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ABSTRACT 

This paper presents a study of steady-state thermonuclear rocket systems. Such 
systems, i f  they become feasible,  a re  characterized by high specific impulse and reia-  
t i v e l y  low specific mass. 
exploration of the solar  system and other high-energy space missions. The objectives of 
t h i s  paper are:  (1) t o  estimate achievable specif ic  masses; ( 2 )  t o  ident i fy  the d i f fe r -  
ences between ground power and space propulsion applications; (3) t o  ident i fy  c r i t i c a l  
problem areas; and (4) t o  suggest p r i o r i t i e s  f o r  future  research needs. 
were estimated t o  range from 1 t o  0.5 kg/kW f o r  rockets i n  the 200 t o  1000 MW jet-power 
range respectively. Fusion rockets should provide variable specif ic  impulse from 2500 
t o  200 000 sec for  optimum propellant ut i l izat ion.  TWO of the  major challenges i n  the 
application of fusion t o  space propulsion are:  (1) e f f i c i e n t  extraction of energy from a 
toroidal  reactor i n  the form of charged par t ic les ;  gnd ( 2 )  e f f i c i e n t  conversion of the 
charged par t ic le  energy i n t o  je t  power. 

These features  make them potent ia l ly  a t t r a c t i v e  f o r  manned 

Specific masses 

INTRODETION 

A s  par t  of i t s  research program on advanced propulsion concepts, NASA Lewis Research 
Center i s  studying the f e a s i b i l i t y  of thermonuclear power f o r  propulsion. Although con- 
t r o l l e d  thermonuclear reactors  have not yet  been achieved, the  present s t a t e  of the 
world-wide fusion e f f o r t  and i t s  present r a t e  of progress make it l i k e l y  t h a t  the feas i -  
b i l i t y  of controlled fusion w i l l  be demonstrated i n  t h i s  decade (Ref .  1). Even a f t e r  
such a laboratory demonstration, however, there  are  many severe problems t o  overcome 
before fusion power p lan ts  on ear th  or i n  space can be constructed. 
common t o  both applications, while others a r e  peculiar t o  e i t h e r  the ground power plants  
or t o  the fusion rocket. 

Some problems are  

Many excellent review a r t i c l e s  ex is t  on the  s ta tus  of world-wide fusion research 
presenting discussions of both the fundamental plasma problem and the technological prob- 
l e m s  of fusion reactors  (see for  example, Refs. 1 t o  3). 
not t o  add another review a r t i c l e ,  but ra ther  t o  point out how the unique requirements of 
space propulsion w i l l  influence the select ion of the f u e l  cycle, the confinement scheme, 
the plasma heating methods, and the s t ruc tura l  design. 

The purpose of t h i s  paper i s  

Previous sytems studies of the fusion rocket (Refs. 4 t o  6) gave estimates of specific 
masses and ident i f ied the major system components. Both the previous and present studies 
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concur tha t  a specific mass of about 1 kg/kW j e t  should be achievable. It i s  f a i r l y  con- 
clusive tha t  a closed geometry i s  needed t o  a t t a i n  these specif ic  mass estimates (Refs. 6 
and 7 ) .  
par t ic les  i n t o  a unidirectional beam i s  one of the challenging problems. Power balance 
calculations for  the D-He-3 f u e l  cycle (Ref. 8 )  indicate t h a t  i f  a large f rac t ion  of fusion 
energy i s  t o  be extracted i n  charged par t ic le  form, cyclotron radiation losses  must be min- 
imized. This imposes important constraints on plasma confinement requirements and on wall  
r e f l e c t i v i t y  for  cyclotron radiation. 

The extraction o? charged par t ic le  energy from closed systems and guiding these 

These matters are  touched upon i n  t h i s  paper. 

For t h i s  paper only the mass of the basic rocket engine i s  considered. Other com- 
ponents such a s  crew shielding and energy storage systems for  r e s t a r t  are  b r i e f l y  d is -  
cussed i n  Ref. 6. 

Concepts presented i n  t h i s  paper are  for  steady-state or continuous-operation of the 
fusizn reactor. 
applications. Pulsed rockets for  space a re  considered elsewhere i n  t h i s  Symposium. 

Pulsed fusion reactions are  a l so  being considered for  ground and space 

FUSION ROCKET CONCEPT 

To explain how we could apply fusion energy t o  a propulsion system, refer t o  Fig. 1. 
This i s  a simple schematic of a fusion rocket. A fusion fuel ,  here taken t o  be a mixture 
of deuterium and helium-3, i s  inje'cted i n t o  the reaction chamber. Only a f e w  percent of 
the injected f u e l  undergoes fusion reactions. The fusion energy heats the unreacted f u e l  
t o  extremely high temperatures. A t  these high temperatures the f u e l  i s  a f u l l y  ionized 
gas or plasma. Magnetic f i e l d s  are  used t o  hold the plasma f u e l  away from t h e  reaction 
chamber walls and t o  guide it in to  a nozzle mixing chamber. Hydrogen propellant i s  in-  
jected in to  the mixing chamber and i s  ionized and heated by the hot plasma ions t h a t  
come from the reactor. The thermal energy of the propellant i s  converted i n t o  directed 
motion i n  the magnetic nozzle t o  produce thrust .  
because thc escaping fusion-reaction products by themselves would have a specif ic  impulse 
i n  the range of 200 000 sec - f a r  beyond the optimum value f o r  planetary propulsion. 
times and estimated specific masses. 

Mixing with a propellant i s  required 

Some of the potential. advantages of the fusion rocket a re  apparent from t h i s  simple 
schematic. This advantage 
i s  a l so  common t o  the solid-core and gaseous-core fission-rockets. 
heating eliminates the need f o r  a major onboard power generating system, such a s  used i n  
the nuclear-electric rocket. Waste heat can therefore be rejected a t  a maximum tempera- 
ture, thus minimizing the radiator  mass. This results i n  one of the major reductions i n  
specific mass over the f i s s i o n  nuclear e l e c t r i c  rocket. 

F i r s t ,  we note tha t  the f u e l  d i rec t ly  heats the propellant. 
Direct propellant 

For optimum propellant ut i l izat ion,  the specific impulse should be variable during 
a given mission. By t h r o t t l i n g  the  hydrogen propellant flow, the  specif ic  impulse of 
the fusion rocket could be varied from 2000 up t o  200 000 sec (Ref .  9).  
u la r ly  important f o r  the d i f f i c u l t  manned missions where specific impulses greater than 
3000 sec are  required ( R e f .  6 ) .  

This i s  par t ic-  

Another a t t r a c t i v e  feature  of fusion rockets i s  t h a t  it may be possible t o  achieve 
negligible radioactive waste i n  the exhaust. 
t o  minimize the tritium formed i n  the I)-D side reaction. 
development and t e s t i n g  phases on the ground. 
the space environment and it can r e s u l t  i n  substant ia l ly  lower shielding mass for  the 
crew. 

For example the f u e l  cycle may be adjusted 

Furthermore, it reduces contamination of 
This feature should simplify 

Finally,  a fusion rocket i s  inherently f a i l  safe since there i s  no c r i t i c a l  mass a s  
i n  a f i ss ion  reactor. 
could resu l t  i n  considerable cost savings. 

The lower hazard i n  a fusion system re la t ive  t o  a f i s s i o n  system 

2 



The deuterium-helium-3 fusion reaction i s  shown on Fig. 2. A deuterium ion, con- 
s i s t ing  of one proton and one neutron, col l ides  with a helium-3 ion, consisting of two 
protons and one neutron. Upon fusion, one heavier par t ic le ,  and one l igh ter  par t ic le  i s  
formed, a helium-4 ion and a proton respectively. 
of kinet ic  energy of the reaction products, with tine proton carrying away about 80 percent 
of the energy. 
and heat them t o  very high temperatures. 

The fusion energy shows up i n  the form 

These high energy reaction products coll ide with the other f u e l  par t ic les  

The D-He-3 f u e l  cycle permits most of the fusion energy, carried by the charged 
reaction products, t o  be transferred t o  the unburned f u e l  (Ref. 8).  Because the reaction 
products a re  charged, they readi ly  exchange energy with the main body of plasma, and they 
can a l so  be confined by the magnetic f ie ld .  Furthermore, only a small amount of fusion 
energy i s  released t o  energetic neutrons by a side D-D reaction. Neutrons a r e  the main 
source of heat load on the superconducting magnets. This i s  an important fac tor  since 
large amounts of re f r iga t ion  equipment are  very heavy. I n  contrast ,  i f  the  helium-3 i s  
replaced by tritium, about 80 percent of the fusion energy would be released i n  the form 
of energetic neutrons. The neutrons pass through the plasma and deposit t h e i r  energy i n  
the shields surrounding the reaction chamber. The D-T f u e l  cycle i s  sui table  f o r  ground 
power where thermal energy output can be used, but it i s  unsuitable for  the fusion rocket 
where charged p a r t i c l e  energy i s  required. 
from the D-T reaction would necessitate massive neutron shields t o  prevent excessive mag- 
net heat loads. 

Also, the large f lux  of energetic neutrons 

The plasma ions must have a very high temperakure. Both f u e l  ions, deuterium and 
helium-3, carry a posi t ive e l e c t r i c  charge. A s  they approach each other, they experience 
a mutual e lec t ros ta t ic  repulsion. 
bar r ie r  and come close enough s o  t h a t  the nuclear forces can interact ,  they must approach 
with extremely high kinet ic  energies. According t o  energy balance calculations an opti-  
mum temperature i s  about a b i l l i o n  degrees (100 keV) for  the dueterium-helium-3 reaction 
i f  energy l o s s  by cyclotron radiation i s  negligible (Ref. 8). 

If the f u e l  ions are  t o  overcome the e lec t ros ta t ic  

Other important reactor operating parameters can a l so  be determined from the energy 
balance calculations. The fusion power production i s  proportional t o  the square of the 
f u e l  number density. For the  power leve ls  under consideration, the par t ic le  density i s  
about 1021 par t ic les  per cubic meter. 
s i t y  i n  our atmosphere. However, because of the high temperatures, the pressure i n  the 
reaction chamber i s  about 150 atm. 

This i s  about 1/10,000 of the p a r t i c l e  number den- 

I n  a steady-state reactor,  the energy released by fusion must equal the  energy l o s t  

Even i n  a well- 

But most of the energy w i l l  be carr ied away 

from the system by radiat ion and by escaping par t ic les .  
radiate  l i k e  a black boay a t  lo9  K, it emits electr0magnetic radiation. 
designed system (negligible cyclotron radiat ion losses)  a t  l e a s t  15 percent of the fusion 
w i l l  be l o s t  by radiat ion (bremsstrahlung). 
i n  the hot plasma escaping from the reactor. Energy balance calculations indicate  t h a t  
the mean residence time of a par t ic le  i n  the reaction chamber must be on the  order of 
one second. If t h i s  residence or confinement time i s  l e s s  than about one second, then 
more energy w i l l  be removed from the plasma than i s  produced by fusion and the  reaction 
w i l l  f i z z l e  out. 

Although the plasma does not 

A s  mentioned above, magnetic f i e l d s  a r e  used t o  confine these par t ic les  inside the 
reaction chamber f o r  t h i s  re la t ive ly  long t i m e .  
20 T ( 5 0  t o  200 kG). 

The f i e l d s  w i l l  range from about 5 t o  

Fig. 3 i l l u s t r a t e s  how magnetic f i e l d s  help t o  increase the confinement time. I n  
the absence of magnetic f i e l d s  the plasma would rapidly diffuse t o  the walls i n  about a 
microsecond, which i s  f a r  l e s s  than the required one second confinement t i m e .  Since a l l  
the plasma par t ic les  bear an e l e c t r i c  charge, they in te rac t  strongly with a magnetic 
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f ie ld .  This i s  i l l u s t r a t e d  i n  the upper right-hand corner. The dashed l i n e s  represent 
the magnetic f i e l d  l ines .  
the magnetic f i e l d  l i ne .  
the f i e l d  l i nes ,  but i s  able  t o  move f ree ly  along the f i e l d  l ines .  
sions between p a r t i c l e s  knock them across the f i e l d  l ines .  
t i c  f i e l d  i s  t o  dras t ica l ly  reduce the diffusion perpendicular t o  the f i e l d  l ines .  Next 
we must reduce the p a r t i c l e  losses  p a r a l l e l  t o  the f i e l d  l ines .  One possible way t o  re- 
duce the p a r a l l e l  losses  i s  by increasing the magnetic f i e l d  strength a t  the ends of the 
system a s  shown i n  the lower left-hand figure. 

The t ra jectory of a single charged par t ic le  i s  a s p i r a l  about 
Hence, the p a r t i c l e  i s  effect ively prevented from moving across 

The r e a l  e f fec t  of the magne- 
I n  a plasma, c o l l i -  

The t ra jec tory  of a charged par t ic le  moving i n t o  a stronger f i e l d  region i s  i l l u s -  
t ra ted  i n  the lower right-hand corner of the figure. 
pushing it toward the weaker f i e l d  region. 
i s  reduced and the s p i r a l  becomes t igh ter  and more of the par t ic le  energy i s  contained i n  
the velocity coaponents perpendicular t o  the  magnetic f ie ld .  
speed i s  low enough the p a r t i c l e  w i l l  be stopped and forced back toward the weaker f i e l d  
region. 
therefore re fer  t o  these strong f i e l d  regions a s  "mirrors." 

The p a r t i c l e  experiences a force 
Therefore the p a r a l l e l  speed of the  par t ic le  

I f  the i n i t i a l  p a r a l l e l  

We say tha t  the p a r t i c l e  has been "reflected" by the stronger magnetic f i e l d  and 

Incidentally, the magnetic nozzle operates on the same principle,  namely t h a t  a 
plasma always experiences a force 'pushing it toward the weaker f i e l d  regions. 
hydrogen propellant i s  ionized, it can be accelerated i n  the  magnetic nozzle f i e l d s  where 
the thermal energy i n  components perpendicular t o  the magnetic f i e l d  i s  converted i n t o  
directed energy along the nozzle axis. 

Since the 

To make fusion a t t r a c t i v e  for  space propulsion, superconducting windings must be 
used t o  produce intense magnetic f i e l d s  over the large reactor  volumes. I n  the super- 
conducting s t a t e  a mater ia l  offers  no resistance t o  the flow of e l e c t r i c  current. To 
a t t a i n  the superconducting s t a t e  the windings must be cooled nearly t o  absolute zero - 
commonly with l iqu id  helium t o  about 4 K. Although superconducting magnets require  no 
e l e c t r i c a l  power t o  maintain the e l e c t r i c  current i n  the windings, they do require a re-  
f r igera t ion  system t o  maintain the magnets a t  these very l o w  temperatures. Since the 
refr igerat ion system i s  f a i r l y  massive, and e l e c t r i c  power i s  r e q d r e d  t o  operate the 
refr igerat ion plant,  magnet heating must be minimized. 

The main source of magnet heating i s  neutrons. With the D-He-3 cycle s ide reactions 
of deuterium with deuterium produce a s ignif icant  number of neutrons. The plasma a lso  
radiates  bremsstrahlung energy i n  the x-ray and y-ray spectrum. 
pulsion mass, magnet heating i s  minimized by placing a bremsstrahlung radiat ion shield 
and neutron shields between the plasma and the superconducting magnets. 

To achieve mi'nimum pro- 

A schematic of the fusion rocket with the major components included i s  shown i n  
Fig. 4. The helium cryoplant r e j e c t s  i t s  heat t o  the l iqu id  hydrogen propellant a t  20 K. 
The hydrogen leaves the cryoplant i n  the vapor s t a t e  and then passes through the shields 
where it i s  fur ther  heated and dissociated pr ior  t o  inject ion i n t o  the nozzle mixing 
chamber. 
it. 
the magnetic nozzle. 

Plasma escaping from the reactor impinges on the hydrogen, ionizes  it and heats 
The thermal ener@;y i n  the propellant i s  converted i n t o  directed kinet ic  energy i n  

Waste heat i s  removed from the reactor walls and primary shield by means of the 
l iqu id  metal coolant loop. 
the heat i s  rejected a t  the maximum possible temperature (say 2000 K)  t o  minimize the 
radiator  mass. 

The l iqu id  metal coolant flows through a space radiator  where 

REPRESENTATIVE DESIGN FZQUIRESIENTS 

Representative design requirements for  a fusion propulsion system are  l i s t e d  i n  
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Table I. 
rocket nozzle. 
ered t o  the nozzle where they can heat the propellant. 

A major objective i n  t h i s  concept i s  t o  guide the escaping plasma i n t o  the 
A t  l e a s t  80 percent of the par t ic les  leaving the reactor should be del iv-  

The next l i ne ,  e n t i t l e d  "conversion t o  propulsive power" means tha t  25 percent of 
the energy delivered from the reactor t o  the nozzle should be converted i n t o  propulsive 
power. . A theore t ica l  analysis (Ref. 9 )  indicates t h a t  the 25 percent f igure i s  possible. 
The major l o s s  i s  i n  the energy expended t o  ionize the propellant. 

It i s  desirable t h a t  the energy l o s s  from the plasma by radiation t o  the  walls 
should be held t o  l e s s  than 2 0  percent of the fusion energy. 
the use of re f lec tors  t o  r e f l e c t  the long wave-length (cyclotron) radiat ion back i n t o  the 
plasma . 

This w i l l  probably require 

Minimum magnet heat absorption requires a high e l e c t r i c a l  current density i n  the 
magnet windings. 
enough so t h a t  a large percentage of the neutrons w i l l  pass through the windings. 
current density of lo9  amp/m2, about a factor  of 10 higher than used i n  today 's  super- 
conducting magnets, i s  desirable (Ref. 10). However, lo9 amp/mZ have been achieved i n  
short  sample, laboratory tests (Ref .  11). 

Earthbound helium cryoplants have not been designed f o r  minimum mass, so  we have 

A high current density means tha t  the solenoidal windings w i l l  be t h i n  
A 

assumed a value of 10 lb/W, which i s  about a factor  of five below exis t ing systems. 
However, experts i n  the business say t h a t  t h i s  should be achievable (Ref .  5). 

Finally,  i f  the space radiator  can be operated a t  2000 K, then the radiator  w i l l  not 
be a major portion of the specific mass. 
the specific mass of a fusion propulsion systembased on the assumptions l i s t e d  i n  
Table I. 

I n  a l a t e r  section, estimates w i l l  be given of 

PARTICLE EX'I'RACTION SYSTEM 

A s  already mentioned, one of the major jobs of the fusion propulsion engineer i s  t o  
remove the charged p a r t i c l e s  from the reactor and de l iver  them t o  the nozzle. 
e a r l i e r  schematic (Fig. 4),  which showed an open-ended magnetic mirror configuration, 
made the job look simple. Unhappily, it won't work t h a t  way. The p a r t i c l e  canfinement 
t i m e  i n  open-ended systems i s  orders of magnitude lower than the required 1 see, i n  
sp i te  of the mirrors a t  the ends. 
with very high kinet ic  energy t o  compensate f o r  the end losses. 
system requires large amounts of e l e c t r i c  power t o  accelerate the incoming fue l  ions. 
This would require a very large thermal power conversion system which would make the 
system too heavy f o r  space. 

The 

I n  earthbound applications, f u e l  ions may be injected 
However, the inject ion 

To increase the confinement t i m e ,  a toroidal  magnetic f i e l d  configuration i s  used 
a s  i l l u s t r a t e d  i n  Fig. 5. 
no ends! The par t ic les  c i rculate  around the torus, following the f i e l d  l ines ,  and 
slowly diffuse toward the walls. Note t h a t  t h i s  torus  has a special  section called a 
divertor which prevents par t ic les  from diffusing t o  the torus  walls. 
par t ic les  diffuse toward the wall, they eventually reach a f i e l d  l i n e  t h a t  flows i n t o  the 
divertor section. 
i n t o  the divertor.  This diver tor  i s  a simple concept, and according t o  R. G. Mills of 
Princeton Plasma Physics Lab (Ref. 12), only X L O ' ~  of the escaping par t ic les  s t r i k e  the 
wall. The remainder, 99.997 percent of the escaping par t ic les ,  are  caught by the diver- 
tor.  Obviously, t h i s  i s  the kind of scheme we need for  get t ing par t ic les  out of the 
reaction chamber. Next, they must be guided i n t o  a nozzle. The solution t o  t h i s  prob- 
lem i s  not so obvious. An improved version of a scheme suggested e a r l i e r  (Ref. 7 )  i s  a 

I n  t h i s  arrangement there a re  no end losses  because there a re  

A s  the  ci rculat ing 

And on t h e i r  next pass around the torus they follow the f i e l d  l i n e  
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"part ia l"  divertor a s  shown on Fig. 6. 
s p i r a l  about the minor .axis of the torus, a large percentage of the pa r t i c l e s  may move 
i n t o  the removal area before reaching the walls. 
requiring extensive research t o  determine the exact shape of the f i e l d  l i nes ,  and the 
charged pa r t i c l e  t r a j ec to r i e s .  
aiding the extraction process (Ref. 13). 
ing a p a r t i a l  divertor on a toroidal  machine i s  shown i n  Fig. 7. 

Since pa r t i c l e s  actual ly  move i n  a very slow 

However, t h i s  i s  a complicated problem 

The use of e l e c t r i c  f i e l d s  has a l so  been suggested fo r  
An a r t i s t ' s  concept of a fusion rocket u t i l i z -  

Just a s  an aside, if a p a r t i a l  divertor were effective,  it could have important con- 
sequences f o r  ground power applications. 
charged pa r t i c l e  energy d i r ec t ly  i n t o  e l e c t r i c a l  power by means of an e l ec t ros t a t i c  con- 
version scheme suggested by R. F. Post (Ref. 14) .  
s ignif icant ly  reduce the thermal pollution of om environment. 

It might be used t o  convert the escaping 

Efficient,  d i r ec t  converstion could 

Back t o  fusion propulsion. . Experimental toroidal  reactors  do have much b e t t e r  plasma 
-confinement, but it i s  s t i l l  not g o d  eno& t o  produce a steady-state reac%ionT--sade-- 

Exces- quate confinement has been the major road block i n  the world-wide fusion program. 
sive lo s s  r a t e s  are generally a t t r ibuted t o  plasma i n s t a b i l i t i e s  o r  plasma turbulence. 
High frequency e l e c t r i c  f i e l d s  are  thought t o  cause rapid diffusion of p a r t i c l e s  across 
the magnetic f ie ld .  However, over the l a s t  f i ve  years there  has been a steady improve- 
ment i n  confinement times. 
t h a t  have yielded bes t  combination of density, temperature, and confinement t i m e  a r e  the 
Tokamak machines. The success of the Tokamaks has lead many i n  the fusion research com- 
munity t o  predict  a f e a s i b i l i t y  demonstration within t h i s  decade (Ref .  1). 

A t  present, the most p rac t i ca l  experimental t w o i d a l  reactors  

SPECIFIC MASS ESTIMATES 

We have made specific mass estimates f o r  fusion rockets assuming the required con- 
The assumed reactor geometry f o r  these calculatians i s  

The reactor i s  a compact torus, with plasma radius, R, and with a major 
finement times w i l l  be achieved. 
shown on Fig. 6. 
radius of 2R. 
neutrons. The reactor components include primary and secondary shields , the supercon- 
ducting windings, and s t ructure  t o  support the magnets. 
of the superconducting windings so t h a t  the en t i r e  s t ructure  does not have t o  be main- 
tained a t  l i qu id  helium temperatures. 

This compact geometry requires minimum crew shielding against  p r a y s  and 

The structure i s  placed outside 

Tungsten was assumed f o r  the primary shield because of i t s  good bremsstrahlung and 
neutron absorption character is t ics  and because it can be operated a t  the high tempera- 
t u re s  required f o r  e f f i c i e n t  re ject ion of waste heat. Lithium hydride was assumed f o r  
the secondary shield because it i s  a good neutron absorber and i s  light w e i g h t .  
must be operated below 680' C, it would be cooled by the hydrogen propellant. 

Since it 

Component masses were estimated i n  a manner similar t o  t h a t  presented by Englert 
(Ref. 5). However, f o r  t h i s  report, the  roagnet heat load due t o  bremsstrahlung radiation 
w a s  found t o  be negligible f o r  primary tungsten shield thicknesses of 3.5 cm or greater. 
The primary shield thickness was s e t  a t  3.5 cm and the secondary lithium-hydride shield 
was varied i n  thickness t o  achieve a low rocket specific mass. 
estimated f o r  two d i f f e ren t  superconductor current densit ies.  
culations a re  summarized in ,Figs .  9 t o  11. 
kilograms per kilowatt of jet-power a s  function of confining,magnetic f i e l d  i n  tesla 
(1 T i s  equal. t o  10 000 G). 
i s  f o r  1000 MW. 
current density i n  the  superconductors was assumed t o  be lo9 amp/m2. 
of the plasma torus was respectively 1.0 and 1.35 m fo r  the 200 and 1000 MW jet-power 
rockets. 
parers from 200 t o  1000 Tnese r e s u l t s  show a substant ia l  improvement over the 

Specific masses were 
The r e s u l t s  of these cal-  

Fig. 9 i s  a p lo t  of rocket specif ic  mass i n  

The upper curve i s  fo r  200 MW jet-power and the lower curve 
The assumed refr igerat ion plant  specific mass was 10 lb/W and the 

The minor radius 

The specific mass i s  on the order of 1 t o  0.5 kg/kW j e t  fo r  a range of j e t  
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f i s s ion  e l e c t r i c  systems which have estimated specific masses of about 5 t o  15 kg/kW j e t  
(Ref. 6) .  
t r i p  times f o r  manned exploration of the planets (Ref. 6). The fusion rocket could a l so  
provide quick round-trips t o  the moon f o r  very large payloads. 

Consequently, the fusion rocket offers  about a factor  of four f a s t e r  round- 

The magnetic f i e l d  was chosen a s  abscissa i n  Figs. 9 t o  11. Confinement should im-  
prove as magnetic f i e l d  increases, but the ac tua l  value which might be achievable i s  not 
yet known. 
the  pressure of the plasma it confines. 
square of the magnetic f i e l d . )  The r a t i o  of the plasma pressure t o  the external  magnetic 
pressure, denoted by 0, must be l e s s  than unity. The upper limit of magnetic f i e l d  w i l l  
be s e t  by materials considerations - e i the r  the character is t ics  of the superconductors or 
of the s t ruc tu ra l  members. The current density which a superconductor w i l l  carry decreases 
with inc reas iw  magnetic f i e l d  and a t  some " c r i t i c a l  field", the material l o ses  it 

-superconducting properties and revert8 t o  a normal conductor. 
ors, t h i s  c r i t i c a l  f i e l d  i s  l e s s  than 20 T. 
:hers by such a f i e l d  a re  a t  ;the same %ime approaching materials l imits .  
value of about 20 T was taken as WI upper llimif f o r  t h i s  parametric study. 

winding thickness, and the s t r u c t b e  %ncrease with fLeld strength. 
absorb a higher percentage of' the  inaidbdent neutron energy. 

The magnetic f i e l d  must be great enough t h a t  i t s  pressure equals or exceeds 
(The magnetic pressure i s  proportional t o  the 

_-- 
For present superconduct- 

The st resses  imposed on the s t ruc tu ra l  mem- 
Consequently, a 

I 

The constant parer curves slope upward with increasing magnetic f i e l d  because the 
Thicker windings 

Fig. 10 presents the d i s t r ibu t ion  of specffia masses among the various components 
f o r  the 200 Md rocket. These specific mss calculations brought out one very impartant 
fact .  Most of the system mass i s  due t o  the  requirement t h a t  the superconducting wind- 
ings be cooled t o  4 K. The two shieI.de and the refr igerat ion plant account f o r  70 percent 
of the 200 Mi system a t  l o w  f i e l d s  and 45 percent a t  high f i e lds .  
t i a l  t o  continue research on high fiela, high current density superconductors andaow 
'mss r,ef r igerat ion plant  s. 

It i s  therefore essen- 

Cryogenic refr igerat ion systems designed specif ical ly  f o r  minimum w e i g h t  do not 
e x i s t  because t h i s  has never been a requirement f o r  ground-based operation. 
mentioned above, cryogenic refr igerat ion experts say t h a t  with the exis t ing technology, 
the cryoplants could be reduced i n  wei&t by  a8 much as a factor  of five. 
temperatures near absolute zero the Carnot refr igerat ion efficiency and the mechanical 
efficiency of gas working f l u i d  r e f r ige ra to r s  a re  both quite low. 
hydrogen propellant, a t  20 K, as a heat  sink for  the refr igerat ion cycle, a reasonable 
Carnot efficiency (25 percent) can be achieved. 
gas working f l u i d  r e f r ige ra to r s  drops t o  about 10 percent or l e s s  f o r  operation around 
4 K. 

However, a s  

A t  working 

By employing the 

However, the mechanical efficiency f o r  

"A 

However, an a l t e rna t ive  t o  the gas working f l u i d  refr igerator  i s  the magnetic re-  
f r ige ra to r  (Ref @ 15). 
constraints t h a t  previously confined magnetic cooling applications t o  heat r e j ec t ion  t e m -  
peratures around 4 K and source temperatures b e l m  1 K. 
can s ignif icant ly  order the spins of a paramagnetic system a t  temperatures as high as 
about 50 K. 
magnetic refrugeration cycle (Ref. 16). Such eff ic iencies  would s ignif icant ly  reduce 
refr igerat ion masses - perhaps a s  l o w  a s  0.5 t o  2 lb/W. For such lightweight refr igera-  
t i o n  systems, the thickness 9f the primary tungsten shield cquld be reduced t o  meet only 
the minimum s t ruc tu ra l  requirements f o r  the vacuum w a l l ,  say about 2 cm. The seceondary 
shield thickness could also be reduced. Fusion rocket specif ic  masses might be reduced 
by a factor  of two below the values shown i n  Fig. 9. There s t i l l  remains one constrain- 
ing factor,  however. 
hydrogen propellant, heat re ject ion via a radiator  a t  r e l a t ive ly  high temperatures could 
reduce the Carnot efficiency suff ic ient ly  t o  nu l l i fy  the gains i n  mechanical efficiency. 

Today' s high-field large-volume superconducting magnets remove 

Wgnetic f i e l d s  of up t o  15 T 

Mechanical eff ic iencies  as high as 72 percent have been e ,s t imted f o r  the 

I f  the magnet heat load exceeds the heat sink capacity of the 
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Thus, a careful  heat balance study i s  required t o  determine the optimum permissible re-  
f r igerat ion load. 

The sens i t i v i ty  of rocket specific mass t o  the assumed superconductor current density 
i s  i l l u s t r a t e d  i n  Fig. 11, which shows r e s u l t s  for  the 1000 Mw system with two different  
values of magnet current density, lo8 and lo9 amp/m2. Because the secondary shield i s  a 
very effect ive neutron absorber an order of magnitude decrease i n  current density r e s u l t s  
i n  only a factor  of two or three increase i n  rocket specif ic  mass. 
been sponsored on high intensi ty ,  large volume superconducting magnets (Ref. 1 7 ) .  
mentioned above present superconducting magnets have maximum current dens i t i e s  of a few 
times lo8 amp/m2. 
much research i s  s t i l l  required t o  develop s table  working magnets with these current den- 
s i t i e s .  

Much research has 
A s  

Short sample t e s t s  have indicated tha t  lo9 amp/m2 i s  possible, but 

Although a large world-wide research and development e f f o r t  i s  underway on controlled 
fusion power, it i s  presently directed toward earthbound applications. The most promising 
toroidal  reactor designs f o r  ground power a r e  not d i r ec t ly  applicable t o  space propulsion. 
For ground application, p rac t i ca l  toroidal  reactor geometries require t h a t  a t  l e a s t  one 
phase of the plasma heating process be accomplished by means of heavy iron-core trans- 
formers. This i s  i l l u s t r a t e d  i n  Fig. 12. The torus  forms a single turn secondary of an 
iron-core transformer. 
rent,  tens of thousands of amperes, t o  flow i n  the plasma. This e l e c t r i c  current then 
heats the plasma by r e s i s t i v e  or  1 2 R  heating. These i ron cores and associated capaci- 
t o r  banks o r  other forms of energy storage are probably too heavy f o r  space propulsion, 
and therefore some other means of heating the  plasma must be found fo r  space propulsion. 
I n  addition t o  heating the plasma, the Tokamak also depends on the induced current t o  
produce a magnetic f i e l d  component i n  the plasma which i s  e s sen t i a l  t o  the confinement 
process. Therefore, the Tokamak, i n  i t s  present form seems too heavy f o r  space. How- 
ever, a scheme has been suggested by T. Ohkawa (Ref. la), i n  which injected ion beams 
would produce the Tokamak current with r e l a t ive ly  low inject ion power requirements; 
Fortunately, other t o ro ida l  machines a re  not absolutely dependent on the circulat ing cur- 
rent,  thus the torus  i s  not ruled out fo r  space. 

A pulse of current i n  the primary induces a large e l e c t r i c  cur- 

Another problem with the present c lass  of toroidal  machines i s  t h a t  they a re  l imited 
t o  very l o w  beta values ( l e s s  than a few percent) f o r  s table  operation (Ref. 19) .  
l o w  specific mass systems, the value of beta should be as large a s  possible (see Fig. 9). 
Also, large beta values w i l l  help keep the cyclotron radiat ion losses  t o  a minimum as 
discussed below. Therefore, it seems tha t  the toroidal  machines f o r  fusion rockets w i l l  
not be developed from d i r e c t  extension of present experiments. 
ture  (Ref. 1 9 )  there are discussed extensions of both the Tokamak and S te l l a r a to r  con- 
cepts fo r  operation a t  high beta. 

For 

However, i n  the l i t e r a -  

Included a re  techniques such a s  feedback s tabi l izat ion.  

The e f f ec t s  of cyclotron radiation on the potent ia l  performance o f - the  fusion rocket 
are  i l l u s t r a t e d  with the a id  of Figs. 13 t o  15. Fig. 13 i s  a plot  of the f r ac t ion  of 
reactor output power carr ied by the charged pa r t i c l e s  f o r  the D-He-5cycle as a function 
of reactor ion temperature. The parameter i s  the cyclotron radiation l o s s  coefficient,  
C, which i s  a measure of the energy l o s t  from the plasma by cyclotron radiat ion (Ref. 2 
and 8). It accounts f o r  the f a c t  t h a t  the cyclotron radiat ion i s  pa r t ly  ref lected a t  
the e l e c t r i c a l l y  conducting vacuum wall and pa r t ly  absorbed i n  the plasma. It w i l l  take 
on more significance when Fig. 14  i s  discussed. The main point of Fig. 13 i s  tha t  a s  C 
increases the f r ac t ion  of reactor output power i n  charged pa r t i c l e s  decreases, and fo r  
C greater than 2.5, less than about 10 percent of the power output i s  i n  charged pa r t i -  
cles.  
t i on  which serve only a s  a burden on the fusion rocket. 
both a larger  reactor f o r  a given charged pa r t i c l e  energy output, and a l a rge r  heat 
re ject ion system. Therefore the reactor should operate with C a s  close t o  zero a s  
possible f o r  the fusion rocket. 

The remainder of reactor output energy i s  i n  cyclotron and bremsstrahlung radia- 
Increased radiat ion r e s f i t s s i n  
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Fig. 14 shows the r e l a t ion  between C and the physical quantit ies of reactor, beta 
and vacuum wall r e f l ec t iv i ty .  To achieve a low value of C it can be seen from Fig. 1 4  
tha t  e i ther  a high value of beta o r  a very high value of r e f l ec t iv i ty ,  or  more l ikely,  
both are  required. 
trum and f o r  a tungsten wall a t  2000 K have been estimated t o  be 0.99 o r  higher. 
i s  not suitable t o  determine the required values of beta f o r  r e f l e c t i v i t i e s  above 0.99. 
For that  purpose Fig. 15 i s  presented, which shows a plot  of required against  beta 
with r e f l e c t i v i t y  a s  a parameter. Fig. 15 shows tha t  f o r  values of C l e s s  than 0.01, 
values of beta greater than 0.6 w i l l  be required, even f o r  r e f l e c t i v i t i e s  a s  high a s  
0.998. Although the curves presented i n  Figs. 13 t o  15 are  obtained from a simplified 
theoret ical  approach, they st i l l  serve t o  indicate the potent ia l  importance of cyclotron 
radiation i n  the future  development of the D-He-3 f u e l  cycle fo r  space propulsion appli-  
cations. 

Values of r e f l e c t i v i t y  fo r  radiation i n  the cyclotron frequency spec- 
Fig. 14  

C 

MAJOR RESEARCH AND DEVELOPMENT REQKEUMENTS 

Table I1 i s  a l i s t  of the major research and development requirements f o r  three 
different  fusion applications: (1) laboratory f e a s i b i l i t y  demonstration; ( 2 )  ground power; 
and (3) fusion rocket. 
a s  the importance of the requirement. 
and it i s  obviously a d i f f i c u l t  task. 
rocket, the required confinement parameter n-r (product of density and confinement time) 
i s  about a factor  of f i ve  higher than f o r  ground power requirements. 
improved, start-up and heating requirements w i l l  be l e s s  severe. However, igni t ion of a 
self-sustaining fusion reaction i s  s t i l l  the focal  point of the present world-wide re-  
search effor t .  Eff ic ient  heating methods w i l l  be exceedingly important i n  the economics 
of ground power. For space, the heating and r e s t a r t  problems a re  crucial. The space 
system igni t ion requirements must be minimized. Also, e f f i c i en t ,  lightweight ener@;y 
storage and transformation systems m u s t  be developed. 
storage systems may be used. 

The number of X ' s  r e f l e c t s  both the r e l a t ive  d i f f i c u l t y  a s  w e l l  
The confinement goal has not yet been achieved, 
I f  a D-He-3 fuel cycle i s  used f o r  the fusion 

A s  confinement i s  

Either chemical or electromagnetic 

While diver tors  a re  not presently used on the Tokamak machines, they are an essen- 
t i a l  component of the fusion rocket. 
d i r e c t  conversion schemes f o r  ground power. 
t i a l t o  the fusion rocket. 
i n  the fusion torch concept (Ref. 15). 

Divertors might someday be used i n  conjunction with 
The jet mixing chamber and nozzle are  essen- 

A nozzle and j e t  mixing chamber might a l so  f ind  application 

Although high beta operation does not appear crucial  t o  the economics of ground 
power, the fusion rocket requires it f o r  low specific mass and possibly f o r  adequate re-  
duction of cyclotron radiation. 
the maximum amount of fusion energy i s  carried by the charged par t ic les .  

Cyclotron r a d i a t i m  should be minimized t o  assure t h a t  

While superconducting magnets are  not e s sen t i a l  t o  the f e a s i b i l i t y  demonstration, 
economic considerations w i l l  require the use of superconductors f o r  e f f i c i e n t  production 
of ground power. 
superconductors will be needed t o  reduce specific mass t o  minimum. 
cient  cryogenic refr igerat ion plants are  e s sen t i a l  Go the fusion rocket. 

Although a tritium breeder blanket i s  not required fo r  space, the question of avai l -  
Final ly  thermal engineering and r e l i a b i l i t y  a re  

The heat t ransfer  problems i n  going 

I n  space, high current density magnets o r  high c r i t i c a l  temperature 
Lightweight, e f f i -  

a b i l i t y  of helium-3 i s  not $et answered. 
equally important f o r  ground and space applications. 
from about a b i l l i o n  degrees t o  4 K over r e l a t ive ly  short distances are  indeed not 
t r i v i a l .  
special  radiation shields. 

Great ingenuity w i l l  be demanded possibly involving the use of heat pipes and 

There are  many refinements t ha t  can be made t o  the mass estimates reported herein. 
For example, more exact shield calculations should be made such a s  a Monte-Carlo calcula- 
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t i on  which include the e f f ec t s  of g a m  decay radiation and multienergy groups of neu- 
trons. Laminated shield designs should be considered. Proper consideration should be 
given t o  the heat balances i n  the coolant c i rcui ts .  
be studied. The f e a s i b i l i t y  of placing a l l  support structure outside the superconducting 
windings should be determined through engineering analysis. 
termined f o r  several torus aspect ra t ios .  

Real is t ic  heat removal systems can 

Specific mass should be de- 

CONCLUDING REMARKS 

In  conclusion, f o r  fusion propulsion systems i n  the jet-power range of 200 t o  
1000 Mw, specific masses on the order of 1 t o  0.5 kg/kW j e t  may be possible. This re-  
presents considerable improvement over the estimated values of 5 t o  15 kg/kW jet  fo r  a 
high-power f i s s ion  e l e c t r i c  propulsion system. 
propulsion r e s u l t s  from elimination of the thermal power conversion equipment and heavy, 
lower-temperature radiator.  

The improvement over f iss ion-electr ic  

An important research area i s  the removal of pa r t i c l e s  from the reactor and delivery 
t o  the nozzle. A t  present there i s  no research aimed a t  solving t h i s  problem. Propel- 
l a n t  heating and production of thrust  i s  another key area f o r  which some theoret ical  work 
has been done a t  Lewis Research Center (Ref. 9). This theory was based on simple coulomb 
col l is ions a s  the energy t ransfer  mechanism. 
might be triggered t o  get  more of the reactor plasma energy i n t o  the propellant. 
mixing and magnetic nozzle experiments could be devised t o  test the theory. 

Hopefully, some form of turbulent heating 
Jet- 

I n  a l l  of the above discussion we have been assuming a steady-state fusion reactor. 
Pulsed fusion reactors  a r e  a l so  being considered. 
propulsion. 

We do not rule these out f o r  space 

Obviously, the s t a tus  of controlled-fusion research means t h a t  the s i zes  and masses 
estimated here a re  only first approximations. 
nothing has turned up t h a t  ru l e s  out the eventual achievement of specif ic  masses consid- 
erably lower than those achievable with nuclear-electric propulsion systems. 

The best  t h a t  can be said i s  that ,  so fa r ,  
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TABLE I. - REPRESENTATrvE DESIGN REQUIWMENTS 

P a r t i c l e  d e l i v e r y t o  nozzle e . . . . . . . . . . >80$ 
Conversion t o  propulsive pawer . a . . . . a -25$ 
Radiation t o  w a l l s  . . . . . . . . . a a . e . . 
~inimm magnet cooling 10ad . . . e . . 
Refrigeration mass . . . . . . . e . . a . <lo l b b  
Space rad ia t ior  temperature . . a . . a . . e . -2000 K 

ao2 J = 109 amp/m 

TALBE II. - MAJOR RESEARCH AND DEvEclopMENT FiEQurttFMENTS 

Area Lab Ground Space 

Confinement 
Start-up, heating 
Divert or  
Je t  mixing chamber and 
High-b e t a  operat i  on 
Synchroton radiat ion 
Superconductors 
Refrigeration 
Breeder blanket 
Thermal engineering 
Rel iab i l i ty  

xx 
'X 
? 

nozzle - 
- 
- 

xk 
xx 
? 
? 

X 
X 
X 
xxx 
xx 
xx 

- 
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Figure L - Fusion rocket schematic. 
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Figure 2. - D-He 3 Fusion reaction. 
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Figure 3. - Charged particle motion in magnetic fields. 
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Figure 4 - Fusion rocket schematic, 
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Figure 5. -Torus with divertor. 



Figure 7. - Divertor concept f o r  propulsion. 
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Figure 8. - Toroidal reactor cross-section. 
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Figure 9. - Fusion rocket specific mass. 
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Figure 12. - Toroidal reactor wi th i r o n  core transformer. 
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