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approaches its critical point. 
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1970 ANNUAL REPORT ON THE INVESTIGATION OF 
CRITICAL PRESSURE BURNING OF FUEL DROPLETS 

This report discusses activities under NASA Contract NGR 39-009-077 
for the period January 1, 1970 through December 31,  1970. The work was 
divided into four phases, the results under each phase may be summarized 
as follows: 

1. High Pressure Droplet Combustion. These experiments considered 
the combustion of n-octane and n-decane droplets in air under 
zero-gravity conditions. 
pressure model (which allowed f o r  dissolved gases) were devel- 
oped f o r  comparison with the experiments. 
dissolved gases in the liquid phase significantly influence 
droplet conditions at high pressures. 
the products may be taken to be equivalent to nitrogen in 
determining solubility characteristics due to the predominance 
of nitrogen in the system. 
most sensitive to a parameter proportional to the Lewis number. 
Thus the convenient unity Lewis number assumption should not 
be made, unless strictly valid, if accurate predictions of  
droplet conditions at high pressures are to be obtained, 

A low pressure model and a high 

It was found that 

For combustion in air, 

The calculations were found to be 

2. Atmospheric Pressure Flat Flame Study. The burning rates of 
1200~ diameter droplets of hydrazine, MMH and UDMH were 
measured in the combustion products of a flat flame burner, 
The tests were conducted at atmospheric pressure with gas 
temperatures of 1650-2550 K and oxygen concentrations in the 
range 0-42% by mass. 
were similar, exhibiting a slow increase with increasing am- 
bient temperature and a rapid increase with increasing ambient 
oxygen concentration. 
trations, the present burning rates are 30-50% higher than 
results obtained at room temperatures, 
with porous spheres to obtain data for a range of droplet 
sizes prior to analyzing the data. 

The burning rates of the three fuels 

At comparable ambient oxygen concen- 

Tests are continuing 

3 .  High Pressure Flat Flame Study" 
burner apparatus was designed and its construction is nearing 
completion, 
burning rates and droplet conditions at high pressures in a 
combustion gas environment. The droplets will be simulated 
using the porous sphere technique. 

A high pressure flat flame 

This apparatus will be employed to determine 

4. Liquid Strand Combustion. An apparatus was constructed to 
allow measurements of the liquid phase temperature distribution 
of burning monopropellant strands. The tests considered ethyl 
nitrate, normal propyl nitrate, and propylene glycol dinitrate 
at pressures up to 85 atmospheres. Comparison of theoretical 



and experimental liquid surface temperatures supports the 
need for considering dissolved gas effects at high pressures. 
The calculations were found to be most sensitive to a parameter 
proportional to the Lewis number. The calculations were less 
sensitive to variations in solubility parameters, which is 
fortunate since these are well known for only a few propellants. 
The requirement f o r  sensible heating of the liquid phase 
results in a substantial increase in the pressure required for 
supercritical combustion when compared with steady droplet 
burning with the dropletuniformlyat its wet bulb temperature. 
This suggests that supercritical droplet burning criteria 
based on steady burning models underestimate the pressure 
required for supercritical combustion -- except for  the later 
stages of burning where internal temperature gradients have 
relaxed. 



I. Introduction 

The objective of this investigation is to study the combustion and 
evaporation of liquid fuels at high pressures, 
placed on conditions where the liquid surface approaches its thermo- 
dynamic critical point during combustion. 
of progress on the investigation for the period January 1, 1970 to 
December 31, 1970, 

Particular emphasis is 

This report gives a summary 

Work during this report period was divided into four phases: 
(1) High Pressure Droplet Combustion, involving the analysis of steady 
droplet burning under zero gravity conditions. 
Flat Flame Study, where measurements were made of droplet burning rates 
in a combustion gas environment for hydrazine, MMH and UDMH, 
Pressure Flat Flame Study, involving the development of a pressurized 
flat flame burner system for studying droplet burning in a combustion 
gas environment. (4) Liquid Strand Combustion, which considers the 
analysis of high pressure effects on the equilibrium surface state of a 
burning liquid monopropellant column, 

(2) Atmospheric Pressure 

(3) High 

In the following sections the work in each phase is summarized for 
the report period. 
presented by reference to past publications and only material not pre- 
viously reported is given extended coverage. 

Wherever possible, the details o f  the work are 

11. High Pressure Droplet Combustion 

Introduction: 

This portion of the investigation considered steady droplet com- 
bustion at high pressures. The experimental apparatus for this work 
consisted of a high pressure chamber within which droplets were ignited 
and burned under zero gravity conditions, Difficulties were encountered 
in obtaining experimental droplet burning rates at high pressures, 
Therefore, the work primarily emphasized the state of the droplet during 
steady burning and the pressures required for the onset of supercritical 
burning, since measurements of this type could be obtained t o  test the 
theoretical predictions, 

The findings of this portion of the investigation are presented in 
some detail in Refs. 1-3, These results are briefly summarized in the 
following, with emphasis on activities during this report period, 

Baseline Tests: 

In order to provide a baseline f9r the analysis of high pressure 
combustion, burning rate measurements were made with droplets subjected 
to the combustion products o f  a flat flame burner, These measurements 
were previously compared with a constant average property burning rate 
model in NASA CR-72622 (Ref, 4). Further consideration of the’problem 
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indicated that it would be desirable to re-calculate these results using 
a variable property solution. 
results is not possible through judicious selection of average proper- 
ties, providing a more basic test of the theory. 

In this way, arbitrary fitting of the 

The variable property solution employed for this analysis was first 
presented by Goldsmith and Perl~~er.~ 
postulates property variations that are particularly suitable for the 
fuels considered in the present study. 
reaction for  the energy release in the droplet flame was found to yield 
absurdly high flame temperatures. Therefore, a partial allowance was 
made for dissociation in the flame by computing the chemical energy 
release as a function of temperature, allowing for all relevant dis- 
sociation reactions. 
error until the computed flame temperature agreed with the temperature 
used to evaluate the heat release. 

This model was chosen since it 

Use of the standard heat of 

The burning rate was then determined by trial and 

Results with the variable property model were similar to the 
constant property results given in Ref. 4 (for the constant property 
solution, properties were evaluated at the log mean temperature and 
average composition, with dissociation corrections applied at the 
flame.) Absolute differences between the two models were less then 15%. 
After considering various sources of theoretical and experimental error, 
the conclusions remain the same as those given in Ref. 4 .  
continues to systematically overestimate the burning rate of the heavier 
hydrocarbons. 
weight is felt to be due to fuel decomposition in the gas phase near 
the droplet surface. 

The theory 

This failure with respect to increasing fuel molecular 

Experimental Apparatus: 

Work on high pressure droplet combustion was conducted with a 
zero-gravity apparatus in order to prevent the droplet from falling due 
to reduced surface tension near the critical point. Test droplets were 
supported from a fine wire (.002 in, O.D.) thermocouple junction and 
ignited within a small pressurized chamber. 

Measurements were made of the steady droplet burning temperature 
as a function of pressure. 
combustion were also measured (the onset of this condition was deter- 
mined by the continuous rise of droplet temperature following ignition, 
with no inflection to indicate an approach to a steady burning state), 
Burning rates were also determined at low pressures, however, optical 
difficulties due to flame luminousity and refraction prevented similar 
measurements at high pressures. 
and n-octane droplets burning in air. 

The pressures required for supercritical 

The experiments considered n-decane 

Theoretical Analysis: 

Workers at the University of Wisconsin have shown that dissolved 
gas in the liquid phase is an important factor in determining droplet 
conditions at high pressures.697 
pressure data, the Goldsmith and Penners theory was extended to allow 
for the evaporation of dissolved gas along with the fuel. 

Thus, for the analysis of the high 

The analysis 
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was also extended to allow the computation of the composition of fuel, 
oxidizer and all product and inert species in the gas phase. 

Two basic models were employed to evaluate phase equilibrium at 
the drop surface, 
lected. 
as the ratio of the vapor pressure of the fuel, at the droplet tempera- 
ture, to the total pressure, Similarly, the heat of vaporization of the 
fuel was evaluated at the droplet temperature and dissolved gases were 
neglected. This model is reasonably accurate at low pressures and has 
also been used by Wiebez-8 f o r  estimating supercritical burning condi- 
t ions 

In the first model* high pressure effects were neg- 
The fuel mole fraction at the droplet surface was calculated 

The second model considered high pressure corrections and ambient 
gas solubility" 
of pressure, temperature, and the fugacity of each component in both 
gas and liquid phases, 
Kwong equation of state with mixing rules suggested by Prausnitz and 
Chueh.9 
of  the Redlich-Kwong equation of state were obtained f o r  systems of 
n-paraffin hydrocarbons in nitrogen, carbon dioxide,and water by fitting 
the equation to available binary phase equilibrium data, 

Droplet phase equilibrium was determined by equality 

The fugacities were determined from the Redlich- 

The binary interaction parameters required in the mixing rules 

Two versions of the high pressure model were considered, The first 
treated the complete quaternary system fuel, nitrogen, and the combus- 
tion products, carbon dioxide and water, 
nitrogen in the system for combustion in air, the second model assumed 
that the combustion products were equivalent to nitrogen and only the 
binary system fuel-nitrogen was considered, 

Due to the predominance o f  

Results : 

For n-decane droplets, the experimental supercritical combustion 
condition was reached at pressures between 650 and 700 psia (Pr=2,13 to 
2.30, where P, is the reduced pressure with respect to the critical 
pressure of the pure fuel), 
burning condition was found between 850 and 900 psia (Pr=2.35 to 2 - 4 9 ) .  

same results and were in reasonable agreement with the data both with 
respect to steady burning temperatures and the pressures required for 
the onset of supercritical combustion, The low pressure model under- 
estimated the pressure required for supercritical combustion by roughly 
a factor of two. The sensitivity of the calculated results to errors in 
properties was examined by parametrically varying the binary interaction 
parameters, the combustion temperature, and the transport quantity 
x = X/(CD) where h is the thermal conductivity, C the molar concentra- 
tion, and D the binary diffusivity. 
found to be x. The results of the determination of supercritical 
burning conditions are summarized in Table I (the limits on the computed 
results are due to - + 20% variations in x). 

For n-octane droplets the supercritical 

The two versions of the high pressure theory gave essentially the 

The most critical parameter was 
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Summary and Conclusions: 

The results indicate that ambient gas solubility and high pressure 
corrections should be considered in determining droplet conditions at 
high pressures for the heavier paraffin hydrocarbons* For combustion 
in air, these phase equilibrium calculations can be simplified by taking 
the properties of the cornbustion products equivalent to nitrogen, Un- 
certainties in the calculations are primarily introduced by uncertainties 
in the transport parameter x. Since this parameter is proportional to 
the Lewis number, arbitrarily setting the Lewis number equal to unity 
(to simplify the calculations) can lead to large errors for heavier 
hydrocarbonsa 

The calculations indicate that the pressure required for super- 
critical combustion approaches the critical pressure of the pure fuel 
as the molecular weight decreases for the paraffin hydrocarbons, 

The burning rate results indicate that the presently used droplet 
combustion models progressively overestimate the burning rate with 
increasing fuel molecular weightb 
tion between the droplet surface and the oxidation zone be examined as 
a possible cause for this failure. 

It is suggested that fuel decomposi- 

111. AtmosDheric Pressure Flat Flame Studv 

Introduction: 

This portion of the investigation considers droplet burning in the 
combustion products of a flat flame burner. 
year extended an earlier study of fuel droplet comb~stion,~ to the 
hydrazine fuels. 
tigation included hydrazine, mono-methylhydrazine (MMH), unsymmetrical 
dimethyl hydrazine (UDMH) and Aerozine 50. The experimental testing 
was conducted at atmospheric pressure. 

The work during the past 

The propellants specifically considered in the inves- 

A number of previous investigations have considered droplet 
combustion for the hydrazine fuels.10-15 
earlier studies employed ambient gases around the droplet at tempera- 
tures near room temperature. One exception to this is the study by 
Kosvic and Breen,l5 which also considered hydrazine droplet combustion 
in high temperature combustion products. However, the range of the 
tests of Ref. (15) is somewhat limited. Thus the present investigation 
will provide more extensive experimental results at conditions repre- 
senative of combustion chamber conditions. 

For the most part, these 

Since the hydrazine fuels exhibit exothermic decomposition, com- 
bustion in an oxidizer often involves a decomposition region followed 
by an oxidation zone. 
characteristics of both monopropellants and bipropellants. 
cates theoretical modeling of droplet burning rates, Thus another 
objective of the study was to provide a more extensive test of the two 
flame theory of hydrazine combustion proposed by Beltran, et al,13 
than has been possible in the past. 

Therefore, these systems involve some of  the 
This compli- 
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Experimental Apparatus: 

The f l a t  flame burner apparatus has been descr ibed i n  d e t a i l  i n  
Ref. 4 .  Br i e f ly ,  t h e  apparatus cons i s t s  o f  a burner mounted on r a i l s  
so t h a t  i t  can b e  r ap id ly  moved under the  t e s t  d rop le t  t o  begin the  
combustion process ,  
monoxide, hydrogen, oxygen, and n i t rogen  t o  y i e l d  var ious  oxygen con- 
cen t r a t ions  and temperatures a t  t h e  drople t  l oca t ion .  

The burner  was operated with mixtures o f  carbon 

The temperature and composition of t h e  burned gas flowing around 
t h e  d rop le t  was determined from thermochemical ca l cu la t ions  allowing 
f o r  a l l  relevant d i s soc ia t ion  reac t ions  and hea t  l o s s  t o  t h e  burner .  
The thermochemical p rope r t i e s  f o r  these  ca l cu la t ions  were taken from 
t h e  JANAF Tables.16 
cu la ted  from t h e  measured mass f l u x  i n t o  t h e  burner  and the  known 
p rope r t i e s  o f  t h e  burned gas.  
t i es  o f  t h e  gas f o r  a l l  t es t  candi t ions .  

The gas ve loc i ty  a t  t h e  d rop le t  l oca t ion  was cal-  

Table I1 summarizes t h e  computed proper- 

Droplet  burning rates were measured employing both t h e  suspended 
d rop le t  and porous sphere techniques.  
method, t h e  d rop le t  was supported from a quar tz  f i b e r  having a diameter 
of  approximately 10011. 
measured from motion p i c t u r e  shadowgraphs as descr ibed i n  Ref. 4 .  

For the  suspended d rop le t  

The time v a r i a t i o n  o f  drople t  diameter was 

Figure 1 shows a sample p l o t  of  diameter squared as a func t ion  of  
time f o r  t h r e e  tes ts  with UDMH. 
l inear ,  t h e  d a t a  was summarized by measuring t h e  s l o p  of  t hese  curves 
t o  y i e l d  burning r a t e  cons tan ts .  
a least  squares curve t o  t h e  da t a  f o r  each t e s t .  The s lope  was balanced 
about a f ixed  average diameter (on t h e  order  of  120011) i n  o rde r  t o  
reduce v a r i a t i o n s  from t h e  diameter squared law, v a l i d  f o r  motionless 
evaporating d rop le t s ,  due t o  convection and decomposition effects .4 
each t e s t  condi t ion,  t h e  reported burning ra te  constant  i s  t h e  average 
o f  t h r e e  sepa ra t e  t e s t s .  

Since t h i s  type o f  p l o t  was reasonably 

The s lopes  were determined by f i t t i n g  

A t  

Figure 2 shows a sketch o f  t h e  porous sphere system. I t  was 
necessary t o  cool t h e  f u e l  feed l i n e  t o  prevent  excessive fue l  pre-  
hea t ing  from t h e  ho t  burner  gases ,  The f u e l  was forced through t h e  
sphere with a c a l i b r a t e d  syr inge  pump. 
was f ixed  by t h e  fuel  flow ra te  t h a t  would keep t h e  sphere wet without 
dr ipping  e 

The s teady  burning condi t ion 

Eastman Organic f u e l s  were employed i n  t h e  t e s t i n g ;  hydrazine 
(95*% p u r i t y ) ,  MMH (bo i l ing  po in t  87-88C), and UDMH (bo i l ing  po in t  61- 
63C). Aerozine 50 (A-50) was blended i n  t h i s  laboratory from these  
materials. In addi t ion ,  some tests were conducted with analyzed UDMH 
(99.8% pur i ty ]  suppl ied by t h e  FMC Corporation. 

Resul ts  : 

The r e s u l t s  t o  be  presented were obtained with t h e  supported drop- 
l e t  technique. 
i s  not  complete a t  t h i s  time and w i l l  be  presented a t  a la te r  da t e .  

The porous sphere t e s t i n g  and t h e  ana lys i s  o f  t h e  da t a  
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The e f f e c t  of  t he  diameter o f  t he  qua r t z  f i b e r  on t h e  r e s u l t s  was 
inves t iga ted  i n  prel iminary t e s t i n g .  I t  was found t h a t  doubling the  
diameter of  t h e  f i b e r  from 100 t o  20011 r e s u l t e d  i n  a 15% increase  i n  
burning r a t e .  
i n  excess of t h e  burning r a t e s  of f r e e  d rop le t s .  

This suggests t h a t  t he  present  r e s u l t s  may be somewhat 

Figure 3 i l l u s t r a t e s  t he  inf luence of  ambient temperature on t h e  
burning r a t e  a t  condi t ions with neg l ig ib l e  ambient oxygen concentrat ion.  
The burning r a t e s  of  t he  t h r e e  f u e l s  a r e  q u i t e  s i m i l a r  and the re  i s  
l i t t l e  d i f f e rence  i n  behavior between t h e  two UDMH samples.. A s  t h e  
temperature increases  from 1660 t o  2470 K ,  t h e  burning r a t e  increases  
roughly 50%, The bulk of t h e  increase  occurs a t  temperatures g r e a t e r  
than 2200 K ,  p a r t i c u l a r l y  f o r  MMH and UDMH, 

The inf luence  of  ambient oxygen concentrat ion a t  a f ixed  ambient 
temperature of  2530 K i s  shown i n  Figure 4 ,  The increase  i n  burning 
r a t e  with oxygen concentrat ion is  similar f o r  t h e  t h r e e  f u e l s ,  amount- 
i ng  t o  a 100% increase  as t h e  oxygen mass f r a c t i o n  goes from .043 t o  
-418. 
burning rate than t h e  s tandard sample, with maximum di f fe rences  of  
about 20%. 

The higher  p u r i t y  UDMH appears t o  have a cons i s t an t ly  higher  

For burning i n  room temperature a i r ,  Dykema and Greenel’ measured 

The compar- 
burning r a t e s  of  .016 and .011 crnZ/sec f o r  hydrazine and UDMH with 
d rop le t  s i z e s  similar t o  those used i n  t h e  present  tes ts ,  
ab le  values from t h e  present  experiments ( a t  t h e  same oxygen concen- 
t r a t i o n )  are .021 f o r  hydrazine and -0145 ( s t d ) ,  .0168 (99 ,8% pur i ty )  
fo r  UDMH, Thus t h e  h igher  ambient temperature of  t h e  present  t e s t s  
y i e l d s  a 30-50% increase  i n  burning r a t e  a t  t h i s  oxygen concentrat ion 
although o the r  f a c t o r s  may cont r ibu te  as well s ince  t h e r e  were d i f -  
ferences i n  convection and the  composition o f  t h e  o the r  components of 
t h e  gas ,  

S imi la r  suspended d rop le t  t e s t s  were attempted with Aerozine 50. 
Results were not  obtained, however, due t o  d rop le t  s h a t t e r i n g  during 
burning. 
porous sphere technique. 

A f u r t h e r  attempt w i l l  be made t o  t e s t  t h i s  f u e l  with the  

For t h e  r e s u l t s  presented i n  Figures 3 and 4 t h e  ambient gas was 
completely dry.  Therefore,  some tests were conducted t o  determine the  
inf luence  o f  water vapor i n  t h e  ambient gas .  
t e s t s  a r e  summarized i n  Table 111. In  general ,  t he  presence of  water 
vapor caused a s l i g h t  reduct ion i n  the  burning r a t e  (which could a l s o  
have been due t o  reduced flow v e l o c i t i e s ) .  
ambient composition o f  t h e  gas w i l l  be inves t iga ted  i n  g rea t e r  d e t a i l  
using the  porous sphere system. 

The r e s u l t s  of these  

The inf luence  of  t h e  

Summary and Conclusions: 

The burning rates of hydrazine,  MMH, and UDMH a r e  similar and 
exh ib i t  a s t rong  increase  with increas ing  ambient oxygen concentrat ions 
even a t  t h e  high ambient temperatures of  t he  present  tests. 
comparable ambient oxygen concentrat ions,  t h e  present  burning rates are 
30-50% higher  than e a r l i e r  t e s t s  a t  loom temperature. 

A t  
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A t  t h e  present  time t e s t i n g  i s  i n  progress  using t h e  porous 
sphere technique,  
be analyzed with 

Following t h e s e  tes ts ,  t h e  experimental resu l t s  w i l l  
a r t i c u l a r  a t t e n t i o n  given t o  t h e  two flame theory 

of Bel t ran  e t  a l ,  153 

I V .  High-pressure Flat  Flame Study 

I n t  r odu c t ion ,: 

Since t h e  zero-gravi ty  apparatus d i d  not  y i e l d  d a t a  on d rop le t  
burning rates a t  high pressures ,  a pressur ized  f l a t  flame burner r i g  i s  
under development t o  supply t h i s  information. 
add i t iona l  advantage,of  providing a r e a l i s t i c  s imulat ion of  t h e  gas 
environment of  a burhing d rop le t  i n  a high pressure  combustion chamber. 

This apparatus has  t h e  

The high pressure  f l a t  flame burner  i s  similar t o  t h e  apparatus 
employed f o r  atmospheric pressure  t e s t i n g ,  with t h e  exception t h a t  only 
porous sphere t e s t i n g  i s  planned f o r  t h i s  system. This technique has  
t h e  advantage of e l imina t ing  t rans ien t  effects (which become t rouble-  
some a t  high p res su res ) ,  s u b s t a n t i a l l y  s implifying i n t e r p r e t a t i o n  of  t h e  
d a t a .  
couples i n  t h e  l i q u i d  phase.  Work t o  d a t e  has been l imi ted  t o  t h e  
design and cons t ruc t ion  of t h e  apparatus .  

The porous sphere a l s o  allows accura te  pos i t i on ing  o f  thermo- 

Experimental Apparatus: 

Cri t ical  combustion condi t ions f o r  a porous sphere experiment 
d i f f e r  from t ose of  a d r o p l e t .  This i s  due t o  t h e  fact  t h a t  t h e  flame 
must a l s o  supply a l i q u i d  phase enthalpy rise (from t h e  i n i t i a l  tempera- 
t u r e  t o  t h e  su r face  temperature) i n  t h e  case of t h e  porous sphere,  i n  
add i t ion  t o  t h e  hea t  of  vapor iza t ion  requi red  i n  a d rop le t  experiment, 
Therefore,  t h e  f irst  s t e p  i n  designing t h e  high pressure  f l a t  flame 
experiment cons is ted  of  determining t h e  pressures  required f o r  super- 
c r i t i c a l  combustion. 

S u p e r c r i t i c a l  burning condi t ions  f o r  t h e  porous sphere were computed 
f o r  n-pentane, n-decane, n-hexadecane, i n  t h e  absence of  convection. 
The ana lys i s  of Refs, 1 and 3 was employed f o r  these  c a l c u l a t i o n s .  
t h e  porous sphere,  t h e  ne t  f l u x  of d i sso lved  gas i s  zero i n s i d e  t h e  
r e a c t i o n  zone since only f u e l  i s  en te r ing  t h e  system. I n i t i a l  l i q u i d  
temperatures of 75, 150, and 300 F were considered i n  t h e  ca l cu la t ions  
as well as  a * 20% parametr ic  v a r i a t i o n  of t h e  l i q u i d  phase enthalpy 
change e 

i ng  f o r  real gas e f f e c t s  a r e  given i n  Table I V .  

For 

The Fa lcu la ted  pressures  requi red  f o r  c r i t i c a l  burning, allow- 

These r e s u l t s  i n d i c a t e  t h a t  t h e  l i g h t e r  hydrocarbons r equ i r e  lower 
pressures  f o r  s u p e r c r i t i c a l  combustion; p a r t i c u l a r l y  i f  t h e  l i q u i d  i s  
preheated., Since convection should reduce t h e  pressures  requi red  f o r  
c r i t i ca l  burning, it appears t h a t  c r i t i c a l  burning can be observed a t  
pressures  on the  order  of  1500 p s i a .  
important a t  pressures  below t h i s .  

Natura l ly  real gas effects become 
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A schematic diagram o f  t h e  high pressure  f l a t  flame apparatus is 
shown i n  Figure 5. 
f i t t e d  with windows t o  allow o.bservation of  t h e  combustion process.  
The gas flows a r e  metered t o  the  burner through c r i t i c a l  flow o r i f i c e s .  
The burned gas exhausts through a cooler ,  water t r a p  and r e a c t o r  pres -  
su re  cont ro l  valve.  
va r i ab le  speed diaphragm pump; with t h e  f u e l  flow r a t e  being metered a t  
the  i n l e t  o f  t h e  pump. 

The apparatus cons i s t s  of  a high pressure  r eac to r ,  

The f u e l  i s  fed  t o  t h e  porous sphere with a 

The r eac to r  i s  designed f o r  a working pressure  of  1500 p s i a .  I t  
has an i n t e r n a l  volume of  5 inches I D  by 18 inches long. The i n s i d e  
walls a r e  in su la t ed  with alumina f i r e - b r i c k .  
assembly cons i s t s  of a rupture  d isk  s e t  a t  2000 p s i a .  
achieve high flow s t a b i l i t y ,  t he  burner gases a r e  metered with cr i t ical  
flow o r i f i c e s .  
by Anderson and Friedman.17 The o r i f i c e s  a r e  constructed from jewels 
with 10 o r i f i c e s  i n  t h e  s i z e  range -003-.018 inch 1,D. t o  provide 
f l e x i b i l i t y  i n  varying flow r a t e s .  The t e n  o r i f i c e s  are mounted i n  a 
s i n g l e  b ra s s  b a r  for each assembly. 
f o r  

The pressure  r e l e a s e  
In order  t o  

The design of  these  u n i t s  i s  similar t o  t h a t  described 

The o r i f i c e s  have been c a l i b r a t e d  
using a wet tes t  meter. 

The f la t  flame burner i s  i l l u s t r a t e d  i n  g r e a t e r  d e t a i l  i n  Figure 6 .  
The burner i s  constructed of  s t a i n l e s s  s t e e l  and b ras s .  
chamber i s  f i l l e d  with s t e e l  wool and f i n e  wire gauze. 
copper shot  is  used t o  conduct hea t  from the  base of t h e  s in t e red  
bronze p l a t e  t o  the  copper cooling c o i l .  

The mixing 
A layer  of  

An annular flow of n i t rogen  d i luen t  i s  provided around t h e  f l a t  
flame. 
a s s i s t i n g  i n  the  cooling o f  t he  system f o r  high pressure  operat ion.  

The ho t  gases leaving t h e  r eac to r  e n t e r  a hea t  exchanger where 

The heat  exchanger has O-ring s e a l s  a t  t h e  cool end 

This flow helps  , to  s t a b i l i z e  the  shape of t h e  flame as wel l  as 

they a r e  cooled and f i n a l l y  exhausted t o  the  atmosphere through a 
cont ro l  valve.  
t h a t  allow f o r  expansion of  t he  coinponents without t h e  development of 
excessive stresses. The water t r a p  a t  t h e  downstream end of t h e  hea t  
exchanger i s  designed t o  c o l l e c t  water condensed from the  combustion 
gases t o  prevent clogging o f  t he  micro-regulating pressure  cont ro l  
valve e 

The assembly o f  t h i s  apparatus i s  ngw near ly  completed and i t  i s  
expected t h a t  prel iminary t e s t i n g  w i l l  begin i n  a s h o r t  time, 

V. Liquid Strand Combustion 

Introduct ion:  

The purpose o f  t h i s  por t ion  of  t h e  s tudy i s  t o  inves t iga t e  tempera- 
t u r e  and dissolved gas concentrat ions i n  an evaporating column of  
l i q u i d  heated from the gas phase,  The experimental procedure has 
employed burning l i q q i d  monopropellant s t r ands .  
s impl i f i e s  ana lys i s  s ince  t h e  flow i s  one dimensional and s teady.  

The use of  t h i s  system 
With 
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t h i s  technique it is a l s o  r e l a t i v e l y  easy t o  obta in  results a t  high 
pressures  where s o l u b i l i t y  e f f e c t s  become important.  

The work described i n  t h i s  r epor t  considers only s teady combustion. 
Some of  t hese  r e s u l t s  have already been presented i n  Ref. 2 .  
fu tu re ,  t he  inf luence  of f i n i t e  pressure  o s c i l l a t i o n s  on t h e  combustion 
process w i l l  a l s o  be  considered. 

In the  

Experimental Apparatus: 

A sketch of t h e  experimental apparatus i s  given i n  Figure 7 ,  
general  experimental procedure i s  similar t o  t h a t  employed i n  Refs. 18- 
20. The monopropellant i s  placed i n  a g l a s s  tube contained wi th in  a 
windowed chamber. 
des i r ed  t e s t  pressure,  t h e  propel lan t  i s  ign i t ed  with a h e a t e r  c o i l ,  
Following i g n i t i o n ,  t he  l i q u i d  burns down the  tube,  allowing t h e  com- 
bust ion zone t o  sweep across  t h e  thermocouple. 
of  t h e  l i q u i d  column as wel l  as t h e  pos i t i on  of  t h e  thermocouple i n  
t h e  l i q u i d  phase i s  determined from motion p i c t u r e  shadowgraphs taken 
through the  windows of  t he  chamber. The t e s t  d a t a  cons i s t s  of  a com- 
p l e t e  l i q u i d  phase temperature record as wel l  as t h e  burning r a t e  of 
t h e  p rope l l an t .  

The 

Af ter  pressur iz ing  t h e  chamber with n i t rogen  t o  t h e  

The r a t e  of  regress ion  

The pressure  vesse l  used i n  the  present  experiments has an i n s i d e  
diameter of 2 l / 2  inches with an i n s i d e  length of  11 inches,  
chamber i s  r a t e d  t o  6000 p s i a .  
viewing space.  
photographed with a motion p i c t u r e  camera operat ing a t  speeds on t h e  
order  of 30 frames per  second. 

The 
The windows have a 1 inch diameter 

The l i q u i d  column i s  back l i gh ted  with an a r c  lamp and 

Propel lan t  tubes of var ious s i z e s  have been used i n  the  t e s t  
program, however, t h e  bulk of t h e  d a t a  was obtained with a 4 mm 1 -  D o  
tube,  Liquid temperatures were obtained with .0003 inch O . D .  platinum- 
platinum 10% rhodium b u t t  welded thermocouples. These thermocouples 
were constructed following t h e  procedures described i n  Ref. 21 ,  The 
thermocouples are' s t r e t ched  ho r i zon ta l ly  through holes  burned i n  t h e  
g l a s s  tube and sealed i n  p lace  with wax. 
minimizes t h e  con t i o n  e r r o r  of  t he  thermocouple. The thermocouple 
w t p u t  is recorded on an osc i l lograph  with f l a t  frequency response t o  

The hor izonta l  configurat ion 

2000 cps.  

Theore t ica l  Analysis: 

Due t o  t h e  s teady na ture  of  t h i s  combustion process ,  t h e  gas and 
l i q u i d  phases may be  considered sepa ra t e ly .  
then patched toge ther  by appropr ia te  phase e q u i l i b r i a  ana lys i s  a t  t h e  
l i q u i d  sur face .  

These two r e s u l t s  are 

The gas phase i s  complicated by t h e  decomposition process of  t h e  
fue l .  However, two l imi t ing  cases  may be s tud ied  which s u b s t a n t i a l l y  
s impl i fy  t h e  a n a l y s i s ,  The two l i m i t s  are: (1) i n f i n i t e  a c t i v a t i o n  
energy assumption, where t h e  r eac t ion  zone i s  i n f i n i t e l y  t h i n  compared 
t o  t h e  d i s t ance  between t h e  r eac t ion  zone and t h e  l i q u i d  sur face  and 
( 2 )  zero a c t i v a t i o n  energy assumption where the  r eac t ion  r a t e  is  taken 
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t o  be independent of temperature.  
case (1) t h e  i n f i n i t e  a c t i v a t i o n  energy assumption s ince  i t  represents  
a more r e a l i s t i c  model f o r  t h e  fuels considered i n  t h i s  study. In  t h i s  
case ,  t h e  so lu t ion  f o r  t h e  gas phase t o  determine sur face  condi t ions is 
e s s e n t i a l l y  t h e  same as Refs. 1 and 3,  with t h e  exception t h a t  t h e  
oxidat ion zone i s  absent .  

Work t o  d a t e  has been confined t o  

The combustion product composition and t h e  flame temperature a r e  
computed from equi l ibr ium thermochemical ca l cu la t ions  allowing f o r  a l l  
re levant  d i s soc ia t ion  r eac t ions .  Three f u e l s  have been considered 
thus far,  normal propyl n i t r a t e  (NPN), e thy l  n i t r a t e  (EN), and propylene 
glycol  d i n i t r a t e  (PGDN). The flame zone p rope r t i e s  r e s u l t i n g  from t h e  
ca l cu la t ions  f o r  t hese  f u e l s  a r e  given i n  Table V. This t a b l e  l i s t s  
only t h e  major components t h a t  were considered i n  t h e  ana lys i s .  The 
inf luence  of  pressure  on flame proper t ies  i s  small so  t h a t  t he  proper& 
t i e s  given i n  Table V have been used throughout t he  pressure  range of  
t he  present  i nves t iga t ion .  

Two models were taken f o r  phase equilibrium a t  t h e  l i q u i d  sur face .  
The f i rs t  was a s impl i f ied  model neglect ing high pressure  cor rec t ions  
and ambient gas s o l u b i l i t y .  
f o r  high pressure  e f f e c t s  and the  s o l u b i l i t y  of t he  combustion products 
i n  t h e  l i q u i d  phase. For t he  th ree  f u e l s ,  t h e r e  was not  s u f f i c i e n t  
phase equilibrium d a t a  i n  t h e  l i t e r a t u r e  t o  obta in  the  fuel-product 
b inary  i n t e r a c t i o n  parameters required by the  high pressure  theory.  
Therefore,  t hese  parameters were estimated using the  hydrocarbon homo- 
morphs of  t he  t h r e e  f u e l s .  

The second, more complete, model allows 

Resul ts  : 

Although not a major ob jec t ive  of t h i s  study, t h e  d a t a  was reduced 

These r e s u l t s  a r e  given i n  Table V I  f o r  EN,  
t o  y i e l d  s t r and  burning r a t e s  ( the  r a t e  of regress ion  of  t h e  l i q u i d  
sur face  down t h e  tube) .  
NPN, and PGDN. 

The present  EN burning r a t e s  a r e  about 3% higher than Steiqber-  
g e r ' s l 8  measurements and 10% higher  than t h e  values reported by 
Hildenbrand and Whittaker.19 The r e sen t  measurements f o r  NPN are i n  
good agreement with Amster, e t  alzg over the  l imi ted  range ava i l ab le  
f o r  comparison (50-70 atm). Measurements of  PGDN s t rand  burning r a t e s  
could not  be  found i n  t h e  l i t e r a t u r e  f o r  comparison with t h e  present  
r e s u l t s  . 

The v a r i a t i o n  of t h e  experimental and t h e o r e t i c a l  l i qu id  su r face  
The bo i l ing  temperatures of EN with pressure  are p l o t t e d  i n  Fig.  8. 

poin t  curve of t he  pure f u e l  i s  a l s o  shown on t h e  f i g u r e  f o r  comparison. 

A t  h igher  pressures ,  an uns tab le  o r  t u rbu len t  combustion region 
was encountered. l9 Temperature measurements could not  be  made i n  t h i s  
region,  giving r i s e  t o  the  upper bound of experimental d a t a  i n  F i g .  8. 
The present  measurements a r e  i n  poor agreement a t  t h e  higher pressures  
with e a r l i e r  EN measurements by Hildenbrand and Whittaker 19 
f o r  t h i s  discrepancy i s  not known a t  t he  present  time. 

The cause 
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The low and high pressure  theo r i e s  are shown as bands r a t h e r  than 
s i n g l e  curves i n  Fig. 8.  
me t r i c  v a r i a t i o n  o f  + 20% on combustion temperature,  + 20% on xf (X/CDf 
where X i s  t h e  thermzl conduct ivi ty ,  C t h e  molar conc%ration and 
Df t h e  b inary  d i f f u s i v i t y  of  t h e  fuel.) and b inary  i n t e r a c t i o n  parameters 
ranging from zero up t o  t h e  values  f o r  t h e  hydrocarbon homomorph o f  t h e  
p rope l l an t .  
are terminated a t  condi t ions where t h e  interface becomes c r i t i c a l  ( t h i s  
occurs a t  pressures  higher  than those  p l o t t e d  i n  Figure 8 f o r  t h e  high 
p res su re  theory) .  

The bands g ive  t h e  limits r e s u l t i n g  from para- 

The upper ends o f  t h e  curves f o r  t h e  low pressure  theory 

The l i q u i d  su r face  temperatures are well below t h e  b o i l i n g  tempera- 
t u r e  a t  e leva ted  pressures  and t h e  c r i t i c a l  condi t ion i s  not  reached 
u n t i l  t h e  pressure  i s  s u b s t a n t i a l l y  g r e a t e r  than t h e  c r i t i c a l  pressure  
of  t h e  pure f u e l .  For E N ,  t h e  low pressure  theory overest imates  t h e  
su r face  temperature,  while t h e  high pressure  theory is  i n  good agree- 
ment with t h e  present  da t a .  

S imi la r  su r f ace  temperature r e s u l t s  are given f o r  NPN and PGDN i n  
Figs .  9 and 10. 
NPN, while  t h e  agreement i s  poorer f o r  PGDN. 
components i n  t h e  PGDN system as wel l  as t h e  l a r g e  concentrat ion of  
water i n  t h e  system could b e  cont r ibu t ing  f a c t o r s  towards t h e  increased 
e r r o r  i n  t h i s  case (water i s  d i f f i c u l t  t o  model i n  t h e  phase e q u i l i b r i a  
ca l cu la t ions  s i n c e  i t  i s  p o l a r ) .  

The high pressure  theory i s  again q u i t e  adequate f o r  
The l a r g e r  number of  

Figure 11 shows a p l o t  o f  t h e  gas and l i q u i d  phase compositions 
a t  t he  interface as a func t ion  o f  pressure  f o r  EN. The c r i t i c a l  mixing 
poin t  is  indica ted  by t h e  equa l i ty  o f  l i q u i d  and gas phase compositions 
a t  t h i s  condi t ion .  A t  high pressures ,  dissolved gas concentrat ions 
become q u i t e  la rge ,  reaching 35% fo r  EN a t  t h e  c r i t i c a l  burning s t a t e .  

The computed t o t a l  p ressures  f o r  c r i t i c a l  combustion a r e  given i n  
Table VII. 
o f  x f e  
su res  40-50% lower than those  given by t h e  high pressure  theory ,  In  
genera l ,  t h e  pressure  requi red  f o r  c r i t i c a l  s t r and  combustion i s  
h igher  than t h e  pressure  requi red  f o r  c r i t i c a l  s teady d rop le t  combustion 
f o r  t h e  same f u e l .  This i s  due t o  t h e  continuing requirement f o r  s e n s i -  
b l y  
temperature i n  t h e  case of  s t r a n d  combustion. 

The ranges on t h e s e  f i g u r e s  r e s u l t  from a + 20% v a r i a t i o n  
The low pressure  theory p r e d i c t s  c r i t i c a l  combustion a t  pres -  

hea t ing  t h e  f u e l  from i t s  i n i t i a l  temperature t o  t h e  su r face  

Summary and Conclusions: 

The present  r e s u l t s  support  t h e  f ind ings  o f  t h e  earlier d rop le t  
burning work i n  regard t o  t h e  need f o r  consider ing ambient gas s o l u b i l -  
i t y  a t  high pressures .  While b inary  i n t e r a c t i o n  cons tan ts  are not  well 
known f o r  these  monopropellants, t h e  ca l cu la t ions  are not  p a r t i c u l a r l y  
s e n s i t i v e  t o  these  parameters and t h e  values  f o r  t h e  hydrocarbon homo- 
morphs appear t o  be  adequate. As i n  t h e  case o f  b ip rope l l an t  d rop le t  
combustion, t h e  ca l cu la t ions  were most s e n s i t i v e  t o  v a r i a t i o n s  i n  t h e  
t r a n s p o r t  parameter, X f "  
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The requirement for sensible heating of the liquid phase results 
in substantially increasing the pressure required for supercritical 
combustion. This suggests that supercritical droplet burning criteria 
based on steady combustion models (as in Refs. 1 and 3) may be con- 
servative and really only apply t o  the later stages o f  droplet burning. 

The present experimental technique is limited to monopropellants, 
but readily yields results on surface conditions at high pressures. 
The upper pressure limit is largely fixed by the onset of turbulent 
combustion; but fortunately this limit is sufficiently high for the 
method to yield interesting results on high pressure effects. 
continuing in this apparatus with the hyrazine fuels; hydrazine, MMH, 
and UDMH. 

Work is 
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TABLE I 

Measured and Predicted Pressures Required for 

Supercritical Combustion in Air 

Fue 1 n -P en tane n -0 c t ane n-Decane 

Measured Critical Pr - - - -  2.35- 2 e 49 2.13-2.30 

Predicted Critical P 1.08-1.26 1.18-1.43 1 23-1 -50 
(low pressure theoryy 

Predicted Critical Pr 1.20-1.70 1.65-2.25 1.75-2.75 
(high pressure theory) a 

a Results for complete quaternary system and combustion products taken 
equivalent to nitrogen essentially the same. 
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TABLE I1 I 

INFLUENCE OF WATER VAPOR ON HYDRAZINE BURNING RATES 

Temperature 
O K  

Mole Frac t ion  of  H20 
i n  Burned Gas 

% Reduction i n  

With No H20 
Burning Rate from Value 

1835 ,142  8 . 1  

1750 .127 8.2 

1660 . lll  4.6 

TABLE IV 

PRESSURE REQUIRED FOR CRITICAL BURNING 

POROUS SPHERE COMBUSTION (ps i a )  

I n i t i a l  Tempera- n-pentane t u r e  (OF) n- dec ane n-hexadeeane 

300 855 1520 1650 

150 1000 1750 1750 

75 --- 1825 1850 

75 (+20%) --- 1975 2060 

75 (-20%) --- 1670 1850 
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TABLE V 

ASSUMED COMBUSTION ZONE PROPERTIES 

Flame Tempera- COMBUSTION PRODUCT MOLE FRACTIONS 
co N2 H2 c02 H2° Fuel ture (OK) 

NPN 1350 .090 470 .440 0 0 

EN 1900 ,100 ,355 D 375 0 .170 

P GDN 3000 ,144 ,118 319 .116 e 303 

TABLE V I  

STRAND BURNING RATES 

Pressure BURNING RATE (cm/sec) 
(Atm) EN NPN PGDN 

20.4 

30.6 

40.8 

51.0 

61.2 

71.4 

81.6 

92.0 

.208 

,309 

.389 

.436 

.482 

.153 

,188 

0 221 

227 

.246 

.231 

,363 

.482 

608 

-- 

e- 

-- 

20 



TABLE VI1 

CALCULATED CRITICAL BURNING PRESSURES? 

EN NPN PGDN 

Critical Pressure (atm) 

Critical Burning Pressure 
Low Pressure Theory (atm] 

Critical Burning Pressure 
High Pressure Theory (atm) 

Critical Burning Pr 
Low Pressure Theory 

Critical Burning P 
High Pressure Tgeory 

48.3 41.1 35.4 

74-92 78-100 70-92 

104 - 140 136-190 103- 154 

1.53- 189 1.91-2.43 1.98-2.58 

2.15-290 3.31-4.62 2.91-4 e 35 

? Tolerance based on + 20% x f .  - 
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