 1)(2J - 1)^2(2J - 3)} \right)^{1/2} \delta(J', J - 2) \delta(m', m - 2) \]

(31)

where the subscript \(k \) is understood to apply to all quantities on the right sides of equations (28) to (31).

Squaring and summing equation (23) and making use of equations (28) to (31) gives

\[\sum_{m_1 = -J_1}^{J_1} \sum_{m_1' = -J_1'}^{J_1'} \sum_{m_2 = -J_2}^{J_2} \sum_{m_2' = -J_2'}^{J_2'} \left| \left(\mu_z \right)_{\rho' \rho} \right|^2 = M_1^2 L_0(J_1', J_1) L_0(J_2', J_2) \]

\[+ M_2^2 L_2(J_1', J_1) L_0(J_2', J_2) + M_3^2 L_0(J_1', J_1) L_2(J_2', J_2) \]

\[+ \left(M_4^2 + 2M_5^2 \right) L_2(J_1', J_1) L_2(J_2', J_2) \]

(32)

where

\[L_0(J', J) = \left[\frac{(2J + 1)}{2} \right] \delta(J', J) \]

(33)

\[L_2(J', J) = \frac{3}{4} \frac{(J + 1)(J + 2)}{2J + 3} \delta(J', J + 2) + \frac{1}{2} \frac{(J + 1)(2J + 1)}{(2J + 3)(2J - 1)} \delta(J', J) + \frac{3}{4} \frac{(J - 1)J}{2J - 1} \delta(J', J - 2) \]

(34)
Final Integrated Absorption Coefficient and Relation to Other Absorption Coefficients

The final equation for the integrated absorption coefficient \(s_{\xi, \xi'} \) is obtained by substituting equation (32) into equation (9)

\[
s_{\xi, \xi'} = \frac{\pi^2 n^2 P(v, J, 0) P(v', J', 0) W}{3hc\epsilon_0}
\]

where

\[
W = L_0(J_1, J_1, L_0(J_2, J_2)G_1 + L_2(J_1, J_1) L_0(J_2, J_2)G_2 + L_0(J_1, J_1) L_2(J_2, J_2)G_3
+ L_2(J_1, J_1) L_2(J_2, J_2)G_{45}
\]

(36)

\[
G_1 = \left(\Delta_1 Q_2 - Q_1 \Delta_2 \right)^2 I_1
\]

(37)

\[
G_2 = Q_1^2 Q_2^2 I_6 + \Delta_1^2 Q_2^2 I_2 + Q_1^2 \Delta_2^2 I_3 + 2Q_1 \Delta_1 Q_2^2 I_7 - 2Q_1^2 Q_2 \Delta_2 I_8 - 2Q_1 \Delta_1 Q_2 \Delta_2 I_9
\]

(38)

\[
G_3 = Q_1^2 Q_2^2 I_6 + \Delta_1^2 Q_2^2 I_3 + Q_1^2 \Delta_2^2 I_2 - 2Q_1 \Delta_1 Q_2^2 I_7 + 2Q_1^2 Q_2 \Delta_2 I_8 - 2Q_1 \Delta_1 Q_2 \Delta_2 I_9
\]

(39)

\[
G_{45} = \left(\Delta_1 Q_2 - Q_1 \Delta_2 \right)^2 (I_4 + 2I_5)
\]

(40)

\[
I_i = \int_0^\infty e^{-\Phi/kT} E_i(R)4\pi R^2 dR \quad (i = 1, 9)
\]

(41)

\(E_i \) is \(D_{0000}^2, D_{2000}^2, D_{0200}^2, D_{2200}^2, D_{2020}^2, D_{2222}^2, C_{2000}^2, C_{2000} D_{2000}^2, C_{2000} D_{0020}^2, \) and \(D_{2000} D_{0020}^2 \) for \(i = 1 \) to 9, respectively.

In applying equations (35) to (41) there are several subtleties to note. There is no restriction on \(v_1 \) or \(v_2 \), so excited vibrational states may be included. There is no restriction on which \(v \) changes or how much it changes. In fact, one or both may change in a transition. Also, there is no restriction on whether \(v_1 \) or \(v_2 \) increases or decreases provided that the wave number of the resulting transition is positive. Neither,
one or both J's may change, but the changes are limited to $J' - J = \pm 2$. If equation (35) is applied to a fundamental vibrational transition, the transitions with v_1 changing are considered distinct from those with v_2 changing.

The effects of mechanical anharmonicity and vibration-rotation interaction are contained in equations (35) to (41). Specifically, these effects influence the values of $P(v_1, J_1, 0)$, $P(v_2, J_2, 0)$, Q_1, Q_2, Δ_1, and Δ_2. The model used in deriving equations (35) to (41) is called the vibrating-rotator model for brevity.

The integrated absorption coefficient s of a transition with the wave number removed was defined by equation (3) but is density dependent. To remove this density dependence we define a new integrated absorption coefficient S for the $\xi - \xi'$ transition.

$$S \equiv \frac{s_{\xi\xi'}}{\rho^2} \quad (42)$$

where ρ is dimensionless H_2 density given by

$$\rho \equiv \frac{n}{n_0} \quad (43)$$

and n_0 is the Loschmidt number. If $s_{\xi\xi'}$ is appropriately summed, equation (42) can be modified so S applies to a rotational branch or branches or to all transitions with a net change of +1 vibrational quanta.

The spectral absorption coefficient with the wave number removed is defined by

$$\tilde{A}_\nu \equiv \frac{a_\nu}{\rho^2} \quad (44)$$

Then

$$S = \int_0^\infty \tilde{A}_\nu \, d\nu \quad (45)$$

Assuming local thermodynamic equilibrium, the spectral absorption coefficient including wave number and stimulated emission is (ref. 21)

$$A_\nu = \tilde{A}_\nu \left(1 - e^{-hc\nu/kT}\right) \quad (46)$$
so the attenuation of a monochromatic light beam by a path length \(l \) in \(\text{H}_2 \) gas is

\[
\frac{I}{I_0} = e^{-A\nu^2l}
\]

(47)

Line Shapes

The line shape for a transition depends on what mechanism induces the electric dipole moment that makes the transition possible. For pressure-induced transitions there are two mechanisms: (1) the quadrupole moment of a molecule can induce a dipole moment in another molecule or (2) the overlap of the electron orbitals of two molecules can distort the orbitals and thereby cause a dipole moment. For fundamental vibrational transitions at room temperature and below, the principal mechanism has been found to depend on which rotational branch the transition belongs to (ref. 11). Only transitions in which the total angular momentum of not more than one molecule changes are important. Such transitions are classified into O, Q, or S branches according to whether \(J \) changes by \(-2\), \(0\), or \(+2\), respectively, in an absorption transition.

At room temperature the Q branch is principally due to the overlap dipole moment whereas the O and S branches are principally due to the quadrupole-induced dipole moment. Poll (ref. 21) has stated that line profiles in vibrational and rotational spectra which are due to the same quadrupole-induced effect have the same shapes, and those due to overlap effect have about the same shapes. At higher temperatures it is impossible to separate the quadrupole and overlap effects, so we assume one shape for all Q-branch lines and another shape for all O- and S-branch lines. The shapes are based primarily on experimental results. For both shapes

\[
\tilde{A}_\nu = \frac{S \tilde{f}_\nu}{\int_0^\infty f_\nu d\tilde{\nu}}
\]

(48)

where \(f_\nu \) is the line shape function.

Q-branch lines. - From Hunt and Welsh (ref. 11)

\[
f_\nu = \frac{w_Q}{(\tilde{\nu} - \tilde{\nu}_0)^2 + w_Q^2} \exp\left(-\frac{\hbar c}{kT} \frac{\tilde{\nu}_0 - \tilde{\nu}}{\tilde{\nu}_0}\right) \quad (\tilde{\nu} < \tilde{\nu}_0)
\]

(49)
\[
f_{\tilde{\nu}} = \frac{\frac{w_Q^2}{(\tilde{\nu} - \tilde{\nu}_o)^2 + w_Q^2}}{(\tilde{\nu}_o - \tilde{\nu})} \quad (\tilde{\nu}_o \leq \tilde{\nu}) \quad (50)
\]

where \(\tilde{\nu}_o \) is the wave number of the line computed from the term values, and \(w_Q \) is the half width given by

\[
w_Q = 290 \left(\frac{T}{300^\circ K} \right)^{1/2} \text{ cm}^{-1} \quad (51)
\]

Watanabe and Welsh (ref. 22) noted that for \(\text{H}_2 - \text{He} \) mixtures the high wave number wing was exponential for \((\tilde{\nu} - \tilde{\nu}_o)/w_Q > 0.7 \). In addition, for theoretical reasons all moments of a line should be finite (private communication from V. F. Sears, Atomic Energy of Canada, Ltd., Chalk River, Ontario). This requirement is satisfied by an exponential tail but not by a dispersion tail. Hence we assume

\[
f_{\tilde{\nu}} = F \exp \left(-\frac{\tilde{\nu} - \tilde{\nu}_o}{w_Q} \right) \quad (\tilde{\nu}_o + 0.7w_Q < \tilde{\nu} < \infty) \quad (52)
\]

where \(F \) and \(U \) are constants chosen so equations (50) and (52) agree in value and slope for \(\tilde{\nu} = \tilde{\nu}_o + 0.7w_Q \).

O- and S-branch lines. - From MacTaggart and Hunt (ref. 23) the shape of pure rotational lines of pure hydrogen is

\[
f_{\tilde{\nu}} = \frac{w_S^2 \exp \left(-\frac{\tilde{\nu}_o - \tilde{\nu}}{kT} \right)}{(\tilde{\nu} - \tilde{\nu}_o)^2 + w_S^2} \quad (\tilde{\nu} < \tilde{\nu}_o) \quad (53)
\]

\[
f_{\tilde{\nu}} = \frac{w_S^2}{(\tilde{\nu} - \tilde{\nu}_o)^2 + w_S^2} \quad (\tilde{\nu}_o \leq \tilde{\nu} \leq \tilde{\nu}_o + 1.73w_S) \quad (54)
\]

\[
f_{\tilde{\nu}} = \frac{M}{(\tilde{\nu} - \tilde{\nu}_o)^2.40} \quad (\tilde{\nu}_o + 1.73w_S < \tilde{\nu} < \tilde{\nu}_o + 7w_S) \quad (55)
\]
where the line width is

\[w_\text{S} = 133 \left(\frac{T}{298^\circ \text{K}} \right)^{1/2} \text{cm}^{-1} \quad (56) \]

and M was chosen so equations (54) to (55) have the same value at \(\tilde{\nu} = \tilde{\nu}_0 + 1.73w_\text{S} \). Because pure rotational lines are principally quadrupole induced, equations (53) to (56) can also be used for vibrational O and S lines. For the same reason as before, we assume an exponential tail.

\[f_\tilde{\nu} = G \exp \left(-H \frac{\tilde{\nu} - \tilde{\nu}_0}{w_\text{S}} \right) \quad (\tilde{\nu}_0 + 7w_\text{S} < \tilde{\nu} < \infty) \quad (57) \]

where G and H are constants chosen so equations (55) and (57) agree in value and slope for \(\tilde{\nu} = \tilde{\nu}_0 + 7w_\text{S} \).

RESULTS AND DISCUSSION

Dipole Moment Integrals

Calculating the dipole moment integrals \(I_1 \) to \(I_9 \) requires the expansion coefficients of the dipole moment and its derivative and also the intermolecular potential. The major contributions to the dipole moment integrals come from \(R = 2.5 \) to 8 bohr \((1.323 \times 10^{-10}\) to \(4.233 \times 10^{-10}\) m) so reliable expansion coefficients and potential are required for this range.

Expansion coefficients were obtained by five methods, the method used depending on the value of \(R \). Expansion coefficients for \(R = 2.5 \) to 4 bohr \((1.323 \times 10^{-10}\) to \(2.117 \times 10^{-10}\) m) were obtained by an orthogonalized valence-bond calculation including full configuration interaction (ref. 12). The results are given in table I. For \(R = 6 \) to 8 bohr \((3.175 \times 10^{-10}\) to \(4.233 \times 10^{-10}\) m) they were obtained by the large-R approximation (ref. 13). Both sets are shown in figures 3 and 4. For \(R = 4 \) to 6 bohr \((2.117 \times 10^{-10}\) to \(3.175 \times 10^{-10}\) m) the two sets were faired together by means of curves of the form:

Coefficient = \(c_1 R^{-4} + c_2 + c_3 R + c_4 R^2 \), where \(c_1 \) to \(c_4 \) are constants. This is also shown in figures 3 and 4. For \(R = 0 \) all the expansion coefficients must be zero. Hence for \(R = 0 \) to 2.5 bohr \((0 \) to \(1.323 \times 10^{-10}\) m) the expansion coefficients were interpolated. For \(R > 8 \) bohr \((4.233 \times 10^{-10}\) m) they were extrapolated.

The intermolecular potential was obtained by one method for large \(R \) and another
for small R. For $R \geq 4$ bohr (2.117×10^{-10} m) the Morse potential of Fisher (ref. 24) was used. Fisher fitted his potential to eight sets of experimental data (refs. 25 to 32). The viscosity data (refs. 25 to 31) were taken at temperatures between 200 and 2341 K. Second virial coefficient data (ref. 32) were also included by Fisher. For $R < 4$ bohr (2.117×10^{-10} m) an exponential was fit to the Morse potential at 4 bohr (2.117×10^{-10} m) and the orthogonalized valence-bond potential (table I) at 2.5 bohr (1.323×10^{-10} m) (see fig. 5).

The dipole moment integrals were integrated on a digital computer between $R = 0$ and 25 bohr (0 and 13.23 $\times 10^{-10}$ m) and are given in table II.

Integrated Absorption Coefficients

Equations (35) to (42) were used to calculate the integrated absorption coefficients S of transitions with a net change in vibrational quanta of $+1$. Vibration-rotation term values were obtained by adding rotational term values of Patch (ref. 33) to vibrational term values of Spindler (ref. 34). Only states with energies below the dissociation energy were included. Vibrating-rotator vibrational overlap integrals and matrix elements were calculated on a digital computer using Spindler's potential energy to which $\frac{h^2J(J + 1)}{8\pi^2m_r r^2}$ was added. Typical vibrational matrix elements are shown in figures 6 and 7 and are compared with harmonic-oscillator rigid-rotator vibrational matrix elements used by all previous investigators. For large values of J the two models give very different values. Some vibrational overlap integrals are shown in figures 8 and 9 and are compared with harmonic-oscillator rigid-rotator overlap integrals used by all previous investigators. Again there are some large differences. The vibrating-rotator matrix elements and overlap integrals agree well with James (ref. 35). It would be reasonable to expect that the large differences between the results from the two models would have large effects on S.

Preliminary integrated absorption coefficients S for 298 and 5200 K obtained by evaluating equations (35) to (42) on a digital computer showed that certain transitions could be neglected. Double vibrational transitions where one molecule had a change of $+2$ vibrational quanta and the other had a change of -1 vibrational quanta had negligible S values. Because of this and because all double vibrational transitions are forbidden for the harmonic-oscillator rigid-rotator model, all double vibrational transitions were henceforth neglected, and only single vibrational transitions where one molecule had a change of $+1$ vibrational quanta were included. In the latter, double rotational transitions had negligible S values and were therefore excluded in the final program. However, the final program did include double transitions in which there was a vibrational transition in one molecule and a rotational transition in the other molecule.
Final integrated absorption coefficients summed over all values of v_1, v_2, J_1, and J_2 are given in figure 10. At all temperatures most of the contribution to the total integrated absorption coefficient is due to Q branches.

A comparison of values of S for single vibrational transitions with a change in v of +1 for three models is given in figure 11. The vibrating-rotator model gave S as much as 30 percent higher than the simpler harmonic-oscillator rigid-rotator model. A hybrid model with vibrating-rotator term values and partition functions and with harmonic-oscillator rigid-rotator vibrational overlap integrals and matrix elements is also included.

Spectral Absorption Coefficients

The spectral absorption coefficient with wave number removed was calculated from S by equations (48) to (57) and is given in figure 12 for the vibrating-rotator model for single vibrational transitions with a change in v of +1. The major peaks are due to Q branches. The small bump in the 600 K curve at about 4700 reciprocal centimeters is due to S branches. The small bump in the 7000 K curve at about 500 reciprocal centimeters is due to O branches. The major peak shifts to smaller wave numbers as temperature is increased because of the smaller wave numbers of Q-lines with excited initial states, the increased importance of O-branches at high temperature, and the decreased importance of S branches at high temperature.

Once the absorption coefficient has been calculated accurately for a number of temperatures and wave numbers, it can be calculated much more rapidly for any temperature or wave number in the same range by using an approximate fit to the accurate results. The absorption coefficient \tilde{A}_ν can be approximated by a modified Q-line shape.

\[
\tilde{A}_\nu \approx \gamma w_1^2 \exp\left[\frac{j(\nu - \nu_c)}{(\nu - \nu_c)^2 + w_1^2}\right] \quad (\nu < \nu_c) \tag{58}
\]

\[
\tilde{A}_\nu \approx \frac{\gamma w_2^2}{(\nu - \nu_c)^2 + w_2^2} \quad (\nu_c \leq \nu \leq \nu_c + \frac{3}{2} w_2) \tag{59}
\]

\[
\tilde{A}_\nu \approx b \exp\left[\frac{-(\nu - \nu_c)}{g}\right] \quad (\nu_c + \frac{3}{2} w_2 \leq \nu) \tag{60}
\]
where the wave number \(\tilde{\nu}_c \) of the line center is given by

\[
\log_{10}(4172 - \tilde{\nu}_c) = -5.1972 + 2.1 \log_{10} T
\]

(61)

and

\[
\gamma = 6.0273 \times 10^{-10} + 2.2905 \times 10^{-13} T + 4.0848 \times 10^{-17} T^2
\]

(62)

\[w_1 = 363.96 + 1.3530T - 3.5807 \times 10^{-4} T^2 + 3.3618 \times 10^{-8} T^3 \]

(63)

\[\log_{10}^1 = 161.45T^{-1} - 2.6996 - 1.9537 \times 10^{-4} T \]

(64)

\[w_2 = -108626T^{-1} + 697.59 + 0.14353T \]

(65)

\[\log_{10}^b = 28.765T^{-1} - 9.0461 + 1.1552 \times 10^{-4} T \]

(66)

\[\log_{10}^g = 1.4860 + 0.44462 \log_{10} T \]

(67)

The constants in equations (61) to (67) were determined by fitting the absorption coefficients in figure 12 and similar data for wave numbers from 8000 to 40 000 reciprocal centimeters and are valid for temperatures between 600 and 7000 K and wave numbers between 100 and 40 000 reciprocal centimeters. In equations (58) to (67) temperature is in degrees Kelvin, and wave number is in reciprocal centimeters. On a high-speed digital computer the use of equations (58) to (67) instead of equations (33) to (40), (42), and (48) to (57) results in two orders of magnitude less running time, one-fifth the storage locations, and accuracy at any wave number within ±10 percent of the maximum value \(\tilde{A}_\nu \) for the given temperature.

From equations (46) and (47) the attenuation of a monochromatic light beam by a path length \(l \) in H$_2$ gas in terms of \(\tilde{A}_\nu \) is

\[
\frac{I}{I_0} = \exp \left[-\tilde{A}_\nu \tilde{\nu} \left(1 - e^{-hc\tilde{\nu}/kT} \right) \rho^2 l \right]
\]

(68)

where \(\tilde{A}_\nu \) and \(\rho \) are dimensionless.

For quick reference \(A_\nu \) is more convenient that \(\tilde{A}_\nu \) and was obtained from \(\tilde{A}_\nu \) by equation (46). The results for the vibrating-rotator model are shown in figure 13.
The calculation of \tilde{A}_ν and A_ν is greatly complicated by using the vibrating-rotator model rather than the harmonic-oscillator rigid-rotator model, so it is interesting to see how this affects the answer. This is shown in figure 14 for 4000 K. A hybrid model is also included in figure 14. The principal effect of using the vibrating-rotator model rather than the harmonic-oscillator rigid-rotator model is to shift the absorption to smaller wave numbers.

Comparison with Other Investigators

Hare and Welsh (ref. 10) measured the binary and ternary integrated absorption coefficients for the H_2 fundamental at 298 K. After allowing for their different definition of the integrated absorption coefficient, we find the vibrating-rotator model gives 87 percent of their value for the binary integrated absorption coefficient. The discrepancy is principally due to the neglect of x and y components of the dipole moment derivative in the vibrating-rotator model.

Linsky (ref. 7) calculated A_ν by extrapolating Van Kranendonk's (ref. 6) theory. The vibrating-rotator model is compared with Linsky's model in figure 15 for 3000 K. The vibrating-rotator model (labelled "This report") has an integrated absorption coefficient 2.1 times Linsky's value. However, this is not so much due to the vibrating-rotator model itself as to the intermolecular potential used with it (see fig. 5). Linsky followed Van Kranendonk (ref. 6) in using the unrealistic Lennard-Jones 6-12 potential also shown in figure 5.

Linsky's pressure-induced translational, rotational, and vibrational absorption coefficients together with absorption coefficients for 12 other processes were used by Patch (ref. 36) to calculate the Planck and Rosseland mean opacities of hydrogen. The results are shown in figures 16 and 17. The discontinuities in the curves at 3000 K are because Linsky gave no vibrational absorption coefficients above this temperature. Patch's calculation (ref. 36) was repeated using equations (58) to (67) for pressure-induced vibrational absorption instead of Linsky's. The resulting opacities for pressures of 100 and 1000 atmospheres (1.013×10^7 and 1.013×10^8 N/m2) are labelled "This report" in figures 16 and 17. Below 3000 K equations (58) to (67) resulted in Planck and Rosseland mean opacities as much as factors of 1.9 and 303 higher, respectively, than in reference 36. Above 3000 K equations (58) to (67) resulted in Planck and Rosseland mean opacities as much as factors of 18.9 and 6.5 higher, respectively, than in reference 36.

Effect on Gaseous-Core Nuclear Rockets

The opacity of hydrogen (figs. 16 and 17) is still not enough below 6000 K to obtain
adequate heat transfer to hydrogen and to protect the walls of gaseous-core nuclear rockets. Some opaque additive to the hydrogen would be necessary.

CONCLUSIONS

The coefficient for pressure-induced vibrational absorption in $H_2 - H_2$ collisions was calculated for temperatures between 298 and 7000 K and wave numbers from 100 to 40 000 reciprocal centimeters with many refinements. The conclusions were

1. The integrated absorption coefficient at 298 K was 87 percent of the experimental value.

2. At 3000 K the integrated absorption coefficient was 2.1 times a previous theoretical estimate, principally due to use of a more realistic intermolecular potential in this report.

3. Although the vibrating-rotator model gave quite different vibrational matrix elements and overlap integrals compared to the usual harmonic-oscillator rigid-rotator model, it did not cause more than a 30-percent change in the integrated absorption coefficient.

4. The vibrating-rotator model shifted the absorption to smaller wave numbers than for the harmonic-oscillator rigid-rotator model.

5. Below 3000 K, where a previous estimate of vibrational absorption was available, absorption coefficients from this report resulted in Planck and Rosseland mean opacities as much as factors of 1.9 and 303, higher, respectively, than the best previous estimates for pressures from 100 to 1000 atmospheres (1.013×10^7 to 1.013×10^8 N/m2).

6. Above 3000 K, where no previous estimate of vibrational absorption was available, absorption coefficients from this report resulted in Planck and Rosseland mean opacities as much as factors of 18.9 and 6.5, higher, respectively, than the best previous estimates for pressures from 100 to 1000 atmospheres (1.013×10^7 to 1.013×10^8 N/m2).

7. The opacity of hydrogen below 6000 K is still not enough to obtain adequate heat transfer to hydrogen and to protect the walls of gaseous-core nuclear rockets. Some opaque additive to the hydrogen would be necessary.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 20, 1970,
122-28.
APPENDIX - SYMBOLS

\(A_\tilde{\nu} \) spectral absorption coefficient including wave number and stimulated emission

\(\tilde{A}_\tilde{\nu} \) spectral absorption coefficient with wave number removed and excluding stimulated emission

\(A_{ij}(k) \) function of molecule \(k \) involving integral of normalized associated Legendre functions

\(a_\tilde{\nu} \) linear absorption coefficient for wave number \(\tilde{\nu} \) excluding stimulated emission

\(B \) integrated Einstein coefficient of absorption

\(B_{\tilde{\nu}} \) spectral Einstein coefficient of absorption

\(b \) function of temperature in modified Q-line shape

\(C_{l_1\xi_1l_2\xi_2} \) expansion coefficient for \(\mu_z^0 \)

\(c \) speed of light

\(c_i(i=1, 2, 3, 4) \) constants for faired curve

\(D_{l_1\xi_1l_2\xi_2} \) expansion coefficient for \(\mu_1 \)

\(E_i(i=1, 9) \) product of two expansion coefficients

\(e \) charge of electron

\(F \) constant in Q-branch line shape

\(f_{\tilde{\nu}} \) line shape function

\(G \) constant in O- and S-branch line shape

\(G_i(i=1, 2, 3, 45) \) functions of \(Q, \Delta, \) and \(I \)

\(g \) function of temperature in modified Q-line shape

\(H \) constant in O- and S-branch line shape

\(h \) Planck constant

\(I_i(i=1, 2, \ldots, 9) \) dipole moment integral

\(I \) transmitted light intensity

\(I_0 \) incident light intensity

\(i \) \(\sqrt{-1} \)
\(J_i(i=1,2) \) \quad \text{total angular momentum quantum number for initial state of molecule } i

\(J'_i(i=1,2) \) \quad \text{total angular momentum quantum number for final state of molecule } i

\(j \) \quad \text{function of temperature in modified Q-line shape}

\(k \) \quad \text{Boltzmann constant}

\(L_i(i=0,2) \) \quad \text{functions of } J' \text{ and } J

\(l \) \quad \text{path length}

\(M \) \quad \text{constant in O- and S-branch line shape}

\(M_i(i=1,2,\ldots,5) \) \quad \text{functions of } Q, \Delta, C, \text{ and } D

\(m_i(i=1,2) \) \quad \text{quantum number for component of total angular momentum along } z \text{ axis for initial state of molecule } i

\(m'_i(i=1,2) \) \quad \text{quantum number for component of total angular momentum along } z \text{ axis for final state of molecule } i

\(m_r \) \quad \text{reduced mass of oscillator}

\(N \) \quad \text{number of } H_2 \text{ molecules}

\(n \) \quad \text{number density of } H_2 \text{ molecules}

\(n_0 \) \quad \text{Loschmidt number}

\(P(v_i,J_i,m_i) \) \quad \text{probability of molecule } i \text{ being in state with quantum numbers having values } v_i, J_i, m_i \quad (i=1,2)

\(p \) \quad \text{number of pairs of molecules}

\(Q_k(k=1,2) \) \quad \text{vibrational overlap integral for molecule } k

\(R \) \quad \text{intermolecular distance}

\(r_k(k=1,2) \) \quad \text{internuclear distance of molecule } k

\(S \) \quad \text{integrated absorption coefficient with wave number and density removed}

\(s \) \quad \text{integrated absorption coefficient with wave number removed}

\(T \) \quad \text{temperature}

\(t \) \quad \text{time}

\(U \) \quad \text{constant in Q-branch line shape}

\(V \) \quad \text{volume}
\(v_i \) \((i=1, 2)\) vibrational quantum number for initial state of molecule \(i \)
\(v_f \) \((i=1, 2)\) vibrational quantum number for final state of molecule \(i \)
\(W \) transition-dependent factor in \(s \)
\(w_Q, w_S, w_1, w_2 \) line widths
\(x, y, z \) Cartesian coordinates fixed in space (fig. 1)
\(X_i \) position coordinates of electrons
\(Y_{jm} \) spherical harmonic
\(Z_j \) number of elemental charges on the \(j^{th} \) nucleus
\(z_i \) \(z \) coordinate of \(i^{th} \) electron
\(z_j \) \(z \) coordinate of \(j^{th} \) nucleus
\(\gamma \) function of temperature in modified Q-line shape
\(\Delta_k \) \((k=1, 2)\) vibrational matrix element for molecule \(k \)
\(\delta(J', J) \) Kronecker delta function
\(\epsilon_0 \) electric permittivity of free space
\(\Theta_{jm} \) normalized associated Legendre function
\(\theta_i \) \((i=1, 2)\) polar angle of molecule \(i \)
\(\mu_x, \mu_y, \mu_z \) components of electric dipole moment
\(\mu_i \) \((i=1, 2)\) \(\frac{\partial \mu_z}{\partial r_i} \) evaluated at \(r_1 = r_1^0 \) and \(r_2 = r_2^0 \)
\(\mu_{z, 4} \) \(\mu_z \) for configuration 4
\[(\mu_x)_{\rho' \rho}, (\mu_y)_{\rho' \rho}, (\mu_z)_{\rho' \rho} \]
components of electric dipole moment matrix elements
\(\tilde{\nu} \) photon wave number
\(\tilde{\nu}_o, \tilde{\nu}_c \) wave number of line center
\(\rho \) dimensionless \(H_2 \) density (see eq. (43))
\(\rho_{\tilde{\nu}} \) radiation energy density per unit wave number
\(d\tau \) element of volume in configuration space
\(\Phi \) intermolecular potential averaged over orientations
\(\varphi_i(i=1, 2) \) \hspace{1cm} \text{azimuthal angle of molecule } i \\
\(\psi \) \hspace{1cm} \text{wave function} \\
\(\psi_{v_k J_k}^{(k=1, 2)} \) \hspace{1cm} \text{vibrational wave function of molecule } k \\

Subscripts:

- \(e \) \hspace{1cm} \text{electronic} \\
- \(n \) \hspace{1cm} \text{nuclear} \\
- \(\xi \) \hspace{1cm} \(v_1, v_2, J_1, J_2 \) collectively \\
- \(\xi' \) \hspace{1cm} \(v'_1, v'_2, J'_1, J'_2 \) collectively \\
- \(\rho \) \hspace{1cm} \(v_1, v_2, J_1, J_2, m_1, m_2 \) collectively \\
- \(\rho' \) \hspace{1cm} \(v'_1, v'_2, J'_1, J'_2, m'_1, m'_2 \) collectively \\

Superscripts:

- \(o \) \hspace{1cm} \text{equilibrium internuclear distance of diatomic molecule} \\
- \(* \) \hspace{1cm} \text{complex conjugate}
REFERENCES

34. Spindler, R. J., Jr.: Franck-Condon Factors for Band Systems of Molecular Hydrogen. I. The

\[
\left(B 1\Sigma^+_u - X 1\Sigma^+_g \right), \left(I 1\pi_g - B 1\Sigma^+_u \right) \text{ and } \left(d 3\pi_u - a 3\Sigma^+_g \right)
\]

TABLE I. - DIPOLE MOMENT EXPANSION COEFFICIENTS AND INTERMOLECULAR POTENTIAL FROM ORTHOGONALIZED VALENCE-BOND CALCULATIONS

<table>
<thead>
<tr>
<th>Intermolecular distance, (R), m</th>
<th>(C^{2000'\text{cm}})</th>
<th>(D_{0000'})</th>
<th>(D_{2000'})</th>
<th>(D_{0020'})</th>
<th>(D_{2020'})</th>
<th>(D_{-222'})</th>
<th>(\Phi), J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.323x10^{-10}</td>
<td>1.758x10^{-30}</td>
<td>9.806x10^{-20}</td>
<td>6.351x10^{-20}</td>
<td>-0.169x10^{-20}</td>
<td>-0.121x10^{-20}</td>
<td>0.077x10^{-20}</td>
<td>6.210x10^{-19}</td>
</tr>
<tr>
<td>1.588</td>
<td>9.510x10^{-31}</td>
<td>5.609</td>
<td>3.709</td>
<td>-1.162</td>
<td>0.009</td>
<td>0.045</td>
<td>2.645</td>
</tr>
<tr>
<td>1.852</td>
<td>4.947</td>
<td>2.986</td>
<td>1.996</td>
<td>-1.720</td>
<td>0.004</td>
<td>0.027</td>
<td>1.127</td>
</tr>
<tr>
<td>2.117</td>
<td>2.498</td>
<td>1.516</td>
<td>1.024</td>
<td>-1.300</td>
<td>-0.006</td>
<td>0.016</td>
<td>4.732x10^{-20}</td>
</tr>
</tbody>
</table>

TABLE II. - DIPOLE MOMENT INTEGRALS

<table>
<thead>
<tr>
<th>Temperature, T, K</th>
<th>(I_1')</th>
<th>(I_2')</th>
<th>(I_3')</th>
<th>(I_4')</th>
<th>(I_5')</th>
<th>(I_6')</th>
<th>(I_7')</th>
<th>(I_8')</th>
<th>(I_9')</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>9.980x10^{-70}</td>
<td>4.845x10^{-70}</td>
<td>4.781x10^{-71}</td>
<td>2.339x10^{-73}</td>
<td>5.534x10^{-74}</td>
<td>4.363x10^{-91}</td>
<td>1.415x10^{-60}</td>
<td>-4.418x10^{-81}</td>
<td>-1.349x10^{-70}</td>
</tr>
<tr>
<td>1000</td>
<td>1.543x10^{-69}</td>
<td>7.325</td>
<td>5.363</td>
<td>2.550</td>
<td>1.085x10^{-73}</td>
<td>5.780</td>
<td>2.007</td>
<td>-5.313</td>
<td>-1.727</td>
</tr>
<tr>
<td>4000</td>
<td>6.074</td>
<td>2.774</td>
<td>8.090</td>
<td>3.316</td>
<td>5.230</td>
<td>1.809</td>
<td>7.022</td>
<td>-1.060x10^{-80}</td>
<td>-3.978</td>
</tr>
<tr>
<td>7000</td>
<td>1.079x10^{-68}</td>
<td>4.868</td>
<td>9.542</td>
<td>3.876</td>
<td>8.938</td>
<td>3.131</td>
<td>1.228</td>
<td>-1.478</td>
<td>-5.583</td>
</tr>
</tbody>
</table>
Figure 1. - Cartesian and polar coordinates for collisions of two \(\text{H}_2 \) molecules. Protons are located at \(a, b, c, \) and \(d \). The \(z \) axis passes through the midpoints of the molecules. The angles \(\theta_1 \) and \(\theta_2 \) are polar angles. The angles \(\varphi_1 \) and \(\varphi_2 \) are azimuthal angles measured in the \(x-y \) plane.

Configuration	**Side view**	**End view**
1 | |
2 | |
3 | |
4 | |
5 | |

Figure 2. - Configurations of two \(\text{H}_2 \) molecules for which \(\mu^2(R) \) and \(\mu_1(R) \) are required by the theory in this report.
Orthogonalized valence-bond calculation (table I)
Large-R approximation (ref. 13)
Faired curve

Figure 3. - The three largest expansion coefficients of the dipole moment and its derivative.
Orthogonalized valence-bond calculation (table I)
Large R approximation (ref. 13)
Faired curve

Orthogonalized valence-bond calculations (table I)
Viscosity and equation of state experiments fit with Morse potential (ref. 24)
Faired curve (exponential)
Equation of state experiments fit by Lennard-Jones 6-12 potential (ref. 8)

Figure 4. The three smallest and least important expansion coefficients of the derivative of the dipole moment. The oscillation of D_{2020} results partly from the interpolation formula used between the four points from orthogonalized valence-bond calculations and may not be entirely valid. However, D_{2020} makes a negligible contribution to the pressure-induced vibrational absorption coefficient.

Figure 5. $H_2 - H_2$ intermolecular potential from several sources.
Figure 6. - Vibrational matrix elements for H$_2$ for $v = 0$ and $v' = 1$ for two models show the effect of vibration-rotation interaction.

Figure 7. - Vibrational matrix elements for H$_2$ for $v = 0$ and $v' = 0$ for two models show the effect of mechanical anharmonicity and vibration rotation interaction.
Figure 8. Vibrational overlap integrals for H_2 for $v = 0$ and $v' = 1$ for two models show the effect of vibration-rotation interaction. The harmonic-oscillator rigid-rotator line coincides with the vibrating-rotator line for $J' - J = 0$.

Figure 9. Vibrational overlap integrals for H_2 for $v = 0$, $v' = 0$ for two models show the effect of vibration-rotation interaction. The harmonic-oscillator rigid-rotator line coincides with the vibrating-rotator line for $J' - J = 0$.
Figure 10. Integrated absorption coefficient for various branches of all single vibrational transitions with a change in \(v \) of +1. The total for all branches is also given. The vibrating-rotator model was used.

Figure 11. Integrated absorption coefficient for all single vibrational transitions with a change in \(v \) of +1, using three models. The \(--\) and \------\ curves coincide for temperatures below 3000 K.
Figure 12. - Calculated pressure-induced vibrational absorption coefficient for all single vibrational transitions with a change in v of +1. The wave number has been removed from the absorption coefficient in the manner customary for pressure-induced processes. The effect of stimulated emission is not included. Temperature is given in thousands of degrees Kelvin.

Figure 13. - Calculated pressure-induced vibrational absorption coefficient for all single vibrational transitions with a change in v of +1. The effect of stimulated emission is included. Temperature is given in thousands of degrees Kelvin. The attenuation of a monochromatic light beam may be calculated from $I/I_0 = \exp(-A_v p)$, where p is dimensionless H_2 density (see eq. 43).
Figure 14. - Pressure-induced vibrational absorption coefficient calculated using three models. Temperature is 4000 K. All single vibrational transitions with a change in v of +1 were included.
Figure 15. - Comparison of pressure-induced vibrational absorption coefficient in the fundamental region according to two different theories. The temperature is 3000 K.

Figure 16. - Effect of H$_2$ - H$_2$ pressure-induced vibrational absorption coefficients of this report on the Planck mean opacity of hydrogen. The discontinuities in the dashed curves at 3000 K are due to reference 7 giving no vibrational absorption coefficients above 3000 K. The discontinuities in all curves at 4000 K are due to reference 7 giving no rotational absorption coefficients above 4000 K.
Figure 17. - Effect of H_2 - H_2 pressure-induced vibrational absorption coefficients of this report on the Rosseland mean opacity of hydrogen. Discontinuities in dashed curves at 3000 and 4000 K result from reference 7 giving no vibrational and rotational absorption coefficients, respectively, above these temperatures.