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Abstract 

MHD generators a re  uniquely capable of f u l l y  

Exten- 

Such re -  

exploiting advances i n  high-temperature reactor 
technology for e lec t r i c  power generation. 
sion of NEFiVA technology could make 2500 IC long- 
l i f e  inert-gas-cooled reactors feasible. 
actors and MHD generators mate i n t o  a t t r ac t ive  
m u l t i - M W  e l ec t r i c  power systems fo r  e i the r  Cpace or 
ground ap@ications. A turbo-MHD system using a 
turbine driven compressor i s  the most a t t r ac t ive  
cycle. 
t o r  area and temperature fo r  space applications. 
space-power system with 10 PM e l ec t r i c  output, 
shielded for manned missions, could achieve speci- 
f i c  m9sses of 3.5 t o  5 kg/kWe. A ground-power sta- 
t i on  with 60 percent efficiency a l so  appears feas i -  
ble. 

It has high cycle efficiency and l o w  radia- 
A 

Introduction 

The NEFiVA program has resulted i n  major ad- 
vances i n  the technology of high 6emperature reac- 
tors.  A s  discussed by Kolman and Way,l long-life 
inert-gas-cooled reactors with 2500 K ou t le t  tem- 
peratures may be on the horizon of feas ib i l i ty .  
The high temperature capabili ty of MHD systems 
gives them an inherent advantage over turbo-electric 

~ 

0 power systems i n  exploiting t h i s  high-temperature 
M 
CD reactor technology. 
w 

MHD generators a re  potentially e f f i c i en t  only 
a t  m u l t i - M W  power levels.  Shielded reactor speci- 
f i c  masses, also, improve with higher power level.  
Thus, MHC generators and nuclear reactors naturally 
mate in to  a t t r ac t ive  multi-MW e l e c t r i c  power sys- 
tems. These nuclear-MHD systems would be a t t r ac t -  
ive both for  manned-electric -propulsion missions 
and for  t e r r e s t r i a l  applications. 

Various thermodynamic cycles can be considered 
fo r  MHD power systems. In  the authors' opinion, 
the most a t t r ac t ive  cycle i s  the combined turbo-MHD 
cycle (Fig. 1). A schematic of the components of 
t h i s  cycle i s  shown i n  Fig. 2. This cycle i s  
similar t o  tha t  considered recently by Bghn e t  a l  
and M i l l i o n s ~ h i k o v ~  fo r  nuclear-MHD ground-power 
stations.  

2 

The proposed turbo-MW cycle uses recuperators, 
an inner-cooled compressor, and turbine reheat t o  
improve the cycle efficiency. The turbine output 
i s  used t o  drive the  compressors. A Brayton cycle 
with only an MHD generator, such a s  was considered 
i n  Ref. 1, would require an e l ec t r i c  motor t o  drive 
the compressor. 
motor power would be approximately three times the 
net e l ec t r i ca l  power. 

For typ ica l  cycle conditions the 

The analysis of Ref. 4 indicates this turbo- 
MHD cycle has high efficiency fo r  both space and 
ground applications. This cycle, i n  addition, 
makes use of conventional turbine technology and 
minimizes the required temperature and pressure 
r a t io s  i n  the MKD generator expansion. For minimum 
radiator-area space systems t h i s  turbo-MHD cycle 

a l so  has r e l a t ive ly  low radiator area and tempera- 
ture. 

This study reviews the performance of the 
turbo-MHD cycle and compares it with the equivalent 
Brayton-MHD and Brayton-turbo-electric cycles. For 
the MHD cycles, a top temperature of 2500 K i s  
assumed and two working f lu ids  are considered: cesi-  
um seeded neon and xenon seeded neon. 
seed gives the bes t  possible e l ec t r i ca l  conductivity, 
whereas, the xenon seed gives a completely i n e r t  
working fluid.  For the cycles with turbines, two 
turbine-inlet  temperatures are considered: 1500 and 
1250 K. 

The cesium 

The cycle temperatures, e f f ic ienc ies ,  and spe- 
c i f i c  radiator areas are compared f m  these various 
space-power systems. 
MHD system i s  a l so  presented for ground-power plants. 

The specific masses of man-shielded 10 MW eLec- 

The efficiency of the turbo- 

t r i c  space-power systems are  estimated. A b r ie f  
discussion i$ then presented of the technology of 
the  two most c r i t i c a l  components of such an MHD sys- 
tem: the reactor and the MHD generator-magnet system. 
Included i n  t h i s  discussion i s  a possible modifica- 
t i on  of the turbo-MHD cycle t o  minimize the problems 
associated with alkali-metal-seeded generators and 
reactor f i s s ion  product release. 

Turbo-MHD Cycle 

I n  the turbo-MHD cycle proposed herein (Fig. 1 
and 2 )  the working f l u i d  i s  heated i n  a reactor t o  a 
top temperature T w .  The f l u i d  then adiabatically 
expands through an MHI) generator which ex t rac ts  the 
useful e l ec t r i c  power. The f lu id  then flows through 
the hot sides of the turbine reheater and high tem- 
perature recuperator, enters the f i r s t  turbine a t  a 
temperature TTm, i s  expanded, reheated t o  TTm, 
expanded through the second turbine, and flows 
through the hot side of the low temperature recuper- 
ator.  
cooler) down t o  the compressor inlet temperature 
T C O ~  
stages and i s  then preheated before entering the 
reactor i n  the cold sides of the low and high tem- 
perature recuperators. I n  the analysis of t h i s  
cycle the f l u i d  flow through a l l  components except 
the generator, turbine, and compressor occur a t  
nearly constant pressure (see Fig. 1). Fr ic t ion  
losses are accounted for by assuming tha t  the frac- 
t i ona l  pressure drops, ( 6  = Ap/p) a re  equal i n  the  
s ix  nearly constant pressure processes shown i n  
Fig. 1. 

a s  the r a t i o  of the e l ec t r i c  power oufput, Pe, t o  
the power tha t  would be produced i n  an isentropic 
expansion through the generator expansion r a t io ,  
1/(1-6)rGEW The turbine efficiency, q T m ,  and 
expansion r a t io ,  l /( l-6)rTm, are  assumed equal for  
both turbines. The overall  cycle compression r a t io ,  
r, i s  defined a s  the r a t i o  of the compressor out le t  
pressure, %, t o  the turbine out le t  pressure, pL. 
Each of the three compressors i s  assumed t o  have the 

The f lu id  i s  then cooled ( i n  the primary 

The flow i s  compressed i n  three intercooled 

The MHD generator efficiency, qG N, i s  defined 
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same i n l e t  temperature, compression ra t io ,  and 
efficiency (qcoMp). The compressors consume the 
t o t a l  power output of the turbines. 
reheater and the high temperature recuperator, a 
f rac t ion  of the t o t a l  thermal power being trans- 
fered i s  assumed los t .  The l o w  temperature recu- 
perator has an effectiveness of qr. I n  most prac- 
t i c a l  systems, a l l  the coolers i n  the cycle would 
most l i k e l y  be gas t o  l i qu id  heat exchangers. How- 
ever, for  simplicity, no temperature drop has been 
accounted fo r  between the gas working f lu id  and a 
f i n a l  heat sink ( for  space systems the radiator).  
The assumed values fo r  the performance of the cycle 
components a re  summarized i n  Table 1. 

Cycle Efficiency 

For both the 

Following the analysis of N i c h o l ~ , ~  the over- 
a l l  cycle efficiency, q, of the turbo-MHE cycle i s  
given by 

where G, B, and C a re  dimensionless parameters 
proportional t o  the generator, turbine, and com- 
pressor power respectively and are  given by the 
following: 

f 

The condition t h a t  the turbine power equals the 
compressor power gives 

The overall  cycle compression r a t io ,  r, i s  

(5) 

Ground Power Station 

For a turbo-MHD ground-power station, the com- 
pressor-inlet  temperature, TCOM~, i s  assumed t o  be 
equal t o  the available heat-sink temperature. For 
the cycle evaluated herein, a heat-sink temperature 
of 300 K i s  assumed. This would correspond t o  the 
temperature of ambient cooling water. An a i r  
cooled convector radiator could a l so  be used a s  a 
heat sink; however, i t s  temperature would be some- 
what higher. 

For the assumed compressor-inlet temperature, 
the generator and the turbine expansion r a t io s  can 
then be evaluated from Eqs. (5) and ( 6 )  using 
Eqs. (3) and (4). Substi tution of these compres- 
sion r a t i o s  i n t o  Eq. (1) using Eqs. (2) through (4) 
yields the efficiency of the  ground-power station. 

For a given temperature reactor and turbine, the  
cycle efficiency i s  a function of the MHD generator . 
efficiency, the cycle compression r a t io ,  and the 
f rac t iona l  pressure drop, 6. 

The parametric var ia t ion  of the  cycle e f f ic ien-  
cies,  of turbo-MHE ground power s ta t ions  having re- 
actor temperatures of 2500 K and turbine tempera- 
tu res  of e i the r  1500 or 1250 K a re  shown i n  Figure 3. 
It indicates how the efficiency var ies  with each of 
the  cycle parameters. 
sensit ive t o  the  generator efficiency and the recur 
perator effectiveness. The crossing of the two tur -  
bine temperature curves a s  a function of 
results from the f a c t  t ha t  f o r  each recuperator e f -  
fectiveness there i s  an optimum turbine temperature. 
Figure 3 shows that an overall  cycle efficiency of 
above 60 percent should be obtainable with a 2500 K 
turbo -MHD ground- power station. 

The efficiency i s  the most 

7, 

Space Power System 

For a space-power system the compressor-inlet 
temperature i s  adjusted t o  obtain the optimum speci- 
f i c  radiator area ( rad ia tor  area, Am, divided by 
the output e l ec t r i c  power, P.). For simplicity, the 
generator and turbine expansion r a t i o s  are assumed 
equal. The specific radiator area can be expressed 
a s  

Where E i s  the radiator emissivity (assumed 0.9), 
CI is  the Stephen Boltzman constant, and a i s  a 
dimensionless parameter r e l a t ing  the effective-radi-  
a tor  and reactor temperatures with the power output. 
This parameter may be writ ten as: 

assuming tha t  the radiator i s  radiating t o  absolute 
zero and there i s  no temperature difference between 
the radiator and the working f l u i d  i n  the coolers. 

Using Eqs. ( 7 )  and (8) and Eqs. (1) through (5), 
leads t o  se t t i ng  a compression r a t i o  (hence a l so  a 
compressor-inlet temperature) which minimizes the 
specific radiator area. This minimum value of spe- 
c i f i c  radiator area decreases with decreasing frac- 
t i ona l  pressure drop, 6. However, the low-tempera- 
tu re  recuperator specific area increases with de- 
creasing f rac t iona l  pressure drop (because of 
reduced heat t ransfer ) .  The specific area of the 
low temperature recuperator i s  

where .5? depends upon the same parameters a s  a 
and is  given by: 

2 



and the values of the other quantit ies i n  Eq. f9) 
used herein a re  given i n  Table 2. 

I f  a value of specific recuperator area i s  
chosen, Eq. ( 9 )  f i xes  the specific recuperator pa- 
rameter 9. Then Eq. (10) provides a relationship 
between the overall  compression r a t io ,  r, and the 
f rac t iona l  pressure drop, 8. Using t h i s  relation- 
ship i n  Eq. (E), one obtains the r and 8 values 
which minimize a. 

Figure 4 shows the  specific radiator area as a 
function of cycle efficiency for  space power sys- 
tems having a specific recuperator area of 0.374 
m2/kWe, 
1500 K, and MHD generator e f f ic ienc ies  of 80 percent 
(cesium seed) o r  55 percent (xenon seed). These 
a re  considered t o  be the reasonable upper limits 
achievable fo r  these two seed materials. The char- 
a c t e r i s t i c s  and technology of the generator a re  
discussed i n  more d e t a i l  i n  a later section of t h i s  
paper. Also shown i n  Fig. 4 a re  the equivalent 
cwves fo r  all-MHD cycles with cesium and xenon 
seeds, i .e.  cycles i n  which the compressor i s  driven 
by an e l ec t r i c  motor which i s  powered by par t  of 
the  output of the MHD generator. Also shorn i n  the 
figure i s  a curve f o r  a turbo-electric power system 
with a reactor-outlet  temperature of 1500 K. 
1250 K turbo-electric system was a l so  considered, 
but it i s  off the scale of Fig. 4. 

turbine-inlet  temperatures of 1250 or 

A 

A s m r y  of the cycle parameters for  t ha t  
system and the other power systems shown i n  Fig. 4 
f o r  the minimum specific radiator area points i s  
given i n  Table 3. Table 3 shows t h a t  the most at-  
t r ac t ive  features of the turbo-MHD space-power sys- 
tem are (1) the high cycle efficiency, ( 2 )  the r e l -  
a t ive ly  l o w  radiator area, (3) the re la t ive ly  low 
radiator temperature compared t o  the high perform- 
ance all-MHD system, (4) the low r a t i o  of compressor 
power t o  net e l ec t r i ca l  power, (5) the r e l a t ive ly  
l o w  temperature and pressure r a t io s  required i n  the 
MHD generator expansion, and (6)  the lower sensi- 
t i v i t y  of the cycle performance t o  the MHD generator 
seed than the all-MHD system. 

Mass Estimates 

Reactor Plus Shield 

To estimate the mass of the reactor plus 
shield of a ten  megawatt man shielded system the 
approximate method presented by Moeckel5 was  used. 
A cy l indr ica l  reactor having an L D of one and a 
thermal power density of 100 W/cm was assumed. 
The two shield configurations shown i n  Fig. 5 were 
considered. The first i s  a 10' included angle 
shadow shield. The second configuration i s  a shad- 
ow plus peripheral  shield. Both shield configura- 
t ions  use an inner tungsten shield t o  reduce the 
dose from gamma radiation and an outer lithium hy- 
dride shield t o  attenuate the neutron dose. To 
make the mass estimates a t o t a l  dose r a t e  of 
rem/hr i s  assumed a t  the surface of the shadow 
shields and a dose r a t e  of 1 rem/hr i s  assumed a t  
the surface of the peripheral shield. Additional 
attenuation of these dose r a t e s  would occur i n  prac- 
t i c a l  systems due t o  both distance and any cabin 
shielding. 

5 

Using the above assumptions and the approximate 
method of Moeckel one obtains the r e s u l t s  shown i n  . 
Fig. 6 f o r  the  specific mass of the  reactor plus 
shield a s  a function of reactor thermal power level.  
For comparison purposes, a l so  shown i n  Fig. 6 a re  a 
number of specific masses calculated fo r  more de- 
t a i l e d  man-shielded reactor studies. 6 J  7 9 8 J 9  The 
open symbols are f o r  shadow shielded reactors,and 
the so l id  symbols a re  f o r  reactors designed with 
both a shadow and a peripheral shield. A s  indicated 
i n  the figure,  the  approximate method of Moeckel 
appears.to give quite adequate estimates of the 
reactor plus shield specific mass. This study w i l l  
use both curves of t h i s  f igure f o r  estimating reac- 
t o r  plus shield mass. 

Radiat'or 

The radiator mass i s  estimated on the bas i s  of 
a 8.4 kg/m2 specific mass. This value was calcula- 
ted  by Haller and LiebleinlO for  a vapor-chamber 
fin-tube radiator fo r  a Rankine power system with a 
37.6 m2 radiating area a t  945 K. Their radiator 
makes use of segmented vapor-chamber f i n s  but the 
tubes and headers a re  not segmented. The radiator 
mass breakdown i s  18 percent headers, 53 percent 
tubes, and 29 percent f ins.  

Analyses such a s  Ref. 10 would y ie ld  substan- 
t ua l ly  higher specific masses for  the la rge  
(-lo3 m2) r ad ia tors  required herein. This r e su l t s  
primarily f romthe  increased armor thickness re- 
quired f o r  the la rger  rad ia tors  t o  obtain the same 
tube and header nonpuncture probabili ty fo r  meteroid 
impact. I n  the  authors opinion, t o  accept such a 
specific mass penalty fo r  la rge  radiators i s  not 
r ea l i s t i c .  I f  the vapor-chamber f i n  segments of a 
la rge  radiator were constructed ident ica l ly  t o  those 
of Ref. 10, then the probable percent surviving 
(Le. not penetrated by meteorites) would not vary 
with radiator s ize  and the probable s t a t i s t i c a l  de- 
v ia t ion  would decrease fo r  la rger  radiators.  By 
a l so  segmenting the  tubes and headers of a la rge  
radiator,  t h e i r  percent contribution t o  the  radiator 
mass should eas i ly  be maintained a t  the 7 1  percent 
calculated fo r  the smaller radiator of Ref. 10. 
Johnsen= indicates how segmenting the tubes of a 
tube-fin radiator lowers i t s  mass. The authors 
opinion i s  therefore t h a t  the rad ia tor  specific mass 
(8.4 kg/kW) assumed for  t h i s  study may be pessimis- 
t i c  since it i s  based on a radiator with good f i n  
design but with tubes and headers t ha t  may be 
heavier than required. 
herein, also, may be l i gh te r  because of t h e i r  lower 
temperature. 

Other Components 

The rad ia tors  required 

The other components considered i n  making a 
system mass estimate a re  the  low-temperature recu- 
perator, the magnet plus MHD generator, and the 
turbine-compressor. The masses of the high-tempera- 
t u re  recuperator and the reheater are not considered 
because they have a la rge  
cold sides of the  heat exchanger (>300 K ) ,  they 
should, thus, be much l igh te r  than the low-tempera- 
tu re  recuperator. 

between the hot and 

The mass of a low-temperature recuperator was 
estimated on the bas i s  of i t s  area and an assumed 
specific mass per unit  area. The specific mass per 
unit  area used herein i s  3 kg/m2. This would corre- 
spond t o  constructing the recuperator heat t ransfer  
surfaces with 15  mi l l  steel .  This specific mass per 
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uni t  area i s  consistent with t h a t  analyzed by 
Freedman7. National Laboratory. 

’ bead design i s  being investigated by Oak Ridge 

The mass of the magnet plus MKD generator was 
assumed t o  be 0.45 kg/kWe (1 lb/kWe). This mass 
estimate appears t o  be reasonable based upon the  
technology of megawatt combustion generators and 
t h e i r  superconducting magnets. The technology of 
the generator and magnet i s  discussed i n  more d e t a i l  
i n  a later section of t h i s  paper. 

The mass of the turbine plus compressor i s  es- 
timated on the bas i s  of the t o t a l  compressor power 
times a specific mass per unit compressor power. 
This specific mass i s  assumed t o  be 0.45 kg/kW 
(“314 lb/np) of compressor power. 

Total System Kiss 

With the above assumptions the t o t a l  system 
masses of the turbo-MHD space power systems can be 
estimated i f  one assumes a l o w  temperature recuper- 
a tor  specific area and the e l e c t r i c  power output. 
However, the  resu l t ing  masses of the  recuperator and 
the radiator are respectively increasing and de- 
creasing functions of the recuperator specific area. 
Thus, t o  evaluate the mass of the four turbo-MHD 
cycles f a i r l y  the specific area of the recuperator 
was chosen fo r  each case so a s  t o  minimize the t o t a l  
mass of the recuperator plus radiator. The resu l t -  
ing parameters fo r  the various cycles a re  tabulated 
i n  Table 4. 

The t o t a l  masses were then estimated f o r  10 Me 
space power systems using the four turbo-NW cycles 
of Table 4. The component and t o t a l  specific mass 
f o r  the four cycles, each with the  two shielding 
configurations, are l i s t e d  i n  Table 5. The t o t a l  
specific masses of these power systems are a l l  quite 
low. A s  indicated previously, they have r e l a t ive ly  
low radiator areas and high cycle efficiency. They 
are, thus, po ten t ia l ly  very a t t r ac t ive  space-power 
systems, and would lead t o  a t t r ac t ive  e l ec t r i c  
rockets fo r  fu ture  manned-planetary exploration o r  
other high-payload missions. 

Cr i t i ca l  Component Technology 

Reactor 

To construct the  reactor assumed i n  the  analy- 
sis herein would be a significant technological 
achievement. The only reactors t ha t  have been oper- 
ated t o  a temperature of 2500 K are those tes ted  t o  
es tab l i sh  the  MRVA technology. 
have, of course, only demonstrated short time 3pera- 
t i o n  at these high exhaust gas temperatures. 
ever, replacement of the highly active hydrogen 
coolant used i n  NERVA with an i n e r t  gas and reducing 
the power density two orders of magnitude (that re- 
quired fo r  the power applications herein) should 
r e su l t  i n  greatly increased endurance capability. 

These reactors 

How- 

The NERVA reac tors  fue l  element i s  constructed 
from many t iny  pyro carbon coated UC2 beads dis- 
persed i n  a graphite matrix.6 Although the existing 
NERVA f u e l  beads would probably not be adequate f o r  
the long-life high-temperature reactors envisioned 
herein, the poten t ia l  of developing suitable ad- 
vanced technology beads appears promising. 
technology of such super beads i s  being investigated 
at General Atomics i n  conjunction with Los Alamos 
Scient i f ic  Laboratories. An a l te rna t ive  advanced 

The 

A schematic of a possible NEBVA technology reac- 
t o r  configuration6,12 fo r  a power system i s  shown i n  
Fig. 7. Although t h i s  reactor was designed f o r  much 
lower reactor ou t le t  temperatures (less than 1500 K )  
than is  desired herein, it represents a general con- 
figuration and control technique that might be 
useable. For 2500 K applications, however, addi- 
t i o n a l  insulation and cooling may be required. 
Also, some, of the  low temperature materials i n  the 
design would need t o  be replaced. 

. 

Two major complications of using these graphite 
reactors f o r  turbo-MHD power systems are  the f i s s ion  
product release and the incompatibility of a l k a l i  
metals w i t h  very high temperature graphite. Both 
these problems could be avoided i f  separately vented 
tungsten clad uranium dioxide or  uranium n i t r ide  
fuel elements could be used fo r  the  reactor. Such 
elements, however, have not demonstrated the high 
temperature capabili ty desired f o r  t h i s  application. 
Future technological improvements might make them 
useable for  t h i s  application. 

A promising technique fo r  minimizing the pre- 
ceding problems i s  t o  modify the turbo-MHI) cycle by 
separating it i n t o  two loops. One such cycle i s  
shown i n  Fig. 8. Physically, a heat exchanger has 
been inser ted  between the MHD generator loop and the 
turbine loop. The resu l t ing  two-loop cycle confines 
the f i s s ion  product t o  the MHD generator loop which 
contains only one ro ta t ing  piece of equipment, a 
compressor. This cycle a l so  permits a l k a l i  seed t o  
be injected in to  the working f l u i d  between the 
reactor and the MHD generator and allows it t o  be 
condensed i n  the cooler preceeding the compressor. 
A s  a resu l t ,  neither the reactor nor the compressor 
i s  required t o  operate with an alkali-seeded working 
fluid.  
f romthe  working f l u i d  a t  the  heat re jec t ion  temper- 
ature of a ground parer s t a t ion  has already been 
demonstrated i n  the la rge  German close-loop MHD 
generator experiment.13 For space-power systems, 
the  vapor pressure of cesium may be too high at the 
lowest temperature of the cycle, but condensing 
other a l k a l i  seeds such as li thium or possibly 
sodium should be practical .  
turbo-MHD space-power system with these seeds would 
s t i l l  be quite a t t r ac t ive  and would be closer t o  the 
performance of the  cesium system ra ther  than the 
xenon system studied herein. 
tage of a two-loop turbo-MHD cycle i s  tha t  the work- 
ing fluids and pressures i n  the two loops could be 
separately optimized t o  achieve the maximum t o t a l  
system performance. The disadvantage of the two- 
loop system i s  tha t  it requires an additional heat 
exchanger which would be similar i n  mass t o  the low- 
temperature recuperator. 

The p rac t i ca l i t y  of condensing cesium seed 

The performance of a 

One additional advan- 

MHD Generator 

There are a t  present two la rge  closed-loop 
alkali-seeded inert-gas MHD generator experiments i n  
the world; one a t  the Lewis Research Center,14,15 
the other i n  Germany at Julichl’. Russian plans t o  
construct a t h i r d  la rge  closed loop experiment were 
recently announced. In addition, there a re  a number 
of blowdown, shock tube, and sma l l  arc  heated exper- 
iments i n  both the U.S. and Europe16 which a re  in- 
vestigating inert-gas alkali-  seeded MHI) generators. 
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Both of the  laxge closed loop MM) experiments 
a re  now producing some output power (approx. 100 w). 
A cut-away of the Lewis Research Center MHD genera- 
t o r  f a c i l i t y  i s  shown i n  Fig. 9. It makes use of a 
graphite res is tance heater t o  heat 1.8 kg/sec of 
argon (preheated i n  the recuperator) t o  a tempera- 
ture  of 2000 K. 
t he  stream i n  the channel between the  heater and the 
MHD duct. The MHD duct i s  segmented in to  28 elec- 
trode pa i rs  and the magnet provides a magnetic f i e l d  
of up t o  2 T transverse t o  the  stream. A t  present 
shorting paths between the conducting gas and the  
outer metall ic duct skin prevent more than a smaJl 
f rac t ion  of the  power generated i n  the duct from 
being extracted through the electrodes. 
changes t o  eliminate t h i s  problem are  being inves- 
tigated. The German loop a l so  appears t o  have 
shorting problems. I n  addition, t h e i r  experiment i s  
presently l imited t o  operating temperatures below 
1750 K and magnetic f i e l d  strengths below 1 T. 

The cesium seed i s  injected in to  

Duct design 

One important feature  of the  German loop i s  
the i r  cesium seed recovery system. They axe able t o  
recover more than 99 percent of the seed i n  a con- 
denser dovmstream of a recuperator and recycle the  
cesium in to  the  seed inject ion system which i s  in-  
side the i r  tantalum resistance heater. Several 
experiments ( the  German loop experiment, blowdown 
experiments i n  I t a l y  and the  U. S., and shock tube 
driven experiments i n  both the U.S. and Russia) 
appear t o  indicate  tha t  a process known as nonequi- 
librium ionization can be achieved i n  an a lka l i -  
metal- seeded inert-gas MHD generator. This process 
r e su l t s  from the f a c t  t ha t  the  electrons are the  
preferen t ia l  current car r ie rs  i n  a conducting gas. 
Since the electrons carry the current, they receive 
the res i s t ive  heating; thus, the electron tempera- 
tu re  i s  elevated above the bulk gas temperature. 
Hence, the conductivity of the gas (which increases 
with electron temperature) tends t o  be higher than 
tha t  appropriate t o  the  gas temperature. 
t o  which t h i s  process can be u t i l i zed  i s  l imited by 
the  growth of plasma ins tab i l i t i es .  
requirements fo r  obtaining nonequilibrium elevation 
of the electron temperature i n  an MHD generator are 
(1) the MHD generator must be segmented i n  the 
stream-wise direct ion t o  prevent flow of any axial 
current, (2)  the  working f l u i d  of the  MHD generator 
must contain no major molecular impurities. I n  the 
I t a l i an  generator,l7 an increase of a factor  of 10 
above the equilibrium conductivity value has been 
achieved. Their nonequilibrium e f fec t s  were l imited 
by axial voltage breakdown between segments at elec- 
t r i c  f i e l d s  of 38 V/cm. 

The degree 

Two necessary 

The generator must be segmented because the  
flow of a conducting gas through a magnetic f i e l d  
induces both a transverse and an ax ia l  e l ec t r i c  
f ie ld .  A generator can, however, be constructed so 
tha t  fo r  every cathode (electron emit ter)  there i s  
at a s ta t ion  fur ther  dawnstream an anode (e lec t ron  
col lector)  tha t  has the ident ica l  potential .  These 
equal potent ia l  anodes and cathodes may be e lec t r ic -  
a l l y  connected together without affect ing the gener- 
a tor  performance. The t o t a l  power output, the sum 
from a l l  the  electrode pairs ,  of such a diagonally 
connected generator i s  then extracted from a single 
upstream anode and downstream cathode. One simple 
method of constructing such a diagonally connected 
generator i s  t o  construct a c i rcu lar  duct from e l ip-  
t i c a l  electrode segments separated by insulators. 
This i s  cal led a diagonal wall  generator and of fers  
the simplicity of construction and two terminal 
operation. 

Using the bes t  MHD generator theory which in-  
cludes the  e f f ec t s  of plasma i n s t a b i l i t i e s  and the 
resu l t ing  fluctuations,  the s ize  and shape of the 
MHD generators fo r  the  space power systems consid- 
ered herein can be calculated by the procedure of 
Bishop and Nichols.18 
tor with an 80 percent efficieflcy having an input 
gas temperature of 2500 K at 10 a t m  and an i n l e t  
transverse magnetic f i e l d  of 10 T would have a 
length of a half  meter and an aspect r a t i o  of three 
f o r  a near sonic generator. 
defined as the length divided by the square root  of 
the  entrance area.)  To prevent aerodynamic choking 
i n  the  generator, the generator area must increase 
s l i gh t ly  through the generator. 
volume generator a t  nearly constant power density, 
the area should increase s l igh t ly  and the magnetic 
f i e l d  should decrease s l igh t ly  from the entrance t o  
the e x i t  of the generator. 

A 10 MW cesium seeded genera- 

(The aspect r a t i o  i s  

To obtain a minimum 

A number of superconducting magnets have been 
constructed f o r  combustion MKD generators. Figure 10 
shows a magnet f o r  a nominal 1 Mki combustion genera- 
tor .  This magnet w a s  constructed for the  A i r  Force 
by the Airco Temescat Division of the  A i r  Reduction 
Company. It has a design f i e l d  of 7 T and has a 
314 m length and can accept a 0.17 m diameter MHD 
duct. Its dewared weight i s  approximately 4000 lb ,  
and it represents the s t a t e  of the  art a few years 
ago. . Since i t s  design, major s t r ides  have been 
made i n  the  technology of such magnets. 
the magnets required fo r  the 10 Mw space power sys- 
tems considered herein should have a weight under 
10,000 lb ,  o r  close t o  0.45 kg/kWe (1 1b/kWe).lg 

A s  a resu l t ,  

Conclilding Remarks 

Although technical f eas ib i l i t y  questions re-  
garding nuclear MHD systems remain, the advances i n  
very high temperature gas cooled reactors  and the 
encouraging r e su l t s  being obtained i n  closed-loop 
MKD generator experiments substant ia l ly  increase the 
prospects fo r  these systems. For space-power appli-  
cations, these MHD systems would be a t t r ac t ive  fo r  
e l ec t r i c  propulsion. The resul t ing e l ec t r i c  rockets, 
i f  mated with a nuclear rocket booster, would have a 
t o t a l  mission time under a year for  mmned Mars 
landing missions. For t e r r e s t r i a l  applications, 
these nuclear-MHD systems would be a t t r ac t ive  for 
two types of systems. I f  cooling water i s  used a s  a 
heat sink, then the MHD systems high eff ic iency 
(approx. 60 percent) would lower by a factor  of 
three the heat re ject ion per kWe of present nuclear 
power generators. Alternatively, a cycle eff ic iency 
of perhaps 45 percent could be obtainable with these 
MKD systems using only an air-cooled convector radi-  
a to r  as a heat sink. Such a power source would 
require no cooling water and might minimize the 
power p lan t ' s  e f fec t  on the loca l  ecology. By using 
a two-loop turbo-MHD cycle, the problems associated 
with f i s s ion  product contamination of the stream and 
alkali-metal seeds can be minimized i n  these systems. 
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TABLE 1. - ASSUMED CYCLE COMPONENT PERFORNANCE 

Turbine efficiency, ~ T W  

Compressor efficiency, q c o ~ p  

High temperature recuperator heat l o s s  

Turbine reheater heat l o s s  

MKD generator efficiency, V G ~  
Cesium seed 
Xeon seed 

90% 

88% 

5% 

5% 

80% 
55% 

TABLE 2. - QUANTITIES TJSED TO EVALUATE 
SPECIFIC REC-TE PARAMETER, R 

Cycle high pressure, PE 10 atm 

Recuperator f r i c t i o n  factor,  f 0.003 

Ratio of specific heats, y 

Prandtl number, NPR 0.714 
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TABLF: 3. - CYCLE PARAMETERS FOR M I N I M U M  RADIATOR AREA SPACE POWER SYSTEMS. 
LOW TEMPERATURE RECWEEUITOR SPECIFIC AREA, 0.374 m2/kWe. 

Seed 

Temperatures, K 
Reactor ou t le t  
MHD exi t  
Reheater hot side e x i t  
Turbines: i n l e t  

ex i t  
Radiator inlet 
Compressors: inlet 

High-temperature recuperator 

Reactor i n l e t  

ex i t  

cold side i n l e t  

Cycle efficiency, % 

Cycle 

cs 

2500 
2019 
1678 
1500 
1176 

860 
564 
781 

1097 

1266 

38.9 

Seed 

Ratio compressor pmer  t o  
e l ec t r i c  power 

Overall compression r a t i o  

Fractional pressure drop, 6, $ 

Temperatures, K 
Reactor ou t le t  
MHD ex i t  
Turbine i n l e t  
Radiator i n l e t  
Compressor: ex i t  

i n l e t  

Cycle efficiency, % 

Specific radiator  
area, m2/kWe 

Ratio compressor t o  
net e l ec t r i ca l  power 

Fractional pressure 
drop, 6, % 

Overall compression 
r a t i o  

1.35 

8.33 

1.35 

A l l M H D  - 
cs 

2500 
1567 

1144 
1039 

802 

21.4 

.0969 

---- 

3.21 

4 

5 

- 
Xe - 
!500 
-748 

890 
675 
485 

18. 7 

659 

.--- 

5.16 

6 

7.7 

- 

cs - 
2500 
2070 
1500 
883 
801 
608 

38.4 

1202 

1.35 

0.6 

6.2 

- 

TWb'O-MHD 

Xe 

2500 
2177 
1500 
874 
797 
586 

30.2 

1898 

1.96 

1 

7.7 

Specific area, m2/kWe 
Radiator 
Law temperature recuperator 

.1465 

.1726 

- 
cs - 

2500 
2148 
1250 

739 
661 
739 

40.4 

1987 

1.12 

0.6 

4.4 

- 

- 
X e  - 

2500 
2206 
1250 

730 
660 
500 

32.9 

3184 

1.64 

1 

6.2 

A l l  Turbine 

---- 

1500 

1500 
713 
672 
514 

22.5 

.552 

---- 

3.19 

6 
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I SPACE-POWER SYSTEMS 
IRE RI 

Xe 
- 
- 

2500 
2169 
1828 
1500 
l l 7 6  
862 
564 
781 

1095 

1406 

30.3 

2136 
2517 

1.97 

8.33 

1.95 

IPEWll 

cs 
- 
~ 

2500 
2071 
1817 
1250 
1008 

726 
494 
655 
937 

1476 

41.9 

2280 
2 l l 1  

1.13 

6.37 

1.3 
- 

t MASS 

Xe  

2500 
2203 
1947 
1250 
1007 

725 
49 3 
655 
937 

1599 

33.0 

3333 
3026 

1.64 

6.45 

1.33 

- -___ - 
1250 

1250 
591 
559 
425 

22.6 

_. 160 

---- 

3.18 

6 
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TABLE 5. - SPECIFIC MASS 01 

10' Shadow 

1500 1250 

Shield Shadow and Peripheral 

1500 1250 Turbine temperature, K 

Seed 

Specific ~ S S ,  kg/kWe 
Reactor plus  shield 
Radiator 
Low temperature recuperator 
MHD generator and magnet 
Turbines and compressors 

Total 

TMAX 

w 
2 
2 

i5 
E TTURE 

c 

TCOMf 

I 

2500 K, 10 MW TWO-MHD SPACE-POWER SYSTEMS 

cs 

0.61 
1.23 
.52 
.45 
.61 

3.42 - 

Xe 

0.73 
1.79 
.76 
.45 
.89 

4.62 

cs 

0.57 
1.92 
.63 
.45 
.51 

4.08 

Xe 

0.68 
2.80 
.91 
.45 
.74 

5.58 

cs 

1.93 
1.23 
.52 
.45 
.61 

4.74 

RECU PERATORS 
HIGH-TEMP 

-TURBINES WITH REHEAT 

PRIMARY COOLER 

L 1/3 
PL 

--- CONSTANT PRESSURE LINES 

ENTROPY 

Figure 1. - Turbo-MHD cycle. 

- 
Xe 

2.07 
2.80 
.91 
.45 
.74 

6.97 
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Figure 8. - Two-loop turbo-MHD cycle. 
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Figure 9. - Lewis Research Center MHD generator experiment. 



Figure 10. - Superconducting magnet for a MW MHD generator. 
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