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A long range programto investigate cavitation damage in liquid 

metal environments, conducted with a wide variety of materials at the 

NASA Lewis Research Center is reviewed. A magnetostrictive vibra- 

tory apparatus was used to determine the cavitation damage resistance 

of iron-base, nickel-base, and cobalt-base alloys in liquid sodium and 

mercury. The combined effects of temperature and pressure of the 

cavitating liquid on the degree of material damage were determined. 

The interrelationships between material propertfes and cavitation dam- 
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age were investigated. Extensive metallurgical studies were made to 

delineate the nature of material damage. 
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SUMMARY 

This paper is a review of a long range program conducted to study 

cavitation damage in mercury and liquid sodium of materials under con- 

sideration for components of liquid metal power conversion systems. The 

effects of pressure and temperature of the cavitating liquid on cavitation 

damage were determined. Extensive metallurgical studies were made to 

delineate the nature of material damage. 

A magnetostrictive vibratory apparatus was used to determine the 

cavitation dqmage resistance of iron-base, nickel-base, and cobalt-base 

alloys in liquid sodium at temperatures of 204', 427', and 649' C and in 

mercury at 149' C. The materials investigated in both sodium and mer-  

cury ranked in the same order of resistance to cavitation damage, but 

the degree of damage to all materials was consistantly greater in her- 

he most resistant material investigated was the cobalt-base 

alloy, Stellite 6B. 
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sodium significantly increased cavitation damage to the 

materials considered at all temperatures. This result indicated that in 

Quid systems where cavitation occurs in high pressure regions, damage to 

components may be much greater than would be expected from accelerated 

cavitation tests conducted at atmospheric pressure in the laboratory * 

etallographic studies indicated that the predominant feature of cavi- 

tation damage was undercutting; also, some subsurface deformation and 

transgranular cracking was noted. A striking similarity in damage char- 

acteristics was observed for materials tested in liquid sodium and dis- 

tilled water, This lends credence to the view that cavitation damage re- 

sulting from ultrasonic vibratory testing is primarily mechanical in 

nature rather than chemical. 

INTRODUCTION 
d 

Cavitation damage to materials occurs in many engineering applica- 

t1oas where bubbles formed by transient low pressures in moving liquids, 

coollapse rapidly on or near solid surfaces. In advanced space power con- 

version systems that use liquid metals for the heat-transfer medium cavi- 

twtion damage can occur in components such as pump impellers or in sta- 

tionary sections of these systems where local pressure fluctuations occur 

in the fluid, Damage is manifested in the form of pitting and surface ero- 

has been observed in such components after relatively short test 
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to 3). Damage has also been ob- times in liquid metal loops (refs. 

served in the turbine component of liquid-metal systems when the vapor 

quality is less than IO0 percent (ref 4) ., The cavitation damage problem 

is of particular importance in space power systems because these must 

function continuously for 10 000 hours or longer. A comprehensive series 

of investigations was therefore undertaken at the NASA Lewis Research 

Center to determine the resistance to cavitation damage in liquid metals 

of a wide variety of materials that might be used in various components 

of such systems, and to achieve a better understanding of the cavitation 

phenomenon in liquid metal environments and how it causes material 

damage. The results of those investigations are reviewed in this paper. 

Extensive research has been conducted to study the mechanism of 

cavitation, Cavitation damage, and impingement (refs. .6 to 17). A par- 

ticularly comprehensive review is given in Ref. 8. In moving fluids 

where local pressures fall below the vapor pressure of the fluid, cavities 

form. When these cavities are swept into regions of higher pressureg 

they collapse with high velocity. If the collapse is on or near a metal 

surface the liquid can impinge on the surface causing localized high 

stresses in the metal and severe damage can result. Although much of 

this damage is of a mechanical nature, corrosion can also be a contribu- 

ting factor (refs. 10 and 15). Attempts have been made to utilize conven- 

engineering properties such as hardness, tensile and yield strengths, 
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fatigw limit, and even corrosion resistance as a means e% rzlr&” 

materials with respect to cavitation damage. None of &ese pro 

i ~ d i ~ i ~ ~ ~ ~ y  provides a satisfactory criterion for rating rrmateeriaE~; bow -= 

ever, these is some evidence (ref, 18) that strain energy mq GO:I&&~ 

with the intensity of cavitation damage for a number of naa’cerials, 

In order to study a great number of materials in reZativdy s b w t  

times ~ various accelerated test methods for producing cavitation damage 

have been devised. These include the rotating-disk method be%, Is), 

venturi systems (ref, 19), and ultrasonic vibration systems (ref, 1,s). A.EL 

these methods have been a apted for use in liquid-metal @nvi rxme~~ .&s  

(refs. 14, 20, and 21). 

f these various me 4, 26, and %I), the dtrascrjc ~ i b m - ~  

tion. technique has become the most widely accepted. ReeenWy, the .bASTM 

Committee on Cavitation Erosion or ~ ~ ~ ~ ~ e ~ e ~ ~  ~~~~~~~~~~~ a. 

Pa tests (ref. 22) jP= VTtr”CP sc:v 

es of ~ t ~ a ~ 5 ~ ~ ~  vibration devices were use4 a ~ d  Eo w%$%ci; c’i,ev 

laboratories, i n c ~ u ~ ~ ~  the Lewis search Center, pa-.-a;izipa”led (r.ef, M v ~ f  9 725 I 

espite differences in the individ test apparatuses, good ;?,grsp.m.e:*& 

was noted in the relative ra of materials for cavlts’cim damage re- 

sistance 

A magnetostrictive vibratory apparatus was used 

tigation and a wide variety of iron-base, nickel-base, 
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alloys was studied. The- bulk of the work was done in liquid sodium at 

7' C and in mercury at 149' C under atmospheric pressure. Three 

materials with widely different mechanical properties were also inves- 
5 5 tigated in liquid sodium while pressures ranging from 1x10 to 4x10 

N/m (1 to 4 atmospheres) were maintained on the cavitating fluid. 

Both fluid pressure and temperature were varied in the case of one 

material that was studied. This was done to assess the effect of tem- 

perature and pressure on cavitation damage. Materials were ranked 

according to their resistance to cavitation damage by material volume 

loss, volume loss rate, and surface roughness. Metallographic studies 

were made to determine the nature of the early stages of cavitation 

damage and to characterize long-time damage effects, Attempts were 

also made to correlate accelerated cavitation test data with cavitation 

damage sustained in actual pump operation in liquid-metal loops. 

2 

MATERIALS, APPARATUS, ANI) PROCEDURE 

Materials 

he materials tested for resistance to cavitation damage were the 

iron-base alloys Sicromo -9 , A-286, and AIS1 types 316 and 318 stain- 

less steels; nickel-base alloys, Inconel 600, Hastelloy X, and Ren6 41; 

and cobalt-base alloys, E-605 and Stellite 6B. The nominal chemical 

composition of each alloy is listed in Table 1. he heat treatments 

employed as well as the densities of these alloys are listed in Table 
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cause of the wide differences in resistance to cavitation damage they 

exhibited in sodium at atmospheric pressure, AIS1 316 stainless steel, 

and the cobalt-base alloys, L-605 (HS- 5) and Stellite 6 were chosen 

to determine the effect of pressure of the cavitating fluid on cavitation 

damage. 

fluid (sodium) were varied were conducted with L-605. 

Tests in which both temperature and pressure of the cavitating 

eactor grade sodium Q 99-95 percent purity) and triple-distilled 

mercury were used as the test fluids, Chemical analyses indicated an 

initial oxygen ].even of 18 ppm for the sodium. 

maintained by the ad ition of a titanium-sponge 

bath znd periodically heating ta 649" 6: for 3 to 

Purity OS the sodium was 

hot trap to the liquid metal 

4 hours. The mercury had 

less  than 0,2 ppm total. initial impurity content and was changed periodi- 

cally to maintain purity 

Accelerated Cavitation amage Test 

he apparatus used is shown schematically in Fig. 1 .  A more corn- 

escription of the facility and test procedure is given in Ref * 24, 

his figure illustrates the dry box arrangement magnetostrictive trans - r' 

ducer assembly, and separately sealed liquid metal test chamber with 

associated argon line, vapor trap, and pressure gage. The dry box and 

test chamber were designed to- be evacuated to a pressure of approximately 

2 0.13  N/m torr) and baekfilked with high purity argon prior to 

testing, 
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The transducer assembly is shown in the photograph of 

he specimen was attached to the end of a resonant system consisting of 

the transducer exponential horn, and an extension rod specimen holder 

The horn served as a displace-hent amplifier and provided a convenient 

attachment for a nodal flange 'Vapor seal. The amplitude and frequency 

of vibration were detected by a magnetic pickup and read on an oscillo- 

scope e An automatic feedback system maintained a constant amplitude 

of vibration irrespective of variations in resonant frequency induced by 

temperature changes. The output of the magnetic pickup was calibrated 

against measurements of amplitude made optically with a 200-power 

microscope 

After the liquid bath was Brought to temperature, the transducer 

assembly was lowered into position. A sleeve attached to the nodal 

flange on the amplifying horn sealed the liquid-metal test chamber from 

the dry box, and the test chamber pressure was regulated through a 

separate argon line. Pressures were measured with a precision gage 

having an accuracy of 0.25 percent and temperature was controlled 

from a thermocouple directly immersed in the bath. 

Test  Conditions 

The sodium tests were run at 204O, 427', and 649' 6. he pressures 
5 5 2 maintained on the cavitating fluid ranged from 1x18 to &IO N/m The 

fluid temperature was controlled to *Go C and pressure variations were 
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3 2 .7XlO N/m 0 he mercury tests were all run at 149" c 

under atmospheric pressure e he frequency of vibration of the 

test specimens was nominally 25 000 Hz, and the peak-to-peak displace- 

ment amplitude was 4.45X60e2 mm & %e2X10-3 mm. he specimen sur-  

face was immersed to a depth of a toximately 3.3 mm. 

Test Procedure 

he type of specimen used is shown in ig. 3.  The test surface of 

each specimen was rnetaklographically polished before testing to allow 

meaningful metallographic examination of the specimen surface during the 

early stages of damage ,, 

rior to the test, the specimens were cleaned, weighed, and photo- 

graphed. After each time increment of cavitation exposure, the speci- 

mens were removed from the apparatus, cleaned, weighed, and repho- 

Weight loss measurements were divided by density to obtain 

volume loss. 

Test duration was dependent on the volume-loss rate for each material 

at each condition. n most cases, the testing of a specimen was continued 

for a sufficient time to achieve a relatively constant volume loss rate. 

Surface roughness traces were obtained from the uniformly damaged 

p ~ r t i ~ r ~  of some of the specimens at various time increments. 

were obtained with a linear profiler having a diamond stylus with a 0.0 

a cone angle of 51.5 '~  usua11y a single trace approximately 
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0.675 cm in length was taken. hen several different traces were taken 

on the same specimen, the arithmetic average surface roughness values 

were in agreement within approximately 

After testing, some specimens were sectioned axially and examined 

metallographically to determine the depth of cavitation attack and to study 

the nature of cavitation damage to these materials. 

RESULTS AND DPSCUSSION 

Validity of the Ultrasonic Vibratory Test Method 

Of the many methods used to evaluate materials for resistance to 

cavitation damage, the vibratory method has become the most universally 

accepted. Various types of vibratory test facilities designed to impose 

accelerated cavitation damage on materials by subjecting them to high 

frequency vibration in a fluid have been used in laboratories for many 

years (refs. 25 and 26). Because of differences in test conditions such 

as aniplitude and frequency of vibration, temperature, etc e employed by 

investigators using vibratory tests, it has been difficult to compare the 

results from one laboratory with those of another. 

uring 1967, the ASTM Committee G- 

- 

on Erosion by Cavitation 

or Impingement, initiated a round-robin test program in which compara- 

tive tests were made with vibratory test facilities available at different 

laboratories. NASA participated in this program in which, as far as pos- 

sible, test conditions were standardized. Thus, specimens from the 
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same original batch of material were tested in each laboratory. The 

three materials chosen for the program were type 3 6 stainless steel, 

nickel 270, and 606 -7% aluminum, The major requirements of the 

G-2 committee were that the specimens be tested in distilled water at 

atmospheric pressure. The specimen surface finish was 

O.& microns rms  or better. Tests were carried out to at least 0,076 mm 

mean depth of penetration based upon total specimen surface area. Where 

possible a total displacement amplitude of 0.05 mm was used. 

espite differences in the individual test apparatuses, by keeping 

close control on test conditions, good agreement was obtained in the rela- 

tive ranking of materials for cavitation damage resistance by the various 

participating laboratories, The ranking was, in order of decreasing re- 

sistance to cavitation amage, stainless steel, nickel, and aluminum. 

he results of this investigation a r e  summarized in Ref 2 

hen evaluating materials for their resistance to cavitation damage ~ 

it is necessary to rank them aeeqrding to some parameter such as weight 

or volume loss. Because of the wide variety of materials, and the differ- 

ent cavitation damage rates encountered at various times during testing 

with different materials an all-inclusive method of ranking materials 

for  their resistance to cavitation damage has slot been established. 

this paper9 three ifferent methods for ranking materials are presented 



in order to give a more complete overall picture of the relative resistance 

to  cavitation damage of the materials tested. hese methods are (I) total 

volume loss, (2) volume loss rate, both average (ref, 29) and ??steady 

stategq volume loss rate (refs. 28 and 29), and (3) surface roughness 

measurements. 

Volume loss. - Cavitation damage is expressed as total volume loss 

for nine materials tested in sodium and five materials tested in mercury 

under 1x10 N/m pressure in Figs. 4(a) and (b), respectively (ref. 24). 5 2 

he materials tested in sodium were ranked in order of increasing damage 

as follows: Stellite 6B, Re& 41, L-605, Hastelloy X, A-286, Inconel 600, 

type 318 stainless steel, AIS1 type 316 stainless steel, and annealed 

Sicromo 9M. A wide range of damage was  observed for the various ma- 

terhls. For example, after 4 hours the most resistant material, 

Stellite 6B, exhibited approximately 15 percent of the damage sustained 

by L-605, another of the more resistant alloys, but only approximately 

2 percent of the damage sustained by annealed Sicromo 9M, the most 

heavily damaged material ., 

The materials tested in mercury were ranked in order of increasing 

damage as follows: Stellite 6B, hardened Sieromo 9M, E-605, 

Hastelloy X, and annealed Sicrom 

egree of damage was observed. 

e Again, a wide range in the 

example, after 4 hours, the most 

resistant material, Stellite 6 showed approximately 6 percent of the 
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damage sustained by 

that of annealed Sicrom 

-60%; and after 1 hour, approximately 2 percent 

mealsd Sicromo th an original hardness of ockwell B-80 

was heat treated to a hardness of 

alloy showed only about 6 percent of the damage sustained by this alloy 

in the annealed con ition. Increasing the hardness substantially increased 

t 1 how the hardened 

resistance to cavitation damage 

volume loss rate. - wves of volume loss rate are shown in Figs. 

5(a) and (b). These curves represent the first derivative of the volume 

igs. 4(a) and (b) plotted as a function of time. Smooth 

curves were drawn through e volume loss data for AI type 316 stain- 

and Stellite 6B, in order to nconel 600, A-286, Hastelloy 

reduce the effect of scatter. 

used to obtain the volume loss rate curves shown in igs. 5(a) and (b) e 

The same procedure was employed for the remaining materials in Figs. 

$(a) and (b), but because the volume loss data points for the latter materials 

were more wi ely spaced in time and because the exact shape of these 

curves is uncertain, portions af the rate curves (figs. 5(a) and (b)) for 

these materials are dashed. 

he first derivatives of these curves were 

previous investigation (ref. 36) showe that materials tested for 

long times in water first reache a relatively steady-state damage condi- 

tion but showed a decreasing damage rate after very long test times. In 
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order to limit test times to a reasonable length and at the same time to 

achieve a meaningful ranking of materials with respect to their resistance 

to cavitation damage, a steady-state damage rate was used as a criterion: 

he steady-state region is defined in the present investigation as that por- 

tion of the volume loss rate curves where the rate does not change over 

an extended period of time, and accurate, repeatable values for damage 

rate can be determined readily. In most cases, this occurred after peak 

damage rate was  observed. 

W e n  the materials were compared on the basis of their steady-state 

damage rate, they were found to be ranked in the same order with respect 

to their resistance to cavitation damage as when compared on the basis of 

total volume loss. 

Surface roughness measurements. - Because cavitation damage is - 

usually measured quantitatively in terms of weight or volume loss, dam- 

age to system components, such as tubing or impellers, is sometimes 

difficult to measure accurately because of limited accessibility. If a cor- 

relation should exist between volume loss and surface roughness measure- 

ments, the latter might possibly be used to measure quantitatively the 

cavitation damage to these components. Cavitation damage was therefore 

measured in terms of surface roughness for all the materials tested in 

mercury and five of the materials tested in sodium. 

A comparison of the arithmetic average surface roughness with volume 
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loss as a function of test time in sodium and in mercury is shown in 

Figs, 6(a) and (b), respectively, These materials ranked in the same 

order on the basis of both surface roughness and volume loss, Surface 

roughness measurements are extremely sensitive, and a clear distinction 

among the materials as to relative cavitation damage resistance can be 

made by this method during the early stages of damage, even though 

very little volume loss has occurred, 

Comparison of Cavitation Damage 

of Materials in Sodium and Mercury 

Although the materials tested in both sodium and mercury ranked in 

the same order of resistance to cavitation damage (fig. 4) the severity of 

cavitation damage experiencedby all materials in mercury at 149' C was 

two to seven times greater onthe basis of total volume loss than that exper- 

ienced by the same material in sodium at 4 

Volume loss rate values (fig, 5(b)) were also much higher in mercury 

than in sodium; however steady-state rates for mercury cavitation damage 

were not as clearly defined as in the case for sodium. The surface rough- 

ness values for cavitation damage in mercury (fig. 6(b)) were also several 

times greater than those measured after testing in sodium, These results 

suggest that the nature of attack by mercury is quite different from that by 

sodium, and this will be iscussed in the section of this paper dealing with 

the metallurgical aspects. 



etween Accelerated amage Test 

and Cavitation ump Impellers 

qualitative comparison was made between the damage expereienced 

by three materials ( en6 41 and AIS1 types 316 and 318 stainless steel) 

tested in the accelerated cavitation damage facility and that experienced 

by the same materials when used as pump impeller vanes in sodium loop 

tests conducted at the Lewis Research Center (ref. 31) I) Visual observa- 

tions indicated that the materials ranked in the same order with respect 

to resistance to cavitation damage after accelerated tests as after actual - 

pump loop operation under cavitating conditions e 

acrographs of the damaged surfaces of impeller blades that were 

operated for 250 hours under cavitating conditions at temperatures up to 

816' C are shown in Fig. 7. The Ren6 41 impeller blade showed virtually 

no cavitation damage; whereas, the AIS1 types 318 and 316 stainless steel 

ad regions of marked damage. The degree of damage for the two 

ess-steel blades was not appreciably different. When the materials 

a-re considered on the basis of volume loss in the accelerated tests (fig. 

shows considerably less damage than either of these steels. 

0th steels, however, ranked very closely with respect to volume loss. 

t is significant that a qualitative agreement between the results of accel- 

erated cavitation tests a 

Surface traces were taken of the damaged areas of the impeller blades 

full-scale impeller operation was obtained 
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in an attempt to determine a quantitative measure of the cavitation damage, 

However, the extent of general corrosion of the blade surfaces masked the 

egree of localized cavitation damage, rom this it is evident that mea- 

surements of surface oughness should have been made earlier in these 

tests in order to adequately use this means of measuring cavitation dam- 

age. Inn any event, these results suggest that the vibratory type of accel- 

erated cavitation test can provide a useful means of selecting materials 

suitable for long time operation under cavitating conditions a 

ffect of Pressure of Cavitating Liquid on Cavitation 

power conversion systems fluid pressure can vary, depending on 

the operating conditions, from-near the fluid vapor pressures at the pump 

et t o  many atmospheres of pressure at the pump outlet.!: Similarly in 

saubm-ersible vehicles for marine applications, ambient fluid pressures 

can increase significant 'depth. Therefore, it is important to es- 

tablish the effect of pressure cm cavitation damage to materials in order 

etter mder stan ing of the cavitation phenomenon which is 

many different engineering applications. 

hree materials - A 6 stainless steel and the cobalt-base 

aIloys L-605 ( 83-25) and Stellite 6 were chosen to study the effect of 

pressure of the cavitating fluid on cavitation damage, hese materials 

had prevPi~usQ shown wide differences in their resistance to cavitation 

damage at atmospheric pressure. A 6 stainless steel showe 



low resistance to cavitation damage. -60 5 showed intermediate re - 
sistance and SteElite 6 was the most damage -resistant alloy evaluated, 

he effect of pressure on cavitation damage to  E-605 at 
5 2 05, and 4x10 N/m is shown in terms of volume loss and 

volume loss rate in Pigs.- 8(a) and (b), respectively. From this f ig-  

ure,  it is evident that cavitation at higher pressures resulted in 

) higher cumulative volume loss, (2) a higher volume loss rate peak, 

and (3) a higher level of steady-state volume loss rate, It is interesting 

that the shape of the rate curve varies with pressure (fig.  8(b)). A s  the 

pressure is increased, the peak of the damage rate curve is higher and 

narrower and occurs earlier 
5 2 uring the 3x10 N/m test, a specimen failure occurred after 

$20 minutes. A second specimen was run, and the test continued for a 

total of 360 minutes. Because the cumulative volume loss of the two 

specimens run at the same pressure showed a difference of about 10 mm 3 

a t  the $20 minute point, separate curves are plotted in Fig. 8. 

Fig (I 8(b) shows that the volume-loss r a t a  increase substantially 
5 5 2 after 240 minutes for the specimens tested at 3x10 and 4x10 N/m . 

This increase is most likely due to undercutting of the surface by cavita- 

tion and the resultant loss of large particles of material. Some large 

particles of specimen material were found in the sodium bath, 
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e'i-idence of such undercutting is presented in the section dealing with 

the metallographic studies e 

Volume loss data were also obtained for A 6 stainless steel 

%ad Stellite 6B at 42'6' C! andsat prdisur& 6f 1x105, % J X ~ O ~ ,  ,and 

e Increasing the test pressure increased the cumulative vol- 

ume loss in each case, and both materials exhibited steady-state volume 

loss rates that increased with increasing pressure. 

he steady-state volume loss rates discussed to this point are based 

on the conventional method of measuring cavitation damage by use of the 

total area exposed to cavitation. This method does not take into account 

changes in the damage pattern. From the macrographs of Fig, 9, it is 

obvious that there is an akea of heavy damage, and a surrounding r im of 

le or no damage on the tested specimens. This heavily damaged area 

was reduced in diameter, ut the depth of damage increased as pressure 

was increased. If the volume Boss rate data a re  normalized on the basis 

of damaged area only, volume loss rate is found to vary as a power of 

etails of the normalizing process may be found in Ref. 32. 

he resdts of normalizing the steady-state volume loss rates of the three 

tested materials a r e  shown in 

considered in this investigation, it can be seen from 0 that the aver- 

age volume loss rate can be expressed as a power of pressure above pres- 

ithin the range of conditions 

5 2 0 N/m e The slopes of the curves for A 
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-605, and StePlite 6 

e noted, however, 

, respectively. 

the data points measured at 
5 2 0 N/m tend to fall below extensions of the lines established by the 

higher pressure points,, This can be explained by the fact that in theory 

cavitation damage must be zero at pressures approximately equal to the 

vapor pressure of the fluid. The value of vapor pressure is given in 

n the logarithmic plot of 0, if the linear relationship 

held at the lower pressures (in the vicinity of X I 0  N/m and below), 

amage would be approached only at pressures very much lower 

5 2 

than the vapor pressure. ’ Therefore, the curves must fall away from the 

linear relationship toward the pressure axis at low pressure and this 
5 2 *9fall off*8 apparently begins in the region of 1x10 N/m 

he results of the 

previous investigators 

netostrictive device in 

present investigation differ from those obtained by 

(ref ., 33) Using a low-frequency 

, they found that for a given 

(6500 Hz) mag- 

exposure time 
5 2 damage increased with increasing pressure up to abaut 2x10 N/m and 

subsequently decreased as pressure was further increased. No damage 

was observed at 4x10 N/m .. t may be that because the apparatus used 

for the earlier tests (ref. 33) had a relatively low frequency resulting in 

relatively low s eeimen velocities, cavitation was reduced greatly at 

the higher ambient pressures. The high-frequency device used in the 

5 2 
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present investigation is, however capable of generating cavitation at 

these higher ambient press  

0, it is apparent that the three materials have the same 

relative ranking with respect to cavitation damage resistance at high pres- 

es that they have at atmospheric pressure. Accelerated material dam- 

age tests, therefore, may be run at higher ambient pressures? and test 

time can be shortened by at least an order of magnitude, thereby allowing 

evaluation of a greater number of materials in a given time. 

The Combined Effect of Temperature and Pressure of the 

Cavitating Liquid on Cavitation 

n engineering practice, the temperature of the cavitating fluid will 

often vary as well as the pressure.  Therefore, it was considered de- 

sirable to determine the combined effects of temperature and pressure on 

cavitation damage. L- 605, the moderately damage resistant alloy was 

chosen for this phase of the investigation. This was done to accommodate 

the possible wide variations in damage that could result from changes in 

the characteristics of the cavitating fluid with temperature. 

The cavitation damage observed with E-605 at o~~ 2 x 1 0 ~ ~  3x 

5 2 4x10 N/m is shown in terms of volume loss at 20409 427', and 

olume loss rates were also calculated and a re  plotted 

ls of this phase of the investigation can be found in 

ef. 27, At each temperature considered, cavitation at higher pressures 



resulted in (1) higher cumulative vo e loss, (2) a higher volume loss 

rate peak, and ( 3 )  a higher level. of average volume-loss rate, The av- 

erage volume-loss rate was used as an objective measure of steady-state 

volume loss rate and is defined for this series of tests as the average 

volume-loss rate observed between 120 minutes and the termination of the 

wther  discussion on the validity of methods of evaluating rate 

curves can be found in 9, and the discussion to ef. 34. After 

120 minutes, the volume-loss rate for all pressure levels except for the 
5 2 

1x10 N/m tests had passed through a peak and the volume loss rate did 

not change significantly over an extended period of time. Although the 

1x10 M/m tests did not pass beyond a peak, the damage rates were very 

low and consistent. Therefore, the highest rate at this low pressure was 

used instead of the average volume loss rate. The volume loss rate data 

were then normalized (as in the preceding section) by multiplying the vol- 

ume loss rate by the ratio of the total specimen area to the heavily dam- 

aged area. In this manner, the intensive effects of temperature and pres- 

sure on volume loss rate were determined independently of the size of the 

damaged area. The, normalized cavitation damage data are plotted in 

5 2 

he average volume loss rates in Fig. 13 for the several 

constant test temperatures can be expressed as powers of pressure above 

a pressure of 2X O N/m Exponents of .? were measured 5 2 
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5 for the lines fitted to the 204', 42Y0, and 649' C data between 2x10 
5 2 and 4x10 N/m . 

ig.14 shows the effect of temperature on cavitation damage at 

four different pressures. The maximum normalized volume loss rates 

were observed at 427' C for all test pressures. The true shapes of 

ves only can be conjectured, however, because many different 

c u v e s  can be drawn through three points. ore experimental data a re  

needed to define completely the shapes of the curves for this figure. 

This shape of curve, however, is consistent. with that of other investi- 

gators using aqueous solutions as the testing medium (ref. 35). The 

peaking is believed to be due, in theory, to two factors: 

(I) At  very low temperatures nucleation of cavities is difficult, 

and a reduced number of cavities a re  produced. 

2) At very high temperatures, great numbers of cavities are pro- 

ut their impact force is lessened by possible '*cushioning ef- 

fects, and the fact that a smaller difference exists between ambient 

pressure and the vapor pressure of the fluids. 

5 2 he cavitation damage rates at I X  0 N/m were not in the same 

order with respect to temperature as the rates measured at higher pres- 

mage was least at 649' C at 1 X  

5 2 O N/m it was least at ther factors such as 

varying solubility of argon. in sodium with temperature a 
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may contribute to these differences. 

To help visualize the combined effects of temperature and pressure 

of the cavitatimg fluid on cavitation damage, 

This figure is an average volume-loss rate contour diagram with tem- 

perature and pressure as the axes. 

for zero cavitation damage rate are the solid-liqui and liquid-vapor 

curves. It is believed that as pressure increases, the constant volume- 

loss rate contours may close again due to the suppression of cavitation 

by high pressures. However, due to power limitations of the test facility, 
5 2 pressures above 4x10 N/m were not investigated, 

5 was constructed. 

he two theoretically limiting curves 

The quantitative values of damage shown in Fig. I5 obviously would 

be different for different types of test facilities and for different test 

amplitudes and frequencies because damage is dependent on the amount 

of cavitation generated; however the general trend of increasing damage 

with increasing pressure is valid. Further tests at other temperatures 

and higher pressures a re  needed to determine the combination of temper- 

ature and press cause maximum cavitation damage with this 

-605 as well as for other materials. 

Relation Between Accelerated 

aterial Properties 

he ability to predict which materials have superior resistance to 

cavitation damage from mechanical property data would obviously be useful e 
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Thus, a method of correlating cavitation damage with readily available 

material properties, even though empirical in nature, might serve as a 

guide to designers and as a substitute for accelerated cavitation tests. 

ne of the attempts to predict the ranking of materials with respect 

to cavitation damage resistance in liquid metals (refs. 

cates that the severity of cavitation damage may be inversely related to 

the strain energy of materials. Strain energy is approximately equiva- 

lent to the area beneath the stress-strain curve. When the stress-strain 

curves are not available, strain energy can be approximated by the fol- 

lowing equation: 

8 and 20) indi- 

Y.S. +T.S. e S.E. = 
2 

where 

Y.S. yield strength 

'I' S. tensile strength 

e elongation 

The necessary properties for calculating the strain energy of ma- 

9' C are given in Table 3; ig. 16 shows the relation between 

strain energy and the reciprocal of the steady-state volume loss rate of 

materials subjected to cavitation damage in sodium. The volume loss 

rate values were obtained from ig. 5(a) at 4 hours except that of Stellite 

which was taken from data extended to I0 hours to insure a steady- 
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state rate. 

is not certain, as was mentioned previously. Although this material 

may not have reached a steady-state condition after 4 hours, the value 

for loss rate at this test time was rased as an approximation of the 

steady - state rate 

he exact shape of the volume loss rate curve for 

6 shows that most of e data falls close to a s 

however the ata point for the mate ial that performed most favorably, 

Stellite 633, is very far removed f om the data of the other materials. 

Thus? the use of the strain energy parameter would have resd ted  in 

omitting from consideration one of e most cavitation damage resistant 

ials Several suggestions for this apparent anomaly are mentioned 

in the discussion to Ref. 36. 

Evidently strain e y a b n e  is not entirely representative of the 

properties that control the resistance of a material to cavitation damage. 

Some m ~ d f f i c a t i ~ ~ ~ s  of the straim energy ~ ~ ~ ~ e p ~  are given in 

he hardness, elastic modulus, a fatigue limit are other readily mea- 

surable material properties that might be expected to have some effect 

on cavitation damage resistanse, but there have nearly always been excep- 

tions to every correlation attempt. In or er to completely evaluate their 

Py or in combination, extensive a ~ ~ ~ t ~ ~ ~  data for many materials 

inally, the validity of any s h parameter would be affected 
-- 

by corrosion variables that differ different environments and that 
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might, in some case$, be overriding. In any event, much additional 

research is needed to achieve a better understanding of the relations 

between resistance to cavitation damage and readily measurable mater - 
ial properties. 

Metallurgical Aspects of Cavitation Damage 

Extensive metallographic studies were made to shed light on the 

nature of material damage induced by cavitation. Cavitation damage to  

materials was examined in two different ways: First, the specimen 

surface was repeatedly examined during the early stages of testing; 

second, after a test was completed, specimens were cross cut (axially 

sectioned) to study the natwe of the material. damage resulting from long 

time cavitation exposure It Bo 

made. A summary of the major findings is presented in the following 

sections e 

high and low magnification studies were 

Comparison of damage-to structure in sodium and mercury. - 
Macrographs of all the materials subjected to cavitation damage in sodium 

for 4 hours at 427' C are shown in Fig. 17. The alloys can be arbitrarily 

separated into three groups, each displaying a different degree of eavita- 

tion damage: (I) severe damage - annealed Sicromo 9M, (2) intermediate 

amage - AIS1 type 3 stainless steel and 3318 stainless steel, Inconel 600, 

A-286, and Hastell and (3) slight damage - L-605, Re& 4 
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acrographs of many of these materials after being 

tatiorr damage in mercury are shown in ig. 18. Again, 

subjected to cavi- 

these materials 

can be separated by visual observation into three groups: (1) severe 

damage - annealed Sicromo 9 

hardened Sicromo 9 

is apparent that some of the materials such as E-605 and Hastelloy $I; can 

be grouped in a more severe amage category after exposure in mercury. 

Comparison of Figs. 17 and 18 also illustrates a marked difference be- 

tween damage patterns caused by sodium and those caused by mercury. 

After testing in sodium, the specimen surfaces were more finely textured, 

and the r ims  of the specimens were relatively undamaged. After testing 

in mercury the specimen surfaces were very rough and deeply cratered 

with heavy damage occurring near the rim. These differences in surface 

damage probably resulted from differences in the nature of the fluid flow 

for each test medium and from differences in liquid impact forces result- 

(2) intermediate damage - 
and L-685, and 3) slight damage - Stellite 6 

rom the widely dissimilar properties of sodium and mercury, pri- 

marily density and surface tension. 

hotomicrographs of surfaces of specimens tested in sodium for only 

5 minutes a re  shown in 9. All  specimens showe a selective damage 

hree specific examples are shown in the figure. AIS1 type 3 

stainless steel showed severe matrix attack after only 5 minutes while 

some grain or twin boundaries stood out in relief. n the other hand, in 
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IL-605 both grain and twin boundaries were attacked more heavily than 

the matrix. Stellite 6B, the most resistant material, showed very 

slight matrix attack after 5 minutes with carbide particles in relief. A 

few carbide particles were, however, dislodged in the early phases of 

test. As test time was increased, more carbide particles were dislodged, 

leaving deep pits. These pits which widened with time, evidently served 

as sites for increased cavitation attack of the matrix. These photomi- 

crographs indicate that although some of the carbide particles were dis- 

lodged, most of them remained intact, and their presence evidently is a 

major factor in mziking Stellite 6B so highly resistant to cavitation dam- 

age. In mercurys no particular portion of the microstructure of any of 

the materials except Stellite 6B appeared to be attacked preferentially 

(fig. 20). As  in the case of the sodium tested specimens, the carbide 

particles in Stellite 6B were found to be particularly resistant to cavita- 

tion attack by mercury; whereas, the softer matrix showed definite attack. 

Subsurface effects. - After the tests were completed, specimens of 

316 stainless steel, -605, and Stellite 6B were cross  sectioned to 

study the effect of cavitation damage below the surface of the material. 

shows photomicrographs of these specimens after exposure to 

cavitation in sodium at 4 and at the highest fluid pressure considered, 

All three materials exhibited undercutting and transgranular 

vidence of some subsurface deformation existed in the form 
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of slip bands for all materials. Breaking of subsurface carbides in 

Stellite 6B is apparent in 9(e). Specimens of the same materials 

were also sectioned after exposure to cavitation at 427' C under the 

lower pressure of 1x10 N/m e Although damage at the lower pressure 

required much longer times than at higher pressure,  similar damage 

5 2 

character is tic s were ob served - at both pr e ssure s e 

elative influence of chemical and mechanical effects on cavitation 

damage. - No evidence of any chemical. reaction zone was found in the - 
mxibtion damaged regions of any specimen we tested either in mercury 

or sodium. This is of extreme interest since the role of corrosion in 

cavitation damage relative to mechanical effects has always been a point 

of considerable discussion (ref. 38) From our studies, it is possible 

to make an additional comparison; namely the cavitation damage ex- 

perienced by materials in sodium with that observed after cavitation in 

water (ref. 39). In one of our investigations (ref. 39), we studied the 

cavitation damage experienced by several pure metals and a nickel-base 

superalloy in water. Fig. 2% shows the results of cavitation damage to 

two of these materials, iron afid tantalum. Undercutting and transgranu- 

lar cracking were clearly evident in these materials, and to a lesser ex- 

tent, some subsurface deformation was noted ., 

characteristics of materials tested in water and in sodium, coupled with 

the fact that no reaction zones were noted in either case, lends credence 

his similarity in damage 
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to the view that cavitation damage obtained in the ultrasonic vibratory 

tests is primarily rnechanical in nature rather than chemical. 

Ultrasonic Vibratory Testing Applied as Etching 

An interesting feature was noted in this investigation which may have 

erable application as a metallographic technique. We found that the 

selective attack resulting from the ultrasonic vibratory technique of 

creating accelerated cavitation damage is effective in revealing micro- 

structural features (ref. 40). Fig. 23 is a replica electron micrograph 

of a Cavitation damaged specimen of the nickel-base alloy, Udimet 900. 

It clearly shows the features typical of this gamma prime strengthened 

superalloy. The structure was revealed by exposing a Udimet '700 speci- 

men ta accelerated cavitation damage in the ultrasonic vibratory appara- 

tus for 120 minutes in water. The flagstone appearance of the gamma 

prime phase is clearly apparent. The appearance of this specimen sug- 

gests that accelerated cavitation damage achieved in the manner described 

may be extremely useful as a technique for selective etching of materials. 

The weaker phases would be removed, leaving the tougher, harder, more 

impact resistant phases. This method would also allow the investigator to 

easily recover material from the distilled water (or any other fluid desired) 

for further analysis without the disadvantages associated with the use of 

reactive chemicals. 

tigation, this result is considered to be an important by-product. It is 

uite apart from the principal objectives of our inves- 



pointed out for the benefit of those who are concerned with the metal%o- 

graphic aspects of materials investigations e 

su 
The resistance to cavitation damage of a wide variety of candidate 

materials for components of liquid metal space power conversion systems 

was investigated in sodium and mercury A magnetostrictive -type appara- 

t u s  was  used to achieve accelerated cavitation damage he combined 

effects of temperature and pressure on damage were iwestigated. 

lographic studies were made to determine the nature of cavi tion damage, 

1, In all cases,  the materials that were tested in both s 

mercury ranked' in. the same order with respect to resistance to cavitation 

da-mage a Stellite 6B a hard, wear -resistant cobalt-base alloy was far 

superior to all other materials investigated in both. fluids. The rela- 

tively soft, iron-base alloy, annealed S ~ C ~ O I X Q  9 the lowest resis-  

tance to cavitation damage. 

2. The severity of the cavitation damage experience by all. materials 

was consistently greater (by factors of 2 to 7 times) in meremy at 14 

than that experienced by the sa-nne materials in s ium at 427" 

3. Surface roughness measurements provided a ranking of materials 

with respect to cavitation damage resistance similar to that obtained from 

the usual! volume loss measurements. 

4, Visual observations 01 pump impeller blades of AIS types 316 and 
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ess steels, and en6 41 operated under cavitating conditions 

for 250 hours at temperatures up to 816' C in sodium indicat 

ranking of these materi B with regard to cavitation damage resistance 

as tkat determined in the accelerated laboratory cavitation tests. The 

nickel-base alloy, Re& 41, showed considerably less damage than either 

of the steels. 

t constant fluid temperature, increasing pressure on the cavitating 

id significantly increased cavitation damage to all materials. When the 

volume-loss rate data were normalized to include only the heavily 

damaged area of the specimens, the steady-state volume-loss rate increased 

as a. power function of pressure at pressures above approximately 2x10 

N/m 

The fact that increasing fluid pressure increased cavitation damage inn- 

5 

2 The exponents ranged from 1.6 to 2.7, depending on the material. 

ies that in fluid systems where cavitation occurs in high-pressure 

regions, damage to components may be much greater than would normally 

be expected from conventional laboratory cavitation tests conducted at 

atmospheric pressures 

6. The relative ranking of the materials with respect to resistance to 

cavitation damage was the same at all pressures of the cavitating nuid. 

t, together with the fact that the damage rate increases with in- 

creasing pressure, suggests that a greater number of materials may be 



33 

evaluated in the laboratory in a given time at higher pre~suxes than at 

atmospheric p. Y?ssme. 

7 ,  The combined effect of temperate-re and pressure Qn cavitation 

damage to L-605 has been shown in terms of volume lass rate normalized 

to consider only the heavily damaged area of h e  speciraeris. Volume loss 
5 2 

rate inexeased as  a power function of pressure above 2x10 N/m with the 
0 exponents of I, 6, 1, g 9  and 1.. 7 for test temlpera%ures of 204 

649 C1, respectively. For each pressure considered, damage was maxi- 

mum a t  the i ~ ~ e ~ ~ e ~ ~ a t e  temperature OU" 427' 

42T0, and 
0 

8 ~ e ~ ~ ~ l o g ~ ~ ~ ~ i ~ ~  exanination at high magnifications during the early 

that c2vitation in so iwra resulted in stages of cavitation damage in 

~ O ~ = ~ ~ n ~ ~ ~ m  

twin and grain bouniiaries. Cavitaticm in mercu.ry, on the other hand, re -  

sulted in a uniformly ~ a ~ a ~ ~ ~  surface with no apparent ~ ~ ~ ~ e ~ e ~ t i a ~  attack 

except for Stellite 6 8 ,  by far, the msst ~~~~~~-~~~~~~~~~~~ material.. Fx this 

alloy, the carbides were more resistant tkhan the matrix. ~ ~ ~ ~ o s c ~ ~ i ~  ex- 

amination of all materials after a reelable damage had oecwre 

that cavitation in sndl%am resultad in  a fine-textured (matte) s-&ace; where- 

as, exposure to mercury resulted in very coarse, deep craters. 

amage to all materials, as evidenced by the delineation of 

9 Upon completion or" cavitation. testing, ~ ~ t a ~ ~ ~ g ~ a ~ ~ ~ ~  examination 

of axially sectioned specimens usually revealed severe u ereutting of the 

surface and ~ ~ a ~ ~ g ~ a ~ ~ a r  cracking Subsumfa ce deformation was indicated 
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in all materials by the appearance of slip bands. The same damage 

characteristics were observed in materials subjected to cavitation dam- 

age in distilled water. The similarity of damage characteristics tends to 

indicate that cavitation damage in accelerated tests is primarily mech- 

anical rather than chemical in nature. 

IOe The selective attack resulting from the ultrasonic vibratory method 

of creating accelerated Cavitation damage was effective in revealing micro- 

structural features. This suggests that this technique may be useful as a 

means of etching in metallographic studies. 
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2. - HEAT TREA 

Material eat treatment 

*Stellite 6B Solution-heat treated at 
1232' C; air cooled 

Solution-heat treated at 
1079' 6;  rapid quenched 

E-605 Solution-heat treated at 
1232' C; water quenched 

Hastelloy X Solution-heat treated at 
1177' C; rapid air cooled 

A-286 Solution-heat treated at 
982' @; water quenched; 
'aged at 518' C for 16 h r  

Pnconel 600 Annealed 

318 stainless steel Annealed 

6 stainless steel Annealed 

Sicromo 9M Annealed; heat treated at 
for I hr,  then at 

32' C for 1 hr>  air cooled 

ensity , 
d c m 3  

8.3% 

8 . 2 5  

9 . 1 3  

8 , 2 3  

7 .94  

8 . 4 3  

7.99 

7 . 9 8  

-7.61 



TABLE 3. - ~ E C ~ A ~ C A ~  PROPERTIES AT 427' C 0 

Anon., "Wear Resistant Alloys, p p  Bulletin No, F30-1-33-A, Haynes a 

Stellite Co., 1962. 
'V, Weiss  and J. 6. Sessler, eds. t*Aerospace Structural Metals 

Handbook, P T  Syracuse University Press, 1963 
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I- + Diam, 1.43 

Figure 3. - Cavitation test specimen. (Dimensions in cm). 

Time, min 

(a) Sodium at 4270 C. (b) Mercury at 149' C. 

Figure 4 -Cavitation damage of materials in liquid metals. 
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Time, min 

(a) Sodium at 427" C. (b) Mercury at 149" C.. 

figure 5. - Rate of cavitation damage of materials in  liquid metals. 
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(b) Mercury at 149" C. 

, min 

(a) Sodium at 4n" c. 
Figure 6. -Comparison of surface roughness and volume loss for alloys exposed to cavitation in liquid metals. 



AIS! 316 stainless steel AIS1 318 stainless steel 

.5 mm 

en@ 4 
Figure 7. - Cavitation damage to pump impeller blades operated in liquid sodium for 2% hr up to 816" C. 
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(b) Rate of cavitation damage. 
Figure 8. - Cavitation damage of LdoEj speci- 

mens tested in 4n" C sodium at various 
pressures. 



l x l d  Nlm2 -0.25 cm 2x105 Nlm2 

3x105 Nlm2 4 ~ 1 0 ~  Nlm2 

Figure 9. - Sections of L-605 specimens after exposure to cavitation in  sodium at 427' C for 360 min at various pressures 
(unetched). 



Material Slope 
0 316SS L6 
A L-605 2.0 
0 68 2.7 

Vapor pressure at 427' C (1.0~10~ N/m2) 

a 0 4 
0 

. 1  1 10 
Pressure, ~105 Nlm 

Figure 10. - Relation of cavitation damage, 
normalized to area basis, to ambient pres- 
sure for materials tested in 800" F (427' C) 
sodium 
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Time, min 

(b) Temperature, 427' C. 

tested in sodium at various temperatures and pres- 
sures. 

Figure 11. - Cumulative cavitation damage of L-605 
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(c) Temperature, 649' C. 

Figure 12 -Concluded. 

Temperature, Slope Vapor pressure, 
O C  Nlm2 

o m  1.6 1.8x10-1 

0 649 1.7 7.6~104 
427 1.9 LOX102 

Figure 13. -Relation between normalized cavitation 
damage rate and ambient pressure for L-605 tested 
in sodium at various temperatures. 



Temperature, O C  

Figure 14. - Relation between normalized cavitation damage 
rate and temperature for L-605 tested in sodium at vari- 
ous pressures. 

Volume loss rate, mm3/min 

Solid 

1 2 3 4 5 
Pressure, x105 N/m2 

Figure 15. - Effect of temperature and pressure on normalized cavi- 
tation damage rate for L a 5  tested in sodium. 



Strain energy, MMlmZ 
Figure 16. - Relation of cavitation damwe in  sodium with strain energy parameter. 
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Figure! 17. - Damaged surfaces of specimens after e!x~(posur@ to cavitation in sodium at 
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Figure 18. - Damaged surfaces of specimens after exposure to CaWitaliOn in mercury at 149" C. 



(a) AIS1 316 stainless steel. 

(c) Stellite 66. 

Figure 19. - Photomicrographs of damaged surfaces of specimens ex- 
posed to cavitation in sodium at 427" C for 5 min. (X250). 
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Figure 20. - Photomicrographs of damaged surface of Stellite 68 exposeti tg cavi- 
tation in mercury at 149" C (X250). 



(a) AIS1 316 stainless steel, 240-minute exposure. 

(b) L-605, 360-minute exposure. 

(c) Stellite 68, 480-minute exposure. 
Figure 21. - Photomicrographs of sectioned specimens after expo- 

sure to cavitation in sodium at 427' C and 4x105 N/m2, showing 
damage characteristics such as undercutting and transgranular 
cracking. 



Iron; 840 min 

Figure 22. - Sectioned specimens of metals after exposure to cavitation in water at 
24" C. (Note similarity with sodium damage characteristics - figure 19). 



Figure 23. - Electron microscope replica of surface of Udimet 700 subjected to 
cavitation in water at 24" C for 120 minutes. X17 500. (Reduced 30 percent 
in printing.) 
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