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JUNCTION CAPAGITAJv CE AS A FUNCTION O F  VOLTAGE FOR DIFFdSEB 

p-n DIODES WITH EXmNENTIAL DOPmG 

by I r a  'I". Myers and J u l i m  F. Been 

Lewis Research Center 

SUMMARY 

A method was developed for calculating the capacitance of a diffused p-n junction as 
a function of voltage that can be used in place of the more complic;kLed methods now 
a~railable. A single universal curve, based on an exponential doping gradient, permits 
the calculation of the capacitance of junctions with a wide variety of base doping levels 
and diffusion doping gradients. In particular, the method permits the mlculation of ca- 
pacitances at intermediate voltages where the jundion behaves neither as a linear graded 
junction nor a s  an abrupt junction, but is intermediate between the two eases. Calculated 
and measured capacitances as a function of voltage were compared for  a silicon power 
diode with good agreement. 

The capacitances of linearly graded and abmpt junctions a r e  treated in many text- 
books (refs. f and 2). A reverse biased diffused p-n junction will normally show a 
(v - VB) dependence of capacitance at low voltages and a V - I 2  dependence at high 

voltages. The "built -infP o r  diffusion voltage of the jundion is VB . 
Between the low and high voltages a transition re@on exists where the capacitance 

f i ts  neiLher the linear graded (V - VB) nor the abrupt (V) case. ~ a w r e n c e  and 
Warner (ref. 3) calculated this ease using the complementary e r r o r  function and the 
gaussian distribution as doping distributions. This repo& describes a, similar  calculation 
using an exponential doping distribution, Justifirntion is given for  using the exponential 
doping distribution results for  all diodes, ria matter wh;aB the doping distribution adually 
is. The advantages of using the exponential doping results,  a s  @ven in this repost, are 
shown to  be improved clarity of interpretation of the doping gradient, and a considerably 

B ~ O I = ~  ~ % r ; % i g k t f o n v d  ca%ca;;$atior~ procedure. This report concludes with a counpariso~~ 



of calculated a ~ d  measured apacitanees as a fundion of voltage for a silicon power 
diode (ref, 41, 

CALCULATION OF CAPACITMqCE AGMNST VOLTAGE 

W R  A DIFFUSED p-n JUNCTION 

Consider a junction where the dopant has been added such that the added impurity 
follows an exponential distribution. For exaniple, take p type base material, with a 
concent ration of No dopant atoms per cubic centimeter. The concentration ND of the 
n type dopant atoms is given by 

where N, is the surface concentration, X the distance from the surface, and b a con- 
stant. The net doping ND - No is given by 

At the junction N = O and X = Xo so  that 

(see fig. 1). The measured capacitance C of the junction is 

where V is measured in the reverse direction. The capacitance C is also given by 

where 



and where W is the depletion region wid"ch, c" the permittivity, and A %he area sf the 

junction. 
-With applied voltage the depletion regjou expands an ami~-aiilC dX1 in the n region 

(XI - XI - dXI) and an amount in the p region (X2 - X2 c dXZ)  The amount of 
positive charge uncovered by the expansion of the depIle"Lisn r e e o n  in the n re@on is 

Similarly, the amount of charge uncovered by the expansion of the depletion region in the 
p type base is 

In order  to  maintain charge neutrality over the entire depletion region, 

dQn = dQp 

The total dW is given by 

Next, equations (4), (5)) and (7) to  (10) a r e  used to  eliminate dQn and dQ and to  ex - 
P 

press  dW in t e rms  of dV: 

This is a key equation in the development. It will be integrated to  give W and therefore 
C a s  a function of V. 

Before equation (11) can be integrated, X1 and X2 must be expressed in t e rms  of 
W. The quantity X2 is easily expressed in t e rms  of XI and W a s  



so that i t  is only necessary to find the relation between XI and W. This is obtained by 
equating the positive charge on the n side of the junction to the negative charge on the 
p side of the junction: 

After integration and simplification the expression for XI is 

Substituting equations (14) and (12) into equation ( I  1) gives 

where dV is positive for increasing reverse voltage. 
As stated previously, W and V a re  variables of integration. Introducing dummy 

variables of integration (a for bW, and q for '66) allows the use of W and V for in- 
tegration limits. Mtes some simplification, 

This expression was integrated over the depletion region. The limits for f2 were 
C2 = 0 and S2 = bW, where W is the depletion region width at a voltage V. The cor- 
responding limits for q a re  - VB (correspondingto W = 0) and the applied voltage V. 
Therefore, 



where the substitution z =- bW has been made. Th is  may be easily integrated by inte- 
grating the second term in the? first integral, 

by pa r t s  and by combining the resul ts  with the other t e r m s  pr ior  to  integrating them. 

The result  is 

Define the function G(z) as 

where z = bw as defined previously. The function ~ ( z )  is always positive. Thus 

Then 

where G-I is the inverse function of G. It was not possible t o  find the inverse of G 

and express  it in closed form algebraically (i. e. , an expression f(G) = z ,  which would be 
the solution f o r  z of eq. (69)). Instead, G was plotted against z (fig. 2) and tabulated 
(see table I) s o  that fo r  any e v e n  value of G the value of z may be determined. 

In the range 6 .1  5 G 5 10, the quantity z (or bw) can be represented, within ~5 per- 

cent, as 



z: 1.80 (i1/3 i U . 6 0  C 1/2 

2 where G - b ce,(V : v ~ / ~ N , .  For G 5 0~ 1, 

z = (12 6) I/ 3 

is a close approximation, while for  G > 10) 

z = 1 +  

can be used. 

The capacitance against voltage can now be directly calculated: 

where the quantity z contains the voltage dependence. For  the limiting case of low 

voltages, where z = ( I ~ G ) ' / ~ ,  the capacitance reduces to the expected cube root de-  

pendence 

Similarly at high reverse  voltages, where z = 1 + = G9 

which is the expected square root dependence. 
In summary,  to  calculate the capacitance at a given voltage V, f i r s t  calculate 

2 b E E ~ ( V  + V ~ ) / ( I N ~ ,  then find z from figure 2 o r  table I corresponding t o  it, and finally 

calculate C from 



If VB is not known, it can be calculated f rom the work of N~xyts sad Van Bverstraeten 
(ref. 4)- A fit to  their results Dves 

in  the range of bNo between 1017 and (bNo is the doping gradient in ~ m ' ~  at the 

junction). 

SAMPLE CALCULATION 

To i l lustrate  the method, including the units to  be used, a sample calculation is 
given. Consider a diode with the following characteristics:  

A junction a rea ,  0. 1 cm 2 

V applied voltage, 3 .0  V 

b 4 -1 logarithmic doping gradient, 10 cm 

15 3 
No base doping level, 10 /cm 

19 -4 bNo doping gradient at junction, 10 cm 

Since VB is not known, calculate it from the Nuyts and Van Qverstsaeten expression 

Then 

and z = 3. 2 f rom figure 2. From this  value of z 

COMPARISON OF CALCULATED AND MEMURED R E S U E S  

The techniq~ie jrrs"cdeseribed was used to ealcufate i h e  capacitance as a function ol 

7 



voltage for a p-i-n type diode number Sm1189 (ref, 5). This was a 35-ampere diode 

with a junction area of 0.455 sqare  cemdimeter and a base doping level of about 1 . 2 ~ 1 0  14 
3 cubic eentimetcl?rs+ The value of b was about 5x10 per centimeter. 

For the comparison, No was determined from experimental measurements of ea- 
pacitanee by fitting at the high voltage end of the curve, and b was determined by fitting 
a t  the low voltage end. The No as determined for the diode used was 1 . 1 ~ 1 0 ' ~  per  

3 cubic centimeter and b was 5.lXlO per  centimeter. The diffusion voltage VB was 
3 determined both by extrapolation of a 1 / ~  plot against voltage, and from b using 

Nuyts and Van Overstraeten's work. The value of VB as determined graphically from 
3 the 1 / ~  plot was 0. 35 volt; the calculation from Nuyts and Van Overstraeten's work 

gave 0. 34 volt. 
Figure 3 gives a comparison between calculated values and measured values of ca- 

pacitance. The agreement is good. 
Table II gives a comparison of experimental results with the capacitances as calcu- 

lated using the three different types of doping gradients (exponential, from this report, 
and complimentary e r r o r  function and gaussian from Lawrence and Warner's work 
(ref. 3)). To compare the goodness of fit for  the three doping gradients used, the ratio 

/c Ccalculated measured was averaged over the voltage points from 1 to 100 volts. For 

a perfect fit ratio should be 1.00. The value of this ratio, and its e r r o r ,  give an 
estimate of how the model agrees with experiment (see table III). Ninety percent con- 
fidence limits a r e  used on the er rors .  

The curves were fitted at zero  bias and at 200 volts in each case. There is l e s s  
difference between the calculations using different types of gradients than between cal- 
culated and experimental values. The particular kind of doping gradient assumed does 
not make much difference in the calculated capacitance. The variation in calculated ca- 
pacitance from one doping gradient type to another is within the calculated e r r o r s .  This 
could be expected, since at very low biases, with a narrow depletion region, any gradient 
can be fitted with a straight line, On the other hand, at high voltages, nearly the entire 
depletion region is in the base, s o  that again the type of gradient is relatively unimpor- 
tant. Therefore, the simplest to  use gradient, namely the exponential, may be used 
under a wide range of conditions. 

SUMMARY CONCLUSIOm 

A method of calculating capacitance a s  a fundion of voltage for an exponentially 
doped p-n junction is deseribed. The method is significantly easier to  use than pre-  
sently available methods where a eomplemeriLary e r r o r  fundion o r  gaussian doping gra-  
dient i s  assumed. Comparison w i t h  power diode mve good agreeme& with expesi- 



imental resul ts .  Caicubated capacitances using exponential, conraplemerri;ary error func- 
tion, and gaussia,n dis"cribulion all gave resul ts  in agreement with measuaeed aialiues 
within the eakculated e r r o r s ,  Th is  indicates that the dopant disi-rib-illiiin asst::ned Is :rot 
critical, and that  the more convenient and easier to interpret exponential diatrjbution can 

be used for eapacitmce against voltage calculations. 

Lewis Research Center,  

National Aeronautics and Space Administration, 

Cleveland, Ohio, October 7 ,  1990, 
120-60. 
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TABLE I. - NUMEFUCAL VALUES OF G(z) FOR VALUES OF FROM 0 TO 9.9 



TABLE El. - COMP 

METHODS O F  CALCULATION 0%" CA- 

PAGITmCE WITH EXPEmMEMT 

TABLE m. - RATIO OF CALCULATED TO MEASURED 

CAPACITANCES FOR DIFFERENT DOPING GRADIENTS 

Distance from surface, X 

Figure I .  - Doping concen'traiion, 



Figure 2. - Inverse junct ion capacitance funct ion z versus the applied voltage function G. 

0 Experimental data 
A Calculated capacitances 

Reverse bias, V 

Figure 3. - Junction capacitance as  function of reverse bias for diode 748. 
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