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STABILITY OF PANE MTAGNETOHYDRODYNANIC CHANNEL FLOW 

WITE PARAI 1L MIGNETIC FIELD 

P. 	 R. Nachtsheim, * ASA-Lewis Research Center 

and 

E. 	 Reshotko, Case Institute of Technology 

Cleveland, Ohio 

An approximate solution to the title problem was given in a paper by 

J. T. Stuart I where a reduced fourth-order disturbance differential equation
 

proposed for small-nagnetic Reynolds number was solved using asymptotic

) 

methods. The problem has been reexamined through exact numerical integra­

tion of the pertinent sixth-order system of disturbance equations throughout,
 

-2
,an extended range of magnetic Reynolds numbers 2 . Fbr comparison, exact 

numerical results were also obtained to StuartIs fourth-order equation. The 

results indicate that Stuart's simplifying assumption is justified only for 

magnetic Reynolds numbers small compared to one. For magnetic Reynolds 

numbers of order one-or grester, there are significant changes in the sta­

bility characteristics reflecting the increased importance of magnetic
 

effects. This is also borne out in a calculation of the various viscous and
 

magnetic contributions to the rate of change of disturbance energy. It is
 

shown that the resistivity enters this problem in two ways: (1)it sets up a
 

time-independent Hamxell stress that augments the disturbance energy when it
 

is of the same sign as the vorticity of the basic flow, and (2), through joule
 

dissipation 	the disturbance energy is decreased. For small resistivity
 

(Re > 1) the former dominates, leading to a net augmentation of the disturbance 

energy, while for large resistivity (Rem44 1) the dissipative effect is
 

dominant.
 

*Now at NASA-Ames Research Center 

IStuart, J.T4: Proec. Roy Soc A221 189 (195,)
 
2Nachtsheim, P.R. and Reshotko, E.a. NASA TN D-31i4 December, 1965
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MXGNETOHYDRODYNAMIC BOUNDARY LAYERS 
INVOLVING NON-EQUILIBRIUM IONIZATION 

A. Sherman 
General Electric Space Sciences Laboratory, Valley Forge, Pa. 

and 

E. Reshotko 
Case Institute of Technology, Division of Engineering, Cleveland, 0. 

(Consultant, General Electric Space Sciences Laboratory) 

In the study of practical magnetohydrodynanc devices such as 
generators and accelerators recent experimental and theoretical 
research has shown the importance of non-equilibrium ionization for 
their successful operation. At the samhe time, these experimental 
results have demonstrated the existence of large voltage drops at the 
electrodes; thereby preventing full utilization of the non-equilibriun 
ionization. These voltage drops, occur not only in the thin sheath at the 
base of the channel-boundary layer, but also partially in the boundary 
layer itself. Presently available theoretical analyses of the magneto­
hydrodynamic boundiry layer take into account non-equilibrium 
ionization in'only an approximate manner, and neglect the sheath as 
well. They have not been able to predict the large voltage drops 
observed experimentally. 

The present paper will formulate the magnetohydrodynamic 
boundary layer problem when non-equilibrium ionization exists. In 
particular it will be shown that when non-equilibrium ionization is taken 
into account properly, that the characteristics of the sheath at the base 
of the continuum boundary layer are essential to the correct solution of 
the problem. In addition, since non-equilibrium ionization occurs more 
readily when segmented electrodes prevent Hall currents, it is important 
to be able to analyze the boundary layer over an electrode wall with 
alternate finite electrode and insulator segments. For this reason 
solution,of the equations will be carried out by a finite difference technique. 



PROBLEmS IN J x B PLASMA ACCELERATION 
James A. Fay, Marvin Goldstein and Peter Sockol
 

Department of Mechanical Engineering
 
Massachusetts Institute of Technology 

This research is concerned with problems encountered in accelerating 
collision-dominated plasmas by an externally applied magnetic field inter­
acting with currents also supplied from an external source. A principle 
focus of the research is the interaction of the current-carrying plasma

with solid boundaries. Summarized briefly below are accounts of progress 
on four related problems.
 

(a) Experimental measurement of heat transfer to the walls of a
 
Faraday shock tunnel is being investigated. Heat transfer is measured by
 
monitoring the temperature rise of "thin" and "thick" film heat transfer 
gages with an infrared detector. Two types of gages are being developed. 
The first is a heat capacity-gage with 0.1 microsecond response time for
 
measuring rapidly varying heat transfer. The gage consists of carbon and
 
aluminum coatings applied to thallium bromide or arsenic trisulfide windows,
 
the temperature being monitored by a mercury doped germanium detector at
 
liquid helium temperature. The second gage which is being developed to 
measure heat transfer to an emitting electrode, consists of a thicker 
metallic coating for which the response time is about 10 microseconds but 
which is sufficiently thick to conduct the emitted current without being 
heated by Joule losses in the electrode surface of which the gage is an 
integral part. At the present time nroblems of gage coating, infrared 
transmission, calibration, etc. are being studied. Also, a test section for 
use with the gages is being tested. 

(b) A new formulation for transport effects in multi-component
 
boundary layers has been devised which shows promise of simplifying the
 
numerical solution of plasma boundary layer problems. This new method in­
volves direct use of certain moments of the linearized Boltzmann equation
 
from which the gradients of conserved properties are linearly related to the
 
fluxes of these same quantities, and bears some resemblance to the transport 
limit of the Grad moment method. In combination with the conservation laws
 
relating the divergence of the fluxes with convective derivatives and source
 
terms, a set of first order differential equations is obtained (total dif­
ferentials in the case of similarity-type boundary layers) in which the usual
 
multi-component transport coefficients, such as the total thermal conductivity,
 
do not appear explicitly. An additional advantage of this method is that 
different temperatures of electrons and heavy species and different levels of
 
approximation in the Sonine polynomial expansion of the perturbation to the
 
distribution function may be used for different species, which is important
 
for plasma boundary layers. A report is being written for distribution.
 

(c) A theoretical study of Hartmann boundary layers in a homo­
polar device has yielded preliminary results which are in approximate
 
agreement with experimental measurements. The theory takes into account two 
energy equations, (one for the electrons and a second for the heavy particles), 
a diffusion equation for the electron-ion pairs and a momentum equation for
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the heavy species. Approximafte solutions, which use average values of the
 
transport coefficients, show that the flow velocity in the homopolar
 
device is an-appreciable fraction of the "ionizationvelocity," i.e., the
 
velocity of an atom whose- kinetic energy equals its ionization energy, and
 
that appreciable variation in the degree of ionization can result from ­

,small changes {n the total current, -at least for the small degrees.of ioniza­
tion for which the present approximate solutions are valid. 

(d) A zero-order theory for the stabilization by a magnetic field
 
of an arc transverse to a flowing steam has been devised. It is based on a
 
model in wOhich the hot arc column is mbtionless, but is in static equilibrium
 
with the dynamic pressure of the "cold" stream in which it is immersed, and
 
to which heat is conducted from the hot column. In this zero-order theory,
 
the cross-sectional shape of the arc column is determined from the momentum
 
equation and the temperature distribution within the column is determined
 
from the energy equation. The solution of these equations leads to relation­
ships between the stabilizing magnetic field strength and the flow-velocity,
 
between the electric field and the width of the column, and.also -betweenthe
 
arc power and the average temperature. The first tw9 relationships are in
 
approximate agreement with the measurements of Myers
 

A 
Meyers, T. W., "Experimental Investigation of the Balancing Mechanism and
 
.Electrical Properties of an Argon Arc in Crossed Convective and Magnetic
 

Fields," 7th Symposium on Engineering Aspects of NHD. (1966)
 



ELECTRODE EFFECTS IN ACCELERATORS 

By 

S. Aisenberg 
P. Hu 
V. Rohatgi
 
S. Ziering 

SPACE SCIENCES, INC. 
301 Bear Hill Road 

Waltham, Massachusetts 

1. Experiments and Analysis 

A number of problems are investigated experimentally and analy­
tically in order to give a better understanding of some of the important 
physical processes involved in plasma surface interactions. The 
features studied include: the tangential drag on electrodes in J x B 
accelerations; the arc construction processes; and a theory proposed 
to explain electron emission from cold cathodes.by an ion microfield 
emission process. 

The tangential ele'ctrode drag forces are measured for an arc in a 
transverse magnetic field, and it is shown that the cathode and the 
anode tangential forces are an appreciable fraction of the I x B forcb 
driving the plasma. The presence of tangential electrode (and boundAry) 
friction forces is expected for a hot plasma flowing in a channel when 
one considers that some of the tangential momentum is transferred each 
time-an ion, electron, or gas atom collides with the surface. 

The basic features of the electrode structure used in this experiment 
are shown in Figure 1. The force measurements are made for the central 
electrode which is operated as the cathode or alternatively as the anode. 
This central electrode is supported on a torsion spring structure so that 
the tangential force (or torque) can be determined from the angle of 
rotation. 

Some results are illustrated in Figure 2 where the measured tangential 
force is shown as a function of magnetic field for a 77 amp dc arc in 
24 Torr of argon, and where the central electrode is operated as a cathode 
as well as an anode. The cathode force due to ion current drag is 
deduced by as suming that the neutral gas component at the cathode is 
the same as the anode drag. (This assumption should be examined 
further because the boundary layers at the anode and cathode may be 
very different). The measurements show that: 

http:cathodes.by


as1) 	 There is a pronounced threshold in the cathode and anode force 

a function of magnetic field and of arc current. 

2) 	 If it can be assumed that the momentum transfer to the anode is 
predominately due to the neutral gas atoms, there appears to be a 
threshold in the electrode drag by the neutral gas components. 

3) 	 The cathode drag appears to show a saturation. 

4) 	 The cathode force is as large as 24% of the input force driving the 

plasma, and the anode force is. as large as 13%. 

5) 	 The deduced ion current component is larger than the neutral gas 

component, and in the range measured, is about 16%,of the plasma 
driving force. 

The tangential force on an electrode is proportional to the tangential 
velocity, to the perpendicular particle current flow, and to the tangential 

momentum accommodation coefficient. The observation that the tangential 

force at the cathode was larger than the anode force indicates that the' 

positive ion current flow to the cathode is capable of transferring an 

appreciable tangential force to the cathode. The direct measurements of 

the electrode drag forces show that the effect is serious enough to be 

considered further and at the same time gives interesting data that 

should be considered by any proposed models. 

An analysis was made of the arc constriction processes because the 

constriction influences the plasma surface interaction. The constriction 

mechanisms considered involve the balance between the input power to 

the plasma and the following modes of power loss: 1) diffusion loss for, 

low pressure plasmas, 2) radiation loss for high density, high temperature 
plasmas, 3)thermal energy loss for higher pressure plasmas, 4) convec-t 

tive energy loss due to the flow of cooler gas. The available data and 

the theory both show that for the diffusion and for the thermal conductivity 
mode loss, the product of the current density T and the arc current 
should be constant. 

2. 	 Theory 

In order to clarify plasma electrode interactions and facilitate a
 

clearer understanding of the physical parameters governing sheath
 
nearphenomena, the existing collisionless theory of a plasma sheath 

an infinite planar electrode is examined in detail. Ranges of validity, 

as well as difficulties with the existing sheath models are investigated. 

The 	assumption of inonoenergetic particle istributions, as used 'for 

instance in "Bohm's Sheath Criterion" restricts the usual analysis. To 
remove this difficulty Maxwellian particle distribution functions are 



assumed. In addition, microscopic boundary conditions are assumed 
to incorporate the respective electrode and plasma parameters. A new
sheath model is then developed withqut imposing the usual sheath 
criterion for the conditions specified at the sheath edge. Explicit
results for the current-voltage relation and for the sheath thickness 
are obtained for the improved sheath model proposed in this study.
Other important physical quantities are expressed in terms of the
electrostatic potential, which can be calculated by a quadrature sub­
ject to the physical parameters to be specified. The general solution 
reduces to a simple analytic form for the special case where the tem­
perature of the electrons, ions and the electrode are identical. 

Based on the above work, the next logical step in a systematic
analysis necessitates consideration of ionization processes in the
domain of the pre-sheath as well as the sheath itself. Towards this
end it was found necessary to construct kinetic equations which in­
corporate ionization processes. Ionization processes are usually
introduced into the equations of magnetohydrodynamics as gross para­
meters to be determined by experiment. The mathematical accessibility
of model kinetic equations in neutral and ionized gases, motivates the
formulation of kinetic equations for a three-component plasma which
incorporate the ionization process in this study. As a first attempt,
only the ionization processes resulting from electron-neutral collisions 
are considered. The resulting mathematical formalism yields a set of
model equations which are mathematically not more complicated than
those for plasmas without consideration of ionization. The possible
application of the present model equations to various problems is
discussed, such as the ionization growth in a gas, the cathode sheath,
and the structure of an ionizing shock wave. 

Reports and Publications 

The following publications have been generated as a result of the 
research performed under this contract: 

1) Aisenberg, S. and Rohatgi, V; 
"Measured Tangential Electrode Forces for an Arc in a Transverse 
Magnetic Field". App. Phy. Letters, 8, 194 (1966) 

2) Aisenberg, S. and Rohatgi, V.;
"A Study of Arc Constriction Processes ", Presented at the 7th 
Symposium on Engineering Aspects of Magnetohydrodynamics in 
Princeton, N.J.., March, 1966 
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3) 

4) 

5) 

"Aisenberg, S. and Rohatgi, V.;
"A Metallic Insulator for Arc Electrodes ", (to be submitted for 

publication) 

Hu, P.N., and Ziering, S., "dollisionless Theory of a Plasma 
Sheath Near an Electrode" (submitted for publication) 

Hu, P. N. and Ziering, S., "Kinetic Model for Three-Component 
Plasmas With Ionization", (submitt6d for publication) 
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MAGNETOAEEODYNAMIC DRAG AND 

SHOCK STAND-OFF DISTANCE 

C. F. Chang,(1) R. J. Nowak,(1) S. Kranc,(1) R. Porter(1) 

G. Trezek, ( 2 ) M. C. Yuen, (2) T. P. Anderson, (2) and A. B. ambel ( 3 ) 

Gas Dynamics Laboratory
 
Northwestern University
 

It has been shown that the incorporation of magnetic field coils in­
space vehicles offers interesting,possibilities in alleviating some of the
 
problems of space flight. For example, the coupling of the flow field with
 
a magnetic field has the salutory effect of increasing the drag experienced
 
by an entry vehicle. Other promising applications of external magnetogas­
dynamics are: the opening of communications windows, enhanced flexibility
 
of maneuvers by virtue of flight control, active shielding against radiation,
 
the reduction of convective heat transfer and the elimination of the non­
reusable heat shield. So far, such schemes have not been exploited due to
 
hardware design limitations and due to the fact that current design philoso­
phy has been successful in current programs. However, continuing progress
 
in superconducting magnets and the demands of advanced space programs lend
 
practical significance to equipping space vehicles with powerful electro­
magnets. The purpose of this program is to investigate this problem
 
systematically from both analytical and experimental viewpoints.
 

A theoretical study was initiated in order to study and compare the
 
factors important in blunt body, flight magnetohydrodynamics and laboratory
 
simulation in the thermal arc plasma facility.
 

-Consideration of the flow regimes indicates that assumptions of
 
continuum flow, a Hugoniot shock, and sub-layers of viscous and sheath effects'
 
are valid for entry flight be-low 250 kilofeet. The assumptions of a iugoniot
 
shock and thin boundary layer are considerably less valid for the laboratory
 
conditions owing-to the low Reynolds numbers. Therefore, a viscous shock
 
layer was included in some of the analyses discussed below. Theoretical
 

(1) 	Graduate Students
 

(2) 	Faculty
 

(3) 	Chairman and Walter P. Murphy Professor of Mechanical Engineering and
 
Astronautical Sciences.
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difficulties prevented including the shock structure, however.
 

The effects of viscosity, deformation of the magnetic field and the
 

Hall effect on the magnetic interaction were studied by the local similarity
 

method for the stagnation region of aerodynamic - like flow. The flow
 

observables were found for a range of dimensionless parameters appropriate
 

for the flight and laboratory conditions.
 

It was found that the effect of low Reynolds number (laboratory flow)
 

is very important for low magnetic interaction parameter but that a boundary
 

layer develops at high interaction. Thus, the outer flow becomes essentially
 

inviscid for large Hartmann number similar to M1HD Poiseuille flow. The
 

effect of the deformation of the magnetic Reynolds number was negligible for
 

magnetic Reynolds numbers up to an order of magnitude greater than that for
 
However, an increase of an additional order
unseeded, equilibrium plasma. 


(f magnitude resulted in the field being considerably distorted with a
 

wrapping of flux lines about the body. The stand-off was decreased and the
 

drag increased for increasing magnetic Reynolds number. The analysis showed
 

that it is incorrect to assume that a dipole source looks like a dipole at
 

the body surface when there is distortion but that the assumption of a
 
The Hall effect is very
(reduced) dipole strength at the shock is valid. 


important for flight and laboratory conditions with kilogauss field.strengths
 

at the stagnation point. The magnetic interaction is reduced more so for
 

an insulated body than a conducting one but the effect is important for
 

both. A rolling moment is introduced because of azimuthal flow generated
 

by the Hall effect. All of the special effects tend to increase the critical
 

interaction parameter associated with magnetic support where the attached
 
shock layer theory fails.
 

Experimental investigations of magnetoaerodynamic drag have shown
 
Tests have been
substantial (,15%) increase in drag with magnetic field. 


run under a variety of flow conditions with both 1-1/2" and 3" bodies. In
 

general the experimental aerodynamic drag component agrees reasonably with
 

theoretical predictions. The measurements of drag with field for the 3"
 

body do not agree with prediction nearly so well as do those tests for the
 

1-1/2" body. The main reason is the non-uniformity in free stream conditions
 

which affect the 3" body more than the 1-1/2" body.
 

Experimental values of drag increase are compared to theory for a
 

,regime where the viscous and Hall effects are important. No theory exists
 

for the combined effects. The magnetic interaction parameter is obtained
 
from experimentally measured quantities except for the electrical conducti­
vity which is estimated from equilibrium calculations. We have found
 

that while drag appears to be greater under conditions where the Hall and
 

viscous effects are lessened, the various data may be brought closer by
 

plotting against the product of the interaction parameter and the shock
 

density ratio. The remaining differences may be attributed to the Hall
 

effect. Future work will include the measurements of different drag
 
components.
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The shock stand-off distance is plotted versus magnetic field squared.
 
These measurements were made by analyzing photographs of the flow using a
 
scanning microdensitometer. We have found that the experimental measure­
iment is severely hampered by a thickened shock under our running conditions.
 
Nevertheless considerable alteration in the shock stand-off has been observed.
 
Present efforts include the measurements of electron density and temperature
 
across the shock structure spectroscopically in order to better define the
 
shock stand-off distance.
 

In addition to the experimental drag studies, a program has been
 
initiated to experimentally determine magnetoaerodynamic heat transfer to
 
a blunt body. A thin shell, 3" diameter, hemispherical, copper model has
 
been instrumented with thermocouples. In the presence of an argon plasma,
 
the local net transient heat transfer rate to the model is measured with and
 
without the presence of a magnetic field. For a thin shell the heat
 
transfer rate to the model is proportional to the temperature - time rate
 
(aT/dt) of the body if temperature gradients in the body are neglected.
 
Preliminary results with a magnetic field strength of 7700 gauss at the
 
stagnation point yield a 26% reduction in model centerline dT/dt. However,
 
corrections must be made to account for temperature gradients which do
 
exist in the body during the test time.
 

Future tests will make possible the mapping of the magnetoaerodynamic
 
heat transfer over the surface of the body (to half angles of 450) for a
 
range of magnetic field strengths of 8000 gauss and lower.
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PUBLICATIONS
 

-Nowak, R., Kranc, S., Porter, R., Yuen, M. C., and Cambel, A. B., "Magneto­
aerodynamid Re-entry", AIAA Plasmadynamics Conference, March, 1966. 

Anderson, T. P., and Bass, R. B., "Lorentz Drag - An Engineering Approxi­

mation", Journal of Spacecraft and Rockets", Vol. 2, #5, 1965. -

Porter, R. and Cambel, A. B., "Design Calculations for Magnetogasdynamic 
Drag", Report to NASA on NASA NsG 547, 1965. 

Porter, R. and Cambel, A. B., "Comment on Magnetohydiodynamic - Hypersonic 

Viscous and Inviscid Flow Near the Stagnation Point of a Blunt Body", 
AIAA Journal, (to be published). 
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Properties of a Magnetically Suspended Arc in Supersonic Flow
 
by
 

Arnold I. Kuethe, University of Michigan
 

A NASA grant on which work began March 1, 1966, covers experi­
mental and theoretical studies of the properties and structure of a dc arc 
suspended in mutually perpendicular electric, magnetic, and airflow 
fields. Previous work under an Air Force contract, in collaboration 
with Charles E. Bond, showed 1) that the arc can be stabilized on rail 
electrodes at a slant angle near the Mach angle of the flow, 2) that the 
"aerodynamic drag" of the arc changes with arc current in such a way 
that the magnetic field required to stabilize the arc is constant over a 
wide range of the arc current, 3) column rather than root phenomena 
determine the conditions for arc stability, and other gross properties 
6f the arc. 

The work under the NASA grant is being directed toward the 
details of the fluid mechanical structure of the arc and the transfer 
processes by which mass, momentum, and energy are transferred 
to the ambient flow. 

Measurements to date indicate that, over the range of the 
measurements (Mach numbers up to 3. 5, ambient pressure down to 
10 mm Hg) the arc simulates a solid cylinder with a drag coefficient 
between 1. 0 and 1. 5 balancing the Lorentz force. The solid body 
hypothesis is based primarily on photographic observations of an axial 
flow from anode to cathode of about 10 meters/see in the Mach 2. 5 arc. 
In addition to the axial flow, the incremental Lorentz force on any 
relatively hot filament, C. e., higher conductivity and current density 
than the surroundings) will force it upstream to the arc boundary where 
it will be cooled and carried downstream with the flow along the boundary. 
This circulation will resemble that caused by a vortex pair, providing 
an upstreami flow toward the stagnation point. Thus a model of the arc 
.in agreement with the measurements and physical reasoning is as follows: 
The streamlines projected on a cross-section would resemble those of a 
distributed source at the center, a vortex pair and a distributed sink at 
the boundary. 

The *ork will cover the widest possible range of Mach numbers, 
ambient pressures, arc current and magnetic field. Wake traverses 
of gas properties will bemade. Theoretical analyses will include arc 
stability and transport phenomena. 



(a) View looking downstream 

Electrodes 

8"Diame te r,.7 .. - .A 

Field Coil Location 

(b) View looking'West 

Figure 2. Experimental Setup
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A CRITICAL MASS FL9 WMODEL FOR THE MPD ARCJET 

,H. A. Hassan
 
North Carolina State University
 

Raleigh, North Carolina
 

5sG-363
 

At the recent Fifth Electric Propulslon Conference a phenomenological

theory describing the WD arejet was presented by Bennett, John, Enos and
 
TuchmanI. The theory employs the concept of an effective mass flow rate2'3
 
and is based on the assumption that the-arc -discharge will operate at an
 
-effective mass flow rate, me, which minimizes the arc voltage independent

of the actual mass fiow rate passing through the device. As a result of­
this theory it is shown that, for mass flow rates greater or equal to be,

the maximum attainable velocity is limited by a critical velocity, Vt,
 
given by ve = (21/m)1/2 where I is the ionization potential and inis the
 
mass of the atom. For mass flow rates less than te the maximum velocity
 
can exceed v.. It appears that the concept of effective mass flow rate,
 
was introduced2 to explain-the existence of the voltage plateau which is,

characteristic of rotating plasmas. Since it has been shown4
 ,5 that an
 
interpretation of'this phenomenon can be obtained from a consideration of
 
the conservation equations,, the observed behavior of -the MPD arcet should
 
be explained without invoking any assumptions regarding the mass flow rate
 
or the voltage.
 

It has been established experimentally and theoretically that the volt­
agd has the representation V = 

-
Vo + CB where V. and C are constants depending 


on the propellant-and B is the magnetic field strength. 
Using this relation
 
and the conservation equations, it is shown that there exists a critical
 
miss flow rate at which the thrust is maximum. In the absence of losses,

the efficiency at this -critical mass flow rate is 50% and,for mass flow
 
rates less (or greater) than the critical mass flo4 rate, the'efficiency

is greater (or less) than 50%. 
The critical mass flow increases with an
 
increase in total current and/or magnetic field strenth. This critical
 
mass flow rate plays the same role played by fie of Ref. 1.
 

An experimental verification of the above theory requires thrust measure­
ments for a given total current and magnetic field strength for a range of
 
.mass flow rates at low tank pressure. Such measurements were reported by

Brockman, Hess, Bowen*and Jarrett6 for various tank pressures. The figures

show a least-square fit of the data of Ref. 6 for low tank pressures. 
These
 
figures indicate the existence of an optimum mass flow rate which increases
 
with an increase in the total current and/or magnetic field strength in agre
 
ment with the predictions of the theory.
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ANALYSIS OF INSTABILITIES IN A LINEAR HALL CURRENT ACCELERATOR 

G. W. Garrison, Jr. and H. A. Hassan
 
North Carolina State University
 

Raleigh, North Carolina
 

NsG - 363
 

Experimental investigation of instabilities in linear Hall current­
accelerators with applied axial,electric fields and radial magnetic fields­
showed the existence of screw ype instabilitieslb2 which show a striking
 
resemblance to the instabilities observed in the positive column. Various
 
attemptsl 2 have been made to apply the various- theories developed by
 
Ka'domtsev and Nedospasov3 , Simon4 , poh5 and Morse6 for the study of in­
stabilities in the positive column and crossed field geometries to the
 
linear-Hall current accelerator, However, none of the above theories was
 
directly applicable.
 

Because of the observed instability in the linear Hall current accelerator 
is similar to that obserged in the positive column, the governing equations 
employed here are those normally employed in the study of weekly ionized gases. 
These equations were also the basic equations employed in References 3-6. A 
normal mode analysis similar to that employed by Johnson and Jerde7 for the 
positive column has teen employed. It is shown that, regardless of the,direction 
of the density gradient, no screw type instability exist if it is assumed that 
the axial magnetic field is identically zero. Since the driving mechanicpof 
the, observed instability is an E x B drift the above result is expected because 
a Ef component alone does not yield a radial drift component. 

Since the axial component of the magnetic field is small but never identi­
cally zero in a linear,Hall cirrent accelerator, the analysis has been carried
 
out for a magnetic field having both a radial and axial components. An exact
 
solution of the governing equations resulted in a density distribution with no
 
axial or azimuthal dependance. This solution was expressed in terms of the
 
confluent hypergeometric function. Assuming that the perturbed density and
 
potential have the general representation f(r) exp i ( wt + kz + mO) where W
 
is the frequency and k is the wave number a general dispersion relation has been
 
derived. The special case of a right handed helix (m = -1 mode) has been dis­
cussed in detail and the results are presented graphically. The Figures show,
 
plots of frequency, wave length, electric field for typical mobilities vs. the
 
critical value of Bz/B at the stability boundary. It is seen that the dimen­
sionless parameter x. which depends on the ionization rate, radius of the device
 
and radial and axial magnetic field strengths has a great influence on the stabil
 
ity; as the value of x. increase the discharge becomes more and more unstable.
 
As ,an illustration, the calculations show that the discharge is unstable for
 
values of xo between 1.5 and 2.0 when 6 , the mobility ratio, is 10. This
 
result is somewhat interesting because the results of Ref. 1 indicate an onset
 
of instability as soon as the magnetic field is switched on. The results alsQ
 
show that, at the stability boundary, the wave length is almost independent
 
of the magnetic field strength except for a combination of high x. and B/B.
 
Also, an increase in Br promotes stability.
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EXERIMENTAL INVESTIGATIONS OF STRONG SHOCK WAVES 
MOVING THROUGH AN IONIZED GAS 

G. L. Spencer

Case Institute of Technology
 

Cleveland, Ohio
 

An experimental investigation of shock waves moving through a highly
ionized gas is reported. The shock waves are generated in an electromagnetic
T-tube. The ambient gas, helium, is highly preionized by means of an axial 
current discharge with the shock waves being initiated during the after-glow
period of the preionization. Measurements have shown that the plasma is in 
local thermal equilibrium and nearly completely ionized during the early 
after-glow period of the preionization. Typical temperatures and electron 
densities are in the order of 22,0000K and 3 x l016 electrons/cm 3. Gasdyn­
antic shock waves were studied and the results compared to the theory presented
by Jaffrin and Probstein.* It was possible to verify the existence of, and 
quantitatively measure the thickness of the first layer, as predicted by
their theory. Magnetohydrodynamic effects were studied via provision of an 
axial magnetic field. Magnetic field jumps and currents were observed in the 
shock front and found to be completely stable as long as the shock wave 
could be observed. It was found that these effects did not appear if either 
the applied magnetic field or preionization were absent. 

*Jaffrin, M. Y. and R. F. Probstein, Phys. Fluids 7, 1958 (1964). 
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HARMONIC GENERATION IN A MICROWAVE PLASMA 
F. J. Mayer and 0. K. Mawardi 

Case Institute of Technology
 
Cleveland, Ohio
 

A number of attempts have been mbade to estimate the harmonics generated 
in a microwave discharge.1 These predictions have been compared with exper­

iments. 2 The corroboration of the theory with the experimental observations 
has often been artifically improved by the arbitrary choice of parameters 

the theory. One such parameter is the electron temperature.appearing in 
Now as this temperature has a marked influence on the amplitude of the bar­

monics one would expect that the temperature should be found as one of the 
consequences of a correct theory.
 

I Accordingly, the affect of a few parameters were studied systematically. 

It was demonstrated 3 that the temperature dependence of the collision fre­

quency was unimportant i i as far as explaining the result of Uenohara's 
experiment. 

Work is now proceeding to investigate the effect of density gradients 
and ionization on the harmonic generation. 

+B.Murphy, Phys. Fluid 8,1534 (1965); P. Rosen, Phys. Fluid 4, 341 (1961). 

2M. Uenohara, et.al., Proc. Ionization Phenomena in Gases, 2, 768 (1960).,
 

3F. Mayer, Phys. Fluid (In Press).
 



31 

A WIDE-BAND DICKE TYPE RADIOMER 
A. T. Alper and 0. K. Mawardi
 
Case Institute of Technology
 

Cleveland, Ohio
 

A wide-band Dicke type radiometer capable of operating within 2.6 to 
14 EMC frequency range has been constructed. In order to achieve this ex­
tremely wide bandwidth operation double ridge waveguide instruments, such 
as a balanced mixer, a directional coupler, a ridged-waveguide switch, two
 
coaxial to ridge adapters, and X and S-band to ridge waveguide transitions,
 
have been designed and developed. Difficulties have been encountered in 
achieving uniform frequency response of the balanced mixer due to matching
of mixer "ET' and "H" planes to the balanced anms. Aside from 4.5,- 5 KMC 
frequency bandwidth, the radiometer has been calibrated in the range of 
2.6 to 9 EMC using argon and fluorescent noise sources. The radiometer sen­
sitivity, equivalent to a minimum detectable temperature change of 1.6 0 K 
-has been computed. 

With wide-band capability of this radiometer, electron cyclotron radi­
ation intensity measurements in a plasma have also been made by sweeping

local oscillator of the radiometer from 2.6 to 9 KMC.
 

The radiometer is planned to be used in a series of investigations
 
dealing with electron cyclotron harmonic generation in a plasma.
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EXPERIMENTAL STUDY OF THE INTERACTION OF ENERGETIC ELETRON
 
AND A PLASMA
 

W. B. Johnson and M. R. Smith-

Case Institute of Technology
 

Cleveland,' Ohio 

An experimental determination is made of the distribution of energy
 
losses suffered by a beam of energetic test electrons traversing a dense,
 
high temperature plasma. The test electron energy is 3,000 electron volts 
and the plasma density varies from 5 x 1015 to 1 x 1016 cf-3 at a temper­
ature of"' 40,0000K. The experiment was designed to produce data on single
 
electron interactions and not on beam-plasma effects. The experimental
 
average energy loss is observed to be larger than the theoretical prediction,
 
indicating a minimum discrepancy of at least an order of magnitude between
 
theory and experiment. The theory includes the effects of binary collisions 
and collective interactions. The discrepancy probably is explained by the 
neglect in the theory of higher order terms in the plasma kinetic equations. 

-The experimental average energy loss and spread in energy are both found to 
2
 ,
vary,proportional to the plasma electron density.

1
 

Reported in detail in:
 

"A Measurement of. Energetic Test Electron Interaction with a Plasm, M. R. 

Smith and W. B. Johnson, Plasma Research Program T.R. A-38, June, 1965; 
Case Institute of Technology. 

2"Coll sional Interactions of Energetic Test Electrons with a Plasma, M. R. 

Smith, Plasma Research Program T.R. A-39, July, 1965; Case Institute of
 
Trphnnl amy.: 
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A BEAT FREQUENCY INTERFEROMETER FOR PLASMA DIAGNOSTICS* 
W. B. Johnson, A. B. Larsen, and T. P. Sosnowski"
 

Case Institute of Technology
 
Cleveland, Ohio
 

A laser method has been developed for the diagnostics of plasmas with 
electron densities greater than about 1011 electrons/cm3 . A spatial resol­
ution of about one microsecond, is calculated for the particular apparatus
which has been used. The range of sensitivity corresponds favorably to that 
achieved by microwave methods, but the spatial resolution is much superior
to that afforded by microwaves. The method depends on the detection of the 
shift in frequency of a laser when a plasma is introduced into the optical 
cavity. 

If a cavity of length L.is employed to probe a plasma of length £ in­
ternal to the cavity, then a frequency shift AV is expected which is given 
by 

2 
2 W2 L -L ­2V 2 v r(nol) (1) 

2
where w = 4xne2/m is the square of the plasma frequency, v is the oscil­
latory Prequency of the laser, and no is the index of refraction of all other 
particles in the plasma. To separate the effects of plasma, the frequency
shift must be measured at two laser frequencies. Conveniently He-Ne lasers
 
operate well at both 6328 and 11,523 A. At the first wavelength, the ex­
pected plasma contribution for a density of 1011 electrons/cm 3 is 4.3 kc/s
for k/L = 1/2. Observed frequency shifts are about two orders of magnitude
higher, which shows the necessity for making the dual measurement. Fm de­
tector techniques have been used with frequency differences up to about 
5 mc/s. For larger shifts, spectrum analyzer methods could be employed out 
to the limit of photomultiplier tubes. Thus these techniques complement

both microwave and other laser methods for the measurement of plasma electron 
densities.
 

Experimentally a system has been constructed which employs two 'laser 
cavities; one laser serves as the probe and the other the "local oscillator" 
laser. Each of the lasers is isolated optically and electronically but 
coupled together mechanically to assist in the cancellation of mechahical 
and thermal drifts. The output beams from each laser are made to coalesce 
by a beam splitter and are allowed to illuminate the surface of a photo­
multiplier. Two channels are thus available to nike measurements simultan­
eously at the two wavelengths, 6328 A and 11,523 A. Using these techniques
and others to be described in the paper, excellent overall system stability
has been achieved in standard laboratory surroundings. Beat frequencies of 
± 150 kc/s for at least three minutes. The forn r corresponds to a stability 
of the total optical path length to about ± 0.1 A. Short-term stability 
measurements therefore show that plasmas in the order of 1011 electrons/cm3 

can be probed. Experimental data on argon discharge tubes will be presented. 
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It is felt that with a better environment that it should be possible to in­

prove on this stability by an order of magnitude. 

*Also published in: 

Journal of Quantun Electronics, April, 1966, Vol. QE-2, Paper 8C-8 Pg. lx. 
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TURBULENCE IN A RAREFIED PLASMA
 

C. M. Tchen
 

,National BureAu of' Standards, Washington, D. C.
 

A theory is developed on the damping process, in a turbulent
 

plasma (nonlinear Landaudamping). The Vlasov-Poisson equations.,
 

describing the-turbulent fluctuations, generate a chain of equations
 

for their correlations. If the four-th order correlation.is degenerated
 

into lower orders, the chain bebomes closed. The result shows-that
 

the decay of the electrostatic wave energy is governed by the sum of
 

twoo'damping coefficients: (1) a linear Landau damping coefficient
 

which is independent of the amplitude, and (2) a turbulent damping
 

coefficient dependent on the amplitude. Correspondingly the u2±iutLr.t
 

coefficient consists of a linear part and a turbulent part. On th9 same
 

basis a kinetic equation is derived in the generalized form of the
 

Fokker-Planck equation.
 

http:correlation.is
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PLASMA VORTICES AND THEIR MOTION IN INHOMOGENEOUS MAGNETIC FIELDS 

Winston H. Bostick
 
Stevens Institute of Technology
 

In the laboratory experiment of plasma flow over a magnetic dipole the
 

of the plasma front into plasma vortices has been observed by magneticbreakup 
and electric field probes and by image-converter photography. (See figure 11 

Recent image-converter photographs now 9how quite clearly the formation of 

these columnar type vortices in pairs. One can make a plausible model for 

the formation of these pairs out of the flutes which grow in Rayleigh Taylor 

instability. (See figure 2). One ban also now understand on the same basis 

why the plasma proceeding across a magnetic field from a small two-wire button 

plasma gun is in the form of columnar plasma vortices two abreast.
 

The photographed trajectories of plasma from a two-wire button plasma gun
 

fired in inhomogeneous magnetic fields shows clearly that the plasma vortices
 

"bounce off" of the region of increasing field.
 

The force-free type of vortices with helical magnetic fields observed by
 

of our students Robert Small, at Grumman. He
Wells have been studied by one 
confirms with density-flow probes, magnetic and electric field probes that the 

conical theta-pinch generates a train of such force-free vortices which proceed 

along a guide field and coalescewith time, 

The plasma coaxial accelerator operated with a hexagonally -shaped center 

conductor generates two such force-free vortices on each flat side of the
 

hexagon. We now understand qualitatively the process whereby these pairs of
 

vortices, one corotating, the other counterrotating, are generated. (See figure
 

3).
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Addendum to Report
 

Pair Production of Plasma Vortices , 1. H. Bostick et. al;
 

The only vectors in figure 5 whose directions (i.e. the signs) have
 

been experimentally measured or inferred thus far are:
 

a. The general direction of B in the coaxial accelerator, resultin5 fran
 

a negative center conductor and positive outer conductor.
 

b. 	The direction of B along each of the radial plasma filaments (see 

figure 3)-. 

c. 	 The plasma density flow vector along the filaments is inferred from 

general plasma flow patterns in previous coaxial accelerators and 

also 	from the tact that figure 2 shows a piling up of the plasma at the­

locations where the radial filaments intersect the outer conductor (anode). 

In figure 5 the plasma density flow vectors circumferential to the filaments
 

dnd magnetic fields circumferential to the filaments have been only surmised with 

consistency being -observed in righthandedness and lefthandedness for' both magnetic 

and velocity vectors. A serious criticism of the directions chosen for these
 

vectors in figure 5 is that the current along the filaments would be in the 

opposite direction to the gleneral current in the coaxial accelerator. An 

alternative and probably- preferrable choice is that shown in figure 6 in this 

addendum, The trAe determination of the directions of these vectors must await
 

further measurements with coupling loops and density flow probes. These measure­

ments are now in progress.
 

ERRATA 

1. 	 Page 2 line 12 should r ad ( B in the .!oaxial accelerator) and show that 
these these fields are of opposite
 

2. 	Page9 figure 5 caption - delete last line,
 

Vinston H. Bostick 
Stevens Institute of Technology
 
Hoboken, New Jersey 
5 April 1966 
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EXPERIMENTAL INVESTIGATION OF THE FUNDAMENTAL
 
MODES OF A COLhISIONLESS PLASMA
 

Contract Number A27-275
 
General Atomic Division
 
General Dynamics Corporation
 
P. 0. Box 608, San Diego,California 9212 

Principal Investigator* 	 John H. Malmberg 

Associates: 	 David L. Book
 
Norris W. Carlson
 
T. K. Fowler 
C. Dave Moore
 
T. O'Neil 
Charles B. Wharton 
Norman Rostoker 

Objective
 

To measure .the dispersion damping,and beam induced growth of plasma
 

waves near the electron cyclotron frequency,and to develop theoretical disper­

sion relations for plasma waves in non-uniform plasmas. This work is part of 

.a project to investigate experimentally and theoretically the turbulence resul­

ting from the grbwth of waves in a collisionless plasma, and to study the 
of the plasma (e.g., transport coef­effect of the turbulence 	on properties 

ficients).
 

Background
 

The behavior of plasmas is, in many circumstances, dominated by dynamic 

effects vhich do not depend on the existence of large-angle collisions. In
 
arethese collisionless plasmas the usual collisional dissipative mechanisms 


absent and the dynamics of such plasmas are completely different from the
 

Among the most basic properties of a collisionless plasmas
dynamics of a fluid. 

from a theoretical point of view, are those embodied in the dispersion relations
 

character of the waves which can propagate in the plasma.which determine the 

If any of these waves are unstable, they grow to some limit determined by the
 

and the wave spectrum in 	 the final statenon-linear theory of plasma dynamics, 


.(i.e., the turbulent end-result of the growth) determines many of the plasma
 
Forexample, the transport properties, the
properties of practical interest. 


microwave scattering cross section, and the equilibrium density in a contain­

s magnetic field) are likely to be dominated by the
ing field (e.g., the earth2


turbulence of the plasma.
 

The dynamics of a collisionless plasma is described by the collisionless 

Boltzmann equation combined with MIxwell's equations. These equations, com­

bined with the definition of charge and current, constitute a complete set of
 

equations and thus, if boundary conditions are specified, are in principle a
 
However, the
complete description of the collective motions of the plasma. 


equations are non-linear 	and cannot be integrated directly. To obtain solutions
 

the set of equations .is usually linearized by investigating the effect of a 
i.e., using perturbation theory. Bysmall disturbance on some initial state, 


carrying the perturbation theory to second order ("quasi-linear theory") a
 

description of the turbulence resulting from the wave growth is obtained, and
 

from what amounts to a third order calculation, the ultimate dissipation of 



the turbulence is predicted. Experimental confirmation of the theory is al­
most completely lacking, partly because it has only recently'been possible to
 
make laboratory plasmas which match the assumptions of the theory.
 

Progress and Results
 

The principal theoretical effort in the program has been devoted to de­
veloping the theoretical techniques necessary for'the application of the linear 
theory of plasma waves to the geometries ehcountered experimentally, where the 
size is finite, and the density a function of position. In particular, methods 
have been developed for predicting the dispersion and damping of electron 
cyclotron waves in, the geometry of the turbulence machine from first principles. 

The turbulence machine at General Atomic (developed under other programs)

provides a quiescent, collisionless plasma which matches the assumptions of the
 
theory. Included in the installation are a variety of highly developed ,diagnos­
tic instruments for wave propagation experiments. Many of the plasma properties
 
are known in detail from other experiments. Using this facility, the propaga­
tion of waves near the electron cyclotron frequency has been investigated. The
 
dispersion and damping of the waves has been measured, and their growth due to
 
an electron beam injected into the plasma has been observed. Some of the 

waves are wave-guide modes perturbed by the plasma. The wave of most interest
 
for these measurements is electron cyclotron wave. This is a backward wave
 
which propagates between the cyclotron frequency and the upper hybrid frequeney.
 
The measurements have been made for a variety of .plasmaparameters.
 

Addition of a cusp magnetic field to the usually uniform magnetic field
 
near the plasma source reduces the anomalous diffusion of the plasma by an
 
order of magnitude. We hypothesize that this geometry decreases random electrfc
 
fields in the plasma by reducing communication with the source, and thus re­
sults in reduced diffusion.
 

Future Plans
 

We intend to continue the investigation of the waves. We want to com­
pare the observed dispersion relations with theory using independently measured
 
plasma properties in the theory for comparison. The damping measurements
 
need better precision, and much better growth data would be desirable. After
 
the dispersion, damping, and linear growth of these waves is measured and
 
compared to theory, the next step along the road to.understanding the ultimate
 
turbulence and diffusion associated with them is to investigate the non-linear
 
limit of their growth. Further measurements will also be made to establish
 
whether our hypothesis on how the cusp field reduces diffusion is correct.
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STABILITY OF PLASMAS SUBJECT TO CONVECTIVE INSTABILITIES 

E. H. Holt and D. A. Huchital
 

Rensselaer Polytechnic Institute, Troy, N.Y.
 

A transverse magnetic field which is weak relative to the main longi­
tudinal magnetic field applied to a positive column plasma has the effect of
 
increasing the range of plasma parameters over which the plasma remains stable 
against the well known Kadomtsev or convective instability. Kadomtsev and 
Nedospasov1 have shown that a perturbation of the form
 

E(r) = Jl(pr) ep (imo + ikz + ic)t) 

will grow provided the criterion
 

Ak4 +"Ck 2 + G0 + 0 M rnlkE/Te ( 

is satisfied, where the coefficients are functions of the longitudinal magnetic
 
field defined in reference 1. We have modified equation (1) to include a
2the formtransverse field, by writing it in 

Ak/P+ Ck2/P 0 + G m 4< E/Fe (2) 

where P I + (ge B ). 2 Clearly equation (2) reduces to equation (1) in the 
limit T. 

The two criteria are compared in Figure 1, in terms of the parameter
 
9 

-

tan BT/B Lg It can be seen that the plasma becomes more stable as BT
 

increases. Experimental confirmation of this result has been obtained. A
 
further consequence of finite B. is shown to be the surpression of m 1
 
in favor of u = 2 instabilitieb.3
 

Results of experiments aimed at stabilizing the plasma by means of
 
quadrupole magnetic fields are illustrated in Figure 2. Stabilization of solid
 
.state plasmas in InSb has been successfully achieved in this way by A4eker-

Johnson. 4 In our case, modest currents through the stabilizing windings are 
shown ta quench the instability oscillations quite effectively.
 

The convective type of instability is likely to occur in a number of
 
different plasma types covering a wide range of plasma parameters. Guest 
and Simon5 have suggested that an entirely similar mechanism operates in the
 
low pressure arc due ,to streaming of particles along the magnetic field.
 
Hoh 5 and Simon7 have proposed that a variation of the Kgdo'tsev instability 
is present in a reflex discharge. Finally, Cherrington has shown that
 
longitudinal gradients of density and temperature pan trigger the Kadomtsev 
instability, thus suggesting an explanation for the anomalies observed in an
 
rf discharge by Powers. 7 A systematic approach, based upon the techniques 
we have developed in studying the positive column, is expected to yield
 
important information concerning the instability mechanism in this wide variety
 
of plasmas.
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Figure 1. The Stability Criterion for a Positive Column Showing the Effect 
of a Transverse Component of the Magnetic Field.
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Figure 2. Stabilization of the Discharge by a Quadrupole Magnetic Field.
Top trace: AC voltage picked up on a probe (i volt/m)
Bottom trace: current throu*h the quadrupole windings (20 map/cm)
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D. A. Huchital and E. H. Holt
 

Rensselaer Polytechnic Institute, Troy, N.Y. 

We have carried out a systematic experimental study on the modes of
 
the Kadomtsev instability of a collision dominated magnetoplasma which has
 
resulted in new information and understanding concerning the presence and
 
dominance of the separate modes, m = 0, m = 1 and m = 2.
 

Anomalous effects were reported by Lehnert 1 to appear when a longitudinal
magnetic field, BL, impressed on a dc positive column exceeded a critical
 
value, B .. The onset of these effects was explained by the stability con­
siderations of Kadomtsev and Nedospasov2 who showed that a helical perturbation
 
of the form J(Or) exp(imt + ikz + int) will grow exponentially when BL> Band m 1. L c 

We have studied the plasma with Langmuir probes to determine the rela­
tive importance of the various possible modes.3 We have used sets of four 
probes inserted 900 apart to measure azimuthal phase relations. A typical

result is shown in Figure 1. The 900 phase difference between the two signals

verifies the presence of the m = 1 mode.
 

Our investigations have included the interesting observation that an 
m = 0 class of oscillation is commonly present in the plasma. This new result 
cannot be explained on the basis of the Kadomtsev theory. Data will be 
presented to show that the m = 0 oscillation vanishes when the electric 
field in the column is precisely aligned with the main magnetic field. 
Transverse components of magnetic field as small as 0-5 gauss are sufficient 
to generate m = 0 oscillations of appreciable amplitude. Experimental and 
theoretical results will be presented to show that the m = 0 oscillation is 
an important non-linear effect resulting from the interaction of the helical
 
m = 1 mode with the transverse magnetic field.
 

When the transverse magnetic field is increased to the order of several 
tens of gauss, the m - 2 mode is observed to become the dominant oscillation. 
However, the experiment is incapable of distinguishing between a genuine
 
m = 2 instability and a non-linear effect similar to that associated with
 
m = 0. We have developed a new experimental technique4 that considers the 
response of the plasma to externally impressed perturbations while the magneto­
plasma is operating in the sub-critical (BL < Bc) regime. 

Figure 2 shows the signal detected at probe set B as a function of 
the frequency of the source connected to probe set A. It is shown that as 
the critical magnetic field of 2100 gauss is approached a distinct resonance

representative at the m = 1 instability is excited. Experimental results 
obtained by this technique will be presented to establish the independence

of the m = 2 instability and to confirm the non-linear nature of the m = 0 
mode. 
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PLASMA RADIATION AND THE DETECTION OF NON-MAXWELLIAN
 

ELECTRON VELOCITY DISTRIBUTIONS* 

J.H. Noon, P.R. Blazuk, E.H. Holt
 

Rensselaer Polytechnic Institute, Troy N.Y.
 

A gated microwave radiometer1 and a specially constructed magnetoplasma
 
waveguide cell2 have been used in this laboratory to monitor the radiation
 

temperature of electrons in an afterglow plasma and to examine departures
 

from a Maxwellian electron veloqity distribution. The cell is also suitable
 

for 	a study of anomalous diffusion in a pulsed magnetoplasma,
3 or for measur­

ing 	noise radiation near the critical magnetic field for plasma instability,
 

although these measurements have not as yet been carried out.
 

5 

Microwave radiometers have been used by a number of workers

4 , to detect
 

the 	thermal noise radiation from qlectrons in a collision-dominated nitrogen
 

plasma and thus to determine the electron temperature, assuming a Maxwellian
 

electron velocity distribution exists in the plasma. This assumption is not
 

necessarily valid always as shown by our results which are reported below. If
 

a- longitudinal magnetic field is applied, measurement of the noise power from 

the 	plasma, as a function of magnetic field, for a range of field strength
 

such that the electron cyclotron frequency is close to the microwave observa­

tional frequency, may be analyzed
6 to determine departures from a Maxwellian
 

distribution. A sample of our experimental results in a nitrogen discharge
 

showing noise radiation temperature as a function of applied magnetic field,
 

are 	shown in Figure 1, and distribution function parameters giving best fit 

to the data are shown in Figure 2. These results show clearly that for a
 

short time after the cessation of the pulsed DC discharge the nitrogen after­

glow is relatively rich in high energy electrons, then becomes deficient in
 

high energy electrons, then relaxes back to a Maxellian distribution. This
 

also manifests itself as an apparent 'maximum in the radiation temperature, at 

post-discharge times of order 25 microseconds, and by a relatively slow rate
 

at which the electrons relax back to room temperature. The magnitude of both
 

these effects depends somewhat on the energy input into the discharge as shown
 

.in Figure 3. Time resolved studies of the active discharge itself have also
 

been carried out and it appears that a time of the order of 10 microseconds
 

after application of the DC voltage to the electrodes is required before a
 

Maxwellian electron velocity distribution exists in the nitrogen discharge.
 

These results can be used both to provide information about energy loss
 

processes in the plasma and also to indicate the regime in which the magneto­

plasma becomes unstable above a critical magnetic field.
 

Further measurements planned with the magnetoplasma cell will be outlined. 

'*Work supported by NASA under grant no. NsG 48. 
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Figure .	 Radiation noise temperature Tr as a function of applied magnetic 

field B. When A(B) = O B is such that the electron cyclotron
frequency wb is equal to the microwave observational frequency w. 

A(B) =-0 - (cycles/sec torr)2((M )2%)/Pc


Figure 2. 'Variation of distribution function parameter Z with time in the 

afterglow. Assuming f(v) cc exp(-bvk, I = 2 corresponds to a 
Maxwellian and J = 4 to a Druyvestyn distribution. 

Figure 3-	 Radiation noise temperature in the afterglow period for different
 
energy input conditions in the active discharge.
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PLASMA MEASUEMENTS FROM 3 To. 120 KILOBA R OF PRESMU 

James W. Robinson
 

The University 	of Michigan, Ann Arbor, Michigan 
Grant Ho. NHsG-k15 

The purposes of the research have been to make basic measurements 
and to check the accuracy ofof the properties of very dense plasmas 

theories which might be applicable to a description of these plasmas. 
and energy densityMeasurements of temperatuire, pressure, resistivity, 


were obtained in the range of pressures from 3 to 120 kilobars. The
 

Debye shielding theory often used for theoretical studies of plasma was
 

found to be very inadequate at these high 'pressures. 

lthough high density plasmas occur in various experiments involv­

ing exploding 'wires and hypervelocity guns, for example, little has 

been known about the properties of such plasmas, E. A.,artin of the 

University of Michigan introduced techniques which have been extended 

basis of the present research into the properties of plasmasto form the 
at high pressure. 

The experimental work was conducted in two phases, First, -with 

a refinement of Martin's methods, plasmas were studied in the range of 

pressures from 3 to 15 kilobars. These plasmas were formed by discharg­

ing a capacitor bank between electrodes submerged in -water. From mea­

surements of radiation intensity, measurements of the electrical dis­
computed.charge characteristics, and photographs, the desired data -was 

The pressure was a function of the rate of current rise in the column 

of plasma formed by the discharge. In the second phase, the discharge
 

was formed in water which had been compressed by a chemical explosive 

to 100 kilobars of pressure. The data was recorded similarly and -varia­

tions of pressure from 100 to 120 kilobars also depended upon the rate 

of current rise. 

The diameter of the discharge column and the current flowing 

through the column increase nearly linearly with time. As the column 

grows, energy is supplied from the discharge circuit so as to maintain 

nearly constant energy density in the plasma. Likewise the other in­a 
with time. Energytensive properties of the plasma are nearly constant 


lost from the plasma through expansion against its surroundings and,
 
to
through radiation is a small fraction of the total energy supplied 


the plasma- The best data are taken late in the interval of observa­
instru­tion -when the variables are in the most accurate ranges of the 

mentation, that is in the interval from 0.8 to 1.0 lisec, 

The magnetic pinch effect is important in the calculation of pres­

sure. For a uniform radial current distribution the pinch pressure 

varies from zero at the boundary of the discharge to a peak on the cylin­

drical axis. The Volume average of the pinch pressure which is half of 
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the peak is added to pressure produced by the inertial restraint of the 
water surrounding the column to obtain total pressure. Since the resis­
tivity of the plasma has been found to decrease with increasing pressure, 
the radial pressure gradient tends to concentrate current at the center,
 
causing an even greater pinch than has been estimated. 

Without exeption, the temperatures of the plasmas formed without 
explosives were about 35 000°K while the temperatures with explosives 
were about 10 000K. The variations with pressure of the energy density 
u and the resistivity p are plotted in Fig. I and Fig. 2; 

A system of equations based upon the Debye shielding theory was 
used to predict particle density and energy density from temperature 
and pressure for the case without explosive. The predicitions of energy 
density were found to be about one-fifth of the measured values while 
the measurements are considered accurate to within 20 percent. The 
failure of the Lebye theory was not surprising because the Debye radius 
was smaller than the average interparticle spacing. In place of the
 
Debye theory, a semiquantitative theory based upon the distortion of 
electron quantum levels was found to provide a much better explanation 
of the energy density measurements. For the case -with explosive, the 
Debye theory predicted an unreasonably low level of ionization because 
of the low temperature, and the analysis was not carried further. The 
concept of excluded volume was introduced into calculations for the 
higher pressure. From the theoretical considerations the density of
 

-atoms for a 100 kilobar plasma was estimated to be 10 3cmS and for a 
7 kilobar plasma to be 10 2 2 cm-3. 
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%INVESTIGATIONS ON THE MECHANISM OF THE MATERIAL RELEASE 
IN THE HIGH VACUUM BREAKDOWN 

by

Richard T. Schneider
 

Department of Nuclear Engineering Sciences
 
University of Florida 

ABSTRACT 

The program to be reported started on May 1, 1966; therefore, 
it is necessarily still in the planning stage. However, preliminary 
experiments for orientation purposes have been made. The program is 
aimed to make a contribution to the understanding of the mechanism 
of the high voltage vacuum breakdown. Special emphasis is placed on 
the mechanism of material release from the electrodes. It is desir­
able to find means to predetermine the material release, and perhaps 
initiate it by magnetic ignition. The information obtained should 

­

be useful for electric propulsion using metal plasmas. 

The measurements will be made in a vacuum as low as 10-10
 
Torr. The electrode configuration will be parallel plates for
 
electrode conditioning and repeatability tests. Other configura­
tions are planned to favor or suppress one or more of the many pro­
cesses which take part in the vacuum breakdown. These processes
 
are (1) electron frees positive ion at the anode, (2) photon frees
 
electron on the cathode, (3) electron frees photon on the anode,
 
(4)positive ion frees electron at the cathode, (5) negative ion
 
frees positive ion at the anode. Using appropriate electrode con­
figurations, with auxiliary electrostatic or magnetic fields, it
 
should be possible to suppress or enhance some of these processes
 
in order to study their influence on the mechanism of the vacuum
 
breakdown.
 

Spectroscopic studies of the inter-electrode plasma are
 
planned. The object is to determine the temperature, density and
 
ionization degree of the material released from the electrode. In
 
order to do this, methods of short-time spectroscopy have to be
 
applied. The discharge time is in the order of 1 sec. or shorter.
 
Therefore, it is worthwhile to investigate whether the inter-electrode
 
plasma has a defined temperature. Our point of interest will be to
 
find out if the material released from the electrodes is released in 
the form of ions or if it is released as atom vapor by thermal vapora­
tion, or if it is released in larger units (clumps) by mechanical
 
stress or impact.
 

Time integrated spectroscopy can be used to determine how
 
much material from whidh electrode is released. This will be aided
 
by making anode and cathode of different materials.
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Some results of the preliminary experiments will be shown
 
at the meeting.
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SYNTHESIS AND CHARACTERIZATION
 
OF MAGNETIC FLUIDS
 

E.E. Rosensweig 
Avco Corporation 

Research and Technology Laboratories 
Wilmington, Massachusetts 

In the present research program we endeavor to synthesize fluids
 
having a strong magnetic response, and to characterize their properties
 
and discover the laws and relationships which govern their response to
 
an applied magnetic field.
 

Background Information
 
All known materials that are strongly, magnetic like iron--the 

ferromagnetic metals, alloys and compounds--are solids. While theore­
ticians do not rule out the possibility of true ferromagnetic liquids,
 
none is known at present. It is, however, possible to make a stable
 
suspension of a finely divided ferromagnetic solid in a carrier liquid,
 
to produce a fluid that reacts strongly when a magnetic field is applied
 
to it, and we are engaged in studies of such fluids.
 

The pressure distribution in these fluids can be independently
 
controlled by an applied magnetic field. The fluid response then takes
 
several basic forms', opening up a wide range of possibilities in viscous
 
dampers, inertial sensors, heat engines, fluid computers, fluid
 
modelling studies, medical technology, and other technological area..
 

Investigation of the basic fluid mechanical processes which
 
govern the response of a magnetizable fluid to a source of magnetic
 
field leads to an augmented Bernoulli principle in which a magnetic
 
pressure-like term is additive to the usual pressure, speed, and
 
gravitational terms.
 

H
 
p + q 2 + gh - Id = constant
 

0 

The various terms in this eguation along with 'consistent c.g.s. units 
are, p = pressure (dynes/cm2), e = density, assumed .constant (gm./c.c.), 
q = speed (cm./sec.), h = elevation (cm.), I = magnetic moment per unit 
volume (pole-cm.) = M/41r where M is expressed in gauss (M = B-H), and 
H = applied field (oersteds). The initial three terms taken in various 
combinations describe fluid mechanically a number of familiar techno­
logical processes as categorized in an accompanying figure. The 
magnetic.term then combines to yield additional classes of fluid 
dynamic and static phenomena laden with possibilities for technological 
application. These furnish a portion of the motivation for these 
studies. 
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Program Activities 
Much of the work under the program has concentrated on the 

preparation and study of magnetic fluids composed of ferrite solid 
particles dispersed in an organic liquid. The carrier fluids are 
chosen on the basis of viscosity, chemical nature, and boiling point. 
Dispersants are selected on the theory that a suitable molecular 
structure contains a chainlike nonpolar tail and a polar end group. 
Both magnetite and a lower Curie temperature, manganese zinc ferrite 
are used as the solid, magnetic constituent. Dispersion"into colloidal
 
form is accomplished by wet ball milling of the -solid material in the
 

presence of the carrier liquid and the dispersant.
 
Screening tests are conducted to determine systems that lead to 

the successful production of colloid. Then study is made of the effects
 

of initial charge and the grinding time on the formation of colloid and 
its physical nature. The successful fluids are characterized by their 
properties of magnetism, viscosity, temperature dependence of viscosity,
 
density, stability, and particle size and shape. The fluids are 

modified by vacuum distillation or addition of solvents and study is 
made of the modified fluids so obtained. 

Correlations are studied of the inter-relationship between the 
various measured properties and known parameters such as dispersant 
chain length and attempt is made to feed back this information into the 
synthesis of additional fluids having accented properties. 

Presentation of Results 
Stable magnetic fluids are produced in which the typical parti­

cle size is 100 angstroms. The number of colloidal particles per cubic 
centimeter is enormous, and characteristically ranges from l0 1 5 to 1020. 
Oleic and linoleic acids have proven successful as dispersing agents and 
so has another class of dispersants consisting of succinic acid deriva­
tives. Fluids prepared in this manner are strongly attracted to a 

magnet and volumes of the fluid may be suspended against the force of 
gravity. The magnetic particles experience a constant attraction in 
the direction of an applied field gradient but at the same time are 
free to move through the fluid, hence the persistence of a stable sus­
pension requires explanation. It is believed that at equilibrium the 
terminal motion of the particles equals the diffusional transport of
 

particles due to a (small) concentration gradient. Then the stable
 

diameter d is less than the value computed from
 

d3 
= 24 k
 

where k = Boltzmann's constant = 1.38 x 10-16 erg/particle OK, T = 

absolute temperature in Kelvin unit, M = ferric induction in gauss, 
H = applied field in oersted, and s is length--d is then given in 
centimeters.
 

Suspended in the fluid each particle is analogous to a molecule 
of a pranmagnetic gas. The Langevin equation of statistical mechanics 
then relates the average magnetic moment per particle averaged 6ver 
all thermaLlv induced orientations to -) the true magnetic moment of a 
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particle, H the applied field, and T the temperature. Unlike a para­
magnetic gas molecule, for a particle of the magnetic fluid ) = -(T). 
An extended form of the equation has been obtained to deal with the 
actual particle size distribution function.
 

The experimentally determined dependence of viscosity upon the
 
loading is correlated with theoretical predictions. The earliest
 
theory was derived by Einstein who solved the flow field of pure

strain as perturbed by the presence of a sphere. His result relates
 
mixture.viscosity )sto solvent viscosity , and solids fraction :
 

7S 1 + 2.5 . 

However, this relationship is valid only for dilute colloidal mixtures;
 
a better expression, correct for high solids loadings, has the form:
 

Vt0 1-2.5 0 + 1.55#2 

This relationship predicts solidification corresponding to spheres in
 
the hexagonal close-packed arrangement. In using this relationship, 
the thickness 9 of the monolayer coating on each particle must be con­
sidered in the computation of + 

Another important consideration is the prevention of particle

agglomeration or flocculation. The important mechanisms are the mag­
netic forces and van der Waal's attractions (which tend to flocculate)
 
and repulsion forces arising from deformation of an adsorbed layer of
 
dispersing agent. The energies of two adjacent particles are found to
 
be:
 

2 V 2
 
Em = -2Magnetic energy: 


AF 2 2 h2+42
Van der Waal's: EL = [2 +h + 2+i h +4
 
6 (h2) (h 2)2]
(London's model) 


Nk (1 hr < 1
 

Entropic repulsion: ER =
 
0 "hr>1
 1
2Z'
 

Where N is the number of adsorbed molecules per unit area, S is the 
length of the hydrocarbon chain, and h is the relative separation of 
particle surfaces, h = H/r where H = surface to surface separation. 

For stability against flocculation the three energies must 
produce a superimposed energy distribution having a barrier or energy 
hump at least several times greater than kT, the thermal energy of a 
particle. 
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At the beginning of this program, magnetic fluid with viscosity
 

less than ten centipoise was limited to a ferric induction at satu­

ration of little more than 100 gauss. The relationship between vis­

cosity and ferric induction is presented ii the accompanying figure
 
Fluid is
which also illustrates the advance in the state of the art. 


now produced whose ferric induction exceeds 1000 gauss. The remaining
 

figure presents data that permits correlation of the initial perme­

ability of the fluids with the ferric induction at saturation, Ms.
 
according to
 

(I +M S) > 100 gauss 

This tells that the present fluids yield permeabilities in the range 

1<A,< 3 which, although it is extraordinarily large compared to the 
pereabilities of normal liquids, is still rather small compared to the 

The obtaining of
permeabilities of solid ferromagnetic materials. 

stable magnetic fluids having a much greater permeability is one of a
 

number of challenging problems in this work where the solution in
 

probability depends upon an understanding of surface physics and
 

chemistry, magnetostatics, and the behavior of matter in general.
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PROPAGATION. AND DISPERSION OF HYDROMAGNETIC AND 

ION CYCLOTRON WAVES IN PLASMAS IMMERSED IN MAGNETIC FIELDS* 

Professor Arwin A. Dougal, The University of Texas,'Austin 78712 

The long range challenges for exploration and exploitation of space, requires 
that ever increasing, technological and scientific attention be given towards the 
realization of extremely light, almost infinitely long-lived, and efficient power 
sources. Within. kery recent years the technological community has recognized 
the vast potential power production realizable from the fusion products of reacting 
light nuclei as the ultimate source. Almost overwhelming power output per unit 
fuel mass is afforded by the reacting light nuclei. Two milliofn kilowatt hours of 
energy are forseen to be extractable through fusion of as little as 0.06 pounds of 
deuterium nuclei. An immense technological problem to be overcome is the require­
ment for the production and heating of deuterium ions in the gaseous plasma state 
to several hundred million degrees temperature to which this research work and its 
continuation are addressed. Experimental and analytical findings from our recent 
research work on ion cyclotron resonance heating show definite promise towards 
future realization of increasingly super-high ion temperatures. These findings are 
supported by relatively recent reports from those few research groups throughout 
the world who have'had the foresight to initiate studies on ion cyclotron resonance 
heating and to realize the major experimental facility for effective experimentalwork. 

Most earlier and existing attempts to elevate plasma temperatures into the 
desired range have resulted in high electron temperatures but relatively low ion 
temperatures which re inadequate. Both theory and experiment have recently con­
firmed' that effective heating, propagation, and dispersion of.ion cyclotron waves 
in plasmas immersed in magnetic fields are possible. Dekosition of power into L 
plasma through radio frequency fields at an angular frequency CO requires con­
sideration of characteristic frequencies associated with the plasma and its magnetic 
field configuration. The characteristic frequency .1_Z of an ion in a magnetic 
field is given by .2-tX - where qi and mi are the ionic charge and 
mass respectively. Theory and experiments show that effective heating of plasma 
ions occurs through ion cyclotron wave interactions. 

Experimental research on ICRH has been performed by research groups at NASA-
Lewis, Princetbn University, Lawrenpe Radiation Laboratory at the University of Cal­
ifornia at Berkeley, Physicotechnical Institute at Khar'kov USSR, The University of 
Texas, the Massachusetts Institute of Technology, and the Institute of Plasma Physics 
at Nagoya University, Japan. 

The experimental arrangement at ,The University of Texas is shown in Fig. 1. 

Both'hydrogen and/or deuterium gas can be leaked into the plasma tube; The vacuum 

*Sponsored by the National Aeronautics and Space Administration Grant NsG-353. 
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-
base pressure is better than 10 8 torr, VacSorb and VacIon pumps are used in 

order to reduce impurities in the system. The overall length of the magnetic field 

coil system is presently 150 cm. Rf power is coupled into the plasma through a 

Faraday shielded "Stix" coil located in a uniform field region of maximum 10.6 kG. 

A "magnetic beach" region on one side of the "Stix" coil is used for wave propa­

gation studies. Maximum incident rf power is presently over 30 kW. The incident 

and reflected rf power is measured with adjustable, calibrated directional couplers. 
The rf dfiver is crystal controlled at 5.8 MHz. A 27 MHz, 1 kW, preionizer is 
used in all experiments. A fairly extensive study of the design of the "Stix" coil 

and associated electrostatic shields was undertaken. The present coil and shield 
combination gives an Be field which is almost sinusoidally varying in the axial 

direction and an Ez field which is substantially reduced. The number of coil turns 

and their relative spacing was determined using a digital computer. The Faraday 
shield consists of 9 strips of copper, .020" thick by 0.5" wide along the discharge 
tube under the Stix coil. 

A new and previously unreported wave phenomenon was observed in this ex­

perimental investigation of ion cyclotron resonance heating of hydrogen and deute­
rium plasmas. For certain gas pressures the ion cyclotron waves propagate for 
frequency (f) greater than the ion cyclotron frequency (fi), and attenuate at har-' 
monics of the ion cyclotron frequency with a resulting increase in the transverse 
temperature-density product (nKT1 ). In this experimental investigation the fre­
quency (f) of the driver was kept constant and the other parameters, such as gas 
pressure and magnetic field strength, were varied. Decreasing the magnetic field 
strength is effectively the same as increasing the frequency of the driver (f), and 
vice versa. The wave magnetic field components were measured with movable, 
shielded, magnetic probes located near the end of the magnetic beach. 

For low hydrogen pressures (p < 2 millitorr) an ion cyclotron wave was observed 
to propagate for B - Bc ,where Bc is the ion cyclotron resonance magnetic field for 

the driver frequency (f). The ion cyclotron wave was observed to attenuate quite 
sharply near B = Bc as expected. As the gas pressure was increased, a wave was 
observed to propagate for B < B., which was unexpected. Closer investigation re-, 
vealed that the wave attenuates near B/N' where N is an integer. Thus, the wave 
propagates for f ;fi (the ion cyclotron frequency) and attenuates at harmonics of fh. 
The value of N was found to depend upon the gas pressure such that N,increased 
for higher pressures. The same general effects were observed in-deuterium plasmas. 
In deuterium, the effects are more pronounced since the separations between the 
various Bc/N are larger due to the larger deuterium ion mass. Fig. 2 shows these 
effects as measured in a deuterium plasma. The region of abrupt wave attenuation 
moves to lower magnetic fields as the gas pressure increases. The attenuation 
regions are very close to the harmonic resonance fields. 

The question arises whether the observed wave field attenuation of harmonics 

of fi is, due to a wave cut off or to actual wave damping near the critical fields. Dia­

magnetic probe measurements indicate that the waves are damped and that energy is 
measurementstransferred from the waves to the plasma particles. Additional on 
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wave propagation and wave attenuation are in progress. An analytical explan­
ation for these observed effects is being developed. 

Publications 

1. 	 A. G. Engelhardt and A. A. Dougal, "Dispersion of Ion Cyclotron Waves 
in Magnetoplasmas," Physics of Fluids, 5, pp. 29-37, 1962. 

2. 	 Y. J. Seto and A. A. Dougal, "The Wave Equation and the Green's Dyadic 
for Bounded Magnetoplasmas," Journal 8f Mathematical Physics, 5, 
pp. 1326-1334, 1964.
 

3. 	 M. Kristiansen and A. A. Dougal, "Ion Cyclotron Resonance and Wave 
Propagation in Magnetoplasma," Bull. Am. Phys. Soc., Ser. II, 10, 
pp. 159-160, 1965. 

4. 	 M. Kristiansen and A. A. Dougal, "High Power RF Plasma Heating and 
Wave Propagation Near the Ion Cyclotron Resonance Frequency," Paper 
ES, Abstracts of the Proc. of VII Annual Meeting, Div. of Plasma Physics, 
American Physical Society, November 8-11, 1965. 
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A-C POWER GENERATION THROUGH WAVE-TYPE INTERACTIONS
 

by 

G. L. Wilson
 
Department of Electrical Engineering
 

Massachusetts Institute of Technology
 

The purpose of this project is to investigate schemes which
 

directly generate A-C electric power through magnetohydrodynamic
 
The method under current study is one
interactions in plasmas. 


in which standing magnetoacoustic waves -in a flowing 'plasma inter­

act with an artificial or lumped 
transmission line, which is
 

magnetically coupled to the gas. Magnetoacoustic waves are distur­

bances which propagate in a conducting gas at velocities greater
 

than the sound speed in the medium. This greater propagation velo-­

city is due to currents which are induced through the compression
 

of magnetic field lines within the conductor. These currents
 

interact with the applied magnetic field to produce forces which
 

aid compressional forces.
 

The proposed generator is shown in Figure 1, in which the
 

coils of an artificial transmission line are coupled to thq mag­

netic field B associated with the waves in a convecting plasma.
 

For a velocity V greater than the magnetoacoustic velocity, there
 

will be.two forward waves in the gas. By adjusting the trans­

mission line parameters such that the phase velocity on the trans­

mission line is equal to the velocity of the slow wave in the gas,
 

an interaction between the two systems occurs, which results in
 

unstable bulk oscillations in the plasma and unstable voltages 
and
 

currents on the transmission line. By coupling to this system
 

in a variety of ways, net electric power can be coupled out of 
the
 

system at the expense of the thermal and kinetic energy of the,
 

plasma.
 

Experiments are in progress in which a helium plasma is heated
 

and accelerated in a circular channel through electric heating 
and
 

S x B forces. The gas is accelerated to velocities on the order
 

of 20,000 meters/second and is heated to temperatures in excess 
of
 

The experiment lasts for one millisecond at input
18,000°Kelvin. 


.powers on the -ordef of 3 megawatts. A two-dimensional Hartmann
 

flow theory for the accelerator has been developed and compares
 

very favorably with measured values of the accelerator parameters.
 

The results of these measurements are presented in Figure 
2.
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Measurements of gas temperature and velocity profiles are in pro­
gress to further check the Hartmann flow model..
 

The acc~lerator is used to provide proper gas conditions for
 
study of magnetoacoustic wave oscillations. Magnetoacoustic waves
 
have been successfully excited and detected in this medium and the
 
acoustic-maghetoacoustic transition region as a function of elec­
tric conductivity has been observed. The measured frequencies of
 
the standing wave-oscillations as a function of input power to the
 
accelerator is shown in Figure 2, and compared with theoretical
 
redictions. This experiment represents the first instance in which
 

magnetoacoustic waves in a flowing medium and their dependence on
 
ele6tricalconductivity have been observed.
 

Preparations are presently in progress for the final phase of
 
the study; that is to experimentally observe the interaction of an
 
artificial transmission line with the waves and to extract electric
 
power from the system.
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ANODE OSCILLATIONS IN CESIUM PLASMAS
 
Harry S. Robertson, Department of Physics,

University of Miami, Coral Gables, Florida
 

Self-excited oscillations in otherwise quiescent cesium
 
arcs have been found to originate at the anode surface.

These oscillations appear to he similar to those observed
 
in cesium ,diodes and in Q-rachines with ion-rich sheaths.
 
The suggestion that the oscillations in cesium diodes might

provide a means for direct conversion of thermal to a.c.
 
power on the one 
hand, and the experimental evidence that
 
some of the instabilities seen in Q-machines originate in

the anode sheath have motivated the study of these oscilla­
tions in an experimental facility that permits a variety

of observations.
 

The experimental facility consists of a pyrex discharg

tube with (usually) a thermionic cathode, usually about 30cm

from.one or more 
of a variety of anode structures. A cesium

reservoir in its own oven determines the vapor pressure, and

the discharge tube is operated in a transparent pyrex fur­
nace at a temperature usually 500 C or more above that of the
 
reservoir. The neutral cesium pressure may be varied from
3
about 10-
 Torr to 1 Torr; the current from a few milli­
amperes to 2 ampere; the electron temperature is a few tenths
of i eV, and the fractional ionization in the plasma is
 
usually less than 1%. 
 Anodes may be plane, cylindrical, or
 
spherical, and multiple anodes recessed in cylindrical pyrex

tubes are sometimes used. 
'Both rubidium and potassium have

been studied, but the most extensive work has been in cesium.
 

Oscillation amplitudes may be 
as high as several volts,
 
and periods vary from a few-microseconds to a few milli­seconds. Photoelectric observations of the emitted light

shows that the oscillations are localized to the region with­
in a few millimeters of the anode surface.
 

Theoretical and experimental analyses -lead to the follow­ing qualitative understanding of the phenomenon. Neutral
 
atoms incident on the anode surface are 
ionized because the

work function of the anode is greater than the ionization
 
potential of the atom, but they are 
lightlytbbund to the
 
anode surface by image forces. A rising electric field at
the anode results in a burst of emitted ions from the surface,

accompanied by release 6f electrons from the sheath' edge to

maintain neutrality. 
The resulting enhanced *conductivity of
the anode sheath leads to an abrupt fall in tube volts and
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local electric field, while the locally increased ion on
 
electron densities lead to a sharp increase in the emission
 
of both recombination radiation and excitation radiation.
 
Then, as the burst of ions- and electrons dissipates, prin­
cipally by diffusion and conduction, but in part by-recom­
bination, the electric field begins to rise. During the low­
field part of the cycle, more neutrals have been absorbed on
 
the anode surface, and when the field increases sufficiently;
 
a new cycle begins.
 

The oscillations will exist, then, whenever the steady­
state electric field is within a range such that it is great
 
enough to cause some field emission of anode surface ions
 
and not so great that .it steadily removes them as fast as
 
they are formed. Frequency is determined principally by the
 
diffusive and convective loss rate.
 

The greatest difficulty in comparing theory and experiment
 
is that ion emission usually occurs at one or more spots on
 
the surface where thelocal electric field must be a bit
 
larger than anywhere else, so brightly glowing spots are seen
 
on the anode, and the firing of one spot triggers that of
 
others.
 

Attempts are in progress to control the formation of spots
 
and otherwise alter the behavior of these oscillations by
 
choice of anode geometry, material, finish, temperature, and
 
geometry of the surrounding region.
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Transverse Stream Instabilities in Plasmas 

Dr. W. Bennett 
North Carolina State Univ. 

The objective in this project is to produce a steadily running
 

undriveh pinch and to examine the instabilities which may exist in such
 

streams.
 

The project is supported by the Electrophysics Branch of the
 

National Aeronautics and Space Administration and involves the production
 

of high current high voltage electric pinches in small diameter beams and
 

to observe the transition of these beams into a simultaneous electric and
 

magnetic pinch. Studies are being made of: (I) the physical processes
 

in these two kinds of pinch; (2) the onset of beam instabilities as the
 

magnetic pinch becomes dominant; (3) the interaction of these beams with
 

their associated plasmas.
 

In earlier work, it was found that undriven electron beams do
 

not readily accumulate ions from low density residual gas and retain them
 

in sufficient quantity to neutralize the space change and permit the
 

magnetic pinch to set in. For this reason, it was decided to undertake to
 

increase the intensity of electrically pinched beams sufficiently to provide
 

the essential conditions for the magnetic pinch to become predominant.
 

In order to undertake this kind of investigation properly, it has
 

been necessary to develop a directional plasma probe with which velocity
 

distributions can be measured. The basic principle used in this probe is
 

similar 'to that in a probe which has been successfully flown on a rocket
 

in some earlier space research. The probe in its present form consists of
 

two knitted 0.0005 in. tungsten grids and a 150 conical collector. The
 

outer grid is attached to a metal sleeve which surrounds the rest of the
 

probe. The leads to the interior parts of the probe are glass covered.
 

The outer grid and sleeve core are held at the potential at which the probe
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least disturbs the surrounding plasma. For measurements of the electron
 

velocity distribution in the direction of the probe axis, the inner grid
 

is held at positive potential sufficient to turn back all positive ions
 

which enter through the outer grid. The electron current to the conical
 

collector is measured with a full feed back amplifier based at potentials
 

which are swept through a range of negative values to cover the range of
 

electron velocities in that direction. Corrections must be made for sec­

ondary emissions from the collector and for currents due to ionization
 

inside the probe. For measurements of the positive ion distributions, the
 

inner grid is set at a negative potential sufficient to turn back all electrons
 

which pass the outer grid, and the base potential of the amplifier is swept
 

through a range of positive values to cover the range of ion velocities in
 

the direction of the probe axis.
 

A tube has been built for examining electrically pinched streams
 

by measuring velocity distributions of electrons and ions with directional
 

probes, magnetic stream deflections, stream attenuation, and other character­

istics as a function of vapor density, beam current, beam voltage and tube
 

diameter.
 

Methods have been developed in the gun design for protecting
 

coated cathodes from deterioration due to back bombardment by positive ions.
 

In essence, the procedure is to use a "grid" aperature as near the cathode
 

as possible which is held at a more positive potential than any other poten­

tial further down stream. In order to go to the high voltage streams which
 

will be required in the later phases of this project, where much more
 

positive potentials will be necessary beyond the end of the gun, it will be
 

necessary to design the gun to strongly defocus the back-streaming positive
 

ions before they cair-reach the coated cathode, or else to use bare cathodes
 

instead of the coated cathodes and to use narrow-band optical filters -in
 

order to see the beam while focusing it.
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PULSED PLASMA PRbPULSION 

R. G. Jahn and W. von Jaskowsky
 
Princeton University, Princeton, New Jersey
 

Despite the advanced state of development of ion propulsion devices, and the
 
very promising early performance of steady magnetoplasmadynamic are thrusters,
 
continued interest in the inherently more complex pulsed mode of plasma acceleration
 
is sustained by four potentially profitable basic characteristics. Specifically,
 
passage of the current through the plasma in intermittent intense pulses may be
 
expected (1) to provide higher average thrust density than by steady consumption
 
of the same electric power; (2) to involve less heat transfer loss and electrode
 
erosion than equal power steady arc devices; (3) to minimize undesirable kinetic
 
thermalization within the accelerating plasma; and (4) to generate various unsteady
 
electromagnetic field effects which aid in the acceleration and containment of the
 
plasma.
 

Practical implementation of these potential advantages requires detailed
 
understanding of the participating phenomena. Any pulsed plasma accelerator must
 
execute the following controlled sequence of physical processes: (a) the appropriate
 
amount of electrical energy must be accumulated in the external circuit, e.g. in a
 
high performance capacitor; (b) a proper distribution of propellant gas must be
 
established in the accelerator channel; (c) the circuit must be completed by a
 
discharge across the channel electrodes, in the proper geometric location at the
 
proper time in the cycle; (d) this discharge must rapidly intensify to a self­
accelerating current sheet which covers the entire channel cross-section, is
 
impermeable to ambient gas ahead of it and its self-magnetic field behind it, and
 
can accelerate over the full channel length stably and with total -ambient gas
 
entrainment; (a)when the accelerated mass of gas and plasma reaches the end of
 
the channel, it must be ejected with a minimum of thermal and electromagnetic loss;
 
(f) finally, the entire gasdynamic and electromagnetic system must recover its
 
initial situation, prior to initiation of a new cycle.
 

Over the past four years our laboratory has carried out a spectrum of basic
 
experiments and related analytical studies encompassing all of the six phases of­
the pulsed plasma acceleration cycle outlined above. The apparatus has been
 
developed primarily from the standpoint of controlledfreproducible experimentation
 
with maximum diagnostic accessibility, rather than focusing on any particular
 
thrustor geometry. At present we have operative five different discharge chambers
 
driven by a variety of capacitor banks, pulse-forming networks-and special energy
 
storage units. Peak discharge currents hp to 106 amp at 10 KIV may be attained,
 
and pulse lengths from 1/2 to 100 psec are available. Diagnostic equipment employed
 
includes electric and magnetic probes, voltage dividers, D loops and Rogowski coils,
 
streak arid Kerr cell cameras, a grating monochrometer and gas laser, high speed
 
piezoelectric transducers and 4 mm. microwave bridges and interferometers. Vacuum
 
facilities include a 3' dia. x 6' long Plexiglas tank capable of eacuation to

10-5 torr. (32,35) 

For purposes of this presentation we will illustrate the program with two of
 
the currently active studies: the production of various driving current waveforms
 
and their effect on the development of the plasma acceleration process;(33'- ) and
 
the distribution of current density and magnetic field in exhaust plumes from one
 



type of accelerator. ( 1 8 ,2 0 ,21,29 ,3 2 ) With regard to the former we begin by
 

noting that while it is quite conventional to drive puilsed accelerators with
 

source for this
free-ringing lumped capacitor banks, this is far from an ideal 


purpose. Associated with each reversal of the damped sinusoidal current pattern
 

secondary "crowbar" breakdown in the discharge chamber which effectively
is a 


uncouples the primary current sheet from the energy source, leaving it to
 

dissipate itself over the remainder of its motion down the channel.(
2 ,4 ,5)
 

These secondary breakdowns also badly complicate the experimental diagnosis of
 

the discharge-acceleration events by the techniques outlined above. Both
 

problems have been eliminated by replacing the lumped capacitor bank with a
 

pulse-forming line capable of providing a variety of high current waveforms at
 

the operator's discretion. Essentially the device is an L-C ladder network
 
formed by two parallel collector plates, along which stock capacitors may be
 

attached at arbitrary locations. As suspected, the driving current waveform is
 

found to have a profound influence on the effectiveness of the discharge
 
acceleration process. Sweeping efficiency and terminal velocity of current
 
sheets in a given accelerator can be changed by an order of magnitude by proper
 
distribution of the same total electrical energy in the current-pulse. Figure I
 
shows four example current waveforms constructed by'this facility and corresponding
 
streak photographs of an 8" diameter, linear pinch discharge in argon driven
 
by them.
 

The importance of the plasma exhaust phase to the over-all performance of
 
a pulsed thrustor is evident enough; whatever energy is expended in ejecting the
 
plasma slug, or remains trapped within it in various thermal modes, detracts
 
from the total thrust efficiency. Although it is difficult to reduce this problem
 
to concise elements for systematic study, any information about the development
 
of current density and magnetic field patterns in the plume will provide some
 
insight into the ejection mechanisms. For this purpose, a special discharge
 
chamber with 4" dia. orifice, driven by a 6500 joule pulse line,(32) is allowed
 
to eject plasma into a large Plexiglas vacuum tank. 3 5 ) Here the development of
 
the luminous pattern of the exhaust plume may be determined by Kerr cell
 
photography, and the distribution of magnetic fields and current densities
 
mapped with magnetic probes and Rogowski loops. Typical patterns are shown in
 
Fig. 2. Substantial cu.rents are found to extend far out into the plume, and
 
the sense of the local j x B body force is predominantly favorable to continued
 
expansion or detachment of the plume. One significant result of such studies is
 
the identification of a transient phase of ejection, wherein discrete current
 
sheets propagate through the plume, "sweeping" gas along much as they do within
 
the discharge chamber, followed by a more steady phase, wherein the current
 
patterns stabilize and revert to a "pumping" mode of gas acceleration much like
 
that of the steady magnetoplasmadynamic arcs. A second result of interest is a
 
demonstrated sensitivity of some aspects of plume development to relatively
 
small changes in ambient gas pressure in the exhaust tank, emphasizing the
 
importance of test.environment to this phase of the acceleration process.
 



77
 
REFERENCES
 

1. 	"Proposed Studies of the Formation and Stability of an Electromagnetic
 
Boundary in a Pinch." Proposal for NASA Research Grant NsG-306-63, 5 March 1962.
 

2. 	First Semi-Annual Progress Report for the period 1 July 1962 to 31 December
 
1962, Research Grant NsG-306-63, Aeronautical Engineering Report No. 634,
 
Princeton University, Princeton, New Jersey.
 

3. 	"The Plasma Pinch as a Gas Accelerator," AIAA Electric Propulsion Conference,
 
11-13 March 1963, Preprint No. 63013.
 

4, 	Second Semi-Annual Progress Report for the period I January 1963 to 30 June
 
1963; Research Grant NsG-306-63, Aeronautical Engineering Report No. 634a,
 
Princeton University, Princeton, New Jersey.
 

5. 	"Structure of a Large-Radius Pinch Discharge," AIAA Journal 1, 8, 1809-1814,
 
(1963).
 

6. 	"Gas-Triggered Inverse Pinch Switch," Review of Scientific Instruments 34,
 
12, 1439-1440 (1963).
 

7. 	"AGas-Triggered Inverse Pinch Switch," Techilcal Note, Aeronautical
 
Engineering Report No. 660, Princeton University, Princeton, New Jersey,
 
August, 1963.
 

8. 	"Pulsed Electromagnetic Gas Acceleration," Paper No, II, 8, Fourth NASA
 
Intercenter Conference on Plasma Physics in Washington, D. C., 2-4 December 1963.
 

9. 	"Current Distributions in Large-Radius Pinch Discharges," AIAA-Aerospace
 
Sciences Meeting, 20-22 January 1964, AIAA Preprint No. 64-25.
 

10. 	 "Current Distributions in Large-Radius Pinch Dischatges," AIAA Bulletin 1,
 
1, 12 (1964).
 

11. 	 "Current Distributions in Large-Radius Pinch Discharges," AIA Journal 2,
 
10, 1749-1753 (1964).
 

12. 	Third Semi-Annual Progress Report for the period I July 1963 to 31 December­
1963, Research Grant NsG-306-63, Aeronautical Engineering Report No. 634b,
 
Princeton University, Princeton, New Jersey.
 

13. 	 "Pulsed Electromagnetic Gas Acceleration," Renewal Proposal for 15 months
 
extension of NASA Research Grant NsG-306-63, Princeton University, Princeton,
 
New Jersey, dated 15 January 1964.
 

14. 	Fourth Semi-Annual Progress Report for the period 1 January 1964 to 30 June
 
1964, Research Grant NsG-306-63, Department of Aerospace and Mechanical
 
Sciences Report No. 634c, Princeton University, Princeton, New Jersey.
 

15. 	 "Gas-Triggered Pinch Discharge Switch," Princeton Technical Note No, 101,
 
Department of Aerospace and Mechanical Sciences, Princeton U6iversity,
 
Princeton, New Jersey, July 1964.
 

16. 	 "Gas-Triggered Pinch Discharge Switch," The Review of Scientific Instruments
 
36, 1, 101-102 (1965).
 



-8
 

REFERENCES-cont'd
 

17. 	 "Double Probe Studies in an 8" Pinch Discharge," M.S.E. Thesis of J. M. Corr,
 

Department of Aerospace and Mechanical Sciences, Princeton University,,
 

Princeton, New Jersey, September 1964.
 

"Exhaust of a Pinched Plasma from an Axial Orifice," ATAA Bulletin 1, 10,
18. 

570 (1964).
 

"Exhaust of a-Pinched Plasma from an Axial Orifice," AIAA Second Aerospace
'19. 

Sciences 'Meeting,New York, New York, 25-27 January 1965, Paper No. 65-92.
 

20. 	 "Ejection of a Pinched Plasma from an Axial Orifice," AIAA Journal 3, 10,
 

1862-1866 (1965).
 

21. 	 Fifth Semi-Annual Progress Report for the period I July 1964 to 31 December
 

1964, Research Grant NsG-306-63, Department of Aerospace and Mechanical
 

Sciences Report No. 634d, Princeton University, Princeton, New Jersey.
 

22. 	 "On the Dynamic Efficiency of Pulsed Plasma Accelerators," AIAA Journal 3,
 

6, 1209-1210 (1965).
 

23. 	 "Linear Pinch Driven by a High-Current Pulse-Forming Network," AIAA Bulletin 2,
 

6, 309 (1965).
 

24. 	 "Linear Pinch Driven by a High Current Pulse-Forming Network," 2nd AIAA Annual
 

Meeting, San Francisco, California, 26-29 July 1965, Paper No. 65-336.
 

25. 	 "The Design and Development of Rogowski Coil Probes for Measurement of Current
 

.S.E. Thesis of Edward S. Wright-,
Density Distribution in a Plasma Pinch," 


Department of Aerospace and Mechanical Sciences, Princeton University,
 

Princeton, New Jersey, May 1965.
 

26. 	 "The Design and Development of Rogowski Coil Probes for Measurement of Current
 

Density Distribution in a Plasma Finch," Department of Aerospace and Mechanical
 

Sciehces Report No. 740, Princeton University, Princeton, New Jersey, June 1965.
 

27. 	 "Pulsed Electromagnetic Gas Acceleration," Renewal Proposal for 12 months
 

extension of NASA Research Grant NsG-306-63, Princeton University, Princeton,
 

New Jersey, dated 7 June 1965.
 

28. 	 "Miniature Rogowski Coil Probes for Direct Measurement of Current Density
 

Distributions in Transient Plasmas," The Review of Scientific Instruments 36,
 

12, 1891-189,2 (1965).
 

29. 	 Sixth Semi-Annual Progress Report for the period I January 1965 to 30 July 1965,
 

Research Grant NsG-306-63, Department of Aerospace and Mechanical Sciences
 

Report No. 634e,, Princeton University, Princeton, New Jersey.
 

30. 	 "Cylindrical Shock Model of the Plasma Pinch," M.S.E. Thesis of Glen A. Rowell,
 

Department of Aerospace and Mechanical Sciences, Princeton University,
 

Princeton, New Jersey, February 1966.
 

31. 	 "Cylindrical Shock Model of the Plasma Pinch," Department of Aerospace and
 

.Mechanical Sciences Report No. 742, Princeton University, Princeton, New
 

J'ersey,, Februar-y 1966.
 



79 

REFERENCES-cont 'd 

32. 	Seventh Semi-Annual Progress Report for the period 1 July 1965 to 31 December 
1965, Research Grant Nso-306-63, Department of Aerospace and Mechanical
 
Sciences Report No. 634f, Princeton University, Princeton, New Jersey.
 

33. 	 "Pulse Forming Networks for Propulsion Research," paper presented at the
 
Seventh Symposium on Engineering Aspects of Magnetohydrodynamics, Princeton
 
University, Princeton, New Jersey, March 30-April 1, 1966 (p. 10-11 of
 
Symposium Proceedings).
 

34. 	"Dynamics of a Pinch Discharge Driven by a High Current Pulse-Forming
 
Network," Ph.D. Thesis of Neville A. Black, Department of Aerospace and
 
Mechanical Sciences, Princeton University, Princeton, New Jersey, April 1966.
 

35. 	 "A Large Dielectric Vacuum Facility," Technical Note to appear in the 
AIA Journal 4, 6 (June 1966). 



80 

DISCHARGE DURING 
RADIAL CONTRACTION 

T 1SO 

SLIIN I pe(,,ELECTRODE 4120 

PINCH DISCHARGE 
CHAMBER 200K 

AMP 

TOS3 T828 

6wi 
200K 200 L"CHAMBE 


II Ii _ I i I I i . . . 

Iz-l sec3 e 1-"Se" 

20K00K -
AMP AMP 

,"l ] I I_. sec if i I i - ec 

EFFECT OF VARIOUS DRIVING CURRENTS ON lOOpI 
ARGON DISCHARGE 

FIGURE I 



DISCHARGE 
CHAM1BER 

AtlOOE 

GLASS 

to 

WALL OF EXHAUST-VESSEL 

"E* L a M"p"00 KIOAMPS 

I I 

PHOTOGRAPH OF EXHAUST, & CURRENT PROFILES OF 

PINCH DISCHARGE IN 120pL ARGON 

FIGURE 2 



83 
PRECEDING PAGE BLANK NOT FILMED
 

PULSED PLASMA ACCELERATOR 

P. Gloersen, B. Gorowitz, and T. W. Karras 

General Electric Space Sciences Laboratory, King of Prussia, Pa. 

Problem Definition 

This program was initiated for the purpose of developing an efficient 
reliable, lightweight device for ionizing and accelerating gaseous, sub­
stances to velocities the order of 5 x 104 meters/second. A coequal part
of the program is the generation of experimental data which will permit a 
better understanding of the acceleration mechanisms involved in a coaxial 
gun. 

Background 

The motivation tbrthis research is the requirement for thrusters 
with specific impulse characteristics higher than available from chemical 
or nuclear rockets to permit higher payload fractions in interplanetary 
space rissions with intermediate characteristic lengths (the order of 
3 x 10 Em), acceptable payloads for deeper solar system exploration 
(characteristic lengths up to 5 x 10 Kin), and economically feasible solar 
system escape. With respect to competing electric thruster concepts, 
pulsed plasma devices offer the potential of much higher average thrust 
per unit area than electrostatic devices ( -r B 2/ 2 go vs Eo E2 /) and 
much higher peak thrust (with possibly resulting higher coupling efficiency) 
at a given average power level than steady-state MPD arcs. 

Approach
 

The program consists of the construction of various accelerator 
configurations based on current understanding of acceleration mechanisms, 
measurement of the gross performance characteristics (thrust, mass flow, 
power input) of such configurations, confirming measurements and detailed 
plasma diagnostics (exhaust stream calorimetry, particle velocity and 
energy probe, magnetic field probe, current probes, particle density probes, 
terminal measurements, and spectroscopy) on the most promising of these 
configurations, and the updating of the understanding of the acceleration 
mechanisms (See Figure 1) 
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Results 

In terms of gross performance measurements, the best numbers 

consistently generated to date are an overall efficiency (%0= TZ/Zra P) 

of 70% or more at a specific impulse (Isp = T/r g) of 5000 seconds, 

The power-to-thrust ratio at this point is about 3.6 x 104 meters/second 
(160 KW/pound) and is constant within 5% of this value from 3300 to 5400 

seconds specific impulse. 

The most complete diagnostics to date exist fcr an operating point 

attained earlier, which was i7 o = 57%, Isp = 4800 seconds, obtained at a 

- 7 a capacitance of 144.5 mfd, amass flow rate of 2.96 x i0 Kg/sec, -1 
potential of 950 volts, a pulsing rate of 10 sec , xenon propellant, and 

the A-7D gun configuration (see Figures 2-4). The relations 

2 

= -
v 2 

cosa 

V g /I = ;/g 
sp 

v 

were used to generate second values 

the results of the gross performance 

for 710 and Isp 

measurements. 

for 

?7E was 

comp with 

obtained by 

arison 

the use of a water-cooled calorimeter placed in the exhaust stream during 

repetitive operation of the accelerator under conditions equivalent to those 

cited. An upper limit to flm was obtained by measuring the fraction of 

gaseous propellant available to the discharge by means of a small, fast 

ionization gauge pressure sensor (See Figure 5) used to map the propellant 

density prior to discharge as a function of both time after injection and 

v Z , position in the discharge region (See Figures 6-8). The factors v, 

and cosZ a were obtained by means of the particle velocity and energy 

probe (See Figures 9-13), taking into account the t m of the device. The 

vlues obtained are 7TIm7_72%,90%, = 4.8 x 10 meters/see,= v 

v / v? = 86%, and cos a = 97%. Thus, the agreement between t7 and 7o 

is within 10%1, as is the agreement between Isp and Isp which is remarkable 

in view of the estimated cumulative measuring accuracy of 20%. An account­
ing of current distributions both inside and outside of the accelerator added 

credence to these results, as did the operating background pressure level 

of about i0-5 mm and an extended run of 10 hours under equivalent operating 
conditions with no degradation of performance. 

Future Plans 

The mainstream of the next contractual effort will be to adapt the coaxial 

gun to the use of metal vapor propellant and determine the performance of this 

combination. Additional studies using xenon propellant are in progress. 
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(a) 

Figure 1. (a) A-iD Accelerator, (b) A-7D Accelerator Central Electrode 
Assembly 
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COAXIAL PLASMA GUN 
A. V. Larson, L. Liebing, A. R. Miller, and R. Dethlefsen
 

Space Science Lab., General Dynamics Convair, San Diego, Calif.
 

Since 1961, a development program for pulsed plasma guns has been jointly
sponsored by NASA-Lewis and General Dynamics Convair. The principal Lewis goal
has been to demonstrate competitive thrust efficiencies in such devices. This 
year the number of industry bompetitors in this field has been reduced to one,
the decision being based on the efficiency of presently existing accelerators. 
As the Convair program nears completion, it is appropriate at this conference, 
to summarize the effort and results, and to list the related publications. The
accomplishments of the last year are given in abstracts of recent meetings and
 
are reproduced here. 
Finally, the results will be given of recent experiments

which were designed specifically to measure the performance of the pulsed plasma

device of Gloersen, Gorowitz, and Karras.
 

The Convair program began with a strong diagnostic effort to examine the
 
plasma energy transfer processes. Electromagnetic field probes were developed

and applied to measuring the phenomena within the discharge. The techniques of
 
Faraday cups, gridded electrostatic analyzers, and other particle analyzers were
 
established for the exhausts of pulsed plasma guns. 
Scaling laws were verified
 
for the control of Is 
 for guns operating with various propellant distributions,
 
e.g., uniform fill an slug fill. The applicability of the snow-plow model was
 
established. Fundamental limitations, due to the physics of the plasma processeE

in two modes of plasma accelerators were recognized. Important parametric re­
lationships which affect performance were empirically determined. Three techno­
logical spin-offs have occurred: an order of magnitude improvement in energy 
storage capacitors; 
a high speed, low power, compact gas valve; the founding of
 
the pulsed MPD arc technology. 

To illustrate our recent work, we include abstracts of two papers given
at the Fifth Electric Propulsion Conference, March 1966.
 

Paper (66-199), " Experiments with a Pulsed Arc Plasma Thruster." 

A series of experiments with an improved version of our pulsed arc plasma
thruster will be described. This thruster is similar to the MPD arc jets ex­
cept that it is pulsed. The propellant feed system and the power supply are 
built so that the thruster operates in a steady-state mode for 650 psec. The
 
power level ranges between 10 kw and 1.5 Mw. Hall current, radial current, and 
magnetic field measurements have been made within the thruster discharge. The 
Hall current density is generally an order of magnitude larger than the radial
 
current density. The jeGr force is about twice larger than the JrBo force. It
is estimated that WT-equals 5 for the electrons. The thruster current, voltage,
ion exhaust velocity, and ion density have been measured as functions of the in­
jected mass flow rate with helium, nitrogen, and argon propellants. The thrust
 
is not strongly dependent uon the injected i1and, therefore, the apparent effi­
ciency is very high at low m. 
It has been found that the cathode erosion becomes
 
important at low mass flow rates, but complete erosion studies have not been done
 

Paper (66-238), "Experiments with a Voltage Switched Pulsed Coaxial Gun."
 

An experimental program will be described which investigates the behavior of 
a pulsed coaxial thruster in which slug-model propellant distributions are used. 
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The propellant is injected radially through ports located near the insulat6r. 
The gas valve opens in about 100 Isee and a plenum is used to control the
 
amount of propellant injected. A triggered voltage switch is -used to delay
 

the time between propellant injection and ,thrusterdischarge. Measurements­
are made of the neutral gas distribution prior to the discharge, the current
 
distribution, the ion velocity and energy in the exhaust, and 'the calorimetric 
and thrust efficiency. The variables include the firing delay, mass load,
 

capacitor voltage, and barrel geometry. The thruster operates in an axially­
symmetric stable manner over an interval in which the gas distribution changes 

from the slug-model approximation to a nearly uniform distribution. Peak calori­

metric efficiencies of 70 occur for propellant distributions which approximate 

the slug model. The efficiency increases with capacitor voltage and is rather 
insensitive to plenum pressure. 

Since March,. we have concentrated on measuring a duplicate of the G. E.
 

accelerator for which high efficiencies have been reported. Performance has 

been measured as a function of propellant species, port location, direction of 

propellant injection, firing delay, and barrel geometry. The important result 
is-that it has not been possible in our installation to achieve the efficiency
 

reported by General Electric., or to exceed efficiencies achieved by the various
 
General Dynamics accelerator designs.
 

Publications for NASA Related Work
 

,"The use of Magnetic Probes in Plasma Diagnostics," R. H. Lovberg, Ann. Phys.,
 

8,' 311 (1959).
 

"Current Sheet in a Coaxial Plasma Gun," L. C. Burkhardt -and R. H. Lovberg, Plys. 
Fluids 5, 341 (1962). 

"The Use of a Coaxial Plasma Gun for Space Propulsion," Final Report, Contract
 
NAS '5-1139,GD/Astronautics Report No. AE 62-0678, dated May 1962.
 

"Use of Ballistic Pendulums with Pulsed Plasm Accelerators," T. J. Gooding,
 

B. Hayworth, and R. H. Lovberg, ARS Jz, Oct. (1962) p. 1599.
 

t
Impulsive NHD Devices as Space Engines," R. H. Lovberg, Proe. of Third Symp.
 

on Adv. Propulsion Concepts. held at Cincinnati (Oct. 1962)' publ. by Gordon and 

Breach, New York, 1963, P. 95.
 

"Physical Processes in a Coaxial Plasma Gun," T. J. Gooding, B. R. Haywprth,
 
R. H. Lovberg, AIA Electrical Propulsion Conference, Paper 63-004, Colorado
 
Springs, March (1962).
 

"instabilities in a Coaxial Plasma Gun," T. J. Gooding, B. Hayworth, and R. H.
 
Lvberg., AIAA J. 1, 1289 (1963). 

ItDevelopment of a Coaxial Plasma Gun for Space Propulsion," Final Report, 

Contract NAS 3-2501, GD/Astronautics Report No. GDA 63-0454, dated May -1963. 

"Inference of Plasma Parameters from 'Measurementof E and B Fields in a Coaxial 

Accelerator," R. Lovberg, Phys. Fluids 7. Part 2-Supplement,, $57 (1964). 
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"tevelopment of ,aCoaxial Plasma Gun for Space Propulsion," Final Report,
 

Contract NAS 3-2594, NASA Report No.. CR-54149, GD/Astronautics Report No. 
GDA DBE 64-051, 'dated June 1964.. 

"An Energy Inventory in a Coaxial Plasma Accelerator Driven by a Pulse Line 
Energy Source," A. V. Larson, et al., ATAA J. 3, 977 (1965). 

"Energy Loss in Pulsed Coaxial Plasma Guns," D. E. T. F. Ashby, AIAk J. 3y 
(1965). 

"Exhaust Measurements on the Plasma from a Pulsed Coaxial Gun," D. E. T. F., 

Ashby, T. J. Gooding, B. R. Hayworth, and A. V. Larson, ATAA J. 3, 1140 (l965); 
also ATAA Reprint 64-70k (1964)'. 

"Development of a Coaxial Plasma Gun for Space Propulsion," Final Report, 
Contract NAS 3-5759, NASA Report No. CR-54245, dated April 1965. 

"Energy Storage Capacitors for Pulsed Plasma Thrustors," B. R. Hayworth., 
A. R. Miller.; and C. W. White, ALAA Paper No. 65-337, San Francisco, July 1965. 

"Quasi-Steady-State Pulsed Plasma Thrustors," D. E. T. F. Ashby; T. J. Gooding, 
and A. V. Larson, AIAA Paper No. 65-338, San Francisco, July 1965;,to be 
published (AIAA J.). 

"Note on the Use of Mass Analyzers in Plasma Physics," H. Fleischmaan,
 
D. E. T. F. Ashby, A. V. Larson, (to be published in Nuclear Fusion); also
 
available as Report GA-6219, General Atomic, San Diego, Calif.
 

"Generation of Plasma Streams with Pulsed Arc Discharges," T. J. Gooding,
 
D. E. T. F. Ashby, and L. Liebing, General Dynamics Convair Report No. ERR-AN 
739, May 1965. 

"Experiments with a Pulsed Arc Plasma Thrustor," L. Liebing, A. V. Larson, 

T. J. Gooding, AIAA Paper No. 66-199, Fifth ,ElectricPropulsion Conference,
 
San Diego, March 1966.
 

"Experiments with a Voltage Switched Pulsed Coaxial Gun," A. V. Larson,
 
L. Liebing, A. H. Miller, AIAA Paper No. 66-238, Fifth Electric Propulsion 
Conferdnce, San Diego, March 1966. 
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DIAGNOSTICS- OF-ACCELERATING PLASMA
 

Drs. C. C. Chang, T, N..L eand A.W. Ali
 
The Catholic Uni'ersity of America
 

ABSTRACT
 

In pulsed plasma accelerator, the process-by which the neutral gas is ionized,'
 
heated and acquires momentum is not fully understood. A simple model in which a
 
shock wave, with no losses, is accelerated by magnetic piston is certainly inadequate'.
 
Inorder-to understarid these processes, the transient plasma state must be known, i.e.,
 
electron densities, composition, temperatures are required for comparison with theoret­
ical models.
 

In our project, it is intended: a) to apply spectroscopic techniques to diagnose 
the plasma produced in sqme typical plasma accelerator and compare the results with 
those obtained by other investigators; b) to compare existing theory for plasma acceler­
-atlon with the measurement; c) to account for the energy deposited in the plasma in order 
to give further information on losses. 

As a first step ofthe project, accelerated plasma produced by a coaxial plasma 
gun which was operated at static ambient pressure (helium) was studied. 'Electron tem­
perature1 electron density, -and other particle densities are determined at a location 
which is 1 cm outside the gun end. Furthermore, the electron temperature and the 
density were obtained as a function of radius of outer electrode using Abel inversion 
procedure with a series of measurements. 

The same'technique has been extended into the gun barrel to diagnose accelerating 
.current layer. The electron densities and temperatures inside the gun were relatively high
and were fcund'to be Te :-- I1I eV and Ne cr7 X j1 7 cm- 3 at the location which is 
7.5 cm from the insulator. 



L03
 

MPD ARC ,JET TfUSTOR RESEARCH
 

Contract RAS 3-2593
 
AVCO Corporation
 

Space Systems Division
 
Wilmington, Massachusetts
 

Investigators: Principal 
-
Dr. R. R. John and Dr. S. Bennett
 

Associates ­ Mr..G. Enos and Dr. A- Tuchman
 

Objective: 
 The overall purpose of the subject research and development
program is to establish whether the laboratory MPD arejet, which appears to'be
 an efficient gas accelerator, can be converted into a reliable low thrust'space

propulsion engine.
 

Background: 
 A typical MPD arcjet configuration is shown in figure 1.
The basic unit is axially symmetric, consisting of a central cathode surrounded
by a co-axial anode, and can be operated both with and without a magnetic field
The working fluid is accelerated both by aerodynamic and magnetoplasmadynamic
forces as it passes through and around the discharge. Although there is con­siderable controversy regarding the exact nature of the gas acceleration
 
process, the basic thrust producing mechanisms characteristic of the MPD arcjet
are associated with: 
 (1) Aerodynamic pressure forces (thermal abceleration);

(2) Self-induced magnetic field forces; and (3)External magnetic field forces.
 

Progress and Results: 
 Five basic thrust producing mechanisms have been pro­posed as being characteristic of plasma generators of the type shown in figure
1. These are: (1) Aerodynamic pressure forcesl 
(2) Magnetic pumping; (3)
Magnetic blowing; (4) Aerodynamic swirl introduced by electromagnet forces;
and (5) Hall current acceleration. Aerodynamic pressure forces are associated

with thermal expansion of a gas within confining solid walls; magnetic pumping

results from the interaction of the axial discharge current density, jg, with
the self-induced azimuthal magnetic field, Be, i.e. Tpump = 
1/2 I2; magnetic
blowing results from the interaction of the radial component of the current

density, r, with the self-induced azimuthal magnetic field, Be, i.e. Tblow
12 (1/4 + 
Un ra/rc), where ra and r. are respectively the radial extent .of
the current distribution 'atthe anode and cathode. 
These three thrust mechan­isms have been clearly identified and their existence is not dependent on the
 presence of a magnetic field-
 The remaining mechanisms are associated with
 an external field. 
The magnetic swirl is associated with the bulk rotation
of the gas and results from the interaction of jr with Be. Finally, the Hall
current term is associated with the interaction of Je with Br. 
No simple
analytical expressions have been derived for the,external field terms except
empirically it has been established that Ttotal 
- Taero - Tself Texternal= 
f (IB). 

As was originally pointed out by Fahleson for the case of a plasma rotatingin a magnetic field2 , and by Cann for the MPD arcjet3, the available gas flow,
it, add the gas flow, 6d, accelerated and ionized-by-the discharge are not, apriofi, equal. 
The concept of a characteristic discharge mass flow has been
strikingly verified experimentally at this laboratory by the observatioi that
the engine will operate and produce thrust with no mass flow passing through
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the propellant feed iine. -,By analogy with conventional arcs Cann3 proposed 
that the MPD discharge would operate at a power level such that the input 
power is .minimized; Fahleson2, on the other hand, following a suggestion of
 
Alfven, postulated the discharge would operate .at a mass flow such that the
 
kinetic and ionization energies of the particles in the discharge mass flow
 
are equal. Assuming that the input power-is primarily absorbed in kinetic
 
and ionization energy the two postulates are identical. From energy consider­
ations the flow velocity -atminimum input power is given by Ucrit = -42eVi/ ' 

= ma; the critical mass flow becomes mdmin T/ AeVi/ma; and the minimum power 
is IV)min = T j2eVi/m. The empirically observed linearity between V and B 
and T and IB, shown in figures 2 and 3, is compatible with these minimum 
energy considerations. 

.The preceding discussion has been based on a macroscopic-description of accel­
erator performance. It has been proposed that the external magnetic field
 
forms a magnetic nozzle in which azimuthal kinetic energy resulting from the
 
intkradtion of BE and ar is "spun out" into axially directed kinetic energy; 
however, the exact nature of acceleration and confinement process is liot at 
all clear. Local current measurements in the MPD arcjet discharge obtained
 
with Hall effect sensors, suggest that the basic acceleration process occurs
 
within two or three diameters of the engine face. The local cathode tip
 
pressure is observed to decrease with increase in magnetic field suggesting
 
magnetic confinement effects; and, finallyj local velocity measurements with
 
a Faraday probe indicate strong radial velocity dependence. The local diag­
nostic measurements have, however not yet been carried out in sufficient
 
detail to distinguish between different possible acceleration mechanisms.
 

Plahs: The future direction of the research program will be to 
continue to attempt to clarify the natute of the acceleration process by means
 
of local diagnostic measurements. The Doppler shift technique will be used to 
establish both axial and'aziimuthal ion velocities within the discharge region.
 
Detection of significant azimuthal kinetic energy would imply that the princi­
le thrust production mechanism is indeed due to jr BE interaction. From the 

eligine development viewpoint effort will be directed to the design and con­
struction of a radiation-cooled MfD arejet engine for the power range 5 to 50
 
kilowatts.
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PERMANENT MAGNETS FOR MPD ARC THRUSTERS
 

(Contract NAS 3-7923)
 

A.. C. Edkert and,D. B. Miller
 

General Electric Space Sciences Laboratory
 

King of Prussia, Pennsylvania
 

ABSTRACT
 

A cylindrical Alnico 8 permaanent niagnet.assembly is being tested 

in order, to evaluate the magnet requirements to satisfy MPD thruster 

field needs. A multisectional design has been employed so that the effect 

of magnet length and:area on gap field cab be evaluated. Gap field 

strdngths of over 2000 giuss have been generated. The measured 

dependence of gap field on magnet'geometry will be discussed. 
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ELECTRON CYCLOTRON RESONANCE
 

PLASMA THRUSTER DEVELOPMENT
 

(Contract NAS 3-8903)
 

D. B. Miller, A. C. Eckert and C. S. Cook
 

General Electric Space Sciences Laboratory
 

King of Prussia, Pennsylvania
 

ABSTRACT 

The short version of the X-band ECR accelerator has been operated 

on a thrust stand at c-w r-f power levels up to 2000 watts. Although thrust 

efficiencies (Tz /Z5nP)- of over . 30 have been measured, a good deal of 

randomness has yet to .be understood. A retarding potential ion energy 

analyser has been employed simultaneously with the thrust stand to obtain 

an independent measure of specific impulses and velocity distribution. Ion 

probe specific impulses are significantly lower than the corresponding 

,thrust-based I , possibly as a result of the relatively important chargesp 

exchange process occurring withthese experiments. Measured velocity 

distribution efficiencies ((v) /v ) are generally greater than. 80. 
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HALL CURRENT ACCELERATOR
 

G. L. Cann, P. F. Jacobs
 
Electro-Optical Systems, Inc.,
 

A.Subsidiary of Xerox Corporation
 

ABSTRACT
 

A program to investigate experimentally and analytically axisymmet-,
 
ric Hall current accelerators has been completed. The results are reported
 
in Ref. I. The purpbse of the investigations was to determine the perfor­
mancepotential of such a device as an electric space propulsion engine.
 
Parametric studies of the accelerator were made with several propellants,
 
emphasis being placed upon the tests using hydrogen and sodium. The
 
accelerators used in these tests are shown schematically in Figs. la and
 
lb. The overall performance measured in these devices is presented in
 
Figs. 2a and 2b. Some diagnostic measurements on the engine and exhaust
 
beam were made and are reported, the most important being a determination
 
of the current path in the exhaust beam of the hydrogen accelerator. The
 
results of one such measurement is shown in Fig. 3. Mechanisms to explain
 
thrust production and other engine characteristics are postulated and
 
discussed in detail. The concept of an "effective" mass flow rate, which
 
is determined by a minimum potential hypothesis, is developed to the
 
point where a complete analysis of a simplified model of the accelerator
 
can be made. Such an analysis is completed and the results are compared,
 
where possible, with experimental results.
 

Adequate detailed knowledge of accelerator mechanisms to use in an
 
engine optimization program was not generated by the above program nor is
 
it available elsewhere. A detailed diagnostic program' coupled with an
 
analytic investigation, has been undertaken to fulfill this need in our
 
present contract work with NASA.
 

The fundamental goals of this study are to investigate the opera­
tion of an alkali metal accelerator with background pressures less than 
10-4 torr, imput power 5 - 50 kw over the specific impulse range of 1000­
6000 sec. A parametric investigation of overall performance (thrust,
 
thrust efficiency and thermal efficiency) with variations in input power,
 
mass flow rate and magnetic field is to be carried out. The following
 
diagnostic measurements are to be made:
 

1) Axial Ion Velocity
 
2) Rotational Ion Velocity
 
3) Thrust
 
4) Torque
 
5) Magnetic Field Distribution
 
6) Current Density Distribution
 
7) Tot&l Beam Power
 
8) Local Mass Flux
 
9) Local Energy Flux
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The axial ion velocity is being measured by both Doppler spectros­
copy and tracer techniques. The ion rotational velocity is being
 
determined solely by spectroscopy. The accelerator thrust is measured
 
with a reaction balance, and the angular momentum in the beam will be
 
measured with a torque target. The spatial distribution of the three
 
components of the magnetic field will be measured with a Hall-effect
 
magnetic probe composed of three mutually orthagonal sensing elements.
 
The distribution of current density within the plasma is determined from
 
these 	measurements through graphical differentiation and the use of
 
Maxwell's equations. The total beam power will be measured with a
 
calorimeter composed of 16 separate, water cooled, concentric, ring
 
elements. The use of separate elements is itportant not only from the
 
standpoint of a more detailed distribution throughout the plasma, but
 
also to avoid shorting the radial electric fields which are probably
 
present. The local energy and mass flux distributions will be measured
 
with two new probes. The former consists of an open ended. water cooled,
 
calorimeter and the latter depends upon the time varying resistance of a
 
deposited layer of alkali-metal (viz. lithium) between two collecting
 
elements on an insulating substrate. The time rate of change of the
 
current is then related to the instantaneous local value of the alkali
 
metal mass flux.
 

Preliminary results indicate rotational ion velocities of about
 
4000 meters/second at a radial position 1 cm from the jet centerline. A
 
number of spectral lines associated with transitions between the upper
 
excited states of the lithium ion have definitely been observed. Since
 
these states have energies in excess of 50 electron-volts, relative to
 
the atomic ground state, this indicates reasonably high plasma electron
 
temperatures. The preliminary tests with the mass deposition probe
 
indicate the utility of this device as a plasma diagnostic tool. Further
 
calibration and elimination of effects related to variations in the local
 
plasma potential are still necessary.
 

Reference:
 

1. 	 G. L. Cann, et al., "Hall Current Accelerator." NASA Report CR­
54705, 4 February 1966 (Contract NAS 3-5909, NASA-LRC)
 



THROUGH INSULATOR 

CATHODE---

FIG. la HALL CURRENT ACCELERATOR WITHOUT TUNGSTEN ANODE INSERT
 
(H 2-1) 



112
 

CRAPHIT hIJ6I
A4/OVAITI V 
BLOCKCOIL
 

_ . £2/A. 

1AIL6T 
.,, 

7--Z1A165?-SE V 
CATHODE 

SrARr/AldS906LIAO
AS INLET 

IW7NULAR 

All TR/DE 

FIG. 1,i. ENGINE CONFIGURATION USED IN SODIUM TESTS 



0.60-I 

o0050 e 

~ 
z
w0 
a: 
La. 

040 

0.30 

0 0 

~ 020 0 

>
0 

010 

0100 i 
0 

I 

o 

I 

2000 
I I ' 

4000 

SPECIFIC 

I iI ... I 

6000 8000 

IMPULSE Tsp(Sec) 

II 

10000 12000 

FIG. 29 OVERALL EFFICIENCY VS. SPECIFIC IMPULSE FOR H2-1 HALL CURRENT ACCELERATOR 



0.50 

RUN 478 

0.40 	 o
 

00
 
o 	 000
 

0.30- 06 0
 

0.0 0 0 
,0 	 I 

0 1000 2000 3000 
SPECIFIC IMPULSE Isp , seconds 

FIG. 2b .EFFICIENCY AS A FUNCtION OF SPECIFIC IMPULSE (SCIDIEJ fROPELLAr) 



... 0I0 I I I 

400 

0 ANODE JET 
o CATHODE JET 

-

0 
~300 

200 

C0 

0 

0 

FIG. 3 

4 

CuMI? CARRIED 

I 

812 

IN ANODE AND 

I 

16 

Z ,cm 

CATHODE JETS AS A 

I 

20 

FUNCTION OF AXIAL 

I 

24 

POSITION 

28 



pEIEDING PAGE BLANK NOT FILPMEI1 1!7
 

PLASMA ASPECTS OF SPACE PHYSICS
 

A. C. Opp/Physics and Astronomy Programs
 
Office of Space Science and Applications, NASA
 

One of the objectives of the Physics and Astronomy Programs is to
 
understand the physical processes occurring in space. Space is one
 
of the most nearly perfect low density collisionless plasma laboratories
 
available. Thus, many of the phenomena which are of interest to space
 
physicists are also of great interest to plasma physicists, and vice
 
versa.
 

Space plasmas exist from the lower boundary of the ionosphere to the
 
outer limit of the Universe. Before the advent of satellites the
 
terrestrial ionosphere was probably the best understood space plasma.
 
None the less, ionospheric satellites enabled observations to be made
 
above the range of ground based ionosondes and increased immeasurably
 
the knowledge of the topside of the ionosphere. They also presented

plasma physicists with observations of a new phenomenon, the so-called
 
Alouette resonances.
 

Beyond the ionosphere one finds the trapped radiation belts. The
 
mechanisms of trapping, particle acceleration and containment in the
 
earth's magnetic field are still poorly understood, as is the magne­
tospheric tail and its relation to the radiation belts and auroral
 
zones.
 

The earth's magnetic field and the radiation belts are terminated at
 
approximately 10 earth radii in the subsolar direction by the solar
 
wind.- The transfer of energy from the solar wind to the magnetosphere

is one of the most challenging problems of contemporary space plasmas.

Extensive satellite and theoretical investigations of the interaction
 
of the solar wind with the earth!s field are being conducted in an
 
attempt to understand the physical processes associated with the energy
 
transfer.
 

The nature and origin of the solar wind is also being actively investi­
gated. The existence of the solar wind has been firmly established.
 
It remains, however, to define its detailed spectral characteristics
 
and temporal variations, particularly as these can be related to events
 
on the sun or in near interplanetary space.
 

The sun has been studied for centuries. Yet there still exist no fully

satisfactory theories for many solar phenomena. Undoubtedly, the ultimate
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explanations will have their foundations in plasma physics, and
 

conversely, solar physicists will undoubtedly present plasma physicists
 

with new phenomena for explanation.
 

The radial extent of the solar wind is a matter of speculation.
 

Estimates range from 2 or 3 to over 100 astronomical units. The inter­

action of the solar wind with the galactic cosmic ray gas and galactic
 

magnetic field are matters of considerable interest to cosmologists as
 

well as the origin and propagation of the cosmic ray gas in the Galaxy
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.EXPERIMENTAL AND THEORETICAL INVESTIGATIONON
 
SELECTED ASPECTS OF PLASMA TURBULENCE
 

I. B Bernstein, Yale University; New Haven, Conn. 

The theoretical work accomplished thus..far has included
 

studies of the quasi-linear theory of plasma waves appropriate-for.
 

an understanding of Plasma turbulence, and an analysis of the sta­

bility of the Chapman-Ferraro model of the magnetopause against
 

gusting in the solar wind. These latter studies are being extended
 

using an ideal magnetohydrodynamic model which includes the bow
 

shock.. Also under way are studies of the interaction of electro­

magnetic waves and the proper oscillations of the plasma in systems
 

exhibiting sheaths.
 

Experimental studies already well under way are in the
 

areas of (a) light scattering from plasma fluctuations, (b) study
 

of cyclotron resonance plasma echoes, and (c) study of finite geo­

metry plasma resonances: In (a) both plasma production and laser
 

stabilization are essentially solved; in (b) collisionless echoes
 

due to relativistic mass shift have been observed; in' (c) resonance
 

spectra both with and without streaming are undergoing study and
 

analysis.
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INVESTIGATION OF PLASMA RESONANCE PHENOMENA 

S. J. Tetenbaum
 

Lockheed Research Laboratories, Palo Alto, California
 

This investigation was undertaken to obtain an understanding of electron 
resonance phenomena in laboratory and ionospheric plasmas and to evaluate the 
applicability of such phenomena to the measurement of charged particle den­
sities, temperatures and magnetic field strengths in planetary atmospheres

and interplanetary space. Experiments were performed on RF-excited, elec­
trodeless, pulsed and steady state, low-pressure Helium discharges of
 
relatively simple geometry which simulate a plasma slab in a uniform magnetic

field. The wave frequency, w. the magnetic field intensity, B. 
= mw0 /e, the
 
gas pressure, p, the electron density, electron temperature and the geometry
 
were chosen to provide an approximate correspondence between the laboratory
 
plasma and the plasma environment of the Alouette satellite. The major
 
resonances studied were the electron cyclotron harmonic resonances which
 
occur near w = Nw where N is a positive integer. A schematic of the experi­
mental arrangemen is shown in Figure 1. The plasma was created by a 22 MHz
 
pulsed or CW transmitter capacitively coupled to a rectangular Prex vessel
 
having a 16.5 x 16.5 cm cross-section and an inside thickness d of 9.7 cm in
 
the direction of propagation. Its walls were ground to a thickness of a
 
half-wavelength at 9.15 GHz, the frequency of the incident wave Pin* 
The
 
vessel was located in a DC magnetic field which was uniform to better than
 
0.5% over the plasma volume. The measured magnetic field positions of the
 
resonances are estimated to be accurate to 0.1%. 
A 36.0 GHz interferometer 
measured the average electron density over a 2 cm diameter cylindrical
region through the plasma coaxial with the interferometer horns. Measure­
ments were taken of P , the incoherent noise emission, of (P) and (Pw)R
the coherent transmitted and reflected fundamental waves and oT (p2)T and 
(P20)RI the corresponding second harmonic waves. The CW microwaves propa­gated in free space on either side of the plasma container in a direction
 
perpendicular to the static magnetic field. The waves were launched and/or

detected by microwave horns located a few wavelengths from the plasma. The
 
horns could be rotated to propagate or receive either the extraordinary wave
 
(E9.15 1o)Or the ordinary wave (E9 lR JIBo). The intensity of a given wave
 
at a fixed frequency of 9.15 GHz or 18.3 GHz was recorded as the magnetic

field was slowly swept in intensity and precise measurements were made of
 
the positions, amplitudes and line shapes of the resonances under varying

conditions of the plasma parameters. Figure 2 shows the resonance amplitudes

of some of the waves as a function of harmonic number N, where smooth curves
 
have been drawn through the measured points. The incoherent wave resonances
 
reach maximum amplitude near N = 4 or 5 and thereafter gradually decrease
 
with increasing N, the ordinary wave resonances being 1 or 2 dB less than
 
the extraordinary wave resonances. The latter were observed up to N = 46.
 
The coherent wave resonances were only observed when the incident microwave
 
electric field was perpendicular to the magnetic field. Fundamental wave
 
resonances were observed up to N = 7, their amplitudes decreasing with
 
increasing N. They exhibited an increase in power relative to the back­
ground power in transmission, and a decrease in power relative to the
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background power in reflection. Second harmonic wave resonances were observ­
ed up to W = 7. They exhibited an increase in power relative to the back­
ground power in,both transmission and reflection. The amplitudes of the 
(P2w)T resonances were about 3 d6 greater than those of (P22)R' and in some 
cases were 16 dB above the second harmonic wave background. The rapid 
decrease in resonance amplitude with increasing N may be related to the 
rapid decrease in the generated second harmonic in this magnetic field 
region. Resonances were also observed in the sum frequency wave, P., due to 
two incident waves of frequency Wl/23t = 8.8 GHz and w2/2ir = 9.2 GHz. These 
resonances occurred close to wI = NWe and w2 Nc, N = 2, 3, 4 and 5. 
Attempts to observe resonances in P2. near 2W = NW , N = 3,5,7, ...and in PS 
near w1 + W = Nwc N 3 were unsuccessfl.3,4,5... The coherent wave and 
incoherent wave resonances exhibit different behaviour not only in their 
amplitude dependence but also in their positions. Figure 3 shows how the 
emission resonance positions vary with N. The positions remained constant 
for all harmonic numbers, for pressures from 0.02 to 0.3 Torr and for values 
of %,/w at the center of the discharge from 0.8 to 2.6, where wp is the 
electron plasma frequency. The resonance positions of the two waves 
differed by 0.3%, those of the extraordinary wave occurring at a higher 
magnetic field than those of the ordinary wave. In contrast, the coherent 
wave resonances were complicated functions of N, p ancI w/. Their positions 
varied as much as 4% with variations in these parameters4 but always occurred 
on the 'low frequency side of the exact harmonic. The coherent and 
incoherent wave resonance amplitudes also differ in their pressure depend­
ence. The former show definite collisional damping effects, the amplitudes 
decreasing with increasing pressure, while the latter exhibit a maximum 
amplitude at a pressure whose value depends upon W /W, the amplitude 
decreasing for higher and lower pressures.The incoherent *ave resonances 
had symmetrical but non-Lorentzian line shapes. The Q's of the extra­
ordinary wave resonances were about 40 and were about one third larger than 
the Q's of the ordinary wave resonances. The coherent wave resonances had 
asymmetrical line shapes, their asymmetry decreasing with increasing N, and 
Q's of about 30. The coherent wave resonance lines were broader on their 
high magnetic field side and occasionally, for N = 2 and F = 3, showed the 
presence of additional small resonances. Experiments in which the center of 
the plasma was moved relative to the center of the magnetic field have 
shown that the cyclotron harmonic emission is a volume effect rather than a 
sheath effect and that the radiated ordinary and extraordinary rave 
resonknoes originated in different regions of the plasma. 
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A-C TRAVELLING WAVE-PLASMA STREAM INTERACTIONS
 
Martin Lessen
 

The University of Rochester
 
Rochester, New York
 

NsG-350-63
 

The motivation of this problem was to investigate the
 

interaction of a travelling magnetic wave with a plasma.
 

The configuration selected for this research was a pair of
 

coaxial cylinders with an inner and outer shell of low re­

luctance magnetic material. The configuration was chosen
 

to provide an electrodeless machine with a nearly radial
 

magnetic field. The concept of this machine was first
 

presented in reference (I) in which a single fluid model
 

was used for analysis. Subsequently, this type of confi­

guration was discussed by Carter and Laubenstein (2) and
 

more recently by Penfold et al (3) and Schwirian (4).
 

The approach was initially in two directions. The
 

first was the analysis of a three fluid one dimensional
 

model of the device in which the principal mechanism for
 

plasma neutral interaction was assumed to bb charge ex­

change. The second was experimental which involved con­

struction of the coaxial cylindrical device including the
 

windings low reluctance, magnetic material shells, gas
 

metering system and some diagnostic elements. This latter
 

area indicated that a great deal had to be done before sig­

nificant physical results could be obtained as to the in­

ternal interaction mechanisms.
 

Initially several sets of windings were made and tuned
 

in an attempt to obtain the strongest radial field with as
 

little axial component as possible. The final design con­

sisted of four 9 turn coils each approximately 9 inches
 

long. For this configuration the radial field strength
 
-
varied from about 100 gauss to 160 gauss along the tube 


having maximums between the coils. At the same time, the
 

axial component was about 20 to 25 gauss representing an
 

angularity of the field midway in the annulus of some
 

significance. The phase angle of the field fluctuated
 

over a 12.5 ° range along the tube from an assumed linear
 

3600 total phase shift. Due to the field angularity the
 

reaction with the plasma would drive many of the particles
 

to the walls before the exit were reached, however, there
 
The most direct measure­should be some measurable reaction. 


ment was of the pressure distribution along the tube for a
 

given flow rate. By having the field accelerate the plasma,
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a pressure drop from 300.Hg to 11 0 -Hg was recorded over
 
3/4 of the tube length; connecting the field in reverse
 
necessitated an inlet pressure of approximately 800AzHg
 
to realize the 100/Hg at the same point. Considerable
 
changes in the electrical power input were noted during
 
these interactions. Some estimate of the power transferred
 
to the plasma was desired and coils wound in the annulus and
 
connected to non-inductive resistances were used for this
 
purpose. Induced power in-the coils amounted to approximately 
6 KW. At this time the power to the coils totaled 10.2 KW. 
In the discharge mode the power dropped to 5 KW to the coils 
due to considerably more detuning. 

Work is continuing with the construction of a new
 
machine with conical geometry which should alleviate some
 
of the problems of field angularity and the small annulus.
 
Also more room will exist for diagnostics than could be
 
affected in the current machine. It is anticipated that
 
the question of the magnitude of elastic scattering of
 
particles and radial electric field effects can be looked
 
-at as well as the continued investigation of overall in­
teraction.
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