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1. Introduction

This investigation is concerned with the possibility of using gyro-
scopic effects to control either the spin rate or the orientation of a
rigid body which is constrained to rotate about a fixed axis. The moti-
vation for undertaking the study was to establish a theoretical basis for
an experimental exploration of man's ability to employ gyroscopic effects
while maneuvering in free space.

In Sec. 2 the system to be analyzed is described in detail, and equations
of motion are formulated. Secs.3 and 4 deal respectively with open loop and
closed loop control. Finally, the use of these results as the basis for an
experiment involving human subjects is discussed in Sec. 5.

2. Equations of Motion

The system to be analyzed consists of a rigid body A , a gimbal ring
B, and a cylindrical rotor C , as showninFig. 1. Body A 1is free to
rotate about a fixed vertical line L1 3 B can be made to rotate about
a line L2 that is fixed in A , is perpendicular to L1 » and intersects

1., at point P ; C 1is free to rotate about a line L3 that is fixed in

1

B , is perpendicular to L2 , and intersects L at point O .

2

Three angles, o , B, Y , are used to describe the configuration of

the system. These are defined as follows: Let a, , b, , ¢, and n,
-i =i " =i —i

(i = 1,2,3) denote right-handed sets of orthogonal unit vectors fixed in
A ,B,C, and a Newtonian reference frame N , respectively, orienting
these vectors as indicated in Fig. 1. Then o is the angle between n,
and 3y > B is the angle between as and 93 , and vy 1is the angle
between Rl and 31 .

The system has the following inertia properties: Body A has a
moment of inertia I about Ll . Point 0 1is the common mass center

of B and C . The unit vectors b and c; are parallel to principal
i






3
axes of inertia of B and C for point O , and the associated moments of
inertia are Hi and Ji (i =1, 2, 3), respectively. Body C is presumed to
be axially symmetric, with c3 parallel to the axis of symmetry. Hence the
moment of inertia of C about any line passing through O and perpendicular
to L has the value J; . Finally, bodies B and C have masses My and
MC s respectively, and the distance between point O and line Ly is «r .

If K denotes the kinetic energy of the system, then

. 2
2K = o?[I + r(Mp + M) + 828 (Hz + J3) + €2 (H; + Jp)]

+ B2[Hy + J11 + y2[J3] + ya[2T388] (1)

where s and ¢ are abbreviations for sine and cosine.
As the potential energy of the system remains constant, and as o and
g can be regarded as cyclic coordinates of a two degree of freedom system,

‘the associated Lagrange equations can be expressed as

BF = constant 2
Ao

and
é% = constant (3
oy

or, after performing the indicated differentiations,

[I+ 1:2(MB + M) + $B(H; + J3) + PBH; + Jy)]a + [J3sBly

= [T+ 120y +M,) +H + 7,18" (4)
(1,2)

and

Numbers beneath the equality symbols refer to corresponding equations.



Y+ 8o = v (5)

(1,3)

9* .* @ ®
where o and vy denote the values of a and y for B =0 .

Using Eq. (5) to eliminate ¥y from Eq. (4), one obtains

. ok
[T+ 1:2(MB + MC) + Jy + Hy - (J) + H] - H3)s2Bla + T3y sB

= ,[I+1?(MB+MC) + 0, + H16" (6)
(4,5)

T

and after defining inertia ratios R and E as

Js3
R = (7)
I+ 1-2(MB + M) + I+ H

J; + Hy - Hyg
E = (8)
I+ r2(MB + M) + I+ H

one arrives at

ok R.*SB
3 O = NY PP (9)

(6,7,8) 1 - Es?
For all physical systems of interest, E 1is small in comparison with unity.
Consequently Eq. (9) may be replaced with

L) ﬁ* Q*
o =a = Ry sp 10

For example, for a man standing on a light plétform which permits him to
rotate freely about a line through his mass center while he holds a bicycle

wheel mounted in a light gimbal, R and E typically have values such as



R = 0.113, E = 0.056 (11)

and the approximate equation of motion is

'* *
& = o - 0.1137"sp (12)
(10,11)

3. Open Loop Control

Given an arbitrary initial state of rotation of body A, one may wish
to cause body A to acguire either a specified final spin rate, &f’
or a specified final orientation, Qe Open loop control laws intended
to accomplish these objectives will now be formulated.
The spin rate problem possesses a solution if and only if &f is

an "attainable" value, i.e., if the equation

«% -
o =0

Bf = sgin!? — (13)
(10) Ry

yields real values of the angle B - When this is the case, varying Q in

any manner whatsoever from its initial value to Be results in the desired spin

®

rate, ac .
The reorientation problem can be solved provided ¢ = 0 is attainable,

that is, if the equation

B = sin![> (14)

(10)

yields real values of the angle ﬁf. One may then proceed in two steps:



First, vary B from its initial value to Bf as given in Eq. (14), thus

attaining ¢ = 0 and placing A in an orientation which may be character-

ized, without 1loss of generality, as o = 0. Next, designating as ag the

value of ¢ corresponding to the desired orientation, and letting T be a

positive constant having the dimensions of time, vary B in accordance with
o

= s =] . _ f . T )
5(10,14’15) sin™ [sin(B.) TTRYE sin( © )] (15)

As may be verified by integrating Eq. (10) after using Eq. (15) to express

sp as an explicit function of t, ¢ 1is then given by
o T
o = i_(l - cos t) (16)

which shows that' ¢ attains the value o at t=rt,

4, Closed Loop Control Laws

It is possible to formulate closed loop control laws such that,
for any initial state of motion, body A acquires either a constant
spin rate, &f’ or a specified orientation, og-

The spin rate problem has a solution only if &f is attainable,
i.e. if Eq. (13) has a real solution. Assuming that this condition

is satisfied, consider the control law
B =TFG - &) an
where F 1is a constant. Substituting from Eq. (10) into Eq. (17) yields

6 = FGS - &) - FRY's8 (18)
(10,17)



which has the solution

sin E%:Ji_l RY'F
. pe-cBRYFE (19)

coSs

Bgt B i (18,13)
2

where D is a constant of integration. This solution shows that, when ¢t
approaches infinity, either § approaches Bf or (Bf+5) approaches + .

In either case s approaches s and ¢ consequently approaches ¢&. as
£ q y ap £

desired.

As for the closed loop reorientation problem, assume that Eq.(l4) yields

real values of ef, and consider the control law
B = Bf + N - af> (20)

where N 1s a constant and ac . is the desired final orientation. Sub-

stituting for B in Eq.(10) then yields

&

x = sin B, - sin[B_ + N(o - a.)] (21)
RY  (10,20) £ £ £

which has the solution

N, l
sin (o af)

RN'*
De_ch vt

l (20?21) (22)

cos[ B +§ @ - op)]



where D is a constant of integration. As t approaches infinity, a

s %
approaches op if csf Ny > 0 and ]NI < 2. (Eq. (7) shows that R is

intrinsically positive.)

The closed loop reorientation problem may thus be solved in twe steps:

After using Eq. (17) with a, = 0 , one designates B

£ as and uses Eq.
(20).

It is also possible to devise a control law which permits reorientation of

the system in one step. Let

B = Pa+ Qe - o) (23)

where P and Q are constants. Substituting for @ in accordance with Eq.

(10) yields

B =RV'P(ep,- s8) + Q- ap) (24)

Eqs. (10) and (25) constitute a system of two first-order differential

equations which possess the particular solution

p . o = o (25)

Linearizing the equations about this particular solution yields

3 = -PRy*ce f'é‘. + Q¥
(24) (26)
by
o = -RyBeB; (27)
(10)

where



=B - Bf (28)
and

(29)

Q>
i

a - a
The characteristic equation associated with Eqs. (26) and (27) is
L% ok
A2 +x(PRYcef)+ QRY cB = 0 (30)

Consequently, necessary and sufficient conditions for the asymptotic stability

of the particular solution are

%
Pycg,> 0 (31
£ (30) (31)
and
Q.*CB > 0 )
Y (32
£(30)
3'*
Note that Be = sin 1 9—‘—.—;‘- is satisfied for two values of g; for one of these
Ry

CBf> 0 , whereas, for the other, c5f< 0 . Thus the particular solution for

one value of Bf is always stable if P and Q are of the same sign.

5. Proposed Experiment

The feasibility of using gyroscopic effects to control the spin rate or
orientation of body A has been established in Secs. 3 and 4. The ability of
a man to utilize gyroscopic effects can now be explored by letting a human

subject play the role of a portion of the body A and attempt to produce suitable
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variations of the angle R. More specifically, the experiment requires a
light platform capable of supporting a man in both a lying and standing
position and carrying a gimbal containing a rotor attached as shown in Fig. 1.
To minimize frictional effects high quality bearings must be used for the
platform and rotor mounting, and the platform must have a leveling device to
insure elimination of undesirable gravitational effects. As for instrumentation,
the rate control problem requires that the spin rate of the platform be
measured and displayed to the subject, and for the reorientation problem a
simple device capable of measuring angular displacement must be provided.

The reason for requiring that the subject be able both to lie and to stand
on the platform is that this makes it possible to explore differences in man's
ability to perform yaw, roll, and pitch maneuvers. This information may be

expected to be particularly useful in connection with the attempt to devise

a six-degree-of-freedom maneuvering scheme involving gyroscopic devices.



APPENDIX

Derivation of the Equations of Motion
for a System with the Rotor Driven

at a Constant Rate
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Consider a system as shown in Figure 1 (page 4). The rotor is driven
at a constant rate, ;o s and the angle § is.a prescribed function of time.
The kinetic energy of this single-degree-of-freedom system is given in ~

Eq.(l), and the generalized active force .is zero. Hence the equation of

motion obtained from

d K _ K

——_-—-=0

dt o a0
is
[T+ 20, + M) + £B(Hy + J3) + B + J1)]a + v Tssp
ok
= [I+ 1:2(MB + M)+ H + J1la

and by introducing the inertia ratios

J3

I+r2(MB+MC) + Hy +J;

and

J; + Hy -~ J3 - Hs

E' =
I+r2(MB+MC)+H1+J1

one arrives at

oK °

. o - RYQSB

[0
1 - E's®B

This equation is of the same form as Eq. (9). Hence, all previous analysis

may be applied to the case of the driven rotor simply by replacing E and

o %

vy by E' and ;o , respectively.



