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1. INTRODUCTION

Sciences are often divided into two parts: observational (or ex-

perimental) and theoretical. This article is concerned with the inter-

play between the two. More specifically, the aim is to set up a book-

keeping procedure for organizing the judgements involved in comparing
r`.

a scientific theory with scientific data for the pups se of appraising

one or more theories. When there is reasonable doubt as to which theory

is correct, due either to uncertainties in the theories or to uncertain-

ties in the data, the nature of the problem is much the same, whether

one is dealing with an It 	 science, an "inexact" science, or a detec-

tive story.

The most convenient outcome of the bookkeeping would be the assigning

of a number to each theory. Since we shall be dealing with uncertain

knowledge, a convenient and appropriate calculus is that of probability

theory. An example of the kind of result we seek is given in a mono-

graph on quasars by Kahn and Palmer i . Table 3, on page 111 of that

monograph, gives the "estimated probability of correctness" of six hy-

potheses concerning quasars. The authors do not indicate how these esti-

mates were arrived at. Furthermore, they do not consider the case (which

is logically possible) that none of their specified hypotheses is correct.

In order to arrive at a bookkeeping procedure for judging scientific

hypotheses, it will be necessary to propose a "model" for the scientific

procedure of evaluating a theoretical hypothesis in terms of observa-

tional data. Such a model will be proposed in Section 3. However, before

taking up this topic, a short statement will be interjected (in Section 2)

on the interpretation of probability which appears to be appropriate to

the problem in hand.
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2. PROBABILITY, INDUCTION AND BAYES' THEOREM

Our purpose will be to make a judgement about a theory which is

admittedly uncertain and incomplete by comparing it with data which

are uncertain and incomplete. In developing a science, such an evalua-

tion must be made not once, but progressively, as the data come in and

as theories develop. The following remark of Jeffreys 2 is relevant:

"Either we can learn from experience or we cannot. The ability to learn

from experience demands the concept of probability in relation to vary-

ing data, and the recognition of the meanings of more probable than and

less probable than."

In science, as in anything else, we can make judgements only on the

basis of available information. We therefore introduce the notation

(AIB) to denote the probability that proposition A is true on the basis

of the knowledge that proposition B is true. As is usual, the measure

of probability extends over the range 0 to 1: (AIB) = 0 if A is

impossible given B, and (AIB) = 1 if A is certain given B.

Notation AB stands for the "product" of the two proposition A

and B.	 Then AB is true if and only if both	 A	 and	 B	 are true.

The "product rule" of probability theory3 is

(AB IC) _ ( A IBC) (B IC) .

Since AB = BA, we see also that

(AB IC) _ ( B IAC) (A IC) .

From these two equations, we derive Bayes' theorem:

2

(2.1)

(2.2)



(A IW) 
= BBAC 

( A 1 C )
	

(2.3)

According to Jeffreys,4 it 	 theorem is to the theory of probability

what Pythagoras's theorem is to geometry." It is the basic algorithm

for up-dating judgements on the basis of new information.

Suppose, for instance, that C is an existing body of scientific

information and A is a certain hypothesis. A new sta;;ement B is

made as a result of a new observation. Then the probability of the

hypothesis A should be revised in accordance with Bayes' theorem.

Note that we shall need to consider the probability that the result B

could have been "predicted" on the basis of information C. For instance,

if B could be predicted with certainty on the basis of information C,

and therefore on the basis of information AC, so that (BIC) = 1 and

(BIAC) = 1, then the new knowledge has no effect on our evaluation of

hypothesis A. We may note also that, if (BIC) = 0, there is something

wrong with our information C. since B is incompatible with C, yet

B is observed to be true.

Another important point is that if (A IC) = 0, (A IBC) = 0. That

is, an impossible hypothesis remains impossible no matter what the evi-

Bence. Similarly, one may show that a certain hypothesis remains certain,

despite new information. This means that one must be very careful about

assigning probability zero or unity to any proposition, since this entails

that one may never change these estimates, no matter what subsequent in-

formation may turn up. Good s offers some shrewd advice on this point:

"Probability judgements can be sharpened by laying bets at suitable odds.

If people always felt obliged to back their opinions when challenged, we
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would be spared a few of the 'certain' predictions that are so f re

made." One must therefore be very cautious about making "certain" theo-

retical predictions or stating "certain" observational facts. Theorists

sometimes find a calculation to be wrong, and observers sometimes find

that their results are not supported by subsequent observations b% other

groups.

3. MODEL OF THE INDUCTIVE PROCESS IN SCIENCE

Equation (2.3) can be used to update scientific ,judgements in the

simple situation in which a theory could predict, for instance, the

reading which would he obtained from a particular measuring device. This

is not the usual situation in science. It may take a great deal of

thought and some compromise to find a quantity which can be both mea-

sured and calculated. Furthermore, although one thinks of measurement

as being the key process in exact sciences, many of the comparisons

between theory and observation are not normally expressed in terms of 	 ^	 1

measurable quantities. For instance, the nature of pulsars for some
1

time hinged upon the question, "Is a pulsar a white dwarf or a neutron

st a:-?"

To assist in setting up a model, let us consider a specific situa-

tion in which an observer, with a briefcase full of observational data,

and a theorist, with a briefcase full of calculations, agree to meet to

determine whether the observations support a particular theory. Let us

assume that the observer will entertain no criticism of his observations
a

from the theorist, and vice versa. Two problems arise: (a) How will they

communicate? and (b) Who will make the final decision?

^	 k	 I
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Let us suppose that the scientists are rational men and aware of

their own limitations. Then they may recognize that, although the ob-

server is excellent at his ,job, and the theorist is good at his, neither

feels properly qualified to bridge the gap. For this reason, they call

'	 in a third person who we will call the "referee".

The referee will see his goal as that of organizing the discussion

in such a way that information provided to him by the observer and the

theorist will lead to an unambiguous estimate of the probability that

the theory is correct, given the observational data. He will recognize

that, to make any progress, it is necessary to set up precise and meaning-

ful communication between his colleagues. We will assume that, after

due deliberation, the referee proposes the following scheme, and that

it is adopted.

There is to be an "interface" between information provided by th.:

observer and information provided by the theorist. The interface will

comprise a list of statements so chosen that each statement may be

either (a) a possible result of data reduction of observations, or (b)

a possible consequence of theoretical analysis of the hypothesis or

hypotheses under consideration. It is agreed that the observer will

assign to each statement S a probability (SIROX) based upon his

reduction R of his observations O, and that the theorist will assign

to each statement a probability (SIAHX) based upon his analysis A of

a hypothesis H. Here and elsewhere, X denotes the body of scientific

knowledge which both parties agree to accept without question. (Maxwell's

equations, the speed of light, etc., will usually come under this heading.)

It is agreed that no exchange of information is to be taken into account

5



except that which takes place at the interface. More specifically,

this means that the referee will note the probabilities which the ob-

server assigns to the specified statements, and the probabilities which

the theorist assigns to the statements. It is necessary for him to

'	 arrange the statements in such a way that he can arrive at the proba-

bility (HIAROX) that the hypothesis H is true on the basis of knorv-

ledge involving the theorist's analysis, the observer's reduction of

observations, and the "general knowledge" X.

In order to be able to complete his task, the referee will need to

set out further rules. We suppose that the following are proposed and

agreed to.

Statements are arranged in groups, and each group is termed an

"item". There is a finite set of items 1 0, a = 1 1 2, ..., A.

With each item Ia there is associated a group of statements which,

for present convenience, we assume to be finite in number. This set of

statements is represented by S
CM

, n = 1, 2, ..., Na . For any item,

the group of statements are to form a mutually exclusive and complete

set. That is, for any item Ia, it is logically demonstrable that one

and only one of the statements SCM is true. It follows, from the sum

rule of probability theory 3 that

N
a	

N

(Sooa 
IX) = 1 ,	 ( SCal IROX) = 1, etc.	 ( 3.1)

n=	 n=

It is, furthermore, to be agreed that neither the observer nob the

theorist will use information concerning one item in assigning probabi-

lities to the statements of another item.

6



We next assume that the referee has read the following statement

by Jeffreys: "We get no evidence for a hypothesis by merely working

out its consequences and showing that they agree with some observations,

because it may happen that a wide range of other hypotheses would agree

with those observations equally well. To get evidence for it we must

also examine its various contradictories and show that they do not fit

the observations. This elementary principle is often overlooked in

alleged scientific work, which proceeds by stating a hypothesis, quoting

masses of results of observation that might be expected on the hypothesis

and possibly on several contradictory ones, ignoring all that would not

be expected on it, but might be expected on some alternative, and. .:.aiming

that the observations support the hypothesis. . . . So long as alter-

natives are not examined and compared with the whole of the relevant

data, a hypothesis can never be more than a considered one."

The referee therefore persuades the theorist to revise his normal

working habits. Instead of taking one hypothesis and analyzing it

theoretically, he is asked to draw up a complete set of mutually ex-

elusive hypotheses H i , i = 1 1 2, ... I, and to subject each of theve

hypotheses in turn to an analysis.

It is likely that, after a few months, the theorist would call for

a new meeting, at which he would object to this procedure as being un-

reasonable and impractical. He could argtce that no mortal can specify

all the possible explanations of a natural phenomenon and that, even if

he could, he might have neither the time nor competence to examine the

hypotheses thoroughly. He also could quote Jeffreys ? to support his case:

"The chief advances in modern physics . . . were achieved by the method

7
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of Euclid and Newton: to state a set of hypotheses, work out their conse-

quences, and assert them if theY accounted for most of the outstanding

variation."

The referee is now faced with a dilemma. He foresees that, in order

to be able to use probability theory to evaluate any one hypothesis H,

he must be able to treat this hypothesis as a member of a complete set

of hypotheses. On the other hand, it is no use expecting the theorist

to draw .p such a complete set, much less analyze them all.

The observer might point out that one can always form a complete

set by adding to the hypothesis H the statement H (H not true), but

the theorist can retort that this is of no help unless H can be ex-

pressed as one or more specific calculable hypotheses.

In the end, the referee and the theorist might arrive at the follow-

ing solution. If the theorist can think of a set of exclusive hypotheses

Hl , H2 , ... H I , each of which he is able and willing to calculate, it is

formally possible to add a hypothesis HO which is to represent whatever

r	 hypotheses may be necessary to make HO, H11 ... HI a complete set. This

causes difficulty only if the theorist is to be asked to make a sensible

calculation of the consequences of HO . In order to avoid this impossible

task, it is agreed that this hypothesis is to be subject to a "cull"

analysis AO which gives no information whatever about the consequences

of the hypothesis to which it is applied. If the theorist is allowed

to express complete ignorance concerning the outcome of the hypothesis

HO, he need not concern himself with what HO really means. We will

simply assume that, for each item Ia, the probabilities of the various

statements (S. IAOHOX) are to be chosen so as to be "maximally non-

committal", subject only to restrictions imposed by the information X.

8
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the manner in which one may ascribe "maximally noncommittal" values to a

set of statements, taking account of' possible information about the state-

ments, his been discussed by Jaynes.

At this point, to simplify the mathematics, we suppress the symbol:

A and R (but we should remember that they are implicitly always pre-

sent) so that in referring to a hypothesis H we have in mind a particular

theory of that hypothesis, and in referring to an observation O we have

in mind certain reduction of that data. In accordance with this change

in notation, we may refer to H 0 as either the "null hypothesis" or the
"null theory".

In passing, it may be noted that it is not an acceptable procedure

to identify (Sam
 IA0H0X) with (Sam IX) for the following reason. Since

the hypotheses H0 , H l , ... H I form a complete set, we know that H0 +
H 1 + ... + H I is true, where the summation sign here indicates a
"logical sum", i.e. "and/or". Hence

4
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(S^	 Hi IX = (S., IX	 (3.2)

On noting that the hypotheses H 0 , Hi , ... HI are mutually exclusive,
we see from the sum rule of probability theory 3 that

	

I	 I

S	 Hi IX =	
an

SHi I X	 ( 3.3)
	i— 	 i=0

We may now use the product rule 3 to write

(S n , I X ) _ ( S^ IHiX)( Hi I X ) ,	 (3.4)

r—



so that

(S Cal IX) _( s,, IH iX ) ( H i I X ) .	 ( 3.rl:z)t
If we make the choice

( S^, OX) _ ( ^ 	 I^^)	 ( 3.6)

we see that

(Sam I HOX ) _ [ 1	 (HO I X ) ] -1	 (SCn IHiX) (Hi I X ) •	 ( 3.7)
i=1

It follows from this equation that if a particular statement Satn , is

impossible on the basis of hypotheses Hl , ... HI , then it must: be

considered to be impossible on the basis of hypothesis H O also. This

is an unacceptable restriction on the interpretation of the null theory

represented by H0 , so that we should not identify (SCal IHOX) with

(SCL1nIX).

The model which we have now developed, for the interplay of obser-

vation and theory in scientific research, may be represented schema-

tically as in Figure 1.

4. EVALUATION BASED ON ONE FACT

We now consider the simple case that the theorist and observer

agree that their work may be compared by considering only one item com-

prising a complete and mutually exclusive set of statements S l , S21

..., Sn . The observer has represented his knowledge of these statements,

f	 1
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based on reduction of observational data O, by the probabilities

(S JOX). The theorist has drawn up a set of hypotheses, which we assume

o include a null hypothesis,H ey , Hi , ..., H I . On the basis of his

analysis of hypotheses H l , ..., H I , and of his professed ignorance of

the implications of H,,, he has prepared the set of probabilities

`Sn IH iX), i = 0, 1,

The referee is required to calculate ( Hi IOX), the "post probabi-

lities" of the various hypotheses as determined by the prior information

and the observations 0, following the rules set down in the previous

section. In order to proceed, "prior probabilities" (H i IX) must be

assigned to the various hypotheses on the basis of the general know-

ledge	 X	 alone. We will assume that everyone will attempt to be as

open-minded as possible with the aim of making the prior probabilities

as noncommittal as possible.

Since the statements S 	 are mutually exclusive and form a com-

r—

plete set, we may write

(Hi IOX) = Hi ESn IOX
n

Again using the sum rule of probability theory, this equation becomes

(Hi lox) = E (HiSn IOX)	 ( 4.2)
n

The product rule enables us to rewrite this equation as

(Hi IOX) _	 (Hi ISnOX)(Sn IOX)	 (4.3)	 II
n

11



According to the rules set up in Section 3, the connection between

the hypotheses and the observations occur only via the statements Sn.

If it is asserted that S11 is true, all other knowledge about the ob-

servations is irrelevant, as far as the hypotheses are concerned. This

property of our model therefore implies that

(Hi IS nOX) = (Hi I SnX ) •	 ( 4.4)

In consequence of which equation (4.3) becomes

( H i IOX)	 (Hi ISnX)(Sn IOX)
n

At this stage we use Bayes' theorem (equation 2.3) to obtain the

following equation:

(Hi I S n X) = (Sn IHiX) ( H i IX) .
^n X (4.6)

This step introduces the probabilities (S n IX), which do not appear

among our given data. It is at this point that we profit from the

assumption that the hypotheses HW Hl , ..., H I are mutually exclusive

and form a complete set. We saw in Section 3 that these assumptions

lead to equation (3.5), which is now written as

(Sn IX) _ ^ ( sn IHiX) (Hj IX)	 ( 4.7)
J

On combining equations	 and (4.7), we finally arrive at

r	 12
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(H OX) _	
(Sn IHiX)(Sn IOX)	

(H 
X) •	 (4.8)

it	 (S H	 H X	 iIn l^ X) (^^)

This formula for the post-probabilities (H i IOX) involves only the

prior probabilities (Iii IX) and the probabilities of statements Sn

as determined on the one hand by reduction of the observations 0 and

on the other hand by analysis of the hypotheses H i . It is easily veri-

fied that

i 
(Hi IOX) = 1
	

(4•`))

In scientific work, the comparison of theory and observation often

involves consideration of continuous variables, which means that we

must consider continuous sequences of statements. For instance, the

statement S may be the statement that the measurable quantity %6
V

has the value F(v). If we now denote by " Sv to Sv+dv' the logial

k"	 sum of all statements enumerated by v as it runs from v to v+dv,

we can introduce the notation

(S v to Sv+dv IHiX) _ (Sv IHiX) 
v 

dv , etc.	 (4.10)

Using this notation, and replacing the summation sign in equation (4.8)

by an integration sign, we obtain the formula

d (Sv 
IHiX) 

v(Sv 
IOX) v	 H 

X .(H IOX)	 v	 (	 I )	 (x+.11)i (S IVIHJX) v(H J IX)	 i

13
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Similarly, a theory may have one or more adjustable parameters.

This possibility may be treated by supposing that we are dealing with

a continuous sequence of hypotheses H,, where X is a continuous

variable. With the notation

(H% to HX+dX IX) = (HX IX) X dX, etc.,	 (l+.12)

equation (4.8) becomes

(Sn 
IH , 

X)(Sn IOX)
(H^ IOX)^ _ ^	 ^	 (H^ IX)^	 (4.13)

f
d4( sn IH4X) (Hµ IX)µ

r;. EVALUATION BASED ON MANY FACTS

We now consider how one might combine information obtained from

several items. We assume that these items are "independent", in the

sense specified in Section 3.

We introduce the symbol Fa to denote the "fact" associated with

observational evidence concerning item I a. Thus the fact Fa comprises

the set of probabilities (S an IOX), n = 1, ..., Na.

We now suppose that a group of hypotheses Hi have been evaluated

in terms of two facts F 1 and F2, considered separately and indepen-

dently. In this way we have arrived at probabilities which may be

written as (Hi IF 1X), (Hi IF2X). The problem which we now consider is

that of determining the probabilities (Hi IF1F2X). The sense in which

Fl and F2 are considered to be independent is the following: know-

ledge of F 1 will influence our interpretation of F2 only through the

effect which F 1 has on our evaluation of the hypotheses H i and the

14
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influence of knowledge of hypotheses H i on our interpretation of F2,

and convers3ly.

We first note that ( H i IFIF2X) may be expressed as follows:

(HiFl IF2X)
(H i IF1F2X) F1  2X7_F X	 ( 5 ' 1)

By an argument parallel to that leading to equation (4.4), we sce that

(HiFl I F2X ) _

	

	 (HiFl IH,F2X)(Hi IF 2X)(5.2)
J

and

(Fl IF2X) _	 ( Fl I H;F2X ) ( Hi I F2X )	 ( 5.3)

We now note that the first term on the right-hand side of (5.2) may be

expressed as

(H i Fl IH;F2X) = (H i  I FlHi F2X ) (Fl IHi
F2X) .	 (5.4)

However, since the set of hypotheses is assumed to be mutually exclusive

and complete,

(Hi IFlHiF2X ) = 8ij .	 (5.5)

Furthermore, our specification of the sense in which F 1 and	 F2	 are

taken to be independent implies that

15



(H I F X)

(F2 IHjX)	 HX.

	
(F IX)

J

cations (5.2) through (5.7) that equation (5.1) may be

(Hi I F 1X )( Hi I F2X )[ ( Hi I X ) ]-1

IF 1F2X)	 15.8)

^(Hi IF 1X)(H
,7 

IF2X)[ (Hj IX) ]-
1

J

;forward matter to prove (by induction;) that the general

( Hi IF 1X)...(Hi IFAX)[(Hi
 IX)]-(A-1)

..FAX) _	 (5.0)

( H
i 

IF 1X) ... (H J IFAX)[ ( H
i 

IX) ]-(A-1)

Ls equation that

2:(H, IF, ...F AX) = 1	 (5.10)

i

the notation introduced at the end of Section 4, we

;ion (5.9) for the case that the hypotheses must be

continuous variable.

16
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If we now note from Bayes' theorem that

( F l I H
i

F 2 X ) = ( Fl I H
j

X ) .



DISCUSSION

An example of the application of the foregoing procedure to the

evaluation of a scientific problem is presented in a subsequent article.

However, there are a few lessons to be drawn from this exercise which

may be stated briefly.

1. Comparison of theory and observation requires an interface.

The definition of an interface is a job neither for the theorist

nor for the observer, but for both.

2. We know we must be cautious about accepting a theorists' analy-

sis of his hypothesis. We must be cautious also if an obser-

ver draws inferences which are not plainly deducible from his

data.

3. We may assign to a set of statements an "entropy" E given by

E _ -	 pnlnpn	 (u .l)
n

where p
n 

are the probabilities defined either by observations

or by analysis of a hypothesis. More evidence is provided by

a low-entropy fact, which may be termed a "hard fact", than by

a high-entropy fact (a soft fact). Similarly one can make a

more definite appraisal of a theory if it leads to hard (low-

entropy) conclusions rather than soft (high-entropy) conclusions.

4. To get a good test of a theory, it is necessary to compare one

or more hard facts with one or more hard conclusions. In the

case that we are matching a hard fact with a weak conclusion,

or vice versa, we are no better off than if we were comparing

a soft fact with a soft conclusion. In this case we could say

17
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y to be biased by knowledge of the observations. The

n that great weight is attached to predictions is that

are manifestly free from bias. It is equally important

facts stated by an observer should be free from bias due

owledge of theory, but theorists are not so concerned

this possibility that they demand observers to make

vations before a theory is proposed. There is in fact

ble standard applied to theorists and observers. However,

uld be difficult to demand at the same time both predic-

by the theorists and "pre-observation" by the observers.

the null theory assigns a non-zero probability to each

,meat, no combination of observational evidence will ever

e to zero the post probability of the null theory. This

that (as long as the null theory is one of the admitted

bilities) none of the specified theories can ever be con-

vely established. Hence a specific theory can be proved

sect by appropriate evidence, but it cannot be proved

,c t .

erefore appears that the normal situation concerning a

tific phenomenon is that there is never a "correct" theory -

is at best a currei?tly accepted theory. If, however,

;planation comes to be so well accepted that the phenomenon

defined theoretically, then what was a phenomenon becomes

18

that the strength of the inference is "theory limited" or

it
	 limited", respectively.

5. It is generally recognized that theorists' conclusions are



merely a theoretical construct to use in the evaluation of real

phenomena.

8. Although the present scheme for evaluating scientific theories

and weighing scientific evidence has been presented as a dia-

logue between a theorist and an observer, with a referee to call

the scores, the scheme can prove helpful when only one person

is involved, The rules which have been set out will then enable

him to identify and classify the various judgements which he

must make. Although it will not remove all bias, it may make

his bias more evident, and so make it somewhat easier to keep

himself honest.

An article which applies this model of the scientific process to

the evaluation of pulsar theories will be published shortly.

19
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Figure 1.

Schematic Representation of Model used °,r

Evaluation of

Relationship between Theory and Observation
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