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CHAPTER I
INTRODUCTION

The theory of filtering concerns the estimation of
an underlying physical process from observations of it
which may be corrupted by "noise". The physical process
is characterized as a random process. One example of
such a process is the transmission of a signal. During
the transmission of a signal process the transmission
channel will perturb the signai by introducing an un-
wanted random process (noise). A transformation of the
received signal is required that will remove as much of
the noise as possible in order that a better estimate of
the information-bearing signal may be obtained. Another
example is the tracking of a space vehicle using radar
observations fkom tracking stations. The calculated
trajectory of the space vehicle will be perturbed by
effects of the planets whose gravitational constants
could not be considered in the derivation of the tra-
jectory. The position of the space vehicle at any given
time must be estimated'from observations of it from the
tracking stations.

The model of the physical process is often random
differential equation in case of a continuous-time

process or a random difference equation in case of a




discrete-time process. In case of a continuous-time
model the physical process is assumed to evolve continu-
ally while in case of a discrete-time model the physical
process is assumed to evolve in discrete steps of time.
If the random equation is Tinear in terms of the state
of the process the model is referred to as a linear
model. A filtering problem with a linear model is de-
fined as a linear filtering problem. This dissertation
is concerned with discrete-time linear filtering prob-

lems.

Statement of the Problem

A discrete-time linear system is defined by
x(tn) = @(tn,th_l)x(tn_l) + u(n-1) (1.1)

where x and u are rx1 vectors and ¢ is an rxr matrix.

The vector x defines the state of the system. In case

of the transmission problem the components of x could be
the frequency, amplitude and phase of the signal. For
the space vehicle tracking problem the first three com-
ponents of x may be the position coordinates and the next
three the velocity components. The vector u is called
the state disturbance error. The initial state x(to) and
the state disturbance error u are assumed to be random

vectors. Thus x(tﬂ) becomes a random vector.




It is normalily assumed that

Efu(i)] = 0 (1.2)
Elx(t )] = ¢ (1.3)
cov[x(to)] = P0 (1.4)
cov[u(i)]l = Q; (1.5)

j

where ¢ is the mean vector of x(to), and P0 and Qi are
the covariance matrices of x(to) and u(i) respectively.
It is also assumed that uy is independent of uj, for all
itJ.

The fundamental matrix ¢ is the state transforma-

tion matrix and satisfies the following relations.

®(tnftn) = I (1.6)
o(t,,t,) = 0T (t.t,) (1.7)
®(ti’tn) = @(ti,tk)¢(tk,tn) . (1.8)

A set of observations linear in components of the

state vector of this system is defined by

y(n) = H{n)x(t ) + v(n) (1.9)

where y is a px1 observation vector, v is a pxl observa-

tion error vector, and H is a pxr matrix relating the




state of the system to the observations. The observation
error v is assumed to be a random vector. The vector
y{n) thus becomes a random vector, since x(tn) and v(n)

are random. It is normally assumed that

"
o

E[v(i)] (1.10)

¢
(o]
el

E[v(i)v' (3)] = (1.11)

where 613 is the Kronecker delta, and R, is the covar-
iance matrix of v(i). It is also assumed that u, is
independent of Vj’ for all i and j.

The problem is to estimate x(tk), given the obser-
vations y(1), y(2), ..., y(n). This estimate is denoted
by ;(tk/n). Since the vector y(n) is the observation of
the system at time t. y(1), ..., y(n-1) will be referred
to as past data. If it is desired to estimate x(tn) at
the present time tn, the problem is referred to as a
filtering problem. If at time tn, it is required to
predict x(tk) for some future time tk>tn, the situation
is termed as predication. If it is desired to estimate
x(tk) for some time t <t , the problem is called a
smoothing problem. These three situations can be com-
bined and all three problems referred as "estimation"

problems [18].




Linearization of a Non-Linear Problem

Generally ih space navigation the set of equations
describing the system and the observations are non-
1inear. Following is a brief discussion of transforma-
tion of such a problem to a linear one. Consider a non-

linear problem of the form
x(tn) = g(x(tn_l),n-]) + u(n-1) (1.12)
z(n) = f(x(tn),n) + v(n) (1.13)

where x, u and v are interpreted as before and z is the
observation vector. By expanding g and f in a Taylor
series about a nominal x(tn) the above problem is trans-

formed to

xs(tn) = G(tn)xb(tnal) + u(n-1) (1.14)
yp(n) = Fln)x (t,) + vin) (1.15)

where

xp(tn) = x(tn) - Xnom(tn) (1.16)

x () = x(t ) - glx . (t,_;).n-7) (1.17)

ypln) = y(n) - £x,,(t,).n) (1.18)
6(t,) = & alxn-1)|

ntoooax X=X o (g (1.19)




F(n) ﬁ%-f;“r‘('x,n) (1.20)

X:chm(tn)

The terms of order higher than one in the expansions of

g and f have been ignored.

Survey of Previous Literature

Wiener [33] and Kolmogorov [21] solved the problem
of providing the estimate of a random signal process on
the basis of observation of it additively corrupted by
noise. This solution was dependent on the assumption of
stationarity, ergodicity,‘and knowledge of the entire
past of the observed process. The end result was the
specification of the weighting function of the optimal
estimator as a solution of the Wiener-Hopf equation.
Wiener used spectral factorization to determine the
transfer function of the optimal filter in the finite-
dimensional case.

Kalman [18], and Bucy and Kalman [12] obtained a
solution as an algorithm to produce the numerical esti-
mate from numerical observations, under weaker assump-
tions than those of Wiener. They relaxed the assumption
of stationarity and the necessity of the knowledge of
the entire past of the observed process. This theory is
known as Kalman-Bucy filtering.

Smith, Schmidt, and McGee [30] were first to recog-

nize the possibility of applying this theory to space




navigation and their work was fTirst published in book
form by Battin [3]1. Bucy, Englar, and Kalman [9], and
Kalman and Englar [20] developed an automatic synthesis
digital computer program for realization of the estimator
in the Kalman-Bucy filter.

Bass, Norum, and Schwartz [2], and Bucy [6] ob-
tained results in non-linear filtering. Bryson and
Johansen [5] and Bucy [8] have done research into pro-
blems with correlated noise. Bucy [7] and Bucy and
Follin [10] consider finite-time filtering problems.

Joseph [17] has done research into sub-optimal
filtering using the method of subsystem partitioning.
Meditch [25] considers sub-optimal filtering for contin-
uous dynamic processes. Starich [31] used theoretical
considerations of the effects of both diagonal variances
and off-diagonal covariances of states on the estimation
process to stipulate some sub-optimal configurations.

Erzberger [16] studied the application of Kalman-
Bucy filtering to aircraft navigation. Smith [29], and
Wing and Joseph [34] studied the evolution and estimation
of error covariances. Recently Abramson [1] and
Shellenbarger [28] have considered some inference prob-
lems associated with Tinear dynamic systems.

Four existing methods of solving the estimation

problem are presented below. The "estimation problem”




was presented in the first section of this chapter. The
basic assumptions for this problem were listed under

equations {(1.2) to {1.5), (1.10) and (1.11).

Least Squares Method A [11]

Here it is assumed that the state disturbance error
is nonexistent; this is the same as annexing the follow-

ing equation to the basic assumptions.
Q; =0, 1=20, 1, 2, ... (1.21)

Using equations (1.6) to (1.8), the state x(ti) can be

written as

X(ti) = Q(ti’tk)x(tk)' - (1.22)

Equation (1.9) can be now transformed to

y(i) = H(i)@kti,tk)x(tk) + v(i). (1.23)

At time t_, y(1), y(2), ..., y(n) will be the available

observations. Define the following matrix notations

(1)
. y(2)

y(n) Apx




H(?)@(tl,tk)
H(Z)@(tz,tk)

Bn,k = . (1.25)

_H(n)@(t ’tk)‘npxr

and

—v(l)-
v(2)
Y, = . (1.26)

v(n)

Inpx1

Using these notations and equation (1.23), following

matrix equation is obtained

n. = Bn,kx(tk) + Yy (1.27)

n

Using the assumptions in equations (1.10) to (1.11), the
least squares estimate of x(tk) is the quantity ;(tk/n)

which minimizes the scalar quantity
~ T IS
[nn = Bn,kx(tk/n)] [ﬂn = Bn,kx(tk/n)]‘ (]-28)
Thus

° _ T -1,7
x(tk/n) = [Bnngn,k] Bn,k"n’ (1.29)




The rank of Bn K must equal r for this sclution to be
unique. Hence a sufficient number of independent obser-
vations must have been made so that the rank of Bn K will

eqgual r.

Least Squares Method B [11]

The assumption in equation (1.21) is relaxed under

this method. The state x(ti) can be written as

x(ty) = oltytdx(t) - T ety ty, Ju(d).  (1.30)

Hence the observations y(i) become

k-1 :
] #(tgty Ui} + v,

(1.31)

y(i) = MG {e(t,5t)x(t,) -
J

Let n and Bn K be the same as in equations (1.24) and

]

(1.25) respectively, and Tet

k-1
V1) - HO) T e e uls)

k-1
v(2) - H(2) ] e(t,,ty, )u(d)

j=2 (1.32)

npxl

10




The matrix equation thus obtained is

o
-
(8]
{ad

S

- v+ AR
"n Bn,kA‘°k) "

which is of the same form as in equation (1.27). Thus

the least squares estimator of x(tk) is given by

I

0 _ -1,T
Vx(tk/n) = [Bn,an,k] B

n,kMn (1.34)

which is identical to the one obtained under the previous
method. Thus the previous method can be treated as a
special case of this method. Sufficient number of inde-
pendent observations must have been made for this esti-

mator to be unique.

Maximum Likelihood Method

Assume that the state disturbance erkor is non-
existent and that the observation error is Gaussian. The

joint density of v(k) is given by

p(v(k) = — )b/éTR 7T e - v TR; v (k)
" k

(1.35)
where Rk is the covariance matrix of v(k). Assuming that
the v(k)'s are uncorrelated as in equation (1.11), and

using y. as defined in equation (1.26), the joint density
n

of vy, is given by

11




1
(Zﬂ)np/leNl

ply,) =

B f e
-
b
v
=
s
-
po]
b
Caann ™
el
1o
o
S

173 exp {-

where RN is a block-diagonal matrix consisting of Rl, Rz’

.» R,. Since n = Bn,kx(tk) LR

1 Tp-1

SR S PR T (- 3 g8y, (800 Ry

(n=By kX ()}
(1.37)

The maximum 1ikelihood technique selects the quantity
g(tk/n) which maximuzes p(yn;x(tk)). This quantity will
also maximize the exponent in equation (1.37). Thus the

maximum likelihood estimator is given by

> _ T -1
x(tk/n) - (Bn,kRN

~1,T

-1
Bn,k

B RN nn'

o) (1.38)

Kalman-Bucy Filter [12]

This fs essentially a Bayesian approach to the
problem. To simplify notatidn, the time index is used as
a subscript instead of as an argument of the different
vectors involved. Using squared error loss the Bayes
estimator for Xy given the observations Yis Yoo oo Yy

is given by the mean of the posterior density

12




p(xk/ylaeakyk) = p(xk/yk) = W“ETV;T“ .

Under the assumptions of independence given by equations

(1.4), (1.5), (1.10) and (1.11), equation (1.39) may be

simplified as

POV /% s Yo 0P (xs Yy ))
p(xk/Yk) = p(Yk)

Since Yy does not depend on Yk-l’ if X) is given
Py /X sV ) = ey /%)
Using equation (1.41), equation (1.40) becomes

Py /% )XYy 1)
PIx/¥y) = pTT. T

Using conditional probabilities
p(xpsYy_q) = px /Y )p(Y, ;)
and
p(Y ) = ply /Y, _dp(Y{)s
equation (1.42) can be vrewritten as

ply /X dp(x /Yy 1)
Py /Yy 1)

p(xk/yk) =

(1

(1

(1

.40)

.41)

L42)

.43)

.44)

.45)

13




The three density functions on the right-hand side of
equation (1.45) are assumed to be known a priori.

The state disturbance error U and the observation
error v, are assumed to be Gaussian. Thus the condi-

tional density function p(xk/Yk) is of the form

) 1 1, 50 ATyl 2
P(xy /Yy ) = TERATNEL expl- 5 (X=X, ) U (xpemxp ) )
(1.46)
where
%k/k = E[x, /Y, ] (1.47)
and
Uk = cov[xk/Yk]. (1.48)
Define the estimation error by
Xk-1/k-1 = k-1 "Xk-1/k-1 (1.49)
X k-1 = Xk "Xk k-1 (1.50)
It has been shown by Kalman [18] that
E[ik_l/k_l] = 0 (1.51)
E[Xy g] = O (1.52)

Let Proq = Cgv[kalfkmlj (1.53)




P, = ccv[gk/kml} (1.54)
and
E[xk/Yk_l] = Xy /k-1 T Xk (1.55)
Since Xy = ¢k,k-1xk-1 + Up_qo xk/k-l can be obtained as
Xk/k-1 = %k, k-1¥k-1/k-1" (1.56)
Equation (1.54) can be rewritten as
P, = E[(x,-x ) (%, -X )T (1.57)
K k “k/k-17'"k "k/k-1 )

or,

_ ; T
P = ELCop ot ior/ke1tUk-1) (O ko1 ¥k-17k-1+0k-1) 1
(1.58)

Since X _,/p.q 1S independent of u,_,, equation (1.58)

1
simplifies to

P, = T
k - q)ksk"lpk-l@k,k_l + Qk_l' (].59)

Now

E[yk/xk] = Hkxk (1.60)

and
covly,/x ] = E[(yk-Hkxk)(yk-Hkxk)T/xk] = E[kaE/xk] = Ry.

(1.61)

Also ELy /Y1 = HX (1.62)




and
I SO PR
Coviyk/yk_li E[(yk xkl K~k k! k-1

= EL(H g Vi) (HXp g Y Q1T

(1.63)
Since Xg/k-1 18 independent of v, > equation (1.63) re-

duces to
covly, /¥, ;1 = HPHp + R,. (1.64)

Using the above equatijons, equation (1.45) can now be re-

written as

H, B HL+R, |1/2
PO /YD = (anrﬁzTRtllﬁllpkll/z exp {-3 [(yHye)]

R Hix) + R ) TP 0 ) -
(y K X TP RTR )Ty oK X)) (1.65)

Equation (1.65) can be simplified to the same form as
equation (1.46), and upon comparison of the two, the fol-

lowing equations are obtained.

= Xt Pka(HkPkHE+Rk)“l(yk H X)) (1.66)
s s uTiu s uTen v-lu .
P = P = P HL(H P HI+R ) TIH P (1.67

16




Equations (1.56), (1.59), (1.66), and (1.67) are known as
the Kalman-Bucy filter (or Kalman filter). To start the

estimation process the values x_. and PO are assumed known

0
a priori. The solution for the prediction problem is

given by
Xe/m = Pkonkn/ne  kon (1.68)
whereas for the smoothing problem
Xesm = Xipee ken (1.69)

Discussion of these Methods

0f the four methods presented above for the solu-
tion of the linear filtering problem, the Kalman filter
is usually the best one. The least squares method does
not weigh the observations according to their relative
accuracy, but treats them equally. The maximum likeli-
hood method ignores the state disturbance error. Since
the state disturbance error gets propagated into the
system with the passage of time, it may seriously impair
the performance of the maximum Tikelihood method. Hence
the Teast squares and the maximum likelihood methods are
usually inferior to the Kalman filter.

Although Kalman [18] justifies the assumption of
Gaussian state disturbance error, the advantage of this

assumption is seen in the simpiification of the

17
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mathematical manipulation of density functions. If a
real physical process can be exactly described by a
linear system, the justification of Gaussian noise is
reasonable. However, if the linear system is more of an
approximation to a real physical process it is possible
that the state disturbance error will not be Gaussian.
For example, if a non-linear system was the exact repre-
sentation of the real physical process, then the linear
system under consideration has been obtained by linear-
ization as discussed in an earlier section. The state
disturbance error then consists of the random error as
well as the higher order terms which were ignored. In
this case there is no physical or logical justification
for assuming this error to be Gaussian.

This dissertation relaxes the assumption of any
form of distribution for the state disturbance error. A
filter is developed which does not depend on the form of
the distribution. The observation error is assumed to
be Gaussian as in the Kalman filter. This may be justi-
fied by recognizing that the observation error is caused
by an accumulation of microscopic errors introduced by
different compohents of the instruments used for observa-
tion. By the Central Limit Theorem, the observation

error will tend to be distributed normally.
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Purpose and Cutline of Subsequent Chapters

In Chapter II a smooth empirical Bayes estimator
will be developed fdr the mean of akmu1tivariate normal
distribution. The estimates obtained by using this esti-
mator will be compared against the maximum likelihood
estimates, by using Monte Carlo simulation. Average
squared error of the extimates will be used as the mea-
sure of performance of the corresponding estimator. In
Chapter III this smooth empirical Bayes estimator will
be used to estimate the state vector of the linear system
with Tinear observations. The performance of this em-
pirical Bayes filter will be compared with the perform-
ance of the Least Squares filter and the performance of
the Kalman filter, by using Monte Carlo simulation. Con-
clusions will be summarized in Chapter IV about the prop-
erties and limitations of the smooth empirical Bayes

estimator and areas .for future research will be discussed.




CHAPTER 11

A SMOOTH EMPIRICAL BAYES ESTIMATOR FOR THE MEAN

fomong

R
OF A MULTIVARIATE NORMAL DISTRIBUTION

In this chapter a smooth empirical Bayes estimator
will be obtained for the mean of a multivariate normal
random process. This estimator will then be used in
Chapter III to solve the estimation problem discussed in
Chapter 1I.

Let x be a random p-vector which is normally dis-
tributed with unknown mean vector 6 and known covariance
matrix R. Let 6 have an unknown and unspecified density
function g(e) which is time-invariant. This density
function is usually referred to as the prior density.
Consider that at time n, nature chooses a value 6, ac-
cording to g(e) and using this value as the mean of the
normal distribution, then chooses the vector X according
X to be sequence of

1o s X
such vectors over time. Thus X, is distributed normally

to f(xlen,R). Consider x

with mean 0, X,

etc. Using a squared error loss function, the Bayes

is distributed normally with mean 6,5

estimator for 6  is given by E[elxn] which can be ex-

pressed as

£

f{x _|e)g(e)de

‘ J o
Efofx,1 = [E Te)g(e)de (2.7)

b s
f

20




The integration in equation (2.1) is carried out over the
entire range of 6. Since g{o) is assumed to be unknown,
a method to estimate g(e) is desired.

Cacoullos [13] considered a class of estimates

gn(e) of g(e) of the form

e"e_i

_ 1 n
gn(e) B nhP(n) LK {h{n{

i=1

(2.2)

where K(y) is a kernel which is chosen to satisfy suit-
able conditions and h(n) is a sequence of positive con-

stants which satisfy

1im h{(n) = 0. (2.3)

N->o

He showed that this class of density estimators is asymp-
totically unbiased and consistent in quadratic mean if

the following conditions are satisfied.

sup|K(y)| < = (2.4)

y

[1K(y)|dy < = (2.5)
Tim|| y|l Px(y) = 0 (2.6)
|yl »e

Sy
P
—,

e
L
[

&L

]
]
o
[p]
R
B




Tim nh® = 0. (2.8)
i+
The kernel
K(y) = — L exp [~ LyTyl (2.9)
21)
and the constant
h(n) = n~1/25 (2.10)

satisfy the conditions in equations (2.3) to (2.9). Usu-
ally the argument y of the kernel may have components
with different units. In this case a different type of
kernel can be defined such that it will allow each ele-
ment of the difference vector to be divided by a differ-
ent h in equation (2.2). The constant hj for the j-th
element as defined below was suggested by Bennett [4] for

a unijvarjate case.

h. = n"H/23 {std. pev. (0;,)}.

The density function g(6) can then be estimated by gn(e),
where
n

g (e) = L exp {- L (e-e.)T(ene.) , —0< P <o
n nhf (27)P/2 izl { 2h? L i}

(2.11)

provided 6 8, are known exactly.

13 e & s 03
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Replacing g(e) by gn(e} equation (2.1) becomes

jef(xn;e)gn(e)ae

23

Enlo i = TFx Tovg (e)ds (z.12)
Since the density function f(xnle) is given by
Ty-1
f(x_|o) = L exp {- = (x_-8)'R"L(x -0)},
n (2n)p/2|R|l/2 2 n n
(2.13)
f(xnle)gn(e) can be written as
(x 10)g, (o) - T oexp {-—(s-6,)"(s-5,)
f(x_106)g (6) = exp {-—=(6-6. 0-0.
nteon nhP(2n)P|R| /2 451 o2 ] 1
Lix -e) 'R (x,~0)}.
Now (2.14)
35 (e—e.)T(e—e.) + (x —e)TR'l(x 8)
h i i
o1 T, 2 T 1T -1
= ;5 806 - 2 66, + hz 6,8, + X_R X4

= eT(R“1+£7 I)e - ZeT(R“lxn+&;e.) + anmlxn
hé, e h,_. £
+ Lol (2.15)




Let
p = R + L 71 (2.16)
h2
and
=1 1
q. = R *x_+ =— 9. (2.17)
i n p2 1
Then
(x_8)g.( ! ) L [(0-p~tq.)T
f(x _|e)g (6) = exp -3 e-p g
n n nhp(ZW)lell/z i=1 2 1
-1 Tp-1 Tp-1
P(e-P qi) q;P Tqy ¥ X ROTx ¥
1 T
Now

1/2
r(e) = %§i3577 exp {- L (6-P"1q.)TP(e-P q;)}(2.19)

is a normal density function with the mean vector P"lqi

and the covariance matrix P"L. Hence
P_l n

of(x _le)g (e)d = : .exp
Jeflxqloley nhP(2x)P/ 2R 1/ 2 p ) 1/2 49
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and
j ) ) i
f(x_|6)g (6)de = , exp
N nhP(20)P/2 R 2 P12 52,
1 Tgs-1 1 To-1 1 T
[5 a;P Tay - 5 x RT7x, - == 00,1
2h
(2.21)
-1 0 1 T,-1 1 T
B i=1 2h
E.(e]x. ) =
" " rz] exp [l qTP—lq. - L eTe.]
T 2 qi0 M op2 1
(2.22)

Equations (2.10), (2.16), (2.17) and (2.22) would give

En(e[xn) if o 0, were known exactly. In this case

1 e
En(elxn) would be a consistent estimator for E(6]|X).
However, the values 8,5 --v5 8 reméin unknown and esti-
mates of these values need to be used. If 6i is a con-
sistent estimate of ei,En(elxn) will be consistent.
Since the distribution of 8's is unknown, also, as a
first step 51 will be taken as Xy i=1, ...,n. In the
next section a slightly modified approach will be used
for obtaining the values of éi's. Using éi=xi equation
(2.17) is replaced by

(1) . p-1 i
a; R™Tx  + 7 X (2.23)




The estimator for o, is then given by

n
1 -
g{ ) (61x,) = P ) qgl) exp 3 qgl)T Lq{t)
i=1
1 T, (1)Tp-1,(1)
- 5 XX / exp q. p q;
op2 i 121 2 i
1 T, !
- 535'Xixif . (2.24)

The estimates Egl)(e}xi) obtained as a result of

using 6 ;=X , can now be used in place of 6 ; to obtain

i
(k-1)

iterated and Ei (elxi) could be used as the value of

6. to obtain the extimates Egk)(e[xi). Using a smooth
estimator with different kernel, Bennett [4] found that
the first iteration normally results in an improved esti-
mate; however, further iteration produces estimates not
as good as the one obtained with one iteration. In a
later section, the results of Monte Carlo simulation are

presented which includes the comparison of the perfor-

mances of Egl)(ﬁlxi) and Egz)(elxi)

Covariance Correction

If ei‘g had the following two properties

Eij‘éi'_} = Ef6 ] (2.25)

1

26

E(Z)(elxi). This process of using the estimates could be
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™2
3
o
[N

cav[éij = cav[@i} (

Then the distributions of 5i's and 6i‘s will have match-
ing first two moments. This will give a second order
match between the two distributions, which should bring
the estimator closer to the unknown Bayes estimator.

Now

cov[e.] = cov (E[6,]0,]) + E [cov(e,lo,)]. (2.27)

For ei—xi,

E[6,] = E (E[x;]e;]) = E[s,] (2.28)
and

cov[éi] = cov[ei] + cov[xilei] | (2.29)

since E[éifeij = 9,, and since cov[xilei] is not a func-

i

tion of 61‘ Recall that

cov[xi]ei] = R (2.30)

which is assumed to be known.
Equations (2.28) and (2.29) show that éi=xi has the
property in equation (2.25), but not the one in equation

(2.26). Hence a Tinear transformation of the form

® o . o . o N ,‘* « 9 g
6., = Ab, + b is desired so that 6, will possess both the

properties given in equations (2.25) and (2.26), where A
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is a pxp matrix and b is a pxl vector. Now

E[o;] = AE[6.] *+ b = AE[e,] + b. (2.31)
Hence

b = (I—A)E[ei] (2.32)

*
will guarantee that 0, will possess the first property

for any matrix A. Also

L]

cov[e:] A cov[éj] AT

A [covlo,] + R] AT, (2.33)

Since the covariance matrices involved in equation (2.33)
are symmetric, the matrix A is required to be a symmetric
matrix so that all the elements of A can be uniquely
determined from equation (2.33). Even with this restric-
tion the resulting equations are complex quadratic equa-
tions which cannot be solved analytically without addi-
tional restrictions. One possible solution is obtained
by requiring the matrix A to be of diagonal form. The
elements of A are then found by using the relation be-
tween the diagonal elements of matrices on the two sides

of equation (2.33); namely

Ayy = {Leov(e )T, /lcov(oy) + RIS (2.34)




where [ jjj refers to the j-th diagonal element of the
indicated matrix.

Since cov(ei) is unknown, it must be estimated from
the observations. The matrix cov(éi) can be estimated
from the observed values X i=1, ..., n. Since R is
known, cov(ei) can be estimated by using equation (2.29).
Sampling error may cause some diagonal element of A to
be negative when n is small (less than five). The par-

ticular element will then be set equal to one.

Time-Dependent Covariance Matrix

Suppose now that the restriction that R remain con-
stant over time is relaxed. Let X be normally distri-
buted with mean 6, and known covariance matrix Rn. Equa-
tion (2.1) will still hold if f(xnle) is replaced by

fn(x 6) to account for changing R, - Mathematical mani-

ol
pulation similar to that in the first section of this

chapter yields the following equations for the estimator

for en.
-l .1
Po= RO ": I ‘ (2.35)
9, = R;lxn + if 0 (2.36)

29




£ ) = pl L 1T pe LT
n(elxn T n A e A R P P S A /

i=1 2h

n -

1 T p-1 N
Y exp' = q; P Tq; - ——= 0.0,
= ' 2 Yin ' n Tin op2 171
(2.37)

The values 61=x1, i=1, ..., n must be used in place of

81 since ei's are unknown. The covariance correction
developed in the previous section can be used in this
case also, with the conditional covariance matrix in

equation (2.30) being

cov[xi|61] = R (2.38)

i*

Discussion of the Estimator

Three different estimators have been presented in
the previous sections, namely Egl)(elxn), Eﬁz)(e}xn), and
Eﬁl)*(elxn), the third one being obtained using the co-
variance correction. These estimators can be used for
either the case with a constant covariance matrix R, or
the case with a changing covariance matrix Rn' It would
be desirable to consider the distributional properties
of these estimators analytically and obtain the expected
values and covariance matrices of their estimation ervrors.

The estimation error of an estimator is defined by the

difference between the true vector and the estimated
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vector. This type of analysis would also help in estab-
1ishing confidence intervals about these estimators. The
prior distribution g(e) is required to be of a known form
to perform this analysis. But, this would defeat the
purpose of the development of the smooth empirical Bayes
estimator, which was to relax the distributional assump-
tions 6n the prior distribution. This prevents any fur-
ther analytical computation of the expected values and
covariance matrices of the estimation errors for these
estimators.

An alternative method is to assume the prior dis-
tribution to be of a given form. It may be possible to
obtain the distributional properties of the estimators
with this assumption; however, a different analysis would
need tovBe performed for each distribution, since the re-
sults obtained by this analysis can be expected to change
with a change in the assumed prior distribution. Also,
due to the presence of exponential terms in the summa-
tions in the expressions of the estimators, with the ex-
ponents being differences of quadratic forms, the compu-
tations can be very time consuming and complicated.

Another alternative method of analysis is Monte
Carlo simulation. This is done by using a different
shaped prior distribution for each run of the simulation.

By using a number of replications in the simulation, a
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measure of the expected value and the covariance matrix
of the estimation error can be obtained from the averaged
results.

The first method of analysis is to be preferred
over the other two methods, if it can be performed.
Since in the present case it is not possible to perform
such an analysis due to the lack of knowledge of the
prior distribution, the second method of analysis would
be the next choice. However, this second method being a
very time consuming process, the third method of Monte
Carlo simulation is used in this chapter to study the

distributional properties of the estimation error.

Results of Monte Carlo Simulation

Appendix A describes the computer program which is
used to compare the performance of the estimators devel-
oped in this chapter with the performance of the maxi-
mum likelihood estimator, since it is an unbiased and
consistent estimator for the mean of a multivariate nor-
mal distribution with known distributional properties.
For convenience the individual elements of 6, were sepa-
rately generated as independently distributed random
variables from a member of the Pearson family of distri-
butions. At observation stage i, ten individual observa-
tions were generated. The mean of these ten observations

is the maximum likelihood estimator and is designated as
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X the single observation at stage i required for the

i
smooth empirical Bayes estimator. This process is used
to simulate fifty stages of observations.

The expected value of the squared error matrix for
the maximum likelihood estimator will be R = Rl/io where
Rl is the covariance matrix used for generating the ten
observations at each stage. For the smooth empirical
Bayes estimator, the average squared error matrix is ob-
tained by averaying over one hundred replications and
this is used as an estimate of the expected covariance
matrix of the estimation error. Martz and Krutchkoff
[24] developed an empirical Bayes estimator for the mean
of a multivariate normal distribution. They found that
the performance of that estimator depended on a summary
quantity defined by |

[R - (o7 + R TH],
z, = (2.39)

R CREE . S R

where ¢ is the covariance matrix of 6 used in the simula-
tion and R is the conditional covariance matrix of the
sample mean. This summary quantity is used here to index
the different sets of parameters used in the simulation.
The dimension of x is chosen to be p = 6 for the simula-
tion, since in the next chapter the filter developed

£

using this estimator will be applied to a trajectory
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estimation problem, which as mentioned in Chapter I usu-
ally has a six-dimensional state vector. An average z
quantity is defined to index the different sets of data

simulated, as

1 6
2 =—6— Z 2.. (240)

The performance ratio is defined as the ratio of the
trace of the average squared error matrix of the smooth
empirical Bayes estimator to the trace of R, which is the

expected squared error matrix of the maximum Tikelihood

(1)

estimator. The estimator En

(6|Xn) is referred to as
the first iteration. When the observations used for this
estimator are corrected using the covariance correction,

the estimator is termed as the first iteration with co-

(2)

variance correction. The estimator En

(e]x,) is called
the second iteration.

Figures 1 to 11 present the performance ratios as
functions of the number of observation stages. Figures
1 and 2 give the performance of the first iteration,
first iteration with covariance correction, and the sec-
ond iteration, for z = 1.167 and z = 2.217 respectively.
In both these figures it can be seen that the second it-
eration is better than the first iteration and that the

first iteration with covariance correction is signifi-

cantly better than the first and second iterations.
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Figure 3 presents the performance of the first iteration
for five different values of z, namely, 0.6, 1.167,
2.217, 2.904 and 4.267 and the performance of this first
iteration can be seen to improve with increase in z.
Figures 4 and 5 give the performances of the first itera-
tion with covariance correction and the second iteration
respectively for the same five values of z. They show
that the performances of the first iteration with covari-
ance correction and the second iteration also improve
with increase in z.

To observe the effect of a different functional
value for the positive constant h, the three estimates
are obtained using h = 1. Figure 6 compares the perform-

ances of the first iteration for h=1 and h=n‘l/25.

Fig-
ures 7 and 8 give the same Comparison for the first it-
eration with covariance correction and the second itera-
tion respectively. From these three figures it can be
seen that all three estimators are rather insensitive to
small changes in h.

The results presented in Figures 1 to 8 are ob-
tained using a J-shaped distribution for the simulation
of the individual elements of 6. Figure 9 presents the
performances of the first iteration with covariance cor-

rection for six different shaped distributions used for

the individual elements of 6. The performance is seen
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to be distinctly better for a U-shaped distribution,
while being almost identical for the remaining five
shaped distributions. A U-shaped distribution on the
elements of 6 makes the prior g(e) be non-unimodal, while
for the other five shaped distributions, g(e) becomes
unimodal. | |
Since the smooth empirical Bayes estimator uses the
observations for all past stages, the process of using
these estimators may become considerably time consuming
and may require substantially large memory, as the number
of stages increases. A finite memory estimator that uses

only k past stages of observations can be defined as

-1 "1 Ta-1 1 T
E (o]x ) =P ) g.exp = q.P "q, - —= 6,6, /
n n ieniyey 2 i i op2 i1
n ¥
1 Tp-1 1 T,
¥ exp = q.:P g, - ——= 6.6,
ienfke1 2 i i op2 171
(2.41)

Figures 10 and 11 present the performance of the first
iteration with covariance correction with finite memory
for five different values of k and for z=1.167, and
z2=2.217 respectively. It can be seen that the perform-
ance improves with increase in k. But, this improvement
shows a saturation effect as k increases. Hence depend-

ing on the memory restriction and the cost of additional
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computation time an optimum value of k can be chosen so
that the improvement in performance is a maximum subject
to the above restrictions. Once a particular value of k
is chosen, the finite memory estimator can be used for

n>k while using the total memory estimator for n<k.

Conclusions

A smooth empirical Bayes estimator has been ob-
tained for the mean of a multivariate normal random pro-
cess in three different forms; namely, the first itera-
tion, the first iteration with covariance correction and
the second iteration. Using Monte Carlo simulation the
performance of these three forms of the estimator is com-
pared with the performance of the maximum ]1ke11hood
estimator. A1l these three forms}of the estimator are
found to perform better than the maximum likelihood esti-
mator for the particular data used in the simulation.

The first iteration with covariance correction is ob-
served to be better than the other two forms of the esti-
mator, and will be used in the next chapter for applica-
tion to the problem of estimating the state vector of a
discrete time linear system with a linear set of observa-
tions. No confidence intervals could be obtained for any
of the three forms of the estimator since a direct method
of analysis could not be used to investigate the statis-

tical properties of the estimator.
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CHAPTER III

SMOOTH EMPIRICAL BAYES ESTIMATION IN
DISCRETE TIME LINEAR SYSTEMS

Recall that a discrete time linear system is de-

fined by

+u

- (3.1)

n = ®n,n-1%n-1

and a linear set of observations on this system is de-

fined by

Yp = Hpxp * v (3.2)
where x and u are rx1 vectors, y and v are px1 vectors,
¢ is an rxr matrix and H is pxr matrix. The vector x is
the state of the system, and the vector u is called the
state disturbance error. The matrix ¢ is called the
state transition matrix and the matrix H is the matrix
relating the observations to the state vector. The vec-
tor y is the observation vector and the vector v is

called the observation error.

Let _
E[XO] = C (3.3)
E[Vi] = 0 (3.4)
E[v.vi] = s..R (3.5)
i3 i3
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Assume that U is independent of VJ, for all i and j, and
that Uy is independent of uj, for all i#j. Also assume
that vy is normally distributed with a mean vector and
covariance matrix as stated in equations (3.4) and (3.5)
respectively. Further assume that Up_q has an unknown
and unspecified distribution which remains stationary
over time. Assume that C’Qi,i-l’ Hi’ and Ri are known.
Consider equation (3.1) in the form

Yn-1 T %0 7 Pnyn-1%n-1e (3.6)
Let
9 = Yn - HnQn,n-lxn-l‘ (3.7)

Using equation (3.2),'qn can be restated as

A, = HpXy - Hnq)n,n-lxn-l VY

= Hu _, +v, (3.8)
Define
=Ty y-1yT
ry = (Han) Hoa, (3.9)
or
i Ty y-1yT
ry = Uyt (Han) ann (3.10)

where the transformation in equation (3.9) requires the

T L _ ..

matrix (Han) to be a full rank matrix. If, however,
T
n

(H Hn) is not of full rank then the use of a suitable
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generalized inverse should be considered. (See [15]).
Recall that Vi is assumed to be normally distributed with

a mean vector zero and covariance matrix Rn. Thus, given

Up_p» "y Will be conditionally normally distributed with
mean vector u, . and covariance matrix S, where
- (g =147 Ty -1
S, = (H H ) “H R H (HH ) . (3.11)

Assume temporarily at time tn’ that x X ¢ are

0 "1° n-1

10 e Ty will be known exactly

by virtue of equations (3.7) and (3.9).

known. In this case, r

Recall that in Chapter II a random p-vector X, was
assumed to be conditionally normally distributed with
mean vector enrand covariance matrix R > where 6, was the
realization of a random vector & at time tn according tb
an unknown and unspecified time-invariant density func-
tion g(e). Here the random vector L has the same char-
acteristics as the vector X0 in Chapter II. Hence, the
smooth empirical Bayes estimator of Chapter II can be
used here to estimate the state disturbance error u _,,
which is the conditional mean of rye Recall that the
"best" estimator in Chapter II was found to be that esti-
mator using the observations transformed by a linear

" transformation to obtain a second order match between the

prior distribution g(e) and the estimated prior gn(e).
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A similar estimator will be used here and its application
is described below.

Define the estimates

DR L -7F (3.12)

and

cov[un_l] = ~n-1 - S, = C (3.13)
Let A be a diagonal matrix with
1/2
+ -
Ay = {0C dy5700, + 5,541
and (3.14)

b= (I - A)Fn

If a diagonal element of Cn is negative due to sampling
error, which can happen only for small values of n, then
the corresponding element of A is taken to be equal to
one.

Using equations (3.12) to (3.14),

r, = Ari + b (3.15)

is the transformed observation required for the applica-

tion of the smooth empirical Bayes estimator with




53

covariance correction. The estimate of u . is then
given by
n n i n
-1 1 T ,-1 1 *T %
u . =B - ) p, exp = p; B p —==r, r, /)
n-1 no,2,7in 2 Pin"n "in op2 11 52
1T -1 1 *T
exXp 3 PinBy Pip - sz vy gy (3.16)
2h
where
= ¢-1 . 1
B, =S + 3 1 | (3.17)
- * '
Py, = Site ia-ri (3.18)
h = n 1/25 ~ (3.19)

and Sn is givén‘by equation (3.11). Using equation

(3.16) the state vector can be estimated as

~ ~

Xp = @ na1Xpo1 t Upore (3.20)

However, since xi's usually remain unknown, suit-
able estimates are required for these unknown quantities.
To use the smooth empirical Bayes filter equations at

time tn’ suitable estimates of X ces X are required.

0’ n-1

Since Xo has a mean vector equal to c, Xg=C is a suitable

extimate to start the smooth empirical Bayes filter, as
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no observations are available at time ty- The (n-1) es-
timates of x, obtained at times t,, t,, ..., t _, by
means of the smooth empirical Bayes filter can then be
used in forming the smooth empirical Bayes estimate of

Xy, Thus the estimate of Xn becomes

+ u . ‘ (3.21)

Let

>

n = ®n,n-1%n-1° (3.22)

The equations for estimating‘xn can then be rewritten as

s T -1y N 5 s
fay = (Ko MLy, = HR) (3.23)
¥ oo b (3.24
n1 = At ‘ : 3.24)
S| Lo ,
Zin = S0 Ty * hz.ril _ , (3’25)
- p-1 E 1,7 -1 R 3/
u_ .= z. exp z - ===y, r,
n-1 n o L, “in 2 “in°n Sin T o, 2 il il
E ex L 27 B"lz‘ R r*Tr*i  (3.26)
by 8P 2 Binn fin T 0 TinTin ool

where S ., B, and h are given by equations (3.11), (3.17)},

and (3.19) respectively, and the estimate of X is given
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by
X, = X_ +u . (3.27)

The diagonal matrix A and the vector b used for the lin-
ear transformation for the covariance correction as given

in equation (3.24) are given by

n
. ‘21 Yi1
— _ _ 1=
"n Efu, ;] n
Cn1 = cov[un_l}
n
= — T
izl SETRUNTRALETR Y
- —T - s, (3.29)
Iy 1/2
Ayy = 100 155/0C, + 5,155 (3.30)
and
b = (I - A)rnl. (3.31)

Method of Analysis

" Since no assumption is made about the distribution
of the state disturbance error except that it be uncorre-
lated and stationary over time, a direct method of anal-
ysis as described in Chapter II cannot be used to obtain
the statistical properties of the smooth empirical Bayes

filter. The statistical properties to be studied are
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the expected value and covariance matrix of the estima-
tion error, where the estimation ervor is the vector dif-
ference of the true state and its estimate. Thus, the
following two methods have to be excluded from considera-
tion. The first one uses analytical methods to compute
the required statistical properties, which depend on the
parameters of the problem. As a second analytical method,
for a given state disturbance error distribution it may
be possible to obtéin the statistical properties desired;
however, a different analysis would have to be performed
for each distribution. ‘

The third method of analysis is Monte Carlo simula-
tion. This is basically an alternative to the second
method mentioned above. The second method can be very
time consuming due to the presence of exponential terms
in the summations involved in tﬁe filter, with exponents
being differences of quadratic forms. This method of
analysis will be used in comparing the filter performance

with some standard methods.

A Sample Problem

Consider a space vehicle which>is assumed to be in
a circular orbit around the earth at a distance of 4500
miles from the earth's center. Consider only the effect
of the gravitation of the earth on the space vehicle.

Define a spherical coordinate system with the center of
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the earth as the origin as shown in Figure 12. The ef-
fect of the earth's gravity will be assumed to be con-
stant at points equidistant from the earth's center.

Thus, the orientation of the coordinate system is insig-
nificant. Also define a superimposed rectangular coor-
dinate system with the same origin as the spherical coor-
dinate system, as shown in Figure 12. The coordinates of
the space vehicle in the two coordinate systems are re-

lated by the following equations.

z, = r cose sin¢ (3.32)
z, = r sine sin¢ (3.33)

and
Z, = r cosé. (3.34)

Since it is assumed that the space vehicle is in a cir-
cular orbit, r remains constant. Assume that this orbit
is in a plane containing the 23-axis. Thus, 6 is a con-
stant. Assume also that the space vehicle is moving at
a constant speed. Thus d¢/dt remains constant. The
acceleration components along the three rectangular axes
can be obtained by differentiating equations (3.32),
(3.33), and (3.34) twice with respect to the time t and

by keeping r, o, d¢/dt constant and hence




Figure 12.

Superimposed Spherical and

Rectangular Coordinate Systems.
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d”z 2
- 1 _ _.|d¢ . [d¢
a, e r[dt} coso Sjn[dt ?» (3.35)
2
d“z -y 02
= 2 . o1y . de
a, = —qg— = -r|gg| sine 51“_3{ ?J (3.36)
2
d°z 12 , -
_ 3 _ d¢ d¢
a3 - d_t - "Y‘ dt coslﬂdt t< ° (3.37)

The magnitude of the resultant acceleration vector is

then given by

2
, gﬂ%l (3.38)

By the laws of dynamics a must be the same as the accel-
eration caused by earth's gravity. Assuming an approxi-
mate value of 32.2 ft./sec.2 for this acceleration, the

unknown constant d¢/dt becomes

1/2

d¢ _ 32,2
r,-

dt

1/2

32.2
4500 x 5280

[

.001163. (3.39)




Consider a six-dimensional state vector whose first

three components are the coordinates

Z1s Zys Z, and whose

last three components are the velocity components along

the corresponding three axes. Let the constant ¢ be =/4.

At time t, let ¢,=0. Then the mean ¢ of x, is given by
0
0
23,760,000
¢ = 119,573.086 (3.40)
19,573.086
0 _
Let At be such that
Ao =[%% At = .1 radian.
Then
S .1 -
Mt = goTdE T Tooiies - 8°9-8 sec.
Now, at time tn,
r cose sing
r sins sing
r cds¢
X = r%% CO0s6 COS¢ (3.41)
r%%-sine CosS¢
=r%% sing




61

and at time tn+1’

r cose (sing cosa¢ + C0S¢ Sinag)
r sine (sing cosa¢ + cos¢ Sinag)

r(cos¢ cosa¢ - sing sinag)

Xna1 = r%% cos® (cos¢ cosa¢ - sing sinag)]|. (3.42)
r%% sing (cos¢ cosAg - sing sinag)

_r%% (sine cosAs + cos¢ sinag)

Relating X, to x o5 and using the known values of r, o,

d¢/dt, and a¢, the following state transition matrix is

obtained.
a 0 b 0 0 0
0 a b 0 0 O
c 0 a 0 0 O i
o = ‘ (3.43)
d 0 0 a 0 O
0 d 0 0 a O
0 0 d 0 0 a
where i
a = .995
b = .07059073
¢ = -.14118153
d = -.0001163.
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Further assume that H is a constant matrix equal to
the identity matrix. This is equivalent to observing the
coordinates and the velocity components of the space ve-
hicle directly. Let PO, and Q be the covariance matrices
of the initial state vector and the state disturbance
error. These matrices are required for the simulation.

Assume that the following covariance matrices are known.

25000 0 0 0o 0 0|
0 25000 0O 0 0
0 0 25000 0 o0
Po = | o 0 250 0 0
0 0 0 0 250 O
0 0 0 0 250
25000 0 0 0o 0
0 25000 0 0o 0
0 0 25000 0 0
Q=1 0 0 250 0 0
0 0 0 0 250 0
0 0 0 0 0 250
20000 0 0 0o 0
0 20000 0 0 0 0
0 0 20000 0 O 0
R=1 0 0 0 200 0 O
0 0 0 0 200 0
0 0 0 0 0 200

For convenience the matrix R is assumed to be time inde-

pendent. It can be seen from these matrices that the




standard deviation of each of the first three components

of xO, U,

4
L

and v, is equal to 158.11, 158.11, and 141.42
feet respectively, and the standard deviation of each of
0° Yi and v is 15.81,
15.81, and 14.14 ft./sec. respectively.

the Tast three components of x

Results of Monte Carlo Simulation

The program used to simulate the above problem fs
described in Appendix B. One hundred replications are
generated and averaged to obtain estimates of the mean
squared error matrices. The initial state vector X4 is
generated from a multivariate normal distribution with
mean vector ¢ and covariance matrix PO. The elements of
the state disturbance error vector are generated from a
member of the Pearson family of distributions so that the
mean vector is zero and the covariance matrix is Q. The
observation error vector v isbgenerated from a multi-
variate normal distribution with zero mean and covariance
matrix R.

For each set of parameters three different filters
are used to simulate the estimation process. They are
the smooth empirical Bayes filter, the Kalman filter, and

the least squares filter. Recall that the Kalman filter

is defined by the following equations.

X =0 X (3.44)

63




P _ e P !

n,n-1"n-1%n,n-1 n-1

o= 5 uyl = T -1 =
Xy = X, * Pan(HnPan+Rn) (yn-ann) (3.46)
B 5 ul 5 ul -1, 5
P, = Pn - Pan(HnPan+Rn) HnPn (3.47)
The least squares filter can be restated as
R n [ n
f- 1 T T
LZ 1l’n,iH H ’IJ 121 lPn,iHiy1 (3.48)
where
biq = I (3.49)
ool (3.50)
v = ¢ = il n>i 3.50
n,i UELL %351

The ratio of the trace of the average squared error

matrix at each stage of the process to the trace of the
matrix S at that stage is used as a scalar index of the
performance of the particular filter. Due to the par-

ticular choice of the matrix H, the matrix S is the same
as the matrix R,
Figure 13 presents the performance ratio for the least

squares filter as a function of n, the stage of the pro-
cess, when an L-shaped distribution is used to generate

the components of the state disturbance error vector.

the observation error covariance matrix.

64
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Figure 14 gives the performance ratio for the same filter,

but for a U-shaped distribution on the components of the

state disturbance error vector.

From these two figures, the performance ratio, and

hence the trace of the average squared error matrix which

is the numerator of the performance ratio, can be seen to

diverge rapidly with n. The divergence is even more pro-

nounced for the U-shaped distribution. This agrees with

the findings reported by Bucy and Joseph [11]. The pres-

ence of the state disturbance error makes the components

of the combined error vector Yy non-independent, where

' is defined as

B nil
v, - H o, ., U,
1 L5y "1,3410)
n-1
vo = H ) e, ., .U
: +
2 2 j=2 2,J%1° 3
Ty, =
Yn-17 Hplnog
in

The estimates obtained by the use of
filter are thus not minimum variance

the performance of the least squares

the Teast squares
estimates. Since

filter is generally
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poor in the presence of the state disturbance error, it
will not be considered further.

Figure 15 presents the performance raties for the
smooth empirical Bayes filter and the Kalman filter for
an L-shaped distribution for the elements of the state
disturbanée error, vector. The performance of the Kalman
filter in this case is seen to be better than the per-
formancé of the smooth empirical Bayes filter. Figure
16 gives -the performance ratios for the above two filters
for a U-shaped distribution on the components of the
state disturbance error vector. In this case, the smooth
empirical Bayes filter outperforms the Kalman filter.

Figure 17 presents the performance ratios for the
smooth empirical Bayes filter when used with six differ-
ent shaped distributions on the elements of the state
disturbance error vector. The performance of this filter
can be seen to be about the same for all the distribu-
tions, except for the U-shaped distribution for which it
gives slightly better results. Figure 18 gives the per-
formance ratios for the Kalman filter for the same six
distributions on the components of the state disturbance
error. .~ The Kalman filter can be seen to perform almost
the séme for all the distributions, except for the U-
shaped distribution for which it gives relatively poor

results.




A summary quantity z is defined as in Chapter II by

where

7z, = . (3.51)

For the pafametérs used in simulating the results pre-
sented in Figures 13 to 18, the average summary quantity
was z=.8. To observe the effect of larger covariance
matrices on the performances of the smooth empirical
Bayes filter and the Kalman filter, the following matri-

ces were used, which gave the summary quantity of z=1.2.

O T O O O O
T O O O O o

o 0O 0 0 Y O
o 0o o % o o
c O T o o o

oD O O 0O O
oD O 0O O O
o O . O O O
oo O O O O
o O O O O O
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where
a = 625,000,000
b = 62,500
c = 750,000,000
d = 75,000.

It can be observed from these matrices that the standard
deviation of each of the first three components of XO’

Uy and Vi is equal to 25,000, 25,000, and 27,386 feet

respectively, and the standard deviation of each of the

last three components of Xgo Yy

273.9 ft./sec. respectively.

and v is 250, 250, and

Figure 19 presents the performance ratios for the
smooth empirical Bayes filter and the Kalman filter when
used with an L-shaped distribution on the components of
the state disturbance error and with covariance matrices
defined above for z=1.2. The Kalman filter can be ob-
served to perform better than the smooth empirical Bayes
filter. Figure 20 gives the performance ratios for the
same two filters used with the same covariance matrices
for z=1.2 but with a U-shaped distribution on the compo-
nents of the state disturbance error vector. In this
case, the smooth empirical Bayes filter outperforms the
Katman filter.

The observation error covariance matrix is then

changed to the following matrix to obtain a summary

quantity z=2.0.
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e O 0 O 0 0
0 e 0 0 0 O
0 0 e € 0 O
R=10 06 0 f 0 0
0 0 0 o f O
0 0 ¢ 0 0 f
where
e = 1,250,000,000
f = 125,000.

The covariance matrices PO and Q are the same as for
z=1.2.

Figure 21 presents the performance ratios for the
smooth empirical Bayes filter and the Kalman filter used
with z=2.0 and with an L-shaped distribution on the com-
ponents of the state disturbance error. The Kalman fil-
ter is seen to outperform the smooth empirical Bayes fil-
ter. Figure 22 presents the performance ratios for the
same two f{1ters when used with the same covariance ma-
trices; but, with a U-shaped distribution on the compo-
nents of the state disturbance error. The smooth empiri-
cal Bayes filter outperforms the Kalman filter in this
case.

Since the development of the Kalman filter assumes
a multivariate normal distribution for the state disturb-

ance ervor, it will be a minimum varjance estimator of
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the state vector, provided this assumption holds. (See
Kalman [18]). The smooth empirical Bayes estimator in
this case cannot be as good as the Kalman filter. Figure
23 presents the performance ratios for the two filters
when the state disturbance error is generated from a
multivariate normal distribution for 2z=2.0. As stated
above, the Kalman filter does outperform the smooth em-
pirical Bayes filter.

Figure 24 presents the performance ratios for the
smooth empirical Bayes filter when used with different
sets of covariance matrices; that is, for z=.8, 1.2, and
2.0, and with an L-shaped distribution on the components
of the state disturbance error. It can be observed that
the performance of this filter improves with increase in
z. Figure 25 presents the performance ratios for the
same filter for the same z values but with a U-shaped
distribution on the components of the state disturbance
error. In this case also, the performance of this filter
is observed to improve with increase in z. |

The covariance matrix Qi of the state disturbance
error vector was assumed to be a constant matrix in the
development of the smooth empirical Bayes filter. This
would restrict the application of this filter to a class
of problems where the above assumption holds true. It

is thus desired to observe the sensitivity of the filter
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when applied to a problem where Qi is different for each
i. For this purpose the constant matrix Q is multiplied
by a random number which is generated from a uniform dis-
tribution on the interval zero to one, to obtain the ma-
trix Qi‘ Since the mean of the random numbers used will
be 0.5, the z value on the average will be twice the z
value obtained by using the matrix Q. Figure 26 gives
the performance ratios for the smooth empirical Bayes
filter and the Kalman filter when used with changing Q
matrices and with an L-shaped distribution on the compo-
nents of the state disturbance error. The Kalman filter
outperforms the smooth empirical Bayes filter; however,-
the performance of the smooth empirical Bayes filter is
not very poor. Figure 27 presents the performance ratios
for the same two filters under the same conditions as
above but with a U-shaped distribution on the components
of the state disturbance error. The smooth empirical
Bayes filter is observed to outperform the Kalman filter

in this case.

Conclusions

A smooth empirical Bayes filter has been developed
for estimating the state vector of a discrete time linear
system with linear sets of observations. The distribu-
tional assumptions on the state disturbance error as well

as some of the distributional assumptions on the initial




state vector have been relaxed. The performance of this
filter is examined by means of Monte Carlo simulation of
a realistic problem in trajectory estimation. It is
found that the performance of this filter does not depend
significantly on the form of the state disturbance error
distribution used in simulation. Comparisons of this
filter's performance with the performance of the Kalman
filter for different sets of parameters showed that the
Kalman filter outperforms the smooth empirical Bayes fil-
ter for all unimodal distributions on the components of
the state disturbance error, whereas the smooth empirical
Bayes filter had a better performance than the Kalman
filter when used with a U-shaped distribution on the com-
ponents of the state disturbance error. It has also béen
observed that the performance of the smooth empirical
Bayes filter depends on the relative magnitudes of the
covariance matrices of the state disturbance error and
the observation error. The summary quantity z contains
the information on these relative magnitudes, and the
performance of the filter is found to improve with in-
crease in z. Since the performance of the least squares
filter is found to be very poor for the problem simulated,
it is not used in any comparisons.

The Kalman filter requires approximately 0.66 sec-

onds to process one observation. The time to process one
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observation using the smooth empirical Bayes filter de-
pends on the number of past observations used. For
twenty-five past observations the time required was 0.82
seconds. Hence, if a finite memory filter with a maximum
of twenty-five past observations is used, the smooth em-
pirical Bayes filter is compatible with the Kalman filter
for real time estimation. The smooth empirical Bayes
filter can be used as a batch processor just as the

Kalman filter.
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CHAPTER TV

GENERAL CONCLUSIONS AND DIRECTIONS
FOR FUTURE RESEARCH

This chapter presents a summary of the conclusions
of this research and suggests directions for future re-
search.

General Conclusions

The primary objective of this research was to solve
the problem of estimating the state vector of a discrete
time linear system using linear sets of observations and
without requiring any distributional assumptions whatso-
ever on the state disturbance error vector. Empirical
Bayes decision procedures are used to obtain an estimator
for the state vector of such a system. The distribu-
tional assumptions on the state disturbance error that
were relaxed are: (i) the shape or form of the distri-
butiocn, (ii) the necessity of any knowledge about the
covariance matrix of this error, and (iii) the assump-
tion of a known mean vector which is usually zervro.

The relaxation of the first assumption is useful in
trajectory estimation problems where usually no valid
physical basis exist for assuming a specified form for
the distribution on the state disturbance error vector.

3

It 1¢ also significant in the case of physical processes
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that are truly characterized by a nonlinear system, which
has been linearized to arrive at the Tinear system under
consideration. The relaxation of the covariance assump-
tion is significant in the computation stage since stor-
age need not be allocated for these matrices. Also, in
using the Kalman filter, these matrices must be either
assumed a priori or estimated from the observation data.
A poor estimator or invalid assumption may have a signif-
jcant effect on the results obtained. Not requiring
knowledge of these matrices thus removes one possible
source of error. A similar argument can be put forth re-
garding the assumption of a known state disturbance error
vector.

The only assumptions that were required in develop-
ing the empirical Bayes filter equations are: (i) the
state disturbance error be uncorrelated over time and be
independent of the observation error, and (ii) the dis-
tribution on the state disturbance error be time-invariant
and thus remain stationary.

Some distributional assumptions on the initial state
vector are also relaxed. The mean of this initial state
vector is required for starting the estimation process,
but knowledge of the covariance matrix and the form of the
the diszributiOﬂ is not necessary. Although the sensi-

tivity of the filter to the assumed initial state has not
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been investigated in this research, it is conjectured

that using an arbitrary starting value for the initial
state vector will hamper the performance of the filter
until sufficient observations have been obtained to dampen
the effect of this starting value.

The results of Monte Carlo simulation show that for
the problem investigated the performance of the smooth
empirical Bayes filter did not depend significantly on the
true, but unknown, distribution on the state disturbance
error vector. On the other hand, the Kalman filter per-
formed poorly with a non-unimodal state disturbance error
distribution compared to its performance for the unimodal
distributions. Also, the Kalman filter required accurate
knowledge of the covariance matrices of the state disturb-
ance error vector and the initial state vector. Although
the smooth empirical Bayes filter requires storage for
all the past observation data, some savings are obtained
by not having to store the covariances matrices. It was
found in Chapter II, that the performance of the estimator
for the mean of a multivariate normal random process was
not greatly affected by using a curtailed set of past ob-
servations. It is conjectured here that the same will be
true for the smooth empirical Bayes filter. The ideal
number of past observations to use will depend on the loss

of accuracy as compared to the savings in storage. In
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the case of the smooth estimator for the mean of a multi-

variate norm irocess 1t was observed that the
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improvement in the performance of the estimator was almost
insignificant as the number of past observations used in-
creased beyond fifteen. Fifteen past observations gave
nearly as good a performance as the use of all past obser-
vations. The same is true for the smooth empirical Bayes
filter when used in a linear system.

The smooth empirical Bayes estimator for the mean
of a multivariate normal random process was developed as
a tool for application to the problem of estimating the
state vector of the linear system. However, this by it-
self presents an original contribution to the existing
empirical Bayes Tliterature for estimation in the multi-
variate normal distribution. A detailed investigation of
the properties of this estimator was not undertaken in
this research since it was not a primary objective. It
was observed by Martz and Krutchkoff [24] that the per-
formance of their empirical Bayes estimator depended on
the dimension of the vector being estimated. As the di-
mension incneased beyond three the performance dropped
off sharply. Since the smooth empirical Bayes estimator
developed in this research was found to perform quite

satisfactorily for a six-dimensional vector process, it

5

at fTeast as good for a smaller

can be expected to




dimensional process. The dimension of the process was
chosen to be six with a foresight to latter application
in trajectory estimation.

This smooth estimator did require more knowledge
than the usual maximum likelihood estimator against which
the comparisons were made. The usual maximum Tikelihood
estimator cannot use past observations, if the randomness
of the mean vector is assumed. Although the existence of
the covariance matrix is required to form the likelihood
function, the actual value of this conditional covariance
matrix is not necessary for using the maximum Tikelihood
estimator. In many practical situations past observations
are available and the conditicnal covariance matrix can
be estimated from the observations obtained at each time
point, if it is unknown. Hence, the additional informa-
tion required for the use of the smooth empirical Bayes
estimator is not unduly restrictive in many practical sit-
uations.

A summary quantity z which summarized the informa-
tion in the relative values of the conditional covariance
matrix of the observable random vector and the covariance
matrix of the prior distribution of the parameter, is used
to index different sets of data used in the Monte Carlo

simulation. Observations made from the results of the

g Eay

simulation justified the use of this summary value as a
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suitable index of performance. In a practical situation,
the prior covariance matrix of the parameter remains un-
known and at best can be estimated by using all available
past information. The summary quantity z may thus be
estimated using the two estimated covariance matrices,
and this estimate of z can be revised at each time point
as more data become available. These estimated z values
can then be used as an indication of the improvement to
be expected over the performance of the usual maximum
likelihood estimator.

For the case of the smooth empirical Bayes filter
for use in a linear system, an expression is obtained for
the summary quantity z. However, the computation of this
quantity in a practical situation requires knowledge of
the covariance matrix of the state disturbance error
vector. Since this quantity will be used only as an indi-
cation of the performance of the filter, an estimate of
this covariance matrix can be used if a suitable estimator
is available.

A performance measure of the filter is defined as
the ratio of the trace of the mean squared error matrix
to the trace of the observation error covariance matrix.
A decrease in the performance measure is the same as an
improvement in the performance of the filter. It is ob-

served that the performance of the smooth empirical Bayes
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filter improves as the index z increases, providing all

other parameters remain unchanged.

Additional Areas for Application of the

Techniques Developed in this Research

The estimator for the mean of a multivariate normal
random process has many applications. For an example,
consider a clinic with a number of patients, each of whom
undergoes a series of tests at certain intervals of time.
The tests may determine the counts red blood cells, white
blood cells or some specific bacteria and the concentra-
tions of certain salts and sugar in the urine. Since
these are all observations, the true values of the counts
and the concentrations are unknown. If it is assumed that
the true values have a time invariant distribution and
that the observations are conditionally normally distri-
buted with these true values as the means, then the situa-
tion in this case will be identical to the one described
in Chapter II. Univariate analysis should not be used in
this case since the counts and the concentrations may be
correlated and thus a univariate analysis would ignore
valuable related information. A number of observations
will be required at each time point so that the condi-
tional covariance matrix can be estimated if it is unknown.

For another example consider a machine which proc-

esses batches of different types of components. Suppose
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that each type of component has certain significant dimen-
sions which are measured for a sample of fixed size from
each batch. These measured dimensions will vary from
sample to sample and also within a sample from one unit
to another. The mean dimensions for a batch can be used
for quality control purposes. Assuming that the measured
dimensions for a sample are normally distributed about
the mean dimensions for that batch, the estimator for the
mean of a multivariate normal random process can be used
to estimate the mean dimensions. The significant dimen-
sions for all types of components should be put together
in a vector form since the deviations of the measured
dimensions for different components may be correlated due
to the wear, tear and deterioration of the machine with
each batch being processed.

The smooth empirical Bayes filter for estimating the
state vector in.a Tinear dynamic system can be used in
forecasting. Consider for example forecasting of the
prices of different stocks in the stock market. It is
possible that the prices for the different stocks being
considered are correlated. By modelling the time series
of the prices as a linear dynamic system and considering
forecasts obtained from other sources as the observations
the smooth empirical Bayes filter can be used for fore-

casting the future prices. The state transition and the
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state-to-observations relationship matrix will be required

to be estimated from the past observations.

Directions for Future Research

As an immediate extension of this research, inves-
tigation could be undertaken to modify the smooth empir-
ical Bayes filter in order to solve the problem of esti-
mating the state vector of a linear system when the state
disturbance error is correlated in time. A random process
correlated in time is usually referred to as being "col-
ored". A completely arbitrary dependency structure is
difficult to handle and certain restrictions in the de-
pendency structure may need to be introduced. (See Martz
[23] for a possible type of dependency structure).

As another extension of this research, a new filter
could be developed which would relax the distributional
assumptions on the observation error as well as the state
disturbance error. The assumption of Gaussian observation
error used in this research was justified in Chapter I
using the most common form of the "Central Limit Theorem”.
For an example, assume that two observation devices were
available and that their inherent characteristics were
significantly different so that the observation error in-
troduced with the use of one was significantly different
from the observation error introduced with the use of the

other. If it is also assumed that only one device can be
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used at a time and that the choice depends on certain
characteristics of the system, then the observation error
in this case could conceivably be non-unimodal and the
assumption of Gaussian error could not hold.

Another area for future research is the area of non-
Tinear filtering. An initial approach could be to define
the system in a manner that would permit the separation
of the state disturbance error so that it may be estimated
using empirical Bayes decision procedures. This may re-
quire the functions involved in the system to be single-
valued and to possess unique inverses. The inverse func-
tions may be explicitly required, thus 1imiting the
classes of functions that can be considered, although,
theoretical stipulation of an inverse function is possible
for every function which has a unique inverse. Continuity
may also be required to be assumed for these functions.

The area of non-l1inear filtering should provide a
tremendous opportunity for further research. Once the
problem mentioned above is solved, further relaxations of
the assumptions required to obtain this solution could

open up more areas of research,

Conclusions

Two original contributions have been made by this
research. A smooth empirical Bayes estimator has been

developed for estimating the mean of a multivariate normal
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random process. This estimator was demonstrated to per-
form quite satisfactorily by means of Monte Carlo simula-
tion of sample problems. This estimator was then used to
develop a smooth empirical Bayes filter for estimating

the state vector of a discrete time linear system with
lTinear sets of observations. By means of a realistic ex-
ample in trajectory estimation the performance of this
filter has been examined using Monte Carlo simulation.

In addition, the results of this research should serve

as a foundation for future research in the areas indicated

in the previous section.
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APPENDIX A

MONTE CARLO SIMULATION COMPUTER PROGRAM
OF CHAPTER TII

Title:

A Monte Carlo simulation program for the smooth empi-

rical Bayes estimator for the mean of a multivariate

normal random process developed in Chapter II.

1.

Programmer--Satish J. Kamat.

2. Machine--IBM 360/50.

3. Language--Fortran IV.

4. Date Completed--Spring 1970.

5. Compiler--0S/360 (HASP II System).

6. Approximate Compile Time--0.73 minutes.

7. Approximate Lines of OQutput--600 (excluding pro-
gram listing).

8. Approximate Core-space Used--33,250 bytes.

Purpose:

This program simulates one hundred replications of a

multivariate normal random process as described in

Chapter Il and obtains the estimate of the mean

squared error matrix at each observation stage of

the smooth empirical Bayes estimator for the mean of

this process.
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Restrictions:
This program has been written for a six-dimensional

process.

Definitions:
1. Subroutines:

a. MAIN--The main program acts as a monitor 1in
simulating the random process and calls var-
jous subroutines. It also performs the com-
putations necessary to obtain the mean
squared error matrices.

b. INPUT--This subroutine reads the input infor-
mation.

c. MTRXOP--This subroutine performs various
matrix operations depending on an input para-
meter.

d. GJR--This subroutine inverts the given matrix
using the Gauss-Jordan-Rutishauser method
with double pivoting.

e. SUMRZ--This subroutine obtains the summary
quantities defined in Chapter II.

f. SIMLTE--This subroutine generates the random
numbers for the process.

g. EMPEST--This subroutine calculates the esti-

mate of the mean vector of the process.
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h. MTF--This subroutine performs triangular
factorization on the given matrix using
Kraut factorization.

i. VARCOR--This subroutine obtains the estimates
of the observations using covariance correc-
tion.

j. RANDU--This subroutine generates random num-
bers in the range of 0.0 to 1.0.

k. GAUSS--This subroutine generates random num-
bers from a normal distribution.

m. PURGE2--This subroutine generates random
numbers from a member of the Pearson family
of distributions.

Subroutines Called By:

a. MAIN--INPUT, MTF, MTRXOP, GJR, SUMRZ, PURGEZ,
SIMLTE, EMPEST.

b. SUMRZ--MTRXOP, GJR.

c. SIMLTE--GAUSS, MTRXOP.

d. EMPEST--MTRXOP, GJR, VARCOR.

e. GAUSS--RANDU.

Subscripted Variables in MAIN:

a. RS(100)--Stores the random numbers generated
by PURGEZ2.

b. RDS(300)--Stores the random numbers for the

elements of the mean for fifty stages.
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c. R(6,6)--Covariance matrix of x.

d. R1(6,6)--Triangular factor matrix of R.

e. RINV(6,6)--Inverse of R.

f. X(6,50)--Matrix which stores the vector x
for fifty stages.

g. XLS(6)--Maximum likelihood estimate of the
mean.

h. ENXN(6)--First iteration estimate of the
mean using smooth E. B. estimator.

i. ENXN1(6,50)--Matrix which stores the esti-
mate ENXN for fifty stages.

j. ENXN2(6)--Second iteration estimate of the
mean using smooth E. B. estimator.

k. T(6)--The mean of the normal distribution.

m. COV1(6,6,50)--Stores the mean squared error
matrices for the first iteration.

n. COV2(6,6,50)--Stores the mean squared error
matrices for the second iteration.

Important Non-Subscripted Variables in MAIN:

a. IIIX--The seed for PURGE2.

b. NREP--Number of replications.

c. VAR--Variance of numbers generated by PURGEZ2.

d. LN--Index of replication.
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E. Input and Output:

1. Input:
Card 1--(14)--ISEED, the seed for GAUSS.
Card 2--(14)--K, the number of observations
generated at each stage.
Cards 3 to 8--(6F10.6)--R, one row of the
matrix on each card in sequence.
Cards 9 and 10--Specification cards for
PURGEZ.

2. Qutput:
First Page--R, R1, RINV.
Second Page--Z, the summary gquantities.
Third Page--Parameters in PURGEZ2.
Subsequent Pages--The mean squared error

matrices, described in detail in the output.




F.

Flow Chart of MAIN:

( Start )

Call INPUT

Set NREP to
required no.

Initiliaze
matrices
covl, covz

. Call MTF to

obtain R1
from R

- Call GJR to

invert R

Call SUMRZ to
obtain summary
quantities z
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Start

replication

a new

Initiliaze
matrix X

Call PURGEZ to
generate 300
random numbers

Start a new
observation
stage

calil S

IMLTE

Call EMPEST to
obtain first
iteration
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no

Accumulate mean
squared errors
into COV1, COV2

no

Is
no. of
replication
NREP ?

yes

Average
covi, Ccov2

Print squared
error matrices
and their

traces
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COMMON/BLK1/R/BLK2/ISEED,KI/BLK3/RT/BLK4/RDS/BLKS/X
COMMON/Z2/RS/Z11/ITIX

DIMENSION RS{100),RDS(300),R(6,6),R1(6,6),RINV(6,6).
1X(6,50),XLS(6),ENXN(6),ENXT(6,50),ENXN2(6),T(6)
DIMENSION COV1(6,6,50),C0vV2(6,6,50)

CALL INPUT

FORMAT (6F14.8)

PRINT 1, R

ITIX = 519

NREP = 100

DO 16 I=1,6

DO 16 J=1,6

DO 16 K=1,50

Covi(I,J,K) = 0.

cova(Ir,a,kK) = 0.

CALL MTF (R1,R,6)

PRINT 1, RI

DO 5 I=1,6

DO 5 J=1,6

RINV(I,J) = R(I,J)/FLOAT(KI)
CALL MTRXOP (RINV,R1,R,6,6,6,6,5)
ZERO = 0.

CALL GJR (RINV,6,ZERO,MSING,6,6)
IF (MSING.EQ.2) GO TO 200

PRINT 1, RINV

VAR = 0.5

CALL SUMRZ (R,RINV,VAR)

DO 95 LN=1,NREP

DO 15 I=1,6

DO 15 Jd=1,50

X(I,d) = 0.

pbo 10 I=1,3

IF (LN.GT.T1) GO TO 17

IF (I.EQ.T) CALL PURGE2(1,5)
IF (I.GT.1) CALL PURGE2(2,5)
GO TO 18

CALL PURGE2(2,5)

CONTINUE

IJ = (I-1)%100

DO 10 J=1,100

RDS(IJ+J) = RS(J)

DO 90 K=1,50

KN = (K-1)%6

CALL SIMLTE (K)

DO 20 I=1,6

T(I) = RDS(KN+I)

XLS(I) = X(I,K)

CALL EMPEST (K,RINV,X,ENXN,1,XLS)
D0 30 I=1,6
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ENXT(I,K) = ENXN(I)
CALL EMPEST (K,RINV,ENXT,ENXN2,2,XLS)
FORMAT (6FIO 6./)

COVI(I,Jd,K)+(ENXN(I)-RDS(KN+I))*(ENXN{
§0V2(I,J,K)+(ENXN2(I)-RDS(KN+I))*(ENXN

CONTINUE
CONTINUE

DO 100 I=1,6
DO 100 J=1,
DO 100 K= 1,
CoV1(I,d,K) V1(I,J,K)/FLOAT(NREP)
COVZ(I,J,K) V2(I,J,K)/FLOAT(NREP)
DO 150 K=1,5

PRINT 102, K
PRINT 104, (
TR = 0.

DO 120 I=1,6
TR = TR+COVI(I,I,K)

PRINT 105, TR

PRINT 103, K

PRINT 104, ((cov2(I,J,K),d=1,6),I=1,6)

TR = 0.

DO 130 I=1,6

TR = TR+COV2(I,I,K)

PRINT 105, TR

CONTINUE

FORMAT (1HO,78H COVARIANCE MATRIX FOR E.B. ESTIMATOR
1 (FIRST APPROXIMATION) FOR EXPERIMENT NO.,I3,/)
FORMAT (1HO,79H COVARIANCE MATRIX FOR E.B. ESTIMATOR
1 (SECOND APPROXIMATION) FOR EXPERIMENT NO.,13,/)
FORMAT (1X,6F18.8)

FORMAT (1H),29H TRACE OF THE ABOVE MATRIX IS,F18.8)
CALL EXIT

END

covi(I,Jd,K),d=1,6),1=1,6)

SUBROUTINE INPUT
COMMON/BLK1/R/BLK2/ISEED,K
DIMENSION R(6,6)

FORMAT (14)

FORMAT (6F10.6)

READ 5, ISEED.,K

DO 20 I=1,6
READ 15, (R(I,J),J=1,6)
RETURN

END
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SUBROUTINE MTRXOP (A,B,C,K,L,M,N,KOP)
KOP AXB

A+B

A-B

A TRANSPOSE
A

{1

O 52 GO Ny vt
[N veR e Navie]

onou

DIMENSION A(K,L),B(M,N),C(K,N)
G0 10 (10,30,50,70, 90), KOP

,J)+A(I,IJ)%B(1J,J)

CONTINUE
DO 40 I=1,
DO 40 J=1,
C(1,3) = A
GO0 T0 120
E = -1.

GO TO 35
DO 80 I=1,
DO 80 J=1,
B(I,Jd) = A
GO TO 120
E = 0.

GO TO 35
RETURN

END

K
L
(1,0)+E«B(I,J)

L
K
(J,1)

SUBROUTINE GJR (A,NN,EPS,MSING,IS,IS1)

INTEGER P,Q

DIMENSION A(IS,IS1),B(125),C(125),P(125),Q(125)
N = NN

IF (EPS.LE.O.) EPS = 1.E-26

MSING

DO 10

PIVOT

DO 20

DO 20

IF (AB
PIVOT

P(K) = 1
Q(K) = J

N

N Cert 12X N
z—\u i

J))-ABS(PIVOT)) 20,20,30

1
1,
0.
K
K
A(T,
A(I,J)

N
s N
(1
(I
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50
60

100
90

120

130

140
110

10

160

150
155
151
40
45

CONTINUE

IF (ABS(PIVOT)-EPS) 40,40,50
IF (P(K)-K) 60,80,60

DO 70 J=1,N

)
A(K,J)

— X
s

o e e Corm e st I e
4] [
——r

) 85,90,85
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30,120,130
IVoT
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g)/PIVOT

L RG
CELNE { )]

]

,J)+C(1)%B(J)

O~ O~~~ D~~~ T O O

(]

K) 160,170,160
1,

BN O~ ISENT O~ RO UOIOTITOEOOE—OOIINMTO—I NI
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PRINT 45, P(K),Q(
FORMAT (16HOSINGU
1=£16.8/)

MSING = 2

GO TO 151

END

K),PIVOT
L
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SUBROUTINE SUMRZ (R,RINV,VAR)
DIMENSION R(6,6),RINV(6,6),P(6,6),0(6,6),Z(6)
DO 10 I=1,6

DO 10 J=1,6

P(I,J) = 0.

IF ( 1.EQ.J ) P(I,J) = 1./VAR
CONTINUE

CALL MTRXOP (P,RINV,Q,6,6,6,6,2)
ZERO = 0. :
CALL GJR (Q,6,ZERO, MSING,6,6)
IF (MSING.EQ.2) STOP

CALL MTRXOP (R,Q,P,6,6,6,6,3)

DO 20 I=1,6

Z(1) = P(1,1)/Q(I,I)

FORMAT (T1H1,40H THE SUMMARY QUANTITIES Z ARE AS FOLL
10WS,/)

FORMAT (1X,6F10.3)

PRINT 25

PRINT 26, Z

RETURN

END

SUBROUTINE SIMLTE (N)
COMMON/BLK2/ISEED,K/BLK3/R1/BLK4/RDS/BLK5/X
DIMENSION R1(6,6),RDS(300),X(6,50),Y(6),2(6)

IN = (N-1)%6

D0 20 I=1,K

DO 10 J=1,6

CALL GAUSS (ISEED,1.,0.,RN)
Y(J) =

CALL MTRXOP (R1,Y,Z,6,6,6,1,1)
DO 15 J=1,6

X(J,N) = (Z(J)+RDS(IN+J))/FLOAT(K)+X(J,N)
CONTINUE

RETURN

END

SUBROUTINE EMPEST (K,RINV,TX,ENX,IN,XN)
COMMON/BLK1/R/BLK4/RDS
DOUBLE PRECISION EB,Q2,DEN,QA

DIMENSION RDS(SOO) T(6), RINV(6, ),P(6,6),XN(6),Q(6),
1%9(6),x(6,50),PQ(6),01(6),02(6),ENX(6),R(6,6)
DIMENSTON TX(6, 50),Q3(6)

IF(IN.GT.1) GO TO 25

AK = K ‘
A = AKxw(-.04)
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P(I)J) = P(I,J+1./(A*A)

CALL MTRXOP (RINV,XN;Q,6,6,6,1,1)
ZERO = 0.
CALL GJR (P,6,ZERO,MSING,6,6)
IF (MSING.EQ.2)  STOP
CONTINUE
DO 26 I=1,6
DO 26 J=1, K

X(I,d) = TX(I,J)
CONTINU
DO 35
Q2(I)
DEN =
DO 70
DO 40
XJ(1)
Q1(1I)
CALL MTR

f M

O~
- -
>

non

NN = o
XL > — —

L(QA)
(P,Q3,ENX,6,6,6,1,1)

L
=
]
Fas)
— N =l

RETURN
END

SUBROUTINE MTF (A,B,N)
DIMENSION A(N,N),B(N,N)
DO 10 I=1,N
DO 10 J=1,N
A(I,d) = Oe
DO 70 d=1,N
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DO 70 I=J,N
¢ = 0.
L= J-1
IF (L) 40,40,20
20 DO 30 K=1,L
30 C = C+A(I,K)*A(J,K)
40 CONTINUE
IF (1-J) 50,50,60
50 A(I,J) = SQRT(B{I,J)-C)
GO TO 70
60 A(I,J) = (B(I,Jd)-C)/A(J,d)
70 CONTINUE
RETURN
END

SUBROUTINE VARCOR (T,X,K)
COMMON/BLK1/R
DIMENSION R(6,6),T(6,50),X(6,50),SUMT(6),SQT(6),COV

10 DO 1

15 CONT
20 X(I,1)

25 CONTINUE
DO 30 I=1,6
SUMT(I) = SUMT

30 SQT(I) = SQT(I

S

35 €COVT(I

40 X(I,J) = A
45 CONTINUE
RETURN
END

SUBROUTINE RANDU (IX,IY,YFL)
IY = [Xx65539
IF (IY) 5,6,6

ot
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IY = 1Y+2147483647+]1

YFL = TY

YFL = YFL*.4656613E-9
RETURN

END

SUBROUTINE GAUSS (IX,S,AM,Y)
A= 0.

DO 50 I-1,12

CALL RANDU (IX,IY,Y)

IX = 1Y

A A+Y

v (A-6.0)*S+AM

RETURN

END




APPENDIX B

MONTE CARLO SIMULATION COMPUTER PROGRAM
OF CHAPTER II1

Title:

A Monte Carlo simulation program to simulate the

sample problem in trajectory estimation presented in

Chapter III.

1.

Programmer--Satish J. Kamat.

2. Machine--1IBM 360/50.

3. Language--Fortran IV.

4. Date Completed--Summer 1970.

5. Compiler--0S/360 (HASP II System).

6. Approximate Compile Time--0.74 minutes.

7. Approximate Lines of Output--600 (excluding pro-
gram listing). |

8. Approximate Core-Space Used--42,500 bytes.

Purpose:

This program simulates one hundred replications of

fifty observation stages for the sample problem in

trajectory estimation. Different filters can be

used for the estimation by changing the subroutine

FILTER described Tater.
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Restrictions:

This program has been written for sample problem and

as such can handle constant state transition and ob-

servation-to-state relation matrices. The MAIN pro-

gram will need modification for use in case of chang-

ing magnitudes of these matrices.

Definitions:
1. Subroutines:

a. MAIN--The MAIN program acts as a monitor 1in
simulating the problem and calls various sub-
routines. It also performs the calculations
necessary to obtain mean squared error matri-
ces.

b. FILTER--This subroutine estimates the state
vector using observations available.

c. SIMLTE--This subroutine generates the random
numbers for the simulation.

d. EMPEST--This subroutine estimates the state
disturbance error vector for the smooth em-
pirical Bayes filter.

e. MTF--This subroutine performs triangular
factorization on the given positive definite
symmetric matrix using Kraut factorization.

f. VARCOR--This subroutine transforms the vec-
tors used by EMPEST by using covariance

correction.
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g. MTRXOP--This subroutine performs various
matrix operations depending upon an input
parameter.

h. GJR--This subroutine inverts the given matrix
using the Gauss-Jordan-Rutishauser method
with double pivoting.

i. OUTPUT--This subroutine prints the mean
squared error matrices for the given filter.

j. RANDU--This subroutine generates random num-
bers in the range of 0.0 to 1.0.

k. GAUSS--This subroutine generates random num-
bers from a normal distribution.

m. PURGE2--This subroutine generates random
numbers from a member of the Pearson family
of distributions.

Subroutines Called By:

a. MAIN--MTF, MTRXOP, GJR, PURGEZ2, SIMLTE,
FILTER, OUTPUT.

b. FILTER--MTRXOP, EMPEST, GJR.

c. SIMLTE--GAUSS, MTRXOP.

d. EMPEST--MTRXOP, GJR, VARCOR.

e. GAUSS--RANDU.

Subscripted Variables in MAIN:

a. COV1(6,6,50)--Stores the mean squared error

matrices for all observation stages.
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Q(6,6)--The state disturbance error covari-
ance matrix.

P0(6,6)--The initial state covariance matrix.
R(6,6)--The observation error covariance
matrix.

QLT(6,6)--Lower triangular matrix factor of
Q.

PLT(6,6)~-Lower triangular matrix factor of
PO.

RLT(6,6)--Lower triangular matrix factor of
R.

XHAT(6)--Estimate of the state vector X.
XBAR(6)--Estimate of the last state vector
mapped by the state transition matrix.
X(6)--The state vector.

XNEW(6)--The state vector before the addition
of the state disturbance error.
RS(100)--Stores the random numbers generated
by PURGEZ.

RDS(300)--Stores the random numbers for the
elements of the state disturbance error for
fifty observation stages.

U(6)--The state disturbance error vector.
V(6)--The observation error vector.

F(6,6)--The state transition matrix.
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r. H(6,6)--The observation-to-state relation
matrix.

s. AY(6)--The observation vector before the
addition of the observation error.

t. Y(6)--The observation vector.

u. YSTORE(6,50)--Stores the observations for
all observation stages.

v. RINV(6,6)--Inverse of the matrix R.

w. X0(6)--The initial state vector.

Important Non-Subscripted Variables in MAIN:

a. IIIX--The seed for PURGEZ2.

b. NREP--Number of replications.

c. ISEED--The seed for GAUSS.

d. IN--Index for number of replication.

E. Input and OQutput:

1.

Input:

Cards 1 to 6--(6F12.8)--F, one row of the matrix
on each card in sequence.

Cards 7 to 12--(6F12.8)--H, one row of the matrix
on each card in sequence,

Card 13--(6F13.3)--X0, the initial state vector.

Card 14--(14)--NREP, the number of replications.

Card 15--(14)--ISEED, the seed for GAUSS.

Cards 16 to 21--(6F13.3)--Q, one row of the ma-

trix on each card in sequence.
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Cards 22 to 27--(6F13.3)--P0, one row of the ma-
trix on each card in sequence.

Cards 28 to 33-(6F13.3)--R, one row of the matrix
on each card in sequence.

Cards 34 and 35--Specification cards for PURGEZ2.

Output:

First Page--F, H, X0, NREP, ISEED, Q, PO, R,

QLT, PLT, RLT, RINV.

Second Page--Parameters in PURGEZ2.

Subsequent Pages~-The mean squared error matri-

ces, described in detail in the output.



F.

Flow Chart of MAIN:

Read F,
H, X0

Initiliaze
covi

Read NREP,
ISEED

Read Q,
PO, R

Call MTF
to obtain
QLT, PLT, RLT

Call GJR
to obtain
RINV

&)
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Start a new
replication

Set XHAT = X0

Call PURGE2 to
denerate 300
random numbers

Start a new
observation
stage

Call SIMLTE

Calculate
XNEW

X = XNEW + U
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Cal

culate
AY

AY + V

Call

FILTER

Calculate
XBAR

Accumulate mean
squared errors
into COVI1

no

yes
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no

7 1s
/" no. of
replication

wEP ?

yes

Call OUTPUT

End
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COMMON/BLKT/RDS ,PLT,QLT,RLT, X, U,V
COMMON/BLK2/H,R,XBAR,XHAT

COMMON/BLK3/K,ISEED
COMMON/BLK4/RINV,IN
COMMON/BLK6/X0
COMMON/Z2/RS/Z11/111X

DIMENSION COV1(6,6,50),Q(6,6),P0(6,6),R(6,6),QLT(6,6
1),PLT(6,6),RLT(6,6),XHAT(6),XBAR(6),X(6),XNEW(6),RS(
2100) RDS(300) u(e),v(6),F(6,6),H(6,6),AY(6),Y(6),YST
30RE(6 50), RINV(6,6),X0(6)

ITIX = 519

READ 5, ((F(I,J),J=1,6),I=1,6)
READ 5, ((H(I,J),Jd=1,6),I=1,6)
PRINT 5, F

PRINT 5, H

FORMAT (6F]2.8)

READ 6, X0

PRINT 6, X0

FORMAT (6F13.3)

FORMAT (1X, 6F14 3)

DO 20 I=1,6

Do 20 J=1,6

DO 20 K=1,50

CoOV1(I,J,K) = 0.

READ 25, NREP,ISEED

PRINT 25, NREP,ISEED

FORMAT (14)

READ 6, ((Q(I,J),J=1,6),1=1,6)
READ 6, ((PO(I,J),d=1,6),I=1,6)
READ 6, ((R(I,Jd),d=1,6),1=1,6)
PRINT 6, Q

PRINT 6, PO

PRINT 6, R

CALL MTF (QLT,Q,6)

CALL MTF (PLT,PO,6

CALL MTF (RLT,R,6)

PRINT 6, QLT

PRINT 6, PLT

PRINT 6, RLT

CALL MTRXOP (R,F,RINV,6,6,6,6,5)
ZERO = 0.

CALL GJR (RINV,6,ZERO,MSING,6,6)
IF (MSING.EQ.2) STOP

PRINT 5, RINV

DO 150 IN=1,NREP

DO 30 I=1,6

XHAT(T) = Xo(I)

CALL MTRXOP (F,XHAT,XBAR,6,6,6,1,1)
DO 40 I=1,3

IF (IN-T) 31,31,33




31
32

33
35

36
40

60

70

140
150

10

IF(I-1)

32,
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32,33

CALL PURGE2(1,5)

GO TO 35

CALL PURGE2(2,5)
= (I-1)*100
DO 36 J=1,100

RDS(IJ+J)
CONTINUE
PRINT 5,

RDS

DO 140 K=1,50

CALL SIMLTE
CALL MTRXOP
CALL MTRXOP
CALL MTRXOP
DO 60 I=1,6
YSTORE(I,K)
CALL FILTER
CALL MTRXOP
DO 70 I=1,6
DO 70 J=1,6
COV1(I,J,K)
1))
CONTINUE
CONTINUE
CALL OUTPUT
CALL EXIT
END

= RS(J)
(F,X,XNEW,6,6,6,1,1)
(XNEW,U,X,6,1,6,1,2)
(H,X,AY,6,6,6,1,1)
= Y(I)
(Y,K)
(F,XHAT,XBAR,6,6,6,1,1)

= COVI(I,J,K)+(XHAT(I)-X(I))*(XHAT(J)-X(

(COV1,NREP)

SUBROUTINE FILTER (Y,K)
COMMON/BLK2/H,R,XBAR,XHAT

COMMON/BLK5/Z,THETA

DIMENSION H(6,6),HT(6,6),R(6,6),HHINV(6,6),XBAR(6),H
1X§6),Z(6,50),HHINVH(6,6),THETA(6),UHAT 6), XHAT(6) ,Y(
26

CALL MTRXOQOP
CALL MTRXOP
CALL MTRXOP
DO 10 I=1,6

Z(I,K) = Y(I

CALL EMPEST
ZERO = 0.

(H,HT,R,6,6,6,6,4)
(HT ,H,HHINV,6,6,6,6,1)
(H,XBAR,HX,6,6,6,1,1)

)-HX(I)

CALL GJR (HHINV,6,ZERO,MSING,6,6)

IF (MSING.EQ.2)

CALL MTRXOP
CALL MTRXOQP
CALL MTRXOP
RETURN

END

STOP
(HHINV,HT,HHINVH,6,6,6
(HHINVH THETA UHAT 6.6

, )
(UHAT, XBAR, XHAT,6,1,6,1,2)

6,1
6,1.1)
»2)
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SUBROUTINE SIMLTE
COMMON/BLK1/RDS,PLT,QLT,RLT, X, U,V

COMMON/BLK3/K,ISEED
COMMON/BLKG6/ X0

DIMENSION AX( ),PLT(6,6),%X(6),AU(6),RDS(300),QLT(6,6
1),U(6),RLT(6,6),AV(6),V(6),X0(6)
IF (K—]) 10 10,30

CONTINUE

DO 20 I=1,6

CALL GAUSS (ISEED,1.,0.,RN)
AX(I) = RN

CALL MTRXOP (PLT,AX,X,6,6,6,1,1)
DO 25 I=1,-

X(I) = X(I)+X0(I)

CONTINUE

Kd = (K-1)%6

DO 40 J=1,6

AU(J) = RDS(KJ+J)

CALL MTRXOP (QLT,AU,U,6,6,6,1,1)
DO 50 I=1,6

CALL GAUSS (ISEED,1.,0.,RN)
AV(I) = RN

CALL MTRXOP (RLT,AV,V,6,6,6,1,1)
RETURN

END

SUBROUTINE EMPEST

COMMON/BLK3/K,ISEED
COMMON/BLK4/RINV,IN

COMMON/BLK5/TX ,ENX

DOUBLE PRECISION EB,Q2,DEN,QA
DIMENSION RDS 300) T(6),RINV(6,6),P(6,
1%3(6),%(6,50),PQ(6],01(6),02(6) ,ENX(6]
2TX(6,50)

o
——
fromad
[0}

P

L n unonor ok

IF (I.E
CONTINUE ;
CALL MTRXOP (RINV,XN,Q,6,6,6,1,1)
ZERO = 0.

CALL GJR (P,6,ZERO,MSING,6,6)

IF (MSING.EQ.2)  STOP

CALL VARCOR (TX,X,K)

,J) = P(I,3)+1./(A*A)
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40

50

60
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80
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20
40
50

60
70

CONTINUE
DO 35 I
Q2 (1)
DEN

=1,6
0.

[ TR S PR s S 1
it

XJ (1

Q1 (I
CALL MTR

O

OO

4=
e C O U

EB = EXP(B)

DO 60 I=1,6

Q2(1) = Q2(1)+Q1(I)*EB
DEN = DEN+EB

CONTINUE

DO 80 I=1,6

Q2(I) = Q2(I)/DEN

DO 75 I=1,6

QA = Q2(I)

Q3(I) = SNGL(QA)

CALL MTRXOP (P,Q3,ENX,6,6,6,1,1)
RETURN

END

SUBROUTINE MTF (A
DIMENSION A(N,N),
DO 10 I=1,N

L
s K)*A(J,K)

LR
o T~ i
o Bmacd

50,50,60
SQRT(B(I,J)-C)

~J
[e)

(B(I,J)-C)/A(J,J)

[

T —_— = 4
i
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SUBROUTINE VARCOR (T,X,K)

COMMON/BLK1/R

DIMENSION R(6,6),T(6,50),X(6,50),SUMT(6),SQT(6),COVT
1(6)

DO 30 I=1,
)+T(1,K)
T(I,K)*T(I,K)

(1
)+
QT (I)*K-SUMT (I)*SUMT(I))/(K*(K-1))
é , ))/COVT(I)

+—
M
—~
[we)

~ =<l
[H]
—

—
1]

A*T(I,d)+(1.-A)*SUMT(I)/K
CONTINUE

RETURN

END

SUBROUTINE MTRXOP (A,B,C,K,L,M,N,KOP)

KOP = 1 . C = AXB
=2 . C = A+B
= 3 C = A-B
= 4 . B = A TRANSPOSE
= 5 . C=A
DIMENSION A(K,L),B(M,N),C(K,N)
GO TO (10,30,50, 70,90), KOP
DO 20 I=1,K
DO 20 J=1.N
c(I1,J) = 0.
DO 20 IJ=1,M
C(I,d) = C(I,d)+A(I,KJ)*B(1J,d)
GO TO 120
E = 1.
CONTINUE
DO 40 I=1,K

DO 40 J=1,L
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40 C(I1,d) = A(I,Jd)+E*B(I,J)

GO TO 120
50 E = -1.
GO TO 120
70 DO 80 I=1,L
DO 80 J=1,K
80 B(I,J) = A(J,I1)
GO TO 120
90 E = 0.
GO TO 35
120 RETURN
END

SUBROUTINE GJR (A,NN.EPS,MSING,IS,IS1)
INTEGER P,Q
DIMENSION A(IS,IS1),B(125),C(125),P(125),Q(125)

N = NN
IF (EPS.LE.0.0) EPS = 1.E-26
MSING = 1
DO 10 K=1,N
PIVOT = 0.

DO 20 I=K,N
DO 20 J=K,N
IF (ABS(A{I,d))-ABS(PIVOT)) 20,20,30
30 PIVOT = A(I,J)
P(K) =1
Q(K) =4
20 CONTINUE
IF (ABS(PIVOT)-EPS) 40,40,50
50 IF (P(K)-K) 60,80,60
60 DO 70 J=1,N
L = P(K)
Z = A(L,Jd)
A(L,J) = A(K,J)
70 A(K,d) = Z
80 IF (Q(K)-K) 85,90,85
85 DO 100 I=1,N
L = Q(K)
Z = A(I,L)
A(I,L) = A(I,K)
100 A(I,K) = Z
90 CONTINUE
DO 110 J=1,N
IF (J-K) 130,120,130

120 B(J) = 1./PIVOT
c(Jd) = 1.

G0 TO 140
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130 B(J) = -A(K,Jd)/PIVOT
C(J) = A(J,K)
140 A(K,J) = 0.
110 A(J,K) = 0.
DO 10 I=1,N
DO 10 J=1,N
10 A(I,J) = A(I,d)+C(I)*B(J)
DO 155 M=1,N
K = N-M+1
IF (P(K)-K) 160,170,160
160 DO 180 I=1,N
L = P(K)
Z = A(I,L)
A(I,L) = A(I,K)
180 A(I,K) = Z
170 IF (Q(K)-K) 190,155,190
190 DO 150 J=1,N
L = Q(K)
Z = A(L,Jd)
A(L,d) = A(K,J)
150 A(K,Jd) = Z
155 CONTINUE
151  RETURN
40 PRINT 45,P(K),Q(K),PIVOT
45 FORMAT (1HO,15HSI NGULAR MATRIX,3H I=,13,3H J=,I3,7H P
11V0T=,E16.8,/)
MSING = 2
GO TO 151
END

SUBROUTINE OUTPUT (COV1,NREP)
DIMENSION COV1(6,6,50)

5 FORMAT (1H1,43H FOLLOWING ARE SQUARED ERROR MATRICES

TAFTER,I4,13H REPLICATIONS)

10 FORMAT (1HO0,20H FOR OBSERVATION NO.,I3)

12 FORMAT (1X,6F20.6)

15 FORMAT (1HO,29H TRACE OF THE ABOVE MATRIX IS,F20.8)
PRINT 5, NREP
DO 20 K=1,50
DO 20 I=1,6
DO 20 J=1,6

20 COVI(I,Jd,K) = COVI(I,J,K)/FLOAT(NREP)
DO 30 K=1,50
TR = 0.
DO 25 I=1]

.6
25 TR = TR+COVI(I,I,K)
PRINT 10, K
PRINT 12, (
PRINT 15, T

COVI(I,J,K),d=1,6),1=1,6)
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CONTINUE
RETURN
END

SUBROUTINE RANDU (IX,IY,YFL)
IY = IX*x65539

IF (IY) 5,6,6

IY = 1Y+2147483647+]1

YFL = TY

YFL = YFL*.4656613E-9
RETURN

END

SUBROUTINE GAUSS (IX,S,AM,Y)

A= 0.0

DO 50 I=1,12

CALL RANDU (IX,IY,V)
IX = 1Y

A = A+V

Y = (A-6.0)*S+AM
RETURN

END






