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ABSTRACT
 

Porous nickel electrodes have been fabricated with a honeycomb
 

structure providing direct connection of each pore to the surface of the
 

electrode. These electrodes are expected to extend the life of sealed
 

nickel-cadmium cells. Procedures were developed for electroforming thin
 

(0.2 to 0.4 mil) nickel foils with corrugations 3 to 10 mils wide, and for
 

constructing mechanically strong honeycomb plaques from corrugated and flat
 

nickel foils. Electrodes with five different pore sizes were fabricated
 

and evaluated as rechargeable cadmium electrodes. Performance of the
 

honeycomb electrodes showed a maximum capacity for pores of 4.2 mils diameter
 

and a capacity similar to sintered nickel powder electrodes.
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DEVELOPMENT OF IMPROVED PLAQUE MATERIALS
 
FOR AEROSPACE NICKEL-CADMIUM CELLS
 

by 

G. R. Schaer, F. Goebel,
 

A. H. Reed, and J. McCallum
 

MANAGEMENT SUMMARY
 

Objective of the Research
 

The objective of this development program was to provide nickel­

cadmium cells with longer life by developing a new plaque material with
 

controlled pore geometry. The plaques are expected to provide longer
 

life electrodes for extended service in space vehicles.
 

Significance of the Results
 

Fabrication of plaques with honeycomb configurations has been
 

accomplished with the use of electroformed flat and corrugated nickel foils.
 

The alternate flat and corrugated foils were stacked and heat bonded, and
 

the honeycomb block was sliced into plaques. Porosity of honeycomb plaques
 

was about 80 percent.
 

A honeycomb configuration, believed to be new, was devised to
 

provide maximum bonding area between foil layers and to resist deformation
 

during the heat-bonding and during impregnation steps. The new configuration
 

was obtained by alternating flat and corrugated foils and by turning the
 

alternate corrugated foils about 30 degrees,with respect to each other.
 

Techniques were developed for machining brass mandrels with 3- to
 

lO-mil threads. These new techniques required polishing the threads to
 

remove burrs and surface roughness. The polished brass mandrels were
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electroplated with bright nickel and bright chromium to provide a surface
 

from which electroformed corrugated foils could be removed easily.
 

Plaques were made by filling the honeycomb blocks and slicing
 

sections from the block with a thin grinding wheel. The filler used was an
 

epoxy resin. The epoxy was removed by dissolution in hot chromic acid
 

solution. Slicing of plaques by EDM (Electric-Discharge Machining) was
 

also successfully accomplished but was considered too slow because 7 hours
 

were required to make one cut.
 

Impregnated plaques were cycled to 100 percent depth of discharge
 

in cells containing a single negative Pellon separator and two positive
 

electrodes. Honeycomb plaques with 0.010-cm (4.2-mil) pores provided the
 

largest discharge capacities, which were similar to capacities of conventional
 

sintered-powder electrodes. Cycling was carried out with discharge currents
 

to approximate 4C, 2C, C, C/2, and C4 rates for the experimental electrodes.
 

How NASA Can Utilize Results
 

These results can help NASA personnel in their planning to achieve
 

uniform, reproducible, and long-life battery components. Included in these
 

plans should be a program to evaluate the life of cadmium electrodes made from
 

honeycomb plaques.
 

RECOMMENDED FUTURE WORK
 

Because honeycomb electrodes were successfully made with structures
 

that are expected to provide increased life of cadmium electrodes in nickel­

cadmium cells, a program is recommended to determine the amount of improvement
 

obtainable. Included in such a program should be optimization of the
 

impregnation procedure to fill the honeycomb plaques with an active form of
 

cadmium material in the optimum amount. Conventional impregnation by the
 

method described by Fleischer(l) did not result in optimum impregnation of
 

the plaques. Other methods such as electrolytic impregnation in aqueous
 

* References are listed on page (55).
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cadmium nitrate should be evaluated. Honeycomb electrodes impregnated by
 

the optimized method should be evaluated by the methods described in another
 

section of this report for predicting life of negative cadmium electrodes.
 

INTRODUCTION
 

Although porous plaques made from sintered nickel-powder provide
 

a practical method for making porous nickel structures of low density and
 

high surface area, the electrodes made from such plaques are not as efficient
 

as might be possible. About half of the active material is seldom used for
 

producing electrical power. Utilization of active material is low partly
 

because the pores in sintered-powder plaques are variable with respect to
 

diameter, length, tortuosity, and direction, so that some of the active
 

material is electrochemically unavailable under any circumstance. Part of
 

the low utilization derives from a deliberate attempt to achieve more charge/
 

discharge cycles by limiting depth of discharge to 50 percent or less.
 

Another part of the low utilization is causedby the manufacturer's use of
 

extra negative capacity so that customers may allow occasional excursions
 

to low temperatures or to high rates of discharge. Another reason for the
 

low utilization derives from the need to have excess uncharged Cd(OH)2 at
 

the negative electrode when the end of charging is reached at the positive
 

electrode so that hydrogen evolution is avoided in a sealed cell. Still
 

another reason for the low utilization is caused by a well-known but some­

what mysterious fading of the capacity that was available initially.
 

To explain why cadmium electrodes will not deliver full capacity
 

on short-time discharges, one hypothesis is based on the fact that electrodes
 

made from sintered-powder plaques have variable pore sizes. A large pore
 

in the center of a plaque which is connected to the surface by very small
 

pores is partially isolated electrically from the system. One geometry that
 

overcomes this feature has all pores open directly to the surface of the
 

electrode, thereby providing a direct and uniform path for current flow.
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A second hypothesis is that ampere-hour capacity is lost during
 

cycling because the active cadmium material moves from pore to pore toward
 

the bottom of the electrode since gravity causes the nonadherent cadmium
 

hydroxide to settle slightly during each discharge. Movement of the active
 

material would eventually leave some pores almost void and other pores so
 

full of active material that electrolyte volume would be restricted and
 

the discharge capacity limited. A structure that has noninterconnected
 

pores is expected to prevent loss of capacity by this machanism.
 

A third hypothesis predicts that capacity is lost during cycling
 

because cadmium material moves out of large pores into small pores of
 

electrodes made from sintered-powder plaques. Cadmium sponge metal is
 

believed to discharge first in the large pores most accessible to current
 

flow, producing cadmium hydroxide, a portion of which then migrates to
 

adjacent smaller pores which contain some unused cadmium sponge metal.
 

During the next charge, which is often an overcharge, cadmium hydroxide is
 

reduced to sponge metal in situ. The result is that during each incomplete
 

discharge and complete charge cycle, metal moves toward the smaller or
 

electrically less accessible pores. A structure with pores of uniform size
 

is expected to negate this hypothesized mechanism for loss of capacity.
 

To overcome these hypothesized mechanisms that lead to inefficiency
 

of the sintered porous structure, a geometry is required to
 

(1) 	Provide uniform pore sizes
 

(2) 	Provide noninterconnected pores
 

(3) 	Provide direct connection of each pore to
 

the separator.
 

A honeycomb structure meets these geometric requirements. In
 

addition, honeycomb structures can have large porosities equivalent to those
 

of conventional sintered-powder plaques. However, to obtain a porosity of
 

about 80 percent, the walls of the honeycomb must be relatively small in
 

relation to the pore size. Methods for making these highly porous structures
 

are described in the "Experimental Results and Discussion" section of this
 

report.
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EXPERIMENTAL RESULTS AND DISCUSSION
 

Program Plans
 

The program for developing improved plaque material for increasing
 

the life of aerospace nickel-cadmium cells was conducted with the following
 

steps and goals:
 

(1) 	Hypothesize shortcomings of presently available
 

plaque material
 

(2) 	Prepare an idealized structure to overcome these
 

shortcomings
 

(3) 	Construct plaques with this structure
 

(4) 	Impregnate the plaques to make electrodes
 

(5) 	Evaluate the electrochemical performance of the
 

electrodes to determine if capacities are in a
 

practical range
 

(6) 	Propose a program for evaluating life of the
 

new electrode structure
 

(7) 	Compare useful life of new electrode structure
 

with presently available electrode materials
 

(8) 	Optimize the fabrication and impregnation systems
 

(9) 	Devise production facilities for producing plaque
 

materials at a minimum cost.
 

The program has been carried through Step 5, and plans for Step 6
 

have been detailed. The evaluation in Step 7 was not to be started during
 

the current contract period.
 

The experimental techniques and results are arranged in this
 

report according to tasks as follows:
 

Task A. Approaches
 

Task B. Plaque Characterization
 

Task C. Plaque Impregnation
 

Task D. Electrochemical Evaluation of Electrodes
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Task A. Approaches
 

Nickel Honeycomb Structure
 

Nickel plaques resembling a microscopic honeycomb were made from
 

electroformed corrugated and flat foils.- Many layers of these foils were
 

stacked and held in a graphite fixture and bonded by heating in a hydrogen
 

atmosphere to make three different honeycomb configurations. These configu­

rations are shown in Figures 1, 2, and 3.
 

The structure in Figure 1 was made by alternating flat and corru­

gated foils so that all the corrugations were parallel. When the honeycomb
 

structures were sintered, some shrinkage occurred because the flat foils
 

warped when the corrugations were not adjacent to each other. Another
 

way of explaining the warping action is to say that the corrugated foils
 

partly nested and bent the flat foils.
 

The structure in Figure 2 was made by stacking corrugated foils
 

with alternate foils turned about 30 degrees with respect to the corrugation
 

'lines. In this way, the foils could not nest. Then, after slicing the
 

structure into 30-mil-thick plaques, each 10-mil corrugation would have at
 

least one contact point with an adjoining corrugation. A possible advantage
 

of this geometry is that most of the internal surface area would be avail­

able for accepting active material. However, a disadvantage is the inherent
 

weakness of the structure because bonding between corrugated foils would
 

be at single points. By contrast, the structure in Figure 1 was bonded
 

along a line where each corrugation met the flat sheet.
 

The structure which was selected -s preferred for the honeycomb
 

plaques is shown in Figure 3. Flat and corrugated foils were stacked with
 

every other corrugated foil turned 30 degrees. This structure provides (1)
 

a geometry which resists distortion during the bonding, (2) a strong
 

structure because bonding between foils is along lines instead of at a single
 

point, and (3) a total surface area in a plaque which is higher per unit/
 

weight because the flat foils were made thinner than the corrugated foils.
 

The reasons for making the flat foils thinner than the corrugated foils
 

are discussed in the Fabricating Plaques section, page (18).
 



FIGURE 1. LAYERED HONEYCOMB STRUCTURE
 
(NOT TO SCALE)
 



FIGURE 2. STACKED HONEYCOMB STRUCTURE
 

(NOT TO SCALE) 



FIGURE 3. ALTERNATING HONEYCOMB STRUCTURE
 
(NOT TO SCALE)
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Pore Size. Nickel plaques with five pore sizes were made for
 

comparing performance with pore size after impregnating the pores with
 

cadmium compounds. Details of the results are found in other sections
 

of this report. Corrugated foils required for fabricating all pore
 

sizes were electroformed. These five corrugated foils have five different
 

peak-to-peak dimensions of approximately 0.025; 0.018, 0.013, 0.010, and
 

0.0080 cm. Assuming an equilateral, triangular shaped pore, the diameters
 

of inscribed circles in these pores would measure 0.015, 0.010, 0.008,
 

0.006, and 0.005 cm, respectively. Such pore sizes approximate the
 

results expected of mercury porosimeter measurements.
 

Electroforming Mandrel Fabrication. At the start of this
 

program, no known method was available for making a mandrel suitable for
 

electroforming corrugated nickel sheets thin enough and with narrow enough
 

grooves to allow the honeycomb plaques to be assembled with the desired
 

pore sizes. Therefore, a technique was developed for machining the
 

necessary threads on a rod. These threads were polished and chromium
 

plated to make the mandrels usable.
 

The following steps were developed to make an electroforming
 

mandrel which could be used to make replicate corrugated foils. Details
 

of each step are discussed in the paragraphs that follow the listing, A
 

detailed discussion is necessary because considerable effort was needed
 

to develop suitable techniques for fabrication.
 

* 	Step 1. Machine a 2-inch-diameter brass bar about 15 inches
 

long to the true surface and leave a smooth finish.
 

* 	Step 2. Machine threads in the bar in one cut using a
 

specially sharpened tool.
 

* Step 3. 	Check depth of cut with RTV silicone rubber replica.
 

* Step 4. 	File a flat side on the mandrel about 1/4 to 3/8 inch
 

wide to provide a starting edge for removing the
 

electroformed foils.
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* 	Step 5. Polish the threads lightly with 600-grit abrasive
 

paper to remove burrs from the top of the threads.
 

" 	Step 6. Polish the sides of the threads using a fine brass
 

brush with pointed wires and a slurry of fine abrasive.
 

* Step 7. 	Clean and inspect the polished mandrel.
 

* 	Step 8. Electroplate the mandrel with bright nickel
 

and bright chromium.
 

* 	Step 9. Apply electroplater's tape to mask the ends of the
 

mandrel and the flattened side made in Step 4.
 

" Step 10. Clean the mandrel with a soft,fiber brush and magnesium
 

oxide slurry before starting the electroforming sequence
 

(described in a following section of this report).
 

Step 1. Several different materials were evaluated for mandrel
 

materials including brass, cartridge brass, electroplated bright copper,
 

aluminum, stainless steel, and several plastics. Solid brass 70-30 bar
 

stock was used because of its availability. Cartridge brass, which had a
 

finer grain size, could be machined with a slightly smoother surface than
 

the bar stock. A bright-copper electroplate about 10 mils thick applied
 

to a brass bar produced the smoothest machined threads of any metal.
 

However, the threads still required polishing as described in Steps 5 and
 

6 to produce the smooth surface required for easy removal of the electro­

formed foil. Copper-plated brass is recommended for machining mandrels.
 

Step 2. Machining threads in brass rods with sharp "V" grooves
 

was accomplished by using high-speed tool-steel cutters ground with a chip
 

breaker, or chip groove, as shown in Figure 4. To produce uniformly shaped
 

threads, the tool was used in a direction that is the reverse of that
 

* Plated in a Dayton Bright Acid Copper Bath, Cu Flex.
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normally used for threading rods with such a tool. When the threads were
 
cut by moving the tool in the opposite direction from that shown in Figure 4,
 

the threads were distorted. One side of each thread was almost perpendicular
 
to 	the axis of the bar, while the other side had nearly the correct angle.
 
This reversal of normal threading technique was required because the threads
 
were cut in one pass. The cutting edges of the tool were polished with
 

400-grit silicon carbide abrasive paper until a razor-sharp edge was obtained.
 
Final honing of the edges was done on a slowly rotating brass lap with 3­
micron diamond-paste abrasives. 
 One tool was used for machining six mandrels
 

and could have been used for additional machining because the cutting edge
 

was still sharp.
 

Thread cutting was done with a 13-inch Monarch lathe using a
 
cutting feed because thread-cutting gearing would not produce the fine
 
threads needed. Because of this need to use a cutting feed, full thread
 
depths were cut in one pass using a slow rotational speed of under 50 rpm.
 

Stainless steel was successfully machined using a high-speed
 
threading tool and cutting threads with a 10-mil pitch. 
Attempts to machine
 
threads finer than 10 mils in stainless steel were not successful. The
 
first reusable mandrel was made by electropolishing a threaded 304 stainless
 

steel rod of 2-inch diameter and 15-inch length. This mandrel was used to
 
electroform the corrugated foils for the first honeycomb structure. 
Because
 

a useful mandrel was successfully produced from stainless steel, a replace­
ment mandrel from brass was 
not necessary. The procedure for fabricating a
 
mandrel from brass was developed after the one good stainless steel mandrel
 

was produced.
 

Step 3. To inspect the thread profile, a replica of the threads
 
was made with a silicone rubber,* sections of which were cut with a sharp
 
knife and examined microscopically. When the replicas showed uniform thread
 
angles and the depths of the grooves were at least 0.6 times the thread
 
pitch, the mandrel was satisfactory. If the threads were not uniform with
 

the required depth, the mandrel was remachined and threads were recut by
 

* 	 RTV-30 General Electric Co., catalyzed with Catalyst T-9, M&T 
Chemical, Inc. 
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3-50 Relief 

Angle
 
Direction of cut
 

Chip groove, 15-20o relief angle
 

. 55-~580
 

FIGURE 4. CUTTING TOOL USED FOR THREADING MANDRELS
 

repeating Steps 1 and 2. The RTV silicone rubber allowed a quick inspection 

to be made before removing the mandrel from the lathe. 

Step 4. A smooth file was used to produce a flat side on the
 

mandrel about 1/4 to 3/8 inch wide. The purpose of the flat strip was to
 

provide a starting edge for removing the electroformed.foils from the
 

mandrel. Any scratches produced by filing were removed with fine (400-grit)
 

abrasive paper.
 

Step 5. The machined mandrel had small burrs on the top of each
 

thread. These were removed with abrasive paper (600-grit) while rotating
 

the mandrel on a lathe-. Only light pressure was used in order to prevent
 

distortion of the tops of the threads. Abrasion was continued until the
 

burrs appeared by examination at 120X to be removed.
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Step 6. Polishing the threads after Step 5 was a very important
 

step. Any nicks or pits remaining in the sides of the threads acted as
 

locks to prevent easy removal of the electroformed foils. To accomplish
 

this polishing, a brush with pointed 3-mil brass wires was held lightly
 

against the rotating mandrel. Three water suspensions of 1.0, 0.5, and
 

O.05-micron alumina were used in succession to polish the threads. The
 

mandrel was rotated in both directions to insure polishing of both sides of
 

the threads. A rotational speed of 1000 rpm was used. Care was needed to
 

maintain a dilute slurry of abrasive material on the brush. If too little
 

water was used, the alumina packed on the brush acted like a solid abrasive
 

block and cut the tops of the threads. The brass brush was dipped for a
 

few 	seconds in 300 g/l nitric acid solution to point the ends of the wires.
 

Step 7. Cleaning to remove the polishing residue from the threads
 

was accomplished by first brushing the mandrel with a dry pointed-wire brass
 

brush, then using a commercial electrolytic cleaner commonly used for
 

electrocleaning. A microscopic examination of the threaded mandrel at 120X
 

was made to determine if polishing had removed most surface defects. When
 

the mandrel was judged smooth enough, the next step was initiated.
 

Step 8. The mandrel was cleaned for electroplating using conven­

tional techniques and was plated with 0.3 mil of bright nickel and then
 

about 0.5 to 1.0 mil of bright chromium** using a mixed sulfate-fluosilicate
 

catalyzed chromic acid bath. These plating steps also were done using con­

ventional plating techniques. The purposes of plating were (1) to improve
 

the smoothness of the mandrel with the bright nickel plating and (2) to
 

provide a hard chromium surface. Chromium is an ideal electroforming surface
 

* 	 Harshaw Perglow Bright Nickel Bath. 

** 	 Chromic acid, 250 g/l; sulfuric acid, 2.2 g/!; fluosilicic acid, 7.5 g/l; 
operated at 120 - 125 F. 



because nickel electroplates will not adhere to chromium, so they can be
 

removed easily.
 

Step 9. Application of the pressure-sensitive tape was a con­

venient method for masking areas where deposit was undesirable. This
 

masking included a strip on the flattened side of the mandrel.
 

Step 10. Cleaning of the chromium surface to remove fingerprints
 

and other dirt was done with a fiber bristle brush and magnesium oxide-water
 

slurry. Electrolytic cleaning was not used because the hot alkaline solution
 

would have removed the masking material.
 

Alternate Mandrel-Fabrication Methods. Two other methods were
 

investigated for fabricating mandrels. The first used a threaded polypropy­

lene rod, which was metallized with silver. Then a nickel shell was electro­

formed on the plastic by methods similar to the techniques used in the
 

phonograph record industry. (2 ) The polypropylene could be machined with
 

smaller and smoother threads than the brass rods. The electroformed shell
 

was removed from its cylindrical mandrel, straightened, and used as a flat,
 

corrugated electroforming mandrel.
 

An improvement in the above method for using plastic starting
 

material was devised to insure faithful reproduction of the smooth thread
 

surface. This improvement included metallizing the plastic with silver,
 

copper plating, removing the shell, nickel plating on the threaded side, and
 

chemically dissolving the copper and the silver. The advantage of this
 

improved sequence is that the threaded surface was reproduced directly. In
 

contrast, if the nickel was applied to the chemically deposited silver, the
 

nickel would reproduce any roughness or distortions introduced during the
 

silvering.
 

The second alternate method considered was that of rolling threads
 

into the mandrel surface. Textured inking rolls are available in the graphic
 

References are listed on the last page of this report.
 



16
 

arts ihdustry* which have grooves with 5-mil pitches or larger. This method
 

would probably require some refinement to produce grooves less than 5 mils
 

wide. Surface roughness of the grooves in textured rolls which were
 

examined was similar to machined threads and would require polishing. An
 

advantage of rolling techniques is that large-diameter drums can probably
 

be made for electroforming corrugated nickel foil by a continuous process.
 

Corrugated-Foil Electroformfng, After the brass mandrels were
 

prepared as described in the section "Electroforming Mandrel Fabrication",
 

the mandrels were placed in a sulfamate nickel plating bath. The mandrels
 

were rotated at 7 rpm and plated at 130 F, pH 4.0 ± 0.2, 60-80 asf, for 4
 

to 5 minutes to apply 0.3 to 0.4 mil of plate. To remove the foil, the
 

plated mandrel was washed in cold water and the edge of the nickel foil was
 

lifted with a sharp-pointed tool along the flat side of the mandrel. After
 

removal of a foil, the mandrel was replaced in the nickel electroforming bath
 

for electroforming the next foil. Attempts to electroform corrugated foils
 

0.2 	mil thick were inconsistently successful. Smoother threaded mandrels
 

would be required to make foils 0.2 mil thick.
 

Flat-Foil Electroforming. A similar technique was used for electro­

forming flat foils, except that a smooth cylindrical mandrel was used. Flat
 

foils about 0.2 mil thick were formed and used for fabricating the honeycomb
 

structure. Electroformed foils as thin as 0.1 mil were made but were
 

considered too difficult to handle by the present techniques used on this
 

program.
 

Fabricating Plaques. Honeycomb structures as shown in Figures 1,
 

2, and 3 were made by stacking electroformed foils 2.86 x 5.0 cm in a
 

graphite block. A weight was placed on the top of the block to compress the
 

* 	 Textured rolls can be obtained from Pamarco, Inc., Roselle, N. J., or 

Consolidated Engravers, Charlotte, N. C. 

** 	 Sulfamate nickel bath, Type SN, obtained from Allied Chemical Company. 



foils to a height of 0.32 cm and the assembly was heated to 1940 F for
 

1 hour in hydrogen. Bonding was adequate with this beating cycle.
 

Based on the examination of these three structures, the configuration
 

shown in Figure 3 was selected as the best structure, and this configu­

ration was used to fabricate a honeycomb block 2.86 x 2.86 x 5.0 cm using
 

the five sizes of corrugated foils.
 

Slicing of the honeycomb block into 0.075 to 0.10-cm-thick
 

plaques was done by EDM (Electric Discharge Machining) and by grinding.
 

EDM was used to cut several plaques 0.13-cm-thick using a 0.013-cm­

diameter wire as the cutting tool. Excellent control of plaque thickness
 

was obtained and no filler was required. Eowever, cutting times were ex­

cessive because each cut to produce one plaque required about 7 hours.
 

Because only a single-wire cutting fixture is currently available, the
 

EDM method of slicing the honeycomb was abandoned. Multiple-wire
 

cutting equipment could be set up to make this method feasible for
 

production use.
 

Slicing by grinding the first set of honeycomb plaques from the
 

honeycomb block was accomplished by filling the structure with Apiezon wax
 

and cutting thin slices with a 0.20-cm-thick grinding wheel. Thickness
 

of slices varied from 0.09 to 0.12 cm because the heat from the friction
 

expanded the wax and metal. After grinding, the slices were abraded with
 

320-grit silicon carbide paper to remove grinding burrs. An electrolytic
 

etch in 10 percent hydrochloric acid for about 15 seconds at 32 amp/sq cm
 

of 	plaque area was used for final burr removal. The wax was then dis­

solved in benzene.
 

The other four sizes of honeycomb blocks were filled with an epoxy
 

mixture of Epi-Rez 5077 (67 percent by volume) and Epi-Cure 856 (33 percent
 

by volume) and cured for 48 hours at room temperature before being cut into
 

2.3-cm-thick slices. The epoxy was far superior to the wax because the
 

thermal stability of the epoxy allowed faster grinding rates.
 

* 	 Epoxy materials obtained from Celanese Resins Division of Celanese
 

Coatings Company.
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After the plaques were sliced from the structure, they were

polished to a thickness of 0.20 cm on abrasive paper (600-grit silicon
 
carbide) to remove grinding marks and then were etched electrolytically

in 1.2 normal hydrochloric acid to remove polishing burrs. 
Removal of
 
the epoxy filler was accomplished in 1 to 2 hours in a 500 g/l chromic
 
acid solution heated to 82 to 88 C.
 

Alloy Honeycomb Structure
 

Nickel honeycomb structures with a thin cadmium-nickel alloy

coating were considered for increasing the receptivity of the metal
 
surface to cadmium metal deposition during charging. 
Honeycomb plaques
 
were cleaned and electroplated with cadmium metal using a high-throwing­
power cyanide bath. 
 Heating the plaque in a hydrogen atmosphere to
 
melt the cadmium evaporated the metal instead of alloying the nickel
 
and cadmium as expected. 
Alloy electrodes were not successfully made
 
and this approach was discontinued.
 

Corrugated Plaques
 

An experiment was planned and carried out during this program

to evaluate an electrode supporting structure, or plaque, consisting

of a single sheet of corrugated nickel foil. 
This experiment was designed

to show if a thin coating of cadmium hydroxide in contact with such a

nickel sheet would provide a system wherein efficient utilization of
 
cadmium hydroxide could be obtained. 
The results, described in Task D,

Electrochemical Evaluation of Electrodes, showed that at least 70 percent

of the cadmium hydroxide can be utilized electrochemically.
 

An electroformed corrugated foil about 0.0007 cm thick with corru­
gations 0.013 cm wide was used as a plaque. 
The corrugated foil provided
 
a lightweight support for the cadmium hydroxide active material. 
Details
 
of the cell construction and electrochemical cycling program are described
 
in Task D.
 

Metal Finishing Guide Book Directory, 1970 Edition, page 254.
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Task B. Plaque Characterization
 

Pore Size, Shape, and Internal Area. Honeycomb plaques were made
 

2.86 cm (1-1/8 inch) square and 0.084 + 0.005 cm (33 + 2 mils) thick. The
 

edges were coined to leave a porous area 2.54 cm (I inch) square. Plaque
 

characteristics were computed and the resulting values of the five sizes
 

of honeycomb plaques are given in-Table 1. Figures 5, 6, 7, 8, and 9 show
 

cross sections of typical honeycomb plaques at 10OX. The plaques were
 

filled with epoxy and polished by metallographic techniques before pictures
 

were taken.
 

Flexibility of Plaques. The flexibility of unimpregnated plaque
 

material was measured by bending the plaques tightly around glass rods
 

having diameters from 0.32 to 2.2 cm. The honeycomb plaques were bent in
 

two directions at right angles to each other, that is, parallel and
 

perpendicular to corrugations of nickel sheets. All of the honeycomb
 

plaques could be bent around any of the rods in either direction without the
 

bonds between nickel sheets being broken. This resistance to breaking, even
 

when severely bent, shows that the honeycomb plaques have a high degree of
 

structural integrity and that the bonding of the stacked foils was complete
 

throughout the block of stacked foils.
 

When a sintered-powder plaque was bent, the sintered powder cracked
 

in the direction parallel with the bend. The sintered powder did not break
 

away from the plaque, which indicates that it was properly bonded through
 

the expanded nickel substrate.
 

Electrical Resistance. Electrical-resistance measurements were
 

made both perpendicular to and parallel with the direction of the foils in
 

the plaques. The measurements are given in Table 2, which shows the
 

electrical resistances of the honeycombs to be about 1/3 larger to 1/2
 

smaller than resistivities measured for sintered-powder plaques.
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FIGURE 5. PHOTOMICROGRAPH OF HONEYCOMB PLAQUE WITH 0.015 CM PORES 
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FIGURE 6. PHOTOMICROGRAPH OF HONEYCOMB PLAQUE WITH 0.01 CM PORES 
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FIGURE 7. PHOTOMICROGRAPH OF HONEYCOMB PLAQUE WITH 0.0076 CM PORES 

100X IF 335
 

FIGURE 8. P-HOTOMICROGRAPH OF HONEYCOMB PLAQUE WITH 0. 0061 CM PORES
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FIGURE 9. HONEYCOMB PLAQUE WITH 0. 0049 CM PORES 



TABLE 1. PHYSICAL CHARACTERISTICS OF HONEYCOMB PLAQUES
 

Internal
Corrugation

Widgatio 	 Surface Area Pore Size,
Width, Porosity, cm2/g(b) c ) Foil Thickness, cm
 
cm percent cm2/g Flat Corrugated
 

0.025 82 204 384 0.0153 0.0008 0.0013
 

0.018 86 23i 306 0.0107 0.0009 0.0010
 

0.013 76 305 367 0.0076 0.0007 0.0007
 

0.010 77 305 371 0.0061 0.0006 0.0008
 

0.008 66 246 381 0.0049 0.0006 0.0011
 

880 (d) -- 0.0015 (d) ....Powder 80 

plaques
 

(a) 	Internal area was calculated from foil thickness and length measured
 
from cross sections of plaques as shown in Figures 5, 6, 7, 8, and 9.
 

(b) 	Internal area was calculated from measuring weight and thickness of
 
corrugated foil and assuming the corrugated foils had sharp corners
 
and all angles were 60 degrees. The difference between the two
 
values resulted from rounded corners and shrinkage during heat
 
bonding.
 

(c) 	Pore size calculated as inscribed circle in triangular-shaped pore.
 

(d) 	Measurements of pore size and internal surface area were not made.
 
However, reported data (NASA CR-54831) are included for comparison.
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TABLE 2. ELECTRICAL RESISTANCE OF PLAQUES
 

Resistance, microohms
 

Perpendicular to- Parallel With
 
Plaque Type Foils Foils
 

Sintered powder 2.5 - 2.8 2.5 - 2.8 

0.015-cm Honeycomb 3.3 Not measured 

0.010-cm Ditto 2.4 3.3 

0.0076-cm IT 2.1 2.8 

0.0061-cm .. 1.35 1.7 

0.0049-cm " 1.3 1.5 

Task C. Plaque Impregnation
 

Honeycomb Plaque
 

After the porous-plaque structures were prepared and characterized
 

as described under Tasks A and B, respectively, they were coined to leave
 

a porous area of 2.54 x 2.54 cm. A 0.0254-cm-thick nickel-foil tab was spot
 

welded to one edge of the electrode as shown in Figure 10.
 

The technique chosen for this work was standard vacuum impreg­

nation with aqueous cadmium nitrate solution followed by cathodization in
 

hot KOH. This method was chosen because it is used throughout the battery
 

industry to make cadmium electrodes for sintered-plate nickel-cadmium
 

batteries. It also meets the requirements of NASA Specification No.
 

S-716-P-23. Minor variations of a proprietary nature may exist in the
 

process from one manufacturer to another, but the basic process seems to be
 

similar in all known cases. By using this standard vacuum-impregnation
 

process, it was expected that the electrodes having the new plaque structures
 

could be compared readily with commerc±al electrodes since the method of
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FIGURE 10. PLAQUE WITH COINED EDGE AND 
TAB ATTACHED BY SPOT WELDING
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impregnation was the same for both types of electrodes. Later results
 

showed that this impregnation method was not optimum for the honeycomb
 

plaques.
 

Description of the Impregnation Process. The basic vacuum­

impregnation process has been described many times in the literature, e.g.,
 

References (1), (3)', and (4). The specific details of the process as used
 

in this work are as follows:
 

(1) 	Soak the plaques for 5 minutes under vacuum and for an
 

additional 5 minutes under atmospheric pressure in a
 

cadmium nitrate solution prepared in the following manner:
 

Dissolve 1360 g of Cd(NO3)2 .4H20 in enough warm distilled
 

water to make 1 liter of solution. Add 1 g/l of polyethylene
 

glycol MW 6000. After the polyethylene glycol is dissolved,
 

vacuum filter through a fine filter paper such as Whatman
 

No. 5 to remove any dirt from the solution. Add concen­

trated nitric acid to adjust the free-acid concentration
 

to the desired value of 3-4 g/l.
 

(2) 	Cathodize the plaques containing the cadmium nitrate
 

solution for 20 minutes in 20 weight percent KOH which
 

has been preheated to 90-100 C. The current density
 

is 6.4 ampere per square cm of plaque. The plaques are
 

placed in the electrolyte with the current flowing as
 

described in References (1), (3), and (4).
 

(3) 	Rinse the cathodized plates in distilled water and scrub
 

gently with a nylon bristled brush to remove Cd(01H) 2
 

precipitated on the surface. Wash the plates in distilled
 

water at 40 C for 4 hours or until the last drop of wash
 

water from a plate shows no KOHwhen tested with phenol­

phthalein indicator.
 

(4) 	Dry the plates at 60 C. This drying is preferably done
 

in a vacuum oven to prevent the impregnated plates from
 

absorbing CO2.
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These four steps are referred to as an impregnation cycle. In order to
 

obtain the desired capacity for an electrode, it is necessary to perform
 

between four and eight impregnation cycles.
 

Description of Apparatus. Vacuum Impregnation Chamber. The
 

apparatus used to impregnate plaques with cadmium nitrate solution is shown
 

in Figure 11. It consists of a bell jar placed over a Lucite tank con­

taining the plaques to be impregnated. The bell jar is connected through
 

Tygon tubing to a reservoir of the impregnating solution and to a vacuum
 

pump. The pressure should be about 10 mm Hg before impregnation is begun.
 

The solution is transferred from the reservoir (to the impregnation tank by
 

raising and tilting the reservoir. The Lucite tank was grooved to hold the
 

plaques in an upright position without their touching each other. Ten
 

plaques were impregnated at one time using this equipment.
 

Polarization Equipment. A photograph of the polarization tank
 

is shown in Figure 12. The tank was made of nickel and served as the
 

counterelectrode during cathodization. The plaques to be cathodized were
 

individually held in nickel-plated battery clips connected to a nickel bus
 

bar. The bus bar rests on a Lucite insulator on top of the nickel tank.
 

Ten plaques were processed simultaneously in this tank. After the plaques
 

impregnated with cadmium nitrate were placed in the clips and lowered into
 

the tank, the negative terminal of a constant-current power supply was
 

connected to the bus bar and the positive terminal was connected to the
 

nickel tank. The power supply was turned on and 20 percent KOH that had
 

been previously heated to 90-100 C in a stainless steel beaker was
 

poured into the tank to complete the circuit. Electrolysis was performed
 

for 20 minutes at a current density of 0.4 amp per square cm of electrode.
 

Electrode Wash Tank. After the electrodes were removed from the
 

cathodization tank, rinsed with distilled water, and scrubbed with a nylon
 

brush to remove precipitated Cd(OH)2 from their surfaces, they were washed
 

for 4 hours in distilled water at about 40 C. The distilled water had a
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FIGURE 12. POLARIZATION TANK
 



30
 

specific resistance over 500,000 ohm-cm. The wash tank used in this work
 

was a covered polyethylene pan. A recirculating pump was connected
 

through Tygon tubing to inlet and outlet holes cut in the pan. The wash
 

water was continuously circulated about the electrodes, which were held in
 

a stainless steel wire basket. The wash water was replaced about every
 

30 minutes during the 4-hour washing time.
 

After washing, the electrodes were dried overnight in a vacuum
 

oven at 60 C.
 

Impregnation Results. Twenty honeycomb plaques of each set with
 

0.01, 0.0076, 0.0061, and 0.0049-cm pore diameters, 10 honeycomb plaques
 

with 0.015-cm pore diameters, and 20 sintered-powder plaques were impreg­

nated with cadmium hydroxide using the standard vacuum-impregnation
 

procedure.(7) It was decided in advance, as part of the experimental plan,
 

that all plaques would receive as many impregnation cycles as were required
 

to fill approximately 40 percent of the pore volume with cadmium hydroxide.
 

In order to determine when the plaques were filled with the desired amount
 

of cadmium hydroxide, the partially impregnated plaques were dried and
 

weighed after each impregnation cycle. The assumption was made that the
 

weight gain was due entirely to cadmium hydroxide, and impregnation was
 

continued until the weight of cadmium hydroxide calculated to fill 40
 

percent of the pore volume was reached. Table 3 shows that more impreg­

nation cycles were required to reach the same calculated percent of pore
 

volume filled for honeycomb plaques than for sintered-powder plaques.
 

Subsequent chemical analysis of the impregnated electrodes showed
 

-that the starting assumption that all the weight gain during impregnation
 

was due to cadmium hydroxide was invalid. The honeycomb electrodes were
 

found to contain a smaller ratio of cadmium hydroxide to metallic cadmium
 

than did the sintered-powder electrodes. Total cadmium was determined by
 

titrating with EDTA aliquot solutions of the electrodes dissolved in nitric
 

acid using the procedure given on pages 7 and 8 of Reference (6). Then,
 

the amount of metallic cadmium in the impregnated material was calculated
 

from the difference between the weight gain after the final impregnation
 



Pore Size, 

Cm 

0.015 


0.010 


0.0076 


0.0061 


0.0049 


Powder plaques 


TABLE 3. CYCLES REQUIRED TO IMPREGNATE(a)HONEYCOMB PLAQUES
 

Cycles for Cycles for 
First Batch Second Batch 

8 (b) 

10 !i 

10 14 

9 10 

9 10 

4 4 

(a) Impregnation was done using ten plaques in a batch.
 

(b) Only one batch of ten plaques was used.
 

Calculated 

Percent Volume Filled 


of First Batch 


36 

39.4 


39.3 


38.6 


43.9 


39.5 


Calculated
 
Percent Volume Filled
 

of Second Batch
 

(b) 

35.7
 

38.7
 

37.7
 

40.8
 

39.7
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cycle and the chemical analysis data for total cadmium using Equation (3)
 

below. In this calculation, the total weight gain is assumed to be due
 

only to metallic cadmium and cadmium hydroxide. That is, any small amount
 

of cadmium oxide is assumed to be negligible. Also, corrosion of the nickel
 

plaque by the cadmium nitrate impregnating solution considered to be
 

negligible because (1) the polyethylene glycol in the impregnating solution
 

acts as a corrosion inhibitor, and (2) the solution was still almost color­

-less after impregnation. Even a small amount of nickel dissolved in the
 

cadmium nitrate solution would have given it a definite green color. With
 

these assumptions and facts in mind:
 

Observed wt gain = wt Cd + wt Cd(OH)2 , and (1) 

112.4 
Analyzed total Cd = wt Cd + 1-4 wt Cd(OH) (2)

146.4 (H 2 
 .(2
 

Solving Equations (1) and (2) for wt Cd gives
 

total Cd - wt gain 
(3)
wt Cd = 146.4 

112.4
 
146.4
 

Moreover, if the total cadmium were present only as cadmium hydroxide, the
 

theoretical weight gain as Cd(OH)2 is given by
 

theoretical wt gain as Cd(OH) = 146-4 total Cd (4) 

C()2 112.4 

The theoretical wt gain as Cd(OH)2 was calculated from the chemical
 

analysis data for total Cd using Equation (4). Table 4 shows the actual
 

weight gain, the calculated theoretical amount of cadmium hydroxide,
 

Equation (4), and the calculated amount of metallic cadmium, Equation (2),
 

for a representative sample of each type of electrode.
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TABLE 4. ANALYSIS OF CADMIUM ELECTRODES 

Electrode 
Theoretical 

Cd(OH)2, g 
Actual 
Gain, g Cd, g 

Sintered powder 

0.015-cm Honeycomb 

0.010-cm Ditto 

0.0076-cm " 

0.0061-cm " 

0.0049-cm " 

0.845 

0.902 

1.140 

0.980 

1.090 

0.890 

0.800 

0.801 

0.932 

0.860 

0.908 

0.695 

0.149 

0.334 

0.688 

0.397 

0.602 

0.297 

The data in Table 4 show that all electrodes actually contained
 

more cadmium than was desired. The percent of the pore volume of each
 

plaque which would be filled with Cd(OH)2 if all cadmium were in this form
 

is given in Table 5.
 

TABLE 5. 	 CALCULATED AMOUNT OF PLAQUE FORE VOLUMES 
FILLED WITH Cd (O) 2 

Pore Volume
 

Theoretical If Filled 
Plaque Pore Volume, Cd(OH)2 With Cd(0H)2, 

Electrode cm3 Volume, Percent 

Sintered powder 0.412 0.177 43.0 

0.015-cm Honeycomb 0.428 0.189 44.0 

0.010-cm Ditto 0.398 0.238 59.8 

0.0076-cm " 0.467 0.205 43.8 

0.0061-cm " 0.359 0.228 63.5 

0.0049-cm " 0.328 0.186 56.6 
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Figure 13 shows a magnified surface view of an impregnated honey­

comb plaque (black) which contains a mixture of metallic cadmium (dark gray)
 

and cadmium hydroxide (white).
 

Electrode Formation. After the electrodes were impregnated to
 

what was thought to be about 40 percent of the pore volume with Cd(0H)2,
 

they were given a series of formation cycles. These cycles are reported
 

to serve two functions(7): (1) impurities such as nitrate and carbonate
 

and loosely adhering particles are removed from the electrodes and (2) the
 

active material is "exercised" by the series of charge-discharge cycles
 

which probably increases the lattice defects and the surface area of the
 

.active material.
 

To implement the desired formation the cadmium electrodes were
 

arranged alternately between nickel hydroxide positive electrodes with two
 

layers of perforated polypropylene separators between adjacent electrodes.
 

The electrodes were connected so that all cadmium electrodes were in parallel,
 

as were all nickel electrodes. Each formation cell contained four cadmium
 

electrodes and five nickel electrodes. The electrolyte in the formation
 

cells was 30 percent KOH. The electrodes were soaked in the electrolyte
 

for 16 to 24 hours before cycling was begun. The series of formation
 

cycles was performed as follows:
 

Cycle 1. Charge for 16 hours (overnight) at the C/7 rate
 

based on the theoretical capacity of the negative
 

electrodes. This theoretical capacity was calcu­

lated from the total weight gain during impreg­

nation assuming it to be in the form of Cd(OH)2 .
 

Discharge at the C/7 rate to 1 volt per cell.
 

Cycle 2. Same as Cycle 1.
 

Cycle 3. Charge at C/5 for 7 hours. Discharge at C/5 until
 

both sets of electrodes are completely discharged.
 

Following the third formation cycle, the electrodes were rinsed in distilled
 

water, wet brushed to remove any loose particles, and washed for 4 hours in
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distilled water at 40 C as was done during impregnation. They were then
 

stacked between layers of filter paper and dried at 60 C. The stacks of
 

electrodes were clamped between pieces of Lucite to prevent possible
 

warping during drying.
 

Corrugated Plaque
 

To evaluate the concept of a thin corrugated foil as a plaque,
 

a single corrugated foil with 0.013-cm-wide corrugations was coated with
 

powdered cadmium hydroxide and assembled into a two electrode cell for
 

cycling. Cycling data are given in the following (Task D) section of this
 

report.
 

Cadmium hydroxide powder was made by reacting a cadmium nitrate
 

solution with an excess of potassium hydroxide solution to precipitate
 

cadmium hydroxide. The product was filtered, washed with distilled water,
 

dried at 95 C, and ground into a fine powder. The corrugated foil was
 

covered with a layer of this powder after the foil was cleaned and electro­

plated with about 0.0075 cm of cadmium metal. The plating step was used
 

to show that all dirt and oxides had been removed from the nickel foil.
 

Task D. Electrochemical Evaluation of Electrodes
 

'Electrode-Capacity Measurements. Before any cycling experiments
 

were conducted, capacities of single cadmium electrodes were measured by
 

immersing one electrode in a beaker of 30 percent potassium hydroxide
 

solution. Each electrode was cycled using two nickel-foil counterelectrodes.
 

The approximate capacities were determined so that charge and discharge
 

currents based on C rates could be selected. The C rate is the current
 

which will deliver the specified ampere-hour capacity in 1 hour. The
 

capacity of the sintered-powder electrodes estimated from formation cycling
 

data was 240 mA-hr. When a single sintered-powder electrode was discharged
 

at 240 mA it ran for 70 minutes before the knee of its discharge curve
 

with respect to Hg/HgO reference electrode was reached. Therefore, it had
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a capacity of 280 mA-hr and the C rate used for the sintered-powder electrodes
 

was 280 mA. When the 0.0061 and 0.0076-cm honeycomb electrodes were dis­

charged at 240 mA, they ran for 30 minutes. Thus, their C rate was 120 mA.
 

This same rate was also used for the other three pore sizes of honeycomb
 

electrodes with the expectation that this would allow direct comparison of
 

pore sizes.
 

Electrode Performance During Cycling. A group of honeycomb elec­

trodes of each size and a group of sintered-powder electrodes were cycled
 

according to the following cycle regimes:
 

Cycle Regime Charge Rate Discharge Rate 

1 C/2 C 

2 C12 C/2 

3 C C. 

4 2C 2C 

5 C/4 C/4 

6 4C 4C 

Each group received a minimum of five charge-discharge cycles at
 

each regime. Cycling was performed using the automatic cycling facility
 

shown in Figure 14. Each electrode was operated in a separate cell. The
 

cells consisted of one negative and two ,positive electrodes. One layer of
 

Pellon 2505 was used as the separator. Two Plexiglas end plates held each
 

cell together with stainless steel bolts. Cells were placed in an open
 

beaker filled with 30 percent potassium hydroxide. The potential of the
 

cadmium electrodes during charge and discharge was measured with respect
 

to a Hg/HgO reference in the same solution.
 

Table 6 shows the capacity in ampere-hours at different charge
 

and discharge rates of one sintered powder and five different honeycomb
 

electrodes. These capacities obtained from the potential time curves
 

represent a medium value of the ten electrodes which were cycled simultaneously.
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FIGURE 14. AUTOMATIC CYCLING FACILITY
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TABLE 6. CAPACITY CF CADMIUM ELECTRODES 
DURING CYCLING EXPERIMENTS 

Hydrogen-free 
Charge Rate Capacity Discharge Rate Discharge Capacity 

Amp-hr Amp-hr. 

Sintered-Powder Electrode 

140 0.270 280 0.219 
140 0.231 140 0.112 
280 0.168 280 0.163 
560 0.121 560 0.121 
70 0.199 70 0.008 

1120 0.149 1120 0.103 

Honeycomb Electrode With 
0.015 cm Pore Diameter 

60 0.177 120 0.176 
60 0.195 60 0.193 

120 0.191 120 0.176 
240 0.188 240 0.178 
30 0.216 30 0.216 

480 0.124 480 0.122 

Honeycomb Electrode With 
0.0107 cm Pore Diameter 

60 0.270 120 0.240 
60 0.245 60 0.160 

120 0.238 120 0.218 
240 0.200 240 0.196 
30 0.320 30 0.296 

480 0.172 480 0.164 

Honeycomb Electrode With 
0.0076 cm Pore Diameter 

60 0.147 120 0.142 
60 0.242 60 0.237 

120 0.164 120 0.158 
240 0.136 240 0.128 
30 0.220 30 0.207 

480 0.160 480 0.144 
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TABLE 6. (Continued)
 

Hydrogen-free
 
Charge Rate Capacity Discharge Rate Discharge Capacity
 

mA Amp-hr mA Amp-hr
 

Honeycomb Electrode With
 
0.0061 cm Pore Diameter
 

60 0.263 120 0.210
 
60 0.197 60 0.178
 

120 0.166 120 0.146
 
240 0.148 240 0.136
 
30 0.276 30 0.270
 

480 0.140 480 0.128
 

Honeycomb Electrode With
 
0.0049 cm Pore Diameter
 

60 0.114 120 0.108
 
60 0.125 60 0.120
 
120 0.118 120 0.112
 
240 0.084 240 0.076
 
30 0.142 30 0.142
 

480 0.072 480 0.072
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The sintered-powder electrodes showed a large amount of cadmium
 

migration compared with the honeycomb electrodes. Enough cadmium evidently
 

migrated into the separator to short the cells. The loss of capacity due
 

to a short is clearly seen in Table 6 at the 70-mA discharge. The increase
 

in capacity at the subsequent 1120-mA rate is probably due to breaking the
 

short during the high-rate charge. The hoheycomb electrodes did not show
 

any significant loss of cadmium into the separator. As seen in Table 6,
 

the honeycomb structures maintained their capacity throughout the cycling
 

regimes much better than did the sintered-powder electrodes. During each
 

of the minimum of five charge-discharge cycles at each regime, the honeycomb
 

electrodes showed a trend of increasing capacity from cycle to cycle. This
 

increasing capacity is a reasonable observation, because the electrodes
 

contained an excess of cadmium metal, as was shown in Table 4. During each
 

discharge some of the metal is oxidized and converted to active cadmium
 

hydroxide.
 

Most of the honeycomb electrodes exhibited a decrease both in
 

hydrogen-free charge and in discharge capacity as charge and discharge
 

currents were increased. It is well .known that battery capacities decrease
 

with increasing currents and that this behavior can be explained as caused
 

by increased polarization at higher current densities. Notice in Table 6,
 

however, that some of the discharge capacities at 60 ThA for the same honeycomi
 

different from the discharge capacities at 60 mA for the same honeycomb
 

structures. This implies that the honeycomb structures might be capable
 

of higher rate discharges than the presently used sintered-powder electrodes.
 

The capacities listed in Table 6 have an uncertainty of 10 to 15
 

percent associated with them because of the time required -by the multipoint
 

,recorder to make two consecutive measurements of the potential of the same
 

cell. The variation of capacity among ten electrodes within a group at
 

any given current for five cycles was less than the experimental uncertainty
 

associated with the recorder.
 

Figure 15 shows charge and discharge curves for a sintered-powder
 

electrode at 280 mA and curves for a 0.0107-cm-pore-diameter honeycomb
 

electrode at 240 mA for comparison. Both types of electrode have the same
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were 240 mA. Sintered-powder electrode charge 
and discharge rates were 280 mA. 



43
 

general shape of curves that are typical of cadmium electrodes, although
 

the honeycomb electrode has a greater potential rise when it reaches hydro­

gen evolution because of its smaller internal plaque-gurface area. That
 

is, at constant current, the overpotential for hydrogen evolution changes
 

logarithmically with true surface area. This higher end-of-charge voltage
 

could be beneficial for charge control in sealed cells if they were negative­

electrode limited. I
 

Figure 16 shows a comparison of the 4C charge-and-discharge
 

curves for a sintered-powder electrode'and a 0.0107-cm-pore-diameter honeycomb
 

a
electrode. It is seen that the potentials measured with respect to 


Hg/HgO reference electrode are about 10 to 15 mv lower on charge and 20 to
 

30 mv higher on discharge for the honeycomb electrode than for the sintered­

powder electrode. Thus, electrodes made from the honeycomb plaque structure
 

appear to have less polarization loss at high-rate operation, which allows
 

charging and discharging at rates two to five times greater than those for
 

sintered-powder electrodes.
 

Temperature Effects. The effect of temperature on the charge­

discharge performances of honeycomb electrodes with 0.0061-cm, 0.0076-cm,
 

0.0107-cm, and 0.015-cm pore diameters and of sintered-powder electrodes
 

was studied at three different temperatures: +10 C, -5 C, and appiroximately
 

-17 C.
 

The test cell containing one cadmium electrode and two positive
 

nickel electrodes was mounted inside a thermostat using methanol as a
 

coolant. During charge at the C/2 rate = 60 mA and discharge at the C
 

rate = 120 mA the potentials of the negative electrode were measured against
 

a Hg/HgO reference electrode in the same solution.
 

Table 7 gives the electrode potentials with respect to a Hg/HgO
 

reference at the times of 50 percent charge and 50 percent discharge for
 

five electrodes at four different temperatures. The potentials of the
 

honeycomb electrodes were always within 35 mv of the sintered-powder
 

electrode, which indicates that the honeycomb electrodes have a potential­

temperature curve similar to the sintered-powder electrodes at the 50
 

percent charge and discharge points. However, the end-of-charge potential
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differences to hydrogen evolution become less accentuated with lower tempera­

tures with the honeycomb structure. Also, the end-of-discharge potential _
 

for the honeycomb structure changes less sharply with time as the temperature
 

is lowered.
 

Table 8 gives the hydrogen-free and discharge capacities of the
 

various electrodes obtained as a function of temperatures. These data show
 

that the capacity of a honeycomb electrode decreases more rapidly'with
 

decreasing temperature than does the capacity of a sintered-powder electrode
 

when both are operated at the same current. The lower discharge capacities
 

for the honeycomb structure can be associated with a decrease in charge
 

acceptance with decreasing temperatures.
 

TABLE 7. 	ELECTRODE POTENTIALS AS A
 
FUNCTION OF TEMPERATURE
 

Temperature, C
 

25 10 -5 -17
 

Dis- Dis- Dis- Dis-


Type of Electrode Charge charge Charge charge Charge charge Charge charge
 

Sintered Powder -905 -840 -920 -860 -930 -875 -950 -870 

0.0061-cm Honeycomb -920 -865 -925 -860 -950 -855 -925 -855 

0,0076-cm Ditto -910 -87.5 -920 -830 -945 -845 -955 -840 

0.0107-cm -920 -870 -930 -870 -950 -870 -955 -845 

0.015-cm " -920 -860 -940 -860 -955 -860 -948 -850 

Oxygen Recombination. Due to a shortage of time and funds at the
 

end of the project, only a brief, preliminary study of oxygen-recombination
 

performance of the honeycomb electrodes was performed. Measurements were
 

carried out in an open cell with flooded electrodes. Oxygen reduction was
 

studied on one sintered-powder electrode and one honeycomb electrode. The
 



TABLE 8. ELECTRODE CAPACITC AS A FUNCTION 
CAPACITY IN A2PERE-HOURS 

OF TEMFERATURE 

Type of Electrode 

25 
Hydrogen-Free 

Charge 
Capacity 

Discharge 
Capacity 

Temperature, C 

10 
Hydrogen-Free 

Charge Discharge 
Capacity Capacity 

-5 
Hydrogen-Free 

Charge 
Capacity 

Discharge 
Capacity 

-17 
Hydrogen-Free 

Charge Discharge 
Capacity Capacity 

Sintered powder 0.270 0.219 0.254 0.286 0.230 0.256 0.232 0.254 

0.0061-cm Honeycomb 0.263 0.210 0.213 0.188 0,224 0.188 0.135 0.134 

0.0076-cm Ditto 0.147 0.142 0.184 0.126 0.114 0.112 0.087 0.080 

0.0107-cm " 0.270 0.240 0.218 0.220 0.180 0.184 0.140 0.152 

0.015-cm t 0.177 0.176 0.160 0.126 0.113 0.102 0.092 0.105 
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sintered-powder electrode was potentiostatically charged at -980 mv versus
 

Hg/HgO reference electrode in a nitrogen-saturated electrolyte to eliminate
 

reduction of oxygen in the'electrolyte. Hydrogen evolution does not
 

occur at this potential. When a constant current was obtained, the nitrogen
 

vas turned off and oxygen was bubbled through the electrolyte. As a result,
 

the current increased in less than 1 minute from 2 to approximately 2.5 mA.
 

The same effect was measured using a precharged honeycomb
 

electrode with a 0.0076-cm pore diameter. After bubbling nitrogen through 

the cell for 2 hours, oxygen was turned on and the current increased from 

1 to approximately 1.5 mA at the same potential of -980 mv versus a Hg/HgO 

reference electrode. This simple experiment shows that oxygen reduction, 

which is commonly called "oxygen recombination" in the battery trade, occurs 

on a honeycomb electrode at a rate which is similar to that on a sintered­

powder electrode in the flooded state. 

While the actual current due to oxygen recombination in this
 

experiment corresponds to a rate of about C/400 for the sintered-powder
 

electrode and C/300 for the honeycomb electrode based on capacities given
 

in Table 8, this is a much lower value than would actually be obtained for
 

an electrode in a starved electrolyte condition, since it is generally
 

recognized(8) that the rate of oxygen recombination is limited by the rate
 

of oxygen transport to the cadmium electrode, which is much lower in the
 

flooded state than in the starved state.
 

Wetting Rates of Electrodes. One sintered-powder electrode and
 

one honeycomb electrode of each pore diameter were evaluated to determine
 

the rate at which they absorbed 30 percent KOH and the amount of electrolyte
 

they could absorb. Dry and alkaline-free electrodes were placed horizontally
 

on a perforated polypropylene sheet to eliminate any capillary action
 

between the electrode and a smooth, flat support. One drop of KOH was
 

placed with an eye dropper in the center of the electrode and the time until
 

the drop was completely absorbed by the electrode was measured. The drop
 

of electrolyte immediately soaked into all of the electrodes rather than
 

lying on the surfaces and slowly soaking into them. During the measured
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wetting times shown in Table 9, the drop of electrolyte was seen to spread
 

laterally in the electrode as evidenced by an increasing wetted area and
 

a decrease in the amount of light reflected by electrolyte film spread out
 

on the electrode surface. The times reported in Table 9 are the times
 

required for the drop of electrolyte to be completely absorbed by the
 

electrode as indicated by a decrease in light reflectivity from the electro­

lyte film on the electrode surface. A second drop was placed on the
 

same spot 	and the absorption time was measured again.
 

After soaking the electrode for 10 hours in 30 percent KOH
 

solution and wiping off the excess KOH with a straight-edged rubber sheet,
 

the absorption capacity was determined by weighing the electrodes. The
 

data obtained from these experiments are shown in Table 9. It is seen
 

that the rate and amount of wetting of honeycomb electrodes is similar to
 

or higher than that obtained with sintered-powder electrodes.
 

TABLE 9. 	RATE AND AMOUNT OF WETTING OF ELECTRODES
 
WITH 30 PERCENT KOH
 

Electrode Type 


Sintered powder 


0.0049-cm Honeycomb 


0.0061-cm Ditto 


0.0076-cm 


0.0107-cm 


0.015-cm 


First Drop 

Absorption 

Time, sec 


42.0 


22.0 


40.0 


9.5 


6.0 


21.5 


Second Drop
 
Absorption 

Time, sec 


113 


29 


92 


20 


21 


30 


Weight KOH Absorbed
 
After 10 hours, g
 

0.2564
 

0.2093
 

0.2205
 

0.2578
 

0.2564
 

0.2133
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In order to compare the amounts of KOH absorbed on a uniform basis, the
 

data from the last column of Table 9 were used to calculate the weight of
 

KOH absorbed per unit weight of impregnated material and the weight of
 

KOH absorbed per unit volume of electrode. The weight of active material
 

was taken from column 3 of Table 4 and the electrode volume was calcu­

lated exclusive of coined area.
 

TABLE 10. ABSORBED ELECTROLYTE IN ELECTRODES
 

Weight KOH/Electrode Weight KOH/Weight Impreg-


Electrode Type Volume, g/cm3 nated Material, g/g
 

Sintered powder 0.490 0.313 

0.0049-cm Honeycomb 0.402 0.290 

0.0061-cm Ditto 0.453 0.264 

0:0076-cm " 0.443 0.321 

0.0107-cm 0.479 0.292 

0.015-cm 0.366 0.270 

Corrugated-Electrode Cycling
 

A corrugated nickel foil 2.5 x 2.5 cm with a tab for electrical
 

contact was cleaned and coated with 178 mg of cadmium hydroxide powder as
 

described in the impregnation section. A cell was made by stacking the
 

following items in sequence: one glass plate, the corrugated foil, three
 

layers of 0.038-cm-thick Pellon 2505, one commercial positive electrode
 

2.5 x 2.5 cm with contact tab, and one Lucite cover plate. The assembly
 

was clamped together with a "C" clamp and three edges were sealed with hot
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wax. About-0.5 ml of 30 percent potassium hydroxide solution was added,
 

then the last side closed with hot wax. No excess electrolyte was
 

visible.. Cycling was started as shown in Table 11, but capacity dropped
 

after the third cycle.
 

TABLE 11. DISCHARGE RESULTS OF CELL CONTAINING
 
A CORRUGATED-FOIL ELECTRODE
 

Utilization 
Current, Time(a) Efficiency(b), 

Cycle ma Minutes mA-hr percent 

1 20 29 9.7 6.7
 

2 20 39 13.0 20.0
 

3 20 29 9 .7 (c) 6.7(c)
 

4 20 45 15.0 23.0
 

5 20 52 17.3 26.6
 

6 20 62 20.7 32.0
 

7 20 95 32.0 49.0
 

8 20 118 39.2 60.0
 

9 40 68 45.5 70.0
 

(a) 	Discharge time to a 1-volt cell cutoff. Charges were at the
 
same current as discharges.
 

(b) 	Based on 177 mg cadmium hydroxide.
 

(c) 	More electrolyte added.
 

An additional 0.5 ml of electrolyte was added, the cell was reclosed with
 

wax, and cycling was continued. After a total of nine cycles, the cell
 

was charged, disassembled, and the electrode was examined. The weight of
 

material on the corrugated-foil electrode was 136.5 mg, which would
 

correspond to 178 mg of cadmium hydroxide if the 136.5 mg were metallic Cd.
 



51
 

Because 177 mg of cadmium hydroxide was initially applied to the electrode,
 

most of the product on the corrugated foil was cadmium metal. The appear­

ance of this product was of light-gray metallic powder.
 

Based on this experiment with the corrugated foil, it appears
 

that a large-surface-area electrode structure is not needed to achieve
 

utilization efficiencies of at least 70 percent. The data indicate that
 

higher utilization efficiencies can be achieved because the values were
 

increasing with each cycle.
 

Plans for Life Tests
 

This plan is based on knowledge gained on Contract No. NAS 5-


11594--"Study of Space Battery Accelerated Testing Techniques". The
 

Phase III Report, "Recommended Specifications for Experimental Design
 

and Test Facilities", submitted on July 9, 1970, to NASA Goddard Space
 

Flight Center gives detailed descriptions of five recommended accelerated
 

life tests. The primary independent variables in these five tests are
 

(1) environmental temperature, (2) amount of overcharge, (3) rate of
 

charge, (4) depth of discharge, and (5) rate of discharge. It is believed
 

that tests involving the last two independent variables will be most useful
 

in determining the life of the cadmium electrodes made with honeycomb
 

plaques on this project.
 

The tests recommended on Contract NAS5-11594 required ten cells
 

operated at each of five values of the independent variable for each test.
 

Five of the ten cells are to be removed from test at selected intervals
 

for analysis to determine what changes are occurring which are leading to
 

failure. The five values of the independent variable are required to
 

provide statistical confidence that the failure mechanism remains unchanged
 

over the range of the independent variable used in the test. In addition
 

to the 50 cells to be operated for each test, an additional five uncycled
 

cells are to be analyzed at the start of the tests to provide reference
 

points for comparison with changes occurring in the cycled cells.
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This plan, therefore, requires a minimum of 110 honeycomb­

structure electrodes with the same pore size. The complete life-test plan
 

is divided into two parts: (1) fabrication of a sufficient number of elec­

trodes having the same pore size and (2) the actual life tests.
 

Electrode Fabrication. The electrodes will be fabricated
 

according to the methods developed on this project and described earlier
 

in this report. It is recommended that electrodes with a 0.01-cm pore
 

diameter be used for the life test since that type of electrode appeared
 

to have the best performance based on measurements to date.
 

Life Tests. The two tests planned are (1) the rate-of-discharge
 

test and (2) the depth-of-discharge test. Each test will start with
 

electrodes which are 90 percent charged. The electrodes will be recharged
 

by the amount of discharge so that their net state of charge presumably
 

will not be altered during the life tests. The charging rate to be used
 

throughout the tests will be C/4. The criterion for failure of an electrode
 

will be its inability to maintain a discharge potential more negative than
 

-0.75 volt with respect to a Hg/HgO reference electrode. An electrode will
 

be periodically removed from test as described in the Phase III Report of
 

Contract NAS 5-11594 and it will be analyzed fot its ratio of cadmium to
 

cadmium hydroxide to determine if this ratio is changing during the course
 

of the test. A total of five electrodes will be removed during the course
 

of each test at each stress level.
 

The tabulation below shows the levels of the independent variables
 

for each test.
 

Depth-of-Discharge Test Rate-of-Discharge Test
 
Level Depth, % Rate Level Rate Depth, %
 

1 25.0 C/4 1 C/4 60
 
2 42.5 C/4 2 C/2 60
 
3 60.0 C/4 3 C 60
 
4 77.5 C/4 4 20 60
 
5 95.0 C/4 5 4C 60
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The depths and rates of discharge listed above refer to the capacity of the
 

90percent-charged electrode. This original state of charge was chosen
 

to simulate conditions in sealed nickel-cadmium cells in which the cadmium
 

electrode is never supposed to become fully charged. Tests should be per­

formed using flooded cells having one cadmium electrode and two commercial
 

nickel hydroxide positives.
 

The above plan for life tests fulfills the contractual require­

ment of Paragraph D of Article B of the Statement of Work, which states that
 

life tests will be planned. It seems, however, that the next logical step
 

in developing the technology of sealed nickel-cadmium cells having honeycomb­

structure electrodes would be to verify that the electrodes can be operated
 

in the starved electrolyte condition required for sealed cells. Thus far,
 

it has been shown that the performance of cadmium electrodes with the new
 

plaque structures is similar to electrodes made with sintered-powder plaques
 

as far as voltage and utilization are concerned. The major improvement in
 

short-term cycling in the flooded state is that the new electrodes lose
 

less capacity during cycling than do electrodes with sintered-powder plaques.
 

It appears that there would be an advantage to developing a
 

complete cell with honeycomb-structure electrodes and then life test the
 

complete cell instead of only electrodes. The honeycomb plaque structure
 

should also be evaluated for the nickel positive electrode, because it has
 

a smaller specific surface area than a sintered-powder plaque and therefore
 

would be expected to show less plaque corrosion.
 

After complete cells with electrodes made from the new plaque
 

structures are fabricated, it will be necessary to life test them in a
 

manner similar to that described in the above life-test plan. By building
 

complete cells for life tests, one can obtain a direct comparison of cell
 

performance and life with that of conventional cells, whereas there might
 

be no direct correlation with cell life and performance if only electrodes
 

were life tested. The building of complete cells prior to actual life
 

testing thus seems to be a more efficient route toward developing the
 

technology of sealed nickel-cadmium cells with honeycomb plaques.
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New Technology
 

Three items are considered new technology for which appropriate
 

"new technology forms" have been submitted. These items are (1) the
 

techniques for fabricating honeycomb plaques by electroforming corrugated
 

and flat foils, stacking, and heat bonding; (2) electroforming exact
 

replicas of plastic surfaces by (a) depositing a silver film, (b) electro­

depositing a copper plate, (c) separating the metal from the plastic
 

mandrel, (d) nickel plating on the silver surface, and (e) chemically dis­

solving the copper and the silver; and (3) the use of porous plaques with
 

pores directly connected to the surface of the plaque, with noninnercon­

necting pores, and with all pores the same size for making cadmium
 

electrodes.
 

CONCLUSIONS AND RECOMMENDATIONS
 

The results of this work show that cadmium electrodes made from
 

plaques with uniform, noninterconnecting pores perform similarly to
 

cadmium electrodes using the usual sintered-powder plaques. The charge
 

and discharge curves for cadmium electrodes made with these new honeycomb
 

plaques have the same flat plateaus as are obtained with sintered-powder
 

plaques. This shows that a high-internal-surface-area plaque is not
 

essential -for proper cadmium electrode performance. Furthermore, the charge­

discharge performance of the electrodes is relatively insensitive to pore
 

size. Another feature of these electrodes is the greater potential rise
 

when the hydrogen-evolution point is reached. This change in voltage might
 

be used as a signal to indicate a fully charged negative electrode in a
 

cell and a dangerous condition in which excessive gas pressure could be
 

produced if charging were continued. It seems, however, that the normal
 

cadmium nitrate impregnation procedure requires some modification for the
 

honeycomb plaque structures. For example, the time of polarization, or the
 

current, or both, should be decreased.
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