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ABSTRACT

A comprehensive analysis of the Vuilleumier refrigerator was con-
ducted. This analysis includes the effects of non-isothermal gas heat
addition and rejection, hot and cold regenerator inefficiencies, conduc-
tion losses., and gas leakage losses. A computer program was written

which solves the equations resulting from the analysis. The program
calculates internal pressures, temperatures, and gas flow rates as func-
tions of refrigerator crank angle, as well as overall refrigerator cooling
load and power input. Comparisons between the program results and
available data show good agreement, with a marked improvement over
the predictions of the ideal model.

iii

s

rte,	 ••



PRECEDING PAGE BLANK NOT FILMED

CONTENTS

Page

:.	 IN'rRODUCTION ............................................... 	 1

II.	 BA61C VM OPERATION .. .. .. ........ ............ .. .. .... .. .. .... 	 2

III.	 ISOTHERMAL IDEAL MODEL ....................................... 	 4

IV.	 ANALYSIS ................................................... 	 6

A. General Configuration .......................................... 	 6

B. Geometric Equations ................ .............. .. .... .. .. ..	 7

C. Cylinder Equations .... ........ ...... .................... ......	 8

D. Heat Exchange Sections .........................................	 9

E. Regenerators ...............................................	 10

F. Internal Mass Flow Rates .......................................	 13

G. Leakage and Friction ..........................................	 13

y	 H. Heat Transfer, Work, and Performance Computations ..................... 	 14

a V.	 SYSTEM SOLUTION .............................................	 16

'	 VI.	 RESULTS .................................................... 	 16
iE

A. Data Correlation ............. .................... ...... .. ....	 16

B. Illustrative Results of Program Utility .............................. 	 20

	

VII. POSSIBLE PROGRAM IMPROVEMENTS ...............................	 23

	

Appendix A — List of Symbols .......................................... 	 25

	

Appendix B — Derivation of Cylinder Geometric Equations ....................... 	 32

	

Appendix C — Program Input and Output ....................................	 34

e

1^	 A.

1	 ,

v



COLD
REGENERATOR

ATOR

CRANKSHAFT -- ^-^
DRIVEN BY	 TA

ELECTR'C MOTOR ti
HEAT REJECTED

TO AMBIENT

SUMP

HOT DISPLACER

HEAT INPUT FROM
HEAT SOURCE

-o--HFAT SINK, -TN

HEAT TRANSFERRED FROM
REFRIGERATION LOAD

Figure 1. VM Refrigerator

MATHEMATICAL ANALYSIS CIF A

VUILLEUMIER REFRIGERATOR

by

Allan Sherman
Goddard Space Flight Center

I. INTRODUCTION

The Vuilleumier (VM) refrigeration concept was patented in the United States in 1918. Ap-
parently, because of its low efficiency and cooling load when compared with other low-tempera-

ture refrigerators, its development was not pursued. However, there has recently been much
interest in the development of a VM cryogenic refrigerator for spacecraft application, because a

refrigerator of this type has the potential advantages of long lifetime operation, compactness, and

low weight.

Figure 1 shows a possible design for a
cryogenic VM refrigerator for spacecraft ap-
plication. The refrigerator consists of a hot
cylinder to which heat is transferred from a
heat source, a cold cylinder to which heat is

transferred from the load (e.g., spacecraft sen-

sors), and a sump from which heat is rejected
^r

t'	 to the ambient (e.g., spacecraft radiator). The
;as (e.g., helium) is at a different temperature

I'

in each of these three sections (T H > TA > Tc)*,
r

and continuously flows through the regenerators
into each section, due to the motion of the dis-
placers as the crankshaft rotates. The gas temperature differences among the sections are main-

tained by the displacers, which are thermal barriers; the regenerators, which heat or cool the
flowing gases to the appropriate temperatures; and the heat transfer to or from each section.

*For discussion purposes, we assume that the individual cylinder gas temperatures are constant. Actually, as will
be pointed out later, the cylinuer gas temperatures fluctuate during the cycle.
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With reference to Figure 1, the reasons for the advantages of the VM refrigerator for space-
craft application are:

(1) Compactness and Low Weight: By its very design the VM refrigerator is essentially a
one-component system (i.e., the compressor and expander are in one housing), and, for the low re-
quired cooling loads of spacecraft sensors, is of relatively low weight. Furthermore, as will be
discussed, the power required to drive the VM is very low, and thus a large motor is not required.
However, a heat source (e.g., a radiosotope type) is needed.

(2) Long Lifetime Operation: The pressure differences among the three sections of the VM
refrigerator are very small. Hence, piston pressure seals are not required (as contrasted to other
possible refrigeration concepts such as the Stirling cycle), and, in fact, a feasible seal design might
be just a clearance between the displacers and cylinder walls. Thus failure by pressure seal wear
could be eliminated and lower rolling bearing forces could be attained.

II. BASIC VM OPERATION

The VM cooler (Figure '.) is essentially a heat engine driving a refrigerator. Thus the input
energy to the device is supplied as heat, which minimizes the required drive-motor size, and allows
the direct use of a long lifetime heat source such as a radioactive isotope. The displace. move the
€;as from one cylinder of the refrigerator to the other, but do not directly compress or expand the

gas.

The steady state operation of the VM refrigeration cycle will now be explained. Reference
will be made to Figure 	 (a schematic of four crank positions encountered during operation,

and Figure 3 (the pressure-volume diagrams for the cold cylinder, hot cylinder, and total gas
volume for the VM cycle). In this explanation, we assume that the pressure drop across the re-
generators is zero, and. thus for the design depicted the pressures in the three sections are
always equal. (In the actual case, the regenerator pressure drops are comparatively small.)
:Furthermore, we note that the shapes of the pressure-volume diagrams in Figure 3 are close to
those resulting from the crank type of design shown in Figure 1. One could conceive of a displaces

movement scheme which would result in more idealized VM performance (i.e., higher thermal
efficiency), but the required mechanism would not be practical for long time spacecraft use. Finally
A should be noted that the following is a simplified view of the operation of the VM engine, in that

only the predominant processes for a given crank position are pointed out. The actual operation of

1 -.he refrigerator is much more complicated, as the subsequent mathematical analysis will show.

T	
We begin with the crank in the South position (Figure 2). At this point the cold displaces is

at its maximum displacement position, and the hot displacer is only at its half-maximum position.

2
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The mean gas temperature in the VM refrigera-
tor is relatively low, and consequently the gas
pressure is low. ThiF is :shown in the hot cyl-

inder and cold cylinder P-V diagrams in Figure

3. Since this low pressure is the result of the	 P
West-South expansion process (as will be shr)wn),
heat is absorbed from the refrigeration goad and

heat source.
V

	As the crank turns to the East position, 	 Figure 3. Pressure-Volume Diagrams

	both the hot and cold cylinder volumes decrease.	 for the VM Cycle

Part of the cold gas is forced through the cold regenerator, which is at some mean temperature,

TcR G * (Tc < TCRG ` TA ), where it is heated to nearly TA before entering the ambient section.
Similarly, most of the hot cylinder gas is forced through the hot regenerator which is at some mean
temperature, THRG (TA '' TNRG ` TH )' where it is cooled to nearly TA before entering the ambient
section. Heat, which is to be used later in the cycle, is thus stored in the hot regenerator. Finally,
since both the hot cylinder volume and cold cylinder volume have decreased, the mean gas temper-
ature, and consequently the gas pressure, change very little during this process. Nevertheless,

*The temperature along the length of the hot and cold regenerator matrices varies from a temperature somewhat less
than the gas temperature at the hot end to somewhat greater than the gas temperature at the cold end.

i
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some gas expansion (caused by the smail pressure drop that does occur), with the resulting heat
;V)sorption from the load, does take place.

As the crank moves from East to North, the hot cylinder volume increases and the cold
cylinder volume decreast s. The cold gas which is forced through the cold re generator is heat^d
to nearly T A , wh: le part of the ambient gas flows through the hot regenerator, is heated (from
stored energy) to nearly T,, , and enters the hot cylinder. The net effect of the hot cylinder
volumetric increase and the cold cylinder decrease is an increase in the mean gas temperature
and gas pressure. Hence, this process is one of ^,as compression, and for the temperatures to

remain constant, heat must be rejected. Therefore, heat is rejected at the ambient section.

As the crank turns from North to West, the volumes of both the hot cylinder and cold cylinder

increase. Part of the ambient gas moves through the cold regenerator, releases heat to it, and

enters the cold volume at nearly TC . On the hot side, part of the ambient gas moves through the
hot regenerator, absorbs heat, and enters the hot volume at nearly T C . Since both the cold volume
and hot volume increase, the system pressure does not greatly change. Nevertheless, there is
some compression with a corresponding heat rejection at the ambient section.

The crank now turns from West to South, decreasing the hot cylinder volume while increas-
ing the cold cylinder volume. Part of the hot cylinder gas is forced through the hot regenerator

where it is cooled to nearly TA , while part of the ambient gas is forced through the cold regenera-
tor where it is cooled to nearly T C .  The mean gas temperature, and consequently the gas pres-
sure, decreases, resulting in gas expansion. This causes heat absorption at the cold and hot ends.

i
1II. ISOTHERMAL IDEAL MODEL

The isothermal ideal mathematical model assumes isothermal expansion and compression
of the gas in each cylinder, 100% thermally efficient regenerators, zero pressure drop across the
regenerators, no displacer sliding friction, and no bearing friction. From the first law of thermo-

dynamics for the hot cylinder over one cycle,

F_
Q(Q=	 dU+	 pd V-	 h^dm^.	 (1)

For a regenerator with 100% thermal efficiency,
r

r

hl d n' , -
 
(1,(2)
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and since tlae gas in the cylinder returns to its initial state after one cycle,

0.	 (3)

0	 Thus, over one cycle,

QH 
J
j p d VIC	 (4)

Similarly,

QC	 p d VC.	 f5)

Now, from the equation of state and the conservation of mass, we have at any time during the cycle

v v v	 v
P :7 M0 F ti + C A HP + CR

T11 Tc TA THRC TcR

(6)	 ,.

The volumes V C , VA , VH can be computed as functions of the crank angle. VHR, VCR  TH ► Tc ► TA
T CR , and THR are constants. Fence, Equations (4) and (5) can be expressed in terms of the
variable o , and integrated from ra = 0 to ; = 2 „ (one cycle). Explicit expressions for the cooling
load QC and hot cylinder power requirement QH can then be obtained (Reference 1).

The inadequacy of this model becomes all too obvious when we compare experimental results
with theoretical predictions. Typically, the above analysis may predict a cooling load of 10 watts
and a hot cylinder heat input of 50 watts when the actual values are about 2 watts and 180 watts.

respectively. These discrepancies prompted investigators to correct the ideal model by estimat-
ing various losses, such as regenerator inefficiency, for the whole cycle, and then adding these
losses to the ideal model results. This process of uncoupling the losses from the engine per-

.	 ^.
formance resulted in only limited success, with little confiden ^e in the predictions because of a
lack of theoretical justification for such a process.

The analysis presented in this report was initiated with the goal of providing a program for
more confidently predicting VM refrigerator performance, and moi a ac4urately weighing design

trade-offs. An attempt was made to include as many losses as possible without the uncoupling as-
sumptions. In order to do this, all processes were expressed in the form of prat ial differential
equations, and the resulting rather complicated system of equations was solved via a computer	 1

program.

5
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IV. ANALYSIS

A. General Configuration

Figure 4 shows a schematic of a VM refrigerator with the significant variables employed for
the analysis. It should be emphasized that this figure is only a schematic and that the analysis is
not limited to the particular geometry shown. For example, the regenerators could be located with-

in the refrigerator without affecting the subsequent equations. Furthermore, the directions of the
arrows in the figure are arbitrary.

The heat exchange area for each cylinder is subdivided into the cylinder wall and heat ex-
changer entrance regions. In this way, flexibility is obtained in matching the actual VM geometry
•.o that of the mathematical model.

The walls of the cylinder and heat exchanger are assumed to be at a constant temperature

T „ W , T AW , T Cw ) for each cylinder section. This means that we are as. ►uming the cylinder U alls
and end caps to be infinite heat sinks (or sources) relative to the fluctuating gas temperatures.
This is indeed close to the actual case for most VM refrigerator designs.

i
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Figure 5. Geometric Arrangement of
the VM Refrigerator
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B. Geometric Equations

A schematic of the geometric arrangement
of the VM refrigerator with dimensions labeled
is shown in Figure, 5. The crank angle is
measured from the axis of the cold cylinder and

thus at	 = 0 the cold displacer is at top dead

center.

From simple geometric considerations,
then, it is shown in Appendix A that

r`

	

C VCMAXD `_ 11, _CO5 I.in- ^^si i
2 	 r `	 7

(7)

+ (1 — rn S' a )] + VCD,

VIIMAXD ^ ^	

C0.9  C11VH	
2 	 +r St n (^ N— 

,1))J 	 J

(8)

+1 - Cos a +f'-4r) }
}VHD

and

VA = VHD + VCD + VAD + V
CMAXD + VHMAXD — VC — VH'
	

(9)

Differentiating Equations (7) through (9) with respect to time, we have

I 	 r .



These geometric equations describe the cylinder volumes and time rates of change of the volumes
as functions of crank position, crank assembly dimensions, and rotational speed, and are used later
in the analysis.

C. Cylinder Equations

Referring to Figure 4 for the hot cylinder, we have from the First Law of Thermodynamics
(neglecting gas kinetic energy terms),

d Q-=cl11'pN (IVH —h 1 c1m I —h i dm 2 	 (13)

where, from the perfect gas law,

PH = MH R TH .	 (14)
VH

and we take

Yr
111 

`1 m i - C  T2H M 211 d t'	 (15)
5^'

t

f" 112 d 
m 2	 P TH "HL d t.	 (16)

W

t`

Dote that in Equation (16) we are assuming that the leakage gas around the displacer enters and
leaves the hot cylinder at T H . This assumption is exact when the gas leaks from the hot cylinder
to the axrbient cylinder; it is a reasonable simplifying approximation when the gas flows from the
ambient cylinder to :he hot section.

V
Now

	

d Q = [HVA ( TW - TH ) + KHA (TA - TH )J d t	 (17)

and

	

d U = d ( M H CV T H) = MH Cv d TH + C V TH d M H .	 (18)
k

t

Combining and simplifying Equations (13) through (18) and transforming the independent variable
f	 via
3i

d"= d t	 (19)

8
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yields

d TH	 1 HHA ( THW - TH ) KHA (TA - Tit) T
H 

11MI,	

(y - 1) it VH + 
y T2H ^^2H	

v T
II MNL	 (20)

^'V 	 MH CV	 MIt	 VH	 MH

where

d MH

	

d t	 M211 
+ MHL'	 (21)

From a similar analysis for the cold and ambient sections, we have

d Mc
d TC 

1 HCA (TCW - Tc )	 KCA (TA -
 TC) Tc d t	 ('Y - 1) Tc VC Y T2C M2c y TC MCL	 (22)

d '	 MC CV	 +	 MC
 Cv	

MC	 VC	 MC	 + MC

d MA

d TA 1 
HAA ( TAW - TA) KH A (TH - TC) KcA ( TA - TC ) TA d t	 (y - 1) TA VA

MA CVci r^ a	 + ^1j A CV	 MAMA Cv	 - MA	 VA

(23)

+ y MOC TAI + y MOH TA2 - 
-y

	 MCL - Y TA MHL

MA	 MA	 MA	 MA

w:iere

	

d MC	 (24)
d t ` M2c + MCL,

and

d MA

	

d t - M
°C
	

(25) + MOH -MHL - MCL. 

D. Heat Exchange Sections

For the heat exchange sections, we assume the total volume and hence the gas storage to be
negligible. Thus we use the usual steady stake heat exchanger equations for a constant wall tem-
perature. We can then say

THOUT - ^ 1 - e 

w CP 

(Tw - THIN ) +T
HIN '	

(26)	 x

where the variables are assigned as shown in Table 1. We also assume that the pressure drops
across the heat exchange sections are negligible compared to the regenerator gas pressure drops.

9
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Table 1

Variables Used in the Heat Exchanger Equation (26)

I

Cold Heat Ex c hanger Hot Heat Exchanger

n
PC L ' CRC

P
C	 P CRG P	 PIf	 I fRG P	 PH -	 hRG

tl„	 11CHF HCHE
11 **
	P'ME HiME

TIIIN	 T 2 SHIN	 T IC THIN	 T 111 THIN
_	

T211

THOUT	 T IC TROUT	 T 2 IIOUT	 M 211 TROUT 1111

v"	 ^ I W - M2C
W	 ^2H 451 M211

TW = TCN TIN	 - TcW Tw = 
TIM

TW
-	 IM

Ambient Feat Exchanger Number 1 Ambient Heat Exchanger Number 2

PA < PCRG PAL PCRG

W * = HAIIEI fl	 _ HAHEI

THIN TOC THIN _ TAI

Tt1OUT
t

- TAI TROUT - TOC

I

W = MOc W = Moc

TW _	
TAw TW -Taw

PA ^HRG

1 1 ** = fiAIIE2

THIN - TOH

THOUT TA2

W -MoH

TW = Taw

PA ^ PHRG

it	 11AIIE2

THIN TA 

TROUT Toil

W =h^H

TW TAW

E. Regenerators (riot or Cold)

For the purposes of this analysis, we assume that the regenerators are of uniform geometry
and material along their lengths, and describable by a free-flow area A R , and a wetted perimeter
'P*. In addition, we are assuming that both the gas in each regenerator and the material of the re-
generators have constant specific heat.

Assuming one-dimensional flow, the energy equation (dropping the gas kinetic energ. , term)
for an infinites i.ilial slab of gas, perpendicular to the regenerator axis, and of mass dm is

dQ_ ai,	 a U	 (27)
=d--x

x + —
^l tt	 c x	 ,. t

Now,

ah
x	 ' ^P 

T" 
t CP Tg a m 	 (28%)

x	 ax

10
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and

'U	 QTR	 =!(dm)t _ (d m) CV . t . T ^ C
V	 t

%. ire

d m 7 E AR ri x.

In addition we may write

cam2/

'x - 	'i t
and

dQ=h*P'(TR-T^)dx.

Combining and simplifying Equations (27) through (32), while changing the independent vari-
able from t to (', yields

r	 a T l	 ^
OT 	 (

ax
J \/-RTs(Y-1) am

a0 - 
G	 PR 

AR	

(33)

Now, an energy balance in the corresponding meta.,. regenerator slab, ignoring axial conduc-
tion, is

CLR	 a B = - h * J, - TR)
	 (34)

from which

a 
TR _ 1	 h`	

(T -T 	 (35)
'664	 c^ MR /LRG) `"PR	

R	 R J

L(

The convective heat transfer coefficient h in Equations (32) - (34) is assumed to be of the	 j
form

h' = D,, E	(36)

where D and E are obtained from experimental data (e.g., Reference 3).

In order to solve Equations (32) and (35), and to calculate the corresponding mass flow rates,

4 "luinped" type of approximation similar to that used in Reference 2 is employed. For the purpose

11
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of this approximation the gas ii, each regenerator is considered to be at an average temperature

T	 given by
HG

T	 -	 T^ (x) rl x,
-

LRG (37)

and an average pressure given by
M

P --" RT
K	

vRC	
K

(38)

The flow resistance for each regenerator half is then lumped into a flow resistance co-
y	 ef:icient.	 The assumption is illustrated in Figure 6 which shows the three modes among

which we wish to calculate the gas mass flow rate. 	 The appropriate flow resistance coefficients
x	 and pressures are labeled.

The mass flow rate into and out of either end of the regenerator is then calculated from
k

a _ pq ^	 g/R TK	 for	 the	 ambient	 end
1

1	 1	 /IpA 	p
of	 the	 hot	 ora.^y	 1 	 IYY	 K R1

(39 )
cold	 regenerator

M 2	 1	 ^P2 - Pg j Pg ^R TT_ 	 the	 hot	 or (40)
a	 R R2

(for
old	 end	 of	 the

regenerators

where the constants KR 1 , KR  are calculated from experimental data (e.g., as contained in Refer-
ence 3) for the particular regenerator, and the sign in front of the radical is determined from an
appropriate sigh convention.*

Now, in order to facilitate solving Equations (33) and (35) we make the following three approxi-
mations in these two equations:

*Details of the sign convention for Equations (39) and (40) c-e given in Reference 4. The signs in front of
these equations are of no significance in this discussion.

12

AWL
'	 h



M1	
M2

x -
	

SRC	
(41)

MI	 M2

M -	 2
	

(42)

and

PP ,	 (43)
Rf 

where again the signs in front of the terms are from a compatible sign convention. In effect,
Equations (41) and (42) represent an average value for the regeneration mass flow rate and mass
flow rate gradient, respectively.

F. Internal Mass Flow Rates

With the lumping of the regenerators' flow resistance, the mass flow rates into and out of
each cylinder can be calculated. Again, we assume the regenerator gases to be at an average
pressure and temperature given by Equations (37) and (38), and we calculate the flow rate to
a point at this temperature and pressure. Experimental data are used to obtain the flow resist-

`	 ance coefficient for each half of the regenerator.

The internal mass flow rates can then be calculated by the eauations

+	 PC ' PCRG I PCRG/R TCRG	 (44)2C
CKR2

M _ +	 PA ` PCRC' PcRC/R Tcac
UC	 (45)

^"KRI

	

IPA - PHRG I PHRG/R THRG	 (46)MoH -± Y	 ,

R1

and	

r
/' PH - PIiRG' PHRG^ " HRG	 (47)M2H = f

162

G. Leakage and Friction

The gas leakage mass flow rates around the cold and hot displacer are calculated from the
laminar Couette flow solution

13
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tit	 „ Q [ _P 2	 PA113 (lA- P2)
(48)n T2 I, 

^F 12 7- 
	 Lp

The frictional force exerted by the gas on each displacer can then be calculated via the
laminar flow solution to the Navier Stokes equations:

F 2	 L-	
V + f^ (P A - P2)	

(49)
D r k
	

21RLn

The heat transferred to or from the cylinder by the leakage gas is then app roximated as

Qcj. Mc1. q) (Tc .- TA )	 (50)

and

^[!L	 M11L cr (TE1 - TA ) '	 (51)

where again we are assuming that the gas is heated or cooled to the gas temperatures in the
cylinders to which it is flawing.

H. Heat Transfer, Work, and Performance Computations

The heat transfer rate to the hot cylinder is given by

QH HHA (THW - 7'H)	
M2H ^P (T2H ` T1H) ; `T HW (THW .. TH ) 2 QIIL'	 (52')

where the K HW (THW - TAW ) term is the heat lost directly from the hot cylinder to the ambient
cylinder (i.e., either by radiation or a direct conduction path). One-half of the heat transferred
to or from the cylinder wall by the hot-to-ambient cylinder gas leakage is allocated to the hot
cylinder.

Similarly, the heat transfer rates to the cold and sump cylinder walls are given by

QC 
HcA (TcW - Tc) + M2C Cp (T2C T I C)TI C)

and	 1	 (53)
+ KCW (TCW - TAW ) L 2 

6 C

14



)

QA	If AA (TAW - TA ) - K C . W, (rAW 	TCW ) * KH W ( "AW	 Tt1W)

(54)

4^H C, (T A2 ' TOO ' '^)C Cp (1 AI - ToC ) ` 2 QHt.	 nCL'

The average heat transfer rate over one revolution of the crankshaft is obtained by solving
Equations (52) - (54) for the total heat transferred to each cylinder over one revolution, and
dividing by the cycle period. Hence,

Q11
(55 ) QH 2 _  

QC	 (56)
QC-2,

and

Q	 QA	 (57)

QA-2

The work that must be supplied to each disp.lacer is the sum of the "pdV" work plus the work
required to overcome the viscous drag of the gas between the displacers and cylinder walls. The

work rate, then, is given by

* K VC ( ± P
C 

' A C + PC ) + VF{	 (+FH' ADH + P Id + PA NA'	 (58)

where Fc and F,, are computed from Equation (49) for the appropriate cylinder, with the sign de-
termined from a compatable sign convention.

The average work rate over one cycle is obtained by solving Equation (58) for the total work
and dividing by the cycle period. Hence,

	

WW K _ 
WK	 (59)

.0 7 Q'

The coefficient of performance for the VM refrigerator is Computed (by definition) from

r

COP -	 l`c	 (60)
(QH + ;WKi)

15



where the absolute value sign is required for the work rate term because wK is always negative as

a result of the sign convention system ems loyed.

Another measure of performance used here is the percent of Carnot efficiency for a re-

frigerator operating between Tc and T A . This is given by

CAR	
COP	

(61)

Tcw

^ nw -Tcw

V. SYSTEM SOLUTION

A computer program (Reference 4) was developed which simultaneously solves the equations
developed in sections IV A through IV H. This program employs a combination of finite difference
and Runge Kutta numerical techniques to solve the system of equations as functions of crank angle

. For most designs, the system consists of several hundred equations, primarily because the re-
generators are subdivided axially into slabs (usually about 100 each); thus the energy and momen-
tum equations must be solved for each slab at every . In addition, since the system represents a
two-point boundary value problem, an iterative technique on - must be employed. Typically, a
step size of .004 0 is used with about 10 iterations and a run time of about 2-1/2 hours.

Because of the large amount of computer time required, the program is not used for general
VM refrigeration performance studies, but is primarily employed in the design of a specific
Vuilleumier refrigerator.

The input and output variables and constants for the program are listed in Appendix C.

VI. RESULTS

A. Data Correlation

Very little design information or data on Vuilleumier refrigerators has been published. A

design is presented, however, in Reference 1; a schematic of this machine, taken from Reference
1, is shown in Figures 7A and 7B. The rather limited available data from testing this refrigerator
are used to demonstrate program/test correlation.

The results of the computer program runs for this refrigerator are shown in Table 2. The

followi.ng points are noted with reference to this table and Figures 8 through 10:

(1) A difficulty was encountered in determining what effective cold regenerator mass to use

for the program. The reason for this problem is that because of the low mass of the actual
t

16	 j
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Table 2

Program Results for Sample Refrigerator Design

Run No.

1

MRC

.06

TCW ^C OEi WK

5.75

COP

.0114

CAR

-320°F 1.67 140.5 .0326

2 .04 -320°F 1.11 137.7 5.7 .0076 .022

3 .0186 -320°F - .03 1'1A 5.55 - -

4 .04 -357°F -2.8 147.7 7.65 - -

5 .04 -345°F -1.48 142.1 6.87 - -

6 .06 l	 -330°F .584 141.8 6.19 .00394 .0124

Figure 8. Cooling Load vs. Effective Cold
Regenerator Mass for Sample Refrigera ►or.
Tc = -320JF.

- ^0	 .02	 .03	 .04	 .05	 .06

-_D REGENERATOR MASS, MRObsj

regenerator scree «ing material, the obtainable cooling for a given cold cylinder temperature is
sensitive to any additional regeneration which may occur at the inlet or outlet of the cold regener-
ators. The various possible sites for regeneration at the inlet and outlet to the regenerator were
thus investigated. It was determined that the stainless steel gas port insert at the base of the cold
displaces (Figure 7) provides enough effective mass and heat transfer capability for regeneration.
This effective mass was calculated by computing the effective depth of penetration of a sinusoidal
temperature variation in the inside and outside surfaces of the insert (Reference 5).
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(2) Figure 8 shows the calculated cooling load vs. the effective cold regenerator mass for

	

T	 320°F. The lowest coolie load point includes only the screens as the effective mays, while

	

^	 g	 p	 Y

the high point includes the effective mass of the whole inside and outside surfaces of the stainless

insert. The middle point also includes as the effective mass the inside surface of the stainless in-
sert, but only half the length of the outside surface (i.e., from the gas ports to just beyond the
carbon rings). It was felt that because of the influence of the outside wa?1 which is at the ambient

wall temperature, the most realistic estimate of the effective regenerator n.ass is .04 lbs (i.e.,

the middle point in Figure 8.) Therefore, the correlations between theory and data which follow
use this value for the cold regenerator mass. Finally, it is of interest to note that the convex shape
of the curve in Figure 8 is expected, since the greater the cold regenerator mass, the less effect a

change in the mass has on the obtainable cooling load.

(3) Comparisons between the calculations and data are shown in Figures 9 and 10.

Figure 9 shows that there is very good agreement between the data and the present analysis,
especially when compared to the ideal analysis. Furthermore, most of the difference between the

hot cylinder heat transfer rate of the data and of the analysis can be attributed to insulation and
lead wire losses which are not included in the analysis.

Figure 10 shows only two data points, with a linear interpolation between them. It is seen that

the WM analysis results agree much more closely with the data than does the ideal model, especially
at the higher cold-cylinder temperatures. For example, at Tc = 140°R (= 77K), the program pre-
dicts an obtainable cooling load of 1.1 watts, as compared to 2.5 watts measured, while the ideal

model predicts 12.8 watts. At the colder cylinder temperatures the agreement between the present

19
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model and data is not as good, although still much 	 HOT GAS VOLUME, v„ (ft3)

closer than the ideal model. (Note that a. nega- 	 Figure 12. PH -VH Diagram for Sample Refrigerator
tive cooling load means that at the correspond-
ing cold cylinder temperature, the net heat would
be transferred from the cold cylinder to the load.) The reason for the wider discrepancy at the
lower cold cylinder temperatures might be the assumption of a constant matrix specific heat along
the length of the cold regenerator. Obviously this assumption becomes less accurate as the differ-
ence between the temperatures at the ends of the cold regenerator increases.

(4) It is concluded that good agreement exists between the program and the available data.
Furthermore, it is felt that, the agreement with respect to cooling load would be even better for a re-
frigerator with a cold regenerator that was not quite as marginally designed (i.e., less sensitive to
changes in regenerator mass). Finally, several suggestions are proposed in Section VII which should
further improve the correlation for the cold end of the refrigerator.

B. Illustrative Results of Program Utility

The computed P-V diagrams for the hot and cold cylinders of the sample refrigerator are
shown in Figures 11 and 12. The area enclosed by the cold-end curve divided by the period of

20



revolution represents the maximum possible cooling load for the refrigerator under the specified
operating canditions, while the area enclosed by the hot side P-V diagram divided by the period of
revolution represents the minimum possible power requirement for the refrigerator design. Hence,
the feasibility of the design with respect to geometric considerations (i.e., hot cylinder size, cold
cylinder size, dead volume, etc.) can be checked.

The differences between the firial calculated cooling level and hot cylinder power input com-
puted from the program, and those calculated from the P-V diagrams are due i ) regenerator inef-
ficiencies, non-isothermal heat tram!fer from the gas to the cylinder walls, gas leakage around
the displacers, and conduction losses. As an example ; for the sample design o C and 0„ are 9.3
watts and 70.5 watts respectively from the P-Vdiagrams, as compared to 1.11 watts and 137.7 watts
for the final calculated values. It is obvious, therefore, that there are substantial losses from the
aforementioned processes.

Regenerator performance can be evaluated with the aid of Figures 13 and 14, which were
composed from program data. Figure 13 shows the gas mass flew rate at the cold end of the cold
regenerator as a function of crank position. The positive values are the mass flow rates of gas
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Figure 13. Mass Flow Rate of Gns at Cold End of Cold
Re generator vs..; for Sample Regenerator.
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leaving; the regenerator and entering the cold cylinder. The negative values are the mass flow

rates of gas leaving the cold cylinder and entering the cold i eg;enea ator. Figure 14 shows the
matrix and gas temperatures at the extreme cold end of the cold regenerator as functions of
crank angle.

During steady state operation, as the crank turns from the zero degree position the helium
flows through the regenerator into the cold cylinder; hence, the mass flow rate is positive in
Figure 13. The ga-, as it flows through the cold regenerator, is cooled to the temperatures shown

in Figure 14. At the same time the temperature of the matrix at the cold end of the cold regener-
ator increases as it is heated by the exiting gas. This process results in increasing the gas exit
and matrix temperatures until the flow direction reverses at 	 165° (Note the minor irregularity
at the peak of the curves in Figure 14, in which the gas temperature curve crosses over the matrix
temperature rui: ,., e, while the gas mass flow rate is still positive. This irregularity appears to be
due to a minor numerical instability at the area of the peak.) As the gas mass flow rate reverses,
the gas temperature is identical to the cold cylinder gas temperature. The flow of this cold gas

over the regenerator's cold end lowers the matrix temperature as shown in the figure. Following
this, the cold cylinder gas temperature first increases and then decreases, with a corresponding
matrix temperature as shown. Finally, as the flow rate direction reverses again at 	 0°, this
whole process starts over again.

The regenerator's heat loss per cycle can be expressed by

nt.oss	 f 11 1C n, 2C 
'I t	 (62)

1 C T M	 I	 (63)t	 IC	
2c `

where T 1C is the gas temperature shown in Figure 14 and :.I 2C is the mass flow rate shown in
Figure 13. By means of Figures 13 and 14, therefore, the regenerator inefficiency can easily be
calculated. Note, however, that this loss is coupled with the fluctuation of the cold cylinder gas
temperature, since this fluctuation affects the temperaturE wing of the matrix. In this way, there-
fore, the program can be used to design, or to improve existing uesigns, of regenerators. In the present

case, it is obvious (without going through the above computation) from the large matrix temperature

swing that an increase in the mass of the cold regenerator would significantly increase the obtain-
able cooling loads. This conclusion was also reached in Section VI A.

Another regenerator design variable which can be studied with the program is the gas pres-
sure drop across the matrix. This is particularly important in designing the seals for a refrigerator

22



550

530

510

490

470

\	 PA

PC\

U
450

d

W 430
Ln
v)
W

410

390

370

350

330

00	 500	 100 0 	150 0 	2000 	2500 	300 0 	350°

CRANK ANGLE, 9 (deg)

for long life-time operation. As an example,
Figure 15 shows the cold and ambient cylinder

pressures vs, crank angle for the sample re-
frigerator, where the difference between the

curves is the differentic-1 pressure across ine
cold displacer seals. Similar curves for the hot
cylinder show a maximum pressure drop on the

order of 1 psi across the hot regenerator.

Cylinder-to-gas heat transfer coefficients,
gas leakage effects, and conduction losses can

best be evaluated by making several computer
runs for a specific refrigerator design, with
several different values for the constants which
represent these effects.

VII. POSSIBLE PROGRAM IMPROVEMENTS

The VM analysis program could be im-
proved in the following ways:

(1) The regenerator matrix specific heat 	 Figure 15. Ambient end Cold Cylinder Pressures

could be allowed to vary with temperature ac- 	 vs. ,a for Sample Refrigerator

cording to input values or functions.
.1	 (2) Regenerators composed of sections of different material could be handled by reasonably

simple program modifications.
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Appendix A

List of Symbols

Au hot or cold displacer cross-sectional area

ADc cold displacer cross-sectional area

Aof{ hot displacer cross-sectional area

AR regenerator free flow area

ARCF cold regenerator free flow area

ARNF hot regenerator free flow area

b gap between displacer and cylinder

CAR % of Carnot COP

C,KR1 cold regenerator flow resistance coefficient defined by Equation (45)

c.KR^ cold regenerator flow resistance coefficient defined by Equation (43)

CP gas specific heat at constant pressure

CPRR regenerator matrix specific heat

Cop coefficient of performance

CTAIC initial gas temperature at ambient end of cold regenerator

CTCIC initial gas temperature at cold end of cold regenerator

Cv gas specific heat at constant volume

D constant defined by Equation (36)

d m infinitesimal element of gas in regenerator

d ml infinitesimal element of gas entering or leaving hot cylinder

d m 2 infinitesimal element of gas leaking around 'not displacer between hot cylinder and am-

bient cylinder

r

25



F. constant defined by Equation (36)

r hot or cold displacer frictional force

rc cold displacer frictional force

1 , H hot displacer frictional force

i, regenerator gas enthalpy

H AA ambient cylinder-to-gas convective heat transfer coefficient times heat transfer area

IIA,IFi ambient heat exchanger #1 convective heat transfer coefficient times heat transfer area

HAHF2 ambient heat e cchanger #2 convective heat transfer coefficient times heat transfer area

Ii CA cold cylinder-to-gas convective heat transfer coefficient times heat trans:er area

UU E cold heat exchanger convective heat transfer coefficient times heat transfer area

hCR enthalpy of gas entering or leaving cold end of cold regenerator

[t , A hot cylinder-to-gas convective heat transfer coefficient times heat transfer area

IiIIHE hot heat exchanger convective heat transfer coefficient times heat transfer area

,^CRI 
hot regenerator flow resistance coefficient defined by Equation (46)

HKR2 
hot regenerator flow resistance coefficient defined by Equation (47)

11 1 enthalpy of gas entering or leaving hot cylinder

W convective heat transfer coefficient between regenerator matrix and gas

I," defined in Table 1

H"rAIr initial gas temperature for ambient end of hot regenerator

HTHI C initial gas temperature for hot end of hot regenerator

h 2 enthalpy of gas leakage entering or leaving hot cylinder via the hot displacer (Equation

(1.6)

I REG program print command

r
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I RUN program print command

IR11VX program print command

I T I' number of iterations for program

J constant, equal to 778.16 ft-lb/BTU

KCA overall thermal conductance between cold cylinder gas and ambient cylinder gas, includ-

ing conduction across the cold displacer

KcW 
thermal conductance from cold cylinder wall (rectly to ambient cylinder wall

KF{A thermal conductance between hot cylinder gas and ambient cylinder gas, including con-
duction across the hot displacer

KHW thermal conductance from hot cylinder wall directly to ambient cylinder wall

KR, regenerator flow resistance coefficient defined in Figure 6

KR  regenerator flow resistance coefficient defined in Figure 6

4 . cold cylinder connecting rod length

L regenerator length

L  length of hot or cold displacer

LCD 
length of cold displacer

LHD 
length of hot displacer

;' hot cylinder connecting rod length

M mass

M gas .nass flow rate

regenerator gas mass flow rate

p, P pressure

a M 1 /a F regenerator mass flow rate defined by Equation (39)

i^ 2 / ? regenerator mass flow rate defined by Equation (40)
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P average hot or cold regenerator gas pressure defined by Equation (38)

P' regenerator wetted perimeter

t' hot or cold cylinder gas pressure

0 heat

6 heat transfer rate

r crank radius

R gas constant

P  displacer radius

PiCD cold displacer radius

HD
hot displacer radius

RPM crank revolutions/minute

SMC number of cold regenerator slabs

sMtl number of hot regenerator slabs

t time

T temperature

T 2 hot or cold cylinder gas temperature

THIN 
defined in Table 1

1,HOUT 
defined in Table 1

u gas internal energy

v volume

w (defined in Table 1)

WK work rate

X coordinate along regenerator length

28



a

i

XDEG program print command

WAR program convergence constant

YVAR program convergence constant

Greek Letter Symbols

angle between hot and cold cylinder axes

n crank angle step size

y CP /CV for gas

rotational speed (rad/sec)

IP hot and cold crank displacement angle (refer to Figure 5)

4 C cold-to-ambient leakage average gas viscosity

u11 
hot-to-ambient leakage average gas viscosity

hot- or cold-to-ambient leakage average gas viscosity

gas density

ra crank angle (zero position is top dead center of cold cylinder)

Subsc ripts

A ambient cylinder gas

Al gas entering or leaving ambient cylinder through heat exchanger #1

A2 gas entering or leaving ambient section through heat exchanger #2

AD ambient cylinder dead volume

Aw ambient wall

c cold cylinder gas

CD cold cylinder dead volume

29



CL leakage gas around cold cylinder

cMAXO cold displaced

CR cold regenerator dead volume

CRS cold regenerator

cw cold wall

K gas

H hot cylinder gas

HD hot cylinder dead volume

HL leakage gas flow around hot displacer

HMAXD hot displaced

HR hot regenerator dead volume

HRC hot regenerator

Hw hot wall

L leakage

oc gas into or from ambient end of cold regenerator

OH gas into or from ambient end of hot regenerator

lc gas flow from or into cold end of cold regenerator

1H gas flow from or into hot end of hot regenerator

R regenerator matrix

RC cold regenerator matrix

Rr, applies to hot or cold regenerator dead volume or length

RH hot regenerator matrix

2c gas flow from or into colt: cylinder

30



211 gas flow from or into hot cylinder

o total mass of gas in VM refrigerator

Superscript

- average
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(B2)

(B3)

(B4)

(B5)

(B6)

HOT
CYLINDER

Appendix B

nerivation of Cylinder Geometric Equations (7) through (9)



Combining (B3) and (B6)

\\11

X	 cos sin" i (1	 sin t?I
J

 + r (1 - cos H)•

But

Xmax - 2 r

and

X_ y
%AX VMAXD

Hence

	 Iin-I\lVMAXD2rl -cos s 	 (t sin'1 I+ 2 (1 -cos H).

Now, adding the dead volume to this equation, we have

VcMAXD\
n	

VC = 2	 f 1 - Cossin'1 \ r sin H)1 + (1 - cos H) + 
VCD'

I \ 	 /J

which is ,Equation (16)

Equation (8) can be derived in exactly the same way, but with the substitution
i
e

1

j

3 	 H- a+H_^.

q

Equation (9) follows from a volume balance on one whole refrigerator.

(B 7)

(B8)

(B9)

(B10)
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Appendix C

Program Input and Output

1. Input

The program input is shown on the next two pages, which are based on material from Refer-
ence 4.

2. The program output consists of the following information:

a. Cylinder pressures as functions of

b. Cylinder temperatures as functions of

c. All internal gas mass flow rates as functions of e.

d. Cylinder volumes and volumetric time rates of change as functions of

e. Cold and hot regenerator gas and matrix temperatures as functions of e .

f. Hot cylinder power requirement, cold cylinder cooling load, motor power requirement
and ambient heat rejection for the input conditions.
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