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DESIGNANDGLOBALANALYSISOFSPACECRAFT

ATTITUDECONTROLSYSTEMS

GeorgeMeyer

AmesResearch Center

SUMMARY

A general procedure for the design and analysis of three-axis,
large-angle attitude control systems has been developed. Properties of
three-dimensional rotations are used to formulate a model of such systems.
The model is general in that it is based on those properties which are common
to all attitude control systems, rather than on special properties of partic-
ular components. Numerical values are assigned to attitude error by meansof
error functions. These functions are used to construct asymptotically stable
control laws. The overall (global) behavior of the system is characterized by
the envelope of all time histories of attitude error generated by every possi-
ble combination of initial condition, target attitude motion, and disturbance.
A method for computing upper bounds on the response envelope is presented.
Applications of this method indicate that it provides a useful alternative to
Liapunov analysis for the determination of system stability, responsiveness,
and sensitivity to disturbances, parameter variations, and target attitude
motion.

INTRODUCTION

The complete design of an attitude control system, generally speaking, has
four phases; namely, (I) specification of the task to be performed by the sys-
tem and the selection of major system components; (2) design of the controller
linking sensors to torquers; (3) verification of the design; and (4) construc-
tion of the system. The present report deals primarily with phases (2) and
(3).

One approach to the design of a controller is provided by the theory of

optimal control. The methods of this theory are elegant and explicit. Unfor-

tunately, they are difficult to apply when the system is both nonlinear and

multidimensional which is the case for large-angle, three-axis attitude con-

trol systems being considered here. Not only is the computation of control

laws for such systems very time consuming, but the control laws, once computed,

are difficult to implement. These difficulties are responsible for the

limited enthusiasm shown in the field for the routine application of optimal

control theory to the design of control laws for complex systems. Neverthe-

less, this theory is very useful for the analysis of system performance.

Another approach, which is most frequently taken in practice and, also,

the one taken here, is to pick a structure of the control law which on



physical grounds seemsmost likely to be adequate, and then test the resulting
system by meansof a computer simulation. The success of this approach
depends on two factors: (1) the familiarity of the designer with the general
properties of the system, and (2) the validity of the inference that is made
from the results of the simulation. The first is obvious. However, the
second needs someelaboration, particularly since often it is either
overlooked entirely or dismissed as insignificant.

In a simulation one is concerned with accuracy and completeness. A
simulation is accurate if the error between the simulated response and the
response of the actual system to a given control situation (i.e., initial con-

dition and forcing function) is small. A simulation is complete if the

behavior of the system for any possible control situation can be inferred from

the collection of cases simulated. If all possibilities are accurately simu-

lated then the simulation is, of course, complete. However, in most cases

occurring in practice the number of possible control situations is much larger

than is practical to simulate. In such cases, it is necessary to justify the

inference that is made in going from the limited collection of tests to the

overall (global) behavior of the system. Without this, one cannot be certain

that all possible control situations resulting in system failure have been

included in the test sample. Thus, the ad hoc design procedure is realistic

only if it is followed by a global analysis in which the behavior of the sys-

tem, or at least an upper bound on the worst case, for all possible control

situations is determined analytically. This means that in the selection of

candidate control laws the ease with which the subsequent global analysis can

be performed must be kept in mind. A control law that is easy to implement

and that seems, on physical grounds, to be adequate may, in certain cases, be

rejected if it leads to system complexity beyond the reach of the available

techniques of global analysis.

Attitude control systems vary considerably in internal structure. Thus,

for example, torque may be generated by means of reaction wheels, control

moment gyros, or reaction jets. Similarly, attitude may be measured by means

of star trackers, sun and magnetic field sensors, or inertial gyros. Angular

velocity may be measured directly, as with rate gyros, or it may be computed

from attitude data. This variety has resulted in a corresponding variety of

control laws, each using special properties of particular components (see,

e.g., refs. 1 and 2). In most cases these designs are based on sound physical

insight, but they result in systems that are difficult to analyze, and the

analysis is not carried out. It is, therefore, desirable to approach the

design problem from a general point of view by taking advantage of the basic

similarity of all attitude control systems; namely, that (I) their primary

control objective is to maintain the spacecraft as close to the desired atti-

tude as is necessary for successful operation, and (2) their basic nonlinear-

ity is that of three-dimensional rotations. This approach was taken in

references 3 to 8, and the present report may be considered to be a

generalization of that work.

A general model of attitude control systems is formulated from the

properties of three-dimensional rotations. Several representations of the

distance between the spacecraft and target attitudes are given in terms of



attitude error functions. These functions are used, first, to generate
control laws for which the system is asymptotically stable, and then they are
used to characterize the overall performance of the system by meansof its
response envelope. This envelope is defined at each instant in the control
interval as the maximumof the attitude error generated by every combination
of admissible initial condition, target attitude motion, and disturbance.
Worst case performance of the system maybe estimated by meansof upper bounds
on the response envelope. Methods for computing such upper bounds are pre-
sented. Finally, the design and analysis are illustrated with examples.

SOMEPROPERTIESOFTHREE-DIMENSIONALROTATIONS

The equations of motion of a spacecraft attitude control system are
determined to a large extent by the properties of three-dimensional rotations.
Someof these properties are summarizedin the present section.

Representation of Attitude - Attitude Error Equation

The attitude of a rigid body maybe defined relative to a given reference
by meansof a pair of right-hand orthonormal triplets of vectors with a common
origin 0. Let the triplet s = (esl, _s2, es3) be fixed in the given refer-
ence space, and let the triplet a = (eal, ea2, ea3) be fixed in the body. In
the usual case, the given reference will be inertial space, and the common
origin of the triplets will coincide with the body center of mass. Let the
transformation which maps _ into _ be denoted by _as, so that

eai = Aasesi, i = I, 2, 3 (i)

and let A--as be represented in the s-basis by the 3x3 matrix Aas. This

matrix will henceforth be interpreted as spacecraft attitude with respect to

inertial space. The elements _aij of Aas are the direction cosines between

and _, that is, aij = eai esj , and the ith row of Aas gives the

coordinates of eai with respect to _. Since both _ and _ are right hand

and orthonormal, Aas is a rotation matrix; that is, det(Aas ) = 1 and

AasAtas : I

denotes the transpose of (), andwhere ( )t

Let x be an arbitrary vector, and let its coordinates in the

basis be xs and Xa, respectively; then

x a = AasX s

(2)

I is the identity matrix.

s and a

(3)



Let y be another vector. Then the dot product _ . _ = XsYst = x_y a. Let

be the cross product of _ and _; that is, _ = _ × _. Then the s coordinates

of z are given by zs = -S(xs)Ys, where the skew-symmetric matrix S is
defined for any u in E 3 by

(0u3
-U 2

S(u) = -u3 o (4)

u 2 -U 1

Similarly, za = -S(xa)Y a. Hence, A_sS(Xa)Aas = S(xs) , and, in general, for

any x in E 3 and any rotation matrix A,

AtS(Ax)A = S(x) (s)

In addition, the matrix

in E 3,

and for any u and v in E 3,

S has the following useful properties.

S2(u) = -utuI + uu t

For any u

(6)

and

S(u) v = -S(v) u (7)

S(u + v) = S(u) + S(v) (8)

These relations play an important role in what follows. As an immediate

application, consider the problem of measuring Aas. Suppose that two iner-
tially fixed directions are given by two unit vectors _I and R2. If the

inertial coordinates x_, x 2 of these vectors are known, and if their body

2 can beSmeasured, then the attitude matrix Aas can becoordinates x_, xa

computed as follows. Form the matrix Bs in which the first two columns are

x I and x2 and the third is the cross product x_ = -S(x_)x 2 Similarly, formS S S"

the matrix Ba from measurements. Then it follows from equation (3) that

Aas = BaBs 1 The inverse of Bs exists whenever the two inertial directions

are not colinear. In an actual mechanization, the two inertial directions may

be defined by stars, in which case x_ are given by star tables, and xi may
a

be computed from star tracker gimbal angles (see example 7 on p. 18).

The target (desired) attitude may be defined by a third right-hand

orthonormal triplet of vectors, say a = (edl' ed2' ed3 ) whose origin is

common with that of s and &. The transformation mapping { into d will be



denoted by Ads. Its representation in
and identified as the target attitude.
direction cosines edi " esj"

will be denoted by the matrix
The elements of Ads are the

Ads

Consider, now, a way in which attitude error maybe defined. Whenthe
actual attitude of the spacecraft is the desired attitude, Aas =_Ads. This
condition maybe expressed either as Aas - Ads = 0, or as AasAds= I, which
by orthogonality of Ads is equivalent to AasA_s= I. Since the ease with
which a given set of problems can be solved depends, strongly on the under-
lying mathematical structure, it is desirable to introduce as muchstructure
at the outset as possible. The set of three-dimensional orthogonal matrices
has a well-developed structure. In order to have this structure at hand in
what follows, system attitude error will be defined by the orthogonal matrix

R = AasA_s (9)

It maybe noted that R represents the rotation from d to a. The matrices
A- , A. , and R will be referred to as the system input, output, and error,
us __a_ elrespe_ v y.

Angular Velocity - The Kinematic Equation

Suppose that the spacecraft a is rotating with angular velocity

relative to the inertial space g. Let R define a point P fixed in the

body. Then, xa = AasXs, Xa = 0, and is = -S(ms)X s. Hence, the following

chain of equations is true,

• • t t _ t "0 = Xa --AasXs + Aasxs = [AasAas - AasS(Aas a)Aas]Xa = [AasAts - S(ma)]Xa

Since this chain is true for any fixed point P, it follows that,

Aas = S(_a)Aas (i0)

This is the kinematic equation of spacecraft attitude• The corresponding

equation for the target is

Ads = S(_d)Ads (ii)

•• , = + AasA and fromThe attitude error is defined by (9) Hence R AasA s s'

equations (i0) and (ii) it follows that

t_ = S(_a) R - RS(_d) (12)



This is the kinematic equation of attitude error. Note that equation (12) is

a well-behaved differential equation. It is defined for all attitude errors;

it is without singularities; and, for given time histories of spacecraft and

target angular velocities, it is linear. According to equation (5),

RS(_d) = S(R_d)R; hence, equation (12) is equivalent to the following equation

which is useful for certain purposes.

t_ = S(co a R_d)R (13)

The argument of S in (13), w a - R_d = _, can be interpreted as the a

coordinates of angular velocity error.

Parameterization of Attitude Error Matrix

The elements of R are not independent; they are connected by the

orthogonality condition RR t = I. Thus, R may be parameterized with fewer

than nine parameters. The minimum number is three (i.e., Euler angles). How-

ever, the minimum number is not always convenient. A particularly useful

parameterization is the following.

Suppose that _, originally coincident with i, is rotated with a

constant angular velocity _ relative to d. Then R(0) = I, and

R(t) = S(a)R(t), where a is constant. This is a linear differential equa-

tion with constant coefficients whose solution is R(t) = exp[S(a)t]. Let

= li_llt and c = _/liail, so that ]Icli= i. Then

R = exp[¢S(c) ] (14)

The scalar ¢ will be interpreted as the magnitude of attitude error, and the

unit vector c will be interpreted as the direction of attitude error.

Expanding the exponential in equation (14), and noting from equation (6) that

$3(c) = -S(c), and so on for higher powers of S, and collecting terms yields

the following equivalent expression of equation (14):

R = I + sin _S(c) + (1 - cos ¢)$2(c) (15)

Since S(c)c = 0, c is an eigenvector of R; that is, Rc = c. The

corresponding eigenvalue is I. It is the consequence of Euler's theorem on

rotations that any attitude can be reached from I by a constant angular

velocity. Hence, any R can be parameterized by (_, c) as in equation (14)

and its equivalent equation (15).

The parameters (_, c) can be computed from the elements rij of R

expressed by equation (15). Thus, since trace S(c) = 0, and trace $2(c)=-2,

trace(R) = 3- 2(1 - cos ¢); hence,



arcosE0 jEtraco R I (16)

where [0,_] is the closed interval from 0 to

both I and S2(c) are symmetric, sin ¢ S(c) = (1/2)(R - Rt).

0 <_ <_,

r23 - r32 1
1 r31 r13

c - 2 sin _ 1

\rl2 r21j

_. On the other hand, since

Hence, for

(17)

The cases _ = 0,_ are singular. When _ = 0, c is arbitrary. When

equation (15) shows that the components of c are the solutions to the

following equations.

Ici[ : (rii + l) , cicj : T rij
(17a)

The error angle function _ defined by equation (16) has several useful

properties, which are listed below.

(i) In the one-dimensional case (i.e., shaft positioning servo), in which

c is constant, the usual definition of error is #e = Cd - _a, where _d and
_a are input and output angles, respectively. In that case _ = l_e[ i

[Gel _ _, and _ = 2_ - l_el if _ _ _e _ 2_.

(ii) When ¢ is small, the attitude error may be represented by the

vector _c. Its components are, to first order, Euler angles of R, and

is the square root of the sum of the squares of these angles.

(iii) Let @i be the angle between the ith vector of a and the ith2
vector of a. Then @i ! _, because rii = cos @i = cos _ + (i - cos _)c i

which implies that cos @i _ cos _.

(iv) Consider all paths from I to R. Each satisfies the differential

equation R = S[m(t)]R for some time history _ and boundary conditions

R(0) = I, R(tf) = R. It can be shown (see appendix A) that for all _,

fo tfqb < I[m(t)l[ dt

so that _ may be considered to be the minimum angular distance between

and d. This also means that for any two orthogonal (three-dimensional)

matrices A and B, ¢(AB t) <_ ¢(A) + ¢(B). In fact, the function

_(A,B) = _(AB t) is a metric on the space of three-dimensional rotation matri-

ces: (I) ¢(A,B) is positive; (2) _(A,B) = 0 if and only if A = B;

(3) _(A,B) = ¢(B,A); and (4) _(B,A) + ¢(A,C) >___(B,C).



Consider, next, the kinematic equation in terms of (_,c). It is shownin
appendix B that for any @, c, and

$ = cte (18a)

1 S(m) c + 1 (i)6 = _ _ cot _ @ [w - (_tc)c] (18b)

Equations (18) are singular at @ = 0 and @ = _. To gain some insight into

the properties of equations (18) consider the special case in which the

angular velocity m is a constant unit vector. Let the angle between c and

w be denoted by 4. Then, according to equation (18a), _ = cos 4, and from

equation (18b), (cos 4)" = (i/2)cot[(I/2)_]sin 2 4. Hence, the motion passing

through the point (_o,,o) remains on the curve

cos _, 0

1.0 ............... _ ............... I

F2 _ ....... -<_C

i
/

/

-.5

1.0

F3_D 3

OD I
!

............... J-...... _ ....... -OD_

90 F 2 1BO "
¢, deg

sin( 1 ¢)sin _ = sin (2I- _o)sin _o

Curves corresponding to three

different initial conditions are

sketched in figure I. Curve F 1 is

at the point D 1 at time t = 0. As

the body rotates about w, it swings

by the target. The closest approach

is at point B where ¢ = 50 ° and c

is perpendicular to _. Thereafter,

increases until _ = 180 ° (point

C) where c switches sign (point

DI). The body then begins to

approach the target (_ = 0) repeating

the cycle. If c is colinear with

w at t = 0 (point D2) , it remains

so for all time, switching sign of c

Figure 1. Motion of system with constant angular velocity, at

........................

3 a 1"3

t/

_\\ If II
•_% I I

\ I

\\ / F2

\% lr ii

1 I _ I I
2 " 4

t

%

2 '_.
V_
\\

/

\

\ /

[ I w I

8 ; 10

Figure 2.- Time histories of error angle for constant
angular velocity.

= 0 ° and ¢ = 180 ° (curve F2).
Finally, if at t = 0, _ = 180 ° and

c is perpendicular to m (point D3) ,

then the body never approaches the

target but remains always at the

maximum distance away (point F3) •

Figure 2 shows the time histories of

the error angle _ corresponding to
these three cases.

The singularity at _ = 0 can

be removed by multiplying c by a

suitable function of _. For example,

Euler parameters (n,_) are defined as

follows.



(19a)

(19b)

These parameters are related by the equation n 2 + E2 = 4. The corresponding

kinematic equation may be obtained from equations (18). It is the following

set.

1
- 2 ctm (20a)

1 1
= _- S(_o)¢ + _ TICO (20b)

Euler parameters have the advantage that the corresponding kinematic equa-

tions (20) is continuous at _ = 0, and it does not involve trigonometric

functions. However, the singularity at _ = _ is still present•

There are other parameterizations of three-dimensional rotations, but

since they will not be used in this report, they will not be discussed.

Angular Acceleration - The Dynamic Equation

The motion of the spacecraft about the fixed point 0 may be influenced in

two ways: By means of external torques (i.e., reaction jets); and by means of

internal torques generated by an angular momentum exchange and storage device

(i.e., reaction wheels, control moment gyros). In general, both influences

may be present. Let the angular momentum of the main body (about the fixed

point 0) and that stored in the exchange device by denoted by the vectors _v

and _c, respectively, and let T be the total external torque acting on the

system. The total angular momentum _ = _v + _c, and the time derivative of

its inertial coordinates is, according to Newton's law,

hs = Ts = At T (21)
as a

Let the a-coordinates of the moment of inertia of the main body be denoted by

the matrix Ja" Then in _,

c
h a = Jama + h a

But ha = Aashs, and according to equation (6) Aas = S(_a)Aas. Hence,

a = S(_a) Aashs + T a

= Jawa + JaVa + (hCa)"



The re fo re,

ga = Ja l(-hc)" + Ja ITa + JalS(wa)Aashs JalJa_a (22)

The following interpretations will be given to the terms on the right hand

side of (22). The first term represents the effect of angular momentum

exchange rate. The second term represents the effect of external torque. The

third represents gyroscopic coupling. The fourth is due to time variation of

body moment of inertia. Equations (21) and (22) together constitute the sys-

tem dynamic equation. Its form is useful for control applications because the

variables (-hCa)", Ta, and Ja appear explicitly, and they are the ones usually
available for control. The following special cases appear frequently in

practice.

Case 1 - external torque- Suppose that the angular momentum exchange

and storage device is inactive so that h E = O, for all t _ O, and that the

moment of inertia Ja is constant. Then h a = Aash s = Jawa , and the dynamic
equation is the Euler's equation of motion,

_a = JalTa + JaIS(_a)Ja_a (23)

The control variable is the external torque T a. It is typically generated by
means of reaction jets, external magnetic field, gravity gradient, etc.

Case 2 - reaction wheels- Suppose that the system is being controlled by
means of an angular momentum exchange and storage device consisting of three

reaction wheel-motor pairs placed along the body axes _. Let J_ be the
w

moment of inertia of the main body with locked wheels; let Ja be the
diagonal matrix whose elements are the moments of inertia of the wheels about
their spin axes, and let T_ be the column matrix whose elements are the

wheel motor torques. Then defining Ja = J_ - J_, and assuming no external

torque and constant Ja, it follows that

_a = J-ITm + JalS(_a)Aashs
a a

(24)

where hs is a constant. In this case the control variable is the motor
m

torque Ta.

Case 3 - control moment 9yros- Suppose that the system is being

controlled by means of a set of control moment gyros. Let the active gimbal
angles of all the gyros in the package be arranged in a column matrix q of
an appropriate dimension, and let the a-coordinates of the total angular
momentum of all gyros be denoted by h c Assuming that the total angular
momentum of each gyro may be adequately'represented by its spin momentum, we

may express hCa as a function of q, say, hCa = h(q). Then (hE)'= hq(q)_, and

10



for Ta = 0 and constant Ja, the dynamic equation is given by

_a = Ja I[-hq(q)]q + JaiS(_a)Aashs

where hs is a constant.

processor so that

Suppose that the gimbal angles are driven through a

= -F (q) Jae

where e is the input to the processor. Then

_a = jalhq(q)F(q)Ja e + JalS(_a)Aas hs (25)

In this case e is the control variable. If h is a one to one mapping from

the region of interest Q onto h(Q) and the processor is such that

hql(q), then (25) acquires a particularly simple form.F(q)

Equations (Ii), (13), (21), and (22) describe the system. For given
initial condition and time histories of the control variables, the motion of

the system is the corresponding solution of these equations. The detailed
mathematical model is considered in the following section.

Mathematical Model of Attitude Control Systems

The discussion in the preceding section motivates the mathematical model

of attitude control systems shown in table i. The model might appear at first

sight unnecessarily detailed; however, it is basically quite simple and useful

for the purposes of the following discussion. The detail given is required by

the analytical techniques to be employed.

TABLE i.- MATHEMATICAL MODEL OF ATTITUDE CONTROL SYSTEMS

State space

Region of operation
Admissible initial conditions

State equation

Kinematic equation

Dynamic equation
Nominal control law

Mode variable

Perturbations

Target velocity
Disturbance

Admissible forcing functions

X = E 12, x = (R,w a)

@ = {x:RR t = I and det(R) = i}

OoCO
x = g[t,x,u(t),_]

= S(w a + Yl)R

_a = f(t,x,v,Y 2)
f(t,x,_,0)

Yl = nl (t,x,_) ul (t)
Y2 = n2 (t'x' _) u2 (t)

(U 1,U2) E U

11



The underlying state space X is 12-dimensional with the state x

denoted mnemonically by (R,wa). The first nine components of x are the

elements of the error matrix R, and the remaining three coordinates are the

body (_) coordinates of body angular velocity wa. The region of operation @

of the system is the 6-dimensional manifold defined by the condition that R

be a rotation matrix. All possible motions of the system are inherently

restricted to this @. The reason for imbedding the system in E 12 is to

have a nonsingular kinematic equation. The set of admissible initial condi-

tions @o, which contains all possible states of the system at the time of the

initiation of control, is a closed subset of @. The state equation consists

of the kinematic equation and the dynamic equation. There are two types of

perturbation: Yl represents target angular velocity; Y2 represents distur-
bances entering through the dynamic equation. The system will be said to be

under the action of the nominal control law when Y2 = 0. In general, the
system may operate in any one of several modes. A system with several star

trackers is typical. In certain mechanizations the form of control law

depends on which star trackers are active. Hence, in such systems there are

as many modes as star tracker combinations. The mode is represented in table 1
by the mode variable _. It will be assumed that the number of modes is

finite, that with each mode there is associated an open subset @p of @, and

that these subsets cover @. The perturbations Yl and Y2 are glven in terms
of intensities n I and n 2 and forcing functions u I and u 2. The combined

forcing function _ = (Ul,U2) is restricted to the set of piecewise continuous

vector functions of time with values in U. This set is denoted in table 1

by U. Finally, the functions f, nl, and n2 are assumed to be continuous on

the _losure of @_ for each _.

The following examples illustrate how specific cases may be described by

the model of the type shown in table I.

Example 1- Suppose that initial attitudes of both the spacecraft and

target are arbitrary, that initial spacecraft angular velocity is spherically

bounded by a given constant _amax, but otherwise arbitrary, and that target

angular velocity is spherically bounded by Wdmax for all t > 0, but other-

wise arbitrary. Then, the set of admissible initial conditions @o in

table l may be defined by (see eq. (16))

0 ° = {x: 0 _ _ _ v, [[Wail _ Wamax)

and the target angular velocity perturbation may be accounted for by

nl = Wdmax, [lull[ _ 1

The form of the dynamic equation depends on the way torque is generated.

Suppose that the spacecraft is being controlled by means of reaction wheels

(see eq. (24)), and that the total angular momentum of the system hs = 0.

Suppose, also that the feedback linking the sensors to wheel motors is given

by

12



T m = z(R,_a,_ )
a

where z is a specific function. Then the function
equation in table 1 is given by

f = Jalz(R'_a'_) + Y2

f in the dynamic

while the intensity of perturbation in this case is

n2 = 0

Example 2- Suppose that the situation is as in example i, except that

the control is by means of control moment gyros (see eq. (25)). Let the input

e to the processor be given by

e = z(R,_a,_)

and let the perturbation function be defined as

n 2 = max llI - Jalhq(q)F(q)Jall llz(R,_a,_)[i, 11u2[I<__1
Q

(26)

This gives the maximum deviation from the nominal control law z(R,wa,_ ).

Then the system can be modeled by setting

f = Z + y2

The resulting model in table 1 represents the system in the sense that all

possible motions of the systems are included in the set of all possible
motions of the model.

Example 3- Suppose that the spacecraft is controlled by means of an

angular momentum exchange and storage device as in example I, and that an

angular momentum dumping scheme is employed. The corresponding dynamic equa-

tion is given by equation (22). Let the dumping torque be spherically bounded

by Tmax, and let the total angular momentum h s be spherically bounded by

hsmax. Then, assuming that (hE)" =-z(R,ma,_), the system can be represented in
the form of table 1 by setting

f = Jalz(R'wa'U) + Y2

Y2 = n2u2

13



where n2 is the 3 x 6 matrix

n2 = [TmaxJa 1, hsmaxJa 1S(ma) ] (27)

and where the forcing vector is six-dimensional,

U 2 = U ui2u _ I for i = I, 2

DESIGN OF CONTROL LAWS

The direct synthesis of control laws by means of optimal control theory

is often impractical because of the attending computational difficulties and

because the resulting laws are difficult to implement. An alternative

approach is to pick a feedback structure which on physical grounds is likely

to result in adequate system performance, and then perform a global analysis

to determine whether the performance is, in fact, adequate. The latter

approach is taken in the present report. A method for generating a class of

candidate control laws is presented in the present section. The system

governed by any member of this class is shown to be asymptotically stable.

Further global properties of the system may be determined by the techniques

developed in the succeeding sections.

Suppose that the target attitude is constant (_d = 0__)so that the

kinematic equation (13) is

I_ = S(_oa)R (28a)

and that the controls are adjusted so that the dynamic equation (22) is

_a = z(x) (28b)

where z is a control law to be selected, and x = (R,_a) is the state. The

method for generating candidate control laws to be now discussed is based on

the following simple example.

Choose the magnitude of attitude error to be the following function of R

1 ¢2 (29a)
m(R) =

14



where the error angle _ is defined by equation (16). The time rate of

change of m along any trajectory of the system (28) is, according to

equation (18a),

Let the control law be given by

= (_c) tw a

z(x) = -¢c - _a

Then the system (28) is asymptotically stable on the set

_tw < a
@o : x: m + _ a a

(29b)

(29c)

for any a in the half-open interval [0, (1/2)_2). The function

V = m + (1/2)_t_ is a Lyapunov function for the process: V is a positive

aa tadefinite, and its time derivative along any trajectory, V= _ctm a- m _c-wtm a,a

is negative for _a # O, and if _a = O, then z # O, unless also _, or

equivalently m, is zero.

The control law (29c) has been generated from the error function (29a) in

the following sense. The procedure was to pick a function m that character-

izes the magnitude of the three-axis attitude error. Its time derivative

turned out to be a linear function of _a, namely (_c)t_a . This function

(covector) (_c) t was converted into a vector _c and taken as the attitude

error feedback portion of the control law. Finally, rate feedback was added

for damping.

Such construction can be carried out in general because the kinematic

equation (28a) is linear in '"a. Thus, let s(R) be a differentiable function

of R on the region of interest. If s is bounded for all s of interest,

then because of linearity of (28a), there is a matrix F(s) such that along

any trajectory of the system _ = F(s)_ a. Choose a differentiable nesting

function m(s) that assigns the notion of magnitude to attitude error in terms

of s; that is, if a <__b then (x: m[s(R)] <__a} c (x: m[s(R)] <__b}. The

time rate of change of m along any trajectory is _ = ms(s)F(s)_ a. If for

all m <__me, ms(s)F(s) = 0 only at m = 0, then the system (28) controlled by

z(x) = -Ft(s)mts(S) G(s,_a)Wa (30)

where G is a positive definite matrix, is asymptotically stable with respect

to m on the set Oo = (x: m + (i/2)_ a _mo). A Liapunov function is

V = m + (I/2)_ a. The time derivative, V = -w_G_a, is by assumption negative

for _a _ 0. For _a = 0, z _ 0 unless attitude error feedback is also zero,

15



which by assumption occurs only at m = 0. Hence, any initial condition in
Oo will be driven to (m = 0, wa = 0). This maybe, depending on m, a set in
@- see example 5.

fExample 4 - eigenvector control- Let m(R) = g(q)dq, where qg(q) > 0

for q _ 0. This error function generates the following control law.

z(x) =-g(_)c- G(x)_ a (31)

The attitude error feedback vector is along the eigenvector c of the error

matrix R. In particular, let g(_) = 2k sin[(i/2)t], where k is a constant.

Then the attitude error feedback becomes -kc, where c is the Euler vector

defined by (19b).

Example 5- The problem is to aline a unit vector b fixed in the

spacecraft with the unit vector d fixed in inertial space. Let the space-

craft coordinates of these vectors be denoted by b a and da, and let their

inertial coordinates be denoted by b s and ds. In this case, b a and ds are

constant and d a is measured. A solution to this problem may be obtained by

choosing the error function to be, for some positive constant kl,

m = k l(l - dtba) (32)

Then, since da = Aasds, and using the kinematic equation (I0), it follows
th at

= kldtS(_a)b a = -kldtS(ba)wa

If G in equation (30) is taken to be another positive constant k2, the

following control law results

z(x) = -klS(ba)d a - k2_ a (33)

It may _be noted that kiS{ba) is a constant matrix. The system will aline

<kl.along d for any initial condition in the set defined by m+ (1/2)w _a

Note that m is semidefinite since rotation about d is irrelevant; hence,

m = 0 on a set in O. The chosen magnitude function can be written as

m = 1 - cos @, where @ is the angle between b and d. So, m measures the

angle between the two vectors. Suppose that m were defined as the magnitude

of the difference _ d; that is, let m I = (i/2)(d a ba)t(da - ba).

Expanding this product and noting that b and d are unit vectors, it follows

that m I = 1 d_b a = m, and the same cross product control results.

16



In certain cases linear control is undesirable because it mayrequire
excessive torques for large errors. Nonlinear gains maybe introduced to
account for torque saturation as follows. Let s = da - ba, and choose the
magnitude function of s to be

3

z S0"im = gi (q) dq

with qgi(q) > O for q _ 0. Then the time rate of change of m is

3

= _ gi(si)si
1

But, s = -S(da)_a, which leads to the following control law.

z = S(da)
gl(dal - bal) /g2(da2 ba 2) - k2_ a

g3(da3 ba3)

In particular, if all gi are the same saturation function ksat(q,qs) which

is linear for [ql 5_ qs' and saturates at the value k for [q[ > qs' then the

attitude error portion of the feedback is bounded on each axis by k.

sensor). Let s I = di
a

attitude error to be

Example 6- It is assumed that complete attitude control is desired. Two

unit vectors _i,_2 fixed in the spacecraft are to be alined with two unit

vectors _I,_2. fixed in inertial space. The spacecraft is on target (i.e.,

R = I) when _-i = _i, i = I, 2. It is assumed that the body coordinates of

d• are measuredby on-board sensors (i.e., a sun sensor and a magnetic field

b_, i = i, 2, and choose the magnitude function of

m _- is0s ]gi (q) dq + h i (q) dq
1

with qgi(q) > 0 and qhi(q) > 0 for q _ 0. This error function generates the
following control law

1 2 2 2

bal2 )) S(da){h2(da 2 ba2) -z = S(dal) g2(da2 +

bL#
Gu_ a
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IZD" [ d
IV,91

Tracker 1 Tracker 2

Figure 3.- Arra.ngement of star trackers. Body axes are
numbered; _l are lines of sight; fli are inner gimbal

angles; 7i are outer gimbal angles.

If the attitude error feedback is

3_3 zero only at the point R = I of theregion m < v, then the system is

_3.,_, _ _I I_ _3 asymptotically stable on the region

(_7[ _2 m + (i/2)_tm a < v.

Tracker3 Example 7- It is assumed that

spacecraft attitude is measured with

a set of star trackers whose arrange-

ment in the body is shown in

figure 3. The body coordinates of

lines of sight are,

1 / CYICSII

da =_-sB1 )'

\-SYlCSl/

2 [-sY2C821

da =_ CY2C82) '

\-Si_ 2 /

3
da =

-sY33CB3

s_

cY3c_3/

The corresponding kinematic equations are,

= _a

Y1 \-cYltBl -i sYltBl/

0)= [Oa

Y2 \sY2t82 -cY2t132 -I

_3 \s_3tB3 1 -c_3t_3/

Consider, first, the use of all three trackers. Let

angle error, s i = 8i - B9 i = I, 2 3. Superscript
1 _ J

values. Choose

3 si

m(s) = _i IO gi (q) dq

s be the inner gimbal

0 denotes the target

where qgi(q) > 0 for q _ O. This error function generates the following
control law.
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Z = - SY2

o s 3/\g3(B3 B°3)/

(34)

+ ¥ # +_/2, then the system isIf in the region m(s) _i v, Y2 _ 0, _ and YI 2

asymptotically stable with respect to R = I, in the region

m(s) + (I/2)_tw < v. It may be noted that the resulting control law may be
a a "

simple to implement: the elements of the gain matrix are provided by

resolvers attached to outer gimbals of trackers.

Now, consider only trackers 1 and 3. Let

st (61 60 0 0 0= - l, ¥1 - Yl' 63 - 83' Y3 - 73)

and again choose the error function to be

4

m(s) = _1 gi (q) dq

It generates the control law,

/sy I -cy it61

z =- i 0 -i

Cy i Sy lt6 1

cY 3 sY3tB

3 ('rl
0 1 .... BO ! - Gm a (35)

sY3 -cy 3t63/_ g3(63

If in the region mCs) <_ v, B I # _+_/2, B 3 # -+=/2, and ¥i + Y3 # +_/2, then

the resulting system is asymptotically stable with respect to m on the set

of initial conditions m(s) + (I/2)_tw a < v. If, in addition the two lines of

sight are independent, then m + 0 implies R + I. This control law is

harder to implement than the preceding one because of the presence of the

tangents of inner gimbal angles in the gain matrix. If the terms involving

tangents are set to zero, the attitude error feedback becomes that used in an

actual Orbiting Astronomical Observatory (OAO). The effect on system perfor-

mance of this change may be investigated by the techniques presented in the

following sections (see example I0).

The final example of this section illustrates the design using actual

hardware.
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Example 8- It is assumed that the spacecraft is similar to an 0AO. The

control is by means of reaction wheels. The angular momentum storage capacity

of each wheel is hma x = 4.68 (N-m-sec); the torque capacity of each wheel

motor is Tmax = 0.231 (N-m). The moment of inertia of the main body is diag-

onal: Ja = diag(999;ll10;1410) (kg-m2). An angular momentum dumping scheme

is assumed which maintains the total angular momentum spherically bounded by

hsmax = 1.00 (N-m-sec). Hence, the wheels will not saturate if body angular

velocity wa is kept spherically bounded by

_amax = (hmax - hsmax)/Jmax

= 2.61 (mrad/sec)

where Jmax is the maximum principal moment of inertia of the main body.

Finally, it is assumed that on-board sensors measure the attitude error R

and body angular velocity _a" The problem is to design a control law for
stable attitude regulation.

Choose the magnitude function of R to be

¢

m(R) = f0 klsat(q'qs)dq

It generates the control law

z(x) = -klsat(¢,¢s)C - k2w a (36)

Let kl = k2mamax. Then lle_["2 0 for ]laallz aamax. Hence, the control will

not drive the wheels into saturation. Let kl + k2mamax = Tmax/Jma x. Then if

the control law is implemented by setting the wheel motor torques

T_(x) = Jaz(X), the motors will not be driven into saturation. Finally,

choose the saturation point Cs so as to have damping _ = 0.5 near ¢ = 0.

This specifies the control law completely. It may be noted that since

sat(¢,%)c -
sat(¢,¢_)
2 sin r23 - r32 /

r31 r13
r12 r21/

the control law (36) is well-behaved at _ = 0.
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Figure 4.- A particular response of the system in
example 8 in terms of magnitudes of torque,
angular velocity and attitude error.
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Figure 5. The response of the system in example 8 in
terms of the components of the control torque.

The response of the system to

the initial condition, wheels locked

prior to t = 0; _(0) = 2 (rad);

ct(0) = -31/2(1,1,1);

_a(0) = 0.5(1,-1,-1)(mrad/sec) is

plotted in figures 4-6. These curves

were obtained on a digital computer.

E
z

-,5

-I.0

E

g
E

_ 1.5

eo
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The response may be divided

roughly into three parts. For
0 _ t _ i00 seconds, the control

generates pulselike torque to bring

the spacecraft to its maximum angular

velocity. For I00 _ t _ 750 seconds,
the vehicle coasts with maximum veloc-

ity toward the target; the small

torques in this time interval proba-

bly counteract the gyroscopic term in

equation (24). For t _ 750 seconds,

the control again generates pulselike

torque to stop the spacecraft on tar-

get. At the end of the transient,

the angular momentum of the system,

which was initially in the main body,

resides in the reaction wheels.
I.O
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Figure 6.-- The responseof the systemin example 8 in
terms of the components of the relative momentum
of the reaction wheels.
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This system was, further, breadboarded on an airbearing platform using

reaction wheels, motors, and star trackers (see ref. 8). This simulation

showed the design to be practical. However, before the design can be con-

sidered to be complete, the following type of questions must be resolved.

(i) How does the system respond to any admissible initial condition, and how

well does it follow a moving target? (2) How significant is gyroscopic

coupling? How sensitive is the system to (3) external torque disturbances,

(4) variations in system parameters, and (5) changes in the form of the con-

trol law caused by partial failures in sensors and torquers? Such questions

may be resolved by means of the techniques presented in the following sections.

GLOBAL ANALYSIS OF SYSTEM PERFORMANCE

Suppose now that a single-mode attitude control system has been designed.

(See Applications, Case 2, for the discussion of a multimode design.) The

problem is to determine whether the p#oposed design will perform adequately in

all possible control situations. A control situation is defined by an initial

condition, Xo, and a pair of forcing functions, u = (_1,_2); Xo is the state

of the system at the time the control is initiate--d; _i generates a motion of

target attitude; and _2 generates a time history of disturbance. The latter

may be due to external torque, or, as in a sensitivity analysis, it may repre-

sent variations in system parameters. The environment in which the system

will operate is characterized by the set of admissible initial conditions 0o,
perturbation functions n I and n 2 (see table i) and the set of admissible

forcing functions U. Every motion of the system, say _, is the solution of

the state equation --_ = g[t,x,u(t)] for some xO in @o, and some combined

forcing function u in U. That is, the state equation induces a transforma-

tion of the Cartesi--an product set @oxU onto the set X of all possible

motions of the system. The elements of X will be denoted by x= x(t,Xo,U__)

for t _ 0. Global analysis is concerned-with the properties of--this set

X. The problem is to characterize X, and then to devise an effective

procedure for computing the chosen characteristic.

Response Envelope

The primary purpose of an attitude control system is to maintain the

spacecraft on target attitude. Hence, that property of X is of interest

which characterizes the overall behavior of attitude erro?. To decide at any

instant of time how near the actual attitude is to the desired attitude, it is

necessary to have a notion of magnitude of attitude error. This may be intro-

duced by means of the attitude error function m(R) as discussed in the pre-

vious section. Although this function may be the same one that was used to

design the control law, in general, it may be different. Each motion x of

the system generates a corresponding time history m of the magnitude _f

attitude error. It is a positive scalar function o_ time which will be

denoted by m(t,Xo,_) for t _ 0. Let M be the set of all such curves gen-

erated by _, or equivalently, by the se[ of all possible control situations

@oxU. The system response envelope, denoted by m**, will be defined as the
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function of time which at each instant is the maximumof all values of m in

M at that time; that is, for all t >__0,

m**(t) = max [max m(t,Xo,U) 1 (37)
Xoe% Lu_eU_

Thus, the response envelope is a global property of the system. It indicates

system responsiveness. For any admissible initial condition, target motion,

and disturbance the attitude error at any time t _ 0 will not be greater

than m**(t).

State Space Interpretation of the Response Envelope

The response envelope can be given the following state space

interpretation. Let @ and @o be represented schematically as in figure 7.

Since m fs independent of ma, the surfaces of constant m(R) are nested

cylinders in @. The motion starting at XoE@ o and forced by uEU is a

trajectory in 8. The cylinder being crossed at time t determines the

associated value of m at t.

The same initial state xo but a different forcing function _u will

generate a different trajectory. Cbnsider the bundle of all such trajectories

emanating from xo and generated by U. This bundle defines at each t _ 0

a moving set of states that are reachable from xo at time t. Such a set is

shown crosshatched in figure 7. The maximum cylinder intersecting this set at

t gives the value of m corresponding to the inner maximization in

equation (37). In figure 7 it is denoted by m2.

Now, consider the union of all such moving sets generated by all XoEeo.

This union defines a moving cloud of points @(t,@o) shown schematically for

t = 0 and t = tl in figure 8. Initially, the cloud coincides with 0o"

Boundary of the

set of admissible
initial conditions

I °"a I t I

o ,,
; Oo z \/',

/1 xo I V t

/ -I I I

X(tl,II I

# ', ,[01 / _/_"-_I "-

I

I I

I I
I I
i 0
I

m 2 _'_!

(Surface of constant m)

Figure 7.- Motion of set reachable from xo 6 0o.

x o, _u)

I.ii-

I I I

I t=t I I

• I / R --

I i

I I I
k

_ 0

' I
m 1 --_ I

i

m 2 _--'_;

m = m**(t 1 )

Figure 8.- Motion of cloud which is coincident with
Oo at to.
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Thereafter it moves in response to system dynamics. At each t _ 0 the

maximum m-cylinder intersecting the cloud gives the value of the response

envelope m** at that time. In other words, the knowledge of the motion of

the boundary of the cloud is sufficient for the computation of the respons_
envelope.

As an illustration of the preceding discussion consider the following
unforced linear second-order system

i

x 2

I

I
I

4t=O

I

b I I

J I

I I

I I

m - 0 d

_---m = 1 _ I

I

m=2

x 1

Figure 9.- Motion of the cloud of states for the example.

(ii)=(iI)C)
with @o being a square centered at

the origin and bounded by x I = ±I,

x2 = ±I, and choose arbitrarily the

error function re(x) = Ixl I• The

corresponding motion of the cloud is

sketched in figure 9. The corre-

sponding response envelope is given

in figure I0. In this simple case

the response envelope is determined

by the motion of vertices A and B.

Returning to the general case,

consider the evolution of a piece of

the boundary of the cloud, which at

time t I is shown schematically as

ABC in figure ii. At a later time

t2 it transforms into A'B'B"C',

which is the envelope of all moving

1 50

1.251.00 t B

.so \

\,
.25 t"I /// \

0 2 4 6
l

Figure 10. Response envelope of system in example.

m .75

B'

A

C

Figure 1 I. Tile Huygen's construction of the boundary
of cloud.
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sets emanating from ABC. The image of ABC at some still later time t 3 is

given by the envelope of all moving sets emanating from A'B'B"C', and so on
for later times. It can be seen that this is the standard construction of

wave fronts. Thus, for every initial condition xo on the boundary of 9o,

there is a u with values on the boundary of U(t) for every t >_ 0, such

that the resu--lting trajectory x remains on the boundary of the moving cloud

for t >__0. Note that the syste-m was assumed to be in a fixed mode.

Suppose there is a function V(t,x) such that V(t,x) > 0 outside,

V(t,x) = 0 on the boundary, and V(t,x) < 0 inside the cloud. Consider the

differentiable portions of the boundary and let V(t,x,u) denote the time rate

of change of V along a trajectory. Note tkat since _] depends on trajec-

tory, it depends on u. According to the preceding discussion, the boundary

is characterized by two properties: (i) it is part of the cloud, that is, at

each point on the boundary there is a uEU such that V(t,x,u) = 0, and (2)no

trajectory can penetrate the boundary outward, that is, at each point on the

boundary and every uEU, V(t,x,u) <_ 0. Therefore, V satisfies the following

equation on the boundary

0 (38)max vlt,x,uj =
uCU

But, _/ = Vt + Vxx, and _ = g(t,x,u) where the subscripts indicate partial

differentiation. Hence, equation (381 can be expressed as follows:

Vt + H(t,x,Vx) = 0 (39)

whe re

H(t,x,Vx) = max Vx(t,x)g(t,x,u)
uEU

(40)

Thus, the differentiable portions of the boundary satisfy the Hamilton-Jacobi

equation (39) with the boundary condition {x:V(0,x) _ 0} = @o" The correspond-

ing response envelope is given for t _ 0 by

m**(t) = max m(x) (41)
{x:V(t,x) = O}

That is, m**(t) is the maximum cylinder intersecting the cloud at t.

COMPUTATION OF RESPONSE ENVELOPES

According to the preceding discussion, the computation of a response

envelope involves the solution of th# Hamilton-Jacobi equation (39). The

response envelope is given in terms of this solution by equation (41). Two

methods for solving (39) are discussed in the present section. One, an
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approximate method, is based on the Liapunov theory of stability. The other,
an exact method, is based on the theory of optimal control.

Approximate Computation of ResponseEnvelopes

Suppose V+(t,x) = 0 is a smooth surface which at each t > 0 encloses
N

the moving cloud without necessarily being its boundary; that is, suppose that
for each t _ 0,

{x:V(t,x) <__0} c {x:V+(t,x) __ O}

Then property (I) of the exact boundary may be dropped with the result that

V+ satisfies the following inequality which is characteristic of Liapunov
functions

+

Vt + H(t,x,V x) _ 0 (42)

This is the Hamilton-Jacobi equation with equality replaced by (<__). The

boundary condition is

{x:V+(0,x) _ 0} D 8o (43)

Equation (42) must hold for all t >__0r and all x in @ such that

V+(t,x) = 0.

It is very easy to construct solutions to (42). Simply, let

V+(t,x) = Vl(t,x) V2(t) (44)

where VI is such that for some finite a,

{x:V1(0,x) _ a) D e° (4S)

and where V 2 is the solution of the following ordinary, first order, scalar

differential equation with V2(0) = a.

V2 = max W (46)

{x_e:Vl = V2}

where

W = Vlt + H(t,x,Vlx ) (47)
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Then V+ so defined solves (42) as can be seen by direct substitution. The
corresponding approximate response envelope is given by

m+ (t) = max re(x) (48)

{xeO:Vl = V2}

By construction, m+(t) _ m**(t) for all t _ 0. For this reason such an

approximation will be called an upper estimate of the response envelope. Such
an estimate is useful because it may serve as a basis for accepting a proposed

design: under no circumstances can the attitude error be larger than m+(t)

at any t _ 0. Any function satisfying the boundary condition (45) may be

used to compute an upper estimate. Of course, the fidelity with which m +

represents m** depends on the choice of VI. A poor choice will result in

an overly pes-simistic estimate of system performance. The following simple

example illustrates the above discussion. The selection of V 1 for attitude

control systems is discussed later (see eq. (51)).

Consider the second-order system

X1 = -Xl

x2 = ( 2e-2t - 2)x2 + x2u

where the forcing function lul _< i. Suppose that the set of admissible

initial conditions is the unit square, namely, @ 2t{x: IXll < i, Ix21 < i},
and that the error function m = (x2 + x_) Iz2 • Z - --

2 2
V 1 = x I + x2

Then condition (45) is satisfied for a = 2. The time derivative of Vl

along any trajectory is

V1 : -2x_ + 2(2e -2t - 2 + u) x22

Hence,

W =-2x21 + 2(2e -2t - i)x2

and the maximum of W on the boundary V 1 = V2 is (4e -2t- 2)V2.

the differential equation (46) is

V2 = ( 4e-2t - 2)V2

Th ere fore,

whose solution for V2(0) = 2 is

2(l_t_e -2t)
V 2(t) = 2e
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So that the upper estimate is

m+(t) = ¢_ e(1-t-e -2t)

On the other hand, in this simple example the exact response envelope can be
obtained analytically as

1.5

10

+ e2( 1-t-e-2t)] 1/2
J

5

m** (t) = Ie -2t

; I I I L L I 1 l J

0 .4 .8 1,2 1,6 2.0
I[

Figure 12. Response envelope and an upper estimate.

Both curves are shown in figure 12

for comparison. The difference

between m** and m + is due to the

difference-between t--hemoving cloud

and the approximating set V l -V25_0.

Thus, the cloud becomes squashed

along xl; while, the approximating
set remains circular.

The calculations in the above

example were sufficiently simple to

be carried out by hand. For practi-

cal systems, these calculations will

most likely have to be done on a

computer. An outline of a possible

computer program is given in table 2.

It is assumed that V l and "a"

satisfying (45) have been selected.

The computation results in an

estimate m of _m+ on the interval 0 _ t _ T, for some chosen T. The

estimate __ is assumed to be sufficiently accurate when a refinement of the

grid G causes no significant changes in _.

TABLE 2.- COMPUTATION OF UPPER ESTIMATES

Step i.

Step 2.

Step 3.

Step 4.

Step 5.

Set V2(0) = a

Cover the surface Vl(tk,x) = V2(tk) by a grid

Compute W from equation (47) and m from its

defining equation, and maximize both over G,

denoting the maximum of m by _.

Step forward: V2(tk+l) = V2(tk)W(tk)At.

Repeat seeps 2 to 4 for all tk in [0,T]. The

result is an estimate __ of m_+ over [0,T].

g.

It may be noted that table 2 represents the computational procedure that

is followed in a typical stability analysis by means of Liapunov functions.

The only modification, aside from the maximization of m, is that here the
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Liapunov conditions are tested at VI = V2 with V2 a computed function of
time, rather than VI = vi for somepreassigned collection of numbers {vi}.

Exact Computation of the ResponseEnvelope

Consider now the exact solution of the Hamilton-Jacobi equation (39).
Supposethat V(t,x] is differentiable for all x of interest and all t >__0.
Let the trajectory x(t) = x(t,Xo,U) lie on the boundary V(t,x) = 0, that is,
V[t,x(t)] = 0 for all t >__0. Let p(t) be the outer normal to the moving
surface along x(t), that is, p(t) = vt[t,x(t)] for all t >__0. The differ-
ential equation satisfied by p mayb_ obtained as follows. Let
x*(t) = x(t,x*,u*) be a neighboring trajectory, which also lies on the moving
boundary, and°let _x(t) = x*(t) - x(t). For sufficiently small _x
V(t,x*) = V(t,x) + pt6x. Hence, pt(t)_x(t) = 0, for all t >__0. Consequently,

_t6x + pt(6x)" = 0

But the system state equation is i = g(t,x,u). Hence,

(_x) = gx(t)_x + gu(t) 6u

where the coefficient matrices are evaluated along x(t), and u(t), and _u
is such that ptgu6U = 0 because the neighboring trajectory x* is also on
the moving boundary. Therefore,

[_t + ptgx(t)]6 x = 0

since 6x is an arbitrary vector in the tangent space of V(t,x] = 0 at
x, p + g_p = kp for any scalar k. Choosing k = O, one obtains the follow-
ing differential equation for the normal p

t
= -gx(t)p

Thus, the motion of a planar element which is given at t = 0 by position
xo and normal Po satisfying V(0,x o) = 0 and Po = Vtx(0,Xo), respectively,
satisfies the following standard equations of optimal control, which are

derived rigorously in reference 9:

= g(t,x,u) (49a)

= _gt(t, x,u)p (49b)

u = argmax H(t,x,p) (49c)

uEU
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where H = ptg(t,x,u). Equation (49c) expresses the Huygen's construction
(fig. 12) of the boundary. The time history of attitude error m* corre-
sponding to this planar element is thus a function of only xo o-nthe initial
boundary. For each t _ 0 the response envelope is given by

m** (t) = max m* (t,Xo) (50)

{xo:V(0,x o) = 0}

This computational procedure is outlined in table 3. It is assumed that

@o = {x:V(0,x) ! 0}, that V(0,x) is given, and that it is smooth. The

estimate is assumed to be sufficiently accurate when a refinement of the grid

G causes no significant change in m. Pontryagin's maximum principle

(ref. 9) guarantees that _m will converge to the exact response envelope m**

with grid refinement if equations (49) have unique solutions for given initTal

conditions. This will be the case if, for example, in table i, g is differ-

entiable, perturbation functions n I and n 2 are smooth and have maximal rank

almost everywhere, f in the dynamic equation is invertible with respect to

Y2' and U = {u:ll_l ! I}.

TABLE 3.- COMPUTATION OF THE RESPONSE ENVELOPE

Step i.

Step 2.

Step 3.

Step 4.

Step 5.

Cover the initial surface V(0,x) = 0 by a grid G.

Set m = 0 on the time interval [0,T].

Set initial conditions (x,p) = [xi,V_(0,xi) ] for
i 6 G.

Solve the canonical equations (49) storing
W

max[m i(t),m(t) ].

Repeat steps 3 and 4 until G is exhausted. The
resulting m is an estimate of m** on the

computation--interval.

It may be noted that this computation of the response envelope is

essentially no more complicated than the maximization of m(T) for a single

initial condition xo. In the latter case all directions of initial p must

be tested. This is equivalent to @o being an infinitesimal sphere about

the initial state xo.

The main advantages of the computation outlined in table 3 are that

there is no need to guess a Liapunov function, and that, at least in the

limit, the exact response envelope is being computed. On the other hand, the

computation outlined in table 2 does not require repetitive solution of the

system state equation or its adjoint. Hence, the conditions on the state

equation are much weaker. Of course, there is also the advantage that in

certain nontrivial cases the required computation can be carried out by hand.
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If the computer is to be used, the computation time required is of
practical interest. This can be estimated by assuming that the set of admis-
sible initial conditions @o is a sphere. Assumingthat there are Nx sub-
divisions of each coordinate interval, there are NG = 2nNn-I grid points in
G. This is the number of computations involved in step 3 of table 2.
Assumingthat there are Nt points along the time interval, the total number
of computations is N = 2nNn-INt. On the other hand, in table 3 there are NG
time histories, each requiring Nt computations. Thus, in either case there
are N = 2nNn-INt computations. For example, if Nx = i0, Nt = i00, then
N = 1.2x108 if n = 6, and N = 6x104 if n = 3. AssumingI00 microseconds
per computation, the computation time is of the order of 3 hours for n = 6,
and only i0 seconds for n = 3. The large reduction in computation time
accompanyingthe reduction in the dimension of the state space motivates the
following discussion of comparison models. It will be seen that the perfor-
manceof an attitude control system can be comparedwith that of a spherically
symmetric model whosestate space is essentially three-dimensional.

ComparisonModels for Attitude Control Systems

From the practical point of view, it is very desirable to be able to
trade accuracy for reduced computer time in a meaningful way. A useful
approximation to the response envelope is an upper estimate m_+ such that for
all t _ 0,

m+(t) >_ m**(t)

As noted previously, such an estimate may be used as a basis for accepting a

proposed design: for no combination of possible initial condition, target

motion, and disturbance will the magnitude of attitude error be greater than

indicated by the upper estimate. Such an estimate may be computed using a

comparison model having two properties. First, the comparison model must be

sufficiently simple that the computation of its response envelope is practical.

Second, it must be known analytically that this response envelope is an upper

estimate on the response envelope of the given system. A way for constructing

comparison models will now be discussed.

Suppose that two initial states

every admissible forcing function _i

u2 such that for all t _ 0,

xl and x2 happen to be such that for
there is an admissible forcing function

m(t,xl,u I) = m(t,x2,u 2)

and conversely. Then one may consider the two states to be equivalent for

the computation of the response envelope. It would be a waste of computer

time to include both states in the grid G. For efficient use of the computer,

the grid should consist of only the representative states, each representing

its equivalence class. For example, suppose that the state space is

n-dimensional, that the state equation is

X = -X + U
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that the set of admissible initial conditions is

that for all t >__0,

e 0 = (X:

U = {u:

and that the magnitude function is

xtx - 2 __0}

II u_l < 1 }

m(x) = 11xll

Then it is sufficient to include only one point in G, say xt = (_,0,. .,0).

This simple example suggests that the concept of state equivalence is

potentially useful for speeding the computation of response envelopes. Its

actual usefulness depends on the ease with which equivalence can be determined.

The equivalence of two states can always be determined during the computation

of the response envelope. Of course, this is not very helpful. Efficiency

is achieved only if equivalence is determined before the computation is ini-

tiated. It seems that for an arbitrary system such an a priori determination

of equivalence is difficult. But, consider the situation from the other end.

That is, start by choosing a partition of the state space, and construct a

model whose set of equivalence classes coincides with this partition. Then

adjust this model so that the set Xc of its possible motions includes the

set X of all possible motions of t--hegiven system. Then the response

envelope of the model can be computed efficiently, and it will be an upper

estimate of the response envelope of the given system. The desired trade-off

between computer time and accuracy is thus accomplished. A fine partition

will result in small saving of time, but the estimate will be close to the

response envelope of the given system. In fact, for the finest partition,

namely identity, no time is saved, and no error is made. As the partition is

made coarser, equivalence classes become larger, computation time smaller, and

the estimate more conservative. Of course, if the comparison model happens to

be the exact model of the given system, time is saved without loss in accuracy.

A convenient way to define a partition is by means of a group of

transformations. In that case two states x I and x2 are equivalent if there

is a transformation taking x I into x2. A partition is obtained because a

group has an identity (reflexivity), an inverse (symmetry), and closure
(transitivity).

In summary, a comparison model may be constructed for a given system as

follows. Based on physical insight, choose a group of transformations. The

choice defines a partition on the state space. Construct a model whose

equivalence classes give this partition. Adjust the model so that the set of

its motions XC includes all possible motions of the given system. The

result is a comparison model of the given system.

Now consider a comparison model for attitude control systems. The

system state x can be represented by (_,Wa) where E is the Euler vector
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defined by equation (19b) and wa is body angular velocity. Then, x can be
considered either as one 6-dimensional vector, or as a pair of 3-dimensional
vectors. Consider the set of transformations • with elements _A, _¢herefor
each rotation matrix A,

rA(X) = (A_,A_a)

is a group. Twostates xI = (al,_al) and x2 = (e2,Wa2) are equivalent if
the triangle formed by c 1 and Wal is congruent to the triangle formed by

_2 and Wa2. Hence, the only properties of the initial state that matter in

the computation of the response envelope are the length of _-, the length of

Wa, and the angle between these two vectors. Comparison models generated from

z will be called spherically symmetric. One such model is given in table 4.

TABLE 4.- MODEL OF SHIERICALLY SYbNETRIC SYSTEMS

State space

Region of operation

Admissible initial conditions

State equation

Kinematic equation

Dynamic equation

Perturbation

Target velocity

Disturbance

Admissible forcing functions

Magnitude of attitude error

X = E G, x = (c,_ a)

0 = {x: Itt IJ < 2}

0 o = {x: II_.lla+ v_ll_alt 2 <_ va < 4}

1 1
= _ S(wa+Yl)_:+_- n(Wa+Y I)

Wa = - [f(ll_:ll)alc + a_w a] + Yz

Yl = asul (t)

Y2 = f(il _11) [-a2_uo(t) + a;S(_)u2(t) ]

IIul (t)ll 2 + lUo(t) I 2 + IIu2(t)ll 2< 1, for all t>_O

m(x) : qb

The state space is six-dimensional. The state is represented by the

Euler vector a and body angular velocity wa. Points with llcll= 2 are

excluded from the region of operation @ because the kinematic equation (20b)

is singular there. The set of admissible initial conditions @o is an

ellipsoid whose shape and size are determined by constant scalars vi and v 2.

The angular acceleration is a sum of the nominal control law and a perturba-

tion. The nominal control law is a weighted sum of the .Euler vector and

angular velocity. The perturbation consists of two terms: one acts parallel

to E; the other acts perpendicular to _. The forcing vector u is

seven-dimensional. Three components u I are used to generate target velocity;

one component uo is used to generate perturbation parallel to _; and three

components u2 are used to generate perturbations perpendicular to c. The

combined forcing vector is spherically bounded by I. The intensity of per-

turbations is determined by the constant scalars a2,a3, and a 5 which are
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assumedto be greater than zero. The magnitude of attitude error is the error
angle _. Whenthe spacecraft is on target, _ = 0; otherwise it is between
0 and _.

That this model is spherically symmetric can be seen by considering the
effect of any _A from T. Thus, TA(@) = e, and _A(@o)= @o. The kinematic
equation is spherically symmetric because

(A_) =

1 1
AE = _ AS(_ a + Yl)AtAE + _ qA(w a + yl)

1 1
= _ S[(Awa) + (AYI)](AE) + T n[(A_a) + (AYl)]

and IIAylII= llyzlt= asllultl. Spherical symmetry of the dynamic equation can be

shown similarly. Finally, _(ARAt) = _(R) because the trace is an invariant

under a rotation transformation. So, for any two initial states on the bound-

ary of @0, say x I and x2, if there is a rotation matrix A such that

x2 = TA(X I), then for any u I there is a u2 such that for all t 2_ 0,

qb(t,Xl,U l) : qb(t,x2,u 2)

Consequently, the model is spherically symmetric, and the grid G in either

table 2 or table 3 may consist of only representative states of the form

x = (_,ma) where

= (v2 _ vlw 2) I/2 , _a = w si

0 <_ w < /vo\/,_/1_2
-- \Vl/

0 <__ <__

Thus, the computation of the system response envelope requires a maximization

over only two parameters, w and _. This is practical.

The parameters ai in table 4 were assumed constant in order to simplify

discussion. It is clear that these parameters may be allowed to be functions

of llell,ll_all, and Etma as well as time. In addition, perturbations along ma

and perpendicular to it may be included. Thus, the condition of spherical

symmetry is not so restrictive as might appear from table 4. If the given

system is spherically symmetric, then the recognition of this fact can greatly

speed the computation of its response envelope. If the given system is not

spherically symmetric, then it can be represented by a spherically symmetric
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model by absorbing the asymmetryinto perturbations. Then the response
envelope of the comparison modelwill be an upper estimate of the response
envelope of the given system (see example 10).

In the computation of upper estimates by meansof Liapunov functions as
outlined in table 2, it is necessary to give a Vl function. Onesuch func-
tion found to be useful in practice is given by the following equation:

Vl(X) = gl(dP)dqb+ 2a_ 1 - cos _ _ + _ [ima[l2 + 2- Ctma (51)

where g(_) = f[2 sin(I/2) ¢]/ [2 sin(i/2)_], and f is the function appearing
in the dynamic equation in table 4. It maybe noted that this V1 is spheri-
cally symmetric: for any rotation matrix A, VI[TA(X)] = V1(x). Its form may
be thought of as a natural extension to three axes of the Liapunov function
commonlyused in the analysis of single axis servos. Thus, the first two
terms on the right of equation (51) dependonly on the magnitude of attitude
error. The next term depends only on the magnitude of angular velocity. The
last term represents coupling, which depends on these magnitudes and on the
angle between the error axis and the angular velocity vector.

Appi i cat ions

The following two examples illustrate the use of spherically symmetric
models for the computation of response envelopes by meansof procedures
outlined in tables 2 and 3.

Example9- This example illustrates the computation of upper estimates of
response envelopes by meansof Liapunov functions (table 2). Consider the
system discussed in example 8, page 20. The nominal control law is given by
equation (36). It is spherically symmetric. The time history of the error
angle corresponding to a particular control situation is shownin figure 4.
Nowglobal behavior of this system will be considered.

To simplify the discussion, let the system be normalized as follows:
time t + t/_amax; angular velocity ma÷ _a " mamax" Then the dynamic
equation in the absenceof perturbation is

l 1

_a = - sqb-- sat(¢,_s)C _%s _a
(52)

The following upper estimates were computed using the Liapunov function,

VI(x) = sat(q_'¢s)dq_ + _s 1 - cos + _ ¢sll_a[l2 + sin Ctma
(53)

which is a special case of equation (51).
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Case 1 - single-mode nominal system- For this case the set of admissible

initial conditions is assumed to be given by

0 ° {x: _ < 2, Ilwall < 1} (54)

It is also assumed that the dynamic equation is unperturbed (i.e., total

angular momentum h s = 0 for all t _ 0) and that the angular velocity of the

target is spherically bounded by a fraction b of the maximum angular veloc-

ity allowed for the spacecraft (i.e., llwdll_ bwamax , for t K 0). The results

are given in figure 13. Note from (52) and (54) that since llwall" < 0 for

l]_atl > 1, points with ]lWa]l > 1 may be excluded from step 2, table 2. That

b=0.3

2 4 6 8

tLIJa max

Figure 13.- Global response ot"nominal single-mode
system for several bounds on target angular
velocity.

is, one needs to consider only that

part of the Liapunov surface which is

inside the cylinder ll_allS i. The

curve b = 0 indicates the respon-

siveness of the nominal system to

step changes in target attitude.

Thus, for any admissible initial con-

dition, the attitude error will not

be greater than the value indicated

by this curve. It can be seen that

the system is not only asymptotically

stable on eo, but it is essentially
on target (t _ 0.01 rad) no later

than 3/Wamax = 1150 seconds after the

initiation of control. Curves with

b > 0 indicate how well the system

follows a time varying target. Thus,

the curve b = 0.2, for example,

shows that for any admissible initial

condition and any target motion with

angular velocity bounded by 0.2Wamax = 0.322 mrad/sec, the attitude error will

not be greater than indicated by this curve. It is emphasized that a curve in

figure 13 is not the response to a particular control situation. Rather, it

is a global description of system behavior under all possible (there are
infinitely many) control situations.

Case 2 - multiple-mode nominal system- In this case the set of admissible

initial conditions is assumed to be given by

0o = (x: _ <_ _, Itwall <_ 1) (55)

It may be noted that this set includes points at which the error axis c is

double valued, so that the control (52) is undefined there. However, the

system may be controlled using three modes as follows. For a fixed _ choose

an "a" so that the maximum of _ on the set

o 1 = {x: Vl(x) <_ a, Ilwall _ 1) (56)
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is _ - 6, and let the maximum of _ on @in(ll_all = 0} be denoted by Cm.

If x(0) is in Ol, let the system be controlled by (52). Otherwise, apply

maximum angular acceleration antiparallel to _a(0) until either @l is

entered or wa = 0. This mode lasts for at most 11_a(0) ll/_amax seconds. If

@ I is entered, let the system be controlled by (52). Otherwise, offset the

error attitude R by A_ = _ _m by introducing a fictitious change in

target attitude. This brings x into O1 where the system can be controlled

by (52) while the offset is removed with angular velocity which is bounded by,

say, bl_amax. The effective target velocity in this mode is bounded by

(b + bl)Wamax. The offset will be removed after (_ - _m)/(blwamax) seconds.

Thereafter, the angular velocity is spherically bounded by b_amax, as in

case i. The plots (fig. 14) show the behavior of the resulting system with

= 0.01, bl = 0.I, and Wamax = 2/_ s = 20 rad/sec 2. Note that curve b = 0

shows the regulator is asymptotically stable for all attitude errors.

Case 3 - perturbations in the dynamic equation- In this case it is

assumed that the dynamic equation is given by

1 1

ga = - qb-_ sat (_,_s) c - _s wa + Y2

where the first two terms correspond to the nominal control law (52) and Y2

is the perturbation. The set of admissible initial conditions is assumed to

be given by (55), and the target attitude is assumed to be stationary.

Figure 15 shows upper estimates due to perturbation of the form

( hm x)Y2 = b \ Jmin_amax S(_a)U2

b: 0.3

b = 0.2

/ / b:o.1

\

x

3

2

1

J I

0 2 4 6 8

twa max

Figure 14.- Global response of nominal multimode system
for several bounds on target angular velocity.
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Figure 15.- Sensitivity to gyroscopic coupling.
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This perturbation is a (normalized) symmetric approximation of the

gyroscopic term in equation (24) with llhsll_ bhma x. The curve b = 0.3 shows

that for the case considered (i.e., 0A0), gyroscopic coupling is not very sig-

nificant even when the system is loaded with as much as 30 percent of its

angular momentum storage capacity.

Figure 16 shows the performance of the system with an angular momentum

dumping scheme (see example 3, p. 13). It is assumed that the total external

torque is spherically bounded by 0.1Tmax, and that the dumping scheme maintains

the total angular momentum of the system spherically bounded by 0.3hma x.

Figure 17 shows the sensitivity of the system to spherical errors in

commanded acceleration. The perturbation is assumed to be given by

Y2 = b[llsat(qb,Os)C + c°all/O_s]U2

From this figure one may conclude that spherical errors of the order of

10 percent affect the performance little. This means, for example, that

i0 percent changes in moment of inertia, motor and power amplifier gains, or a

misalinement of the motor-wheel pairs with respect to the body axes of about

3° is not detrimental to system performance. Even when such errors are large

enough to cause 30 percent error in acceleration, the system remains asymptot-

ically stable. If the system were controlled by means of control moment

gyros, the plots in figure 17 would indicate system sensitivity to partial

failures in the gyro package. The corresponding b may be taken to be (see
example 2, p. 13)

b = max llI - j_lhq(q)F(q)Jal
q

b=0.1
2

\

I I_IIILII < 0'ITmax

I l i I

0 2 4 6 8 0 2 4 6 8

tC°a max tla/a m_

Figure 16.- Sensitivity to gyroscopic coupling and
external torque.

Figure 17.- Sensitivity to spherical errors in acceleration.
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Figure 18.- Sensitivity to spherical errors in attitude
error feedback.

Figure 18 shows the effects of

spherical errors in attitude error

feedback. The perturbation is

assumed to be given by

Y2 = b [sat (¢'@s)/¢s]U2

The plots in this figure may be used

to determine system sensitivity to

errors and partial failures in the
attitude sensor.

ExaTnple lO- This example

illustrates the use of spherically

symmetric models and the procedure

outlined in table 3 to compute upper

estimates of response envelopes for

systems which are not spherically

symmetric.

Consider the system discussed in example 7 (p. 18). Spacecraft attitude

is measured with star trackers, and the difference between the actual and

commanded gimbal angles is used for attitude error feedback. Let the control

law be given by equation (35) in which the functions gi. represent hard
saturation. In addition, let the terms in the gain matrix involving the tan-

gents of inner gimbal angles be set to zero, and let the multiplication by

this matrix be followed by another hard saturation of each component. The

resulting attitude error feedback is shown schematically in figure 19. Thus,

the gimbal angle errors are clipped at 0.I rad, passed through a gain matrix

which is a function of the outer gimbal angles, and then again clipped. The

result g(R) is the attitude error feedback. The dynamic equation is assumed

to be the following linear combination of g(R) and body angular velocity w a

_a = - lOg(R)

_ (0)

0.2 +

Kinematics

Star trackers

Figure 19.- Attitude error feedback used in example.

lOw a

The problem is to determine the

behavior of the system on the set of

admissible initial conditions given

by

@0 = {x:ll_l12 + II°Ja 112 _ 1}

The feedback gCR) is highly

nonlinear, and it is not spherically

symmetric. However, it can be repre-

sented by a spherically symmetric,

smooth function with perturbations.

Thus, in the range 0 _ @ ! 1 rad,
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g(R) = -1011 + (10]1c11)2] -lz2 [c + 0.55_u ° - 2.5S(c)u2]

with u2 + IIu2112
_< I. (This representation was determined on a digital

computer.) Hence, in table 4, vI = v2 = i, f = I0[i + (1011clf)2]-Iz2 al = 1

a2 = 5.5, a3 = 25, and a4 = i0. Figure 20 shows the corresponding response
10

_.5

1 2 3
t

Figure 20.- Global response of the system.

envelope computed by means of the
procedure outlined in table 3.

(Eq. (49c) was made nonsingular

almost everywhere by setting

a5 = 0.001 and requiring that
Ilul 112+ u02 + Ilu211 < 1.) As can be
seen from the figure, the system is
asymptotically stable on 0o, and it
is essentially on target after three

J units of time for any admissible4

initial condition.

CONCLUDING REMARKS

An approach to the design and global analysis of three-axis, large angle
attitude control systems has been presented. The approach is general in the
sense that it is not based on special properties of particular system com-

ponents, but, rather, on properties common to all attitude control system.
By making use of the well-known properties of three-dimensional rotations, it
was possible to apply the general techniques of control system theory to
develop a practical design and analysis procedure for such systems. Attitude

error, a kinematic equation, and a dynamic equation were formulated in a way
that is convenient for the study of attitude control system, and were
collected in a general mathematical model of such systems. The notion of

distance in attitude between spacecraft and target was introduced by means of
attitude error functions. It was shown that such functions may be used to

generate asymptotically stable control laws. In addition, such functions may
be used to characterize the overall systembehavior by means of response
envelopes.

A state space interpretation of the response envelope was given, and the
similarity between Liapunov's second method and optimal control theory was
noted. Two procedures for computing the response envelope were presented.
One, based on Liapunov's method, is approximate and gives upper estimates on
the response envelope. The primary advantage of this procedure is that few

continuity requirements are imposed on the system. The disadvantage is that

there is no direct way to construct Liapunov functions. The second procedure,
based on the theory of optimal control, is exact and direct, but it imposes
more conditions on system dynamics.

The computation time required by either procedure depends on the

dimension of the state space. The concept of spherically symmetric comparison
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models was introduced as a means for reducing the effective dimension of the

state space from 6 to 3. This reduction results in a large saving of computer

time. Any attitude control system with six-dimensional space can be compared

with a spherically symmetric model by absorbing the asymmetry into perturba-

tions. Of course, if the given system is strongly asymmetric, the upper

estimate obtained will be overly conservative.

The examples included in the report suggest that the proposed design and

analysis technique is useful.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., 94035, October 20, 1970
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APPENDIXA

METRICPROPERTIESOF THE _ FUNCTION

The C-function is defined for any rotation matrix R by

11 I= arc cos [trace(R) - i]
qb(R) [0 ,_] 2"

R may be interpreted as a rotation from d-basis into a-basis. Consider all

paths from I to R. Each satisfies the differential equation

I_ : S [re(t) ]R

for some piecewise continuous _. In addition, R(0) = I and R(tf) = R for

some fixed tf. It will now be--shown that for all such _,

So tf
(R) _< II m (t) Ildt (AI)

The Hamiltcnian is

H = trace [pts(m) R] + Pollwll

and the adjoint equation is

po = 0

: S [_(t) ]P

Thus, for any w, R and P have the same transition matrix

R(t) = _(t), and P(t) = _(t)P o. Hence, for 0 5_ t _< tf

_(t). That is,

trace [pts (m) R] = trace [pt_ts(_)¢]

= trace [pots (,tin) 1

= 2mt_k

where k is a constant. Th ere fore,

H = 2mt_k + Pollmll
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and the optimum _ is colinear with _k, that is colinear with R(t)k. But
this meansthat the direction of m is fixed in the d-basis. Therefore,
_(t) is at each t the eigenvector of R(t), and the conclusion (AI) follows.

The second property of ¢ is the following. For any rotation matrices
A and B,

(AB t) < _(A) + q_(B) (A2)

Suppose the contrary, and denote AB t by C and B by Dt. Then it would be

true that _(C) > _(D) + _(CDt). That is, the angle of the composite rotation:

from I to D, followed D to C, is smaller than the angle of direct rotation

from I to C. This, according to (AI) is impossible. Hence (A2) is true.

Finally, consider the set of all rotation matrices. For any A and B in

this set define

¢(B,A) = qb(AB t) (A3)

The function ¢(B,A) so defined is a metric on the space of three-dimensional

rotations. Indeed, (i) _(B,A) is positive; (ii) _(B,A) = 0 if and only if

A = B; (iii) _(A,B) = ¢(B,A); (iv) _(B,A) + ¢(A,C) _ ¢(B,C). The triangle

inequality holds because

_(B,C) = ¢(CB t) = ¢[CAt(BAt) t] _ qb(CAt) + _(BAt) = ¢(A,C) + ¢(B,A)
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APPENDIX B

KINEMATIC EQUATION IN TERMS OF TIlE (@,c) PARAMETERS

From equation (16) it follows that

1
-sin @% = y trace (R)

But, according to (13), R = S(_)R.

3×3 matrix A = (aij),

trace [S (y) A]

as can be checked by expanding both sides.

1 _t-sin¢$ = - i

which on using (17) gives

To get (18b) note that

or

which on using (iS) becomes

In addition, for any y

Ia23 - a32_= _yt a3 1 a13;

I
\a12 a21/

Hence,

/\_ r23 - r32_

:: ::J
= cote

Rc = c and llcll= 1.

l_c + R6 =

S(_)c = (I - R)c

Hence

S(_o)c = -sin @S(c)6 - (I - cos _)$2(c)6

But from (6) S2(C) = -I + CC t, whereas ctc = 0.

S(_)c = -sin _S(c)6 + (I

and

Hence,

cos _) 6

in E 3 and any

(B1)

44



sCc)& = [l cos ¢)6 - sCw)c
sin

Now premultiply both sides of (BI) by S(c) and simplify to get

Hence,

6 = _s(_)c + _- cot S(c) S(_)c

The last term in the above equation is a vector triple product.

form of the vector triple product identity is, for any x,y, and z

S(x)S(y)z = (xtz)y- (xty)z. Therefore

(½)6 : _ s(_)c + _- cot ¢ [_ - (wtc)c]

The matrix

in E 3 ,

45



REFERENCES

°

.

o

•

•

.

*

.

•

Showman, Robert D.: Simplified Processing of Star Tracker Commands for

Satellite Attitude Control. IEEE Transactions on Automatic Control•

vol. AC-12, no. 4, Aug. 1967, pp. 353-359.

Hansen, Q. Harion; Gabris, Edward A.; Pearson, M. Dale; and Leonard,

Barry S.: A Gyroless Solar Pointing Attitude Control System for the

Aerobee Sounding Rocket. J. of Spacecraft and Rockets, vol. 4, no. ii,

Nov. 1967, pp. 1443-1447.

Mortensen, R. E.: On Systems for Automatic Control of the Rotation of a

Rigid Body. Rep. 63-23, Electronics Res. Lab., Univ. of Calif.,

Berkeley, Nov. 27, 1963.

Meyer, George: On the Use of Orthogonal Transformation for the Synthesis

of Attitude Control Systems. Presented at the 1966 Joint Automatic

Control Conference, Seattle, Washington. Preprints of Conference Papers,
pp. 430-434•

Meyer, George: On the Use of Euler's Theorem on Rotations for the

Synthesis of Attitude Control Systems. NASA TN D-3643, 1966.

Meyer, George: Response Envelope A Global Description of Three-Axis

Large-Angle Spacecraft Attitude Control Systems. NASA TN D-4896, 1968.

Meyer, George: The Design of a Large-Angle Three-Axis Attitude Servo-

Mechanism for Spacecraft. Proceedings of the XVIII International

Astronautical Congress - Belgrade 1967, vol. I, pp. 499-505.

Dishman, Bruce H.; and Moran, Francis J.: Air Bearing Table Mechanization

and Verification of a Spacecraft Wide Angle Attitude Control System•

Presented at the AIAA Guidance, Control, and Flight Mechanics

Conference, Paper 69-856, 1969.

Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; and

Mishchenko, E. F.: The Mathematical Theory of Optimal Processes.

Interscience Publishers, 1962.

46 NASA-Langley, 1971-- lo A-3526









NATIONAL AERONAUTICS AND SPACE ADMINISTRA11ON

WASHINGTON, D.C. 20546

OFFICIAL BUSINESS FIRST CLASS MAIL

POSTAGE AND FEES PAID

NATIONAL AERONAUTICS ANE
SPACE ADMINISTRATION

POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide /or the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

--NATIONAL AF.RONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and

technical information considered important,

complete, and a lasting contribution to existing

knowledge.

TECHNICAL NOTES: Information less broad

in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution

because of preliminary data, security classifica-

tion, or other reasons.

CONTRACTOR REPORTS: Scientific and

technical information generated under a NASA

contract or grant and considered an important

contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information

published in a foreign language considered

to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information

derived from or of value to NASA activities.

Publications include conference proceedings,

monographs, data compilations, handbooks,

sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology

used by NASA that may be of particular

interest in commercial and other non-aerospace

applications. Publications include Tech Briefs,

Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. _0546


