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ABSTRACT

Results of an experimental and analytical investigation of
the characteristics of separated flow regions within altitude com-
pensating nozzles are presented. Experimental results for a planar
and an axisymmetric truncated plug nozzle are included while analyti-
cal results for planar and axisymmetric truncated plug and expansion-
deflection nozzles are presented. The experimental results include
extensive optical and pressure data covering nozzle operating char-
acteristics, diffuser effects, sonic line shape, lip shock strength,
turbulence effects and nozzle flow development. The extension
of the analytical method of Mueller and Hall to included nonuniform
nozzle flows produced the correct base pressure trends with overall
nozzle area ratio, base temperature ratio, ambient pressure ratio,
amount of base bleed, and initial boundary layer thickness as well
as good qualitative agreementbetween the experimental and analytical
flow fields when no strong internal shock was present. It was found
that the lip shock was not of significant strength in the cases
studied to warrant including it in the theory. Also it was found
that the sonic line shape was noticeably distorted and that the
separated free shear layer was turbulent under all conditions
studied.
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INTRODUCTION

GENERALREMARKS

Advanced rocket and air-breathing propulsion systems require ex-
haust nozzles that will perform efficiently over a wide range of ambient
operating conditions. Furthermore, these exhaust nozzles should be short,
lightweight, and relatively easy to cool. Analyses and tests have dem-
onstrated that a group of nozzles referred to as altitude compensating
nozzles satisfy these requirements. The expansion-deflection, truncated
plug, and aerospike nozzles are included in this group. Although in
the past, propulsion systems usually required axisymmetric exhaust nozzles,
non-axisymmetric (e.g., planar or three-dimensional) exhaust nozzles
appear attractive in somefuture rocket and hypersonic air-breathing
propulsion systems under consideration.

A viscous separated flow region and wake within the nozzle flow
field enables this type of nozzle to reduce over-expansion losses at
low altitudes and to produce a significant portion of the total thrust
during high altitude operation. To facilitate optimization of the
design, accurate prediction of performance, and the design of altitude
test facilities for this type of nozzle, it is desirable to calculate
the entire nozzle flow field. This necessitates a calculation of the
inviscid flow field and the viscous separated flow region and wake as
well as the viscous boundary layer along contour walls. Although nu-
merical calculation of inviscid flow fields using the method of char-
acteristics and contour boundary layers using momentumand energy in-
tegral methods are common,an adequate method for including separated
flow regions has not been established. The principal reason for this
deficiency is a lack of understanding of the separated flow region
submergedin the nonuniform nozzle flow field.

DESCRIPTIONOFPROBLEM

The truncated plug and expansion-deflection nozzles shownin
Figs. 1 and 2 will be used in this discussion since they contain typi-
cal examples of a separated flow region within a nonuniform nozzle flow
field. The similar nature of the separated flow regions in other al-
titude compensating nozzles and other aerodynamic problems is apparent.

At low values of chamberto ambient pressure ratio the separated
flow region is "open" (i.e., sensitive to ambient conditions), and
unsteady in nature as shownin Fig. i. As the chamberto ambient pres-
sure ratio increases the jet mixing region moves toward the nozzle
axis until it "closes" The structure of the separated flow region
is of particular interest after it "closes" since this represents de-
sign operating conditions. Although the base pressure and near wake
have usually been assumedto be independent of ambient conditions when
this region is "closed", recent data (Ref. I) indicate that this is
not always the case. These results suggest that the near wake is not
"sealed off" at the neck but can be influenced by disturbances fed
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upstream through this corridor even though the flow is slightly super-
sonic on the nozzle centerline. The portion of the trailing wake which
can feed disturbances upstream is referred to by Lees (Ref. 2) as sub-
critical. The location downstreamof the neck where disturbances can
no longer be transmitted upstream (i.e., the change from subcritical
to supercritical) could be an important consideration in the design
of a diffuser system to test any nozzle with a wake of this type.

Whenthe flow that has been accelerated in the contoured plug
portion of the nozzle reaches the corner of the plug base, the viscous
boundary layer negotiates the corner and then separates from the base
(Ref. 3) while the adjacent supersonic flow over-expands and then re-
compressesthrough the lip shock which originates in the vicinity of
the separation. The strength of the lip shock is a function of Mach
number, Reynolds number and corner geometry. The result is a "semi-
dead-air" or separated region in the middle of the nozzle flow field.
This separation region is surrounded by the high velocity nozzle flow
and maybe completely laminar, completely turbulent or transional (i.e.,
transition occurring downstreamof the plug base). At the interface
between these two portions of the nozzle flow field, there is a large
velocity difference which produces a strong shearing action. As a re-
sult of this shearing action between adjacent fluid elements, the high
velocity flow tends to entrain the gas from the separated or base re-
gion. The mechanismsinvolved in this entrainment process are similar
to those experienced in an ejector, thus, the familiar term "pumping"
is often used to describe the process.

The high velocity nozzle flow surrounding the separated base re-
gion attempts to "pumpout" this region through the growth of a mixing
or shear layer along the interface. This mixing layer grows in size
as it progresses downstreamfrom the edge of the base. At the separa-
tion point, its thickness is influenced by the size of the boundary
layer on the plug wall and whether it is laminar or turbulent.* As
this mixing layer grows downstreamit encounters some form of recom-
pression region so that it eventually satisfies ambient conditions.
Whenthe separated flow region is "open", recompression usually takes
place far downstreamof the nozzle exit. However, when the separated
flow region is "closed" the mixing layer approaches the nozzle axis
and encounters a recompression region which is the result of a system
of compression waves or shocks generated in the inviscid flow field.
The shock system is necessary to turn the supersonic inviscid flow
parallel to the axis after it has been accelerated toward the nozzle
axis by the expansion about the corner of the plug base. The key to
the determination of the base pressure lies in the behavior of the

* The delay of transition from laminar to turbulent flow and even re-
verse transition from turbulent to laminar flow may occur in the con-
vergent section of a nozzle for low unit Reynolds numbers in the presence
of wall cooling (Ref. 4). Since propulsive nozzles are frequently
cooled cryogenicly, laminar and transitional flow have recently become
important and should be considered.
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mixing layer in the presence of the high pressure recompression zone.
As the mixing layer or shear flow approaches this high pressure region,
it is decelerated accordingly. In fact, it will decelerate or be diffused
until the static pressure in the shear flow layer nearly equals that
behind the recompression zone. The type of velocity profile in the
shear layer just before the recompression zone indicates that a sig-
nificant portion of this layer has a relatively low velocity or kinetic
energy. Since this portion of the shear layer does not have enough
kinetic energy to get through the recompression region, it is recir-
culated back into the base region.

The separated flow regions described above maybe further compli-
cated when expansion and/or compression waves of the opposite family
intercept the mixing and recompression regions. This situation fre-
quently occurs in the truncated plug and aerospike nozzles and mayo-
ccur in the E-D nozzle if the shroud contour is truncated or the plug
is translated to off-design positions. The influence of base bleed is
also important for this type of nozzle. The difficulties in analyzing
the enclosed base region focus around the non-constant pressure jet
mixing region and the recompression process at the end of the near wake,
the subcritical nature of the trailing wake, and the possible inter-
section of these regions by expansion and compression waves.

SCOPEOFPRESENTWORK

The primary objective of this research was to obtain a better
understanding of the characteristics of separated flow regions within
altitude compensating nozzle flows in order to develop an analytical
method of predicting these characteristics. As in all separated flow
research, an experimental program was necessary to supply specific
information and overall guidance for the analytical program.

In order to take full advantage of the flow visualization capa-
bilities of the Notre Damesupersonic smoketunnels (SST), the major-
ity of the experiments were conducted with a planar truncated plug
nozzle in this facility. Previous experiments with a planar expansion-
deflection nozzle in the SSTwere also used. A smaller numberof ex-
periments were performed with an axisymmetric truncated plug nozzle
in a blowdownnozzle thrust facility.

An iterative solution of the viscous separated flow region and
the adjacent inviscid nonuniform flow was developed for both truncated
plug and expansion-deflection nozzles. The separated flow region is
determined by an integral method while the adjacent flow region is
determined by the rotational method of characteristics. Parametric
studies were madefor several nozzle configurations. The parameters
included: nozzle expansion ratio, the ratio of specific heats of the
gas, base temperature ratio, base bleed ratio, and initial boundary
layer thickness at the plug base.

-3-



EXPERIMENTALPHASE

Since analytical solutions to separated flow problems are at best
very difficult, it is important that a reasonable numberof definitive
experiments precede any analytical effort. Consequently, the initial
emphasis of this project was placed on the experimental phase. The
altitude compensation characteristics of the plug nozzle were studied
quantitatively from pressure measurements, etc., and qualitatively
using several flow visualization techniques. Correlations of the meas-
urements and visual flow patterns were madewhenever possible.

PLANARTRUNCATEDPLUGNOZZLEFACILITY

A schematic of the planar truncated plug nozzle test facility is
shownin Fig. 3a and a photograph of the facility is presented in Fig. 3b.
Basically the installation consists of a contraction section, a planar
truncated plug nozzle section, and a diffuser section. Following is
a detailed description of these major componentsand also an outline
of the auxiliary equipment employed for data acquisition.

Contraction Section

The contraction section is rectangular and converges in both direc-

tions. It was fabricated from 1/16 inch galvanized sheet steel which

was welded together to form the desired contour. To insure a low tur-

bulence level, screens were designed with tapered frames to mate with

and conform to the contour of the metal contraction section. These

screens were attached to the inlet of the metal section. Of the total

of ten screens, the first two are 16 mesh bronze and the remaining eight

are 24 mesh Nylon Marquisette. The overall contraction in area from

inlet to the screens to the nozzle throat is about 200:1.

Plug Nozzle Section

The plug nozzle section (Fig. 4) was designed to fit between the

contraction section and the diffuser of the existing indraft wind tunnel.

The width of the existing diffuser section was 4.953 inches and this

criterion fixed the width of the nozzle section at the same dimension.

Based on the available mass flow of about 3.2 ibm/sec., the geometric

throat height on each side of the plug was set at 0.74 inches producing

an aspect ratio for each throat of 6.69. The plug which was fabricated

from lucite was designed for an isentropic expansion to Mach 2. The

aft portion of the spike was removed producing a 16% length truncated

plug (i.e., the distance from the geometric throat to the plug base

was 16% of the total distance from the geometric throat to the tip of

the isentropic spike, as shown in Fig. 5). The truncated plug could

be used with either a solid base plate for base pressure measurement

or base plates of various porosity for base bleed studies. The coor-

dinates of the nozzle contour and plug are given in Tables I and II,

respectively, and the origins used for the coordinate tabulations are
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shown in Fig. 5.

The overall geometric nozzle expansion ratio, Ane/Ant was 1.957
and the plug base area ratio of the truncated plug, Ab/Ant, was 0.531.
The plug nozzle discharges into a rectangular diffuser duct, Ad/Ant= 3.8,

which forms the remainder of the nozzle test section. The top of the

nozzle test section was instrumented with a total of 33 static pressure

taps. An aluminum sidewall plate was equipped with a total of 32 static

pressure taps on the sidewall centerline.

The relative locations of the pressure taps and the numbering

system are shown in Fig. 6. Table III gives the coordinates of the

top contour pressure taps and the coordinates of the sidewall center-

line taps are given in Table IV. Also the solid base plate for the

truncated plug was furnished with 5 static pressure taps.

In order to study the effect of a diffuser on the flow field,

two movable i0 ° ramp diffuser blocks were constructed of aluminum

(Fig. 4). The second-throat contraction ratio, Ast/A d was 0.644.

Diffuser Section and Vacuum Pumps

The planar truncated plug nozzle test section was connected to

a standard, diverging channel diffuser which led to three rotary vacuum

pumps. Each pump was able to deliver 3130 cubic feet per minute at

18 inches of Hg vacuum. By using various combinations of pumps and

by bleeding into the system it was possible to obtain data over a range

of exit pressures (or, since the total pressure was fixed at atmospheric

pressure, a range of overall nozzle pressure ratios).

Flow Visualization Equipment

A standard single-pass, parallel-light schlieren system utiliz-

ing two 6-inch diameter parabolic mirrors was used in this investiga-

tion. The parabolic mirrors had a focal length of approximately 48

inches and were located ii feet apart on the optical axis of the system.

The viewing screen was made from the back of an 8 x i0 inch camera

and the system included a shutter to facilitate taking schlieren photo-

graphs.

The standard schlieren system was converted to an opaque stop

system by replacing the slit source by a circular source and the knife

edge by a small circular opaque stop. This system produces a schlieren

picture where undeflected light (i.e., no density gradient) hits the

opaque stop producing a black background and deflected light misses

the stop and appears white in the picture. The advantage of this tech-

nique is that the system is sensitive to density gradients in all direc-

tions perpendicular to the optical axis instead of just one.

The smoke generator and smoke rake are shown in Fig. 3. Smoke

is generated by dripping kerosene on to electric strip-heaters in each
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of the four legs of the generator. This vaporized kerosene or "smoke"
is forced to the smokerake by a squirrel cage blower. By passing
through a system of vertical pipes the smoke is cooled to room tempera-
ture. The smokethen passes through an absorbent cloth bag which absorbs
any large droplets or condensate. Finally the smokepasses through
one or more of the horizontal tubes whoseoutlets are placed flush with
the anti-turbulence screen at the contraction section inlet. These
tubes introduce the smokeinto the test section at any desired location.
Lighting is a critical factor in taking smokepictures and the best
results were usually obtained by aiming two high-spot flood lamps through
the glass sidewall of the test section at an angle of 45° to the flow.

Base Bleed Apparatus and Miscellaneous Equipment

In order to investigate the effects of base bleed on the nozzle

flow field a 1/16 inch thick stainless steel plate with a filtration

grade of i00 microns was fitted to the base of the truncated plug.

A cavity inside the plug was supplied with air at atmospheric pressure

and the air was then drawn through the porous base plate by the low

pressure on the plug base. The air flow through the base was measured

with a Rockwell Roto-Seal Gas Meter which is a rotary type positive

displacement meter. The amount of bleed flow was regulated with a

gate valve in the supply line.

To measure the static pressure variation along the geometric center

of the nozzle section a special sliding tube probe was constructed

and is shown in Fig. 7. This probe consisted of a slotted hypotube

attached to the plug base and extending downstream through the diffuser

and then through the tunnel sidewall. A second movable hypotube with

a static pressure orifice was contained within the first. The static

pressure orifice could therefore be translated along the geometric center

of the nozzle by sliding the inner hypotube.

Other equipment necessary for taking data included two ten tube

mercury manometer banks for pressure measurement, a sling psychrometer

for wet and dry bulb temperatures, a mercury barometer for atmospheric

pressure and assorted cameras and photographic equipment.

Experimental Procedure

Before starting the discussion of the experimental results it would

be instructive to briefly outline the methods used to obtain and reduce

the data. The details of these procedures are presented below.

Data Reduction

The static pressure readings from the manometer photographs were

punched onto computer cards using a Wayne-George X-Y Coordinate Con-

verter. The data was reduced with the UNIVAC 1107 Digital Computer.

All static pressures were normalized with the nozzle total pressure

(atmospheric pressure) and plotted by a Cal-Comp plotter. This technique
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provided data which had a maximumerror on the order of 2%.

DISCUSSIONOFPLANARNOZZLERESULTS

The discussion of the experimental results will proceed in essen-
tially two phases. The first phase will pertain to the general opera-
ting characteristics of the facility and the establishment of the con-
ditions under which reliable data can be obtained. The second phase
will concentrate on a presentation of the results which provided in-
sight into the analytical calculation of the nozzle flow field.

Water Vapor Condensation

Since the nozzle was supplied with air from the laboratory, and

since no equipment was available to dry or heat the air, condensation

of water vapor in the nozzle flow must be considered before interpret-

ing the data. Static pressures including the base pressure can deviate

substantially from their true values (Ref. i) due to the effect of con-

densation. The base pressure ratio, Pb/Pol, for various dew point tem - _

perature is presented in Fig. 8. These results show that Pb/Pol remains

constant up to a dew point of at least 30°F. Due to the degree of sub-

cooling, condensation was present under all operating conditions.

However, the data demonstrate that, up to a dew point of 30°F, the

amount of water vapor in the air is small enough that it does not ef-

fect the results. The few values of Pb/Pol above 30 ° indicate that,

initially at least, the increase in base pressure with dew point is

rather gradual. This information provides general guidelines as to

when the effects of condensation must be considered. A more detailed

discussion of this problem is given in Ref. i.

Operating Characteristics and Diffuser Effects

Before proceeding with a detailed discussion of the operating

characteristics and diffuser effects, it would be helpful to compare

the sidewall centerline static pressure distribution with the geometric

center distribution as measured with the sliding tube probe. These

data are presented in Fig. 9 for the "open wake" case, and in Fig. i0

for the "closed wake" case. The two sets of data show good agreement

with the maximum deviation in the region of interest being less than

9%. The peak in Psw/Pol at about 2.25 inches in Fig. I0 is due to the

fact that, although the wake is "closed", the ejector system is unstarted.

The pressure peak results from the shock system just downstream of the

recompression point in the "closed wake" This figure demonstrates

the accuracy with which the sidewall static pressure taps are able to

record static pressure distributions with significant gradients. It

is, therefore, possible to proceed using the sidewall centerline static

pressure distribution with the confidence that the trends will be ac-

curately recorded and that the values will be within a small percent

of the geometric center values.

The truncated plug nozzle test facility is basically an ejector-
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diffuser configuration commonlyused in altitude test facilities.
(Ref. 5). In this type of facility it is extremely important to know
the starting characteristics as represented in Fig. ii. This figure
shows that the cell pressure ratio (point of measurementshownin Fig. 6)
decreases with decreasing overall pressure ratio (Pex/Pol) until Pex/Pol=
0.325. Further decreases in overall pressure ratio produce no change

in the cell pressure. The pressure ratio at which the cell pressure

first reaches its minimum value is the starting pressure ratio. As

long as the over-all pressure ratio is at or below the starting pressure

ratio, downstream pressure fluctuation cannot effect the nozzle flow

field. The starting point for the configuration also establishes the

altitude simulation limit since the minimum cell pressure represents

the minimum ambient pressure that can be simulated in the ejector-dif-

fuser system.

Figs. 12 and 13 show the variation in base pressure ratio versus

the cell pressure ratio with no diffuser and with a diffuser respec-

tively. Since the cell pressure is equivalent to the ambient operating

pressure of the nozzle, Figs. 12 and 13 are representative of the nozzle

operating characteristics. The presence of the diffuser does not appear

to noticeably affect the "open wake" nozzle operation. Also, in both

cases, with and without the diffuser, the wake "closes" at essentially

the same cell pressure ratio. However the data indicates a 10% decrease

in the "closed wake" base pressure with the diffuser present. This de-

crease may be caused in part by diffuser effects being transmitted

upstream through the sidewall boundary layer.

Another feature of the base pressure characteristic data in Fig. 12

is the apparent instability at Pcell/Pol = 0.23. Schlieren observation

of the flow field at this cell pressure ratio showed that the nozzle

flow is indeed unstable at this point, switching alternately between

the "open wake" and "closed wake" configurations. The instability is

not clearly evident from the data in Fig. 13 taken with the diffuser in

the tunnel. However, the general character of the data is essentially

the same as the case without the diffuser. It seems reasonable that

more detailed data would reveal the same unstable behavior.

The base pressure characteristics for the truncated plug nozzle

with no diffuser and with a diffuser are presented in Figs. 14 and 15,

respectively. Figs. 14 and 15 are representative of the ejector-dif-

fuser system operation as opposed to the nozzle operating character-

istics presented in Figs. 12 and 13. Comparison of these two figures

indicates that the base pressure becomes insensitive to changes in

Pex/Pol at a higher overall pressure ratio with the diffuser than with-

out. Also, as in Fig. 13, the value of the "closed wake" base pressure

ratio is about 10% lower with the diffuser present. The data demon-

strates, in addition, that the "open wake" operation is changed with

the diffuser in the tunnel. The value of Pb/Pol for a given Pex/Pol

being lower with the diffuser present. The difference in base pressure

ratio decreases as Pex/Pol is increased. These diffuser effects on

the ejector-diffuser operating characteristics are important in under-

standing the operation of ground test facilities, since most of these
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installations employ sometype of diffuser.

The effect of the diffuser on the sidewall centerline static pres-
sure is presented in Figs. 16, 17, and 18. Twodifferent "open wake"
operating conditions are shownin Figs. 16 and 17 while Fig. 18 is for
"closed wake" operation. In all three cases the largest deviation
caused by the diffuser is in the far wake (X' greater than about 1

inch). However, there is also a noticeable change in the near wake

static pressure distribution in all three cases with the greatest change

being on the order of 5%. This variation may account for part of the

decrease in base pressure caused by the diffuser.

The process of transition from "open wake" to "closed wake" opera-

tion of a truncated plug nozzle is very important for practical con-

siderations. For example, the overall pressure ratio at which the

base pressure reaches its minimum value is very important in performance

calculations since, once this point is reached, it is then the differ-

ence between base and ambient pressure which determines whether the

base pressure produces thrust or drag.

Fig. 19 presents a series of schlieren photographs showing the

wake "closure" and the ejector-diffuser starting process. The small

letters which label the individual pictures correspond to the labeled

points on Fig. 12. For completeness the corresponding top contour

and sidewall centerline static pressure distributions are presented

in Figs. 20 through 25. The photographic sequence in Fig. 19 shows

that in general the mechanism of transition from "open" to "closed"

wake operation is a complicated process. The exact nature of this

process is not well understood and is a function of the geometric and

operating parameters of the nozzle.

As mentioned previously the ejector-diffuser starting process is

important to the operation of altitude simulation facilities. Figs. 19e

and 19f show the final stages of the starting process. In Fig. 19e

the wake is "closed" but the system has not reached the starting pres-

sure ratio. This is evidenced by the fact that the free shear layer

emanating from the shroud tip is not attached to the duct wall. In

Fig. 19f the free shear layer is attached to the duct wall and the

system is started with the cell pressure at its minimum value.

Lip Shock

The appearance of the lip shock or separation shock in separated

base flow fields has been well documented by Hama (Ref. 3). If the

lip shock is of sufficient strength it can h_ve significant effects

on the subsequent development of the free shear layer. In addition,

it was shown in Ref. 3 that a strong lip shock could alter the recom-

pression shock. In the schlieren photographs in Figs. 19e and 19f

the lip shock is very faint. Also, the intersection of the lip shock

with the recompression shock does not appear to produce any noticeable

deflection of the recompression shock. In addition to the evidence
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presented above, in a smoke-streamline (i.e., steady state streakline)
photograph of the flow field (Fig. 26), the streamlines show no measur-
able deflection on passing through the lip shock. The verification
of this smokeline technique for steady flow has recently been documented
at Notre Dame(Ref. 6). These observations, pertaining to lip shock
strength, were found in both the truncated plug nozzle and expansion-
deflection nozzle flow fields. It appears, therefore, that at least
in the cases presented, the lip shock can be neglected in the analysis
without serious effect on the results.

Sonic Line Shape

For the analytical solution it is important to have information

regarding the shape and location of the sonic line (actually a start-

ing line with M>I is needed for the method of characteristics) with

respect to the throat region of the nozzle. In order to obtain this

data, i0 static pressure taps were drilled in the aluminum sideplate

on and either side of the geometric throat. Fig. 27 shows the loca-

tion of these taps in the throat region of the truncated plug nozzle.

In Fig. 28 the results are presented in the form of an interpo-

lated sonic line. Included in the figure is a tabulation of the Mach

numbers obtained from the static pressure taps. To calculate the Mach

numbers, the measured static pressure was divided by the nozzle total

pressure (atmospheric) which was assumed constant up to the throat.

The Mach numbers were calculated from the resultant pressure ratios

with the use of standard isentropic relations. To obtain points on

the sonic line, linear interpolation was used between known points.

The sonic line points were plotted on a scale drawing (Fig. 28) which

was 4 times actual size, and a curve was then faired through these

points.

Although the interpolated sonic line appears to be quite close

to the geometric throat, there is a noticeable distortion of the shape.

This distortion is undoubtedly due to the fact that the expansion is

centered at the shroud tip and the fact that the converging channel

upstream of the geometric throat is not symmetrical. The combined

effect of these two factors results in a nonuniform expansion of the

flow across the channel. The distortion could also be the result of

interpolation error because of the spacing of the taps.

Turbulence Effects

In connection with the discussion of turbulence effects it would

be instructive to explain some important observations which led to

a change in geometry of the truncated plug nozzle before any of the

data in this report were taken. The nozzle used in this investigation

was designed for an isentropic expansion to Mach 2.0. However, with

the plug in its original design position a series of I shocks appeared

on the plug upstream of the geometric throat. This indicated that

the flow had become locally supersonic before the minimum area and
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was compressing through a system of I shocks because of the decreasing
area. A saw tooth boundary layer trip was then placed on the leading
edge of the plug to produce a turbulent boundary layer. The result
was that the shocks were replaced with a single strong shock which
appeared as a slightly curved normal shock. Following a discussion
given by Schlichting (Ref. 7) on boundary layer, shock wave interaction,
these observations would indicate that under normal operating conditions
the boundary layer was laminar and that with the trip the plug boundary
layer becameturbulent. The plug was subsequently translated about
0.5 inches downstreamand the I shocks were eliminated.

To determine the effect of turbulence on the centerline static
pressure distribution and the base pressure two methods were employed.
The first was to put. boundary layer trips (saw tooth) on the plug and
contour surfaces and the second was to insert a 1/4 inch wire meshat
the inlet to the nozzle section to induce turbulence in the entire
flow. The effect of the induced turbulence on the centerline static
pressure distribution is shownin Fig. 29. The largest deviation in
the near wake resulting from the turbulence appears in the data for
the wire meshwhere the largest change is on the order of 8%. The
boundary layer trip does not appear to have affected the static pres-
sure distribution in the near wake region. The data also seemsto in-
dicate a substantial turbulence effect in the far wake. However, the
static pressure variation in this region is very sensitive to small
changes in exit pressure, and since the data in Fig. 29 is from three
separate runs with possible changes in Pex/Pol, it is not possible to
draw conclusions from the data in this region.

The variation in the base pressure demonstrated the sametrends
as did the centerline static pressure distribution in the near wake.
With the wire mesh the base pressure was decreased by about 8%, whereas,
with the boundary layer trip, the change in base pressure was within
the experimental error. These results do not indicate a transition from
laminar to turbulent flow in the free shear layer. Since the value
of the base pressure is a strong function of the efficiency of the
mixing in the shear layer, and since turbulent mixing rates are on the
order of ten times greater than laminar mixing rates, a transition from
a laminar to a turbulent shear layer would produce a muchmore drastic
change in the base pressure than indicated above. On the basis of
these facts it appears that in the undisturbed case the plug boundary
layer is laminar and that transition occurs in the free shear layer
a very short distance downstreamof the corner, whereas in the case
with induced turbulence, both the plug boundary layer and free shear
layer are turbulent.

Base Bleed

The use of base bleed in truncated plug nozzles has several very

important practical applications. It may be used to increase the base

pressure under certain operating conditions and also it could be used

as a possible means of cooling the plug.
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Opaque-stop schlieren photographs of the planar truncated plug
nozzle flow field are presented in Fig. 30 for operation with and with-
out base bleed. Fig. 30b is the case for a bleed rate of 1.0% of the
primary flow. It is clear from these photographs that even a small
bleed rate produces a marked change in the visual flow pattern. The
neck of the wake is noticeably thicker and the wake length appears to
be slightly longer. Also the lip shock which is bearly visible in
the no bleed case has becomeclearly defined in the flow field with
bleed. In addition to the apparent strengthening of the lip shock,

its position has been changed. With no bleed it appears to be parallel

to the nozzle centerline and rather straight. With base bleed the

lip shock becomes curved and divergent from the centerline, intersect-

ing the recompression shock further downstream. Another interesting

feature of Fig. 30 is that base bleed has not significantly changed

the location or shape of the recompression shock. It does, however,

originate at a point further from the nozzle axis due to the widening

of the wake.

Fig. 31 shows the effect of base bleed on the nozzle base pres-

sure ratio. The base pressure increases with bleed rate as expected

from physical considerations. The rate of increase of Pb/Pol with

increasing base bleed becomes quite small when the bleed rate reaches

approximately 1%. Also from this figure it can be seen that, for a

bleed rate of 1.0%, Pb/Pol increased about 30% above the no bleed value

demonstrating the effectiveness of base bleed for base pressure control.

The effect of base bleed on the centerline static pressure is

presented in Fig. 32. The peak pressure on the centerline occurs at

approximately the same location for the bleed rates shown, however,

the magnitude of the peak pressure is substantially reduced. For the

data with a base bleed of 1.0% the peak static pressure is reduced

by about 18% from the no bleed value. The data of Fig. 32 also show

that a short distance after the location of peak pressure all three

curves merge and the effect of base bleed seems to be negligible.

The downstream pressure rise for the no bleed case appears to be a

result of exit pressure setting and not a base bleed effect. More

data is needed to clarify this behavior.

DESCRIPTION OF AXISYMMETRIC NOZZLE THRUST FACILITY

The new University of Notre Dame Nozzle Thrust Facility (NTF)

was designed to test conventional and unconventional nozzles with up

to one square inch throat area and up to i00 pounds thrust. It is a

blowdown type apparatus exhausting to the atmosphere. The nozzle total

pressure can be varied from 20 psi to 150 psi allowing the testing of

nozzles over a wide range of pressure ratios. The basic components

of the system shown in Fig. 33 and described in detail below include:

air compressor, storage tank, pressure regulator, orifice flow meter,

thrust stand assembly, and instrumentation.
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Air Compressor

The air compressor, manufactured by the Gardner-Denver Company,

is a i0 HP unit which is capable of delivering 22 SCFM at 250 psig.

The air passes through an aftercooler and moisture separator having

a constant drain. The compressor unit is also equipped with an oil

vapor filter charged with activated alumina and an air dryer charged

with a silica gel type desicant. The dryer which supplies air at a

dew point between -20°F and -40OF requires approximately three hours

of regeneration for each eight hours of pump-up time. Regeneration is

accomplished by heating the charge to between 250 ° and 400°F thereby

driving the moisture from the silica gel. During regeneration a small

amount of air is blown from the storage tank through the dryer to purge

the moisture-laden air from the unit.

Storage Tank, Pressure Regulator, Orifice Flow Meter

The 50 cu. ft. storage tank is an ASME coded pressure vessel de-

signed for 265 psig at 450°F maximum and hydrostatically tested as

per ASME code, Section VIII. Into one end of the tank a 6-inch schedule

40 pipe was inserted which contains a 200 pound thermal mass for tem-

perature stabilization. The other end of the tank contains a 12 by

16 inch standard ASME code manhole for required inspection. The tank

is bolted to two steel "I" beams mounted on the floor and the interior

and exterior have been sand blasted and painted with one coat of zinc

chromate. Also included with the tank is a 1/2 inch drain valve and

a 265 psig. safety valve. Arrangements have been included for the pur-

pose of manifolding two or more tanks together. The flow passes from

the storage tank through a gate valve to a two-inch pilot operated regu-

lator which is used to preset the nozzle total pressure prior to each

run. Downstream of the regulator is an orifice flow meter permitting

mass flow measurement.

Thrust Stand Assembly

The thrust stand arrangement for the Nozzle Thrust Facility is

shown in Fig. 33. This assembly rests on a steel plate which is welded

to the storage tank. It consists of a stilling chamber which has in-

ternal dimensions of 3 inches in diameter by approximately 15 inches

in length. This stilling chamber is constructed from a solid block

of aluminum. It includes one perforated plate and four 30 mesh screens

to straighten the flow before entering the nozzle which is attached

to the end of the chamber. Air enters the stilling chamber from both

sides through rigidly mounted pipe separated from the stilling chamber

by flexible bellows. The bellows allow the stilling chamber to move

axially for thrust measurement. Besides the bellows the chamber is

attached to the mounting plate by four aluminum bars utilizing eight

flexture hinges. A load cell, rated at i00 pounds nominal, is mounted

rigidly to the thrust stand and connected to the stilling chamber by

means of an aluminum relaxation flexture to minimize transmission of

transverse loads. The load cell has been dead weight calibrated.
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The results show that hysteresis is maintained to within ± 0.5%.

Instrumentation

The NTF is equipped with a complete set of instrumentation, in-

cluding storage tank pressure, stilling chamber preset pressure, and

stilling chamber total pressure and temperature. The stilling chamber

total pressure and temperature are measured downstream of the screens

just before the nozzle entrance. Total temperature is measured with

an iron constantan thermocouple. The pressure differential across the

orifice flow meter is recorded with a Meriam well-type mercury manometer.

Instrumentation will be installed to measure nozzle contour static

pressure and temperature when needed and nozzle total pressure profiles.

Provisions can also be made to include pressure transducers into the

various nozzle-diffuser configurations. The facility has also been

designed to include a schlieren system for visual study of the external

nozzle flow.

Axisymmetric Truncated Plug Nozzle

An internal-external-expansion plug nozzle was designed for use

with the NTF. This nozzle was designed for a Mach number of 1.90 based

on the overall area ratio, Aex/Ant. The plug was conical in shape and

converged toward the axis at an angle of i0 °. The base diameter was

0.250 inches and the length of the plug from the throat was 0.660 inches,

which represents a 48% truncated plug. Fig. 34 shows a schematic draw-

ing of the nozzle. The plug is mounted to a webbed centerbody which

is mounted to a buffer section. The tubing from the pressure taps in

the plug exits from the NTF through this buffer section. The nozzle

throat area was 0.33 square inches which permitted a running time of

approximately thirty seconds without any loss in stagnation pressure.

The shroud contour was cylindrical and extended a distance of 0.30

inches downstream from the throat.

Experimental Procedure

Standard operating procedure for the NTF consisted of first pre-

setting the desired nozzle total pressure with the regulator and then

starting the nozzle flow. After allowing several seconds for the pres-

sures in the system to stabilize, the data was recorded. The nozzle

total pressure and temperature were read from standard gauges mounted

on the NTF control panel. The base pressure was obtained from a 60"

well-type mercury manometer. After the pressure data was read, shadow-

graph pictures of the nozzle flow field were taken. This was accom-

plished by turning off all room lights and exposing a sheet of Kodak

Royal Pan film with a single flash from a strob light which was mounted

behind a pinhole. The pressure data was reduced using standard tech-

niques.
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DISCUSSIONOFAXISYMMETRICNOZZLERESULTS

The operating characteristics of the axisymmetric, internal-ex-
ternal-expansion truncated plug nozzle are shown in Fig. 35. With
the exception of the jump in the data between Pat/Pol = 0.35 and

Pat/Pol = 0.31, these operating characteristics are typical for all

altitude compensating nozzles. During "open wake" (Pat/Pol > 0.16)

operation, the base pressure is essentially equal to the ambient pres-

sure (Pat) and the base pressure ratio, Pb/Pol decreases as Pat/Pol

decreases. The trend continues until the jump in the data is approached.

After the jump, the same trend is again continued until the wake "closes",

after which the base pressure ratio remains constant with further de-

creases in Pat/Pol.

A possible explanation for the jump in the data at Pat/Pol = 8.35

can be obtained from Fig. 36. This figure presents a series of shadow-

graphs showing the development of the nozzle flow field. The letters

identifying the photographs in Fig. 36 correspond to the labeled points

in Fig. 35. The jump in the data occurs between Figs. 36b and 36c.

In Fig. 36b, the oblique shock which is reflected from the plug sur-

face intersects the free shear layer originating from the shroud tip

and is reflected as an expansion which intersects the plug surface a

short distance upstream of the base. In Fig. 36c, this reflected ex-

pansion does not intersect the plug but instead intersects the free

shear layer downstream of the plug base. Apparently this expansion,

shown in Fig. 36, accelerates the flow upstream of the base which re _

sults in a reduced base pressure as indicated in Fig. 35. Initially

the base pressure ratio decreases at the same rate as Pat/Pol. As

the jump is approached, the upstream acceleration of the flow from the

reflected expansion causes Pb/Pol to decrease more rapidly than Pat/Pol.

Once the reflected expansion has moved downstream of the plug base as

in Fig. 36c, the Mach number approaching the base would be lower re-

sulting in a higher base pressure and thus producing the jump shown in

Fig. 35. The axisymmetric data presented here is only preliminary and

further investigations are necessary for deeper insight into the flow

phenomena involved.
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ANALYTICALPHASE

An analytical treatment of plug nozzle flows must contain all
of the important flow componentsand allow for their interaction with
each other. The total solution revolves around the analysis of the
viscous near wake or base region within the almost inviscid external
nozzle flow. Therefore, a near wake analysis which predicts the base
pressure and shape of the near wake is necessary.

There have been several published attempts to calculate the pres-
sure on an axisymmetric base in turbulent flow. A recent review of
the pertinent base pressure techniques is given in Ref. 8. Almost all
of these methods assumea uniform external flow approaching the base.
It is apparent at the outset that, in the case of the plug nozzle flow
field, the base region is enclosed in a nonuniform external flow field.
Therefore, only a method which includes a complete calculation of the
inviscid flow field adjacent to the base region will be able to handle

the nonuniform plug nozzle case. The method used here is a further

extension of the work of Mueller and Hall (Ref. 9).

Two types of plug nozzles were considered in this investigation.

The expansion-deflection nozzle shown in Fig. 37a has the plug completely

enclosed by the nozzle shroud. In Fig. 37b, the truncated plug nozzle

configuration is shown in which the plug extends beyond the nozzle

contour. For both nozzle configurations, the methods of solution are

for the "closed" wake condition and are similar (although the boundary

conditions are somewhat different). Once supersonic flow has been es-

tablished, i.e., M > i, the governing equation for the inviscid flow

becomes hyperbolic permitting a solution by a method of characteristics.

The flow between the near wake and the external jet boundary emanating

from the shroud is assumed to be inviscid, although it may be rotational.

The recompression shock, for example, may produce an entropy gradient

from streamline to streamline. Entropy gradients from any other source

are not allowed. This rules out the use of the characteristics in a

boundary layer, even though only the supersonic portion may be consid-

ered. The nozzle flow has been assumed to exhaust into a region in

which the pressure remains constant. This corresponds to a nozzle

exhausting into still air. Since the method of characteristics results

from a hyperbolic partial differential equation, only the initial con-

ditions and boundary conditions need to be specified. The solution

proceeds downstream, and portions of the flow field which have already

been determined cannot be affected by conditions downstream. However,

a shock wave may intersect regions of characteristics which have been

calculated.

The base pressure solution determines the lower boundary condi-

tion for the method of characteristics solution above the near wake.

On the other hand, the method of characteristics provides the boundary

conditions for the near wake analysis. The base pressure solution

described below is iterative. Since this solution does provide a

boundary condition for the method of characteristics, in effect, the
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solution to the whole nozzle flow field after separation becomesit-
erative.

The shape of the base flow region downstreamof the plug is deter-
mined by employing an extension of the flow model developed by Zumwalt
(Refs. i0 & ii) and later modified by Mueller (Ref. 13 & 14). In addi-
tion to obtaining the plug base pressure, the general features of the
entire nozzle flow field are obtained.

BASICFLOWMODEL

The theoretical flow model used in conjunction with the restrict-
ed mixing theory of Korst (Ref. 14) and the rotational method of char-
acteristics is shown in Fig. 38. An unrestricted mixing theory was developed
to include the initial boundary layer. A complete derivation of the
governing equations is presented in Appendix I and II. In this flow
model, the flow is divided into three major components:

i. an inviscid free stream

2. a dissipative mixing layer, and

3. a base region.

In addition to using the restricted mixing theory of Korst, the

following conditions are imposed on these three flow components:

a) The initial condition in the throat of the nozzle may be

either along a left-running characteristic (as in an E-D

nozzle), along a right-running characteristic (as in a T-P

nozzle), or along a non-characteristic line. The flow need

not be uniform at this initial condition line, but must be

supersonic. The external nozzle flow is calculated using

rotational characteristics.

b) The boundary layer approaching the separation corner is

neglected, although fully turbulent mixing is assumed.

c) An isentropic expansion takes place in the free stream from

1 to 2, i.e., a continuation of the method of characteristics

for the flow over the plug. The effect of a lip shock is

ignored in this analysis.

d) The inviscid flow past a conetail using the rotational

method of characteristics is utilized to define the pres-

sure field impressed on the mixing region from (2) to (3).

This conetail surface also serves as the "corresponding

inviscid jet boundary".

e) The pressure normal to the "corresponding inviscid jet bound-

ary" is assumed to be constant within and near the mixing

region at each cross section.
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f) Velocity profile similarity is assumed in the mixing region.

The error function velocity distribution is located within the

intrinsic coordinates x, y, and is represented by X_x and

Y = y-ym(X) where Ym(0) = 0. This coordinate shift is a con-

sequence of using the restricted mixing theory of Korst.

g) The geometry of the mixing region is taken into account in

the integral representation for momentum and mass flux between

(2) and (3).

h) Recompression is assumed to result from an oblique shock turn

from (3) to (4) at an empiracally determined trailing wake

radius ratio. (Ref. 15).

A streamline, j, can be identified which divides the a/nount of mass

passing over the corner at (i) from that mass flow entrained by the

viscous action of the free jet mixing region. A second streamline,

d, can be identified which has just sufficient kinetic energy at (3)

to negotiate the pressure rise to (4). Streamlines below the d-stream-

line have lower kinetic energies and cannot pass through recompression,

and are turned back to recirculate in the base region. If there is no

base bleed, conservation of mass requires that the j- and the d-stream-

lines be identical. Korst distinguished between these two streamlines,

and pictured the space between them as a sort of corridor through which

mass could flow into or out of the base region.

The control volume between cross sections (2) and (3) is bounded

by streamlines R and -R as shown in Fig. 38. The streamlines, R and

-R, were defined by Zumwalt such that the cross sectional area normal

to the direction of flow would remain nearly constant, and the PdA

pressure force could be neglected in the momentum equation. For the

simplified axisymmetric flow field described above, Zumwalt formulated

the momentum equation in the axial direction using geometrical rela-

tions and the relation between the viscous and inviscid coordinate sys-

tems. This equation was solved simultaneously with the combined viscous

and inviscid continuity equations written for the control volume between

cross sections (2) and (3). For the error function velocity profile

= ½(i + erf_). Where _ = u/u a and n = Oy/x, it was found that

_R = 3 was large enough for _j to approach its asymptotic value. The

result of this analysis is a nonlinear equation which allows one to

locate the j-streamline at cross section (3), namely:

{(B-3) 2+2(I-C2a) [Ii13-_ -III_-!]B-2(I-C_a)[J113._-J{ l_J]}- 3a = (_)Or 3a

where the integral limits refers to _ values, and:

J _ --O0Ji I-_-[l-£C3a/C2a)]ol 13_- (C3a/C2a) (Ji-J2)I 3

(i)

(2)

Ii I -4-[1-(c Je a)]I 11-L (C3a/C2 a) (Ii-I2)l_L+[(_-l)/_] (3/C2aC3a) [I-(P2/P3)] _
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where:

q
_dn

Ii = / l-C2a _2
--00

n

_2dn
12 = f i'C_a*'2

--00

]3

Jl = / _ndn
l-C2a_

--CO

n

_2qdq

J2 = / 1-C2a,2
--00

(3)

(4)

(5)

(6)

It should be noted that since these integrals are expressed only in

terms of Crocco number, C, they are independent of the ratio of speci-

fic heats, y, although Equation 1 is a function of y.

It is evident that, in order to determine _j3 from Equations 1

and 2 for a given initial condition, the location of the recompression,

_3/rb, the corresponding inviscid condition M3a, and the jet spread

parameter, g3a, must be known. The location of the recompression point,

T3/rb, is determined from experimental data. The Mach number along the

inviscid jet boundary at (3), M3a, is determined from the axisymmetric

rotational method of characteristics solution. The jet spread para-

meter is determined from the equation given by Channapragada (Ref. 16):

g3a {R( [i+8 (l-C_a)J}-I= Cin c
(7)

where Cin c = 12.0 for the error function velocity profile, _ = Tol/Tb

(_ _ 1.0 for isoenergetic mixing considered here), and R' is the em-

pirical compressible divergence factor defined by Channapragada as a

function of the Crocco number.

C_ 2 may be calculated since
The geometric parameter, (_')3a,

@3-4 = @1-2 from the conical wake assumption, and since:
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[xC_s_ 3a LI/(_/rb) - lJ 3a
(8)

At this point, _3 = _d3 (i.e., no base bleed) may be obtained from
Equations 1 and i. Therefore, Cd3 = _d3C3a for isoenergetic flow.

However, the value of Cd3 may also be obtained from the assumed isen-

tropic recompression mechanism along the d-streamline (i.e., Pod3 = P4

from

Cd3 = [i - (P4/P3)- (9)

where P4/P3 is the static pressure rise across the two-dimensional

oblique shock which results from the turning of the flow with Mach

number M3a through the angle @3-4. When the two values of Cd3 are equal,

then the assumed base pressure ratio is correct for the prescribed ini-

tial conditions and nozzle geometry. A typical solution curve is shown

in Fig. 39. The values of Cd3 resulting from the above equations are

subtracted from each other such that the solution always occurs at

zero.

As mentioned above, the method of characteristics is used to solve

the supersonic inviscid (and possibly rotational) portion of the plug

nozzle flow field. Fig. 37 shows the extent of this part of the nozzle

flow field as applied to the expansion-deflection and truncated plug

nozzles. In both configurations, the characteristics solution begins

at the initial characteristic line, and may extend beyond the recom-

pression shock. The upper boundary is the nozzle shroud contour (E-D

nozzle) or a constant pressure boundary with a pressure equal to the

outside (or ambient) pressure. The lower portion of the flow fields

terminate on the plug contour, the "corresponding inviscid jet boundary",

and finally, the trailing far wake. The trailing wake boundary corres-

ponds to a cylindrical wake with zero streamline angle at its outer

edge.

The actual calculation procedure for the method of characteristics

is generally straightforward, but the interior flow field points and

the boundary points must be distinguished. For an interior point,

two upstream points combine to determine the location and conditions

at a third point further downstream. This is shown schematically in

Fig. 40a. The right-running characteristic from point 1 and the left-

running characteristic from point 2 intersect, thus locating point 3

in the flow field. Then the additional variables (streamline angle,

Mach number, and entropy) are determined iteratively.

For a solid surface (Fig. 40b), point 1 and the physical boundary

combine to locate point 3. The intersection of the right-running char-

acteristic from point 1 and the surface locate the new point. On a

prescribed solid surface, the streamline angle is known (or may easily

be calculated from the geometry). Thus, it is necessary to iterate
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only the Machnumberat that point. It should also be noted that, since
the solid boundary corresponds to a streamline, the entropy at point 3
is the sameas that at any other upstream point on the body surface.

The third type of boundary condition is that of a constant pres-
sure boundary (Fig. 40c). For no shock wave intersections, this implies
a constant Machnumberon this type of surface. Locating point 3 and
determining the flow properties, except entropy, becomesiterative.
A first estimate is madeon the location by a linear extrapolation from
the previous boundary point. The location is then modified accordingly
by appropriate averaging of the streamline angles.

The method of characteristics may also be used to locate an obli-
que shock within the flow field. A characteristic is an infinitesimally
weak wave. A shock, on the other hand, maybe regarded as a "piling
up" of characteristic waves resulting in a coalesced wave which can
no longer be regarded as weak. This is illustrated schematically in
Fig. 41a. The solution across a shock wave is not hyperbolic, and can-
not be treated directly by the method of characteristics. Constructing
a shock wave in a characteristic regime becomesan iterative process.
Upstream of a shock wave, conditions are known from the method of char-
acteristics. Although the method of characteristics solution is not
valid through a shock wave, the characteristics maybe continued again
downstreamof the shock wave. Behind a shock, the left-running waves
from a point are always steeper than the shock resulting in further
intersections of the characteristic and the shock (see Fig. 41a).
Thus conditions are available on the downstreamside of the shock wave.
The shock wave cubic equation (Ref. 17) provides a supplemental solu-
tion across a shock wave which has as its independent variable, the
shock wave angle. Thus, when the values of streamline angle and Mach
numberbehind the shock obtained from the characteristics downstream
of the shock, and the samevariables obtained from the shock wave cubic
equation agree, then the shock wave angle is correct for that point.
This situation is illustrated in Fig. 41b. It should be noted that
the conditions upstream of the shock remain unchanged.

The method of characteristics solution begins near the throat
region where the flow is supersonic. This solution is not applicable
to subsonic or sonic flows. A complete derivation of a general method
of characteristics solution and a derivation of the axisymmetric method
of characteristics (rotational) is presented in Appendix I.

EXTENSIONSTOBASICFLOWMODEL

In order to cover a more complete scope of the parameters involved

in studying plug nozzle flow fields, certain extensions of the basic

flow model must be made. These include the effects of non-isoenergetic

mixing, base bleed, and initial turbulent boundary layers.
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Non-Isoenergetic Mixing

The value of Tb/Tol = 1 represents the isoenergetic mixing solu-

tion, while values not equal to unity imply non-isoenergetic mixing.

Non-isoenergetic mixing, therefore, means that the stagnation tempera-

ture in the base region differs from that of the adjacent inviscid flow,

i.e.:

A = Tob/Tol _ 1 (i0)

or in terms of the actual base temperature and velocity ratio, this

becomes :

T b T b
A = -- +(1 - --)_ (11)

Tol T O

The base pressure solution for non-isoenergetic mixing requires two

modifications in the equations described in the previous section.

The first concerns the integrals Ii, 12, Jl, and J2 which are found in

the lengthy integral equation used in locating the j-streamline (Equa-

tion I). These integrals (Equations 3-6) now become (Ref. 18):

n

Zl =f A-C_a_2 - f (12)
--00 --00

r] r]

z2 =/ +2dn _= [ +2dn
_A-C_a* _ J_*+Tb/Tol(1-*)-C_a_b _

! (13)

n n

= [ q_ndn • f q_ndr_J1 qooA_C_aqb2 _ q_+Tb/To 1 (l__)_C_aqb2

(14)

= /i_=ndn =
J2 J A_C_a _2

q

/ qb2ndn
a "_+Tb/TTI (_-_) -C_a _2

--OO _00

(15)

The temperature ratio originally arises from the density ratio term

normal to the mixing region (see Appendix II). It should be noted that

for isoenergetic mixing, Tob/Tol = Tb/Tol = i, then Equations 12-15

again are identical to Equations 3-6.

The second change required in discussing non-isoenergetic mixing

is that of calculating the Crocco number on the d-streamline. The
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expression for Cd3 now becomes:
C3a_j3

Cd3= [ Tb ]½ (16)-- +(1-Tb), 3
TO1 TO1

This value of Cd3 is then compared with that obtained from Equation 9,

and when these two values agree, then the assumed base pressure ratio

is correct.

Base Bleed

In discussing base flows in which base bleed (i.e., mass addition)

is present, modifications of the original flow model must be made.

These additional assumptions include:

a) The amount of mass addition is small

b) The momentum associated with this mass addition is negligible

c) For steady mass bleed cases, some amount of mass will be

pumped into or out of the base region through the mixing

region between the j- and d-streamlines.

The analysis of base bleed is that of Zumwalt and Tang, (Ref. ii),

and a brief outline of the governing equations is presented below.

Their analysis is valid for an axisymmetric flow, and is an extension

of the planar flow model developed by Korst, et al (Ref. 14). For

planar flows, the techniques described in Ref. 14 were used, but are not

repeated in this report.

In terms of the locations of the j- and d-streamlines for axisym-

metric configurations, the mass flow between them may be expressed

as [ ]Gd _ _r 2 i_< Pol cote (i - rw) 2 (Jld - Jlj ) - B(Ild -Ilj) 3a (17)

4 C_a _e sin@ rb

where the integrals'I 1 and Jl refer to the integrals described by Equa-

tions 12 and 14. The additional subscript refers to the specific values

of _ in the upper limit of the integrals. The value of B is determined

from Equation 2, and )K is defined as:

y+l

2 (y-l)
2

8 (y--_) (l-C2a) (18)
K=

(A3a/Ant) _

A non-dimensional bleed number, _, may also be defined which relates

the amount of bleed to the adjacent flow stagnation conditions:

Gd T°l (19)

{ Ab Pol

- 23 -



where _ is the base area of the plug. Therefore, Equation 19 becomes:

H = _Cot@ (i-_) (jid_Jlj) _B(ild_ilj) : (20)
2 Sin@ 3a

403a

This equation, incidentally, was incorrect in Ref. ii; the integer"4"

was missing in the denominator.

Conservation of mass requires that the known mass bleed through

the base equal that mass which is entering or exiting between the j-

and d-streamlines in the mixing region. Thus, when this condition is

achieved (the non-dimensional bleed numbers being identical in magni-

tude, but opposite in sign), the assumed base pressure ratio is the

correct one corresponding to that bleed rate. That is, a solution

is reached when:

)-(/)-('=- 1.00 (21)

where _' is the mass bleed rate through the plug base. The minus sign

in this solution shows direction, i.e., mass flow into the base region

is positive in sign, while flow out of the base region is negative.

The solution curve for nozzles with base bleed differs from the

solution curve of the no-bleed case shown in Fig. 39. Fig. 42 shows

a typical solution curve for a nozzle with base bleed into the near

wake region. It is noted that this curve has the general shape of a

hyperbola with one asymptote at }-{/_' = +i.00. The second asymptote

is located at the value of the base pressure for which there is no base

bleed, i.e., the d-streamline is identical to the j-streamline. For

increased bleed rates, the curve "flattens out", thus raising the solu-

tion to a higher value of the base pressure ratio. For planar base

bleed flows, the solution curve shown in Fig. 42 is "well-behaved"

in that the general hyperbolic shape is preserved at all values of the

base pressure. However, with axisymmetric configurations, the solution

curve may become quite erratic at values of the base pressure not in

the vicinity of the solution. Near the solution, the curve does main-

tain its general hyperbolic shape. This instability is a result of the

coupled effects of the nonuniform flow, the variation of the wake radius

ratio, and the value of the Mach number at recompression. The value

of B described by Equation 2, appears to control this variation of the

curve from the norm.

Initial Boundary Layer

In any moving viscous fluid, a boundary layer is present along

a solid surface. In plug nozzles the turbulent boundary layer on the

plug upstream of separation may have a very significant effect on the

remainder of the flow field. In particular, the near wake base pres-

sure solution is affected. One technique for handling such an initial

boundary layer is to treat this situation as an equivalent base bleed,
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(Refs. 18, 19, 20) To justify this approach, the flow model used in
this analysis must be considered. The j-streamline in the mixing solu-
tion separates the fluid which originally passes over the plug from
that fluid entrained from the near wake. The d-streamline becomesdis-
placed from the j-streamline by a distance which is a direct function
of the massbleed rate. (For no massbleed, the j- and the d-streamlines
are coincident). This separation of the j- and d-streamlines results
in a shift of the velocity profile in the near wake region. The exist-
ence of a finite boundary layer at the plug tip also produces a shift
in the velocity profile in this region. Both the boundary layer and
the base bleed maybe combined into a "displacement parameter", (Ref. 18),
whereby the effect of an initial turbulent boundary layer on the mixing
profile is identical to that of base bleed. The actual amount of equi-
valent base bleed due to the finite boundary layer, mBL, maybe express-
ed as:

= 6** (_rBL)_L _ plUl (22)

where P1 is the density of the flow immediately adjacent to the boundary
layer. For this flow uI is the velocity, and 6** is the momentumthick-
ness of the boundary layer; rBL is the average radius of the boundary
layer, while e = 0 for planar flow and e = 1 for axisymmetric configu-

rations. It should be noted that the coefficent 2 is present for both

axisymmetric and planar geometries. In planar flow a boundary layer

occurs on both sides of the plug; for axisymmetric flows the coefficient

is then incorporated into the circumference term.

In this analysis, the approaching boundary layer profile has been

assumed to take the form of a power law profile, i.e.:

u/u I = (y/6) I/n (23)

where i/n is the power law profile exponent. The value of n may be

chosen, and need not be restricted to any particular value (e.g., seven).

This method was employed because the exponent is a function of Reynolds

number and the nozzle geometry (Ref. 21). For two nozzles which are

geometrically similar, but differ in size, the velocity profile exponent

may vary somewhat.

EMPIRICAL INPUTS

Although the analysis used in this report does have a strong theo-

retical foundation, empirical or semi-empirical inputs are still required.

A lack of knowledge and understanding of certain facets of the flow

necessitate these inputs. These include, for example, the mechanism

of recompression and the concept of turbulent mixing. Other inputs

may be significant when considering the accuracy of a solution. The

number of characteristic points in a flow field is an example of this

type of input. These inputs are described in the sections below.
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Jet Spread Parameter

In order to use the analysis developed by Mueller (Ref. 13), it

is necessary to specify the jet spread parameter, _3a, which describes

the rate at which the width of the shear layer is changing in the stream-

wise direction. This jet spread parameter has been investigated by

many authors and is generally based on empirical or semi-empirical

formulations. Throughout this analysis, the jet spread parameter ob-

tained by Channapragada (i.e., Equation 7) was used for axisymmetric

flows. For planar flows, the formulation of the jet spread parameter

of Korst (Ref. 14) was employed, namely:

= 12.0 + 2.758M (24)

Wake Radius Ratio

Another empirical variable which must be incorporated into the

near wake solution is the wake radius ratio, rw/r b. This locates the

point in the flow field at which recompression is assumed to occur.

A study was made to determine the sensitivity of the base pressure

to this parameter. Fig. 43 shows the plot of the results of this in-

vestigation. The curve shown here is for an axisymmetric expansion-

deflection nozzle (Aex/Ant = 5.602, Ab/Ant = 2.448).

Zumwalt (Ref. i0) assumed that the base pressure for cylindrical

bodies in a uniform flow should increase with decreasing wake radius

ratio until a value of approximately rw/r b = 0.50. He compared the

wake radius to a solid sting support, and then assumed that as the

sting radius approaches zero, the base pressure would remain constant.

He further stated that below a wake radius ratio of about 0.50, the

base pressure experienced little change. At wake radius ratios less

than that at the peak of the curve, a large divergence in the base

pressure occurs between Zumwalt's assumption and the actual calculated

base pressure. This large difference in the base pressure results from

the analytic solution which "forces" the flow to recompress at the

particular wake radius ratio. In the physical flow, merely decreasing

a solid sting radius does not insure that recompression will occur at

that decreased radius. The actual wake radius ratio does, however,

occur in the vicinity of the peak of the base pressure curve (Ref. 12)

in Fig. 43.

From the shape of the curve in Fig. 43, it is apparent that the

solution of the near wake is sensitive to this empirical parameter.

Zumwalt and Tang (Ref. ii) have proposed a base bleed flow model which

takes into account the variation of the wake radius ratio with the

nondimensional bleed number, }_. However, due to an algebraic error,

their formulation of the wake radius ratio results in values which

are too large. The actual wake radius ratio, rw/r b, may be related to

Zumwalt and Tang's value, (rw/rb)ZT , by:

rw/r b = 2(rw/rb)ZT- 1.0 (25)
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This result was obtained from an algebraic manipulation of the correct
and incorrect version of Equation 20. All values of the integrals,
Crocco number, and jet spread parameter were assumedidentical in both
equations. For the no-bleed case their assumed value of the wake ra-

dius ratio of approximately 0.67 should be about 0.34 instead. This

latter value of the wake radius ratio, in addition to being consistent

with the flow model, appears to be much closer to the observed values

measured from schlieren photographs.

The base pressure trends with base bleed shown in Refj ii appear

correct. However, the actual numerical values of the wake radius ratio

with base bleed are incorrect. This occurs because the Mach number

at recompression, M3a , is determined semi-empirically from available
method of characteristics solutions, and is a strong function of the

wake radius ratio, i.e.:

M3a = M2a e-0"209(I - rw/rb) (for y = 1.40) (26)

The base pressure solution, in turn, is highly dependent upon this value

of M3a.

These authors (Ref. ii) argue that the wake radius ratio versus

}_ curve may be valid over a large range of Mach numbers, because of

the appropriate non-dimensionalization of the base bleed rate. This

concept for no base bleed has been retained, i.e., rw/r b = 0.350 for

all axisymmetric expansion-deflection nozzle configurations. It should

be noted that the validity of this premise may be questionable for

highly nonuniform flows and/or for large plug angles. A justification

for retaining this concept for all nozzle configurations is demonstrated

in Fig. 44. This figure shows the pressure variation along the "cor-

responding inviscid jet boundary". A Mach number increase is noted

immediately downstream of separation followed by a region of rising

pressure (Mach number decrease). For the curve corresponding to zero

base bleed, recompression occurs at a wake radius ratio of 0.350.

This results in an additional pressure rise across the recompression

shock. For the curve in which base bleed is present, the solution

was extended so that recompression also occurred at a wake radius ratio

of 0.350. For this curve the pressure again decreases immediately after

separation and then begins to rise. At about the same axial distance

from the base that recompression occurred for the no-bleed case, the

pressures and corresponding Mach numbers for the two cases shown appear

relatively close. Slightly downstream from this location, however,

the Mach number again begins to increase. This results in a correspond-

ing pressure drop. In fact, the pressure falls below the base pressure,

indicating that M3a/M2a > i. A pressure rise then takes place again

as the flow passes through the recompression shock. This particular

analytical phenomenon (i.e., the Mach number increase after the pres-

sure rise) is not encountered experimentally, (Refs. 12 & 22). There-

fore, a modified wake radius ratio at recompression must be incorpora-

ted.
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It is noted experimentally for non-zero bleed rates that the
wake radius ratio increases noticeably with increasing bleed. In
this case the recompression point is shifted downstream. Fig. 30
illustrates this situation for a planar truncated plug nozzle. In
Fig. 30a there is no base bleed, while in Fig. 30b mass is emanating
from the plug base ( }_ = 0.0120). As mayreadily be observed, the
base bleed increases the wake radius at recompression (assumedto be
rw) , and the axial point at which recompression occurs has shifted
slightly downstream. The most interesting feature of these photographs
is the shape of the recompression shock above the recompression point.
In this region the shock shapes for both cases nearly coincide. Although,
admittedly, this observation is based on a limited amount of experi-
mental data, a formulation of an empirical wake radius ratio was made
on this basis.

A solution is first obtained for the no-bleed case, and a line is
constructed perpendicular to the "corresponding inviscid jet boundary"

at the recompression point. The intersection of this line and a new

"corresponding inviscid jet boundary" obtained from a different base

pressure establishes a wake radius ratio. This is illustrated in Fig. 45.

This new wake radius ratio is then a function of the change in base

pressure due to base bleed. This formulation has the feature that

both the increase in the wake radius ratio and the movement of the

recompression points are retained for a given base bleed rate.

Recompression Coefficient

One of the more controversial empirical constants which has been

used by some authors in the base pressure near wake solution is the

recompression coefficient, N. In the original analysis by Korst (Ref. 14)

and Zumwalt (Ref. i0), recompression was assumed to occur at the peak

pressure. Nash (Ref. 23) stated, however, that recompression along

the dividing streamline would occur at only a fraction of this peak

pressure. In this case, rather significant changes in the base pres-

sure solution would occur. Fig. 46 demonstrates the effect that the

recompression coefficient has on the calculated base pressure. The

nozzle used in this investigation is a planar expansion-deflection noz-

zle with A /A _ = 2.007 and Ab/Ant = 0.833. A considerable decrease
• ex uu
in the base pressure occurs as the recompression coefficient decreases

from unity. For example, the base pressure ratio decreases from 0.1482

when N = 1.00 to a value of 0.0865 at N = 0.670, a decrease in the base

pressure of 41%.

It can be argued (Ref. 24) that the use of the recompression co-

efficient may be unnecessary since the flow model itself is only an

approximation (and definitely a simplification) of the actual mixing

mechanism. Cancellation of errors often results due to some of the

assumptions (e.g., isentropic recompression along the dividing stream-

line, and zero pressure gradient in the y-direction). Much data supports

the use of a recompression coefficient, and an even greater amount shows

that it is unnecessary. Should the use of the recompression coefficient
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be unnecessary, the situation would be improved, for the reliance on
another empirical parameter would be eliminated. In all subsequent
calculations in this report, the recompression coefficient has been
assumedto be unity, i.e., recompression occurs at the peak pressure
downstreamof the recompression shock.

Mesh Size Comparison

The ability to obtain a rapid, yet accurate, solution of a pre-

scribed flow field was of primary concern. Therefore, a study was made

to determine the effect of varying the initial characteristic grid

spacing. Results of this comparison are shown in Fig. 47. Fig. 47a

shows the flow field of a planar expansion-deflection nozzle whose flow

field was calculated with 20 characteristic grid points in the vertical

direction. Fig. 46b shows the same nozzle configuration, except that

the number of vertical grid points used in this case was 40. A visual

comparison of these two flow fields shows negligible changes in the

streamline shapes. The recompression shock in both figures does, how-

ever, show a very slight deviation. Numerical comparisons of common

points within the flow field also demonstrate good agreement. For ex-

ample, the Mach number just upstream of the recompression shock along

the "corresponding inviscid jet boundary" is 1.9084 in the 20-grid sys-

tem, while it is 1.9027 in the 40-grid spacing system. The percent

difference in the Mach number at this point is less than 0.3%. Other

comparisons made throughout the flow field indicate less than 1 per-

cent difference for all variables.

Because of these minimal differences in the flow field variables,

confidence was placed in the results obtained using a lower number of

characteristic grid points in the vertical direction. In most configu-

rations which were investigated, a nominal value of 32 grid spacings

were used. This provided sufficient accuracy in the calculation of

all variables, and permitted reasonably rapid computer execution times.

It should be noted that a maximum number of 40 points to a minimum of

20 points could be used. The upper limit was established by .the stor-

age limitations of the computer, while the lower limit was prescribed

to permit accurate solutions in the vicinity of sharp corners (e.g.,

the plug tip and the shroud contour exit).

DISCUSSION OF ANALYTICAL RESULTS

A complete study of the parameters involved in plug nozzle con-

figurations could easily approach momentous proportions. From a pure-

ly geometrical standpoint, there are an infinite number of plug nozzle

geometries. It was necessary to limit most of the parameters to one

or two nozzle configurations operating in the same environment. The

numerical values of the results which were obtained should not be re-

garded as absolute for all nozzles of the same configuration. Instead,

trends should be evaluated as one parameter is varied.
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Initial Throat Conditions

The method of characteristics solution cannot compute the subsonic

or sonic portions of plug nozzle flow fields. Therefore, a supersonic

starting line must be determined which forms the initial boundary con-

ditions for the method of characteristics. The characteristics down-

stream of this line may vary considerably depending upon the initial

line's shape and the variation of the flow properties along it. Since

the base pressure solution is a direct function of the method of char-

acteristics solution, the base pressure cannot remain unaffected by

changes in the shape of the sonic line.

Fig. 48 pictures the calculated flow fields of a hypothetical

axisymmetric internal-external-expansion nozzle (Aex/Ant = 9.2571,

and Ab/Ant = 2.8571). The only variable in these figures is the shape

of the sonic line. Fig. 48a was obtained with "uniform" initial con-

ditions. At X/rp = 0, the Mach number was assumed to be 1.050, and
the initial line was vertical. The streamline angle varied linearly

from -7.97 ° on the plug surface to 0 ° on the shroud contour surface.

The base pressure ratio, Pb/Pol, for this initial condition was 0.005144.

Fig. 48b shows the same nozzle configuration using a parabolic

initial profile. The plot of the flow field shows a negligible change

from the uniform profile initial conditions. The initial Mach number

for the parabolic profile was 1.050, and the streamline angle varied

linearly as in the previous case. The two end points of the initial

line (the plug point and the shroud contour point) again have their

locations at X/rp = 0. The center point, however, is located at an

axial distance of X/rp = 0.010. It should be noted that the total

height of the initial line at X/rp = 0 is 0.i00. The base pressure

ratio for the parabolic initial profile is Pb/Pol = 0.005124. At least

for this nozzle configuration with the parabolic starting line described

above, only a small change in the base pressure is noted.

The effects of a linear profile are presented in the flow field

shown in Fig. 48c. The starting Mach number was again 1.050, and the

streamline angle varied linearly between end points. The lower end

point on the plug was located at X/rp = 0, while the upper end point

was positioned at X/rp = 0.020. The base pressure ratio for this case

has dropped significantly. Its value is now Pb/Pol = 0.004382, a de-

crease of almost 15% in the base pressure from the uniform case. How-

ever, the actual changes in the flow field adjacent to the near wake

region appear small despite the rather large change in the base pres-

sure. Recompression is moved slightly upstream due to the change in

the base pressure, but the streamline patterns indicate that the re-

mainder of the flow field appears almost unchanged. In addition, the

recompression shock shapes do not vary appreciably.

The final shape which was investigated was the circular arc ini-

tial profile. The initial Mach number and streamline angles were de-

termined as in the previous cases. A starting line was constructed
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such that an arc was perpendicular to both the plug surface and the
shroud contour surface. This initial profile produced the flow field
shown in Fig. 48d. Again the flow field external to the near wake re-
gion remains relatively unchangedfrom the previous cases. The base
pressure for this starting condition shows an increase over the uniform
profile condition of Fig. 48a. For this case, Pb/Pol = 0.005673.

In all cases described above the base pressure changes can be attributed

to the nonuniformity of the flow caused by the initial throat conditions.

A large amount of finite difference numerical analysis has recently

been done in an attempt to calculate the sonic line for nozzles with

centerbodies. (Ref. 25). The steady compressible flow of an inviscid

fluid through a converging-diverging two-dimensional planar duct with

an arbitrarily shaped centerbody was treated using the time-dependent

finite difference equations. The arbitrary shape of the duct and center-

body was transformed onto a normal flow plane in which the steady state

solution was obtained as an asymptotic finite difference solution.

An incompressible solution was obtained analytically using a geometric

transformation and compared with the compressible solution for cases

where low velocities were obtained throughout the duct. Inviscid com-

pressible solutions were obtained for various converging-diverging geo-

metries both with and without centerbodies. These solutions covered

the compressible range of velocities up to and including transonic.

The converged inviscid solution was then used as an initial approxima-

tion for the solution of the viscous Navier-Stokes equations in the

transformed plane.

The resulting viscous flow solution obtained by using the converged

inviscid solution as an initial condition gave good correlation with

experimental results in the throat region for a Foelsch nozzle with

a large centerbody. Both the experimental data and numerical solutions

tend to indicate that in the throat region the higher Mach number occurs

near the large centerbody rather than along the outer contour as found

from the inviscid solution for the same case. This demonstrated the

necessity for investigating the viscous effects in the throat region

of compressible nozzles. Although the results have been very encourag-

ing, more work of this type will have to be done before a practical

procedure for determining sonic lines will be available.

Shroud Contour Truncation

The results of truncating the shroud of an E-D nozzle contour

are presented in Fig. 49. In these plots the ambient pressure remain-

ed constant at Pa/Pol = 0.01020, while the nozzle shroud was truncated.

Fig. 49a presents the full shroud contour (Aex/Ant = 5.602). The flow

at the end of the shroud undergoes a mild expansion and adjusts rapidly

to the ambient conditions. In Fig. 49b the exit area ratio is now

5.580, a reduction in exit area of only 0.39%. A significant change

in the flow field is noted. A more noticeable expansion to ambient

conditions is detected at the shroud tip. This occurs because the Mach

number at the end of the shroud is lower; therefore, a larger change

in the streamline angle is required to adjust to the ambient pressure.
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A variation in the streamline patterns is also evident. The streamline
closest to the near wake remains unchanged, but the next streamline
experiences somedeviation at approximately x/rb = 4.5. The effects

of the expansion have penetrated into the flow field, and give this

streamline (and the streamline above it) its additional curvature.

The shape of the recompression shock has also been altered slightly.

The lower half of the shock remains unaffected, but the upper half

becomes somewhat shallower than in the previous configuration.

In Fig. 49c the contour has been further truncated so that

Aex/Ant = 5.513, a decrease in exit area of 1.59% from the design con-

ditions. The expansion at the shroud tip becomes more pronounced, since

the exit Mach number at this point has decreased still further. The

streamlines, in turn, reflect the degree of influence of the trunca-

tion; the recompression shock shape has been altered significantly.

The shock appears nearly straight; however, the initial shock angle

at recompression is the same as the previous two cases. This observa-

tion is significant because the base pressure for all three cases re-

mains unchanged. The effects of the shroud contour truncation have not

yet been felt in the near wake region. Because of the analytical base

pressure solution is a function of only conditions up to and including

recompression, the base pressure remains constant. Although the analy-

sis does predict a constant base pressure for the cases described above,

this result may not hold experimentally for all situations (Ref. i).

It is readily seen in Fig. 49c that the influence of the truncated con-

tour is felt just above the recompression point in the flow field.

Downstream of the recompression shock, the effect of the shroud trunca-

tion is detected in the far wake very close to recompression. In the

actual flow field of such a nozzle configuration, the near wake is

affected by disturbances in the far wake (Refs. 22, 1 and 26) at least

until the far wake has accelerated to supersonic conditions. Unfor-

tunately experimental data are not available for this contour trunca-

tion case.

Another interesting feature of these flow fields may be noted by

comparing the Mach numbers just upstream of the recompression shock.

The highest Mach numbers ahead of the shock are obtained in Fig. 49b.

This is partially due to the amount of "turning back" which the constant

pressure boundary undergoes. This may be further explained by compar-

ing the Mach numbers along the second streamline below the constant

pressure boundary. In Fig. 49a the Mach number reaches a maximum of

4.04 at the intersection with the recompression shock. The correspond,

ing streamline in Fig. 49b has the same Mach number variation until

x/r b = 4.5. At this point the streamline shows additional upward curva-

ture, indicating continued expansion. The Mach number reaches its

maximum value of 4.49 again at the intersection with the recompression

shock. Although the corresponding streamline in Fig. 49c is incomplete,

the reason for the Mach number decrease may be explained by noting the

shape of the streamline above the one under consideration. It is seen

that the streamline is turned back to the axial direction. This flow

situation produces compression waves in that _egion which correspond
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to a decrease in the Machnumber. In addition, it is noted in Fig. 49c
that the constant pressure boundary not only becomeshorizontal, but
also begins to assumea negative flow direction. The reason for this
change in direction of the constant pressure boundary maybe seen by
noting the expansion of the fluid around the plug tip and in the near
wake region. On a solid boundary, a reflected wave is of the same
family as the incident wave, i.e., an incident compression wave reflects
as a compression wave. Whereas, for a constant pressure boundary, waves
are reflected which are of the opposite family as the incident waves
(Ref. 27). Thus the expanding flow within the confines of the nozzle
reflects from the constant pressure boundary as compression waves.

The usefulness of this study may be realized by undertaking an

engineering study to determine the thrust/weight ratio of the vehicle,

since it is most advantageous to have a high thrust/weight ratio for

efficient operation. The total thrust of the nozzle decreases with

truncation as does the weight of the nozzle. Depending on the payload

and the mission, some truncation may prove beneficial.

Nozzle Area Ratio

One technique to increase the velocity and, therefore, the thrust

produced by the gas within a nozzle is to change the overall area ratio,

Aex/Ant, of the nozzle. An internal-external-expansion nozzle having

a shroud contour which was moveable in the vertical direction was in-

vestigated analytically. The plug was a conical surface at an angle

of -7.97 ° , and the axial length of the plug, x/r b. was 5,000. The

non-dimensional radius of the plug at the throat, r/r b, was 1.70.

The results of this analytical investigation are presented in Fig. 50.

Note that an increasing area ratio produces a corresponding decrease

in the base pressure. This result is to be expected, since an increas-

ing overall area ratio implies a higher design Mach number of a nozzle.

It has been well documented (e.g., Refs. 9, 13, 14, & 28) that the base

pressure ratio does decrease with increasing Mach number.

Non-Isoenergetic Mixing

Immediately after ignition the plug base in a plug nozzle flow

field may be at a significantly lower temperature than the stagnation

temperature of the fluid adjacent to the near wake. The base tempera-

tures for both cases then begin to approach the fluid stagnation tempera-

ture asymptotically. In the interim, however, the performance of the

nozzle may vary appreciably; once a thermal equilibrium is approached,

the effects of the temperature difference disappear. The solution

presented in this dissertation cannot predict the actual transient

variation of the base pressure with the rate of increase (or decrease)

of base temperature. The analysis can provide, however, an accurate

representation of the flow field providing the rate of temperature

changing is not too large.

A study was undertaken to determine the effects of base heating
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and cooling, and the results are shownin Fig. 51. This base tempera-
ture ratio curve is for an axisymmetric expansion-deflection nozzle,
(Aex/Ant = 5.602, and Ab/Ant = 2.448) with no base bleed and no ini-

tial boundary layer. Note in this figure that for Tb/Tol > 1 (base

heating), the base pressure increases. For Tb/Tol < 1 (base cooling),

the base pressure drops off. This trend has been demonstrated by other

authors (Refs. 14, 29 & 30) for simple problems.

For base cooling the base pressure decreases quite rapidly, and

the slope of the curve remains relatively constant. With heat addi-

tion the rise of the base pressure is, at first, relatively large.

With increasing heat addition, the rate of increase of the base pres_

sure decreases. This phenomenon may be explained partly by the fact

that there is no upper bound on the temperature ratio in the analysis

used; however, a lower limit does exist, i.e., Tb/Tol ÷ 0. Of course,

this lower limit is physically impossible, just as exceedingly high

base temperatures are also physically unrealistic. The range of the

curve presented in Fig. 51 should, therefore, include the limits of

most base heating and cooling problems which are encountered.

Internal Shock Wave

The shape of the constant pressure boundary downstream of the

nozzle exit is the governing influence in the formation of the internal

shock system. The constant pressure boundary divides the fluid exit-

ing from the nozzle from the quiescent (or still) fluid into which the

nozzle exhausts. The curvature associated with the constant pressure

boundary may be attributed to two primary mechanisms. The first is

associated with the properties of waves reflected from such a boundary.

That is, an expansion wave originating within the nozzle flow field

will be reflected as a compression wave (Ref. 27), thus decreasing

the streamline angle. The second variable is the degree of nonuniform-

ity of the flow at the nozzle exit. It has been noted in many configu-

rations, especially those associated with long truncated plug nozzles,

that the flow may pass through alternating regions of expansion and

compression. This phenomenon has also been encountered by other au-

thors both experimentally and analytically, (Refs. 31 and 32), for

other nozzle geometries.

An internal shock is formed by the coalescence of compression

waves generated at the jet boundary. Much research has been done on

internal shock systems. Most of the analyses (Refs. 27, 33 & 34) have

been restricted to flows in converging-diverging nozzles (bell or coni-

cal) in which the nozzle exit velocity is either uniform or easily

described by some analytic function (e.g., radial flow). Other authors

(Refs. 35 & 36) have included a certain degree of nonuniform flow at

the nozzle exit. Farmer, et al (Ref. 36) have included the actual

flow fields within various C-D nozzles. In these flows chemical kine-

tics, the formation of additional shock waves, and turbulent mixing

were also considered. Reis, et al (Ref. 35) have included the effects

of the initial boundary layer along the nozzle contour in their analysis.
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For C-D nozzle configurations, the internal shock plays an import-

ant role in the development of the flow downstream of the nozzle exit.

For overexpanded nozzles (Pa/Pe > i), the internal shocks meet at the

nozzle axis producing the familiar diamond configuration. For under-

expanded nozzles (Pa/Pe < i), the internal shock ends at a Mach disc

(Ref. 27). Since this shock is formed by a gradual coalescence of

compression waves, the shock strength increases with axial distance

downstream.

On many nozzle streamline patterns which were obtained, it was

noted that a sharp discontinuity within the flow field occurred. Such

a situation is shown in Fig. 52 for an axisymmetric expansion-deflection

nozzle. It should be mentioned that the analysis used in this report

does not calculate the boundary shock per se. A "foldback" technique

(Ref. 33) is used which reduces the shock to an isentropic compression.

The validity of isentropic flow may seem to be not entirely valid con-

sidering the large gradients in Mach number over a very short distance.

The foldback procedure allows the calculations to continue despite

the intersection of characteristics of the same family. The charac-

teristic equations, in effect, are allowed to "handle their own dif-

ficulties" by ignoring these intersections. The location of the shock

in the flow field may be determined by the inner envelope of inter-

sections of the characteristics. The flow downstream of the shock is

obtained by deleting the foldback portion of the characteristics solu-

tion. This technique accurately predicts the constant pressure bound-

ary and internal shock locations (Refs. 33 and 34), despite the assump-

tion of an isentropic flow. The use of rotational characteristics to

account for the entropy gradient has also been done (Ref. 35), and the

authors claim improved results. The results obtained using rotational

characteristics undoubtedly do produce a more exact comparison with

the data, but the changes are very slight. At hypersonic Mach numbers

the agreement between both methods would not be as good; therefore,

rotational characteristics would provide some significant improvement.

Referring again to Fig. 52, the location of the internal shock

may be obtained by noting the streamline patterns of the flow field.

Streamline numbers 5, 6, and 7 all are turned abruptly. Although they

remain distinct, they are very close together. On streamline number 8

a gradual compression (i.e., a turning back of the streamline to the

axial direction) is noted at an axial distance, x/rb, of about 5.0.

The Mach number drops from a value of 4.31 to 3.78, and the streamline

angle decreases from +12.8 ° to +3.8 ° . Although this is a rather for-

midable change in both Mach number and streamline angle, the formation

of a strong internal shock appears not to have occurred since the axial

distance of this compression is greater than 1.0. For a shock wave to

develop, the compression must take place in a very short distance.

On streamline number 7 at an axial distance of approximately 6.1,

however, a strong compression occurs. At this point the Mach number

decreases from a value of 4.6 to a value of 3.8, and the streamline

angle changes from 13.5 ° to 4.0 ° • The axial distance involved is less
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than 0.16; there are no intervening points which would indicate a grad-
ual compression as was the case for streamline number 8. Similarly
on streamline number 6, the Machnumber decreases from 4.6 to 3.7, and
the streamline angle decreases from 15.6° to 3.0° at an axial distance
of 7.4. Streamline number5, at a distance of 8.5, demonstrates the
samephenomenon. The Machnumberdecreases from a value of 4.8 to a
value of 3.7, and the streamline angle changes from 16.3° to 2.4° .

The locus of these sharp changes in flow direction, then, specifies
the location of the internal shock. In addition, note that the strength
of the shock appears to increase with axial distance. This is evidenced
by the increase in the upstream Machnumber and the increase in the
total angular deflection through the shock. However, this increase of
the strength of the shock with axial distance does not appear to be
so large that severe entropy gradients are encountered from streamline
to streamline. Thus a "nearly homentropic" flow results from these
calculations and permits a solution by an irrotational method of char-
acteristics.

The general features of the flow maybe examined along a line
drawn perpendicular to the centerline of the nozzle. From outside the
near wake, the Machnumberof the flow increases with radial distance
until the internal shock is encountered. A Machnumberdecrease occurs
across the internal shock such that the downstreamMachnumber is close
to the Machnumber along the constant pressure boundary. In somein-
stances it was found that the Machnumberdownstreamof the shock de-
creased slightly with radial distance, while it increased slightly at
other locations. This maybe attributed to the nonuniformity of the
flow approaching the shock.

Ambient Pressure Variation

As rocket or air-breathing engines are operated at higher and

higher altitudes, the ambient pressure decreases while the chamber pres-

sure may remain relatively constant. This variation of ambient pressure

has a very pronounced effect on the flow fields of plug nozzle configu-

rations. Figs. 53 and 54 demonstrate the effect of raising the ambient

pressure for an expansion-deflection and truncated plug nozzle flow

field respectively. Fig. 52 shows a planar E-D nozzle with:

Aex/Ant = 2.007 and Ab/Ant = 0.833, while the geometry of the planar

T-P nozzle is: Aex/Ant = 15.573 and Ab/Ant = 13.330.

In Fig. 53a the ambient pressure ratio, Pa/Pol, is 0.03401; for

Fig. 53b, Pa/Pol = 0.10204; and in Fig. 53c, Pa/Pol = 0.17007. With

the increasing ambient pressure ratio, i.e., decreasing altitude, the

expansion at the shroud tip decreases noticeably. This is due to the

exit pressure undergoing a smaller adjustment to the ambient pressure

as the ambient pressure increases. In Fig. 53b a slight down turn of

the constant pressure boundary is noted, while in Fig. 53c the negative

flow angle becomes quite sharp. This variation in flow direction cor-

responds to a Mach number decrease within the flow field, i.e., compression
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waves are generated at this boundary. Another interesting feature of
this particular study is that the base pressure remains constant for
all three cases shown. This occurs because the effect of the changing
ambient pressure does not affect the near wake solution, i.e., the right-
running characteristic from the contour tip intersects the trailing
wake downstreamof recompression.

Fig. 54 describes the planar T-P nozzle where the following am-
bient conditions exist: Pa/Pol = 0.0102 (Fig. 54a); Pa/Pol = 0.02041

(Fig. 54b) ; and Pa/Pol = 0.02721 (Fig. 54c). Again the negative slope

of the constant pressure boundary becomes increasingly severe with

rising ambient pressure. A mild compression emenates from this bound-

ary because of the shape. In Figs. 54b and 54c, the merging of stream-

lines indicates the possible location of an internal shock within the

flow field. The streamline adjacent to the constant pressure boundary

in Fig. 54a also exhibits a compressive turn at x = 7.7 inches. Thus

the internal shock appears to move more deeply into the flow field with

increasing ambient pressure.

Despite the large effects of the changing ambient pressure on

the actual flow field, the nozzle base pressure remains constant.

Note that an expansion still occurs at the shroud tip. Even at the

highest ambient pressure, the first characteristic from the constant

pressure boundary intersects the wake downstream of recompression.

Thus no change in the base pressure of the analytical model occurs.

Base Bleed

It has been shown that mass addition into the near wake of a blunt

body is an effective means of substantially increasing the base pressure

(Refs. 14 and 37). This increase in the base pressure, in turn, in _

creases the total thrust of the nozzle. An analytical determination

of the base bleed characteristics of an axisymmetric expansion-deflec-

tion nozzle was examined. Fig. 55 presents the plug base pressure

results of this investigation, while Fig. 56 shows the actual effects

of base bleed on the flow field of the nozzle. In this latter figure,

three representative conditions are shown: that of no base bleed;

that in which the non-dimensional bleed number, _, is 0.000258; and

that where the non-dimensional bleed rate is 0.000777.

Referring to Fig. 55, note that a relatively small amount of bleed

produces a substantial increase in the base pressure. For this par-

ticular nozzle the base pressure rises rapidly to a bleed number of

approximately 0.00040. With increasing values of }_, the rate of base

pressure increase begins to taper off. For example, at _ = 0.00040,

the base pressure has risen about 27%; increasing the bleed number an

additional 0.00080 produces an additional increase in the base pres-

sure of only 21%. Because of the shape of this curve, it appears rea-

sonable that some optimum bleed rate may be obtained for each par-

ticular nozzle in which the increase in base pressure due to bleed

would be balanced by the decrease in the actual mass flow of the nozzle.
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In this analysis, however, the mass flow of the nozzle remained constant
and did not reflect any decrease in the stagnation pressure or mass flow
due to bleed. The base pressure in all of the cases shown in Fig. 56
contributes to the thrust of the nozzle, i.e., the base pressure is
higher than the ambient pressure. Since the base pressure increases
with increasing bleed, addditional thrust maybe obtained with increas-
ing bleed.

In Fig. 56, the flow fields for the three cases presented do differ
markedly because of base bleed. Fig. 56 presents the pressure along
the near wake up to and including recompression for the three cases of
base bleed discussed above. For no base bleed, the base pressure is
the lowest; immediately after separation the pressure decreases slightly
indicating a Machnumber increase. The pressure then begins to increase
once again, and a sharp pressure rise is encountered at recompression.

When base bleed is present, the general features of the pressure along

the near wake remain the same. Increasing bleed rates produce an in_

crease in the base pressure as shown above. The pressure remains higher

until the vicinity of recompression. At that point the pressures are

nearly identical. However, the pressure rise at recompression is re-

duced because of the decreased "corresponding inviscid jet boundary"

angle. Thus, increasing the bleed rate produces a less severe pressure

rise at recompression.

Initial Boundary Layer

An initial boundary layer just upstream of the separation corner

on the plug base may produce significant changes in the plug nozzle

flow field. In the other sections of this report, the boundary layer

has been assumed to be fully turbulent, although a negligible thickness

has been assumed.

Fig. 58a shows the effect of an initial boundary layer on the

base pressure of an axisymmetric expansion-deflection nozzle. In addi-

tion, the variation of the base pressure with the profile exponent

is also presented in that figure. Because the boundary layer is treated

as an equivalent bleed, a rise in the base pressure with increasing

boundary layer thickness is to be expected. The variation of base

pressure in Fig. 58 may be attributed to the change in the momentum

thickness for each particular profile. That is, for the same boundary

layer thickness, 8, a 1/5 power law profile results in a larger momentum

thickness than the 1/7 power law profile. Similarly, the 1/7 power

law profile has a greater momentum thickness than the 1/9 power law

profile. The amount of equivalent bleed is a direct function of the

momentum thickness. Fig. 58b shows this result. Note that this curve

very closely resembles the base bleed curve (Fig. 55) which is the

expected result. It should also be mentioned that the analysis used

here is for a gas with a turbulent Prandtl number of unity. In addi-

tion to these assumptions, two additional geometric restrictions of

this particular technique of handling an initial boundary layer are:
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i) The boundary layer thickness must be relatively small

as compared to the base radius (or base half-height for

planar nozzles)

2) The boundary layer thickness must be small as compared

to the throat height.

This second restriction is necessary since a large boundary layer in

the throat would alter the initial profile in the potential flow region

by significantly decreasing the mass flow within the nozzle. This

problem would become more acute in large expansion ratio nozzles with

a small throat area; the effects of this mass deficit would be mag-

nified by the overall large expansion of the nozzle.
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COMPARISONOFEXPERIMENTALANDANALYTICALRESULTS

A larger version of the internal-external-expansion nozzle flow
field of Fig. 36f is presented in Fig. 59. The free jet boundary be-
gins at the shroud contour exit, and the adjustment to the ambient
pressure occurs at this point. The general shape of the boundary re-
sembles that of other T-P nozzle flow fields. The separated flow region
is visible, although not sharply defined. The shape of the near wake
appears nearly conical, thus supporting the conetail solution concept
of the near wake. Furthermore, a lip shock of significant strength
does not appear to be present.

Another feature of the flow, which is clearly visible, is the in-
ternal shock. This internal shock results from the fact that the flow
is underexpandedat the shroud exit (i.e., the Machnumberat the shroud
exit based on the area ratio is 1.56 and Pat/Pol = 0.136) and the sub-

sequent overexpansion at the shroud tip causes the flow to recompress

by the formation of an internal shock. The shock begins at the shroud

contour exit and permeates rather deeply into the flow field. Note

that the intersection of this internal shock and the recompression shock

produces a sharp change in the wave angle of both shock waves. The

internal shock terminates at the Mach disc. This Mach disc is actually

a normal shock which produces subsonic flow immediately downstream.

A trailing shock emanating from the edge of the Mach disc may also be

observed. In general, the flow up to the Mach disc may be predicted

analytically using the techniques presented in this report.

A comparison of the experimental and analytical flow fields is

made in Fig. 60. Fair qualitative agreement is obtained between the

shadowgraph picture and the calculated flow field. The shape of the

calculated external jet boundary in Fig.'60 coincides with the external

jet boundary of the actual flow very closely. Note that in the analyti-

cal solution, only part of the recompression shock and the streamlines

are presented. This is because of the analytical difficulties which

were encountered with the internal shock. In the analytical solution,

a "uniform" sonic line was used to begin the calculations and the wake

radius ratio was taken from the data of Chapman. The recompression

coefficient was assumed to be unity, i.e., recompression along the

d-streamline occurred at the peak pressure downstream of the shock.

A negligible boundary layer was assumed.

The base pressure ratio for this nozzle measured in the Nozzle

Thrust Facility was: pb/Pol = 0.0693. The calculated base pressure

ratio was 0.0878. The discrepancy in the measured and calculated values

of the base pressure ratio is most likely a result of the lack of accu-

rate input information as well as the shortcomings of the method.

For example, the assumption of a "uniform" sonic line is known to be

incorrect. Furthermore, viscous effects may not be negligible consider-

ing the relatively small size of the nozzle. The gap in the throat

region between the plug and the shroud is only 0.163 inches; therefore,

a small boundary layer on both surfaces would decrease the effective
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throat area. This would produce a larger overall area ratio, thereby
decreasing the base pressure. Whenthese input data are improved, the
analytical results will undoubtedly improve. It should be mentioned
that exact agreement between the calculated and measuredvalues of base
pressure ratio could have been obtained by using a specific value of
the recompression coefficient which was less than one. However, since
there is no method at present for determining, a priori, the exact value
of N which will work, this purely empirical method was not used. The
most serious shortcoming of the present calculation procedure which
could significantly affect this comparison is the omission of the rela-
tively strong internal shock.

An additional comparison of the analytical method with experimental
data was obtained from Ref. 39. Again an internal-external-expansion
nozzle (Fig. 61) was used in which Aex/Ant = 24.0 and Ai/Ant = 12.0.

The overall exit diameter of the nozzle was 3.0 inches, and the conical

plug had a cone half angle of -17.0 ° • Three plug lengths were investi-

gated: L/Lma x = 0.091; L/Lmax = 0.145; and L/Lmax = 0.288. Base pres-

sure measurements were obtained at each of these plug lengths. In the

analytical results, the value of N in this case was assumed equal to

unity. The experimental and analytical base pressure measurements

compare quite well for the configuration where L/Lmax = 0.091. The

experimentally measured value of the base pressure ratio, Pb/Pol, was

0.00346, whereas the analytical prediction was Pb/Pol = 0.00342. In

the analytical solution a "uniform" Mach number profile just downstream

of the throat was assumed. A shadowgraph of the flow field did not show

a strong internal shock which might account for the good base pressure

agreement. Although shadowgraphs were not available for the other

geometries, the base pressure data was available. At a plug length

ratio of L/Lma x = 0.145, the experimental base pressure ratio was

pb/Pol = 0.00385, and the analytical value was 0.00370, again demon-

strating good agreement. At the longest plug length, L/Lma x = 0.288,

excellent correlation was obtained. The experimental value of the base

pressure ratio was 0.00365, and the analytical value was Pb/Pol = 0.00366.

One possible explanation for the fact that the comparison between analy-

sis and experiment is much better for the nozzle of Ref. 39 than for

the nozzle of Fig. 59 is that the nozzle total pressures were signi-

ficantly different resulting in different Reynolds numbers for the two

cases.

A comparison of analytical and experimental results for an extended

contour planar expansion-deflection nozzle is shown in Fig. 62. For

this nozzle the overall expansion ratio, Aex/Ant, was 1.965 and the

base area ratio, Ab/Ant, was 0.815. Details of this nozzle design and

its operating characteristics may be found in Refs. 22 and 38. A simul-

taneous smokeline-schlieren photograph of the "closed" wake flow field

for this nozzle is reproduced in Fig. 62. The measured base pressure

ratio for this case was Pb/Pol = 0.13. The wake radius ratio* was

estimated from Fig. 62 to be about 0.243. The calculated base pressure

ratio for this value of the wake radius ratio, a straight sonic line

* In this planar case the analogous wake length ratio was used.
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and N = 1 is Pb/Pol = 0.135. The comparison of the calculated stream-

lines, near wake shape, and recompression shock with the experimental

is reasonably good. This good agreement may be a result of the absence

of internal shock waves in the flow adjacent to the near wake.
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CONCLUSIONSANDRECOMMENDATIONS

The experimental base pressure characteristics of truncated plug
nozzles provide a convenient meansof classifying the nozzle flow as

having either an "open" or "closed" wake. It was found for a planar

external-expansion truncated plug nozzle with a constant upstream stagna-

tion pressure that as the exhaust pressure decreased, the base pressure

of the "open" wake decreased and was approximately equal to the cell

pressure (i.e. ambient pressure). The presence of a diffuser did not

appear to noticeably affect the "open" wake nozzle operation although

it did affect the ejector-diffuser system operation. As the exhaust

pressure was further decreased the base pressure continued to decrease

until an unstable region was reached in which the wake switched alter-

nately between the "open" and "closed" configurations. A small decrease

in exhaust pressure from the value which produced this unstable situa-

tion resulted in a "closed" wake. The wake "closed" at essentially

the same cell pressure with and without the diffuser. However, the

"closed" wake base pressure was about 10% lower with the diffuser present.

For the axisymmetric internal-external-expansion truncated plug

nozzle with a constant ambient pressure, base pressure characteristics

very similar to the planar case were obtained as the upstream stagnation

pressure was increased. In most of the "open" wake region, the base

pressure was equal to the ambient pressure. In general this trend con-

tinued until the wake "closed". An exception to this general trend

occurred in a small region where the shock wave originating at the

shroud exit, impinged and was reflected from the plug close enough to

the base to produce a decrease and then an increase in the base pressure

as the ambient pressure decreased.

Optical investigations of the planar expansion-deflection and

truncated plug nozzles as well as the axisymmetric truncated plug noz-

zle have demonstrated that the lip shock was not of significant strength

in the cases studied. The lip shock was therefore not included in the

analytical model for the flow field.

The studies on the effects of turbulence seem to indicate that the

separated free shear layer is turbulent whether the plug boundary layer

is laminar or turbulent. This result justifies the use of turbulent

mixing in the base pressure theory. Further experimental data should

be obtained to better define the shear layer growth as well as the base

recirculation patterns.

Base bleed was shown to have a substantial effect on the base

pressure and the nozzle flow field in general. Opaque-stop schlieren

photographs of the planar truncated plug nozzle flow field showed a

marked increase in the thickness of the wake neck. Also, the base

bleed strengthened the lip shock and changed its location. The results

of the particular cases studied indicated that even a small amount of

base bleed can have a large effect on the base pressure with about

1% bleed producing about a 40% increase in the base pressure. Another
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effect of base bleed is that the peak recompression pressure decreases
with increasing bleed, and the location of the peak pressure on the
nozzle centerline is shifted slightly downstreamwith increasing bleed.
More detailed data on the growth of the turbulent shear layer as well
as on the recompression process would be helpful in understanding this
complex situation.

The extension of the analytical method of Mueller and Hall (Ref. 9)
to include nonuniform plug nozzle configurations produced the correct
base pressure trends with overall nozzle area ratio, base temperature
ratio, ambient pressure ratio, percent base bleed, and initial boundary
layer thickness. Furthermore, the nozzle flow fields from the throat
region to and including the recompression shock wave were obtained from
this method. Goodquantitative agreementwas obtained between theory
and experiment for a planar and an axisymmetric nozzle flow which did
not have strong internal shock waves present. The agreementbetween
theory and experiment for an axisymmeteric nozzle with a strong internal
shock was not as good.

The experimental results on the location of the sonic line for the
planar truncated plug nozzle have indicated that the sonic line is no-
ticeably distorted. Since the sonic conditions are used in the estab-
lishment of the starting conditions for the method of characteristics,
the sonic line shape and location could have a significant effect on
the analytic solution. For most of the cases studied in the present
investigation the sonic line was assumedto be straight and at the
geometric throat. Therefore one necessary extension of the present
method would be to include a more realistic sonic line in the analytic
treatment. A strong internal shock wave can occur for a large number
of plug nozzle configurations and operating conditions. Furthermore,
the strength and position of this shock wave has a significant effect
on the base pressure and flow field solution. Therefore it seemsrea-
sonable to expect better base pressure results from the analytical
method if the internal shock is included in the inviscid flow field
calculations.
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APPENDIXI

GENERALMETHODOF CHARACTERISTICS(Ref. 40)

A second order partial differential equation with two independent
variables maybe expressed in the following form:

+ 2B_ + C_i = D
A_xx xy yy (I-l)

where the coeffeicients A, B, C, and D may be functions of x, _x, _y,

and Y. Assuming that #. and _ are continuous functions of X and Y,

then for arbitrary increments _f dX and dY:

_x _x (I- 2)

d_x =-_ dx + -_V dy = _xxdX....+ _xydy

and:

_y _y

d_y - _x dx + -_y dy = _xxdX + _xy dy (I-3)

Each solution to Equation (I-l) is a three-dimensional surface in X,

Y, _ space (integral surface) defined by the function:

= _(x,y) (I-4)

On certain curves on the integral surface, the derivitives of

_x and _y may be discontinuous. These are known as characteristics
curves. These projections on the X-Y plane are the physical character-

istics. Note that Equation (I-l) applies to any point on the surface,

while Equations (I-2) and (I-3) are applicable to the increments of a

curve lying on that surface.

and _yy may be indeterminate.
and (I-3) gives:

A_xx + C_yy = D

dX_xx + 0 = d_ x

it must be stated that _xx' _xy,Also,

Rearranging Equations (I-l), (I-2),

+ 2B _ (I-5a)
xy

+ dY _ (I'5b)
xy

(I-5c)
O + dX_xy + dY_ = d_yYY

These three equations can now be regarded as simultaneous linear alge-

braic equations in the variables _xx, i_xy, and _yy. Solving for _xy:

xy

A D dY
dq_y

dX dY

0 dx dY

(I-6)
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Since this is an indeterminate quantity, the denominator matrix is zero,
i.e.:

A(dY)2 - 2B(dXdY) + C(dX)2 = 0 (I-7)

or:

dY dYA(==72- 2B( ) +c:o
dX" dX-

(I-8)

Solving this quadratic equation results in:

B + /B 2 - AC (I-9)

(dY) = A
dX Char

This equation determines the slope of the characteristic in the X-Y

(physical) plane.

Since _xy is, in general, finite, then the numerator of Equation

(I-6) must also be zero, i.e.:

A(d_xdY ) - D(dXdY) + C(d_y dX) = 0 (I-10)

or:

d_y A dy D dy
=- (_-_x) +- (I-ll)(d-_x) Char C Char C (d-_x) Char

Substituting the results of Equation (I-9) into Equation (I-ll) yields:

(d_x, - B±_-AC + D dY (I-12)

d--_y)Char = C _(d--_x )Char

Thus Equation (I-12) determines the slope of the characteristics in

the _x - _ (hodograph) plane.
Y

It is necessarY to investigate the types of partial differential

equations which may occur. The first will be the elliptic partial

differential equation. In this case the quantity (B 2 - AC) is negative

resulting in two imaginary roots to the characteristic equations.

Thus for an elliptic partial differential equation, the characteristics

equations have no physical significance. The second type of partial

differential equations, one real root results, but again no physical

significance is obtained. The third type is the hyperbolic partial

differential equation. Here the quantity (B 2 - AC) is positive result-

ing in two real roots. For this case, a physical significance may be

attached to these roots. Therefore, in order to employ the method of

characteristics, the governing partial differential equation must be

hyperbolic.
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Properties of Characteristic Curves

On a characteristic curve:

i) Fluid properties (_x and #y) are continuous.
2) Derivitives of the fluid properties maybe discontinuous.

Thus regions of differing fluid properties maybe "patched" to-
gether to obtain a new region. Therefore solving the original partial
differential equation is now reduced to solving two sets of first order
ordinary differential equations.

Method of Solution

Equations (I-9) and (I-12) maybe rewritten as:

B + B2_-AC _

(_x) = A
I

(_x) = A
II

B + B2_-AC _v
(_-_) = - c
29. I

d_y = _

(d---_x)I I

C a_x I

B -  -Ac _ __ dvD ( )

C C d--_x ii

(I-13a)

(I-13b)

(I-13c)

(I-13d)

Along a non-characteristic curve 1-2, _x and }y are known, i.e., given
from the initial data curve. Referring to the sketch below, it is

now possible to begin constructing the characteristic grid. In the

X-Y (physical) plane, the location of point 3 is determined. This is

done by applying Equation (I-13b) to point i, and Equation (I-13a) to

point 2.

_X

Y

%.

%.

%.

%,

%. 3 J""

%.

1

_)Yi

; /
l _ /

W

/
P

/
/

The intersection of these two lines locates in the physical space the

position of point 3. It now becomes necessary to locate point 3' in

the _x - _y (hodograph) plane. Equation (I-13d) is applied to point i'
and Equation (I-13c) to point 2' The resulting intersection of these

two lines locates point 3' in the hodograph plane. It should be noted

that the quantity (dY) may be approximated by:
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Y3-Y2
(_dy) = (_x) '-(_x )
d_x I 3 2'

(I-14)

where Y3 is determined from the calculations in the physical plane,

and (_x) 3' is estimated. An iteration scheme is then employed using

average slopes to obtain accurate solutions.

Rotational Method of Characteristics (Ref. 41)

The axisymmetric continuity equation may be expressed in the

following form:

pv(An) (2Zr) = CONSTANT (I-15)

Expanding in the form:

Since:

pv(An) (2zr) = [pV+_S] [An_s] (2z)(r_sr s)

(An) _ (An)_@
_s _n

(I-16)

(I-17a)

and:

lim Ar _ _r

At,As+0 As _s
- sin@ (I-17b)

and letting As÷0 results in:

sin____@+ _0 1 _V 1 _p
r _n + _ --_ + ---- = 0 (I-18)p _s

The entropy will be assumed constant along a streamline, but will

be permitted to vary from streamline to streamline. The enthalpy equa-

tion may be expressed as:

dh = Tds + __dP (I-19)

P

In addition the adiabatic energy equation can be written:

h = h + V2/2 (I-20)
o

The n-momentum equation may be expressed in the following form:

_P _ V 2 _ pV 2_0

= ]is
(I-21)
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Combining Equations (I-19), (I-20) and (I-21) results in the new
n-momentumequation:

1 _V _@ T d_
V _n _s V2 dn

(I-22)

Assuming isentropic flow along a streamline, the s-momentumequation
maybe expressed as:

_Q = V _V (I-23)

Q _S a2 _s

Combining this s-momentum equation and continuity (I-18) gives:

_V _ _@ sinecotp _s - tanp _n = tanp --r (I-24)

Employing the definition of the Prandtl-Meyer function:

_= = - l) -V
M=I =i

(I-25)

Results in two partial differential equations:

_) - tan_ _e sine
_s _n = tan_ _r

(I-26a)

and:

_ _e T d_

tan_ _n _s - V 2 dn
(I-26b)

Adding these two equations results in:

_(_-e) + tanU _-_(_-_)= tan_-

sine T ds

r V 2 dn

while subtracting gives:

(_+e) - tan_ _n(_+e) = tan_ sin___@+ T___ d_
_s r V 2 dn

(I-28)

It may be shown that for any function, f, the characteristics equations

may be written:

_-_f + tan_ _-_f = _-_f sec_ (I-29a)
_s _n _
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and:

_f _f _f (I-29b)
--_- tan_ _n = _--_sec_

ComparingEquations (I-29a) and (I-29b) with Equations (I-27) and (I-28)
results in:

(_-0) sin@ T as

_n - sin_ r cosU v 2 dn (I-30)

and:

(_+0)--- sinU sin____@+ cosU T ds

_ r V 2 dn (I-31)

Referring to the sketch and assuming:

_(__@) d= _(_-@) along q

_(9+@) d= _(_+@) along

Integrating Equations (I-30) and (I-31) gives:

3

(_3-@3) - (_2-@2) = _2 (Sinu sin@)d_-c°t_r _T (_3__2)
(I-32a)

and:

3

(_3+@3) - (_i+@i) = _i (sinu _sin@)d_-cotU _T (s3_ Sl )
(I-32b)

or:

and:

_ - _)(_3-@3) (_2-@2) = _23A_23 _23 (s-_R _2

s3 Sl

(_)3+03) - (_01+01) = C13A_13 - K13('-R-- "TR-)

where _ denotes the average value of the integrand, i.e. :

sin@
C = sinZ.--

r
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n

and where K is the average value of the following:

K - sin_ cos_ (I-35)

Y

The resulting computational equations then become:

F 1 + F 2

_3 = 2

and:

1-36a)

F1 - F2 (I-36b)
e3 = 2

where:

and:

-- _3 Sl

F 1 = (_)1+01) + _13A_13 - KI3(-_--- ____)

-- -- s3 s2
F2 = (_2-02) + c23A_23 - K23(_ R )

(I-37a)

(I-37b)

Boundary Conditions

For simplicity let:

and

where:

and

F 1 = (_i + 01) + Fli
(I-38a)

F2 = (_2- 02) + F2i (I-38b)

F1 i _13A_13 _13 ('_ Sl= - g.)
(I-39a)

F2i _23 An 23 _23 (s3 s2= - _ _)
(I-39b)

For a solid boundary the streamline angle at the point to be calculated

is known. Thus, since 03 is known, Equation (I-36b) may be solved

algebraically for F 2. Upon substituting this result into Equation

(I-36a), the following expression for 93 is obtained:

_3 = _i + 01 - 03 + Fli (I-40)
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At a lower constant pressure boundary, the Prandtl-Meyer turn angle,
_3' maybe considered knownand constant. Thus solving Equation (I-36a)
for F2 and substituting this result into Equation (I-36b) gives the
expression for the streamline angle at that point:

@3= _i + @i - _3 + Fli (I-41)

It should be noted that Equations (I-40) and (I-41) differ when the
boundary being calculated is on an upper surface.
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APPENDIXII

BASEPRESSURESOLUTIONWITHPRESSURERISE (Ref. i0)

Referring to Fig. 37, the momentumequation between points (2)
and (3) maybe expressed as (Note: R and -R are positioned such that
the cross-sectional area at any axial station is constant):

(PA)2 + (pu2A)2 = (PA)3 + (Pu2A)3

where:

fYRA 2 = 2ZR_cose2dY2

y-R

(II-l)

(II-2a)

and:

YR

A 3 =f 2ZR3cos@3dY 3

y-R

Substituting results in:

-R _--R

For a conical wake assumption:

@2 = 03

Therefore :

YR YR YR

+ + J P3u3R3dY3

- y-R Y-R Y-R

Since at point (2) no flow exists below y = 0, and since above y = 0,
the flow is uniform, then:

R 2 ":_RP2 (Ro - Y2c°sO)dY2 + O2aU2a R ° - Y2COS@2)dY 2 =
Y-R o

YR(R3 - _ 2 fYR,03` (u_) (_ _/
Pjj Y3cos@3)dY 3 + P3aU3a.1 _Q-_) "U2 Y3c°s@3)dY 3

Y-R Y-R 3a 3a

(II-2b)

(Ii-3)

(II-4)

(II-5)

(II-6)
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where R 2 in Equation (II-5) is:

R 2 = R o - Y2COSe2

and R 3 is defined as:

R3 = _3 - Y3c°se3

Since:

Y = Y- Ym

and:

dY = dy

then :

P2 Ro(YR Y-R ) ½cosO(y2 _ y2R) 2 Q2aU2a(RoYR 2

p_ fYR[_ (y-ym)eOs@j + _ 2 rY,P'Q3, (u2 )

3Jy_R L 3dy3 u2 a

Since the pressure normal to the flow is constant, then:

2 2 2

Q3/Q3a = (i - C3a)/(l - C3a_ )

Defining the dimensionless coordinate, _, as:

q = a y/x

(II-7a)

(II-7b)

(II-8a)

(II-8b)

(II-9)

(II-10)

(II-ll)

where _ is the jet spread parameter.

Then:

x

Y = Y - Ym = _ (Q-qm)

and:

dy = dY = _ d_

Also noting that:

YR - Y-R = 2YR

and:

2 2
YR - Y-R = 0

(II-12a)

(II-12b)

(II-13a)

(II-13b)
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Then Equation (II-9) becomes:

P2 2

Q2aU_a. (2RoYR) 2 + (RoYR - ½c°s@YR)
2

2
P3 P2 Q3aU3a

+

P2 P3 P3aU_a

Since:

_R

= P3_2 I}[g- (n-nm,COS@]3dn3

Q2aU2arI-R

nR _ (_)2c°s@(a2 ) 3
(1-C2a ) 2,n...R !.T]_R-nmI2 In_R

P 1 - C 2

Qu 2 2y C 2

T-i

(II-14)

(II-15)

It should --be noted that:

I2 = -C _ 2dn

and:

J2 = f _2D dT]

1-C2a _2

(II-16a)

(II-16b)

and the H-values in Equation (II-14) refer to the limits of integration.

By employing Equation (II-15), Equation (II-14) finally reduces to:

l-C2a 2

y-i 2a

+ (RoY R - ½COS@y_) 2 =

2
X

(--) cos@ (-2_m_R)

C3a 2 - (_) c°s@(J 2

-R -R

_ _mI2 _R )l

3
n- R

+

(II-17)

This equation, then, describes the momentum transfer between stations

(2) and (3).

The viscous continuity equation between stations (2) and (3) may

be expressed in the following form:

fYR Q2u22zR2d_2

o

YR

= f P9U32ZR3dY 3

YJ

(II-18)
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Using the relations which were employed for the momentumequation,
this continuity equation reduces to:

(RoYR - ½cosy2) 2 =

nR

P3C3a (I_C_a) / _ x
P2C2a i-C2L_ 2 [_- _(_- _m) COS@I3_33dD3

n.
3

or finally:

i 2
(RoYR - _c°sOYR) 2 =

P3 C3a(l - C_a) <_ ii
P2 C2a

where:

- (_) 2c°se 1 -qmIl 3

Dj _j

3a

and:

J1 = I _n
1 - C2a_2 d_

Since the cross sectional area between R and -R is assumed constant,

then:

(2RoYR)2 = _(2nR) - (_)2cose(-2n_R)

Combining the continuity equation (II-20) and .the momentum equation

(II-17) results in:

I_ Ill qR _(x)=2cos @[J InR mIlil]I_ = "

P3 C3a

P2 C2a _ 1 3

Dj Dj

,   cos0,__ (_-1) (2nR)- +
C2a

(II-19)

(II-20)

(II-21a)

(II-21b)

(II-22)

qR R I_R

P3 C3a[_X I -(_)2COS@ (J2

P2 c2aL-J 2 n- n'R - nmI 2 __R )

(II-23)
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Algebraically solving for qm gives:

nm
iJl - c3---_aJl

C2a ___,

I QR _{-i 1

I1 1n R- C3---_aT2
C2a Y C3aC2a

qj Q-R

_(a_ )

P3

An inviscid continuity equation may now be written between stations

(2) and (3) :

YR

/YRQ2u22nR2dY = / P3u32_R3dY 3

o o

Making the appropriate substitutions and algebraically rearranging

results in :

2 _ P3 C3a l-C2a
(RoYR- ½COSeYR) 2 (_R-rim) -

l-C2aP2 C2a

Combining both the viscid (II-19) and the inviscid (II-26) continuity

equations gives :

QR l_R

- _3c_3 2 2 I 2
R3_ 3 2 2 ii - - C3a) I + QR =

--(i -C3a) 73 c°se3 {jR 2(i Jl
x 3 cos@ 3 Qj. Qj

qR

cos0 2 _ m 32fiR + 2(1 - C3a) I 1In m

Recalling the expression for q , and defining B as:
m

S

Jl Q-R C2a J2

I lqR _-i i P2_]R C3a 12 - --(l-
Ii Qj C2a Q-R _ C3aC2a P--_)qR

then the expression for Qm becomes:

= ( aR )
Qm B - xc---_--_se3
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Substituting this result into Equation (II-27) gives:

Eli I(B_r/R) 2 + 2 (l-C2a)i I 13 - T1 B- 2(1-C_ a) - =

(II-30)

i

For _R = 3, then:

B - 3)23 + 2(1 - C2 a) I I -I I B - 2(1 - C3a) 1

-3 -3 -3
3

( OR )2
xcos8 3

(II-31)

Thus the location of the j-streamline may be determined by solving this

transcendental equation

Calculation Procedure

For a given (or calculated) flow field up to the plug base, the

calculation procedure for determining the base pressure is as follows:

i. Estimate the value of the base pressure ratio, P /P__ and
b u±'

knowing Pland M I, obtain the ratio Pb/P.. (The terms P1 and

M 1 are the pressure and Mach number at _he tip of the plug.)

2.

3°

pb/Pol = P2/Pol because of the assumption of no pressure gra-
dient in the y-direction. The pressure ratio P2/Pol determines

the Mach number M2a and the corresponding Prandtl-Meyer angle,

V2a" The difference in Prandtl-Meyer angles (_2a -Vla ) de-

termines the change in streamline angle at the plug base (ie.,

81 - 82 = _2a - _la )"

Determine a wake radius ratio, rw/r b, and perform a method of

characteristics solution to a radius, rw. This determines

the Mach number, M3a, at recompression.

4. Determine the location of the j-streamline by iteratively solv-

ing Equation (II-31). The value of the jet spread parameter,

O3a, is that formulated by Channapragada. 29 Also, 81_ 2 = 83_ 4 •

The solution to this equation is double-valued, and the upper

solution is used for external flows.

5. For no bleed, _d = Sj and:

Ca3 = _d3C3a = @93C3a

6. Also:

I lCd3 p4- y_]?l ½ since Po3d = P4
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.

where P4/P3is the pressure rise across an oblique shock of

a stream flowing at a velocity M3a deflected through an angle

@3-4"

When the value of Cd3 obtained from steps 5 and 6 agree, a

solution is obtained.
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TABLEI

Planar Nozzle Contour Coordinates (inches)

X' Y' X'
0.0000 1.3760 2.7000
0.i000 1.3760 2.8000
0.2000 1.3760 2.9000
0.3000 1.3760 3.0000
0.4000 1.3760 3.1000
0.5000 1.3760 3.2000
0.6000 1.3760 3.3000
0.7000 1.3760 3.4000
0.8000 1.3760 3.5000
0.9000 1.3760 3.6000
1.0000 1.3760 3.7000
i.i000 1.3895 3.8000
1.2000 1.4030 3.9000
1.3000 1.4165 4.0000
1.4000 1.4301 4.1000
1.5000 1.4436 4.2000
1.6000 1.4571 4.3000
1.7000 1.4716 4.4000
1.8000 1.4841 4.5000
1.9000 1.4976 4.6000
2.0000 1.5112 4.7000
2.1000 1.5247 4.8000
2.2000 1.5382 4.9000
2.3000 1.5517 5.0000
2.4000 1.5652 5.1000
2.5000 1.5787 5.2000
2.6000 1.5922 5.2600

y!

1.6058

1.6193

1.6328

1.6463

1.6598

1.6733

1.6869

1.7004

1.7139

1.7274

1.7409

1.7544

1.7680

1.7806

1.7854

1.7853

1.7803

1.7703

1.7553

1.7351

1.7095

1.6781

1.6407

1.5969

1.5459

1.4873

1.4481
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X !

0.0000

0. 0700

0. 1700

0.2700

0. 3700

0. 4700

0.5700

0.6700

0. 7700

0. 8700

0.9700

i. 0700

i. 1700

i. 2700

i. 3700

i. 4700

1.5700

i. 6700

i. 7700

i. 8700

1.9700

2.0700

2.1700

TABLE II

Planar Nozzle Plug Coordinates (inches)

y! X'

0.0000 2.2700

0.0166 2.3700

0.0384 2.4700

0.0602 2.5700

0.0820 2.6700

0.1038 2.7700

0.1256 2.8700

0.1474 2.9700

0.1692 3.0700

0.1910 3.1700

0.2128 3.2700

0.2346 3.3700

0.2564 3.4700

0.2782 3.5700

0.3000 3.6700

0.3218 3.7700

0.3436 3.8700

0.3654 3.9700

0.3872 4.0700

0.4090 4.1700

0.4308 4.2700

0.4526 4.3700

0.4744

y!

0.4962

0.5180

0.5398

0.5616

0.5834

0.6052

0.6270

0.6488

0.6706

0.6924

0.7135

0.7262

0.7288

0.7213

0.7036

0.6750

0.6346

0.5853

0.5357

0.4872

0.4395

0.3933
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Coordinates of

Tap Number
4
5
6
7
8
9

i0
ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36

TABLE

Planar Nozzle Top

III

Contour Pressure Taps (inches)

Position From Nozzle Inlet
1.0620
2.2500
2.6250
3.0620
3.8120
4.1250
4.5000
4.9500
5.1870
5.6250
6.0000
6.8120
7.1250
7.4370
8.2500
8.6250
8.9370
9.8120

10.2500
10.6870
11.1250
11.5620
12.0000
12.8120
13.2500
13.6870
14.1250
14.5620
15.0620
16.0000
16.3750
16.8750
18.0000
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Coordinates of Planar Nozzle

Tap Number
37
38
39
4O
41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66

TABLEIV

Sidewall Centerline Pressure Taps (inches)

Position From Plug Base

0.1600

0.4100

0.6600

0.9100

1.1600

1.4100

1.6600

1.9100

2.1600

2.4100

2.6600

2.9100

3.1600

3.4100

3.6600

3.9100

4.1600

4.4100

4.6600

4.9100

5.1600

5.4100

5.6600

5.9100

6.1600

6.4100

6.6600

6.9100

7.1600

7.4100
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a.) Truncated Plug Nozzle.

b.) Expansion-Deflection Nozzle.

Fig. i. Schematic of "OpenWake"Flow Fields for Truncated
Plug and Expansion-Deflection Nozzles.
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a_) Truncated Plug Nozzle.

/

b.) Expansion-Deflection Nozzle.

Fig. 2. Schematic of "Closed Wake" Flow Fields for Truncated

Plug and Expansion-Deflection Nozzles.
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a.) Pcell/Pol = 0.592 d.) Pcell/Pol = 0.282

b.) Pcell/Pol = 0.444 e.) Pcell/Pol = 0.215

c.) Pcell/Pol = 0.399 f.) Pcell/Pol = 0.148

Fig. 19. Schlieren Photographic Sequence for Truncated Plug Nozzle Flow

Development.
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Fig. 26o Simultaneous Smokeline-0paque-Stop Schlieren Photograph
of Planar Truncated Plug Nozzle Flow Field.
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