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COMPARISON OF METHODS FOR IDENTIFYING PILOT DESCRIBING FUNCTIONS
FROM CLOSED-LOOP OPERATING RECORDS
Rodney C. Wingrove

Ames Research Center
SUMMARY

This report considers the problem of identifying the relationship between
the pilot's input and output when he performs routing tracking tasks while
controlling a system with dynamics approximating those of an airplane. A
difficulty in using only the measured input and output data is that any extra-
neous output noise by the pilot is transferred through the control loop and
results in an identification bias error. 1In this report three different
identification methods are used to compare the amount of bias error. The
three methods, which are the parameter model, orthogonal filters, and impulse-
response techniques, are applied to the identification of both simulated
(i.e., known) systems and piloted systems.

The identification of simulated systems illustrates that the amount of
bias error depends upon the assumed system model. The bias error is reduced
when the model used in the identification method has the same form (i.e., same
number of coefficients, dynamic elements, etc.) as that of the simulated
system. The parameter model method incorporates such a restricted model and
consistently has the minimum bias error. The orthogonal filters and impulse-
response methods allow, respectively, more general model forms and have more
bias error.

The three identification methods are shown to estimate pilot describing
functions adequately from representative tracking task data from both single-
input and two-input control tasks with various levels of external disturbances.
The results appear satisfactory even when the primary excitation comes from
the pilot's own output noise.

INTRODUCTION

The input-output response of a pilot must be regarded as random,
nonlinear, and dependent on the task he is performing. Many previous studies
have shown that this type of response can be represented appropriately with a
quasilinear system modeled by a linear element (describing function) and a
remnant term (output noise). The pilot describing functions usually have been
identified from records obtained in ground-based simulators (ref. 1) and
flight tests (ref. 2) wherein carefully controlled external forcing functions
are used to excite the pilot-vehicle system. The pilot describing functions
are measured by comparing the input and output signals of the pilot with the



known forcing function. This technique minimizes those errors in
identification due to any correlation of the input signal with the pilotf's
noise.” Reference 3 is a good review of this work and summarizes the measured
pilot describing functions.

Most other methods (refs. 4-12) for measuring pilot describing functions
depend on random disturbances (e.g., aerodynamic turbulence, propulsive dis-
turbance) to excite the pilot-vehicle system. These methods compute the
describing function of the pilot from only his input and output signals. How-
ever, there is a fundamental error in identification because the output noise
of the pilot is transmitted through the control loop and correlates with the
pilot's input and output signals, thereby causing a bias error in identifica-
tion. Reference 4 has shown that this bias error will be small if the ampli-
tude of the pilot's noise is small compared with the amplitude of the other
random disturbances in the control loop.

During routine flight-test operations, there are no carefully controlled
forcing functions and even the random external disturbance may be quite small
so that the principal system excitation may come from the pilot's output noise.
Reference 5 has shown that, in this situation, it still may be possible, under
certain conditions, to determine the pilot describing function without incur-
ring an unacceptable identification error. Reference 5 showed that when the
computer processing is constrained to identify only physically realizable
describing functions, the identification error can be reduced by shifting the
input signal during the computer processing an amount approximately equal to
the time delay of the pilot. The theory shows that the identification error
can be made small, by the time shift procedure, if the correlation time of
pilot's noise is small (i.e., near '"white" noise) compared with the sum of all
time delays through the control loop. A somewhat different approach in refer-
ence 6 indicated that if the form of the identification model (e.g., number of
coefficients, dynamic elements) used in the computer processing were
restricted to be the same as that of the actual pilot's describing function,
then the identification bias error may also be reduced. The studies in refer-
ences 5 and 6 have shown, in effect, that the identification error may be
strongly affected by the constraints in the identification model.

This report compares the results obtained from three identification
methods which differ in the constraints placed on the describing function
model. The impulse response method (refs. 4, 5, 10, and 11) assumes only that
the describing function is physically realizable (i.e., the impulse response
is constrained to be zero for negative time, ref. 5). A more constrained
model is obtained with the orthogonal filter method (refs. 7 and 9) which
assumes, in addition, that the describing function can be represented by a
finite series of orthogonal filters. The most constrained model is obtained
with the parameter model method (refs. 6, 8, 12) which assumes that the
describing function can be represented by one specified model form (a simple
second-order model is used for the results in this report). These three
methods will be applied with the time shift procedure used in reference 5.



This report first describes the three identification methods and applies
them in the identification of both simulated and piloted systems. The identi-
fication of the known systems will be used to show the effect of the output
noise (relative magnitude and spectrum) on the identification bias error.
These results will be compared with the theory of reference 5 and will-also
be used to show how the constraints, incorporated within €ach method, affect
the identification error. The identification of piloted systems will illus-
trate the application of these methods for representative single-input and
multi-input tracking tasks.

IDENTIFICATION METHODS

Before outlining the three identification methods used in this report,
we shall briefly discuss the piloted control system elements. Figure 1
presents a block diagram of the pilot in a representative compensatory
tracking task trying to control his output y(t) so that the input error
signal x(t) 1is kept near zero. Generally, the input-output characteristics
of the pilot must be considered as complex, nonlinear, and time varying. How-
ever, for the purposes of modeling, it is common practice to assume that his
characteristics can be represented by a quasilinear system (ref. 3). This
mathematical model contains the linear element G and the noise source n.
The element G(jw), which is called the pilot describing function,l is the
frequency response of a linear constant coefficient system to the input x(t).
The term n(t) represents the difference between output of the pilot, y(t),
and the output of the describing function G(jw) driven by x(t). Thus,
n(t) accounts for remnant terms such as nonlinearities, time variations, and
additive noise in the output of the pilot.

The controlled system is mathematically characterized by the constant
linear element H and the noise source i. The time history i(t) accounts
for nonlinearities and time variations in the controlled element, time-varying
commands, and all disturbances from aerodynamics, propulsion, etc., external
to the pilot.

In this report, we shall use each of the three methods to compute from
the records x(t) and y(t), an estimate G(jw) that represents the best
linear relationship between x(t) and y(t). 'Best" here means that the
integral of the squared residual,

T
f g2 (t)dt
o)

ITechnically, G(jw) represents a random input describing function
because random, rather than sinusoidal, signals are used here (see ref. 3).
Also, to avoid additional notation, terms such as G(jw) and H(jw) will be
used to represent both the transfer functions of linear systems and the
describing functions of nonlinear systems.
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is minimized over a given record length, where e(t) is the difference between
the actual record y(t) and the output of the system G(jw) excited by x(t).
The following discussion will briefly describe the formulation of the three
methods for the identification of single-input single-output systems. The
formulation for multi-input systems (e.g., two input, one output) along with
the details of the computer programing is further described in appendix A.

Parameter Model

The parameter model method assumes a particular describing function model
for the pilot dynamics and then solves for the parameter in that model. The
model? used for the results in this report has the form

Loy azjw + ay -Ajw
Glw) = Gu)Z + ayjw + 8 © )

Estimates of the parameters a;, a,, a3, a, are determined, as shown in
appendix A, by a quasilinearization technique. The time shift X accounts
for any pure time delay in G(jw). A method for choosing an appropriate value
for A 1is illustrated in appendix B.

The parameter model method is restricted in that only a limited set of
systems, which have the specified form of equation (1), can be adequately
identified.

Orthogonal Filters
The orthogonal filter method is somewhat more general than the parameter

model method. It assumes that the unknown system dynamics can be modeled by
a series of transfer functions of the form

by by (T1jw-1) bs(tqjw-1) (Tojw-1) :!
s J@

;. _ A jw
Slaw) = [lew+1 T (rder) (pder) * (rpjer) (tpjerl) (Tajerl)

This series is commonly called a set of Kautz (or linearly independent)
filters. Estimates of the parameters b;, by, b3,. . . etc., are determined,
as shown in appendix A, by a multiregression technique. For the results in
this report, the first five filters in the series were used. The values of
the time constants T3, Ty, . . . 75 were taken (following ref. 7) as 1, 0.5,
0.25, 0.125, 0.0625 sec, respectively.

2This model form appears to be reasonable for the results in this

report; however, the best model form will depend somewhat on each particular
situation.
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Impulse Response

The impulse response method assumes a very general input-output
relationship that can be represented by the form

_)\.w Tm '-T. .
G(jw) = e J‘}r glt)e ¥ dr (3)
(o]

Here g(t) is an impulse response function that is assumed to be zero for

1 <0 (i.e., g(r) is censtrained to be a physically realizable system) and
also zero for 1 > 1y (i.e., a finite memory time 1t,). The estimates for
the impulse response function, as described in appendix A, are calculated at
discrete times, g(0), g(at), g(2At), etc. For the results in this report, the
estimates were made at 20 discrete points.

IDENTIFICATION OF A KNOWN SYSTEM

In order to illustrate the results to be expected from each method just
discussed, we shall first consider an example where the pilot dynamics are
simulated; that is, where the describing function to be identified is known.
For this example, the elements G and H were?

. 40 jw + 50 -Tgiw
6Gw) = Gz + 3.5 50 s 25 °

and

. jw + 0.585
H(w) = 53 [Gw)Z + 0.592 jw + 0.584]

The dynamics for this example were simulated on a digital computer. The
output of a random noise program was appropriately filtered to obtain the
desired spectrums for n(t) and i(t). The resulting records for x(t) and
y(t) were used with the three methods, as described in appendix A, to
determine the estimate, G(jw).

Figure 2 presents the computed magnitude |é(jw)| and phase angle
¥ G(jw) as functions of frequency. Also shown for comparison are the magni-
tude |G(jw)| and phase angle X G(jw) of the actual system. Two cases were
simulated in order to illustrate the effect of the excitation source on-the
identification error. In the first case, the system dynamics are excited by
both the external noise source i(t) and the internal noise source n(t).
In the second case, the dynamics are only excited by the internal noise 'source
n(t) and i(t) = 0.

3The dynamics of G and H were taken to be near those of the piloted
system in the next example.



Figure 2(a) presents the results for the case in which the system is
excited by both the internal noise source and the external noise source. This
figure shows that with this moderate amount of external disturbance

(2 = 0.5 ©2) the estimated describing functions G(jw) are generally near
the actual system describing function G(jw). The estimate derived by the
parameter model method provides a nearly perfect match with the actual system
G(jw). The estimates derived by the orthogonal filters and impulse-response
methods show only small differences between G(jw) and G(jw). These differ-
ences are probably due to modeling error (i.e., these methods cannot exactly
match the actual system model), and, because there is a bias error, due to the
feedback of n(t)* through the control loop. The effect of this bias error

is discussed in more detail with the next case.

Figure 2(b) presents the results for the case in which the system is
excited by the internal noise source n(t) and there is no external distur-
bance, i(t) = 0. This figure shows that with only an internal excitation,
G(jw) may be quite different from G(jw). This difference, or "identifica-
tion bias error," is due to (ref. 5) the noise n(t) being transmitted
through the control loop producing a correlation between n(t) and x(t), so
that the estimate tends to measure the negative inverse of the alternate path,
-1/H, rather than measure the actual system G. The identification bias
error is most clearly seen for the measured magnitude shown on the top of
figure 2(b). The estimates |G(jw)| generally tend away from the actual
system |G(jw)| toward the curve shown for Il/H(jm)l.

The analysis in reference 5 has shown that the amount of bias error
depends upon the relationship between the correlation time, t,, of the noise
and the time delay, tg, in the control loop. An analytical expression for
this bias error can be written as

5o . ~Tn/T . 1.. -1 (jw

G(jw) =  G(jw) v e MG {G(JN) N H(JN):E o (
~, v 7 ~ " -t 4)
actual system bias error

The primary assumptions in formulating this expression (ref. 5) are;
(1) i(t) = 0, (2) A = 15, (3) the estimate G(jw) 1is constrained to be
physically realizable, and (4) H(jw) 1is minimum phase.

The magnitude of the bias error is directly related to the constant

factor e B/ "G, For the simulated examples shown in figure 2, both the cor-
relation time 1, of the noise and the time delay - in the simulated

system were taken as 0.2 second. In order to illustrate the effect of these
two quantities on the identification error, several runs were made with other
values of 17, and g Figure 3(a) presents results for various values of T,

with 1, held constant at 0.2 sec. Figure 3(b) presents results for various
values of 1tz with 1, held constant at 0.2 sec. The estimated magnitude
|G| is presented at one frequency, w = 1 rad/sec. These estimates from the
three identification methods are shown in comparison with the theory (eq.(4))
and with the actual value for the system (|G| = 8.4 dB) at w = 1 rad/sec.
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The relative effects of noise correlation time 71, and the time delay
TG are apparent in figure 3. Increases in the noise time constant Tp  are
seen in figure 3(a), to increase the bias error. The error will only be neg-
ligible when 1, is near zero, that is, when the noise spectrum is near
"white." Increasing the time delay 1y (fig. 3(b)) decreases the identifica-
tion error. The trends in figures 3(a) and 3(b) follow the theoretical con-
siderations that the identification error will be small when the noise time
constant is small compared with the time delay through the control loop.

Figure 3 shows that the difference between ]é| and |G| depends strongly
on the particular identification method. We can note that the parameter model
method, in which the model has the same form as the actual system, has an esti-

mate |G| which is consistently closest to |G|. The orthogonal filters and
impulse-response methods which are, respectively, less constrained, have esti-
mates |G| further from |G|. The curve for the theory (ref. 5) was derived

for an estimate that is constrained only to being physically realizable. The
most general identification method, impulse response, is seen to be near this
theoretical boundary. (The impulse-response method does not match this curve
exactly because of restricted memory time 1, noted with eq. (3).)

The results in figure 3 show that the identification error is related to
the inherent constraints in the identification model. The identification
error will be reduced when the model allowed by the identification method is
restricted to a form that is near that of the pilot dynamics. In many practi-
cal situations, however, the exact form of the pilot dynamics will be unknown.
In such cases, the more general methods, such as orthogonal filters and
impulse response can be used to gain insight and possibly help to decide on a
reasonable form for the pilot dynamics. The following examples illustrate
applications wherein the combined use of all three methods aid in
identification.

IDENTIFICATION OF PILOTED TRACKING DATA

Recorded data from the simulation study described in reference 13 will be
used to illustrate the identification of pilot describing functions. In this
example, the pilot controls the longitudinal axis of a simulated jet transport
aircraft. Two cases will be analyzed. The first case is a single-input
tracking task wherein the pilot controls the pitch attitude of the aircraft.
The second case is a two-input tracking task wherein the pilot controls both
the pitch attitude and altitude deviations of the aircraft.

The results to be presented in this report represent the average values
computed from 12 minutes of tracking data (for subject A in ref. 13). Where-
ever possible, a comparison will be made between the results computed for this
paper, and the results computed from the same data in reference 13.



Single-Input Task

In a single-input compensatory tracking task the pilot was trying to
control his manipulator output y(t) so that the attitude error signal x(t)
(displayed on an oscilloscope) was kept near zero. The simulated aircraft
dynamics H had the form

H(ju) = jw + 0.585
J Ju[Gw)Z + 0.592 ju + 0.584]

e

and i(t) was a superposition of eight continuous sine waves (table 1) which
gave a random-appearing signal.

Pilot describing functions computed from the experimental records are
presented in figure 4. Curves are shown for the three computational methods
in this report and for comparison, the results determined in reference 13 are
also shown.

Reference 13 used the standard cross-spectral method. The cross-spectra
(jw) and @ix(jw) were computed at each frequency contained in i(t) and

the pilot describing function was determined by the ratio @i (jw)/@ix(jw).

This method, in effect, correlates the input x(t) and output y(t) with the
known forcing function i(t) and thereby eliminates the bias error in identi~ .
fication. The cross-spectral measurements, shown in figure 4, were made for
three separate run lengths of four minutes each. The cross-spectral ratios
are seen to have significant scatter in phase angle at low frequencies. (See
ref. 14 for a discussion of this measurement problem.) Except for this uncer-
tainty at the lower frequenc1es, there is generally good agreement between the
cross-spectral ratio (3w)/¢ (Jw) and the estimates G(jw) determined by

the three methods in thlS report

The residual terms calculated by the three identification methods for
this example have the following values:

27y
Parameter model 0.145
Orthogonal filters .146
Impulse response .144

The residual terms, shown normalized with respect to yZ, represent about
14-1/2 percent of the pilots output. It is interesting that the residual for
the parameter model method is about the same as that for the other less
restricted methods. As further discussed in appendix B, this good agreement
indicates that there is negllglble modeling error with the parameter model
estimate. Because there is good agreement between the curves of G(jw) in
figure 4, and also good agreement between the residual values, it appears that



the chosen form of parameter model satisfactorily represents the pilot
describing function for this example.

One way of verifying the results for this example is to consider the
response of the closed-loop system. Let us take, for convenience, the param-
eter model estimate from figure 4 for the pilot describing function

Soeon L 49.2 jw + 62.4 -0.2 jw
6Gw) = 537 % 3.65 ju + 28,4 ©

With this function we can then calculate the transfer function between the
input signal i(t) and the output state, r(t); as G(jw)H(jw)/[1+G(Gw)H(Gw)].
This curve is compared in figure 5 with the measured cross-spectral ratio
@ir(jm)/®ii(jw). Within the scatter of these cross-spectral measurements, we

can see good agreement between the calculated closed-loop response, using
G(jw), and the ratio @ir(jw)/Qii(jw).

Two-Input Task

Figure 6 illustrates the two-input single-output tracking task analyzed
in this case. The pilot is to keep both the inputs x;(t) and x5(t) near
zero by the use of the manipulator output y(t). The simulated inner-loop
element H; and the disturbance ij(t) are identical to those in the single-
input task just considered. The simulated outer-loop element Hs had the form

L 2.28
Ho(Jv) = 356w + 0,585

and the input disturbance i,(t) was a superposition of seven sine waves
(table 2) at frequencies spaced between those of the eight sine wave
frequencies in 1i;(t).

Estimates for the pilot describing functions that were computed from the
experimental records are presented in figure 7. The estimates G;(jw) of the
pilot response to the inner-loop signal are presented in figure 7(a) and the
estimates G,(jw) of the pilot response to the outer-loop signal are pre-
sented in figure 7(b). These results represent the average values derived
from twelve minutes of pilot tracking data (again, subject A in ref. 13).

In figure 7(a), the cross-spectral results from reference 13 are compared
with the results computed for this report. Significant scatter can be seen in
the cross-spectra results. Reference 13 points out that fundamental limita-
tions restrict the accuracy of these cross-spectral measurements in multiloop
tasks. The three methods discussed in this report are seen to agree generally
with each other for frequencies up to about 4 rad/sec. The only major differ-
ences are in the estimated magnitude |G;(jw)| at the higher frequencies.
Generally, in the mid-frequency region between 0.4 and 4 rad/sec, the magnitude
determined by the three methods agrees with the cross-spectral measurements,



and, except for the scatter in the cross-spectral measurements of phase angle
at the lower frequencies, agrees with the phase angle results.

The estimates made by the three methods in this report for the pilot
describing function Gy (jw) in the outer loop, figure 7(b), show good agree-
ment. A measurement of G,, which might allow comparison with these results,
was not computed in reference 13. We can, however, check the validity of the
results in figure 7(b) by considering the estimated dynamics of the closed-
loop system. Let us take the parameter model estimates (from fig. 7) for the
pilot describing functions

=4

Ao 14,9 jo + 14.4 -0.2jw
610Jv) = Foyz + 2530+ 12.1 °

o 6.3 ju + 3.8 ~0.25u
G2(Gw) = FyZ+ 2.5 J0 + 12.1 ©

With these values, we can then calculate the estimated transfer function
between the input signal 1i,(t) and the output state ry(t) as

Gy (Gw)Hy (Jw)Hy (Gw)
1 + Gy (Gw)H; Gw) + o (Guw)H) (Guw)Hp (o)

This curve is compared in figure 8(a) with the cross-spectral ratio
®izr (jw)/@i i (jw). Although there was some scatter in these cross-spectral
2 2312

measurements, we can see good agreement between the calculated closed-loop
response, when Gj(jw) and Gy (jw) are used and the computed cross-spectral
ratio.

Two external disturbances, ij(t) and i, (t) were used to excite the
dynamics for the two-input tracking data discussed up to this point. We will
next illustrate some identification results when the excitation i;(t) is
removed. For this situation, which was also simulated in reference 13, esti-
mates were made with the three identification methods of this report. The
results for the orthogonal filters and impulse-response methods were found to
agree well with the parameter model results. Again, for convenience, the
following estimates derived by the parameter model method only are given

A pa 12.5 jw + 7.7 -0.2jw
610w = oz v 3130+ 10 °

A L. _ 5.05 jw + 1.8 -0.2jw
62(39) = oz v 31356 + 10 ©

The total closed-loop response, calculated from these estimates, is compared

in figure 8(b) with the corresponding cross-spectral ratio @izrz(jw)/@iziz(jwl

10



This figure shows very good agreement between the calculated closed-loop
response, when G;(jw) and G, (jw) are used,and the 'measured cross-spectral
ratio. This figure indicates that the results are adequate when only an outer
loop disturbance, i (t), is used to excite the closed-loop dynamics.

The identification for a pilot control task is illustrated next for the
case when there are no significant external disturbances, i; or i,. This
illustration is interesting because only his output noise is used for system
excitation.

APPLICATION TO A PILOT TASK WITH NO EXTERNAL DISTURBANCE

This example uses recorded data from the simulation study described in
reference 15. This simulation represents a formation flying task in which the
pilot is trying to hold his aircraft in a constant position behind a lead air-
craft. Visual cues were presented to the pilot through a closed-circuit tele-
vision system, and motion cues were applied with the Ames six-degrees-of-
freedom motion device. For this example, only the lateral-directional
control task will be analyzed for which the aircraft frequency response can be
approximated as

. 4.3(jw)? + 2.2 ju + 6.5
H100) ™ 507607 + 1.3GW2 + 2 36 + 2.1]

. 0.56
H2 (Jw) ~ (j-w-)-Z

The function H;(jw) approximates the dynamics from the pilot's lateral stick
deflection to the aircraft roll attitude. The function H,(jw) approximates

the dynamics between roll attitude and the aircraft lateral position. In this
simulation, there were no significant“ external noise sources, ij(t) or i, (t),
so that the primary excitation came from the pilot's output noise.

The estimation of two independent functions G;(jw) and G, (jw) presents a
fundamental problem in this situation because when i,(t) = 0, the two input
signals x;(t) and x,(t) (zoll angle and lateral position) are exactly corre-
lated. Solutions with the general identification methods, orthogonal filters
and impulse response, are not possible in this situation (i.e., the matrix to
be inverted, eq. (A2), becomes singular). With the parameter model method,
however, a solution is possible because the restricted parameters in the model

“There may have been a small disturbance from several sources (simulation
noise, coupling from other axes, long-term drift, etc.); however, the amplitude
of the disturbance was quite small compared with the pilot's output noise.
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are still linearly independent (i.e., the matrix, eq. (AS5), is not singular).
The measurements made with the parameter model give the following results:

A s N 3.2 jw + 5.7 -0.2jw
Gi(w) = Gz v 2.2 50 + 13.8 ©

A pe N 4.3 ju + 1.4 -O.ij
G2(Gw) = Goyr+ 2735 v 138 ©

These results cannot be verified as done in the previous example because
there are no external disturbance sources, 11(t) or i, (t), that would allow
alternate cross-spectral measurements. It is possible, however, to gain some
insight into the adequacy of these results from the calculated closed- -loop
transfer functions. These functions, calculated with the estimates G1(Jw)
and G, (jw), are presented in the upper portion of figure 9. The transfer
functions for n to y, n to x; and n to X, are presented in figures 9(a),
9(b), and 9(c), respectively. The calculated closed-loop response, when
G1(]w) and G, (jw) are used, shows amplitude peaks at frequencies of 0.5 and
1.75 rad/sec. These two well-defined peaks correspond to the long and short-
period closed-loop response of the combined pilot/vehicle dynamics. One would
expect, therefore, to see large amplitude oscillations at these two
frequencies in the operating records.

Power spectra were calculated from the operating records y(t), x;(t) and
X5 (t). These power spectra are shown in the lower portions of figures 9(a),
(b), (c), respectively. We see that the shape of the power spectra generally
follow the trends calculated by the closed-loop transfer functions. In par-
ticular, each shows peaks near the frequencies of 0.5 and 1.75 rad/sec. This
comparison of the power spectrum with the predicted closed-loop response does
show that these estimates for G1(Jw) and G, (jw) to appear reasonable.

CONCLUDING REMARKS

This report has compared the use of three methods for the identification
of pilot describing functions from closed-loop operating records. Each
method has inherent constraints that restrict the form of the identified
describing functions. The impulse response method identifies a general class.
of describing functions that are constrained to be physically realizable.

The orthogonal filters method identifies a more restricted class which is
constrained, in addition to the above, to represent a finite series of dynamic
models. The parameter model method identifies a very restricted class of
describing functions which are further constrained to represent only one spec-
ified form of dynamic model. In addition, all of these methods use a

time shift that is approximately equal to the time delay of the pilot.

This report shows that the identification bias error due to the

correlation of the pilot's output noise in the control loop is related to the
constraints imposed by each identification method. The parameter model method

12



is constrained to a specific form of pilot model and consistently has the
minimum bias error. The orthogonal filters and impulse response methods are
respectively less restricted and have respectively more bias error. This
report also shows that, indepependent of the method, the bias error will be
negligible only when the correlation time of the pilot's output noise is small
(i.e., near '"white'") in relation to the time delay of the pilot.

The three methods were shown to estimate adequately the pilot describing
function for representative single-input and two-input tracking task data.
The primary advantage of these methods (as compared with the standard cross-
spectral method) is that they can identify the pilot dynamics from routine
closed-loop operating tasks where the external disturbance may be small, that
is, in situations where the principal excitation comes from the pilot's own
output noise. '

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Sept. 23, 1970
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APPENDIX A
COMPUTER PROCESSING EQUATIONS

The computer processing equations used for the three identification
methods in this report are generalized to include any system with several
inputs x;(t), xo(t) . . . xz(t) . . . and with one output y(t).

Assume that the input and output time histories have been digitized at a
uniform series of discrete points KkAt, where At represents the digitized
increment. For each of the following techniques the input data are shifted by
an amount X, where A represents th§ time delay ofgthe pilot. The shifted
input data will be represented as Xz (k), where Xz k) = XZ(kAt - A). This
time shifting of the digitized data and the processing equations, described
below, was programmed on a digital computer. The solutions for the ‘impulse
response and orthogonal filter methods used a multiple regression technique.
The parameter model method used a quasilinearization technique.

MULTIPLE REGRESSION

This technique (ref. 4) minimizes the least squares function

K

Z[yck) - ¥ (K)]?

k=1

where K is the total number of data points and §(k) is the estimated
output represented by

J
yk) = Z b2, () (A1)
=1

The terms Z;(k) are the result of operating (as will be shown below)
on the input data.  With this formulation, the coefficient bj can be
estimated by the following matrix inversion:

14



K 17T «x ]
b | ) 22 nwz00 |3 20y
k=1
(A2)
K K K
b; Z 23(K)Z1 (k) . . . ; 252 (k) Z 23 (K)y (k)
k=1 =] k=1

This general computing technique, which involves the inversion of a
JxJ matrix, was used for the impulse response and orthogonal filters methods.
These methods differed primarily in the form of the operators, Zj’ in each
case.

Impulse Response

The operators for the impulse response method are a series of simple
time delays that operate on the imputs:

Z;(K) = x1(k)
Zo(k) = x(k-1)
= x1 (k-2)

Z3(k)

or, in general,

Z;0k) = x%(k—m)

where j = (Z-1)M + m + 1. These operators represent a series of M isimple
time delays (m = 0, 1, 2 . . . M-1) operating on the inputs x](k), x5 (k).

15



x%(k) . « . » With these operators, the coefficients resulting from the

computer solutions (eq. (A2)) are discrete values of the impulse response
function

éz(m) = Bj

where again j = (Z-1)M + m + 1. This time domain solution was transferred
into the frequency domain by the following simple discrete form approximation
for the Fourier transform.

@

M-1

YAt éz(m)e
m=0

Aj -mAtjw

G, (jw) = e (A3)

Orthogonal Filters

The operators for the orthogonal filters method represent the output of
a series of filters driven by the inputs:

M-1
2. di(mxj(k-m)
m=0
M-1
2. da(mxi (k-m)
m=0
M-1
2. da(mxi(k-m)

m=0

Zy (k)

il

Zy (k)

Z3(k)

or, in general,

25 (k) =

™

di(m)xi(k—m)

where j = (Z-1)I + i and the terms dj(m), dpo(m) . . . dy(m) . . . are a set
of I discrete impulse response functions representing the set of orthogonal
filters shown with equation (2) in the main text of this report.

The coefficients resulting from the computer solution (eq. (A2)) are
used to calculate the estimate for the system impulse response function

1
g (m) = 27 bjdi(m)
1=1
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where j = (1-1)I + i, These time domain impulse response functions are
transformed into the frequency domain by means of equation (A3).

QUASILINEARIZATION

The quasilinearization technique assumes that the pilot dynamics can be
modeled by a set of constant-coefficient linear differential equations (plus
the time shift X already mentioned). If a second-order model is chosen, the
equations can be written in the form

<

. ) x1 ()
y(k i -a; 1y (X) , ag ag . . . x5 (k) (A4)
w(k) -2, Oftw(k) a, 2 . . - .

where w(k) is a dummy variable and 9(k) represents the estimated output of
the pilot. In order to match the estimated output with the measured output
K
(minimize Z[y(k) —§'(k)]2), an initial estimate is made for a;, a,, as.
k=1 :
The following iterative procedure (ref. 16) is then used successively to

improve the estimate
-1

1 1 Tx L X 1 Tx i
a3 X 22w Y amnm .. | D 2Ly ®)-5 k)
k=1 Lk=1 k=1
) A K t K K
aol = l|ay| + 2: 2o (k)zy (k) 2: z%(k) . e 2: szk)[Y(k)'§(ki]
k=1 Tk=1 k=1
-'Jnew ~—old & ) ) co —J — -
(A5)

On each iteration the system differential equations (eq. (A4)) were solved to
determine the estimated output y(k) and the method of reference 17 was used
to determine Zj(k), where Zj(k) is the gradient function By(k)/aaj.

For the results in this report, it was found that reasonable convergence
(from satisfactory initial estimates) was obtained in about five iterationms.
The estimated parameters from this time domain solution can be directly

related to a frequency domain representation through transfer functions of the
form

17
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B Gw) = —2ade*tan M
(Gw)? + arju + ap
@z(jw) - asjw + ag e~k3w

G2 + d1jo + ay



APPENDIX B
SELECTION OF THE TIME SHIFT A

The time shift X wused with the computer processing equations to account
for any time delay vz may be approximately known in some situations (e.g.,
ref, 3); but, in general, it will be unknown and will depend on the particular
piloting task. The purpose of this appendix is to illustrate some results
from using several values of A and to illustrate the rationale in selecting
the values of A wused for the results presented in the body of the text.

Figures 10(a) and (b) show the effect of the time shift X on the
residual €2 (normalized with respect to the output y-). Results for the
single-input task are presented in figure 10(a) and for the two-input task,
in figure 10(b). These figures illustrate that the parameter model method is
more sensitive to A. The orthogonal filters and impulse-response methods,
which are less restricted, are less sensitive to A,

With both the single-input and two-input tasks, the residual for the
parameter model method shows a minimum value at X = 0.2 sec. For this
method, the value of the pilots time delay tg is one of the parameters that
must be estimated. It is therefore reasonable to choose a value for
G = 0.2 sec.

The residual error for the orthogonal filter and impulse-response
methods shows (fig. 10(a)) a minimum value at A = 0. (This is to be expected
because with A = 0 there is significant correlation between n(t) and x(t);
see ref. 5.) The residual is about the same for values of A from 0.1 sec
to 0.3 sec. It was found that the form of the estimate G(jw), such as shown
in figure 4, also has no appreciable difference for this range of A from
0.1 to 0.3 sec. Therefore, for these more general methods, the estimate
G(jw) 1is relatively insensitive to the exact value used for ).

A value of X = 0.2 sec, which is 1@ estimated by the parameter model
method, was used for the results presented in the body of the text.
Figure 10 shows that, near the time shift X = 0.2 sec, all the methods have
about the same residual (€2/y2 = 0.14 to 0.15) representing about 14 to 15
percent of the output ¥y2. It is interesting that the amount of residual for
the paremeter model method is about the same as the amount of residual for
other, less restricted, methods. It appears, therefore, that there is a
negligible modeling error and the form chosen for the parameter model is
reasonable for the results in this report.
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TABLE 1.- THE EIGHT SINE WAVES SUPERIMPOSED TO REPRESENT
THE SIGNALS i(t) or i;(t)

Frequency Relative
(rad/sec) magnitude
0.157 1
.288 1
.524 1
.969 1
1.75 0.1
3.25 .1
6.00 .1

11.1 .1

TABLE 2.- THE SEVEN SINE WAVES SUPERIMPOSED TO REPRESENT
THE SIGNAL i, (t)

Frequency Relative
(rad/sec) magnitude
0.209 1
367 1
.681 1
1.28 0.1
2.38 .1
4.42 .1

8.17 .1
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Figure 1.- The pilot and control system elements for a single-input, single-output task.
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Figure 6.- The pilot and control system elements for a two-input single-output tracking task.
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