
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



X-661-71-127
PREPR!NT

M 2. i` i x-s 63 11
EVIDENCE FOR MULTIPLE PERIODICITY

IN THE X-RAY EMISSION
FROM CYG X-1

S. S. HOLT
E.:A. BOLDT

D. A SCHWARTZ
P. J.^, SERLEMITSOS

R. D. BLEACH
_:  ^^222324

0	 ^
MARCH 1971	 6^ :	 ^^^jA

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

°o	 (AC	 SION t))	 )	 4	 RU ►

0	 1`	 _	 j 3
FA ES	

TT/E
a (NASA CR OR TMX, OR AU NUMBER) 	 (CATEGORY)

4

r1
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ABSTRACT

X-ray data from a rocket-borne exposure to Cyg X-1 confirm

indications of periodicity obtained from UHURU. However, our data are

inconsistent with a single periodic component at 73 msec, and are most

easily reconciled in terms of at least two harmonic components at

lower frequencies.
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I, INTRODUCTION

In view of the very exciting report of 73 ms pulsation from Cyg X-1

by Oda, Gorenstein, Gursky, Kellogg, Schreier, Tananbaum, and Giacconi

(1971), we report here a temporal study of a rocket exposure to this

source obtained on September 21, 1970. In the above mentioned rocket

flight, several sources in the Cygnus-Serpens region were examined in

detail and will be reported elsewhere. The timelinessof the Cyg X-1

measurement is what has prompted this separate communication.

II. EXPERIMENTAL DETAILS

The data are obtained in two multi-anode, multi-layer proportional

counters, each with 2° x 8° FWHM collimation and with net areas of

650 cm2 . In the top layers of each counter there is three-sided anti-

coincidence for each 1/2" cell, and four-sided anti-coincidence in the

lower layers. The bottom layer and all anodes adjacent to the side

walls are used only for anti-coincidence. One of the counters was filled

with P10 (90% argon, 10% methane), and the other with xenon-methane in

like proportions. The operating range of the argon counter was 1.6 -

24 keV, and that of the xenon counter was 2 - 40 keV. Both counters had

windows of 1 m:l aluminized mylar supported by the collimators.

The data were obtained in a 50 kbit/sec PCM format which has been

describe4 in detail elsewhere (Boldt, Desai, and Holt, 1969). The

important point here is that each data word has a temporal resolution

of approximately 320 µsec, during which time a single event may be

pulse-height analyzed and up to 32 analyzeable events may be scaled

i
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(analyzeable here means that such events meet all the threshold and

anti-coincidence requirements of true x-ray events). The pulse-height-

analyzed events therefore have a dead-time of — 320 µsec, while the

scaled events have a dead-time of less than 3 µsec.

The exposure to Cyg X-1 was comprised of a single scan across the

source at a roll rate of approximately 0.5°/sec. As the scan was per-

formed using the narrower collimation of 2° FWHM, the total exposure

to the source was about 8 seconds (4 seconds FWHM). The maximum in-

stantaneous total counting rate at the apex of the triangular collima-

tor response was approximately 2100 sec -1 from both detectors, about

a factor of twenty in excess of the diffuse plus internal background

measured when off the source. This signal-to-noise is further improved

if we use a more stringent set of selection criteria for the data. For

example, if we restrict ourselves to only pulse-height-analyzed data

in the first layer of the xenon counter in the pulse-height range 2 - 8
i

keV, the maximum instantaneous counting rate to Cyg X-1 is in excess of

500 sec -1 , a factor of forty above the counting rate when the source is

not in the detector field of view.

•	 III. TEMPORAL ANALYSIS

We have performed two independent temporal analyses of the Cyg X-1

data in search of the 73 msec pulsation reported by Oda, et al. (1971).

We have used a Cooley-Tookey algorithm to analyze the data harmonically,

and have fast-folded the data as described in our search for temporal

variations in Sco X-1 (Boldt, Holt, and Serlemitsos, 1971). In no
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cases do we achieve agreement with the postulation of a periodicity

of 73 cosec.

In the case of the harmonic analysis, we have used the scaled

counts, adding zeroes contiguously at the and of the Cyg X-1 exposure

in order to obtain — 0.1 Hz resolution; this should not alter the

relative significance of true peaks in the periodogram. This approxi-

mation to the power density spectrum is displayed in Figure 1 out to

— 10 Hz; no significant power was detected at higher frequencies. In

particular, there was no indication of any power in the vicinity of

73 msec.

We cannot fully interpret all of the power, some of which is

undoubtedly due to noise in coincidental conjunction with true periodic

components during the finite time of our exposure to Cyg X-1. That true

periodicity is present seems assured^as a like analysis of our exposure

to Cyg X-2 during the same flight, which differed only in that the
i

counting rate at maximum was approximately one-half that from Cyg Y-1,

showed no significant power above — .5 Hz(in fact, the periodogram was

completely consistent with the triangular window of the source exposure

which serves to spread the spectral peaks of truly significant periodic

components to	 0.2 Hz in width),

The eight peaks indicated in the figure have been interpreted quite

simply in terms of a two-fold periodicity, one modulating the other. In

this case we can write the analytic identity (neglecting phases which

are not reflected in the power spe--trum):
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(1)

The indicated peaks in the spectrum represent 'x, (',^ C,X^ ^^
i ^^-!;^ and

their first overtones. 	 1	 ,

Some further evidence for this interpretation is afforded by

Figure 2, where we have plotted the count rate of the pulse-height-

analyzed data in 20.5 msec intervals for the Cyg X-1 exposure. We

emphasize that the data are not raw; they have been filtered by smooth-

ing with a running sum of four such points to bring out lower frequency

components for purposes of illustration. We suggest that the primary

components (X and 
I) 

(where the latter represents an amplitude modula-

tion of the former) can be crudely estimated by eye and are in agree-

ment with our interpretation of the periodogram.

We further tested the data for periodicity using the fast-fold

z
•	 algorithm and 

X_ 
analysis technique described in Boldt, Holt, and

Serlemitsos, 1971. The pulsed fraction f which should be observable

at a probability y corresponding to 	 standard deviations is given by

y

	

N	 )	 (2)

where 9 is the duty cycle of the pulse expressed as a fraction of the
period, 1 is the number of temporal resolution elements in the trial
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period, and N is the total number of x-ray events used. In searching

for an unknown periodicity, we generally use 5Gr as the criterion for

statistical significance. In the case of a "known" period, we can ease

the restriction to 3(T if the number of trial periods in the vicinity

of the suspected period is ^ 100. Our analysis program for Cyg X-1

typically accepts in excess of 5000 events, and we vary the number of

temporal bins per period between 40 and 80. All possible periods

between 12.8 msec and 409.6 msec were searched, and no 5cr results were

achieved for periods N 230 msec. In the vicinity of 73 msec, there were 	 f

no 3 	 results. This would place an absolute upper limit of — 10% on

the pulsed fractiun at 73 msec (i.e. for S l:--.5). For a narrower pulse

(i.e. for S z .1), the upper limit to the pulsed fraction at 73 msec

would be — 3%. The light curve we can construct by folding is not

good enough for a determination of the pulse shape, as we are limited

by both statistics and an imprecise knowledge of the actual period owing

i
to the limited time we spend on the source. Figure 3, which corresponds

to a >5a' result in the fast-fold analysis, at a frequency of Ca t ^

illustrates this inadequacy in our data, Light curves at the other

three basic frequencies are similarly lacking a sharp single pulse, but

appear to have a roughly sinusoidal variation.

IV. DISCUSSION

We summarize our results as follows:

1. The discovery of periodic fluctuations in the intensity of Cyg X-1

by Oda, et al. is confirmel.
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2. The fundamental periodicity (or periodicities) is not in the tens

of milliseconds, but in the hundreds of milliseconds.

3. The absolute upper limit to the pulsed fraction at 73 msec is — 10%.

4. We require more than one fundamental period to account for our data.

5. If equation (1) truly describes the periodic behavior of the x-ray

emission of Cyg X-1, fundamental periods of — 290 msec and — 1.1 sec

account for the significant power at these periods, at - 230 msec

and — 390 msec, and at the first overtones of all four.

6. The requirement of low frequency multiple periodicity (statement 4)

is quite independent of the attempt at its interpretation (statement

5).

7, The interpretation we suggest presents rather imposing theoretical

difficulties. Not only are we asking for a "pulsar" of lower fre-

quency than at least one class of pulsar emission models can com-

fortably explain (Pacini, 1971), but we are also asking for independ-

ent periodic modulation of this pulsed emission component. The

mathematical model is equivalent to a rotating pulsar beam of period

0(, where the axis of rotation nutates (or the elevation angle of

the beam direction oscillates) with period ^.
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FIGURE CAPTIONS

1. Periodogram of spectral density versus frequency. The probability

of white noise exceeding the power expressed in the units of the

ordinate or the figure is approximately 10-^R(poweri

2. Pulse-height-analyzed data plotted as a function of time. Note

that the data is smoothed by plotting 82 msec accumulations each

20.5 msec.

3. Scaled data folded into 15 bins at the highest of the four primary

frequencies, ( ,X r r^,	 = 232 msec. The above "light curve" gives

z
• deviation from the expected 	 for a random sample which has

• probability equivalent to rejecting the random hypothesis at the

5a- level.
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