DATABOOK FOR HUMAN FACTORS ENGINEERS

VOLUME II: COMMON FORMULAS, METRICS, DEFINITIONS

DATABOOK FOR HUMAN FACTORS ENGINEERS

VOLUME II: COMMON FORMULAS, METRICS, DEFINITIONS

Edited by
Charles Kubokawa
NASA - Ames
Wesley Woodson
Peter Selby
Man Factors, Inc.

Prepared Under

Contract NAS2-5298
Nov. 1969

PUBLISHER'S NOTE
Certain nomograms included in this work have been reproduced from DESIGN NEWS with the permission of the publisher, Cahners Publishing Company. Additionally, some materials (tables, equations, etc.) have been reproduced with the permission of The Chemical Rubber Company. The kind permission given for the use in this book of materials copyrighted by the Cahners Publishing Company and The Chemical Rubber Company does not authorize the use of such materials by others withou'i the consent of the copyright proprietors. See Section 8, Title 17 of the United States Code.

VOLUME II

TABLE OF CONTENTS

Foreword Vi
Acknowlerigements vii
Section 1: Useful Formulas and Nomograms
Mathematics
Algebra $1-2$
Sums of Numbers
Progressions
Permutations and Combinations
Quadratic Equations
Cubic Equations
Approximations
Series
Mensuration Formulas 1-6
Plain Fig"res
Solid Figures
Trigonometry 1-12
Functions of a Right Triangle Side-Angle Relations of Any Plane Triangle Relations in Any Spherical Triangle Trigonometric Formulas Trigonometric Reference Table Nomograms for Evaluating Plane Triangles Oblique Triangles
Aralytical Geometry 1-24
Calculus 1-26
Differentials
Integrals
Areas of Plane Figures 1.27
Positive and Negative Powers of Two 1.29
Binary Numbers: 0-127 1-30
Shop Arithmetic Reference Rules 1-31
Simple Nomograms for Engineering Calculations 1.32
Nom $\quad 1, n$ for Properties of the Circle $1-35$
Rules Kelative to the Circle -36

TABLE OF CONTENTS (Continued)

Secton 1: Useful Furmalas and Nomograms (Cimtimisal)Mathematics (Contmued)Areas of Cincles and Scetors, Starfaces and Volumes of Spheres1-37
Nomugrams for the Properties of the Sphere 1-38
Nomogram for Partial Volumes of Spheres 1-42
Surface Area of an Eilipseid $1-43$
Nomogran for Volume ola Rectangular Parallelepiped $1+4$
Perimeter oí un Ellipse $1-45$
Rapid Graphing of Ellipses, Parabolas and Hyperbolas 1.47
Surface Area of a Cone $1-50$
Exponents and Logarithms Reference Shee: 1-51
Physics
The Basic Laws of Physics 1-54
Basic Laws of Eiectricity and Magnetism $1-58$
Space, Time, Velocity, and Acceleration Formulae $1-63$
Speed-Altitude Nomogram 1.6.4
Mach Number Nomogram $1-65$
Model Atmosphere Chart 1.66
Impact Pressure is Airspeed 1-67
Pullout Radius at Various Velocities and Accelerations 1-68
Turn Radius at Various Velocitics and Accelerations 1-69
Centrif'igal Force Nomogram 1-70
Power Nomograph 1.71
Specific Gravity, Weight and Volume 1-72
Gas Density Nomiogran: 1.73
Density of Moist or Dry Air 1.74
Barometric Pressures at Vanicus Altitudes 1.75
Noiss Measurement $1-77$
Radiant Ileat Transfer 1.78
Radiant-lleat Transmission Desiga Chart 1.70
Culor Temperature $1-80$

TABLE CF CONTENTS (Continued)

Pillsics ' Cummatal
Lght - Chadetenstws anc Deasurtments 1.81
Vomugraph for intensity or Retaected Light 1-3r
fucai Lengti, Numagran. $1-8^{-}$
Optics Kersacthon and Reflection at Plane Suríaces $1-8 \varepsilon$
Chemastry
Penodic Table ot la Element. 1.95
Internatural Atomi V eights $1.9 t$
Electronc Confguration of the Elements 1.97
Commor Acids. Bases. Hydrocarbons. Alcohols 1.98
Comm. 3 Cormpounds and Allotropes 1.99
Staistics
Definutions irom Statistics $1-100$
Operations and Not ation $1-101$
Deceriptive Statusus 1-101
Measures of Varia", ility 1-101
Measures of Relai onship 1-102
Compucational \mathbf{F} srmulas $1-103$
Statust.cal Infere ice 1-104
Normal Distribltion 1-105
Sonae Methods of Psychophysios. $1-107$
Sectuon 2. Metrics and Conversion Data
Comersion Table: $2-2$
Useful Physical Constants 2-22
Internatuonal Sta idard Prefixes 2-23
U.S. Measures/Metric System Conversion Scales 2-24
Inches and Millimeters Conversion 2-26
Cubic Inches and Cubic Centimeters 2.27
Fraction/Decimal Conversion 2-28
Temperature Conversion 2-25

TABLE OF CONTENTS (Continı sa)

'rrics and Conversion Data (Contimued)
High-Altitude and Space Pressure Environment 2-30
Hg to PSI Conversion Chart 2-31
Scales and Projections $2 \cdot 32$
Decimal to Binary Conversion Tables. 2-33
Coulomb Conversion 2-35.
The Energy Level of Things 2-36
Energy Conversion Chart 2-37
Power Unit Convèrsion 2-38
Torque Conversion Charts 2-39
Conversion Chart for Vibration Velocity Level and Vibration Acceleration Level 2-40
Units of Luminance Conversion Table 2-41
Section 3: Graphic Symbols
Recommended Standards from USA Standards Institute 3-2
Military Standards 3-4
Arithmetic and Algebra 3-5
Elementary Geometry 3-7
Analytic Geometry 3-7
Trigonometry and Hyperbolic Functions 3.8
Calculus 3.8
Special Functions 3-9
Vector Analysis 3-9
Therbligs 3-10
Process Analysis Symbols 3.11
Operational Sequence Diagrams 3-12
Computer Graphics and Notations 3-13
USASI Standard F low Chart Symbols 3-14
Craphical Symbols for Electrical Diagrams 3-17
Graphical Symbols for Air Conditioning $3-28$
Standard Wiring Symbols 3-2y

TABLE OF CONTENTS (Continued)

Section 3-Grapuic Symbols (Continued)
Greek/Russian Alphabets 3.30
Meteorology 3-31
Section 4: Definitions
General Definitions 4.3
Task Analysis Verbs $4-140$
Section 5: Acronyms and Abbreviations
General Acronyms and Abbreviations $5-2$
U.S. Navy Ship Designations 5.13
U.S. Air Force Aircraft Designations 5-16
AN Nomenclature System for Flectronic Equipment 5-17
Abbreviations and Symbols from Physics and Cherristry 5-18
Spelling and Sy/mbols for Units 5-19
Practical Electrical Units $5-20$
Secuon 6: Ruference Sources
General Pubications 6-2
Military Publivations $6-5$

DATABOOK FOR HUMAN FACTURS ENGINEERS

VOLUME II
COMMON FGIRMULAS, METRICS

AND DEFINITIONS

FOREWORD

As indicated in the Foreword to Volume 1, the information contained in this handbook represents data most often used by practicing human factors specialists, as determined by survey of a group of the leading practitioners of human engineering. The purpose of this handbook is to provide a convenient method for taking the most used reference information directly to a job remote from the specialist's regular bookshelf. Although it is recognized that no such collection will be as complete as desired by all users, every effort has been made to include as many topics as feasible within the space limitations of a handbook. The included materials have been taken directly from many sources, and in a few cases represent original data.

Volume I of the two-volume series contains typical human engineering data useful in determining optimum design characteristics of equipment operated or maintained by human operators and/or maintenance personnel.

Volume Il contains formulas, nomographs, metrics, conversion tables, symbc.s, definitions and abbreviations and acrenyms that may be rquired at some time during the project activities of typical human engineering specialists. This information, although available from other sources, often requires that the human engineer search through numerous texts, handbooks, specifications and guides in order to 1 ind what he needs.

It is hoped that by providing this information in a more convenient form the human engineer will find his job simplified. These volumes are not intended to teach, hence provide little text.

Suggestions for revisions are solicited and should be sent to Mr. Charles Kubokawa, Man-Machine Integration Branch, NASA-Ames Research Center, Moffett Field, California, 94035.

ACKNOWLEDGEMENTS

Special acknowledgement is made to the following individuals for their assistance in reviewing the initial draft of the Databook and for the timely suggestions provides to improve the content and organization of the material:

Robert F. Chaillet, U. S. Army
Richard Coburn, U.S. Navy
E. W. Davenport, Ryan Aeronautical Company
John H. Duddy, Lockheed Missiles \& Space Co.
Robert C. Hurst, General Dynamics Corporation
Jack A. Kraft, Lockheed Missiles \& Space Co.
James R. Milligan, North American Aviation
Gerald E. Miller, Private Consultant
Heber G. Moore, U.S. Navy
Joseph L. Seminara, Lockheed Missiles \& Space Co.
Robert B. Sleight, Century Research Corporation

REVISION SUGGESTION FORM

TO :	Mr. Charles Kubokawa
	Man-Machine Integration Branch
	NASA-Ames Research Center
	Moffett Field, Calif., 94035

FROM: Name
Affiliation \qquad
Address
Phone \qquad

SUGGESTIONS: Please be as specific as possible. Identiyy or provide copy of suggested new material. Give specific address as to where material could be acquired. If errors are found, identify by page and paragraph, figure or table title. Be explicit about suggested changes and provide citations or rationale for suggestions.

Section 1

USEFUL FORMULAS AND NOMOGRAMS

Section 1
USEFUI. FORMULAS AND NOMOGRAMS

This section contains a selection of formulas and nomograms from the fields of mathematics, physics, chemistry and statistics. There are a great many more nomograms and nomographs available in the literature (and particularly in such trade journals as DESIGN NEWS), however most of those looked at and omitted dealt with detailed design aspects of engineering which the human engineer would not ordinarily be expected to become involved with.

There is, of course, a virtualiy limitless supply of mathematical formulas and tables from which to choose -- a fact which does not make the selection problem an easy one. Here again it was necessary to take a strictly pragmatic approach. Those finally included represent a composite of judgments -- those of the authors and reviewers.

Since material was derived from many sources it is impossible to give credit to them all. However, we wish to acknowledge in particular our gratitude to the editorial staff of The Chemical Rubber Company, publishers of the universally known and respected HANDBOOK OF CHEMISTRY AND PHYSICS for their permission to use many of the mathematical formulas contained therein. Our thanks also, as mentioned earlier, to the Cahners Publishing Company, publishers of DESIGN NEWS for permission to reproduce many of the nomograms which first appeared in that publication. These appear in this section and in Section 2, principally.

Readers not already fam:? ${ }^{\text {mr with }}$ it are urged to consult the following volume ireferred to above) for hundreds of additional useful fornal?

Handbook of Chemi r ysics
Chemical Rubber Pas+iciniug Company
18901 Cranwood Parkway
Cleveland, Ohio 44128

ALGEDRA

SUMS OF NUMBERS

The sum of the first n numbers, -
$\Sigma(n)=1+2+3+4+5 \ldots+n=\frac{n(n+1)}{2}$
The sum of the squares of the first n numbers.
$\dot{x}\left(n^{2}\right)=1^{2}+2^{2}+3^{2}+4^{2}+5 \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
The sum of the cubes of the first n numbers,
$\Sigma\left(n^{3}\right)=1^{3}+2^{3}+3^{2}+4^{3}+5^{3} \ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$

ARITHMETICAL PROGRESSION

If a is the first term; l, the last term; d, the common difference; n, the number of terms and s, the sum of n terms, -

$$
\begin{aligned}
& l=a+(n-1) d \\
& s=\frac{n}{2}(a+l) \\
& s=\frac{n}{2}\{2 a+(n-1) d\}
\end{aligned}
$$

GEOMETRICAL PROGRESSION-

If a is the first term; l, the last term; r, the common ratio; n, the number of terms and s, the sum of \boldsymbol{n} terms, -

$$
\begin{array}{ll}
l=a r-1 & s=a \frac{(1-r)}{1-r} \\
s=a \frac{(r-1)}{r-1} & s=\frac{l r-a}{r-1}
\end{array}
$$

If \boldsymbol{n} is infinity and r^{2} less than unity, -

$$
s=\frac{a}{1-r}
$$

PERMUTATIONS

If \boldsymbol{M} denote the number of permutations of \boldsymbol{n} things taken \boldsymbol{p} at a time, -

$$
M=n(n-1)(n-2) \ldots(n-p+1)
$$

COMBINATIONS
If M denote the number of combinations of n things taken p at a time, -

$$
\begin{aligned}
& M=\frac{n(n-1)(n-2) \ldots(n-p+1)}{p l} \\
& M=\frac{n l}{p l(n-p)!}
\end{aligned}
$$

ALGEBRA

QUADRATIC EQUATIONS

Any quadratic equation may be reduced to the form, -

$$
a x^{2}+b x+c=0
$$

Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
If $b^{2}-4 c c i$ is positive the roots are real and unequal.
If $b^{2}-4 a c$ is zero the roots are real and equal.
If $b^{2}-4 a c$ is negative the roots are imaginary and unequal.
If $b^{2}-4 a c$ is a perfect square the roots are rational and unequal. CUBIC EQUATIONS
A cubic equation, $y^{2}+p y^{2}+q y+r=0$ may be reduced to the form, -

$$
x^{3}+a x+b=0
$$

by substituting for y the value, $x-\frac{p}{3}$. Here

$$
a=\frac{1}{2}\left(3 q-p^{2}\right) \text { and } b=\frac{1}{27}\left(2 p^{3}-9 p q+27 r\right)
$$

For solution let, -

$$
A=\sqrt[3]{-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}}, \quad B=\sqrt[3]{-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}}
$$

then the values of x will be given by,
$x=A+B, \quad-\frac{A+B}{2}+\frac{A-B}{2} \sqrt{-3}, \quad-\frac{A+B}{2}-\frac{A-B}{2} \sqrt{-3}$.
If $\frac{b^{2}}{4}+\frac{a^{3}}{27}>0, \quad \begin{gathered}\text { there will be one real root and two conjugate } \\ \text { imaginary roots. }\end{gathered}$
If $\frac{b^{2}}{4}+\frac{a^{3}}{27}=0$, there will be three real roots of which at least
If $\frac{b^{2}}{4}+\frac{a^{3}}{27}<0$, there will be three real and unequal roots.
In the last case a trigonometric solution is useful. Compute the value of the ingle ϕ in the expression, -

$$
\cos \phi=\sqrt{\frac{b^{2}}{4} \div\left(-\frac{a^{3}}{27}\right)}
$$

then x will have the following values:-

$$
\begin{gathered}
\mp 2 \sqrt{-\frac{a}{3}} \cos \frac{\phi}{3},
\end{gathered} \quad \mp 2 \sqrt{-\frac{a}{3}} \cos \left(\frac{\phi}{3}+120^{\circ}\right),
$$

ALGEBRA

APPROXIMATIONS

If a and b are $3 m a l l q$.antities, the following relations are approximately true,-

$$
(1 \pm a)^{m}=1 \pm m a,
$$

$(1 \pm a)^{m}(1 \pm b)^{n}=1 \pm m a \pm n b$.
If n is nearly erual to m,

$$
\sqrt{m n}=\frac{n+m}{2}, \text { approximately } .
$$

If θ is a very s.nall angle expressed in radians,-

$$
\frac{\sin \theta}{\theta} \cdot 1 \text { and } \frac{\tan \theta}{\theta}=1 \text {, approximately } .
$$

SERIES
The exprrsaion in parentheses following certain of the series indicates the region of convergence. If not otherwise indicated it is to be understood that the teries converges for all finite values of x.

> BINOMIAL

$$
\begin{align*}
& (x+y)^{n}=x^{n}+n x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2 y^{2}}+\ldots \\
& +\frac{n(n-1)(n-2)}{3!} x^{(n-3)} y^{3} \ldots+y^{n} \ldots\left(y^{2}<x^{2}\right) \\
& (1 \pm x)^{n}=1 \pm n x+\frac{n(n-1) x^{2}}{2!} \pm \frac{n(n-1)(n-2) x^{3}}{3!}+\ldots \text { etc. } \\
& (1 \pm x)^{-n}=1 \mp n x+\frac{n(n+1) x^{2}}{2!} \mp \frac{n(n+1)(n+2) x^{3}}{3!}+\ldots\left(x^{2}<1\right) \\
& (1 \pm x)^{-1}=1 \mp x+x^{2} \mp x^{3}+x^{4} \mp x^{3}+\ldots \tag{2}\\
& \left.(1 \pm x)^{-2}=1 \mp 2 x+3 x^{2} \mp 4 x^{3}+5 x^{4} \mp 6 x^{5}+\ldots 1\right) \\
& \left(x^{2}<1\right)
\end{align*}
$$

TAYLOR'S SERIES

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2^{1}} f^{\prime \prime}(x)+\frac{h^{2}}{3!} f^{\prime \prime \prime}(x)+\ldots
$$

$$
=f(h)+x f^{\prime}(h)+\frac{x^{2}}{2!} f^{\prime \prime}(h)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(h)+\ldots
$$

MACLAURIN'S SERIES
$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{2}}{3!} f^{\prime \prime \prime}(0)+\ldots$
EXPONENTIAT,

$$
\begin{aligned}
& e=1+\frac{1}{1}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \\
& e^{2}=1+x+\frac{x^{2}}{2!}+\frac{x^{2}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& a^{2}=1+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{2}}{3!}+\ldots
\end{aligned}
$$

ALGEBRA

logarithmic

$$
\begin{aligned}
& f_{x}=\frac{x-1}{x}+\frac{1}{2}\left(\frac{x-1}{x}\right)^{2}+\frac{1}{3}\left(\frac{x-1}{x}\right)^{3}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \log x=2\left[\frac{x-1}{x+1}+\frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3}+\frac{1}{5}\left(\frac{x-1}{x+1}\right)^{5}+\ldots\right] \\
& \log _{e}(1+x)=x-\frac{1}{3} x^{2}+\frac{1}{3} x^{2}-\frac{1}{4} x^{4}+\ldots \quad\left(-1<\begin{array}{c}
(x<0) \\
x
\end{array}<1\right) \\
& \log _{0}(n+1)-\log _{e}(n-1)=2\left[\frac{1}{n}+\frac{1}{3 n^{2}}+\frac{1}{5 n^{5}}+\ldots\right] \\
& \log _{0}(a+x)=\log _{\alpha} a+2\left[\frac{x}{2 a+x}+\frac{1}{3}\left(\frac{x}{2 a+x}\right)^{3}+\frac{1}{5}\left(\frac{x}{2 a+x}\right)^{5}+\ldots\right] \\
& \text { (} a>0,-a<x<+\infty \text {) }
\end{aligned}
$$

TRIGONOMETRIC

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{0}}{2835}+\ldots\left(x^{2}<\frac{\pi^{2}}{4}\right) \\
& \sin ^{-1} x=x+\frac{x^{3}}{6}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^{7}}{7}+\ldots \quad\left(x^{2}<1\right) \\
& \tan ^{-1} x=x-\frac{3}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots \quad\left(x^{2}<1\right) \\
& =\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\ldots \\
& \text { (} x^{2}>1 \text {) } \\
& \log _{6} \sin x=\log _{6} x-\frac{x^{2}}{6}-\frac{x^{4}}{180}-\frac{x^{6}}{2835}-\ldots \quad\left(x^{2}<\pi^{2}\right) \\
& \log , \cos x=-\frac{x^{4}}{2}-\frac{x^{4}}{12}-\frac{x^{6}}{45}-\frac{17 x^{4}}{2520}-\ldots \quad\left(x^{2}<\frac{x^{2}}{4}\right) \\
& \log _{0} \tan x=\log _{2} x+\frac{x^{2}}{3}+\frac{7 x^{4}}{90}+\frac{62 x^{6}}{2835}+\ldots \quad . \quad\left(x^{2}<\frac{x^{2}}{4}\right) \\
& e^{\text {ele }}=1+x+\frac{x^{2}}{2!}-\frac{3 x^{4}}{4!}-\frac{8 x^{5}}{5!}+\frac{3 x^{6}}{6!} \\
& e^{\infty} 0=e\left(1-\frac{x^{3}}{2!}+\frac{4 x^{4}}{4!}-\frac{31 x^{6}}{6!}+\ldots\right) \\
& e^{m=x}=1+x+\frac{x^{2}}{2!}+\frac{3 x^{2}}{3!}+\frac{9 x^{4}}{4!}+\frac{37 x^{5}}{5!}+\ldots\left(x^{2}<\frac{x^{2}}{4}\right)
\end{aligned}
$$

MENSURATION FORMULAE
 MENSURATION FORMULAE plain figures bounded by straight lines

The area of a triangle whose base is b and altitude k

$$
=\frac{h b}{2}
$$

The area of a triangle with angles A, B, and C and sides opposite a, b, and c, respectively

$$
=\frac{1}{2} a b \sin C .
$$

or

$$
=\sqrt{s(s-a)(s-b)(s-c)},
$$

where $s=\frac{1}{2}(a+b+c)$.
A rectangle with sides a and b has an area $=a b$.
The area of a parallelogram with side b and the perpendicular distance to the parallel side h

$$
=b h .
$$

The area of a parallelogram with sides a and b and the included angle θ

$$
=a b \sin \theta .
$$

The area of a rhombus with diagonal: c and d,

$$
=\frac{1}{2} c d .
$$

The area of a trapezond whose parallel sides are a and b and altitude h

$$
=\frac{1}{2}(a+b) h .
$$

The area of any quadrilateral with diagonals c and b and the angle between them θ

$$
=\frac{1}{2} a b \sin \theta .
$$

The area of a reguiar polygon with n sides, each of length \boldsymbol{l},

$$
=\frac{4}{4} n^{2} \cot \frac{180}{n} .
$$

For a regular polygon of \boldsymbol{n} sides, each side of length l, the radius of the inscribed circle,

$$
=\frac{l}{2} \cot \frac{180}{n} .
$$

The radius of the circumscribed circle,

$$
=\frac{l}{2} \operatorname{cosec} \frac{180}{n} .
$$

MENSURATION FORMULAE

AREA, RADIUS OF INSCRIBED AND CIRCUMSCRIBED CIRCLES ITOR
REGULAR POLYGONS
$l=$ length of one side

Name	Number of sides	Area	Radius of nscribed circle	Radius of circumscribed circle
Trianglc, equilate	3	0.43301/2	0.288671	0.577351
Square	4	$1.00000{ }^{2}$	0 50000	0.707100
Pentagon	5	1.7204812	0.658190	0.850651
Hexagon.	6	2.598081^{2}	${ }^{6} 866021$	1. 001600
Heptagon	7	3.6339112	1. 03831	1. 15236
Octagon.	8	$4.82843{ }^{2}$	1. 20711	1.3065\%
Nonagon.	9	6.18182^{2}	1.37372	1.46196
Decagon.	10	7.694212	1.53884	1.61806
Undecagon	11	9.36564/2	1.70081	1.77476
Dodecagon.	12	11.19615/	1.86604	1.93184

Radius of circle inscribed in any triangle, whose sides are a, b, and c, where $s=\frac{z}{z}(a+b+c)$

$$
=\frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}
$$

The radius of the circumscribed circle

$$
=\frac{a b c}{4 \sqrt{s(s-a)(s-b)(s-c)}}
$$

The perimeter of a polygon inscribed in a circle of radius r, where n is the number of sides,

$$
=2 n r \sin \frac{\pi}{n} \quad\left(\pi \text { radians }=180^{\circ}\right)
$$

The area of the inscribed polygon,

$$
=\frac{1}{2} n r^{2} \sin \frac{2 \pi}{n} .
$$

The perimeter of a polygon circumscribed about a circle of radius r, number of sides n

$$
=2 n r \tan \frac{\pi}{n}
$$

The area of the circumscribed polygon

$$
=n r^{2} \tan \frac{\pi}{n}
$$

MENSURATION FORMULAE

PLANE FigURES BOUNDED BY CURVED LINES

Tie circumference of a circle whose radius is r and diameter $d(d=2 r)$

$$
\begin{equation*}
=2 \pi r=\pi d . \tag{x=3.14159}
\end{equation*}
$$

The area of a circle

$$
=\pi r^{2}=\frac{1}{3} \pi d^{2}=.785 t d^{2} .
$$

The length of an arc of a circie for an arc of θ degrees

$$
=\frac{\pi r \theta}{18 \hat{0}}
$$

NOTE-In this and following similar formulae y denotes the radius of the circle, ($O C$, Fig. 1).

For an arc of θ radians the length
$=r \theta$.

Fig. 1
The length of a chord subtending an angle θ

$$
=2 r \sin \frac{1}{2} \theta .
$$

The area of a sector where θ is the angle between the radii in degrees

$$
=\frac{\pi r^{2} \theta}{360} .
$$

If s is the length of the arc, the area of the sector

$$
=\frac{s r}{2}
$$

The area ol a segment where θ is the angle between the two radii in degrees

$$
=\frac{\pi r^{2} \theta}{360}-\frac{r^{2} \sin \theta}{2}
$$

If θ is in radians the area $\quad=\frac{1}{1} r^{2}(\theta-\sin \theta)$.
The area of the segment of a circle

$$
=\frac{\pi r^{2}}{2}-\left[x \sqrt{r^{2}-x^{2}}+r^{2} \sin ^{-1}\left(\frac{x}{r}\right)\right]
$$

:where r is the radius of the circle and x the perpendicular distance of the chord from the center. The angle must be expressed in radians.

The area of the ring between two circles of radius r_{1} and r_{2} one of which encloses the other,

$$
=\pi\left(r_{1}+r_{2}\right)\left(r_{2}-r_{2}\right) .
$$

Th.e two circles are not necessarily concentric.
Area of the sector of an annulus. (Fig. 2.) - If angle $G O I I=\theta$ and the lines $G O$ and $J O=r_{1}$ and r_{2} respectively, the area GHIJ $=\frac{1}{2} \theta\left(r_{1}+r_{2}\right)\left(r_{1}-r_{2}\right)$.

Fig. 2
If $s_{1}=$ the length of the arc $G H$ and $s_{3}=$ the arc $J I$ and h
$=I I I=r_{1}-r_{2}$, the area GHIJ $=\frac{1}{2} h\left(s_{1}+s_{2}\right)$.
The circumference of an ellipse whus: surdexas are a and b

$$
=2 \pi \sqrt{\frac{a^{2}+b^{2}}{2}}, \text { approximately. }
$$

The area of an ellipse $=\pi a b$.
The length of the arc of a parabola, as arc $S P Q$ in Fig. 3, where
$x=P R$, and $y=Q R$

$$
=2 \sqrt{y^{2}+\frac{4 x^{2}}{3}} .
$$

The area of the section of the parabola $P Q R S,=\frac{1}{2} x y$.

MENSURATION FORMULAE

SOLIDS BOUNDED BY PLANES

The lateral area of a regular prism $=$ perimeter of a right section X he length.
The volume of a regular prism $=$ area of base \times the alttude.
The lateral area of a regular pyramid, slant height l, length of one side of base a, and a number of sides n,
$=\frac{1}{2} n a l$.
The volume of a pyramid $=\frac{1}{\ddagger}$ area of base \times altitude.

Fig. 3

SURFACE AND VOLUME , F REGULAR POLYHEDRA

Surface and volume of regular polyhedra in terms of the length of one edge l.

Name	Nature of Surlace	Surface	Volume
Tetraheuron.	4 equilateral triangles.	$1.73205 / 2$	0.1178513
Hexahedron or cube..	6 squares.	C. $00000{ }^{2}$	1.00000 ${ }^{3}$
Octahedron	8 equilateral triangles.	3.4641012	0.471408
Dodecahedr	12 pentagons.	20.64578/2	7. $66312{ }^{3 /}$
Icosahedron	20 equilateral triangles.	8.66025 ${ }^{2}$	2.181708

SOLIDS BOUNDED BY CURVED SURFACES
The surface of a sphere of radius r and diameter $d(=2 r)$
$=4 \pi r^{2}=\pi d^{2}=12.57 r^{2}$.
The volume of a sphere
$=\frac{4}{8} x r^{2}=\frac{1}{6} x d^{2}=4.189 r^{3}$.

MENSURATION FORMULAE

The area of a lune on the surface of a sphere of radius r, included between two great circles whose inclination is θ radians

$$
=2 r^{2} \theta \text {. }
$$

The area of a spherice' 'riangle whose angles are A, B, and C (radians) on a sphere of sus r

$$
=(A \quad \cdot B+C-\pi) r^{2} .
$$

The area of a spherical polygon of n sides where θ is the sum of its angles in radians

$$
=[\theta \cdot(n-2) \pi] r^{2} .
$$

The area of the curveo - urface of a spherical segment of height h, radus of sphere r

$$
=2 \pi r h .
$$

The volume of a spherical segment, data as above

$$
=\frac{3}{3} h^{2}(3 r-h) .
$$

If $a=$ radius of the base of the segment, the volume

$$
=\frac{1}{8} \pi h\left(h^{2}+3 a^{2}\right) .
$$

The curved surface of a right cylinder where $r=$ the radius of the base and h, the altitude,

$$
=2 \pi r h .
$$

.The volume of a cylinder, data as above,

$$
=\pi r^{2} h .
$$

The curved surface of a right cone whose altitude is h and radius of base r

$$
=\pi r \sqrt{r^{2}+h^{2}} .
$$

The volume of a cone, data as above,

$$
=\frac{\pi}{3} r^{2} h=1.047 r^{2} h \text {. }
$$

The curvec' surface of the frustum of a right cone, radius of base r_{1}, of $: \omega \mathrm{p} r_{2}$ and altitude h,

$$
=\pi\left(r_{1}+r_{2}\right) \sqrt{h^{2}+\left(r_{1}-r_{3}\right)^{2}} .
$$

The volume of the frustum of a cone, data as above,

$$
=\pi \frac{h}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)
$$

The oblate spheroid is formed by the rotation of an ellipse about its minor axis. If a and b are the major and minor semiaxes respectively, and e the eccentricity, the surface

$$
=2 \pi a^{2}+\pi \frac{b^{2}}{e} \log _{e} \frac{1+e}{1-e} .
$$

and volume $\quad=\frac{4}{3} \pi a^{2} b$.

TRIGONOMETRY

The prolate spheroid is formed by the rotation of an ellipse about its major axis ($2 a$), data as above.

Surface	$=2 \pi b^{2}+2 \pi \frac{a b}{e} \sin ^{-1} e$,
volume	$=\frac{1}{3} \pi a b^{2}$.
	TRIGONOMETRY

trigonometric functions in a right-angled triangle
If A, B, anill C are the vertices (C the right angle), and a, b, and h the sides onnwsite respectively,
$\sin A=\stackrel{a}{h}$
$\cos A=\frac{b}{h}$
$\tan A=\frac{a}{l}$,
$\cot A=\frac{b}{a}$
$\sec a n t A=\frac{h}{b}$
$\operatorname{cosec} A=\frac{h}{a}$.

Fig. 4
Signs and limits of value assumed by the functions

Function	Quadrant I		Quadrant II		Quadrant III		Quadrant IV	
	Sign	Value	Sign	Value	Sign	Value	Sign	Value
sin.	$+$	0 to 1	$+$	1 to 0	-	0 to 1	-	1 to 0
cos.	$+$	1 to 0	-	0 to 1	-	1 to 0	+	0 to 1
t	\pm	0 to ${ }^{\infty}$	-	∞ to 0	$+$	0 to ${ }^{\infty}$	-	∞ to 0
cot	\pm	∞ to 0	-	0 to ${ }^{\infty}$	\pm	∞ to 0	-	0 to ∞
sec.	$+$		+	\cdots	二		$+$	\cdots

TRIGONOMETRY

value of the functions of various angles

	0°	39°	45°	60°	90°	180°	270°
$\sin \ldots \ldots \ldots$	0	$\frac{1}{2}$	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2} \sqrt{3}$	1	0	-1
$\cos \ldots \ldots \ldots$	1	$\frac{1}{2} \sqrt{3}$	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2}$	0	-1	0
$\tan \ldots \ldots \ldots$	0	$\frac{1}{2} \sqrt{3}$	1	$\sqrt{3}$	∞	0	∞
$\cot \ldots \ldots \ldots$	∞	$\sqrt{3}$	1	$\frac{1}{3} \sqrt{3}$	0	∞	0

RELATIONS OF THE FUNCTIONS

$\sin x=\frac{1}{\operatorname{cosec} x}$
$\operatorname{cosec} x=\frac{1}{\sin x}$.
$\cos x=\frac{1}{\sec x}$.
$\sec x=\frac{1}{\cos x}$.
$\tan x=\frac{1}{\cot x}=\frac{\sin x}{\cos x}$.
$\sin ^{2} x+\cos ^{2} x=1$.
$\cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$.
$1+\tan ^{2} x=\sec ^{2} x$.
$1+\cot ^{2} x=\operatorname{cosec}^{2} x$.
$\sin x=\sqrt{1-\cos ^{2} x}$.
$\tan x=\sqrt{\sec ^{2} x-1}$.
$\cos x=\sqrt{1-\sin ^{2} x}$.
$\sec x=\sqrt{\tan ^{2} x+1}$.
$\cot x=\sqrt{\operatorname{cosec}^{2} x-1}$.
$\operatorname{cosec} x=\sqrt{\cot ^{2} x+1}$.
$\sin x=\cos (90-x)=\sin (180-x)$.
$\cos x=\sin (90-x)=-\cos (180-x)$.
$\tan x=\cot (90-x)=-\tan (180-x)$,
$\cot x=\tan (90-x)=-\cot (180-x)$.

FUNCTIONS OF SUMS OF ANGLES

$\sin (x+y)=\sin x \cos y+\cos x \sin y$.
$\sin (x-y ;=\sin x \cos y-\cos x \sin y$.
$\cos (x+y)=\cos x \cos y-\sin x \sin y$.
$\cos (x-y)=\cos x \cos y+\sin x \sin y$.
$\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$.
$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y .}$.

TRIGONOMETRY

FUNCTIONS OF MULTIPLE ANGLES

$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$.
$\sin 3 x=3 \sin x-4 \sin ^{3} x$.
$\cos 3 x=4 \cos ^{3} x-3 \cos x$.
$\sin 4 x=8 \cos ^{3} x \sin x-4 \cos x \sin x$.
$\cos 4 x=8 \cos ^{4} x-8 \cos ^{2} x+1$.
$\sin 5 x=5 \sin x-20 \sin ^{3} x+16 \sin ^{5} x$.
$\cos 5 x=16 \cos ^{5} x-20 \cos ^{3} x+5 \cos x$.
$\sin 6 x=32 \cos ^{5} x \sin x-32 \cos ^{2} x \sin x+6 \cos x \sin x$.
$\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$.
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$.
$\cot 2 x=\frac{\cot ^{2} x-1}{2 \cot x}$.
$\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$.
$\sin \frac{1}{2} x= \pm \sqrt{\frac{1-\cos x}{2}}$
$\cos \frac{1}{2} x= \pm \sqrt{\frac{1+\cos x}{2}}$.
$\tan \frac{z}{2} x= \pm \sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}$.
MISCELLANEOUS RELATIONS
$\sin x \pm \sin y=2 \sin \frac{1}{2}(x \pm y) \cdot \cos \frac{1}{2}(x \mp y)$.
$\cos x+\cos y=2 \cos \frac{1}{2}(x+y) \cdot \cos \frac{1}{2}(x-y)$.
$\cos x-\cos y=-2 \sin \frac{1}{2}(x+y) \cdot \sin \frac{1}{2}(x-y)$.
$\tan x \pm \tan y=\frac{\sin (x \pm y)}{\cos x \cdot \cos y} \quad \cot x \pm \cot y=\frac{\sin (x \pm y)}{\sin x \cdot \sin y}$.
$\frac{1+\tan x}{1-\tan x}=\tan (45+x) . \quad \frac{\cot x+1}{\cot } \frac{x-1}{x-1}(45 .-x)$.
$\frac{\sin x \pm \sin y}{\cos x+\cos y}=\tan \frac{1}{2}(x \pm y)$.
$\frac{\sin x \pm \sin y}{\cos x-\cos y}=-\cot \frac{1}{2}(x \mp y)$.
$\frac{\sin x+\sin y}{\sin x-\sin y}=\frac{\tan \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}$.
$\sin ^{2} x-\sin ^{2} y=\sin (x+y) \cdot \sin (x-y)$.
$\cos ^{2} x-\cos ^{2} y=-\sin (x+y) \sin (x-y)$.
$\cos ^{2} x-\sin ^{2} y=\cos (x+y) \cos (x-y)$.

TRIGONOMETRY

RELATIONS BETWEEN SIDES AND ANGLES OP ANY PLANE TRIANGLE
In a triangle with angles A, B, and C and sides opposite a, b, and 6 respectively,

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b}=\frac{\sin C}{c} \\
a^{2} & =b^{2}+c^{2}-2 b c \cos A . \\
a & =b \cos C+i \cos B .
\end{aligned}
$$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$$
\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}
$$

$$
\sin A=\frac{2}{b c} \sqrt{s(s-a)(s-b)}(:-c)
$$

$$
\text { where } \quad s=\frac{1}{2}(a+b+c) \text { and } r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}
$$

$$
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}
$$

$$
\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}
$$

$$
\tan \frac{A}{2}=\sqrt{\frac{(s-b) / s-c)}{s(s-a)}}=\frac{r}{s-a}
$$

$$
\frac{a+b}{a-b}=\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}=\frac{\cot \frac{1}{2} C}{\tan \frac{1}{2}(A-B)}
$$

RELATIONS IN ANY SPHERIGAL TRIANGLE

If A, B and C be the three angles and a, b, and c the opposite sides,

$$
\begin{aligned}
& \frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c} \\
& \cos a=\cos b \cos c+\sin b \sin c \cos A=\frac{\cos b \cos (c \pm \theta)}{\cos \theta}
\end{aligned}
$$

where $\tan \theta=\tan b \cos A$.
$\cos A=-\cos B \cos C+\sin B \sin C \cos a$.
$\sin \frac{1}{2}=\sqrt{\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}}$
where
$s=\frac{1}{3}(a+b+c)$.
$\cos \frac{1}{2} A=\sqrt{\frac{\sin 5 \sin (s-a)}{\sin b \sin c}}$.
$\tan \frac{1}{3} A=\frac{r}{\sin (s-a)}$
where $\quad r=\sqrt{\frac{\sin (s-a) \sin (s-b) \sin (s-c)}{\sin s}}$

$$
\begin{aligned}
& \cos \frac{1}{2} a=\sqrt{\frac{\cos (S-B) \cos (S-C)}{\sin B \sin C}} \\
& \text { where }=\frac{1}{\frac{1}{(A+B+C) .}} \\
& \sin \frac{1}{2} a=\sqrt{-\frac{\cos S \cos (S-A)}{\sin B \sin C} .} \\
& \tan \frac{1}{2} a=R \cos (S-A) \\
& \text { where } \quad R=\sqrt{\frac{a}{\cos (S-A) \cos (S-B) \cos (S-C)}} . \\
& \tan \frac{a+b}{2}=\frac{\cos \frac{A-B}{2}}{\cos \frac{A+B}{2}}, \frac{\tan \frac{A+B}{2}}{\cot \frac{c}{2}}=\frac{\cos \frac{a-b}{2}}{\cos \frac{a+b}{2}} . \\
& \tan \frac{c}{2} \\
& \tan \frac{a-b}{2} \frac{\sin \frac{A-B}{2}}{\sin \frac{A+B}{2}} \quad \frac{\tan \frac{A-B}{2}}{\cot \frac{c}{2}}=\frac{\sin \frac{a-b}{2}}{\sin \frac{a+b}{2}} .
\end{aligned}
$$

TRIGONOMETRY

Trigonometric Formulas

TRIGONOMETRY

Trigonometric Reference Table

Cofunctions of ($a \pm \pm 12)$	Cofunctions of ($\mathrm{z} / 2-\mathrm{w}$)	Functions of ($n: 1 \mathrm{l}$)	Functions of $(\pi-n)$
$\begin{aligned} & =\sin a=\cos (n: \pi / 2) \\ & \pm \cos a=\sin (a \pm \pi / 2) \\ & -\tan a=\cos (a: \pi / 2) \\ & -\cot a=\operatorname{ton}(\pi \pm \pi / 2) \\ & =\sec a=\csc (a \pm \pi / 2) \\ & =\csc a=\sec (a-\pi / 2) \end{aligned}$	$\begin{aligned} & \sin n=\cos (\pi / 2-a) \\ & \cos a=\sin (\pi / 2-a) \\ & \tan a=\cot (\pi / 2-a) \\ & \cot a=\tan (\pi / 2-a) \\ & \sec n=\csc (\pi / 2-a) \\ & \csc n=\sec (\pi / 2-a) \end{aligned}$		$\begin{aligned} & \sin a=\sin (\pi-a) \\ & -\cos a=\cos (\pi-a) \\ & -\tan a=\tan (\pi-a) \\ & -\cot a=\cot (\pi-a) \\ & -\sec a=\sec (\pi-a) \\ & \csc a=\csc (\pi-a) \end{aligned}$

Functions of -a: $(n)(a / 2)\rfloor$ (n ** is even)	$\begin{aligned} & \text { Functions of }[a \pm(n)(\pi / 2)] \\ & \quad\left(n^{* *}\right. \text { is odd) } \end{aligned}$	Reciprocol Identities Pyhogoreon Identities
	$\begin{aligned} & \left.\because \sin a-\cos _{\square}-\geq(n)(n / 2)\right] \\ & -\cos a=\sin \Gamma n \geq(n)(n / 2)] \\ & -\operatorname{son} n=\cot [a \leq(n)(n / 2)] \end{aligned}$	
		"* "n" is ony infeger. * Algebraic sign is detemined ty oudront in which the angle folls.

TRIGONOMETRY

Addition Formulas	Product Formulas
$\begin{aligned} & \sin (a \leq A)=\sin a \cos \beta \pm \cos a \sin \beta \\ & \cos (a \geq \beta)=\cos a \cos B=\sin a \sin \beta \\ & \tan (a \leq \beta)=\tan a \geq \tan \beta / 1 ; \tan a \tan \beta \\ & \cot (a \geq \beta)=\cot 2 \cot \beta=1 / \operatorname{coi} \beta \pm \cot a \end{aligned}$	
Sum ond Difference Formulas	Double Angle Identities
$\begin{aligned} & \sin a \pm \sin \beta=2 \sin _{\cos }^{\cos } 1 / 2(a+\beta) \cos 1 / 2(a-\beta) \\ & \sin \\ & \cos a \pm \cos \beta= \pm 2 \cos _{\sin } 1 / 2(a+\beta) \cos _{\sin } 1 / 2(a-\beta) \\ & \operatorname{ton} a \pm \operatorname{ton} \beta=\sin (a \pm \beta) / \cos a \cos \beta \\ & \cot a \pm \cot \beta=\sin (\beta \pm a) / \sin a \sin \beta \end{aligned}$	$\begin{aligned} & \sin 2 a=2 \sin a \cos a=\frac{2 \tan a}{1-\tan ^{2} a}=\frac{2 \cot a}{1+\cot ^{2} a} \\ & \cos 2 a=\cos ^{2} a-\sin ^{2} a=1-2 \sin ^{2} a=2 \cos ^{2} a-1 \\ & \operatorname{ton} 2 a=\frac{2 \tan a}{1-\tan ^{2} a}=\tan a(1-\sec 2 a)=\frac{2 \cot a}{\cot ^{2} a-1} \\ & \cot 2 a=\frac{\cot ^{2} a-1}{2 \cot a}=\frac{\cot a-\tan a}{2} \\ & \sec 2 a=\frac{\sec ^{2} a}{2-\sec ^{2} a}=\frac{\csc ^{2} a}{\csc ^{2} a-2}=\frac{1+\tan ^{2} a}{1-\tan ^{2} a}=\frac{1}{2 \cos ^{2} a-1} \\ & \csc 2 a=\frac{\tan a \cdot \cot a}{2} \end{aligned}$
A minus sign must be prefixed to the rodicol if the ingonometric Holf - Angle Identities function of $a / 2$ io be found is negotive	
$\begin{aligned} & \sin a / 2=\sqrt{(1-\cos a) / 2} \\ & \cos a / 2=\sqrt{(1+\cos a) / 2} \\ & \operatorname{ton} a / 2=\sqrt{(1-\cos a) /(1-\cos a)}=(1-\cos a) / \operatorname{si} \\ & \cot a / 2=\sqrt{(1+\cos a) /(1-\cos a)}=(1+\cos a) / \sin \\ & \sec a / 2=\sqrt{2 /(1+\cos a)} \\ & \csc a / 2=\sqrt{2 /(1-\cos a)} \end{aligned}$	if $\sin a / 2$ is. if $\cos a / 2$ is . $\sin a /(1+\cos a)=\csc a-\cot a$ if $\operatorname{ton} a / 2$ is . $\sin a(1-\cos a)=1 /(\csc a-\cot a)$ if $\cot a / 2$ is . if $\sec a / 2$ is. If $\csc a / 2$ is.
Squore Identiries \quad The nototion $\sin ^{2}$ a mbons $(\sin a)^{2}$	
$\begin{aligned} & \sin ^{2} a=(1-\cos 2 a) / 2=(1-\cos a)(1-\cos a)=\sec ^{2} a /\left(\sec ^{2} a+\csc ^{2} a\right)=1 / \csc ^{2} z \\ & \cos ^{2} a=(1+\cos 2 a) / 2=\sin ^{2} a \cdot \cos 2 a=\cos a \sec a /\left(1+\tan ^{2} a\right)-\cot ^{2} a /\left(1+\cot ^{2} a\right)=\left(\csc ^{2} a-1\right) / \csc ^{2} a \\ & \left.\operatorname{son}^{2} a=(1-\cos 2 a) /(1+\cos 2 a)=\sec ^{2} a-1-(\sec 2 a-1) / \sec 2 a+1\right) \\ & \cot ^{2} a=(1-\cos 2 a) /(1-\cos 2 a)=\left(1+\cot ^{2} a\right) /\left(1+\operatorname{tar}^{2} a\right)=(\csc a-\sin a) / \sin a \\ & \sec ^{2} a=2 /(1+\cos 2 a) \\ & \csc ^{2} a=2(1-\cos 2 a) \end{aligned}$	
Power Series (a is a number of radions)	
$-\pi / 2<a<\pi / 2$$-\pi<a<0 \text { or } 0<e<\pi$$-\pi / 2<a<\pi / 2$$-\pi<a<0 \text { or } 0<\pi<\pi$	

Nomograms for Evaluating Plane Triangles

For the majority of applications including preliminary design, the following nomograms provide a simple and quick method of evaluating the payameters of the plane triangle. Nomenclature
Area $=$ area of triangle
$A=$ length of side " A "
$B=$ length of side " B " (the brse)
$\mathrm{C}=$ length of side " C "
$h=$ height of triangle
$S=$ length of perimeter of triangle
$\alpha=2$ angle opposite side " A "
$\beta=$ angle opposite side " B "
$\boldsymbol{\gamma}=$ angle opposite side " C "
The following nomograms are not limited io right triangles but apply to any plane triangles. They do not apply to spherical triangles.
With a knowledge of two angles and a side, or two sides and an angle, all other angles and sides plus area and height may be determined. If two sides and the height are known, or two angles and the height, the other parameters can be established. Or, if the area plus two other parameters are known, all other relationships can be established.
Nomogram I provides the basic relationships among the two nonbase sides, angles α and γ, and the height of the triangle. It also provides direct rel:tionship between the two sides as functioned by the angles. The perimeter also may be established by this nomogram, or if the perimeter is known, the sides and angles
may be evaluated.
Nomogram II relates A, α, B and β and C, γ, B and β.

Nomogram III provides a simple method of determining the area, withost need of computation: or if the area is known, of evaluating either the height or base.
Using Nomogram 1
To determine the height if C and $\boldsymbol{\alpha}$ are known: Align C with a and extend $t o$ intersect h. For example, if $\mathrm{C}=7 \mathrm{i}$ inches and $\alpha=20 \mathrm{deg}$, $h=24$. The 10^{n} indicates that decimal notation can be dropped in the entry and restored in the answer.
To determine the height if A and γ are lnown: Align A and γ and extend to intersect h. For example, if $A=0.48 \mathrm{~cm}$ and $\gamma=30 \mathrm{deg}$, $\mathrm{h}=0.24 \mathrm{~cm}$.

If sides A and C are known and angle $\boldsymbol{\gamma}$ is known, the h line may be used as a turning line to relate sides and argles. For example, if $A=4.1$ inches, $C=7.1$ inches and $\gamma=30 \mathrm{deg}$, align $C=7.1$ with $\gamma=30 \mathrm{deg}$ and extend to intersect h. Align this intersection with $A=$ 4.8 inches and read $\alpha=20$ deg.

The nomograi: may be used to relate the perimetei and sides: Align C with A, intersecting a point on line h. In this case the line s_{s} a Reference line and the value of h has no signifcance. Align the Reference line intersection with B and read S. For example, if $C=30 \mathrm{~cm}$, $A=40 \mathrm{~cm}$ and $B=20 \mathrm{~cm}, S=90 \mathrm{~cm}$.
Using Nomogram II
To determine a nonbase side when side B, angle β and angle opposite the nonbase side are known: Align B with the angle opposite and extend to intersect the Reference line. Align this intersection with β and extend to read the nonbase side. For example. if $B=8$ inches, $\beta=30$ deg and $\alpha=20 \mathrm{deg}$, align $\mathrm{B}=8$ with $\alpha=20$ and extend to the Reference line. Align this intersection with $\beta=30$ and extend to read $\mathrm{A}=5.5$ inches.
Using Nomogram 111
To determine area: Align values of B and h and read the intersection on the area line. For example, if $B=3$ inches and $h=4$ inches, align $B=3$ with $h=4$ and read area $=6 \mathrm{sq} \mathrm{in}$.
The nomograms provide a simple method of determining all the parameters of a triangle from a knowiedge of three. If exact values are required, the following equations may be used.
$A=B \sin \alpha i \sin \beta$
$\mathbf{B}=C \sin \beta / \sin \gamma$
$C=A \sin \gamma / \sin \alpha$

TRIGONOMETRY

(4)
(5)
(6)
(7)
(8)

$1-$


```
    Formutas for Fincling
    Coomüirave Dimensions
    When Side c and
Angles \alpha cmd \beta ve Known
```

There are two cases for finding the side h.
From Fig. 1, $m=h \cot \alpha$ and $n=h \cot \beta$

$$
c=m+n
$$

$\therefore \mathrm{c}=\mathrm{h} \cot \alpha+\mathrm{h} \cot \beta$, or
$c=\mathrm{h}(\cot \alpha+x \beta)$
$\therefore \mathrm{h}=(\mathrm{c}) /(\cot \alpha+\cot \beta)$

Fig. 2
Adapting this formula for logarithmic compu-

$$
\begin{aligned}
& \text { tation, let: } \begin{aligned}
\cot \alpha+\cot \beta & =\left(\frac{\cos \alpha}{\sin \alpha}\right)+\left(\frac{\cos \beta}{\sin \beta}\right) \\
& =\frac{(\sin \alpha)(\cos \beta)+(\sin \beta)(\cos \alpha)}{(\sin \alpha)(\cos \beta)} \\
& =\frac{\sin (\alpha+\beta)}{(\sin \alpha)(\sin \beta)}
\end{aligned}
\end{aligned}
$$

Substituting in (1):

$$
\mathrm{h}=\frac{(\mathrm{c})(\sin \alpha)(\sin \beta) . \text { for Fig. } 1 . \text {. } \mathrm{sin}(\alpha+\beta)}{\text { s. }}
$$

F:um Fig. 2, $c=m-n=h(\cot \alpha-\cot \beta)$
$\therefore h=\frac{(c)(\sin \alpha)(\sin \beta), \text { for Fig. } 2 .}{\sin (\beta-\alpha)}$

analytical geometry.
 ANA_YTICAL GEOMETRY

The distance between two points x_{1}, y_{1}, and x_{2}, y_{2}, rectangular coürdinates:

$$
d= \pm \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

For polar coördinates and puints r_{1}, θ_{1}, and r_{2}, θ_{2} :

$$
d= \pm \sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{y} \cos \left(\theta_{1}-\theta_{2}\right)}
$$

The area of a triangle whose vertices are $x_{1}, y_{1} ; x_{2}, y_{2}$, and $x_{2}, y_{3}:$

$$
A=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{2} y_{1}-x_{2} y_{2}\right)
$$

For polar coördinates and vertices, $r_{1}, \theta_{2} ; r_{2}, \theta_{2}$, and r_{2}, θ_{3} : $A=\frac{1}{2}\left\{\left(r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)+r_{2} r_{3} \sin \left(\theta_{3}-\theta_{2}\right)+r_{3} r_{1} \sin \left(\theta_{1}-\theta_{3}\right)\right\}\right.$

The equation of a straight line where m is the tangent of the angle of inclination and c, the distance of inierecction with the Y axis from the origin:

$$
y=m x+c
$$

If a line of inclination m passes through the point x_{1}, y_{1}, its equation is:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

The equation of a line through the points x_{1}, y_{1}, and x_{2}, y_{2} is:

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

If the intercepts on the X and Y axes are a and b respectively, the equation is:

$$
\frac{x}{a}+\frac{y}{\dot{b}}=1
$$

If the length of the perpendicular from the origin is p and its angle of inclination θ the equation is:

$$
x \cos \theta+y \sin \theta=p
$$

General equation of the straight line:

$$
A x+B y+\tilde{c}=0
$$

\therefore - -quation of a circle whose center is at a, b, and whose adt?: is c :

$$
(x-a)^{2}+(y-b)^{2}=c^{2}
$$

\therefore : at origin is a , the center:

$$
x^{2}+y^{2}=c^{2}
$$

The polar equation of a circle with the origin on the circermer-. ence and its center at point c, a :

$$
r=2 c \cos (\theta-a) .
$$

If the origin is not on the circumference, the radius a a d th : center at a point l, a, the equation becomes:

$$
a^{2}=r^{2}+b^{2}-2 r l \cos (\theta-a)
$$

MATHEMATICAL EQUATIONS AND FORMULAS

Equations of Common Curves
Straight line.

$$
\frac{x}{a}+\frac{y}{b}=1
$$

or

$$
y=x \tan \theta+b .
$$

Circle.

$$
x^{2}+y^{2}=R
$$

Ellipse.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Parabola (Vertical).

$$
y=k x^{2}
$$

where k is a constant.

Parabola (Horizontal).

$$
y=k \sqrt{x}
$$

where k is a constant.

Catenary.

$$
y=\frac{1}{k} \cosh k x-1
$$

where k is a constant. The length of are fiom O to P

$$
=\left\lceil\frac{1}{k} \sinh (k x)\right.
$$

$$
\begin{aligned}
& \text { CALCCLLS } \\
& \text { differentials } \\
& d a x=a d x \\
& d u i^{\prime}=u d i+i d u \\
& d \frac{u}{v}:=\frac{i d u-u d v}{i^{2}} \\
& d x^{n}=n x^{n-1} d x \\
& d c^{x}=c^{x} d x \\
& d e^{a x}=a e^{e}=d x \\
& d a^{x}=a^{x} \log _{e} a d x \\
& d \log _{4} x=\frac{1}{x} d x \\
& d \log _{a} x=\frac{1}{x} \log _{a} c d x \\
& d x^{x}=x^{x}\left(1+\log _{e} x\right) d x \\
& d \sin x=\cos x d x \\
& d \cos x=-\sin x d x \\
& d \tan x=\sec ^{2} x d x \\
& d \cot x=-\csc ^{2} x d x \\
& d \sec x=\tan x \sec x d x \\
& d \csc x=-\cot x \cdot \csc x d x \\
& d \sin ^{-1} x=\left(1-x^{2}\right)^{-1} d x \\
& d \cos ^{-1} x=-\left(1-x^{2}\right)^{-1} d x \\
& d \tan ^{-2} x=\left(1+x^{2}\right)^{-1} d x \\
& d \operatorname{coi}^{-1} x=-\left(1+x^{2}\right)^{-1} d x \\
& d \sec ^{-1} x=x^{-1}\left(x^{2}-1\right)^{-1} d x \\
& d \csc ^{-1} x=-x^{-1}\left(x^{2}-1\right)^{-1} d x
\end{aligned}
$$

Elementary Forms

1. $\int a d x=a x$.
2. $\int a \cdot f(x) d x=a \int f(x) d x$.
3. $\int \phi(y) d x=\int \frac{\phi(y)}{y^{\prime}} d y$,
4. $\int(u+v) d x=\int u d x+\int v d x$,
where $y^{\prime}=d y d x$.
where $"$ and v are any functions of x.
5. $\int u d v=u v-\int v d u$.
6. $\int u^{d \theta^{\prime}} d x=w^{\prime}-\int \tau^{\prime} \frac{d u}{d x} d x$.
7. $\int x^{x} d x=\frac{x^{n}+1}{n+1}$,
except $n=-1$.
8. $\int \frac{f^{\prime}(x) d x}{f(x)}=\log f(x)$,
$\left[d f(x)=f^{\prime}(x) d x\right]$.
9. $\int \frac{d y}{x}=\log x$, or $\log (-x)$.
10. $\int \frac{f^{\prime}(x) d x}{2 \sqrt{f}(x)}=\sqrt{f(x)}$,
$\left[d f(x)=f^{\prime}(x) d x\right]$.
11. $\int c^{2} d x=e^{x}$.
12. $\int \operatorname{ar} d x=c^{a z / a}$.
13. $\int f^{\wedge x} d x=\frac{b^{a x}}{a \log b}$.
14. $\int \log x d x=x \log x-x$.

AREAS OF PLANE FIGURES

Aleas of Plaves Figlars


```
Circle
    p=2\pir = md=3.1416d
    A=\pi\mp@subsup{r}{}{2}=\frac{T\mp@subsup{d}{}{2}}{4}=.7854d%
        = \frac{\mp@subsup{r}{}{2}}{4\pi}=.07053 r
```

IIONow circle or Annulua

$$
\begin{aligned}
A & =\frac{\pi}{4}\left(d_{2}^{2}-d_{1}^{2}\right)=.7854\left(d_{2}^{2}-d_{1}^{2}\right) \\
& =\pi\left(r_{2}^{2}-r_{1}^{2}\right) \\
& =\pi \frac{d_{1}+d_{2}}{2}\left(r_{2}-r_{1}\right) \\
& =\pi\left(r_{1}+r_{2}\right)\left(r_{2}-r_{1}\right)
\end{aligned}
$$

Elipue

$p=\pi(a+b)$ approximately
$=\pi[1.5(a+b)-\sqrt{a b}]$
more nearly
$A=r a b$

Properties of the Circle
Circumference of circle of diameter $1=\pi=3.14159265$
Circumference of circle $=2 \pi r=\pi d$
Diameter of circle $=$ circumference $\times 0.31831$
Diameter of circle of equal periphery as square $=$ side $\times 1.27324$
Side of square of equal periphery us circle $=$ diameter $\times 0.78540$
Diameter of circle circumscribed about square $=$ side $\times 1.41421$
Diameter of circle circumscribed about square $=$ side \times
Side of 8 隹

Arc, $\quad l=\frac{\pi r \theta^{\circ}}{180}=0.017453 \mathrm{r} \theta^{\circ}$
Angle, $\quad=\frac{180^{\circ} l}{\pi r}=57.29578 \frac{l}{r}$
Radius, $r=\frac{4 b^{2}+c^{2}}{8 b}$ Diameter, $d=\frac{4 b^{2}+c^{2}}{4 b}$
Chord, $c=2 \sqrt{2 b r-b^{2}}=2 r \sin \frac{\theta}{2}-d \sin \frac{\theta}{2}$
Rise, $\quad b=r-\frac{1}{2} \sqrt{4 r^{2}-c^{2}}=\frac{c}{2} \tan \frac{\theta}{4}=2 r \operatorname{cin}^{2} \frac{\theta}{4}$
Rise, $b=r+y-\sqrt{r^{2}-x^{n}}$
$y=b-r+\sqrt{r-x^{2}} \quad x=\sqrt{r-(r+y-b)^{2}}$

BINARY NUMBERS 0--127							
0	0000000	32	0100000	64	1000000	96	1100000
1	0000001	33	0100001	65	1000001	97	1100001
2	0000010	34	0100010	66	1000010	98	1100010
3	0000011	35	0100011	67	1000011	99	1100011
4	0000100	36	0100100	68	1000100	100	1100100
5	0000101	37	0100101	69	1000101	101	1100101
6	0000110	38	0100110	70	1000110	102	1100110
7	0000111	39	0100111	71	1000111	103	1100111
8	0001000	40	0101000	72	1001000	104	1101000
9	0001001	41	0101001	73	1001001	105	1101001
10	0001010	42	0101010	74	1001010	106	1101010
11	0001011	43	0101011	75	1001011	107	1101011
12	0001100	44	0101100	76	1001100	108	1101100
13	0001101	45	0101101	77	1001101	109	1101101
14	0001110	46	0101110	78	1001110	110	1101110
15	0001111	47	0101111	79	1001111	111	1101111
16	0010000	48	0110000	80	1010000	112	1110000
17	0010001	49	0110001	81	1010001	113	1110001
18	0010010	50	0110010	82	1010010	114	1110010
19	0010011	51	0110011	83	1010011	115	1110011
20	0010100	5 ?	0110100	84	1010100	116	1110100
21	0010101	53	0110101	85	1010101	117	1110101
22	0010110	54	0110110	86	1010110	118	1110110
23	0010111	55	0110111	87	1010111	119	1110111
24	0011000	56	0111000	88	1011000	120	1111000
25	0011001	57	0111001	89	101:001	121	1111001
26	0011010	58	0111010	90	1011010	122	1111010
27	0011011	59	0111011	91	1011011	123	1111011
28	0011100	60	0111100	92	1011100	124	1111100
29	0011101	61	0111101	93	1011101	125	1111101
30	0011110	62	$0: 11110$	94	1011110	126	1111110
31	0011111	63	0111111	95	1011111	127	1111 :11

TO FINI）CIRCUMI I RINCE－ Mullobly dameter by	3.1416
10 FINI OIAMAIIR－ Nultiply carcunterence by	0.3193
TO－（Ni）RAOMUS－ Multiply corcunter ance by	0．1らうし
TO FINI SIDI OF AN INSCRIBED SQUARE－ Multiply didmeter by Or multipi：corcumference by	$\begin{aligned} & 0.7011 \\ & 0.2251 \end{aligned}$
to find side of an equal square－ Multiply diameter by Or circumference by	$\begin{aligned} & 0.2862 \\ & 0.2821 \end{aligned}$

SQUARE－
A side multiplied by 1.4142 equals diameter of its circumseribing circle．
A side multiplied by 4.443 equals circumference of its circu．．irib－ ing circle．
A side multiplied by 1.128 equals diameter of an equal circle． A side multiplied by 3.547 equals circumference of an equal circle．

TO FIND THE AREA OF A CIRCLE－
Mulliply circumference by one quarter of the diameter．
Or multiply the diameter by the diameter by 0.7854.
Or multiply the circumference by the circumference by 0.7958. Or multiply the radius by the radius by 3.1416 ．

TO FIND THE SURFACE OF A SPHERE OR GLOBE－
Muitiply the diameter by the circumference．
Or multiply the square of diameter oy $3.14 i 6$ ．
Or multiply four times the square of radius by 3.1416.
TO FIND THE VOLUME OF A SPHERE－ Multiply the cube of diameter by 0.5236.

TO FIND THE CUBIC CONTENT OF A CONE－
Multiply the area of the base by $1 / 3$ the altitude．
TO FIND THE AREA OF λ TRIANGLE－
Multiply the base by $1 / 2$ the perpendicular height．
TO FIND THE AREA OF a RECTANGLE－ Multiply the length by the breath．

REFERENCE EQUIVALENTS－
Doubling the diameter of circle increases its area four times． Doubling the diameter of a pipe increases its capacity four times． Tripling the diameter of a circle increases its area rine times． A gallon of water（U．S．Standard）weighs $8 \mathrm{l} / 3 \mathrm{los}$ ．and contains 231 cubic inches． A cubic foot 0^{r} ：vater contains $71 / 2$ gallons， 1728 cubic inches and weighs $621 / 2$ ．．s．

To find the pressure in pounds per square inch of a column of water multiply the height of the column in feet by $0 . i 34$. The drag on flat plate normal to the wind is equal te 32 lbs ．per square foot at 100 m．p．h．
The drag and the iift due to the air forces on body increase as the square of the speed．
The measurements made in a machine shopare usua：－ien in inches or fractional parts of an inch．Most of the prec untools in the shop read in thollsandths of drinch．The usual graduations on a scale are in 64ths，32nds，6ths，and 8ths of an inch．

To change a fraction to decimal，divide the numerator by the denominator．For example，in changing $3 / 16$ to a decimal，3．0000\％ 16． 1875.

Simple Nomograms for Engineering Calculations

Construction of nomograms covering most straightfandrd formulas is purely a dratting job, the key being in the selection of the scales used. The scales on a nomogram of the type explained here are invariably logarithmic. For complete coverage three such scales are required, equivalent to 2. range of values of $X, X=2$ and X^{4}. Tine choice of scales to suit any particular formula can be arrived at by simple analysis. For convenience, a set ol typical scales is given. The ' M ' sale comesponds to first power values; ' N ' is the second power scale and ' P ' the fourth power scale. Once having decided the order of scale required, these can be traced or otherwise reproduced on a skeleton nomogram designed for a particular formula.

Examples of the use of these scales are given below and on the following pages, covering a wide range of possible applications. The construction process is elementary, accuracy being established merely by correct mechanıcal alignment of the scales. It is advisable always in constructing a nomogram to check near opposite ends with sample calculations but the possibilit! of error is small if the basic rules given are followed.

Accurac! obtainable with nomograms with well drawn scales should be comparable with that given by a slide rule of similar length. The nomogram is more foolproof in that the correct order of answer is always established.

EXAMPLE 1. The simplest application of nomogram scales is for conversion of units. The ' M ', ' \mathbf{N} ', or ' \mathbf{P} ' scales can be used depending on the range to be covered and the available length for drawing or reproducing the scales. Most conversion values can conveniently be accommodated on the 1.10 ' \mathbf{M} ' scale, factoring by 10 or by 100 and so on for larger
quantities. The drawing shows the ' M ' scale used to prepare a conversion chart for instanraneovs conversion of cubic centimeters to cubic inches, and vice versa. The same scale must be used for each of the units, displaced from one another by the appropriate conversion factor. Corresponding values must then lie opposite on the two scales.

EXAMPLE 2. Similar construction may be used for instantaneous reading of squares or square roots, by using 'M' scale for unit values and ' \mathbf{N} ' scale for second power valurs. Scales in
this instance are aligned at each end. Similanty by using 'P' scale in conjunction with ' M ' scale a chart can be drawn for solutions to $X 4$ and r / \bar{X}.

- RULE FOR formutas indudines a sinpale product with two variablev (A, B) is that variable scalos dic plotted from ' M ' scales at each end of diagram, with answer or λ wale plotted as an ' \mathbf{N} ' scale, suitably aligned. It three vertidal stales must be parallel and cqualls-upaced. A and B scales bre normatlv drawn fint. An alignment point on X vale can then be evtablished b) calculation and ' x ' scale laid out from this point, noting that dll three wales read in same firection (for cumple, either upwards or downwards). (hech calculdtions (check lines) will establivh validits of ' N ' scale positioning. Same sule, appl if formula includes a constant, efect of :hiv merely being a displacement of A vale to accommodate constant.

$\mathbf{V}=(\mathrm{h})(\mathrm{A})(\mathrm{B})$ (alternative units) -PIRTICILAR VIRTCE of nomogram is that a formula can be fully expressed in al. ternative units. In example drawn formula is , Igaiv a straight-forward product, Volume $=$ (length) (cross section), but scales are plotted for both inch and metric units. Construction follows same rules as above, working in onc of the units throughout. Each scale is then treated as a conversion scale as in Example 1 for incorporating other units. Ictually onls two seales need to be 'converted', third fol lowing naturally as a normal 'M' or 'N' scalp, once positioned. Ploting all three as conver. sion scales is an alternative mefinod of checking. Completed nommerom can then handle calculations in rither of the units, or in mixed uris:-, as well as heing available as conveision scales for uni "uare and cubic recasures in two sets of units involved.

$\mathbf{X}=(\mathbf{K})\left(\mathbf{A}^{2}\right)(\mathbf{B})$

- TREATMENT OF a formula of this type still involves plotting a normal product nomogram except that A scale is first converted into an A: scale on opposite side of line. This is an ' N ' scale and so B scale must also be laid out as an ' i ' scale for correct alignment. Solution of \mathbf{X} scale then beromes a ' \mathbf{P} ' scale, position of which can be established and checked by drawing on one or more alignment lines. This practice of extablishing a number of fixed points un the X line by alignment lines is to be recommended in this instance.

$\mathbf{V}=\mathbf{i}, \mathbf{B}$

-IN A QLOCIENT nomogram A and B catss are reversed in order of reading, with resulting X srale following same order of reading as A scale. Otherwise lavout follow, on similar lines to a product nomogiam. Is cept where a wider range is reguired. 'II' scale is usually suitable for i and B scalco. when X scale is plotted as ant 'N' scale. 11 for greater range, 'N' sale is used for ldying out A and B scal"., X scale will be a 'P' scale. Ordar of X scale readings are readily cstablished by random chech calculatious. Threc alignment lines are recommended (whidh dic alwo check lincu), position as ahowil.

Nomogram for Properties of the Circle

It is frequently necessary to calculate arious sek ments or elements of a circle the calculatumi are not difficult, but troublesome tor thite are athy muluplusions and ingonomeric lun lengthy mulluphedtions and trigonometric lunt
toins invoived This nornongrath implities the eal
ulating proxesses
From Fig I, the following equations can be de aved
$A=0008726 D_{4}$
$C=D_{1}$
$C=0(\sin \phi 2)$
(1)
$H=D_{i} 2(I \Delta n \oplus 4)(\sin \phi(2)$ Where.
$A=$ arc
$\mathrm{C}=$ rhord
$\mathrm{H}=$ ris.
$\mathrm{H}=\mathrm{r}$ re.
D = dianurter of any circle
Example 1 .
Find the length of the arc subtended bo a coll tral angle of bi deg the thameter of the (II, le 132.45 inches

Align $\phi_{A}=62$ deg wath $D=245$ inchers used $\operatorname{cad} A=135$ inches
Example 2.
Determine the length of the chord subicoulett by a central angle of 61 deg if the diameter of the circle is 245 inches With the same alignownt as in Example $1\left(\phi_{A}=62\right.$ reg. $b-215$ ind hev and $\phi_{h}=61$ deg), read $1 .=124$ imives
The rise is 43 inct on the H xal: th the angle is 99 deg and the circle is of the sairr th meter.
Note that the D scale can be extended uans diameter, provided a suinable factor is used to reduce the numerical value to that withon the cale and the result is muluplied by the reriprocal of the factor.
The nomogram can be used to determine ir . umference of any circle Because the length of cumference of any circle Because the length of
the arc sublended by 180 deg is equal to half the the arc sublended by 180 deg is equal to half the
circumference, align 180 deg on the e, scale and circumference, align 180 deg on the 4 , scale and
the diameter on the D scale and double the read the diameter on the D scale and double the read
ing on the A scale (Example. The circumierenre ing on the A sale (Example. The circumierence
of a circle of 4.15 inches diameter is (65)(2) =is a circle or
is inches.)
The area for any circie up to 10 inches in diant eter it given opposite the D male. For a as with a diameter greater than 10 inches, reduct the diameter by a factor and muttiply the value lound on the "area rale by the square of the reciproxal of the la. or

Rules Relative to
The Circle
We begin with a common circle and the expressions relating its various parts. From this beginning we expand the concept to
the relationship between a unit circle and a unit square and end with the relations between a unit circle and a number of regu-
lar unit polygons.
The circle is defined as the locus of all the points in a singie plane at an equal distance from a given point. The point is the
center of the circle. The diameter is the center of the circle. The diameter is the
chord of the circle that passes through this center point and incidently is the longest chord. The circle radius is one-half the diameter and circumterence is the totai
distance around the perimeter. Bexinnind with the \longrightarrow diameter we now re-
late all the her

 $A=$ area
$A=\pi r^{2}$

Nomograms for the Properties of the Sphere

Abstract

These nomograms provide a simple method of determining properties of spheres and spherical shopes. Properties evaluated include: segments, lunes, chords, zones, angles and interrelationships.

The Volume of a Spherical Sector

Use Nomogram I. F. illat ting the cier imal notation as indicated by $10^{\prime \prime}$. enter the value of R on the tight-hand sale. Fotracting the decimal notation as indicated be $10^{\prime \prime m}$. enter h on the lefthand vale. Align these values. inter-
 vore the decimal notation as indictted bs $10 \mathrm{~m}=$ - m .
The Volume of a Segment of One Base
lse Domorram II. Illustated in Fig. 2a. F nter the whe of $r_{i} h$, on the right-hand line. Exiracting the decimal notation as indicated by (1)". entes the value of h, on the lefi-hand

The Volume of a Segment of Two Bases

Ine Nomogram 11. Illuntald in Fig. 2b lon parallel base and Fig. 2c 1 ln momparatled boses step !: Finter the s.llue $f_{2} h_{2}$ on the wht-hand sale F wrating the : termat :oota1 on a indicated br 16^{n}. conter the value of h. on the lete-hand se.le. Nign the we value , inte, serongs the volume on the lisernest scale. Rentone the deomal as :ndicated be $10^{\prime \prime \prime}$. Siep \because F Ite the salue of $r_{3} h$: wh the right-hand
 ated bs 10 , enter the • alue of h. on the kithand sate siign these salues, mersecting the
whame on the $V_{\text {ser.urit }}$ scale. Restore the decimal notation an indicated by $10^{3 n}$. Step 3: Subtact the second whme (Step 2) Irom the lirst (Step!).

The Area of a Zome

Ise Nomogram I. Fxtrating the decimal notation an mdicatied by $10^{\prime \prime}$. cuter the value of k on the righthand line. Fxirating the decomal notation as indicated by 10^{m}, enter the value of h.on left-hand sale. Align these values. intersecting the atea on the $A_{\text {eove }}$ scale. Rewore the derimal notation as indicated by the $11^{\prime \prime *}$ ".

The Area of a lune

l we Nomestam III. F vitalmg the decimal
 of K (in the tegh-hand tine. Fnter the value of the mo haded angle. α. in degrees on the left-f.mal lime. Alizn these values, intersecting tine area on the $A_{\text {maf }}$ sadie (ont the same side of the line as the a.s.ge selected). Restore the deximal monato! as indicated by 10 .

The Cross-Sectional Area

lse the lefthatid portion of Nomogram il. Fstractinge the decimal notation according to 10". enter the value of 1. . Project horizontalls to the cross-sectional area cale and read A.ertion. Rentore the decimal fotation as induated bs $10{ }^{2 n}$.

MATHEMATICAL NOMOCRAMS

The Spherical Chord

 of K of (1) on the right-hand sale En:en the atue of the the meluded angle. on the slam salle. Ahgn these walues, intersecting l.. the chord leneth, on the lett-hand vale. Readome the dee mal notatoon a meduated br fom

The Chordal Depih

Ix Vomogtam: Relatomship: illuntated m Fig. 5. Wutating the deamal motamon acooldme la IO". enter the whe of R on the stghthand wale Fnien the salue of $\boldsymbol{\theta}$, the moluded atigle. on the vant wale Nhgn these balues. mersecting the watue of h_{1}, the chordal depth. on the kelt-hand wale Revore the ciecimal notatom as modnated bi 10^{n}

The Chordal Height
I'se Nomogram V. Extracting the decinal notation according to $10^{\prime \prime}$, enter the value R on the tight-hand scale. Finter either the walu of \forall, the included angle, on the slam scate or h, the chordal depth, on the left-hand scale. Align these values, intersecting h_{0} on the center sale. Restore the decimal notation as indiated bl low.

MA ${ }^{\text {HEMEMATICAL NOMOGRAMS }}$

MOMOGRAM IT
CROSS-SECTMOMAL

AREA

NOMOGRAM IX LENGTM OF A SPHERICAL CHORD

[^0]NOMOGRAM Y

Nomogram for Partial Volumes of Spheres

Nomenclature:

$V=$ capacity, gallons
$\mathrm{H}=$ height above bottom, feet
$D=s p h e r e$ diameter, feet.
The nomogram represents the equation:

$$
V=7.48 \pi\left(H^{2}\right)\left(\frac{D}{2}-\frac{H}{3}\right)
$$

Ecample:

What is the volume in a 50 -ft-diameter sphere filled to a height of 15 ft ?

Solution:
Align $D=50$ with $H=15$ and read $V=$ $106,000 \mathrm{gal}$.

35n : 0: - .

[^1]
Surface Area of an Ellipsoid

The aco 1 panving curves will simplify derermimation of the surlane areat at ath ellipsosial.
Nomenclature:
$\mathbf{a}=$ ellipse major semi-axis
$\mathbf{b}=$ ellipse minor semi-axis
$\mathbf{k}=$ ercentricity $=\sqrt{1}-(\mathbf{h} / \overline{\mathrm{a}})^{\overline{2}}$

When an ellipsodid is formed by rotaling an ellipse. about its minor axis, it is known as an oblate spheroid and its surfice area is given by:

$$
A_{0}=\underline{2} a^{2}+\pi\left(\frac{b^{2}}{F}\right) \ln \left(\frac{1+E}{1-F}\right)
$$

which may be reduced to:

$$
A_{0}=2 \pi ; i^{2}\left[1+\left(\frac{1 b^{2}}{2 ; 1^{2} E}\right) \ln \left(\frac{1+F}{1-F}\right)\right]
$$

(1)
$\Lambda_{b}-X_{i I^{2}}$
When atl ellipsond is lonmed by totalmg an clipse alosul its major axis, it is known as a prolate spherond and its sumface areat is geven by.

$$
A_{p}=2 \pi b^{2}+2 \pi\left(\frac{d b}{k}\right) \sin ^{1} E
$$

which may le reduced to:

$$
\Lambda_{1}=2 \pi i^{2}\left[b_{2}^{b^{2}}+\left(\frac{b}{a}\right)\left(\frac{\text { sin }^{\prime} \mathrm{F}}{\mathrm{~F}}\right)\right]
$$

or

$$
\Lambda_{p}=Y_{i^{2}}
$$

The accompanying chart gives values for X and Y as functions of the ratio b / a.

Nomogram for Volume of a Rectan:, , ar Parallelepiped

4

它
(

Perimeter of an Ellipse

The standard formula lor calculating the perimeter of an ellipse arithmetically is tedious and awkward to use:
$P=\pi(A+B)\left[1+\frac{(A-B)^{2}}{4(A+B)^{2}}+\frac{(A \cdots B)^{4}}{64(A+B)^{4}}\right.$

$$
\left.+\frac{(A-B)^{4}}{256(A+B)^{4}}+\cdots\right]
$$

An approximate solution is given by calculating perimeter as $(\pi)(A+B)$, but this is only vaiid when $(A-B)$ is very small.

The nomograms have been constructed to enable the basic formula to be applied rapidly to the practical order of accuracy required. The basic formula is rewritten:
$\mathbf{P}=\pi(\mathbf{A}+\mathbf{B})(1+\mathbf{X}+\mathbf{Y})$
Nomograms 1 or 11 give immediate solutions for

MOMOGRAM I

[^2]" X " and " Y " for the known $(A+B)$ and $(A-B)$ values. Use either Nomogram I or Nomogrärl II. according to the $(A+B)$ scale value required. The " X " additive is read off the top center scale and the " Y " additive off the bottom center scale in both cases.

The appropriate value of $(1+X+Y)$ is then entered on the right-hand scale of Nomogram III and connected to the ($A+B$) auce on the lef: hand scale. Perimeter is read ott the intersection on the center scale.
Example:
If in a given ellipse $A=5.3$ inches and $B=2.8$ inches, find the perimeter. Solution:

$$
(A+B)=8.1 \text { inches }
$$

$(A-B)=2.5$ inches
Using these values on Nomogram I:
X additive $=0.024$
Y additive $=0.00014$
$\therefore(1+\mathbf{X}+\mathbf{Y})=(1+0.024+0.00014)$
$=1.02414$ (Note: The " Y " value is small enough to ignore for most practical purposes.)

Enter $(1+X+Y)=1.02414$ on Nomogram 111 and read $P=26.1$ inches.

For accuracy greater than that given by Nomogram III, Nomograms 1 or Il can be used for obtaining the " X " and " Y " additives and the final solution worked by logs.

Nomogram III also can be used for cuick, approximate solutions by ignoring the additives and projecting across to value 1 on the right-hand scale

NOMOGRAM III

Beapid Craphinco of Elifoses, Parabolas cand typerbolas

Charles C. Worka, Denver, Colo.

The following procedures will permin construetion of exact ellipses and aid in rapod plotting of any arbitrary points and tangents of parabolas and hypertxolas of any specified shapes. Computationis, tables and special instruments are not required.

Construction of an Ellipse

If the major axis of a horizontal ellipse is (2a) units and its minor axis is (2b) units, then its cquation is $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$, expressed in rectangular coordinates (x, y) whose origin is the celter of the ellipse. As shown in Fig. 1, a strip of plastic, metal or cardboard is cut to a length of (a $+b$) units. A small notch is cut in one edge of the strip at a distance of (a) unit: from the left end and (b) units from the right end. An inside right-angle is rigidly fastened to the drawing material along the required axes. This right-ange is conveniently formed by the inside edge of a flat carpenter's square or by two perpendicular straightedges. A pencil point is helci in the notch and the strip is mov. d so that the corners are always in contact with the legs of the ripht-angle. Starting from a position between the axes, the strip is moved until it coincides with one axis; hen it is returned to its criginal position and neved until it coincides with the other axis. This procedure accurately constructs one quadrant of th "se. Repositioning the rightangle along the linate axes allows construction of the other unree quadrants.

Construction of a Line Tangent to an Ellipse

The two focal points of the ellipse are at a distance of $\sqrt{ } \mathbf{a}^{2}-b^{2}$ units from its center along the major axis. Referring to Fig. 2, a circle of radius (a) is drawn around the ellipse, concentric with it. A right-: ngle is placed so that one edge passes "rough a focal point, with the vertex on the $c^{i-c l e}$ an.. se other edge passing through the given point L a tangency. The second edge is then cangent to the ellipse. This procedure is useful in drawing an ellipse through plotted points.

Consfruction of a Parabola
If the focal pormt of a vertioal parabola is (c) units from its vertex, then ils equation is $y=x^{2} / 4 \mathrm{c}$, retenred 6 restangular coordhates with the vertex taken as the origin. As shown in Fig. 3, a horizontal lince is drawn (4c) unts below the x-axis and the vertex of a right-angle is placed at the origin. The intersection (P^{P} of the rightangle with this horizontal line is taken as the x coordinate of a point on the parabola. Then, the intersection of the right-angle with a vertical line through (P) gives the y-coordinate of this point. Plotting of points is very rapid it an inside right-angle is used and a pin is inserted at the origin to act as a pivot for the angle. The rightangle may consist of two perpendicular stratghtedges taped together.

Teagents to a Prisabole

A right-angle is placed so that one edge passes through the loca! point and its vertex is on the x-axis, as illustrated in Fig. 4. The other edge passes through the given proint of tangency. This edge, then, is exactly tangent to the parabola. This method considerabiy reduces the number of points that need to be plotted in order to draw an accurate curve.

Construztion of a Hfperbola

A vertical hypeibula whose two vertices are (b) units from the origin along the y-axis, and whose two asymptotes have slopes of $(\pm b / a)$, will have the equation $\left(y^{2} / b^{2}\right)-\left(x^{2} / a^{2}\right)=1$ when plotted on rectanguiar coordinatc paper. Referring to Fig. 5, a circle of radic" (b) units is drawn about the origin and a horizontal line is drawn (a) units up from the x-axis. Then a rightangle is placed so that one edge passes through the origin and the vertex is on the circle. The intersection of this edge (extended if necessary) with the horizontal line is the x-cor,rdinate of a point on the hyperbola. The intersection of the other edge with the y-axis gives the y-coordinate of the point.

Fig. 3
Construction of a porsbela

Plotting of points is even more rapid if two triangles are fastened together (by taping, for example) as shown in Fig. 6 so that the coinciding edges overlap for a distance of (b) units, and the inside right-angle formed by the combined triangles is pivoted avout a pin inserted in the origin. This method eliminates need for the circie.

Construction of Tongents

to a Vertical Hyperbola

The two focal points are located $\sqrt{a^{2}+b^{2}}$ units above and below the origir. A circle of radius (b)

Fig. 5

is drawn about the origin as shown in Fig. 7. A right-angie is placed so that one edge passes though a focal point, the vertex lies on the circle, and the other edge passes throuch a given point of tangency. This edge, ti. \because, is tangent to the hyperbola.

Construction of Right Hyperboles

and Other Curves

If a right hyperbola with equation $y=k / x$ $(k>0)$ is referred to new axes formed by rotating the previous axes clockwise 45 deg, its equation becomes $\left(y_{1}{ }^{2} / 2 k\right)-\left(x_{1}{ }^{2} / 2 k\right)=1$. This is treated like the vertical hyperbola with $a=b=\sqrt{ } 2 \bar{k}$, as shown in Fig. 8.

Horizontal parabolas and hyperbolas and vertical ellipses are treated by letting $x_{1}=y$ and $y_{1}=x$, that is by interchanging x and y in the cequations.

Consiruction of Approximation

Circles ef Vertices

A curve is closely approximated near a given point by a circle with the same curvature and having a common tangent to the curve at that point ("csculating" circle). The approximation is especially close when the point is on an axis of symmetry. This greatly reduces the number of points or tangents that need to be plotted. Figs. 9-12 give the general center and radius of each vertex circle on an axis of the above curves.

Fig. 10

Fig. 11 Verticol hyperbolo approxımotion circle

Fig. il Right typerbola npproximation cirele

MATHEMATICAL NOMOGRAMS
Surface Area of a Cone This chart will simplify the determination
of the surface area of a cone.
The chart is used as follows: (1) Divide
the cone length in inches by the cone base
diameter in inches and (2) enter the abcis-
sa with the L / D value, and project horizon-
tally to the appropriate L line, thence
downward to read surface area in sq ft .
Example: Find the surface area of a cone
40 inches in length and 16 inches in dia.
Solution: $\mathrm{L} / \mathrm{D}=40 / 16=2.5$. Enter at L / D
$=2.5$ and project to $1 .=40$, thence down-
ward to read $\mathrm{A}_{S}=7.2 \mathrm{sq} \mathrm{ft}$.

Expenonts and Loguritums
 Reforemce Shoot.

In addition to the better-known formulas, this article compiles change-of-base, interpolation and conversion formulas along with a table of conversion constants usually not found in texts and handbooks.

Exponents:

An integral exponent is a count of the number of times a given quantity (the base) appears as a multiplying factor in a term. Thus, (a)(a) $(a)(a)=a^{4}$. The whole expression is called "the fourth power of (a)" or "(a) taken to the fourth power" or "the exponential of 4 ". In this expression, (a) is the base and 4 is the exponent. This definition leads to the laws of exponents. Fractional, irrational and imaginary exponents then are defined to agree with these laws.
Logarithms:
The logarithm of a number to a given base is defined as the exponent to which that base must be raised in order to equal the given number. That is, " $\log _{n} A=x$ " means the same as " $\mathbf{b}^{\prime}=A$ ". By treating a logarithm as an exponent, the laws of logarithms are developed from the laws of exponents.

Nomminclature

a, $b=$ any posi ive numbers used as bases
p, q $=$ any numbers used as exponents
A, $B=$ any prsitive numbers whose logs :e taken
$\mathrm{j}=\sqrt{\mathrm{V}} \mathrm{T}$
$\mathrm{m}, \mathrm{n}=$ any real integers
$\theta=$ any angle (in radians)
$\log A=\log _{10} A$
$\ln A=\log _{6} A$

BxOMEATS

General Laws:
bobe = bew
$\mathbf{b}^{2} / \mathbf{b N}=\mathbf{b}^{-\mathbf{a}}$
$\mathrm{a}^{\mathrm{b}}=(\mathrm{ab})^{p}$

Special Powers:
$b^{1}=\mathbf{b} ; l^{10}=1$
$b^{0}=1, b \neq 0 \quad$ The symbol 0^{0} has no
$0=0, p \neq 0$ algebraic meaning, be cause $0^{-\rho}=0 / 0^{\circ}=0 / 0$, which can have any value, a،d thus is undefined.
Fractional Exponents:
By defining fractional powers as radicals, all laws above are preseried. Thus,

$$
\begin{aligned}
\mathbf{b}^{-1 / 2} & =1 / \sqrt{12}=\sqrt{b} / b \\
b^{2 / 3} & =\mathfrak{F}^{2} \cdot b^{2}=(\sqrt[2]{b})^{2}
\end{aligned}
$$

Complex and NJega: ve Bases:
DeMoivre's theorem gives the n different equations:

$$
\begin{aligned}
& (x+j y)^{m / n}=\left(\sqrt{x^{2}+y^{2}}\right)^{m / n} \\
& \quad\left[\cos \left(\frac{m}{n} \theta+\frac{2 k_{v}}{n} j+j \sin \left(\frac{m}{n} \theta+\frac{2 k_{\pi}}{n}\right)\right]\right.
\end{aligned}
$$

Where:

$$
k=0,1,2, \cdots(n-1)
$$

θ (in radizns) is an angle in the quadrant of (x, y) whose tangent is (y / x).
Complex Exponents:
Euler's theorem gives the single equation:
$e^{j \theta}=e^{\text {(} 0+2 \mathrm{men})}$

$$
=\cos \left(\theta+2 n_{\pi}\right)+j \sin \left(\theta+2 n_{\pi}\right)
$$

Where: $e=2.718+$.

Logearmims

Defining Equatior:

$$
\mathbf{b}^{\boldsymbol{o b}_{\mathbf{b}}}=\mathbf{A}, \mathbf{b} \neq 1
$$

This expresses the fact that an ex, wrential of a number is the same thing as an antilog of the number. That is, usirg a number as an exponent and taking a log of the number are converse operations; they reverse each other's effects, thus reproring the original number. All
other log formulas develop from this definition Fcrmulas for Computing:

```
General Formulas:
    Product:
        \(\log _{6} A B=\log _{6} A+\log _{6} B\)
            \(A B=\operatorname{antilog}(\log A-\log B)\)
    Quotient:
        \(\log _{6} A / B=\log _{0} A-\log _{B} B\)
            \(A / B=\operatorname{antilog}(\log A-\log B)\)
    Power:
        \(\log _{b} A D=p \log _{b} A\)
            \(A^{\prime}=\operatorname{antilog}(p \log A)\)
Special Formulas:
        \(\log _{b} 1=0\)
        \(\log _{b} b=1\)
        \(\log _{t}(1 / A)=-\log _{\Delta} A\)
        \(\log (1 / A):=(10-\log A)-10\)
```


When no base is indicated, the base is understood to be 10. If A or B are negative or imag. inary, first perform the computation disregarding signs and then prefix the proper sign to the result.

Change-of-Bass Formulas:

$\log _{a} A=\log _{A} A \log _{t} a=(\log b / \log a) \log _{a} A$

$$
\log _{b} b=1 / \log _{b} a=\log b / \log a
$$

$$
\left.a^{p}=b^{p \log c^{\circ}}=b^{p} \text { (1oge/ice } b\right)
$$

In computations involving powers or changes-of-base, the logarithms used are often themselves long numbers. Hence, it is convenient to multiply or divide them by again using logs, prefixing the proper sign to the first antilog
taken. Thus,
$A^{D}=$ antilog antilog $(\log \log A+\log p)$ $\log _{\mathrm{a}} \mathrm{A}=$ antilog $(\log \log \mathbf{b}+$ $\left.\log \log _{b} A-\log \log a\right)$ $\log \log _{a} b==\left(10-\log \log _{b} a\right)-10$
Conversion Constants:

$e=2.71828$	18284	59045
$\log \mathrm{e}=0.43429$	44819	03252
$\log 2=0.30102$	99956	63981
$\ln 2=0.69314$	71805	59945
$\log \pi=0.49714$	98726	94135
$\ln 10=2.30258$	50929	94046
$\log _{2} 10=3.32192$	80948	87361
$\mathrm{ivgse}_{\mathrm{g}} \mathrm{e}=1.44269$	50408	88963
$\log \log \mathrm{e}=9.63778$	43113	00537-10
$\log \log 2=9.47860$	97723	45675-10
$\log \ln 2=9.84082$	54610	45138-10
$\log \ln 10=0.36221$	56886	99463
$\log \log _{2} 10=0.52139$	02276	54325
$\log \log _{2} \mathrm{e}=0.15917$	45389	54862

Common Conversion Formulas:
The change-of-base formulas with appropriate constants rive:
$\log A=2.303 \ln A=0.3010 \log _{2} A$
$\ln A=0.4343 \log A=0.5931 \log _{2} A$
$\log _{2} A=3.322 \log A=1.4427 \ln A$
Complex and Negative Numbers:
$\ln (x+j y)=(1 / 2) \ln \left(x^{2}+y^{2}\right)+j\left(\theta+2 m_{\pi}\right)$
This follows from Fuler's and DeMoivre's theorems. As special cases:

$$
\begin{aligned}
& \ln (-x)=\ln x+j(2 m-1)_{\pi}, \\
& \ln (j y)=\ln y+j(2 m+1 / 2)_{\pi}, \\
& y>0
\end{aligned}
$$

All equations of this article thus can be extended to complex numbers when the quantities in volved are finite.

CALCulus Formulas

Derivatives of Powers:
$D_{\mathbf{x}} \mathbf{u}^{p}=\operatorname{pu}^{p-1} \mathrm{D}_{\mathbf{x}} \mathbf{u}$

$$
\mathbf{D}_{\mathbf{x}} b^{v}=(\ln b) b^{v} D_{\mathbf{x}} v
$$

$$
D_{x} u^{v}=u^{v}(\ln u) D_{x} v+v u^{r \cdot 1} D_{x} u
$$

Where: u and v are variables whose values depend on x.

Integrals of Powers:

$$
\begin{aligned}
& \int_{1}^{\mathrm{z}} y^{-1} d y=\ln x \\
& \int_{0}^{x} y^{p} d y=x^{p+1} /(p+1), p \neq-1
\end{aligned}
$$

$$
\begin{aligned}
& 10^{\mathrm{p}}=\text { antilog } \mathrm{p}=\mathrm{e}^{2.303 \mathrm{p}}=2^{3.322 \mathrm{p}} \\
& \mathbf{e}^{\mathrm{D}}=\text { antilog }(0.4343 p)=10^{0.4343 p} \\
& =2^{1.4427 \mathrm{p}} \\
& 2^{\mathrm{p}}=\operatorname{antilog}(0.3610 \mathrm{p})=10^{\mathrm{m} .3010 \mathrm{p}} \\
& =\mathrm{e}^{0.5 \times 31 \mathrm{p}}
\end{aligned}
$$

$$
\int_{-\infty}^{x} b^{y} d y=b^{x} / \ln b=(\log e / \log b) b^{x}
$$

Logarithms:
$D_{z} \log _{t} u=(\log e / \log b)(1 / u) D_{x} u$

$$
\int_{0}^{x} \ln y d y=x \ln x \rightarrow x
$$

MNTEROOLATION

The following procedures, based on Taylor's theorem, are more accurate than the usual linear interpolation.

Let \mathbf{N} be the table entry closest in value to the desired entry. Let $(N+h)$ be the value

whose exponential or \log is to be approximated. Note that is can be positive or negative. Let M be the table entry on the other side of ($\mathbf{N}+\mathrm{h}$), away from N . Then:

$$
|h| \equiv(1 / 2)|M-N| .
$$

Exponentials:
$e^{N+E} \approx e^{N}+h e^{N}$
If $h<0$ then |error | < (h/2)hen
If $h>0$ then | error | < (h/2)he ${ }^{N \cdot L}<(h / 2) h e^{*}$
Antilogs: (See Fig. 2)
antilog $(N+h) \approx a n t i l o g ~ N+(\ln 10) h$ antilog N
If $h<0$ then \mid error $\mid<(h / 2)(\ln 10) h$
antilog N
If $h>0$ then \mid error $\mid<\left(h^{2} / 2\right)(\ln 10)$ antilog M
Logarithms Base 10: (See Fig. 3)
$\log (N+h) \approx \log N+\log e(h / N)$
If $h<0$ then | error $\mid<(1 / 2) \log e(h / N)^{2}$
If $h>0$ then | error | < ($1 / 2$) loge $(h / M)^{2}$
Logarithms Base e:
$\ln (N+h)=\ln N+h / N$
If $h<0$ then | error | $<(1 / 2)(n / N)^{\text {a }}$

If $h>0$ then \mid error $\mid<(1 / 2)(h / M)^{2}$
More Accurate Formulas:
$10^{N+E} \approx 10^{N}+(\ln 10) h 10^{N}+h / 2\left[(\ln 10) h 10^{N}\right]$
If $h<0$ then |error $\left|<|h / 3|\left[(\ln 10)\left(h^{2} / 2\right) 10^{\mathrm{N}}\right]\right.$ If $h>0$ then \mid error $\mid<(\ln 10)\left(h^{*} ; 6\right) 10^{m}$ $\log (N+h) \approx \log N+2(\log e)\left[(h / 2 N)-(h / 2 N)^{2}\right]$ If $h<0$ then \mid error $|<2(\log e)(4 / 3)| h /\left.2 N\right|^{3}$ If $h>0$ then \mid error $\mid<2(\log e)(4 / 3)(h / 2 M)^{3}$
Corresponding formulas for exponentials and natural logarithms are obtained by replacing 10 by e and omitting $(\ln 10)$ and $(\log e)$.

The Basic Laws of Physics

The following laws and formulas of physics include those most often used in mechanical engine: , rg.

For convenient reference a topical index is given below. The numbers refer to the itans in this article.

THE BASIC LAWS OF PHYSICS

12-Acceleration 3-Addition, Vector	24-Kinetic Energy of Rotation
31-Adresion	
23-Angular Mornentum	34-Lineor Expension
21-Angulas Velocity	27-Liquid Flow from
30-Buoyency	Orifice
30-Buoyoncy	34-Liquids, Exponsion
8-Center of Gravity 9-Conter of Mass	26-Liquids, Pressure
22-Centri iugal Force	9-Mass, Center of
22-Centripetal Force	20-Momentum, Angular
31-Cohesion	20-Monentum, Conservation
5-Composition, Vector 23-Conservation of	10, 13, 15, 16-Newton's Lows
Angular Mornentum	27-Orifice, Flow from
19-Conservation of Energy	27-Orifice, Flow from 18-Potential Energy
20-Conservation of	26-Pressure in Liquids
Momentum	7-Resolution of Vectors
28-Density	24-Rotation
19-Energy, Conservotion	1-Scalors
18-Energy, Kinetic	34-Solids, Exponsion
17-Energy, Potential	11-Speed
6-Equilibricm, Yector	29-Specific Grovity
34-Expension, Thermel	35-Specific Heot 4-Subtroction of
	Vectors
14-Falling Bodies	
27-Flow from Orifice	34-Tharnal Exparsion
22-Force, Centrifugal	
22-Force, Centripetal	2-Vectors
34-Gas, Expension	3-Vector Addition
14, 15-Grovity	5-Vector Composition
6-Grovity, Center of	6-Vector Equilibrium
29-Grovity, Specific	7-Vector Resolurion
	4-Vector Subtroction
35-fieot, Specific	11, 21-Volocity
	33-Viscosity
10-Inertio	34-Volume Exponsion
18-Kinetic Energy	17-Work

1. Measuroble Quontitios which hove only Magnitude se :aliod SCALARS, os Mass, Volume, Area, efe.
Scaler Quentities are alwoys added Arithmetically.
2. Measurable Quentities which hove both Magnitude and Drectian ore called VECTORS.

Vector Qucntities are odded Vectorially.
A Vocior Ouentity is represented by an Arow, the length of which is proportional to the Quentity, and its direction is Perallel to the Direction of Action.
3. VICTOR ADDITION

4. VECTOR SUBTRACTION

6. EQUILIBRIUM
(Forees prevent the body from moving)
A Body is in Equilibrium when the Vector Sum of all of the Forces acting on the Body is Zero.

(To find 2 or more Vectors Equivalent to the Original One).

8. CENTER OF GRAVITY

The Center of Grovity is a point inside or outside of a body about which the body, if sel turning, will rot ote froely with uniform angular velocity.

The CENTER OF GRAVITY of all Regular Shoped Objecta is at the Geometrical Center, thus:

Center al Grovity of on inreptlar shaped becy.

Lines determined by the weight will cross of a Common Point which is t . Conter of Govity.

9. CENTER OF MA :

Conter of Mass is the point on a line botween two bodies obout which the two bodies would revolve freely.

10. NEWTON'S FIRST LAW
"A Bady ot Rest er in Motion will remain of rest or in motion unless some Extemal Force is applied to it."

INERTIA is the property of a Body which tends to resis a change in its state of Rest or Motion when an External Force is applied.
11. SPEED AND VELOCITY

VELOCITY is the Rate of Chonge of Position.
Velocity is a VECTOR QUANTITY since it has both Mognitude and Direction.
if $\mathrm{S}=$ total distance
$t=$ time
$\mathrm{V}=$ uniform velocity
if $V_{0}=$ mean velocity
$v_{1}=$ initiol volocity
$V_{2}=$ final volocity

$$
\text { then } V=\frac{S}{t} ; S=V_{t} ; i=\frac{S}{V}
$$

then for Uniformly Varying
Velocity;

$$
v_{0}=\frac{v_{1}+v_{2}}{1} \quad s=\frac{v_{1}+v_{2}}{2} \times
$$

When Trovel is in a Straight Line, Speed and Velocity are numericaily equal.
Alang a Curved Path, the Speod of a body may be Constiont while Velocity is Continually Chunging due to its Change in Direction.

12. ACCELERATION

When the Velocity of a Body increases it is said to be Acceleratod.

When the Velocity of a Eady decreases it is soid to hove Negotive Aeceleration or Deceleration

13. NEWTON'S SECOND LAW
"The rote of which the Momentum of a body chenges is equal to the Foree Acting, ond tokes plece in the Stroight Line in which the Foree ects".

if $F=$ foree applied

i = time
$M=$ mos:
$V_{1}=$ initiol volocity
$V_{2}=$ final velocity
$0=$ accoluration
14. GRAVITY AND FALLING BODIES

IF $\mathbf{g}=$ accelerotion due 10 grovity $=32 \mathrm{ft} / \mathrm{sec} / \mathrm{sec}$

$$
\begin{aligned}
& s=\text { distance traveled } \\
& t=\text { time } \\
& V=\text { velocity }
\end{aligned}
$$

then for a Falling Body starting from Zero Velocity;

$$
S=1 / 2 g t^{2} \text { and } V=g t
$$

or combining the two equations; $V=\sqrt{2 g s}$
If a body is dropped vertically and another is projected herizontally, both bodies will reoch the ground at the same time.
15. NEWT ON'S LAW OF GRAVITY
"Any two bodies attract each other with a force which is proportional to their masses, and inversely proportional to the square of the distence between them"

where $G=$ Nowtonion Constant of Gravitation $=6.773 \times 10^{-8}$
16. NEWTON'S THIRD LAW
"Te every Action there is alwoys an Equal and Opposite Reoction Force'".
17. WORK

Work $=$ Force \times distance $\quad W=F \times:$
In the above formula, Force must act in the Same Direction as the Distance.

18. POTENTIAL ENERGY and KINETIC ENERGY

A body is said to have POTENTIAL ENERGY if by virtue of its Position or State it is oble to do work.

Potential Energy $=F \times S=M g \times S$

The KINETIC ENERGY of a body is its ability to do Work by virtue of its Motion.

$$
\text { given } \begin{aligned}
M & =\text { mass } \quad \text { then Kinetic Energy }=1 / 2 \mathrm{MV}^{2} \\
V & =\text { lineer volocity }
\end{aligned}
$$

19. CONSERVATION OF ENERGY
a. In trensforming energy from one form of energy to orother, entrgy is a!ways conserved.
b. Energy is never crested or destreyed.
c. The sum tetai of oll energy in the Universe remains constont.
en omple:

Potential Esergy
Potential Eriergy plus Kinetic Energy
Kinetic Energy
20. CONSERVATION OF MOMENTUM

When two bodies collide with eoch other, momentum is conserved.

22. CENTRIPETAL and CENTRIFUGAL FCRCE

Centripetal Force is the force preventing mass from leoving its circular poth.
If the centripetal Foree is removed, the Mass will chonge its course to a line tengent to the circle due to CENTRIFUGAL FORCE.
if $M=$ mons
then $F=M \frac{V^{2}}{r}$
$V=$ lineor velocity
$r=$ rodius
$r=$ rodius
$\omega=$ angula volocity in rodions or $F=M r \omega^{2}$

23. ANGULAR MOMENTUM

if $M=$ mass
$V=$ lineor velocity
$\omega=$ ongulor velocity in radions $r=$ redius
then Anguler Momentum $=M V_{r}$
$=M r^{2} \omega$

$$
M V_{1} r_{1}=M V_{2} r_{2}
$$

(or) $M P_{1}^{2}{ }^{\circ}{ }_{1}=M r_{2}{ }^{2} \omega_{2}$

For the same Angulir Komentum, a decrease in Rodius must be compenseted by en increase in Velocity.

26. PRESSURE IN LIQUIDS
a. The pressure of any point is equal to the weight of a liquid column of unit cross-section, and reaching from thot point to the top of the liquid.
b. The pressure of one point is the same as the pressure of any other point at the same level.
27. LIQUID FLOWING FROM AN ORIFICE

28. DENSITY

The Density of nletter, whether in the solid, liquid or gaseous strte, is defined as the Moss per Unit Volumb.

$$
D=\frac{M}{V}
$$

29. SPECIFIC GRAVITY

Specific Grevity $=\frac{\text { Weight of a Given Substance }}{W e}$ Equal Volume of Water
30. BUOYANCY

Archimede's Principle - "A body flocting ar submerged in a liquid is buoyed up by a force equal to the weight of the liquid displaced'.

A Body will float in a liquid if its specific grovity is less than the specific grovity of the liquid.
A Body will sink in a liquid if its specific grovity is greater then the specific grovity of the liquid.

A Body flooting in a liquid will displace ovolume of the liquid equal in weight of the floeting body.

31. ADHESION and COHESION

ADHESION is the ottroction berween Differont kinds of Molecules.

COHESION is the etroction between Like kinds of Molecules.
32. CAPILLARITY

33. VISCOSITY

Viscosity is the frictional resistance offered by one port
or layer of a liquid as it moves past an adiacent part or layer of the same liquid.

The Viscosity of a liquid Decreases as the temperature Increoses.

Viscosity is most important as a meosure of the lubricating quality of oils.
34. THERMAL EXPANSION
a. SÓLIDS

The LINEAL COEFFICIENT OF THERMAL EXPANSION is the change in unit length of a substonce for one dag. rise in tamperature.
if a = lineor coefficient of thermol expansion (to be found in a table of coefficients)

$\mathrm{L}=$ length

$T=$ rise in temperoture (T final minus T of stort) $e=$ elongation
then $\bullet=a \times L \times T$
b. LIQUIDS

The VOLUME COEFFICIENT OF THERMAL EXPANSION
is the chonge in unit volume of a substonce for one
dag. rise in temperature.
if $\mathrm{V}=$ change in volume
$\beta=$ volume coefficient of thermal exponsion (to be found in a toble of coefficients)
$V=$ the original volume
T rise in temperoture (T final minus T of stert)
then $V=3 \times V \times T$

c. GASES

The Volume of a Gas varies Directly with the
Temperoture ond Inversely with the Pressure.
if $\mathrm{T}=$ Atsolute Temperofure (Kelvin)
$V=$ volume
$P=$ pressure then $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
35. SPECIFIC HEAT

The CALORIE is the amount ef heot necessory to raise
the temperature of I grom of Water I degree Centigrode.
SPECIFIC HEAT is the amount of heat necessory to raise
the tempersture of 1 grom of a substance 1 degree
Centigrode. (the Specific Heat of Woter is unity)
if $\mathrm{O}=$ calories
S.h. $=$ specific heat of the substonce (to be found in - reble of Specific Heats)
$M=$ moss of the body in grams
T I temperature rise (T final minus T at stert)
then $Q=S . h_{1} \times M \times T$

Basic Laws Of Electricity and Magnetism

For convenient reference, a topical index is given below. The numbers refer to the items of this article.

28-Alternating Current

12-Atoms

4-Attraction \& Repulsion, Magnetic
14-Attraction \& Repulsion, Static Electricity
13-Behavior of Static Electricity
32-Cells in Series \& Parailel
31-Chemical Effect of Electri: Current
27-Current, Induced
26-Effects of an Electric Current
10-Electric Field
30-Electric Motor
17-Electric Potential
26-Electrical Current Effects
20-Electrical Power
18-Electrical Units, Pract:cal
11 to 33-ELECTRICITY
11-Electricity, Static
31-Electrolysis
31-Eictrolytic Cells
29-Electromagnet
27 to 29-ELECTROMAGNETISM
12-Electron and Proton
14-Electrostatic Repulsion \& Attraction
15-Electrostatic Unit of Charge
31-Faraday's Law of Electrolysis
16-Field, Electric
7-Fieid, Magnetic
5-Force, Magnetic
31-Heat Produced by Electric Current
21-Heating, Electrical
27-Induced Current \& Induced Magnetism
21-Joule's Law of Electric Heating
27-Lenz's Law
8-Lines of Magnetic Force
1-Magnet Definition
1-Magretic Attraction \& Repulsion
29-Magnetic Effects of Electric Current
7-Magnetic Field
5-Magnetic Force
8-Magnetic Lines of Force
2-Magnetic Materials
3-Magnetic Poles
1 to 10 -MAGNETISM
27-Magnetism, Induced
9-Magnetism Theory
19-Ohm's Law

1. AMAGNEI is a body which has the property of atrecting iron end a reit, and which if suspended froely will turn es as to point ir a d finite direction.
2. TYPFS OF MAGNETIC MATERIALS

A Material thet is quite easily magnetized under the strimulation of a Magmatic Field is desceibed as hoving high PERMEABILITY.

A Material notoining its mognatic propertios offer the Exciting Field has been removed is described as having high RETENTIVITY.

Most Magnetic Materials having High Permeability heve Low Retentivity. Most Mognetic Meteriala hoving High Retentivity heve Low Permebitity.

Magnotized Materials hoving Hiph Permechility and Low Refentivity are called TEMPORARY MAGNETS. Magnetized Materials hoving High Retentivity are ellod PERMANENT MAGNETS.
3. MAGNETIC POLES

A mognet has two poles ot its ands. If suspended froely it will rotate to a Nerth-South dinection. The Pole point ing toword the Nerth Pole is called the "N" pele, and the oppusite pole is the " S " pole. The two poles of a mognot hove excectly the some strength.
4. MAGNETIC ATTRACTION AND REPULSION
$\begin{aligned} & \text { Unlike Mopneric Poles } \\ & \text { antruct eoch other:- }\end{aligned} S \rightarrow N \rightarrow \sim \leq N$
Like Magnetic Poles
repel eoch other $\rightarrow \mathrm{S} \rightarrow \mathrm{N}$
$N \rightarrow 5$
5. MAGNETIC FORCE

The Mognitude of the Force betmeen two Megsetic Poles is directly proportional to the Pole Strunpth, and inversely proportional to the Square of the Distance Between Them.
6. A UNIT MAGNETIC POLE is one whose Pole Strength is such that whe- it is placed of a distonce of 1 cm from a Pole of exactly the seme kind, the Ferce bet ween the two is 1 dyme.

The direction of the Forre between the Poles is elwoys in the direction of oline joining the Poles.

If the pole strongths ore m_{2} and m_{1} units, the distence beiween them is i cmi, ond F is feree in dynus,

$$
\text { then } F=\frac{m_{\perp} \times m_{2}}{r}
$$

7. MAGNETIC FIELD

The region doust a Megnet where its influenice can be detocted is called a Moprotic Field.
7. conl'd

The Direction of a Mognetic Field is that of a - ectin upon on isoleted " N " pole.

The Imensity of the Magnetic Field of ony pon . Ithe force which would be exerted upon a Unit Pole placed there.

The Unit of Fialdintensity is the OERSTED. .d is the intensity of a Megnotic Fiold in which a Unit Mognetic Pole atperiences a force of I dyne.
8. LINES OF MAGNETIC FORCE

9. THEORY OF MAGNETISM

A Magnetic Material when in an Un-magnetized State consists of small Magnots arrorgod in a topey-furyy foshion, mus:-

A Mapnetic Meterial when it is in a Maqnetized Stete consists of small Mognets lined up in One Direction, thus:-

10. PROOF OF THE MAGNETIC THEORY

Exprimentally, the following prent of the Thoory is "ownd:-

1. Heating or jaring a magnem causes it to lose ithe Magnetic Propertios, and rowwsely a magnetic moterial can ise Magnetizod by imirima it or heating it and allow ing it to cool in a Mcantic Fiold.
2-A Pormosonnt Mapant, when broken, will be found to merain its Two Opposite Poies in eech of the piecos regardess of their size.

3- A. Magnetic Mrywiol becomes alightly longer when Magmetized (dve to the re-arongeminit of the mognetie perticles).

4- When a Magnotic Material is aubiected is a Mognatic Fiold which changes repidly them one direction to ar wher, Heet is seveloped in the metciol.i. This effiect is colled HYSTERESIS, and is dee tu the triation develapod by the ahifting of tio peritions of the meprotic perticles.

1. STATIC ELECTRICITY is Sia' ionary Electricily CURRENT ELECTRICITY is E.lectricify in Motion

Static Electricity can be either a liegative (- or a
Posit. .e (+) change.
An Object charged with either a Negative or a F usitive charge will remain stotic until another Object carying the opposite charge is bro syht close enough to rause a flow of - lectricity berween the two bodies.

The direction of the flow will be from the Positively Charged Object to the Nagatively Charged Object.

2. Positive Units of Elactricity are called PROTRONS Negative Units of Electricity ore called ELECIRONS

The ELECTRON h is dean shown to be the smr' at indivisible piece of Noystive Eloctricity.

A positive unit ar Proton is 1846 times as heary as the negative Electron.

ATOMS of various eloments hove been shown to cons: or or a Nucleus of P. and Electrons, with one or more

13. BEHAYIOR OF STATIC ELECTRICITY

Substances which conduet almetricity masily are called CONDUCTORS.
Substances which resist the flow of olectricity ase colled INSULATORS.

On on INSULATOR the charges remain where they ore placed.

On a circula CONDUCTOR the ct apes plared on it apece themselvr a unifermly due to the fare of repulsion of the individual cinares.

On a pointed conductor there will be on accumulation of cherges of the point os the mutual repulsion between the units will couse thim to move to the greatest distance from the remoinder of the cherges.
14. ELECTROSTATIC REPULSION
Like Chager of Elacricity
ropel eoch cither.
ELEC TOSTATIC ATTRACTION

Unlike Charges of Elocticity
atract exch other

15. ELECTROSTATIC UNIT OF CHARGE (mit charp) is E Pentiny of electriciry which, when deed 1 cm disegen
 drom.
16. ELECTRIC FIELD is the megian chent a shered boty. -ad ine intrasity of an Elactric Fiold on eny mint is the ferce which woold be everted opet a Unit Positive Ohere - the poim.

The Electroetetic unit of Field Strongth is DYNES PER UNIT CILARGE.

$\begin{aligned} & \text { if } E=\text { field streageth } \\ & F=\text { feres in dyer } \\ & O=\text { menter of un cherses } \end{aligned}$	$\operatorname{stan} C=\frac{F}{0}$
and if redistace in in	$\operatorname{stan} E=\frac{Q}{K r^{2}}$

 10006\% for eir)
17. ELECTRIC POTENTIAL

12. PRACTICAL ELECTRICAL UMITS
dMANTITY OR CHARGE-The CCHiLCMB is e qumity of
 The eovinut det oquals 6.25 n W' $^{\prime \prime}$ clecweas.

CURRENT- The AMPERE is e mith of cmeren wich is equel to e rate of flow of electric cherge of 1 cementh per encent.
mORK-The ERG is the werk drae when a facce of 1 dyme is enplied chereach a distuce of 1 conturater.
 oquil to 10^{\prime} ege
 encend.

ELELTRONOTIVE FORCE an POTENTMAL DROP-The VOLT is the defleresces in paterial trimoen twe points
 jacle of enery, in meving frem one print to enother.

RESISTANCE-Tho OMM is a rosistance teress which there is a peremiol drep of 1 ralh when the current is 1 empere.
v 19. OHM'S LAW-The curbet in e civcuir equels the elec* Anomive free in the circuil dividel by the resisterce of the circuit.
if I x tate of flow if cwreat in AMPERES then $I=\frac{E}{R}$

E \# prosure in VOLTS	else EsinR
R I resistatice in OMMS	E
	1

20. ELECTRICAL POWER

$$
\text { if } P=\text { pener in watTS } \quad \begin{aligned}
& \text { hes } P=I \times E \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { dse } P=\frac{E^{2}}{R} P=I^{z} \times R
\end{aligned}
$$

2!. SOULE'S LAW OF ELECTRIC HEATING-The heet melveed in acembetor is mequational to the resimence of the combeter, to the squire of the curmet end to the time.
if er = emergy in ieculos
$R=$ necistruce in ches
$\mathrm{I}=$ curvent in enperes
t = time in secends
mancon $=R=I^{1} \times t$

- if $H=$ hat in celaries
then $H=0.239 R \times I^{2} x$:
and if $P=$ menore in mens
then $\boldsymbol{P}=\mathbf{R}=\mathbf{I}$

22. RESISTANCE OF WRES

In celoulding the resistuce of wive it it commor mectice
to curnate to heoph of the wire in fopt, end tre creassactived ane in circular mills (CM)

A circular mill is the creas-anctiond aree of e circto with - diemeter of . 001 inches.

Alminum	19.3	Mmagain	28.
Cotre	24000 to 42000	Mmewry	575.
Conspmen	295.	Ninchreme	60.
Ceper	10.4	Platimin	66
tren	72. 1084	Siver	9.9
Leed	125.	Tumpram	33.
		Zinc	36.7

23. RESISTANCES IN SERIES

if $I=$ cursent in anperes of the systom shen $I=I_{4}=I_{5}=I_{1}$.-

$V=$ petcotial trep of the systom $R=R_{8} i K_{3}+R_{2}$..
"The equivaleme resistance of sevaral devices comected in earies is equal to the sum of their individuel resispences."
24. RESISTANCES IN PARALLEL

- qsivalent reciprecal of the resistances of severel devices commected in pereflel is eqeol to the sum of then individual reciprecal resistences."

25. THERMAL COEFFICIENT OF RESISTANCE

The resistance of a Merallic Conductor USLALLY increoses es the rempercture is raised.

if $R_{1}=$ originol resistence

$R_{1}=$ resistence difer temperatere chenge
$0=$ temperofire coefficiont of resisfonce per dogree C
= temperature changs in degroes C

$$
\text { then } R_{1}=R_{1}(1+\infty)
$$

Following are the TEMPERATURE COEFFICIENTS OF RESISTANCE for a number of commen meterials:-

Almainum 0.0038	Mercury 0.00090
Corbon $=0.00025$	Nichrome0.00017
Constemen -0.00004	Pletiomm 0.0038
to to.00001	Silver 0.0040
Copper (at 20 deg. C) 0.00393	Tungsten 0.0045
Iron 0.0062	Zinc0,0037
Led 0.00043	
Mangain 0.00012	0.00005

26. THiE THREE PRIMCIPAL EFFECTS OF CURRENT

27. ELECTROMAGNETISM

The Field produced by the flow of cwrent itrough o Coll doponds on the number of furns of wive, the lavith of wire and its cress-sectional areg, the neture of the meterial inside the cail, and the strength of the current flowing.

AMPERE'S LAW for the Faree an a Condecter -
"Any conductor carrying a cursunt and loceted in a magnetic field will be pushed by a force thet is proportienol to the flux density, to the
current and to the langth of wire."
if $F=$ force in dynes
$\beta=$ flux density in gousses
$I=$ current in ompores $F=\frac{B \times I \times L}{10}$ $L=$ lenget in centimeter:

FARADAY'S PRINCIPLE
"When a mognetic field cuts a conductor, or when a conductor cuts a mappetic field, on eloctric curem will flow through the conductor if a closed pati is provided by which the currem con circulate."

The Current is induced only while the Megnetic Field is chenging.

28. ALTERNATING CURRENT

If the Conductor in a Magnetic Field changes its diraction of motion through a magnetic field, the direction of flow of the induced current in the conductor will be reva.'sed.
29. MAGNETIC EFFECTS PRODUCED BY AN ELECIRIC CURRENT

A wire carrying on electric curunt crectes a magnetic field around the wire. The mogretic effect is the some of all points equidistent from the wire.

AN EASILY' REMEMBERED RULE -
If a wire corrying a current is grosped in the right hand so the thumb rokes the dircction of the curvint, the fingmers will take the direction of the lines of force encierling the conductor.

A wire carrying a currumt, and in the form of a holix, will produce a very will produce a very infense magnetic field. This wrangement is called a solenoid or electromognet.

Introduction of o soh iron bor ot the center of the helix will increase the available mognetic farce. If the bar is fixed or sto lionory in the coil, the unit will be on ELECTROMAGNET.

If the ber is free to slide in the call, the unit is called a SOLENOID, ond if the bar is inserted of ane end of the coil it will iend to equali, ze the magnefic field by motion
30.

The commutator revolving with the wire coil keeps the curwent flowing in the same direction rtrough the coll, thus cousing certinuous rotation.
31. PRODUCTION OF A CHEMICAL EFFECT (ELECTROLYSIS

FARADAY'S LAW OF ELECTROLYSIS -

1. The mass of a substonce liberctod in on olectrolytic cell is proportional to the quantity of olectricity passing through the cell.
2. When the same quantity of electricity is passed When the different electroiyicic cells, the messess of: the substances liberted ere proportionel to their the substances chem al equivolemts.

ELECTROLYSIS OF WATER:-
af this ellectrecs the positively
chargod H -ionas give up thoir
cherged H -icona give up thoir
charge end escepe as hydrogen

TYPICAL ELECTROLYTIC CELLS:-

32. STORAGE OF ELECTRICITY

A Condenser consis's of conductiong plates sepereted by a noneam 'scting incerrial.

The omount of electricity that ean be stored in a cundenser depen's on the area of the plotes, the distance bet ween the depems on the area of the plates, the distance zetween the the insulating loyers. A condenser acts as a temporary storage bettery.

A More Permanent and Larger Copacity starage unit is the type which depends on Chemical Action to put on electrical charge into motion.
The ehemical action which produces a flow trom the battery can be restored by a current flowing in the opposite direction from that which is used to draw it from the botery. Although it is called a "Storspe Bottery" there is no more electricity in a battery after it hos boen cherged thon there was before; the charging process only restores the chemi cal energy which wos converted into electrical energy.

A "Dry Coll" is ons which preduces on electric current by chamicol meons, but is not copeble of being "Re-cherged". o- the moterials which reoct chemically to produce the cunent comot be returned to their original state electrically.

If Cells are comected in SERIES, their combined electromotive force is the sum of the e.m.l.'s of the individual cells.
if cells are comected in puestiel, wod are equal cells, their combined e.m.f. is the some as the e.m.f. of ery of the individuol cells.
2l-Parallel Resistances
-Permeability
3-Pole. Magnetic
6-Pole, I'nit Magnetic
17-Potential. Electric
20.Power, Electrical

18-Praclical Llectrical Units
10-Proof of Magnetic Theory
12-Proion and Electron
1.1-Repulion \& Attraction, Static Elec

פ9-Resistance of Wires
21-Kentances in Parallel
23-Revivanmes in Scries
2-Rctentivity
23-series Resintance
99 -Solenoid
11,19-Static Electricity
32-Stoange of Electricity
25- Temperatum Coellicient of Resistance
9- 「ineory ol Magnetism
15.l init Chatge, Electronatic

G ('nit Magnetic Pole

Space, Time, Velocity, and Acceleration Formulae

Olten when solving problems involvirg space, time, velocity, and acceleration, the desig:ier is 'soking for an answer, such as acceleration; howes r the "unknown" elements which he possesses do not fit into the well known acceleration formulas. If he does have sufficient information to solve the pribles 1 , he can find the answer by looking up additiona! formulas, search for charts, etc.

The following information presents all basic lineat motion tormulas with all their variations. 7 he designer can tell at a glance whether or not he inas sufficient information to solve his problem and hoose the applicable formulas. In addition, all terms used are specitically defined.

Definition of Terms

I $=$ Acceleration or deceleration-Ft/Sec/Sec (39.2 for gravity)

1) $=$ Distance-Ft (May be used in lieu of " H " in vertical frec fall)
$\mathbf{E}=\mathbf{E n c r g y}-\mathbf{F t}-\mathbf{L b s}$
$\mathbf{F}=$ Force-Lbs
$H=H e i g h t-F t-(M a y$ be used lieu of "D" with
A-32.9)
$\mathrm{M}=-\mathrm{Mas}-\frac{\mathrm{W}}{32.2}=\frac{\mathrm{Lb}-\mathrm{Se} \cdot}{\mathrm{Ft}}$
$\mathbf{T}=$ Time-Seconds
$V_{\mathrm{A}}=$ Average velority-Fu/Sec
$V_{1}=$ Final velocity--Ft/Sec
$V_{1}=$ Initial velocity--Ft/Sec
$\mathbf{W}=\mathbf{W e i g h t}-\mathbf{L b s}$

To Find	Formulao								
A	$\frac{v_{f}-v_{i}}{T}$		$\binom{$ When }{$v_{i}=0} \frac{v_{f}}{T}$	{{f935883e8-7a28-44d9-a7fc-12a4eb8316ce} When }$v_{i}=0} \frac{v_{f}{ }^{2}}{20}$			$\frac{2 D}{T^{2}}$	$\frac{W V_{a}}{\text { FT }}$	$\frac{\mathrm{F}}{\mathrm{M}}$
D	$v_{0} T$	$\frac{T\left(V_{i}+V_{f}\right)}{2}$	{{fd6dca970-16be-4f7c-bfef-7eac236d1461} When }$v_{i}=0} \frac{v_{i} T}{2}$		$\frac{V_{0}{ }^{2}}{2 A}$	$\frac{A T^{2}}{2}$		$\frac{E}{F}$	
E	FD	WH							
F	ma	$\frac{M\left(V_{f}-V_{i}\right)}{T}$		$\frac{E}{D}$	$\frac{W v_{0}}{\text { AT }}$				
H	$\frac{E}{W}$	$16.1 \mathrm{~T}^{2}$							
M	$\frac{w}{32.2}$	$\frac{F}{\text { A }}$	$\bar{v}_{i}-V_{i}$						
	$\frac{\mathrm{D}}{\mathrm{V}_{\mathrm{a}}}$	$\frac{2 D}{v_{f}+V_{i}}$	$\frac{V_{f}-V_{i}}{A}$		$\binom{W_{i n}=n}{y_{i}=Q} \frac{v_{f}}{A}$			{{fca289059-a6c3-4e19-ba47-434b23899a8f} When }$v=0} \frac{20}{v_{i}}$	
	$\sqrt{\frac{20}{A}}$	$\sqrt{\frac{H}{4}}$	$\frac{W V_{n}}{F_{A}}$		$\frac{M\left(V_{f}-V_{i}\right)}{F}$				
Vf	$2 v_{0}-v_{1}$		{{f45bae198-4623-4e4c-8c23-cde19533342f} Mhen }$v_{i}=0} 2 v_{0}$		$\frac{2 D}{T}-v_{i}$	$\left.\left(\frac{\text { When }}{V_{i}=0}\right)_{T}\right)_{T}$		$A T+V_{1}$	$\binom{$ men }{$v_{i}=0} A T$
v_{i}	$2 \mathrm{~V}_{0}-\mathrm{V}$	$\frac{20}{T}-V_{f}$		$V_{i}-A T$		$V_{i}-\frac{F I}{M}$			
W	$\frac{\text { AFT }}{\mathrm{V}_{\mathrm{a}}}$	32.2 M	$\frac{E}{H}$						

PHYSICS

Speed-Altitude Nomogram
This nonogialn linds basic speed lactors used in air
 lesis. Simoltaneons, readings can be macle when an)
(wes of these four variables are known: Natude or density Mach Number
True Airspeed
Equivalent dirapeed or dynamic pressure
The nomogram is based on the IC:AO (Internation.
al (ivil Aviation ()rganization) standard atmosphere, which dxumes a linear cemperature variation from $3!+$ itt sea level to minus 69.75 at the tropopause
$(36,089 \mathrm{ft})$ and a constant temperature of minus 69.7 F tor higher altitudes. Thus different equations hold Iercnt methods for reading scales.
Une straight line is used to read all varishles !...
alisules below the ropopause. At nigher altitude iwo lines are needed. The first line takes care of all variables except true airspeed. A second line pivotal
on the Darh Number and drawn through the tropo) on the Marh Number and drawn through the tropo,
patuse altude finds the une airspeed. Nomenclature:
$V_{T}=$ True airspe
$V_{\mathbf{z}}=$ Fquivalent airspeed, $\left(\mathbf{V}_{\mathbf{7}} \mathbf{8}^{1 / 2}\right)$, knots
$\boldsymbol{t}=$ Density ratio, ($\left.\rho / \rho_{0}\right\rangle$, dimensionticsy
$\mathrm{q}=$ Dynamic pressure, $\mathrm{Jb} / \mathrm{sq}$ it
I $=$ Marh number, $\left(V_{T / a}\right)$, dimensionles
$\rho=$ Mass density, slugs/cu It
$h=$ Altitude, it
$a=$ L.ocal speed of souncl, th;ect
Examples:
Determine the Mach number, true airapeed, dynamic preewure and mass density for a plane flying at:
(a) $10,000 \mathrm{ft}$ and an eccuivalenc airspece ot 27.1 kc (a) (b) $50,000 \mathrm{ft}$ and an equivalent a ir prpeed of 177 ks wale with 274 knots on the V_{R} seale. This culs all the
scales at correct values, giving $M=0.50, V_{\tau}=5.9$ scales at correct values, giving $M=0.50, V_{\mathrm{T}}=53!$
$\mathrm{f}_{\mathrm{I}} / \mathrm{set}, \mathrm{i}=255 \mathrm{lb} / \mathrm{sq} \mathrm{ft}, \mathrm{p}=0.00175$. (b) Connect $30,000 \mathrm{ft}$ on the h scale with 470 knots on
the V_{k} kale. This cuts all scales except the V_{r} scale at

The nomogram presents the relation between Mach number, speed and temperature according to the equations:

$$
M=\frac{V}{a} \text { and } a=a_{0} \sqrt{\frac{T}{T_{0}}}
$$

Altitude according to the ICAO (International Civil Aviation Organization) standard atmosphere is also shown along the temperature scale.

The ICAO standard atmosphere is defined in metric units with the altitude in kilometers and the temperature in degrees centrigrade (C) or degrees Kelvin absolute (K). Between sea level and 11 kilometers ($\mathbf{3 6 , 0 8 9} \mathbf{f t}$), the temperature decreases linearly with increasing altitude (6.5 C per kilometer). Above 11 kilometers the temperature is constant. Sea level temperature: $15 \mathrm{C}=288.16 \mathrm{~K}$
At and above 11 kilometers $(36,089 \mathrm{ft}):-56.5 \mathrm{C}=$ 216.66 K

Sea level speed of sound: $\mathbf{3 4 0 . 3}$ meter/sec = 761.50 mph

1 kilomete: $=1000$ meter $=3280.8 \mathrm{ft}=0.6214$
sıatute miles.
Nomenclature:
$\mathbf{M}=$ Mach number, dimensionless
$V=$ aircraft speed, mph
a = speed of sound, mph
$a_{0}=761.5 \mathrm{mph}$ (ICAO sea level speed of sound)
T = absolute air temperature, deg K
$\mathrm{T}_{\mathrm{o}}=288.16 \mathrm{deg} \mathrm{K}$ (ICAO sea level temperature)

Example I:

Determine the Mach number at $20,000 \mathrm{ft}$ and 1000 mph in ICAO standard atmosphere.

Solution:

Draw a straght line through $20,000 \mathrm{ft}$ and 1000 mph on respective scales. Read Mach number at the intersection between this iine and the Mach number scale, $M=1.4$

Example 2:

Determine tire speed at $\mathbf{4 0 , 0 0 0} \mathrm{ft}$ at Mach number 0.5 at a temperature of 20 C above ICAO standard atmosphere.

Solution:

The altitude is higher than $36,089 \mathrm{ft}$, so the temperature is the same as at $36,089 \mathrm{ft}$. Read standard temperature from the temperature scale at this altitude. - 56.5C. Add 20C which gives 26.5C. Then draw a straight line through - 36.5C and Mach number 0.5 on respective scales. Read the speed at the intersection between the extension of this line and the speed scale, $\cong \mathbf{3 5 0} \mathbf{~ m p h}$.

Mach Number Nomogram

MODEL ATMOSPHERE

(Based on The ARDC Model Atmosphere, 1959)

$$
\begin{aligned}
& \rho=\frac{1 \mathrm{bs} ; \mathrm{sec}^{2}}{\mathrm{ft}^{4}}=s l u g s / \mathrm{ft}^{3} \\
& \rho / \rho_{0}=\text { relative density }
\end{aligned}
$$

$\begin{gathered} \text { ALT } \\ \text { H } \\ \times 100^{8} \\ \hline \end{gathered}$	TEMPERATURE		PRESSURE	DENSITY	
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	in. $\mathrm{H}_{\text {m }}$	p	P / P_{0}
0	59.0	15.0	29.92	. 002377	1.0000
1	55.4	13.0	28.86	. 002308	. 9710
2	51.8	11.0	27.82	. 002241	. 9428
3	48.3	8.1	26.82	. 002175	. 9150
4	44.7	7.1	25. 34	. 002111	. 1881
5	41.2	5.1	24.90	. 002048	. 8616
6	37.6	3.1	23.98	. 001987	. 8359
7	34.0	1.1	23.09	. 001327	. 8107
8	30.5	-. 1	22.23	. 001869	. 7863
9	26.9	-2.1	21.39	.001811	. 7619
10	23.4	-4.7	20.58	. 001756	.7387
11	19.8	-6. 7	19.80	. 001701	. 7156
12	16.2	-6. 7	19.03	. 001648	. 6933
13	12.7	-10.7	16.30	. 0015156	. 6714
14	9.1	-12.7	17.58	.001546	. 6504
15	5.5	-14.7	16.89	. 001496	. 6294
16	2.0	-16.7	16.22	. 001448	. 6092
17	-1.6	-18.7	15.58	.001401	. 5894
16	-5. 1	-20.6	14.95	. 001355	. 5700
19	-8. 7	-22.6	14.35	.001311	. 5515
20	-12.3	-24.6	13.76	.001267	. 5330
25	-30.0	-34.4	11.12	. 001066	. 4485
30	-47. 8	-44.3	8.903	$891 . \times 10^{-6}$. 3748
36.5	-69.7	-56.5	6.573	694.	. 2920
40	-69. 7	-56.5	5.558	587.	. 2469
50	-69.7	-56.5	3.444	364.	. 1531
60	-69.7	-56.5	2.135	226.	.09508
70	-69. 7	-56.5	1.324	140.	.05840
80	-69. 7	-56.5	. 8218	86.8	. 03652
82	-69.7	-56.5	. 8471	78.9	. 03319
90	-57.2	-49.6	. 5138	52.5	. 02209
100	-40.6	-40.4	. 3264	32.1	. 01350
110	-26. 2	-32.3	.2113	20.0	. 00841
120	-8.3	-22.4	. 1391	12.7	. 00534
130	9.9	-12.3	. 0929	6. 19	. 00345
140	24.1	-4.4	. 0630	5.36	. 00225
150	46.4	4.7	. 04.33	3.56	. 00150
155	16.5	9.2	. 0602	2.92	. 00123
160	44.5	9.2	. 0300	2.43	. 00102
170	48.5	9.2	. 0239	1.09	. 00071
175	41.5	9.2	. 0174	1.41	. 00059
100	37.8	3.2	. 0145	1.20	. 00050
190	13.5	-10.3	. 00199	. 865	. 00036
200	-10.6	-23.7	. 0067	. 612	. 00026

Alrspeed			Impact Pressure (Pitot minus Static) Compressible adiabatic		
唇	\#	-	$\begin{aligned} & \mathbf{O}^{n} \\ & \dot{\underline{c}} \end{aligned}$	$\begin{gathered} \sim \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{0}{\mathrm{o}} \end{gathered}$	$\underset{\sim}{\sim}$
20	17.4	29.3	O. 197	1.023	0.007
40	34.8	58.7	0.788	4.095	0.028
60	52.1	88.0	1.774	9.222	0.064
80	69.6	117.3	3.158	16.41	0.114
100	88.9	148.7	4.943	25.69	0.178
120	104.3	176.0	7.131	37.06	0.257
140	121.7	205.3	9.729	50.56	0.351
160	139.0	234.7	12.740	66.21	0.460
180	156.4	264.0	16.171	84.04	0.584
200	173.8	293.3	20.031	104.1	0.723
220	191.2	322.7	24.322	126.4	0.878
240	208.6	352.0	29.055	151.0	1.048
260	225.9	381.3	34.251	178.0	1.236
280	243.3	410.7	39.808	207.4	1.440
300	260.7	440.0	46.046	238.3	1.662
3:4	278.1	469.3	52.665	273.7	1.801
340	295.5	498.7	59.785	310.7	2.158
360	312.8	528.0	67.421	350.4	2.433
380	330.2	557.3	75.602	302.8	2.728
400	347.6	586.7	84.338	438.3	3.044
450	391.0	660.0	108.679	564.8	3.822
500	434.5	733.3	136.888	711.4	4.940
600	521.4	880.0	206.47	1073	7.45
700	608.3	1026.7	296.52	1541	10.70
760.4	661.2	1116.1	363.48	1889	13.12
1000	869.0	1468.7	742.74	3860	26.81
1200	1042.8	1760.0	1265.74	6578	45.68
1400	1216.6	2053.3	2060.06	10,810	75.07
1600	1390.4	2346. 7	3331.75	17,316	120.24
1800	1564.2	2640.0	5239.98	27,232	189.11
2000	1738.0	2033.3	18075.29	141,907	291.44

PULLOUT RADIUS (FEET) AT VARIOUS VELOCITIES AND ACCELERATIONS						
The table and ent weight to		formula below express ratio of apparactual weight at bottom of pull-out.				
Velocity - mnots						
0 0 \pm	180	200	220	240	260	280
	2871	3544	4288	5103	5989	6946
	1436	1772	2144	2552	2995	3473
	957	1181	1429	1701	1996	2315
	718	886	1072	1278	1487	1737
	574	709	858	1021	1198	1389
	410	506	613	729	856	992
	319	394	476	567	665	772
	261	322	390	464	544	631
	205	253	306	365	428	496
	165	208	252	300	352	409
	151	187	226	269	315	368
Velocity - Knots						
0 2 0 3 \pm 4 5	300	320	340	360	380	400
	7974	9073	10242	11483	12794	14178
	3987	4537	5121	5742	6397	7084
	2658	3024	3414	3828	4265	4725
	1994	2268	2561	2871	3185	. 544
18	1595	1815	2048	2297	2559	2835
	1139	1296	1463	1640	1828	2025
	886	1008	1138	1278	1422	1575
	725	825	931	1044	1163	1289
	570	648	732	820	914	1013
	469	534	602	675	753	834
	420	478	539	604	673	746
$\text { Gravitjes }=1+\frac{.0886 \mathrm{~V}^{2}}{F}$						
$\text { where: } \begin{aligned} & V=\text { velocity in knots } \\ & r=\text { pull-out radius in reet } \end{aligned}$						

TURN RADIUS AT VARIOUS VELOCITIES AND ACCELERATIONS
The table and formula below express ratio of apparent weight to actual welght in a correctly banked turn.

$\begin{aligned} & \text { Velocity } \\ & \text { Nnots } \end{aligned}$	Acceleration - Gravities									
	2	3	4	5	6	8	10	12	15	20
150	1150	704	514	407	337	251	200	167	133	100
200	2045	1252	914	723	599	446	356	296	237	177
250	3105	1957	1429	1130	935	697	556	463	370	277
300	4601	2817	2058	1627	1347	1004	801	666	532	399
350	6262	3835	2801	2214	1833	1367	1090	907	725	540
400	8179	5009	3658	$2 ¢ \sim 2$	2395	1785	1424	1185	947	709
450	1.70	6339	4630	3660	3031	2259	1802	1493	1198	898
500	2.10	7826	5715	4518	3742	2789	2225	1851	1479	1108
550	2.55	9470	6916	5467	4527	3375	2692	2240	1790	1341
600	3.03	1.85	5230	15507	5388	4016	3204	2666	2130	1596
700	4.12	2.52	1.84	88.58	7334	5466	4361	3628	2898	2172
800	5.38	3.30	2.41	1.90	9.578	7139	5685	4739	3786	2837
900	6.81	4.17	3.05	2.41	2.00	9036	7208	5998	4792	3591
1000	8.41	5.15	3.76	2.97	2.46	1.84	8899	7404	5016	4433
1500	18.93	11.69	8.47	6.69	5.54	4.13	3.30	2.74	2.18	8974
2000	33.65	20.61	15.05	11.80	9.85	7.34	5.86	4.87	3.89	2.82
3000	75.72	46.37	33.86	26.77	22.17	16.52	13.18	10.87	8.76	6.67
				Note:	res abo	, ine	feet	w line	naut:	mil

Centrifugal Force Nomogram

This nomogram provides a simple me? wod of approximating the centrifugal force of a weight spinning about a point at a specified distance The nomogram solves the equation:

$$
\mathbf{F}=\mathbf{W} \mathbf{R}^{2} / 35,200
$$

Where:
$\mathrm{F}=$ centrifugal force, lb
$\mathbf{R}=$ radius of rotation, inches
$\mathrm{W}=$ weight, lb
$N=r p m$
Example: If a weight of 15 lb is spinning at 1350 rum at a radius of 10 inches, determine the centrifugal .orce
Solution: Align $R=10$ with $N=1350$, intersecting the Keference line. Entering $W=15$ as 1.5 , align this point with the Reference line intersection and read $F \approx 780$, it Restoring the decimal point, $F=7800 \mathrm{lb}$.

Power Nomograph

TIII Renucibalin presents a simplified method of delermining power with a knowledge of the phase angle, current, and voltage. By using a phase angle equal to arro, de values can be determined.
lnput values of current and voltage have the power of ten extracted and returned in stmimed form to the ontput, thus the graph can be utilized for any range of values.

Specific Gravity, Weight and Volume

The nomogr:'m may be used to determine specific gravity if volume and weight of a material are known. Also, weight or wolume for materials of different specific gravits may be determired. Example l: Dete mine the weight of a pece of rolled copper with a specific gravity of 9 . and uhk h is 1.25 cu in in volurne.
Solution: Align volume $=1.25 \mathrm{cu}$ in with specific gravits $=9$ and read weight $=6.5 \mathrm{oz}$.
Example ?: Determine the specific gr: vit! of a
piece of material that weighs 5.5 oz and has a volume of 3.25 cu in.
Solution: Align 5.5 oz on the weight scale with 3.25 cu in on the volume scale, intersecting the specific gravits scale at 9.9 .
To use the gram or cubic centimeter scales. align the values horizontally to intersect the onnce and $c u$ in scales, respectively. Do not connect values on the gram and cubic centimeter scales directly.

[^3]

范

The average nolecular weight, \bar{M}, oi a mixture
of substances is equal to sum of the weights of
 the individual pure components, $W_{1}+W_{2}+W_{1}$
$+\ldots$, divided by the total number of mols:
$\overline{\mathbf{M}}=\frac{\mathbf{W}_{1}+\mathbf{W}_{2}+\mathbf{W}_{3} \ldots}{\mathbf{W}_{1}+\cdots}$
Where : $M_{1}, M_{2}, M_{1,}, \ldots$ are the molecular
werghts of the individual pure componelts.
Let H be the pounds of water vapor contained
in one pound of dry air, then:
$\bar{M}=\frac{H+1}{\frac{H}{18}+\frac{1}{29}}=\frac{29(H+1)}{1.61 H+1}$
The density ul a gas which follows the perfect
gat litw aill low written:

$\begin{aligned} \frac{\rho}{M} & =\text { average molecular weight } \\ \boldsymbol{B} & =\text { degrees } \mathbf{F}\end{aligned}$
$\left.p=\frac{0.8253}{(1++(6 i 1)} \frac{(\mathbf{H}+1)}{\mathbf{H}+0.622}\right)$
The accompanying nomogram is a graphical so-

 $\frac{0}{2}$
Example: Air with an absolute humidity of 0.10
lb of water pre lb of dry al. is heated to $\mathbf{1 7 0 F}$. Ib of water pre lb of dry als is heated to 170 F .
If the absolute pressure is 26 inches of mercury. what is the density of the moist air?
Solutiont Align $H=0.10$ with $t=170$ and.n
tinue to the zeference line; align this inte
tinue to the ieference line; align this inte
tion with $B \approx 26$ and read $\rho=0.0518 \mathrm{lb}$.
su!! asuasapay

Density of Moist or Dry Air

$4^{n 0 / 91} \times 1$ iscea $=\gamma$

PHYSICS

PHYSICS

Noise Measurement

 x.ilco in the \mathbf{n} ix le will be helptut in the field of nome me owneme.t
sound Prosserv-soned Proscere Level
Fig I vow, the elatumap be'ween while menum lewin in deribels and wound prewsue ill inctolatis the varilest soumd that mot malis can tre head is about 0 graie dyuria ${ }^{2}$

 O derilet lonibling of any wound bressure
 lam tor of 10 cotiesponds 10 a change in level of 20 ith

It is customary io use mund pressure levels (db) in place of wond pressuses I hese tum twon are related by the formula $\left.\mathbf{d b}=20 \log 10, ~ p / p^{\circ}\right)$
Whese p is the wand pressute existing at the measuring devke andi p° is the refereme pressure
The reterence pressure of 0 (NO) 2 muk robar is internatomally used. hawever, other refererme values an be and are used, and should lx. mindu ated tor move any ambiguty

Combinine Molse tovels

Fig 2 may be used to compute nonse levels that exiy i! iwo it more scunds, neasured weparately ate combined the summation is mot the winple addaxmot the mdin sdual sound levels
t xamile I I wo tams, when run separately. cat h produce (at a given positmon), a level of $7{ }^{\prime \prime}$ dh Determune combined nowe level.
wintmin Berallse the diltereme between the (wo levels is 0 db , lig. I undmates that 3 db thould te alded to either indivilual level. produ ing a "total" level of 73 db .
t.xample 2: The mose produced by one motorkenetalur is 70 db and that of a second
 motor
miluinin. Ditierence in levels is 4 db . Fig 2 modxates approximately 15 db should be .tided to the higher noise level. Thus, combued ievel $=71.5 \mathrm{db}$

Esektreund Noise Corrwetion

Ocasonlally, it is necesciry to measure noime Irom a nax home whell hackground monse is als present If backyround levet is not signifi-

Malec Manurnement . . .
-andy greater than nowse level of the mak hane. tin I will and in correcimin for preseme ol additional monse
Fxainple Measured wound pressure level of ant -,perating mat hine is 80 db When the mathine is stopped, the level drops to 74 db Determine
semed level due to the mat lime ahom
 (der that approximately 15 dh, should lx whb tracted from the werall madng I hus, wound evel due to the mar hame alone $=80-15=$ 785 dh

SOUND PRESSURE SOUND PRESSURE LEVE!	COMBINING MOISE LEVELS	BACKGROUND NOISE CORRECTIONS

Rodiant Heat Transfer

The nomogram solves the equation:
$\mathrm{Q}_{\mathrm{R}}=(1.73)\left(10^{-9}\right)(\varepsilon)\left(\mathrm{T}_{1}{ }^{+}-\mathrm{T}_{2}{ }^{+}\right)$
Where $T=t$ degrees $F+460$.

Example:

Surface ($\varepsilon=0.90$) of a pipe is at 460 F . If room temperature is 62.5 F , what is the ra-
diant heat loss per sq it of surface: Solution:
Align $t_{2}=62.5 \mathrm{~F}$ with $\mathrm{t}_{1}=460 \mathrm{~F}$ and continue to third scale; align intersection with $\varepsilon=0.90$. Read $Q_{\mathrm{R}}=1000 \mathrm{Btuh} / \mathrm{hr} / \mathrm{sq} \mathrm{ft}$.

PHYSICS

Rediem:-Heet Trumsmission Dosign Chart
This ct ati solves for the cransfer of radiant energy belweel a gray body and black-body surroundings." where $Y_{\text {nou }}$ is the heat flux in B.t.u. per hour, A the
surface area of the gray body in sq ft, the emissivity, surface area of the gray body in sq ft, a the emissivity, body and the black-body surroundings in degrees Rankine. The subscript 1 refers to the surface that has
the lower temperature and 2 to the higher tempera. ture. This design chart may aloo be used for solving other problems in radiant-heat transer if the chart value of
$\mathrm{h}_{\mathrm{j}} / \mathrm{e}$ be multiplied by appropriate geomery, inter. change and emiusivity factors. In comparison with similar plots using the tempera-
tures of the two surfaces as parameters, this chart has the advantage that the change in h_{r} is amall with
respeit to Δl. This is very pronounced at high um. respect to Δ L. This is very pronounced at high
peratures where radiant-heat tranamision usually is the controlling mechanism.
Example I. Find the radiant heat-transfer coefficient for a bare feam pipe with a surface cemperature of
300F, if the surroundinga are at 80 F . Assume that the $300 F$, if the surroundings are at 80F. Assume that the
surroundings are black bodies and that the emissivity of the pipe is 0.80 .
Solution $I . \Delta t=t,-t_{1}=300-80=220 F$.
 Entering 220 F as the abcissa on the chart, we estimate
the intersection with the 190 F line, and read by interthe intersection with the 190 F line, and read by inter-
polation the ordinate $h_{r} / s=1.94$. Allowing for the given emuraivity we get $h_{r}=1.94 ;=(1.94)(0.90)=$
1.35 B...../hr (4q ft$)^{\circ} \mathrm{F}$. Example 2. Infinite parallel gray walls are at 1800 F
and 1200 F and have emiswivities of 0.65 and 0.25 respectively. Find the heat-transfer coefficient to the
energy transmitted by radiation.

Solution $2 \Delta t=t_{3}-t_{1}=1800-1200=600 \mathrm{~F}$ $L_{\text {me }}=\frac{1}{2}\left(l_{1}+i_{1}\right)=\frac{1}{2}(1800+1200)=1500 F$. Read from the design chark, $h_{h} / \mathrm{f}=55$ B.t.u. $/ \mathrm{hr}$. (sq
(t) ${ }^{\circ} \mathrm{F}$. For parallel gray walls she factor $=$ must be inuroduceal, $\frac{1}{1 / e_{1}+1 / \varepsilon_{2}-1}$
$\frac{1}{1 / 0.65+1 / 0.25-1}=0.22$, and $h_{r}=53$, the whue wed for the stefon. Baltimonn constent ha been

Color Temperature

Color temperature is a term scunetimes used to describe the color of the light from a source by comparing it with the color of a blackbody, a theoretical "complete radiator" which absorbs all radiation that falls on it, and in turn radiates maximum amount of energy in all parts of the spectrum. A blackbody, like any other incandescent body, changes color as its temperature is raised. The light fron a White fuorescent lamp is similar in color to the light from a blackbody at a temperature of approximately $3500^{\circ} \mathrm{Kelvin}{ }^{*}$, and the lamp is accordingly said to have a color temperature of $3500^{\circ} \mathrm{K}$. The light from a Daylight fuorescent lamp is bluer, and the blackbody must be raised to $6500^{\circ} \mathrm{K}$ to match it. Hencu the Daylight lamp has a color temperature of $6500^{\circ} \mathrm{K}$.

Color temperatare is not a measure of the actual temperature of an object. It defines color only. Some light sources, such as a sodium vapor lamp, or a Green or Pink fluoreacent lamp, will not match the color of a blackbody at any temperature, and therefore no color temperatures can be assigned to them.

- Kelvia in a temperature ecale which bat its sere point at - $\mathbf{9 7 3 ^ { \circ }}$ Centigrade.

TERMINOLOGY AND MEASUREMENTS

QUANTITY	SYMBOL	UNIT	DEFINITION
Luminous Intenalty (Candlepower) Light deanity in a speci. God directien.	1	Candle (c) The Inmi. nons ingenciis of a source expreased in candles la its Candlepower (op)	The utandard unit of luminous intenaity in a given direction is the International Candle. An ordinary wax candle hat a luminous intenuity in a horizontal direction of approximately one candle. The International Candle is the basic quantity in all meaburements of light. Candlopower ia alway a property of a cource of light, and giveb information rogarding lominous gus at ite origin.
Luminous Pluy Timerate of Alow of light. Light is aetually a form of radiant energy in motion. In common prace tice, howerer, the time clement is neglected, and Iuminous aur is concid. ored at a definits quan. tisy.	F	Lamen (lm)	A lumen is the light gux falling on a eurface one equare foot in area, every point on which in one foot from a uniform point cource of one candle. (Such a eurface is a une-foot-square section of a aphere of one-fool radius, with a one-eandle cource at ite center.) The lumen differe from the candle in that it is a meseure of lighe lux irrespectin of diruetion.

Light tracels in straight lines, unlese it is modified or re-directed by means of a reflecting, refracting. or diffusing medium.

Eight uares pars through one another uishout alteration of either - for exampie, a hearn of red light will pase directly through $=$ beam of blue light unchanged in direction or color.

Light is invisible in passing through space unless some medium (such as dust) scatters it in the direction of the eye.

COINR TEMPERATURES Degreca Kolvin (Approsimate Values)	
Blua Sky	10.000 to 30,000
Overcant Sky	7000
Noon Sunlight	5250
Flunreacent Lampa	
Darlight	$65 \sim 9$
Cool White	4500
White White	3500 3000
Warm White	3000
500. Watt Daylight Incandeacent Lamp	4000
P'ototiood Lamp	3415
Ceneral Service Incandeacent Lampa	2500 to 3050
Candio Flame	1800

FUNDAMENTAL EQUATIONS	METHOD OF MEASUREMENT	PRINCIPAL USE
CP Footeandles x D ($\mathrm{D}=$ = Distance in foet from source to il. lu minated aurface) Soe Illumination. $\text { MSCP }=\frac{\text { Lumons }}{12.57}$ (Mesn apherical candlepower in the average cendlepower of a source in all directiona.)	Candlepuwer mesaurements are primarily a laboratory procedure requiring apecial instruments. Ruugt estimates of the candle. power of a source or fisture can Lo made in the ield by (1) holding a light moter at a dintaitce of at least five timien the greateat dimension of the cource: (2) aiming tine cell of the meier directly at the source: and (3) muliplying the footcandle read. ing iy the aquare of the distance infeet. (See Fundamental Equations.) There must of course be no other light in the room, and it may be necescary to make allowance for light reffected from walle and ceilings.	Candlepower is used not oaly to indicate the laminous ine tensity of a cource in one particular dirccition; candlepower micasurements are often taken at varions anglea around a aource or a fxture, and the resulte plotied to givo a cunclepouer distribs. fion curce. Such a curve show luminous intensity la any direction, and from it illumination calculationsena be made. (See section on Diatribution Curven, and Chapter Six, Point-By-Point Meltod.)
Lumene incideni on a surface $=$ Footeandles x Area (eq. ft.) Lumene onitted or reficted by a surface = Footlamberts a Area (eq. ft.) Lumens = MSCP 12.57 (Since a aphere of oneFoot radius has a nurface aquare feet, uniform point source of one canille mast produce 12.57 lumenc. enrog relationghis er-opherical candlopower total lumen output.)	Lumen meacuremente of light sourcee are a laboratory procedure requiring apecial equipment. The lumene falling upon a surface may, however, be eatimated with the aid of an ordinary light meter. Firat obtain footcandle realinge at varioun polint on the surfare in order to arrive al an average ralue; then thultiply the average forteandle: by the area of the surface in apuare feet. (Seq Fundamental Eyua. tiona.)	The lumen ia used primarily to express the total outpue of a light sourca. It ean also be used to indicate amount of light absorbed. tranamitted. or rellected. The Lumen Metiod (ee Chapter Sis) of exleulating illumination provides aver. age fust candle values by the use of ralatively aimple forumilas.

TYPE DF CONTROL	CLEUSTRATION	UNPT	METIIOD OF MEASUREMENT
Reflection When a ray of light . Diriking anrface is curned back. it is esid to be rafected. Reflection may be of enceral iypen, ifie moot commen of which are apacular (regular). diffese. spread, and mired.		Rellection Factor The ratio of the light reflected frota a eurface to that iacident upon it. The rellective factor of a pivea surface may very consider. ably according to the direction and nature of the incident lipht. Specular reflection lacraace with angle of lacf. dence Almoet total relection being ob. tainable at araning anglea. With colores ourface: the rollection factor ang by dife diferene for dicere	Place light meter cell against surface. Withdraw metar from aurface alowly until constant read. ing is obtained (2 to 6 incheo). (A) Place meter against gurface with cell facing out (B) and note reading. Reflection factor $=$ Reading (A) Reading (B)
Tranemionione Wght raye pacaing through tramopareat or tranaluceat materiale are sald to be tranaminted. The degree of difu. Noa of the tranamit. tod light depeade apon the type and deasity of the material.		Tranomincion Factor The ratio of the light tramemisted by masertal to that lactdent apoa it. Tractimisileade. pende to come extent upon the direction and quality of the lighe.	Place materiel to be teated oper coll of lighe moter. Note reading (A). Remove meterial. Note readias (B). Tranominalon factor $-\frac{\text { Readine }(A)}{\text { BeadinE (B) }}$
Refrictlon A lighe rey beat by paasingobliquely from one tranaparent mediom to anotber in which ite velocity Is difierent (as from air lete glace) is anid to be refrutied.		Inder of Rofraction The ratio of the speed of lighe in free apace to the apead of light is the medians is qeeation.	By apecial labora. tory apparatue oaly.

Pciarization

Light in which the wares vibrate in une plane only is agid to be polerizal. The vibrations which make the wave motion in a ray of light are at right angles to the direction in which the light is iraveling, and in a beam of ordinary light these vibrations take place in all possible directiona in that plane. By paasing light through a material with a cryetalina structure anch that it transmite only waven vibratins in a certaim direction, it is poseible to produce polarized light, all of whoce vibrationt ate parallel.

INSTIU UM FiNT	MATERIAIS	USE:
(A) (B)	RodectingPer Cent I.ight ReflertellSurface	In opeculear, or resular, reDecting (mierore. hishly prolished metals) the angle of incidence is equal so the angle of refiertion (nee Illustention Anglo X Angle Y). Io diffuse refiection (matte surfaces like whiso bloting paper, fresh snow) the maximum inten. aity is perpendieular to the ourface, regardleas of the angle of the incident beam. Spread refection, at in etndess platn, is intermedi. ate between apecular and diffuse. Diffusine arfaces with a lased auperficial coat, like porcelain enamel. exbibit mixed reflection, combination of apecular and diffore.
		In refular transmiscion (clear elase and plastics) the direction of the lineidept light is not changed. Difueing medis, such at dence opal slake, seatter the trangmitted light eo that its maximum intenaity is normal to ths aurface. As in reflection, between the two oxtremeg of regular tranamianion and perfectly diffuse tranamiation are to be found all degeess of diffugion.
	Inder of Refraction for Various Materiala	The principle of refraction is utilised to control the direction of light by meane of priomatic or ribbed clage plates, or in lena aytemg. It has wide mpplication in certain types of eeneral lighting ayatema, as woll al in signal lightivg end atreet lighting.
Two polarixing ecreena are ordinarily nsed in a eystem that involves polarisation. The first, called the pelariser. produces the polarization, and the second, ealled the endyser, selecto or rejecta the polarized light, aceording to the pocition in which it is placed.	Coystals of Iceland opar. calcite, and tourmalines Pol. aroid. (a cellophane-like material svailablo commer. cially). Reftection from apecular or poliehed aurfaces pertially polarizes ligbe.	The pripciple of polarizasion is ased in certais kinds of laboratory equipment. and in testing for atreas and etrain in transparens materialas in producing third-dimension effects in motion picturemi is gua slasee and automobile visors to reduce refleeted glare from road aurfacea and wateri is photographic Gliers. Experimental wort on the control of aniomo bile headlight glare by meane of polarisiot material la mader way.

Refiected light from a transparent substance depends upon the refractive indices of the substance and the medium through which the incident light travels and upon the angle of incidence. The accompanying nomograph permits the determination of the intensity of refiected light at the medium-surface boundary when the incident light is perpendicular to the surface. At other incident angles, intensity values should be adjusted by trigonometric techniques for equivaient intensities at perpendicular incidence. The basic equation for the nomograph is

$$
\begin{aligned}
I u_{2}^{2}+2 I u_{2} u_{1} & +I u_{1}^{2}-I_{1} u_{2}: \\
& +2 I u_{1} u_{1} u_{2}
\end{aligned}
$$

$$
\begin{aligned}
& I u_{1}^{2}-I_{L_{0}} u_{5}^{2} \\
& +2 I_{0} u_{1} u_{2}-I_{0} u_{1}^{2}=0
\end{aligned}
$$

In using the nomograph a factor of 10^{n} must be extracted from the incident intensity and then must be returned to the resulting reflected intensity. For instance, an incident intensity of 800 lumens would be entered as 8 ; and if the results were 3 , the actual reflected intensity would be 300 lumens. The procedure for using the nomograph is as follows:

1. Select the intensity of the incident light on the left line.
2. Select the ratio of the refractive indices u_{1} / μ_{2} on the right line.
3. Connect these values with a straight line to intersect the reflected intensity value on the center line.
The dashed line on the nomograph is an example. The incident light beam has a 1000 -lumen intensity and is perpendicular to an air-glass boundary. The air-glass refractive index ratio is $1 / 1.5$. The intensity of reflected light is found to be 40 lumens. 4

LIGHTING \& OPTICS

Optics: Refraction and Reflection at Plane Surfaces

Refrection and Dispersion

The index of refraction of an optical material occupies a position of central importance in geometrical optics. The index of refraction of a substance (n) at a specific wavelength is defined as the ratio of the velocity of light in a vacuum (c) to the velocity of light at that wavelength in the substance (v):

$$
\begin{equation*}
\mathbf{n}=c / v \tag{1}
\end{equation*}
$$

The velocity of light in a vacuum is the same at all wavelengths. The velocity of light in material

Letter	Color	Source	Wavelength
C	Red	H	65.32
D	Yellow	No	58938
-	Green	Hg_{8}	5461 \%
F	Blue	H	49618
G^{\prime}	Violet	H	43418
h	Violet	Hg	4047 ¢

One Angstrom Unit is equal to $10^{-\cdots}$ centimeters. The "D", and the other letters C, e, F G^{\prime} and h used as subecripts in Table 1, are prevalent destrations of certain prominent spectral lines of common chemical elements obeerved in the solar spectrum, and by association alser refer to the wavelengths of these lines.
substances, however, is observed to vary with wavelength. Hence, index of iffraction of an optical substance is a function of wavelength. To provide the convenience of a single measare, the index of refraction is usually specified at the particular wavelength of 5893 Angstrom Units, the average of the wavelengths of the two notable D-lines of the sodium spectrum.

The index of refraction for air at standard conditions for red light of wavelength 6563 Angstrom

Units is 1.0002914 . and for violet light of wave length 4359 Angscrom Units it is 1.00012957 . It follows, then, that for most purposes, n for air ma! be taken as unity.

To conveniently signify with a sungle number the extent to which the index of refraction of a matcrial substance varies with differeni wavelengths of light, the following ratio is often used:

$$
\begin{equation*}
V=\frac{n_{1}-1}{n_{r}-n_{c}} \tag{으}
\end{equation*}
$$

This ratio (V) is reterred to as Abbe's number, constringence, or most often as the dispersion. It is tabulated in Table 1 for some optical glasses.

Refraction occurs when a ray of light passes from one optical medium into a medium in which its velocity ditfers from that of the first. When its velocity in the second medium is less than that of the first, the ray XYZ (Fig. 1) is bent toward the normal NYO. When the ray travels from the medium of lesser velocity to the medium of greater velocity, it is bent away from the normal NYO. The law governing refraction is Snell's law:

$$
\begin{equation*}
\mathbf{n} \sin I=\mathbf{n}^{\prime} \sin I^{\prime} \tag{3}
\end{equation*}
$$

Where: $\mathbf{n}=$ index of refraction of first medium $\mathbf{n}^{\prime}=$ index of refraction of second medium $\mathrm{I}=$ angle of incidence of first medium
$I^{\prime}=$ angle of incidence of second medium
For the special ase of refraction at an air-glass boundary, the following equation is derived from

LIGHTING \& OPTICS

Snell's law:

$$
n \sin r=\sin i
$$

Where: $\mathbf{n}=$ index of refraction of glass
$i=$ angle of incidence
$r=$ angle of refraction
The ratio of the real depth to the apparent depth for any medium when viewed in air in a direction normal to the separating surface is

FIG. 2 REFRACTION BY A PRISM
given by:

$$
\begin{equation*}
\mathrm{n}=\frac{\text { real depth }}{\text { apparent depth }} \tag{4}
\end{equation*}
$$

A light ray $X Y$ (Fig. 2a) passing from air chrough a glass prism and reentering air is bent toward the thicker part of the prism. Minimum deviation, D, occurs when the ray passes through the prism symmetrically (parallel to the base)

FIG. 3
DISPERSICN BY A PRISM
thus makirg the angle 1 equal to angle I^{\prime} (Fig. 2 b). For minimum deviation:

$$
\begin{equation*}
n=\frac{\sin 1 / 2(A+D)}{\sin 1 / 2 A} \tag{5}
\end{equation*}
$$

Where: $\mathrm{n}=$ index of refraction of the prism $A=$ prism angle
When A is small, the sines of the angles in

Equation 5 may be set equal to the angles (in radians):

$$
\begin{equation*}
\mathbf{D}=\mathbf{A}(\mathbf{n}-\mathbf{1}) \tag{6}
\end{equation*}
$$

Most light beams are polychromatic; that is, they consist of light of different wavelengths. Monochromatic light consists of a single wavelength. Since the index of refraction varies with wavelength and velocity, a substance in which the velocity varies with wavelength will exhibit dispersion. Dispersion curves for various glasses are shown in Fig. 6. Consider Fig. 3 which shows a polychromatic light ray XY incident on a prism in air. Deviation caused by a prism increases as the index of refraction increases; hence, violet light is deviated the most and red the least. Dispersion from wavelength to wavelength of paitic-

ular colors of light may be found from Equation 6 for prisms of small angles.

Prisms with different dispersion characteristics may de combined to provide dispersion with no net deviation of a light ray of some chosen wavelength. This device (Fig. 4a) is called a directvision prism. Prisms of different materials may also be combined to produce deviation without dispersion. This device (Fig. 4b) i, called an achromatic prism.

Reflection

When a ray of light is reflected from a plane surface, the angle of reflection is equal to the angle of incrdence. Also, the reflected ray, the incident ra) and the normal to the surface at the point of incidence are co-planar. A light ray XYZ (Fig. 5a) passir - from glass into air is refracted in the amount given by Snell's law:

$$
\begin{equation*}
n \sin I=n^{\prime} \sin 1^{\prime} \tag{7}
\end{equation*}
$$

Since n^{\prime}, the index of refraction of air (in this
case) can be taken as unity, n / n^{\prime} is greater than unity. Hence, sin I^{\prime} is always larger numerically than $\sin I$, and therefore is equal to unity for some angle (1) less than 90 deg. This is shown in Fig. 5b, where angle I has been increased to the point where angle I^{\prime} is equal to 90 deg. It can easily be seen that:

$$
\begin{equation*}
n \sin I=n^{\prime} \sin 90^{\circ}=n^{\prime} \tag{8}
\end{equation*}
$$

which means,

$$
\begin{equation*}
\mathrm{n} \sin \mathrm{I}=\mathrm{I} \tag{9}
\end{equation*}
$$

or,

$$
\begin{equation*}
\sin I=1 / n \tag{10}
\end{equation*}
$$

If we increase angle I beyond t; point as indicated in Fig. 5c, the ray XYZ in .onger passes

through the air-glass boundary, but it is reflected back into the glass. The ray is thus totally internally reflected at the air-glass boundary. The phenomenon of total internal reflection can occur when, and only when, a ray is ircident on the surface of a medium whose index is imaller than the index of the medium in which he ray is traveling. The angle at which tot. tnal reflection begins is called the critic gle. This angle $\left(\phi_{c}\right)$ is shown in Table I for $\&$ asses of various in_ices of refraction.

The critical angle formula may be derived (for two given substarces) by algebraic substitution in Snell's law, and may be stated \cdots.

INDICES OF REFRACTION									
	5893% $n 0$	$n^{n}=n^{\prime}$	V	65638 $n C$	54618	48619 ${ }^{4} \mathrm{~F}$	$\cdot{ }^{434 i f}$	$\begin{gathered} 40472 \\ \mathrm{nh} \end{gathered}$	Critical angle of 58939 e
Borasilicate Crown	1.51100 1.51700 1.50500	$\left\{\begin{array}{l} 0.00804 \\ 0.00802 \\ 0.00760 \end{array}\right.$	$\begin{aligned} & 63.5 \\ & 64.5 \\ & 66.5 \end{aligned}$	1.50860 1.51462 1.50272	$\begin{aligned} & 1.51300 \\ & 1.51901 \\ & 1.50698 \end{aligned}$	$\begin{aligned} & 1.5664 \\ & 1.52264 \\ & 1.51032 \end{aligned}$	1.52112 1.52712 1.51435	1.52450 3.53047 3.51771	41 deg 26 min 41 deg 14 min 41 deg 38 min
Crown	1.52300 1.51300 1.51300 1.50800	$\begin{array}{\|l\|} 0.00895 \\ 0.00846 \\ 0.00832 \end{array}$	$\begin{aligned} & 58.5 \\ & 60.5 \\ & 61.0 \end{aligned}$	$\begin{aligned} & 1.52035 \\ & 1.51050 \\ & 1.50551 \end{aligned}$	$\begin{aligned} & 1.52521 \\ & i 53509 \\ & 1.51005 \end{aligned}$	$\begin{aligned} & 1.5293 / 2 \\ & 1.51897 \\ & 1.51387 \end{aligned}$	$\begin{aligned} & 1.53437 \\ & 1.52375 \\ & 1.51849 \end{aligned}$	1.53822 1.52737 1.52201 1.58139	41 deg 3 min 4) $\operatorname{dog} 22 \mathrm{~min}$ 41 deg 32 min
Ligisi Barium Crow	1.54100 1.58800	$\begin{aligned} & 0.00905 \\ & 0.07102 \end{aligned}$	$\begin{aligned} & 59.8 \\ & 53.3 \end{aligned}$	1.53832 1.58477 1.60796	1.54323 1.59071 1	$\begin{aligned} & 1.54737 \\ & 1.59579 \end{aligned}$	$\begin{aligned} & 1.35250 \\ & 1.60214 \end{aligned}$	$\begin{aligned} & 1.55638 \\ & 1.60698 \end{aligned}$	40 dog 28 min 39 dag 2 min
Dens: Barivm Crown	1.61100 1.61300	$\begin{aligned} & 0.01039 \\ & 0.01030 \end{aligned}$	$\begin{aligned} & 58,8 \\ & 59,5 \end{aligned}$	1.60796 1.60999	1,61359	1.61835	$\begin{aligned} & 1.62425 \\ & 1.62614 \end{aligned}$	$\begin{array}{r} 1.62868 \\ 3.63053 \end{array}$	38 deg 22 min 38 dog 19 min
Crown Flint	1.53000 1.50200	0.01022 0.00885	51.8	1.57702 8.49940	1.53251 1.50437	1.53724	1.54316 1.51327	1.34770 1.51714	40 deg 49 min 41 dog 45 min
Light Flint	1.57300 1.54900	$\begin{aligned} & 0.01345 \\ & 0.01201 \end{aligned}$	$\begin{array}{r} 42.5 \\ 45.7 \end{array}$	1.56972 1.54556	1.57631 1.55199	$\begin{aligned} & 1.50257 \\ & 1.55757 \end{aligned}$	1.59059 1.56468	$\begin{aligned} & 1.59686 \\ & 1.57020 \end{aligned}$	39 deg 28 min 40 deg 13 min
Dense Flint	1.65400	0.01925	34.0	1.64857	1.65872	1.66782	1.67967	1.68900	$37 \mathrm{dag} 12 \mathrm{~m} / \mathrm{m}$
Extra Donse Fifis	1.72800	0.02572	28.3	1.72080	1.73430	1.74657	1.76278	1.77592	35 deg 22 min
Barium Flint	1.61700	0.01605	38.5	1.61240	1.62095	1.62845	1.63815	1.64576	3 la dog 12 min
Dence Barium Flint	$\begin{aligned} & 8.70000 \\ & 8.65700 \end{aligned}$	$\left\{\begin{array}{l} 0.01709 \\ 0.07286 \end{array}\right.$	$\begin{aligned} & 41.0 \\ & 51.2 \end{aligned}$	$\begin{aligned} & 1.69509 \\ & 1.65326 \end{aligned}$	$\begin{aligned} & 1.70421 \\ & 1.66016 \end{aligned}$	$\begin{aligned} & 1.71218 \\ & 1.06612 \end{aligned}$	$\begin{aligned} & 1.72246 \\ & 1.67360 \end{aligned}$	$\begin{aligned} & 1.73054 \\ & 1.67934 \end{aligned}$	36 deg 21 min 37 dag 7 min

$\sin \phi_{\mathbf{r}}=\mathbf{n}^{\prime} / \mathbf{n}($ see Fig. $5 \mathbf{b})$
Where: $\mathbf{n}=$ index of refraction of first medium
$\mathbf{n}^{\prime}=$ index of refraction of second medium
A beam of light passing through a boundary of two media whose indices of refraction differ is reflected back by the interface instead of passing through. This phenomenon is known as Fresnel reflection. In the case where a light ray is incident normally at an air-glass boundary, the amount of reflection is given by:

$$
\begin{equation*}
\mathbf{R}=\frac{(\mathbf{n}-1)^{2}}{(\mathbf{n}+1)^{2}} \tag{12}
\end{equation*}
$$

FIG. 7

Where: $\mathbf{R}=$ reflectance
$\mathrm{n}=$ index of refraction of the glass
Equation 12 refers to intensity, which is the square of the amplitude of the light rays. In a case of a single air-glass boundary, the reflectance R, for glass of index 1.5000 , is 0.04 . Thus, 4 percent of the incident light is reflected at the surface. There is a loss (gencrally negligibie) as a result of absorption in the $f^{\text {lass. In cemented }}$ lens or prism assemblies, refle tance loss at the cemented surface is generally minute because of the small index differential.

Low Reflectance Coatings

Consider Fig. 7 which shows a block of glass G coated with a thin layer L of some materia! which has a lower index than the glass. At surface S a certain amount of light is reflected back toward the source of light; since there exists an index differential, reflection also occurs at the interface of the coating and the glass (surface T). Let us assume that the index of refraction of the wating material L is such that equal amounts of Light are reflected at surfaces S and T. As the hickness of this coating is increased, the two re, iected components (being wave motions) will be
alternately in and out of phase. If we make this thickness such that the two components will be out of phase, they will cancel by destructive interference. The energy cannot be destroyed. It appears, therefore, in the transmitted beam as an increase in transmission. In order to give equal reflectances at both surfaces, it has been observed that the index of the coating must be the geometrical mean of that of the airoand glass. It can be seen, herefore, that the index (n_{c}) of the coating is given by:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{c}}{ }^{2}=\mathrm{n}_{\mathrm{g}} \mathrm{n}_{\mathrm{t}} \tag{18}
\end{equation*}
$$

Where: $\mathrm{n}_{\mathrm{g}}=$ index of refraction of the coated glass
$\mathrm{n}_{\mathrm{a}}=$ index of refraction of air
Taking n_{a} as unity, we have:

$$
\begin{equation*}
\mathbf{n}_{\mathrm{c}}{ }^{2}=\mathbf{n}_{\mathrm{g}} \tag{14}
\end{equation*}
$$

The critical thickness which will cause destructive interference has been found to be $1 / 4$ of the wavelength of light chosen. This means, of course, that some reflection will occur at the contiguous wavelengths. The usual wavelength chosen for correction is 5556 Angstrom Units, which is approximately at the center of the visible spectrum.

Optical elements treated in this manner usually reflect a purplish haze because of the red and blue light reflected at the ends of the spectrum. The process usually used to apply low reflectance coatings to glass is evaporation of magnesium fluoride onto the glass in a vacuum. This material is generally acknowledged to be the best for use on expused surfaces subject to handling.

Following are four nomograms which will simplify solution of basic equatiors appearing in this article.

Nomogram I solves Equation 3a:

$$
n \sin r=\sin i
$$

Nomogram II solves Equation 4:

$$
\mathbf{n}=\frac{\text { real depth }}{\text { apparent depth }}
$$

Nomogram III solves Eq, .on 5:

$$
n=\frac{\sin 1 / 2(A+D)}{\sin 1 / 2 A}
$$

[^4]

NGMOGRAM II
(Apparent depth)(n) $=($ Real depth $)$

n Index of refraction

Align $24[(2.4)(10)]$ on opperent
depth seale with $n=1.33$, and reed
$32[(3.2)(10)]$ on Real depth seale.

NOMOGRAM III

$$
n=\frac{\sin 1 / 2(A+D)}{\sin 1 / 2 A}
$$

1.70

Align $A=40$ deg with $n=1.62(1.5 \mathrm{i} /)$ and raod $A+D=67$ deg.
$D=67 \mathrm{deg}-40 \mathrm{dey}=27 \mathrm{deg}$.

7

NOMOGRAM IV
$D=\dot{A}(n-1)$
Examples:
Find the deviation of the F line (Blue) caused by a 12 deg prism of dense Flint glass whose index (nf) is 1.666 .

PERIODIC TABLE OF THE ELEMENTS
periodic table of the elements

| | |
| :--- | :--- | :--- |
| 0 | |
| \vdots | |

Iteraational Atomic Weightu

Element	Symbol	Atomic number	Alomic weight	Element	Symiad	Atomic number	Alomic weight
Actinium.	Ac	89	227	Mercury.	Hg	80	200.61
Aluminuma. .	A	13	26.98	Mrisbdenum.	Mo	42	95.95
Americium.	Am	95	[243] \dagger	Neodymium. .	Nd	60	144.27
Antimony.	St	51	121.76	Neon.	Ne	10	20.183
Argon.	Ar	18	39.944	Neptunium.	Np	93	[237]
Arsenic	As	33	74.91	ivickel.	Ni	${ }_{3}$	58.71
Asta:i	At	85	[210]	Niobium 4.	Nb	41	82.91
Barium.	Ba	56	137.36	Nitrogen	\boldsymbol{N}	7	14.008
Berkelium	Bk	97	[249]	Nobelium.	No	102	[]
Berylium.	Be	4	9.013	Osmium	Os	76	190.2
Bismuth.	Bi	83	209.00	Orygen. .	0	8	16
Boron	B	5	10.82	Palladium....	Pd	46	106.4
Bromine	Br	35	79.916	Phosphorua.	P	15	30.975
Cadrium.	Cd	48	117.41	Piatinum.	Pt	78	195.09
Calcium.	Ca	20	40.08	Plutonium.	Pu	94	[242]
Californium.	C	98	[249]	Polonium.	Po	84	210
Carbon	C	6	12.011	Porasmium.	K	19	39.100
Cerium.	Ce	58	14. 12.13	Prascodymium	Pr	59	140.92
Cesium.	Cs	55	152.91	Promethium. .	Pm	61	[145]
Chlorine.	C	17	35.457	Protactiniom.	P2	91	231
Chromium.	Cr	24	. 2.01	Radium.	Ra	88	226.05
Cobalt	Co	27	50.94	Radou.	$\mathbf{R n}$	86	222
Copper.	Cu	29	63.54	Phenil	Re	75	186.22
Curium.	Cm	90	[245]	Khodium.	\boldsymbol{R}	45	102.91
Dyaprctium. .	Dy	66	162.51	Rubidium.	Rb	37	85.48
Einstennium. .	Es	99	[]	Ruthenium.	Ru	44	101.1
Erbium.	Er	68	167.27	Samarium.	Sm	62	150.35
Europium.	Eu	63	¿52.0	Scandium.	Sc	21	44.96
Fermium..	Fm	100	[]	selenium.	Se	34	78.96
Fluorine.	F	9	19.00	Silicon.	Si	14	28.09
Francium.	Fr	87	[223]	Silver.	As	47	107.880
Gadclinium.	Cd	64	157.26	Sodium.	Na	11	22.991
Gallium.	Ga	31	69.72	Strontium.	Sr	38	87.63
Germanium.	Ge	32	72.60	Sulfur.	S	16	32.066
Gold.	Au	79	197.0	Tantalum.	Ta	73	180.95
Hafnium.	48	72	178.50	Technetium. .	Tc	43	[991
Helium.	He	2	4.003	Tellurium.	Te	52	127.61
Holmium.	Ho	67	164.94	Terbicm	Tb	65	158.93
Hydrogen.	H	1	1.0880	Thallium	T	81	204.39
Indiurr ..	In	49	114.82	Thorium.	Th	90	232.05
Iodine.	I	53	126.91	Thulium.	Tm	69	168.94
Siriu	Ir	77	192.2	Tin.	Sn	50	118.70
iron.	Fe	26	55.85	Titanium	Ti	22	47.90
Krypton...	$\mathbf{K r}$	36	83.80	Tunguten 7	W	74	183.86
Lanthanum:	I. 3	57	138.92	Uranium...	U	92	238.07
Lead.	Pb	\%2	207.21	Vanadium.	V	23	50.95
Lithium.	Li	3	6.940	Xenon	$\mathrm{X}=$	54	131.30
Lutetium.	Lu	71	174.99	Yiterbium.	Yb	70	15. 04
Magnesium. .	M8	1.	24.32	Yitrium.	Y	39	88.92
Manganese...	Mn	25	54.94	Zinc.	20	30	65.38
Mrendelevium.	Md	101	[256]	Zirconium.	Z	40	91.22

$\$$ Formerly known as columbium foymboh, 13 ;
T Abo known as wifram.

$\underset{\substack{\text { Alomic }}}{\text { ata }}$	Erem	k	1	m	N	0	P	Q
		1	2	3	4	s	6	7
		S	P	3		- 1	sod 1	18
!	${ }_{\text {He }}$	$!$						
3 3 3 7 8 9 10		$\begin{aligned} & \mathbf{2} \\ & \mathbf{2} \end{aligned}$						
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 18 \\ & 18 \end{aligned}$		-	$\begin{aligned} & 28 \\ & 20 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 20 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned} 2$				
		2 2		26 2 2 2 0	$\left\{\begin{array}{l} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ \frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \end{array}\right.$			
37 38 39 40 41 42 43 44 43 4 47 48 49 30 31 32 33 54		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 28 \end{aligned}$		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{${ }_{\text {Alomex }}$} \& \multirow{3}{*}{Emem} \& k \& L \& M \& N \& 0 \& P \& 0

\hline \& \& 1 \& 2 \&) \& 4 \& , \& ${ }^{6}$ \& 7

\hline \& \& 5 \& \& : P \& Pd \& I \& \multicolumn{2}{|l|}{Podrspor}

\hline $$
\begin{aligned}
& \hline 35 \\
& \hline 56
\end{aligned}
$$ \& \& \& \& \& $$
\begin{aligned}
& 2610 \\
& \begin{array}{l}
2610 \\
26810
\end{array} .
\end{aligned}
$$ \& \& $$
\sqrt{\frac{1}{2}}
$$ \&

\hline \& \& 2

2
2
2
2
2
2
2
2
2
2
2

2 \& \& \& \& \& $$
\left\lvert\, \begin{aligned}
& \frac{2}{2} \\
& \frac{2}{2} \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& \frac{2}{2} \\
& \frac{2}{2}
\end{aligned}\right.
$$ \&

\hline \& \& 退 \& 26 ${ }^{2} 6$ \& \& \& \& \&

\hline $$
\stackrel{87}{80}
$$ \& \[

$$
\begin{array}{|c}
\substack{\mathbf{F r}_{\mathrm{rac}} \\
\mathrm{Ac}^{2}}
\end{array}
$$

\] \& \& \& \[

$$
\begin{aligned}
& 26 \\
& \begin{array}{l}
2 \\
\hline
\end{array} 10 \\
& 2 \\
& 2
\end{aligned}
$$ 6
\] \& 261014 \& 2 ${ }^{6} 610$ \& \&

\hline \& \& - \& \& \& \& \& $$
1 \div 62
$$ \&

\hline
\end{tabular}

Common Acids

HCl - Hydracinoric acid
$\mathrm{H}_{2} \mathrm{~S}$ - Hydrosulphonic acid (gas: hydrogen sulfide)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ - Sulphuric acid
$\mathrm{H}_{2} \mathrm{SO}_{3}$ - Sulphurous acid
HNO_{3} - Nitric acid
$\mathrm{H}_{3} \mathrm{PO}_{4}$ - Phosphoric acid
$\mathrm{H}_{3} \mathrm{PO}_{3}$ - Phosphorous acid
$\mathrm{H}_{2} \mathrm{CO}_{3}$ - Carbonic acid

Common Bases

NaOH - Sodium hydroxide
$\mathrm{C}_{2}(\mathrm{OH})_{2}$ - Calcium hydroxide
$\mathrm{NH}_{4} \mathrm{OH}$ - Ammonium hydroxide
$\mathrm{Mg}_{\mathrm{g}}(\mathrm{OH}) 2$ - Magnesium hydroxide
Simple Hydrocarbons
Methane $-\mathrm{CH}_{4}$

Ethane - Cy2

Alcohols
Methyl alcohol $-\mathrm{CH}_{3} \mathrm{OH}$

Ethyl alcohol $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Common Compounds and Allotropes			
Gases	$\mathrm{CO}-$ Carbon monoxide		
	$\mathrm{CO}_{2}-$ Carbon dioxide		
	$\mathrm{O}_{2}-$ Oxygen (normal state)		
	$\mathrm{O}_{3}-$ Ozone		
	$\mathrm{SO}_{2}-$ Sulphur dioxide		
	$\mathrm{H}_{2} \mathrm{~S}-$ Hydrogen sulĩide		
Compounds:	$\mathrm{NaCl}^{2}-$ Sodium chloride (table salt)		
	$\mathrm{Na}_{2} \mathrm{O}-$ Sodium oxide		
	$\mathrm{CaO}^{2}-$ Calcium oxide (quicklime)		

Statistical Definitions

Population	-	any finite or infinite collection of elements, that is, individuals, items, observations, etc., under consideration in a given problem.
Sample	-	part, or a subset, uf a population.
Parameter	-	a constant describing a population (designated by Greek letters such as μ and σ).
Statistic	-	```a quantity describing a sample, namely, finction of the observations ide_ignated by Latin letters such as }\overline{X}\mathrm{ and S).```
Randomization		The process of arranging experimental conditions so that every possible o. der has a known probability of occurrence. Randomization is essential to the validity of most statistical analysis.
Model	-	a statement, usually in the form of a mathematical equation, of the assumptions made about individual observations.
Estimator	-	a rule, a method, or a formula for making a "best guess" about the value of a parameter. Thus, a sample mean $Z:$ is frequently used as an estimator, or estimate, of a pupulation mean.

Probability and Statistics

Operation:
Σ : The sum of
$\Sigma X=X_{1}+X_{2}+\ldots+X_{N}$
$\Sigma x_{1}^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{N}^{2}$
$(\Sigma X)^{2}=\left(X_{1}+x_{2}+\ldots x_{N}\right)^{2}$
T : The product of
$T_{\mathrm{x}}=\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdots \mathrm{X}_{\mathrm{N}}$

Descriptive Statistics - Measures of central tendency (location, magnitide): average.

Sumbol:
Mo - Mode: most frequently occurring value(s).
Med - Median: $50^{\text {th }}$ percentile; point below which 50 percent of observations lie.
$\overline{\mathrm{X}}$ - Mean (arithematic): $\frac{1}{\mathrm{~N}} \sum \mathrm{X}$
Harmonic Mean: $\frac{N}{\sum \frac{1}{X}}$

Geometric Mean: $N \sqrt{T x} \quad{ }^{T} N^{\text {th }}$ root of the product of ob$\sqrt{\pi x}$ served values).

Measures of Variability (spread, dispersion).
F. - Range ' ' \because observed value minus smallest observed value.

Inter!. : ises: Range for symmetric percentiles. $\therefore \cdot . \quad$ in $7^{\text {rt }}$ percentile minus 3 rd percentile, 2e• $\quad{ }^{-}$is $5^{\text {th }}$ percentile aid $75^{\text {th }}$ percentile । \because. - .e (interquartile range).

- Average Deviation: $\frac{1}{N} \sum|x-\bar{X}|$; average of absolute value of deviation of observed values from their mean.
- Variance: $\frac{1}{N} \sum(X-\bar{X})^{2}$; average squared deviation of observed values from their mean.

MS - Mean Square: same as Variance.
$S(S D)$ - Standard Deviation: Square root of variance.
RMS - Root Mean Square: Same as standard deviation.
PE - Probable Error: . 67455
$S_{\bar{X}} \quad-\quad$ Standard Error of the Mean: $\frac{S}{\sqrt{N}}$
When used in inference (estimation, hypothesis testing) N-1
should be used in place of N in the formula for S^{2}
$S^{2} \quad-\quad E s t i m a t e$ of population variance: $\frac{1}{N-1} \sum(X-\bar{X})^{2}$
$S \quad-\sqrt{s^{2}}$
$S_{\bar{X}}-\frac{S}{\sqrt{N}}$
Measures of relationship between paired observations $S+Y$
$S_{X Y}-$ Covariance: $\frac{1}{N}(X-\bar{X})(Y-\bar{Y})$; average cross product of deviations of observed values from their respe .lve means.

$r_{\text {bis }}$ - Biserial Correlation
r_{Pb} - Point biserial
$r_{t} \quad-\quad$ Tetrachoric
C - Contingency coefficient
$y=a+b x-1 i n e a r$ regression equation for predicting Y from X.
b. - Slope constant: $\frac{S_{x y}}{S_{x y}^{2}}=\frac{S_{y}}{S_{x}} \quad$ (iate of change)
a - Intercept Constant: $\bar{Y}-b \bar{X}$; height c. regression line at $\mathrm{X}=0$

Computational Formulas

$$
\begin{aligned}
& \text { SS - Sum of Squared Deviations (Sum of Squares): } \\
& \Sigma(\mathrm{x}-\overline{\mathrm{X}})^{2}=\boldsymbol{\Sigma} \mathrm{x}^{2}-\frac{\left(\boldsymbol{\sum}\right)^{2}}{\mathrm{~N}}=\frac{\mathrm{N} \boldsymbol{\sum} \mathrm{x}^{2}-\left(\boldsymbol{\sum} \mathrm{x}\right)^{2}}{\mathrm{~N}} \\
& \text { SP } \quad-\quad \text { Sum of Products: } \boldsymbol{\sum}(\mathrm{X}-\overline{\mathrm{X}})(\mathrm{Y}-\overline{\mathrm{Y}})=\boldsymbol{\Sigma} \mathrm{XY}-\frac{(\boldsymbol{\mathrm { X }})(\boldsymbol{\mathrm { D }} \mathrm{y})}{\mathrm{N}}= \\
& \frac{\mathrm{N} \sum \mathrm{XY}-\left(\boldsymbol{\sum} \mathrm{X}\right)\left(\sum \mathrm{Y}\right)}{\mathrm{N}} \\
& s^{2} \quad-\frac{1}{\mathrm{~N}} s s \\
& s^{2} \quad-\frac{1}{N-1} s s \\
& r \quad-\frac{S P}{\sqrt{S S_{X} S_{Y}}} \\
& \text { b } \\
& -\frac{S P}{S S_{X}}
\end{aligned}
$$

Others
p - prop.
z

- $x-\mu$
$t \quad-\frac{x-\mu}{s}$
$\mathrm{F} \quad-\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}}$

$$
x^{2}-\frac{N S^{2}}{\sigma^{2}}=\sum \frac{(0-E)^{2}}{E}
$$

Statistical Inference

$\pi \quad$ - Parameter: probability of occurrence of the event of interest ("success").
p - Estimator: proportion of "successes" in sample $=\frac{Y}{N}$

- One Sample Hypothesis (Null): is equal to some specific value $\left(\pi^{\prime}=\pi_{0}\right)$
- Exact Test: Compute $\Sigma\binom{N}{x} \pi_{0}^{x}\left(1-\pi_{0}\right)^{N-x}$ for $0 \leq X \leq Y \quad$ and $\quad N-Y \leq X \leq N$ if $\mathrm{Y}<\frac{\mathrm{N}}{2}$ or $0 \leq \mathrm{X} \leq \mathrm{N}-\mathrm{Y}$ and $\mathrm{Y} \leq \mathrm{X} \leq \mathrm{N}$ if $Y>\frac{N}{2}$. If this sum is less than $\boldsymbol{\alpha}$, reject the hypothesis in favor of the alternative $\pi \neq \pi_{0}$
- Normal approximation Test: may be used if $N \quad 30$ and $N\left(1-\pi_{0}\right)$ and $N \pi_{0}$ both ≥ 5.
- Test Statistic: $Z=\frac{p-\pi_{0}}{\pi_{0}\left(1-\pi_{0}\right)}=\frac{Y-N \pi_{0}}{N \pi_{0}\left(1-\pi_{0}\right)}$
- Two Samples (both large, N_{1} and $\mathrm{N}_{2}>30$)

$$
\begin{array}{lc}
\text { parameters: } & \pi_{1}, \pi_{2} \\
\text { estimators: } & p_{1}, p_{2} \quad \text { from statistics } Y_{1}+Y_{2} \\
\text { hypothesis: } & \pi_{1}=\pi_{2} \quad\left(\pi_{1}-\pi_{2}=0\right) \\
\text { test statistic: } Z=\frac{p_{1}-p_{2}}{\pi(1-\hat{\pi})} \text { where } \hat{\pi}=\frac{Y_{1}+Y_{2}}{N_{1}+N_{2}} \\
& 1+104
\end{array}
$$

One Sample

```
    \(\mu\) - parameter: population mean
\(\overline{\mathrm{X}} \quad\) - estimator
    - hypothesis: equal to some specific value \(\left(\mu=\mu_{0}\right)\)
    - test statistic: \(t=\frac{\bar{X}-\mu_{0}}{S} \quad \quad d f=N-1\)
```

$\begin{array}{ll}\sigma 2 & - \text { parameter: population variance } \\ S^{2} & - \text { estimator }\end{array}$
- hypothesis: σ^{2} equal to some specific value.
$\left(\sigma^{2}=\sigma_{0}^{2}\right)$
- test statistic: $x^{2}=\frac{(N-1) s^{2}}{\sigma^{2}} \quad$ def $=N-1$
Two Samples, independent
$\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2}$ (assumed equal) - parameters
(note: refer to advanced test for techniques
when this assumption questionable)
$\bar{X}_{1}, \bar{X}_{2} ; S_{1}^{2}, s_{2}^{2}$ - estimators
- hypothesis: $\mu_{1},=\mu_{2} ; \quad\left(\mu_{1}-\mu_{2}=0\right)$
- test statistic: $t=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{X_{1}}-\bar{X}_{2}} \quad d f=N_{1}+N_{2}-2$
where $\left(S_{\bar{X}_{1}}-\bar{X}_{2}\right)^{2}=\frac{\left(N_{1}-1\right) S_{1}^{2}+\left(N_{n}-1\right) S_{2}^{2}}{N_{1}+N_{2}-2}\left(\frac{1}{\bar{N}_{1}}+\frac{1}{N_{2}}\right)=$

$$
\frac{S S_{1}+S S_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}-2\left(\begin{array}{l}
\frac{1}{N_{1}}+\frac{1}{N_{2}} \\
1-105
\end{array}=\frac{\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\left(\mathrm{SS}_{1}+S S_{2}\right)}{\mathrm{N}_{1} \mathrm{~N}_{2}\left(\mathrm{~N}_{1}+\mathrm{N}_{2}-2\right)}\right.}
$$

- hypothesis: $\sigma_{1}^{2}=\sigma_{2}^{2}$
- test statistic: $\quad \mathrm{F}=\frac{\mathrm{S}_{1}^{2}}{\mathrm{~S}_{2}^{2}} \quad \mathrm{df}=\mathrm{N}_{1} .-1, \mathrm{~N}_{2}-1$
* two samples, correlated (match, paired observations; $N_{1}=N_{2}=N$)
$\mu_{d}-$ parameter is $: \mu_{d}=\mu_{1}-\mu_{2}$
$\overline{\mathrm{X}}_{\mathrm{d}} \quad-\quad$ estimator: mean of differences between matched observations
- hypothesis: $\mu_{d}=0$
- test statistic: find N differences and treat as one sample with $\mu_{0}=0$.

SOME METHODS OI PSYCHOPHYSICS

Method	Brief Characterization	Usual Statisical Index	Problems to when Most Applicable
1. Adjustment (average error)	Observer adjusts stimulus until it is subjectively equal te or ir. some desired relation to a criterion.	Average of settings (average error of settings measures precisior).	Absolute threshold Equality Equal intervals Equal ratios
2. Minumal change (limits)	Experimenter varies stimulus upward ana/or downward. Observer signals its apparent relation to a criterion.	Average value of stimulus at transition point of $\mathbf{n b}$ ser:er's judgment.	All thresholds Equality
3. Paired comparison	Stimuli are presented in pairs. Each stimulus is paired with each other stimulas. The observer indicates which of each pair is greater in respect of a given attribute.	Proportion of judgments calling one stimulus greater than another. (These proportions aie sometimes translated into scale values via the assumption of a normal distribution of juagments.)	Oruer Equal intervals (under distribution assumntion)
4. Constant stimuli	Se-; mparison stimuli are paired at . Aidom with a fixed standard. Observer says whether eacn comparison is greater or less than the standard. (A special case oî paired comparisons.)	Sirc of difference limen equals stimulus distance between 50 - and 75 -percent points on psychometic function.	All thresholds Equality Equal intervals Equal ratios
5. Quantal	Various fixed increments are added to a standard, with no time interval between. Each increment is added several times in succession. Observer indicates apparent presence or absence of the increment.	Size of sersory quantum equals distance between intercepts of rectiinear psychometric function.	Differential thresholds
6. Order of merit	Group of stimuli, presented simultaneously, are set in apparent rank order by the observer.	Average or median rank assigned by observers.	Order
7. Rating scale	Each of a set of stimuli is given an "absolute" rating in terms of some attribute. Rating may be numerical or descriptive.	Average or medıan rating assigned by observers.	Order Equal intervals Stimulus rating

Section 2

metrics and conversion data

Section 2

METRICS AND CONVERSION DATA

The tables and nomograms included in this section contain what the authors consider a handy and frequently used collection of conversion factors relating to distances, weights, volumes, power, pressure, temperature, etc.

Although there are many formats in which such data may be presented, it is hoped that those selected will prove useful and convenient to the majority of users of this pocket databook.

It is difficult to refer the reader to other sources of conversion data since this kind of information usually is internixed with other kinds of data. Manufacturers of technical and scientific products often prepare and distribute conversion tables of various kinds; textbooks of physics and chemistry invariably contain a great deal of conversion data; and the HANDBOOK OF CHEMISTRY AND PHYSICS is, of course, a prolific source of such information.

Our thanks, once again, to the Cahners Publishing Company for permission to reprint several nomograms which originally appeared in DESIGN NEWS.

acre	$=43,560$ square feet $=4,840$ square yards $=4,047$ square meters $=1.562 \times 10^{-3}$ square miles
ampere-hour	$=3.600 \times 10^{3}$ coulombs $=3.731 \times 10^{-2}$ faradays
Angstrom unit (A)	$\begin{aligned} & =3.937 \times 10^{-9} \\ & =1 \times 10^{-4} \text { microns (mu) } \\ & =1 \times 10^{-8} \text { centimeters } \end{aligned}$
astronomical unit (AU)	$=1.495 \times 10^{8}$ kilometers
atmosphere	$=14.7$ pounds/square inch $=76.0 \mathrm{cms}$ of mercury $=29.92$ inches of mercury $=3.39 \times 10^{1}$ feet of water $=1.033 \mathrm{kilograms} / \mathrm{square} \mathrm{cm}$ $=1.033 \times 10^{4} \mathrm{kilograms} /$ square meter $=1.058$ tons $/ \mathrm{square}$ foot
bar	$=9.869 \times 10^{-1}$ ati:ospheres $=1 \times 10^{6}$ dynes/square cm $=1.020 \times 10^{4}$ kilograms/square meter $=2.089 \times 10^{3}$ pounis/square foot $=1.45 \times 10^{1}$ pound $/ /$ square inch
Btu	$=1.0409 \times 10^{1}$ liter-atmosphere $=1.055 \times 10^{10}$ ergs $=7.781 \times 10^{2}$ foot-pounds $=2.520 \times 10^{2}$ gram-calories $=3.927 \times 10^{-4}$ horsepower-hours $=1.055 \times 10^{3}$ joules $=1.0758 \times 10^{2}$ kiiogram-meters $=2.928 \times 10^{-4}$ kilovatt-hours

Btu/hour	$=2.162 \times 10^{-1}$ foot-pounds/second $=7.0 \times 10^{-2}$ gran-calories/second $=3.929 \times 10^{-4}$ horsepower $=2.931 \times 10^{-1}$ watts
Btu/minute	$=1.296 \times 10^{1}$ foot-pounds/second $=2.356 \times 10^{-2}$ horsepower $=1.757 \times 10^{1}$ watts
Btu/square foot/minute	$=1.22 \times 10^{-1}$ watts/square inch
Candle/square cm	$=3.146$ lamberts
Candle/square inch	$=4.870 \times 10^{-1}$ lamberts
Centigrade (degrees)	$=\left({ }^{\circ} \mathrm{Cx} \frac{9}{5}+32\right.$ Fahrenheit (degrees) $={ }^{\circ} \mathrm{C}+273.18$ Kelvin (degrees)
centimeter	$=3.281 \times 10^{-2}$ feet $=3.937 \times 10^{-1}$ inches $=1 \times 10^{-5}$ kilometers $=6.214 \times 10^{-6} \mathrm{miles}$ $=3.937 \times 10^{2} \mathrm{mi} 1 \mathrm{~s}$ $=1.094 \times 10^{-2}$ yards $=1 \times 10^{4}$ microns $=1 \times 10^{8}$ Angstrom units
centimeter-dyne	$=1.020 \times 10^{-3} \mathrm{~cm}$-grams $=1.020 \times 10^{-8}$ meter-kgs $=7.375 \times 10^{-8}$ pound-feet
centimeter-gram	$=9.807 \times 10^{2} \mathrm{~cm}$-dynes $=1 \times 10^{-5}$ meter -kgs $=7.233 \times 10^{-5}$ pound-feet
cm of mercury	$=4.461 \times 10^{-1}$ feet of water $=2.785 \times 10^{1}$ pounds/square foot $=1.934 \times 10^{-1}$ pounds/square inch

centimeter/second	$\begin{aligned} & =1.969 \text { feet } / \mathrm{minute} \\ & =3.281 \times 10^{-2} \text { feet } / \mathrm{second} \\ & =3.6 \times 10^{-2} \mathrm{kilometers} / \mathrm{hour} \\ & =1.943 \times 10^{-2} \text { knots } \\ & =6.0 \times 10^{-1} \text { meters } / \mathrm{minute} \\ & =2.237 \times 10^{-2} \text { miles } / \mathrm{hour} \\ & =3.728 \times 10^{-4} \text { miles } / \mathrm{minute} \end{aligned}$
centimeter/sec/sec	$\begin{aligned} & =3.281 \times 10^{-2} \mathrm{feet} / \mathrm{sec} / \mathrm{sec} \\ & =3.6 \times 10^{-2} \mathrm{kms} / \mathrm{hour} / \mathrm{sec} \\ & =2.237 \times 10^{-2} \mathrm{miles} / \mathrm{hour} / \mathrm{sec} \end{aligned}$
circumference	$=6.283$ radians
coulomb	$=1.036 \times 10^{-5}$ faradays
cubic centimeter	$\begin{aligned} & =3.531 \times 10^{-5} \text { cubic feet } \\ & =6.102 \times 10^{-2} \text { cubic inches } \\ & =1.308 \times 10^{-6} \text { cubic yards } \\ & =2.642 \times 10^{-4} \text { gallons (U.S. liquid) } \\ & =1.057 \times 10^{-3} \text { quarts (U.S. liquid) } \\ & =2.113 \times 10^{-3} \text { pints (U.S. liquid) } \\ & =1 \times 10^{-6} \text { cubic meters } \\ & =1 \times 10^{-3} \text { liters } \end{aligned}$
cubic foot	$\begin{aligned} & =2.832 \times 10^{4} \text { cubic cms } \\ & =1.728 \times 10^{3} \text { cubic inches } \\ & =2.832 \times 10^{-2} \text { cubic meters } \\ & =3.704 \times 10^{-2} \text { cubic yards } \\ & =7.48052 \text { gallons (U.S. liquid) } \\ & =2.832 \times 10^{1} \text { liters } \\ & =5.984 \times 10^{1} \text { pints (U.S. liquid) } \\ & =2.992 \times .0^{1} \text { quarts (U.S. liquid) } \end{aligned}$
cubic foot/minute	$=4.72 \times 10^{2}$ cubic $\mathrm{cms} /$ second $=1.247 \times 10^{1}$ gallons $/$ second $=4.720 \times 10^{-1}$ liters $/$ second $=6.243 \times 10^{1}$ pounds water/minute $=6.46317 \times 10^{-1}$ million gals $/$ day $=4.48831 \times 10^{2}$ gallons $/$ minute

cubic inches	$\begin{aligned} & =1.639 \times 10^{1} \text { cubic cins } \\ & =5.787 \times 10^{-4} \text { cullic feel } \\ & =1.639 \times 10^{-5} \text { cubic meters } \\ & =2.143 \times 10^{-5} \text { subic yards } \\ & =4.329 \times 10^{-3} \text { gallons (U.S. Liquid) } \\ & =1.639 \times 10^{-2} \text { Liters } \\ & =3.463 \times 10^{-2} \text { pirts (U.S. Liquid) } \\ & =1.732 \times 10^{-2} \text { quarl.: (U.S. liquid) } \end{aligned}$
cubic meter	$\begin{aligned} & =1 \times 10^{6} \text { cubic cms } \\ & =3.531 \times 10^{1} \text { cubic feet } \\ & =6.1023 \times 10^{4} \text { cubic inches } \\ & =1.308 \text { cubic yards } \\ & =2.642 \times 10^{2} \text { gallons (U.S. liquid) } \\ & =1 \times 10^{3} 1 \text { iters } \\ & =2.113 \times 10^{3} \text { pints (U.S. liquid) } \\ & =1.057 \times 10^{3} \text { quarts (U.S. liquid) } \end{aligned}$
cubic yard	$\begin{aligned} & =7.646 \times 10^{5} \text { cubic cms } \\ & =2.7 \times 10^{1} \text { cubic feet } \\ & =4.6656 \times 10^{4} \text { cubic inches } \\ & =7.646 \times 10^{-1} \text { cubic meters } \\ & =2.02 \times 10^{2} \text { gallons (U.S. liquid) } \\ & =7.646 \times 10^{2} \text { liters } \\ & =1.6159 \times 10^{3} \text { pints (U.S. liquid) } \\ & =8.079 \times 10^{2} \text { quarts (U.S. liquid) } \end{aligned}$
cubic yards/minute	$\begin{aligned} & =4.5 \times 10^{-1} \text { cubic feet } / \mathrm{s} \text { tcond } \\ & =3.367 \text { gallons } / \text { second } \\ & =1.274 \times 10^{1} \text { liters } / \text { second } \end{aligned}$
day	$\begin{aligned} & =8.64 \times 10^{4} \text { seconds } \\ & =1.44 \times 10^{3} \text { minutes } \end{aligned}$
degrees (angle)	$\begin{aligned} & =1.745 \times 10^{-2} \text { radians } \\ & =3.6 \times 10^{3} \text { seconds (angle) } \end{aligned}$

degree/second	$=1.745 \times 10^{-2}$ radians/second $=1.667 \times 10^{-1}$ revolutions $/$ minute $=2.778 \times 10^{-3}$ revolutions $/$ second
dram (apoth. or troy)	$\begin{aligned} & =1.3714 \times 10^{-1} \text { ounces (avdp) } \\ & =1.25 \times 10^{-1} \text { ounces (troy) } \end{aligned}$
dram (U,S. fluid or apoth)	$=3.6967$ cubic cms
dram	$\begin{aligned} & =1.7718 \text { grams } \\ & =2.7344 \times 10^{1} \text { grains } \\ & =6.25 \times 10^{-2} \text { ounces } \end{aligned}$
dynes/square cm	$\begin{aligned} & =1 \times 10^{-2} \text { ergs/square mm } \\ & =9.869 \times 10^{-7} \text { atmospheres } \\ & =2.953 \text { inches of mercury (at } 0^{\circ} \mathrm{C} . \text {) } \\ & =4.015 \times 10^{-4} \text { inches of water (at } 4^{\circ} \mathrm{C} . \end{aligned}$
dyne	$\begin{aligned} & =1.020 \times 10^{-3} \text { grams } \\ & =1 \times 10^{-7} \text { joules } / \mathrm{cm} \\ & =1 \times 10^{-5} \text { joules/meter (newtons) } \\ & =1.020 \times 10^{-6} \text { kilograms } \\ & =7.233 \times 10^{-5} \text { poundals } \\ & =2.248 \times 10^{-6} \text { pounds } \end{aligned}$
dynes/square cm	$=1 \times 10^{-6}$ bars
ell	$\begin{aligned} & =1.143 \times 10^{2} \mathrm{cms} \\ & =4.5 \times 10^{1} \text { inches } \end{aligned}$
em, pica	$\begin{aligned} & =1.67 \times 10^{-1} \text { inches } \\ & =4.233 \times 10^{-1} \mathrm{cms} \end{aligned}$
erg/second	$=1.0$ dyne $-\mathrm{cm} / \mathrm{sec}$
erg	$\begin{aligned} & =9.486 \times 10^{-11} \text { Btu } \\ & =1.0 \text { dyne-centimeter } \\ & =7.376 \times 10^{-8} \text { foot-pounds } \\ & =2.389 \times 10^{-8} \text { gram-calories } \\ & =1.020 \times 10^{-3} \text { grams-cms } \\ & =3.725 \times 10^{-14} \text { horsepower-hours } \end{aligned}$

ers	$=1.0 \times 10^{-7}$ joule $=$ $=2.389 \times 10^{-11}$ kilogram-calories $=1.020 \times 10^{-\varepsilon}$ kilograr.-reters $=2.773 \times 10^{-1+}$ kilowatt-hours $=2.773 \times 10^{-11}$ watt-hours
ergs/sec	$=5.668 \times 10^{-9} \mathrm{Btu} /$ minute $=4.426 \times 10^{-6} \mathrm{ft}-\mathrm{lbs} / \mathrm{minute}$ $=7.3756 \times 10^{-8} \mathrm{ft}-\mathrm{lbs} / \mathrm{second}$ $=1.3+1 \times 10^{-10}$ horsepower $=1.433 \times 10^{-9} \mathrm{~kg}$-calories/minute $=1.0 \times 10^{-10}$ kilowatts
faraday/second	$=9.65 \times 10^{+}$amperes(absolute)
faraday	$=2.68 \times 10^{1}$ ampere-hours $=9.649 \times 10^{4}$ coulombs
fathom	$=6.0 \mathrm{feet}$ $=1.8288$ meters
foot	$=3.0 \div 8 \times 10^{1}$ centimeters $=3.948 \times 10^{-4}$ kilometers $=3.0 \rightarrow 8 \times 10^{-1}$ meters $=1.6+5 \times 10^{-4}$ nautical miles $=1.89 \dot{4} \times 10^{-+}$statute miles $=1.2 \times 10^{4} \mathrm{mils}$
foot of water	$=2.95 \times 10^{-2}$ atmospheres $=8.526 \times 10^{-1}$ inches of mercury $=3.04 \hat{\varepsilon} \times 10^{-2} \mathrm{k}_{\overline{5}} \equiv /$ squar $\epsilon \mathrm{cm}$ $=3.04 \times \times 10^{2} \mathrm{k} 5 \mathrm{~s} / \mathrm{square}$ meter $=6.2+3 \times 10^{1}$ pounds/square foot $=4.335 \times 10^{-1}$ pounds/square inch
feet/minute	$=5.080 \times 10^{-1} \mathrm{cms} / \equiv \in \operatorname{cond}$ $=1.667 \times 10^{-2}$ feet/serond $=1.829 \times 10^{-2} \mathrm{kns} / \mathrm{hour}$ $=3.04 \hat{8} \times 10^{-1}$ meters/minute $=1.136 \times 10^{-2}$ miles $p \in r$ hour

gallons	$=3.7 \times 5 \times 10^{3}$ culicic cills $=1.337 \times 10^{-1}$ cubic reel $=2.31 \times 10^{2}$ culjic inches $=3.785 \times 10^{-3}$ cubic nuters $=4.951 \times 10^{-3}$ cubic yaras $=3.785$ 1iters
gallon (liquid, imperial)	$=1.20095$ gallons (U.S. liquid)
gallon (U.S.)	$=8.3267 \times 10^{-1}$ gallons (imperial)
gallon of water	$=8.337$ pounds of water
gallon/minute	$=2.228 \times 10^{-3}$ cubic feet $/$ second $=6.308 \times 10^{-2}$ liters $/$ second $=8.0208$ cubic feet/hour
grain	$=3.657 \times 10^{-2}$ drams (avdp)
grains/U.S. gallon	$=1.7118 \times 10^{1}$ parts $/$ million $=1.4286 \times 10^{2}$ pounds $/$ million
grains/imperial gallon	$=1.4285: 10^{1}$ parts/million
gram	$=9.807 \times 10^{2}$ dynes $=3.527 \times 10^{-2}$ ounces (avdp) $=3.215 \times 10^{-2}$ ounces (troy) $=7.093 \times 10^{-2}$ poundals $=2.205 \times 10^{-3}$ pounds
grams/cm	$=5.6 \times 10^{-3}$ pounds/inch
grams/cubic cm	$=6.243 \times 10^{1}$ pounds/cubic feet $=3.613 \times 10^{-2}$ pounds/cubic inch
gram-calories	$=3.9683 \times 10^{-3} \mathrm{Btu}$ $=4.184 \times 10^{7} \mathrm{ergs}$ $=3.086$ foot-pounds $=1.5596 \times 10^{-6}$ horsepower-hours $=1.162 \times 10^{-6}$ kilowatt-hours $=1.162 \times 10^{-3}$ watt-hours
gram-calories/second	$=1.4286 \times 10^{1} \mathrm{Btu} / \mathrm{hour}$

gram-centimeter	$=2.343 \times 10^{-8} \mathrm{~kg}$-calories
horsepower	$=4.244 \times 10^{1} \mathrm{Btu} /$ minute $=3.3 \times 10^{4}$ foot-pounds/minute $=5.50 \times 10^{2}$ foot-pounds $/$ second $=1.068 \times 10^{1} \mathrm{~kg}$-calories/minute $=7.457 \times 10^{-1}$ kilowatts $=7.457 \times 10^{2}$ watts
horsepower (metric)	$=9.863 \times 10^{-1}$ horsepswer
horsepower	$=1.014$ horsepower (metric)
horsepower-hours	$=2.547 \times 10^{3} \mathrm{Btu}$ $=2.6845 \times 10^{13} \mathrm{ergs}$ $=1.98 \times 10^{6}$ foot-pounds $=6.4119 \times 10^{5}$ gram-calories $=2.684 \times 10^{6}$ joules $=6.417 \times 10^{2} \mathrm{~kg} \cdot \mathrm{c} \cdot$ - ories $=2.737 \times 10^{5} \mathrm{~kg}$-meters
inch	$=2.540$ centimeters $=1.578 \times 10^{-5}$ miles $=2.54 \times 10^{1}$ millimeters $=1 \times 10^{3} \mathrm{mils}$ $=2.778 \times 10^{-2}$ yards $=2.54 \times 10^{8}$ Angstrom units
inch of mercury	$=3.342 \times 10^{-2}$ atmospheres $=1.133$ feet of water $=3.453 \times 10^{-7} \mathrm{kgs} /$ square cm $=3.453 \times 10^{2} \mathrm{kgs} /$ square meter $=7.073 \times 10^{1}$ pounds $/$ square foot $=4.912 \times 10^{-i}$ pounds/square inch
inch of water (at $4^{\circ} \mathrm{C}$.)	$=2.458 \times 10^{-3}$ atmospheres $=7.355 \times 10^{-2}$ inches of mercury $=2.54 \times 10^{-3} \mathrm{kgs} /$ squar ${ }^{\circ} \mathrm{cm}$ $=5.781 \times 10^{-1}$ ounces/square inch $=5.204$ pourds/'square foot $=3.613 \times 10^{-2}$ pounds/square inch

joule	$\begin{aligned} & =9.486 \times 10^{-4} \mathrm{BLu} \\ & =1 \times 10^{7} \mathrm{ergs} \\ & =7.736 \times 10^{-1} \text { foot-pounds } \\ & =2.359 \times 10^{-4} \mathrm{~kg} \text {-catories } \\ & =1.020 \times 10^{-1} \mathrm{~kg} \text {-meters } \\ & =2.778 \times 10^{-4} \text { watt-hours } \end{aligned}$
joules/cm	$=1.020 \times 10^{4}$ grams $=1 \times 10^{7}$ dynes $=1.10^{2}$ joules $/$ meter $=7.233 \times 10^{2}$ poundals $=2.248 \times 10^{1}$ pounds
kilogram	$=9.80665 \times 10^{5}$ dynes $=7.093 \times 10^{1}$ poundal s $=2.2046$ pounds $=3.5274 \times 10^{1}$ ounces (avdp) $=9.842 \times 10^{-4}$ tons (long $=1.102 \times 10^{-3}$ tons (short)
kilogran//cubic meter	$=6.243 \times 10^{-2}$ pounds $/$ cubic foot $=3.613 \times 10^{-5}$ pounds/cubic inch
ki logram/meter	$=6.72 \times 10^{-1}$ pounds $/$ foot
kilogram/square cim	$=9.80665 \times 10^{5}$ dynes $/$ square cm $=9.678 \times 10^{-1}$ atmospheres $=3.281 \times 10^{1}$ feet of water $=2.896 \times 10^{1}$ inches of mercury $=2.048 \times 10^{3}$ pounds $/$ square foot $=1.422 \times 10^{1}$ pounds $/$ square inch
kilogram/square meter	$=9.570 \times 10^{-5}$ atmospheres $=9.807 \times 10^{-5}$ barc $=3.28{ }^{1} \times 10^{-3} \quad$ \& water $=2.896 .1 \quad ; \quad$: of mercury $=2.048 \times 10^{-1}$ pounds/square foot $=1.422 \times 10^{-3}$ pounds $/$ square inch

kilogram-calorie	$\begin{aligned} & =3.968 \mathrm{Btu} \\ & =3.086 \times 10^{3} \text { foot-pounds } \\ & =1.558 \times 10^{-3} \text { horsepower-hours } \\ & =4.183 \times 10^{3} \text { joules } \\ & =1.163 \times 10^{-3} \text { kilowatt-hours } \end{aligned}$
kilogram/calorie/minute	$=5.143 \times 10^{1}$ fooc-pounds/second $=9.351 \times 10^{-2}$ horsepower $=6.972 \times 10^{-2}$ kilowatts
kilogram-meter	$\begin{aligned} & =9.296 \times 10^{-3} \mathrm{Btu} \\ & =9.807 \times 10^{7} \text { ergs } \\ & =7.233 \text { foot-pounds } \\ & =9.807 \text { joules } \\ & =2.723 \times 10^{-6} \text { kilowatt-hours } \end{aligned}$
kilometer	$\begin{aligned} & =3.281 \times 10^{3} \text { feet } \\ & =3.937 \times 10^{4} \text { inches } \\ & =6.214 \times 10^{-1} \text { statute miles } \\ & =5.396 \times 10^{-1} \text { nautical miles } \\ & =1.0936 \times 10^{3} \text { yards } \end{aligned}$
kilometer/hour	$=2.778 \times 10^{1} \mathrm{cms} /$ second $=5.468 \times 10^{1}$ feet/minute $=9.113 \times 10^{-1}$ feet $/$ second $=5.396 \times 10^{-1}$ knots $=1.667 \times 10^{1}$ meters $/$ minute $=6.214 \times 10^{-1}$ miles $/$ hour
kilometer/hour/second	$\begin{aligned} & =2.778 \times 10^{1} \mathrm{cms} / \mathrm{sec} / \mathrm{sec} \\ & =9.113 \times 10^{-1} \mathrm{feet} / \mathrm{sec} / \mathrm{sec} \\ & =6.214 \times 10^{-1} \mathrm{miles} / \mathrm{hour} / \mathrm{sec} \end{aligned}$
kilowatt	$\begin{aligned} & =5.692 \times 10^{1} \mathrm{Btu} / \text { minute } \\ & =4.426 \times 10^{4} \text { foot-pounds } / \text { minute } \\ & =7.376 \times 10^{2} \text { foot-pounds } / \text { second } \\ & =1.341 \text { horsepower } \\ & =1.434 \times 10^{1} \mathrm{~kg} \text {-calories } / \text { minute } \end{aligned}$

kilowatt-hour	$\begin{aligned} & =3.413 \times 10^{3} \mathrm{Btu} \\ & =3.6 \times 10^{13} \mathrm{ergs} \\ & =2.655 \times 10^{6} \text { foot-pounds } \\ & =8.5985 \times 10^{5} \text { gram-calories } \\ & =1.341 \mathrm{horsepower} \text {-hours } \\ & =8.605 \times 10^{2} \mathrm{~kg} \text {-calories } \end{aligned}$
knot	$=6.080 \times 10^{3}$ feet-hour $=1.8532$ kilometers/hour $=1.0$ nautical miles $/$ hour $=1.151$ statute miles $/$ hour $=2.027 \times 10^{3}$ yards/hour $=1.689$ feet $/$ second $=5.148 \times 10^{1} \mathrm{cms} / \mathrm{sec}$ ond
lambert	$=3.183 \times 10^{-1}$ candles/square cm $=2.054$ candles/square inch
light year	$\begin{aligned} & =5.9 \times 10^{12} \text { miles } \\ & =9.46091 \times 10^{12} \text { kilometers } \end{aligned}$
liter	$\begin{aligned} & =1 \times 10^{3} \text { cubic cms } \\ & =3.531 \times 10^{-2} \text { cubic feet } \\ & =6.102 \times 10^{1} \text { cubic inches } \\ & =1.308 \times 10^{-3} \text { cubic yards } \\ & =2.642 \times 10^{-1} \text { gallons (U.S. liquid) } \\ & =2.113 \text { pints (U.S. liquid) } \\ & =1.057 \text { quarts (U.S. liquid) } \end{aligned}$
liter/minute	$=5.886 \times 10^{-4}$ cubic feet/secord
lumen	$=7.958 \times 10^{-2}$ spherical candle power
lumen-square foot	$=1.0$ foot-candles $=1.076 \times 10^{1}$ lumens/square meter
lux	$=9.29 \times 10^{-2}$ foot-candles

meter	$\begin{aligned} & =1 \times 10^{10} \text { Angstrom units } \\ & =5.4681 \times 10^{-1} \text { fathoms } \\ & =3.281 \text { feet } \\ & =3.937 \times 10^{1} \text { inches } \\ & =5.396 \times 10^{-4} \text { nautical miles } \\ & =6.214 \times 10^{-4} \text { statute miles } \\ & =1.094 \text { yards } \end{aligned}$
meter/minute	$=1.667 \mathrm{cms} / \mathrm{second}$ $=3.281$ feet/minute $=5.468 \times 10^{-2}$ feet $/$ second $=6.0 \times 10^{-2} \mathrm{kms}$ fhour $=3.238 \times 10^{-2}$ knots $=3.728 \times 10^{-2}$ miles $/$ hour
meter/second	$\begin{aligned} & =1.968 \times 10^{2} \text { feet } / \text { minute } \\ & =3.281 \mathrm{feet} / \text { second } \\ & =6.0 \times 10^{-2} \text { kilometers } / \text { minute } \\ & =2.237 \mathrm{miles} / \mathrm{hour} \\ & =3.728 \times 10^{-2} \text { miles } / \text { minute } \end{aligned}$
meter/second/second	$\begin{aligned} & =3.281 \text { feet } /:: \mathrm{ec} / \mathrm{sec} \\ & =3.6 \mathrm{kms} / \mathrm{hour} / \mathrm{sec} \\ & =2.237 \text { miles } / \mathrm{hour} / \mathrm{sec} \end{aligned}$
mile (nautical)	$\begin{aligned} & =6.076 \times 10^{3} \text { feet } \\ & =1.853 \text { kilometers } \\ & =1.853 \times 10^{3} \text { meters } \\ & =1.1516 \text { statute miles } \\ & =2.0354 \times 10^{3} \text { yards } \end{aligned}$
mile (statute)	$=5.280 \times 10^{3}$ feet $=6.336 \times 10^{4}$ inches $=1.609$ kilometers $=8.684 \times 10^{-1}$ nautical miles $=1.760 \times 10^{3}$ yards $=1.69 \times 10^{-13}$ light years

$\mathrm{m}^{1} \boldsymbol{e s} /$ hour	$=4.470 \times 10^{1} \mathrm{cms} / \mathrm{second}$ $=8.8 \times 10^{1}$ feet $/$ minute $=1.467 \mathrm{feet} / \mathrm{second}$ $=1.6093 \mathrm{kms} / \mathrm{hour}$ $=2.862 \times 10^{-2} \mathrm{kms} /$ minute $=8.864 \times 10^{-1}$ knots $=2.682 \times 10^{1}$ meters $/$ minute $=1.667 \times 10^{-2}$ miles/filinute
miles/hour/second	$\begin{aligned} & =4.47 \times 10^{1} \mathrm{cms} / \mathrm{sec} / \mathrm{sec} \\ & =1.467 \mathrm{feet} / \mathrm{sec} / \mathrm{sec} \\ & =1.6093 \mathrm{kms} / \mathrm{hour} / \mathrm{sec} \\ & =4.47 \times 10^{-1} \mathrm{~meters} / \mathrm{sec} / \mathrm{sec} \end{aligned}$
miles/minute	$\begin{aligned} & =2.682 \times 10^{3} \mathrm{cms} / \text { second } \\ & =8.8 \times 10^{1} \mathrm{feet} / \mathrm{second} \\ & =1.6093 \mathrm{kms} / \mathrm{minute} \\ & =8.684 \times 10^{-1} \mathrm{knots} / \text { minute } \end{aligned}$
millimeter	$\begin{aligned} & =3.281 \times 10^{-3} \text { feet } \\ & =3.937 \times 10^{-2} \text { inches } \\ & =6.214 \times 10^{-7} \text { miles } \\ & =3.937 \times 10^{1} \text { mile } \\ & =1.094 \times 10^{-3} \text { yards } \end{aligned}$
mil	$=2.54 \times 10^{-3}$ centimeters $=8.333 \times 10^{-5}$ feet $=1.0 \times 10^{-3}$ inches $=2.54 \times 10^{-8}$ kilometers $=2.778 \times 10^{-5}$ yards
minute (angle)	$\begin{aligned} & =1.667 \times 10^{-2} \text { degrees } \\ & =2.909 \times 10^{-4} \text { radians } \end{aligned}$
minute (time)	$\begin{aligned} & =9.9206 \times 10^{-5} \text { weeks } \\ & =6.944 \times 10^{-4} \text { days } \\ & =1.667 \times 10^{-2} \text { hours } \end{aligned}$
newton	$=1.0 \times 10^{5}$ dynes

ohm (international)	$=1.0005 \mathrm{ohm}$ (absolute)
ounce	$=4.375 \times 10^{2}$ grains $=2.8349 \times 10^{1}$ grams $=6.25 \times 10^{-2}$ pounds
ounce (fluid)	$=1.805$ cubic inches $=2.957 \times 10^{-2}$ liters
ounce (troy)	$=1.097$ ounces (avdp)
ounce/square inch	$=4.309 \times 10^{3}$ dymes/square cm $=6.25 \times 10^{-2}$ pounds/square inch
parsec	$\begin{aligned} & =1.9 \times 10^{13} \text { miles } \\ & =3.084 \times 10^{13} \text { kilometers } \end{aligned}$
parts/million	$\begin{aligned} & =5.84 \times 10^{-2} \text { grains/U.S. gallon } \\ & =7.016 \times 10^{-2} \text { grains/inperial gallon } \\ & =8.345 \text { pounds/million gallons } \end{aligned}$
pint (liquid)	$=4.732 \times 10^{2}$ cubic cms $=1.671 \times 10^{-2}$ cubic feet $=2.887 \times 10^{1}$ cubic inches $=4.732 \times 10^{-4}$ cubic meters $=6.189 \times 10^{-4}$ cubic yards $=1.25 \times 10^{-1}$ gallons $=4.732 \times 10^{-1}$ liters
Planck's constant	$=6.6256 \times 10^{-27}$ erg - seconds
pound (avdp)	$=1.4583 \times 10^{1}$ ounces (troy)
pound (troy)	$=1.3166 \times 10^{1}$ ounces (avdp)
pound	$=2.56 \times 10^{2}$ drams $=4.448 \times 10^{5}$ dynes $=7.0 \times 10^{3}$ grains $=4.5359 \times 10^{2}$ giams $=4.536 \times 10^{-1}$ kilograms $=1.6 \times 10^{1}$ ounces $=3.217 \times 10^{1}$ poundals $=5.0 \times 10^{-4}$ short tons

poundal	$\begin{aligned} & =1.3826 \times 10^{4} \text { dynes } \\ & =1.41 \times 10^{1} \text { grams } \\ & =1.383 \times 10^{-3} \text { joules/crn } \\ & =1.383 \times 10^{-1} \text { joules/meter (newtens } \\ & =1.4!\times 10^{-2} \text { kilograms } \\ & =3.108 \times 10^{-2} \text { pounds } \end{aligned}$
pound of water	$\begin{aligned} & =1.602 \times 10^{-2} \text { cubic feet } \\ & =2.768 \times 10^{1} \text { cubic inches } \\ & =1.198 \times 10^{-1} \text { gallons } \end{aligned}$
pounds of water/minute	$=2.670 \times 10^{-4}$ cubic feet $/$ second
pound-foot	$\begin{aligned} & =1.356 \times 10^{7} \mathrm{~cm} \text {-dynes } \\ & =1.3825 \times 10^{4} \mathrm{~cm} \text {-grams } \\ & =1.383 \times 10^{-1} \text { meter-kgs } \end{aligned}$
pounds/cubic foot	$=1.602 \times 10^{-2}$ grams/cubic cm $=1.602 \times 10^{1} \mathrm{kgs} /$ cubic meter $=5.787 \times 10^{-4}$ pounds/cubic inch
pounds/cubic inch	$=2.768 \times 10^{1}$ grams/cubic cm $=1.728 \times 10^{3}$ pounds/cubic foot
pounds/foot	$=1.488 \mathrm{kgs} /$ meter
pounds per inch	$=1.786 \times 10^{2} \mathrm{grams} / \mathrm{cm}$
pounds/square foot	$=4.725 \times 10^{-4}$ atmospheres $=1.602 \times 10^{-2}$ feet of water $=1.414 \times 10^{-2}$ inches of mercury $=4.882 \mathrm{kgs} /$ square meter $=6.944 \times 10^{-3}$ pounds/square inch
pounds/square inch	$=6.804 \times 10^{-2}$ atmospheres $=2.307$ feet of water $=2.036$ inches of mercury $=7.031 \times 10^{2} \mathrm{kgs} /$ square meter $=1.44 \times 10^{2}$ pounds/square foot $=7.2 \times 10^{-2}$ short tons/square foot $=7.03 \times 10^{-2} \mathrm{kgs} /$ square meter

quadrant (angle)	$=9.0 \times 10^{1}$ degrees $=5.4 \times 10^{3}$ minutes $=1.571$ radians $=3.24 \times 10^{5}$ seconds
quart (${ }^{\text {dry }}$)	$=6.72 \times 10^{1}$ cubic inches
quart (liquid)	$=9.464 \times 10^{2}$ cubic cms $=3.342 \times 10^{-2}$ cubic feel $=5.775 \times 10^{1}$ cubic inches $=9.464 \times 10^{-4}$ cubic meters $=1.238 \times 10^{-3}$ cubic yards $=2.5 \times 10^{-1}$ gallons $=9.463 \times 10^{-1}$ liters
radian	$=5.7296 \times 10^{1}$ degrees $=3.438 \times 10^{3}$ minutes $=6.366 \times 10^{-1}$ quadrants $=2.063 \times 1.0^{5}$ seconds
radian/second	$=5.7296 \times 10^{1}$ degrees $/$ second $=9.549 \mathrm{r} \in$ volutions/minute $=1.592 \times 10^{-1}$ revolutions $/$ second
radians/s $2 \mathrm{c} / \mathrm{sec}$	$\begin{aligned} & =5.7296 \times 10^{2} \text { revolutions } / \mathrm{min} / \mathrm{min} \\ & =9.549 \mathrm{revolutions} / \mathrm{min} / \mathrm{sec} \\ & =1.5492 \times 10^{-1} \text { revolutions } / \mathrm{sec} / \mathrm{sec} \end{aligned}$
ream	$=500$ sheets
revolutions/minute	$\begin{aligned} & =6.0 \text { degrees } / \text { second } \\ & =1.047 \times 10^{-1} \text { radians } / \text { second } \\ & =1.667 \times 10^{-2} \text { revolutions } / \text { second } \end{aligned}$
revolutions/min/min	$\begin{aligned} & =1.745 \times 10^{-3} \text { radians } / \mathrm{sec} / \mathrm{sec} \\ & =1.667 \times 10^{-2} \text { revolutions } / \mathrm{min} / \mathrm{sec} \\ & =2.778 \times 10^{-4} \text { revolutions } / \mathrm{sec} / \mathrm{sec} \end{aligned}$
revolutions/second	$\begin{aligned} & =3.6 \times 10^{2} \text { degrees } / \text { second } \\ & =6.283 \text { radians } / \text { second } \\ & =60 \text { revolutions } / \text { minute } \end{aligned}$

revolutions/sec/sec	$=6.283 \mathrm{rad}^{i} \mathrm{ans} / \mathrm{sec} / \mathrm{sec}$ $=3.6 \times 10^{3}$ revolutions $/ \mathrm{min} / \mathrm{min}$ $=\therefore .0 \times 10^{1}$ revolutions $/ \mathrm{min} / \mathrm{sec}$
second (angle)	$=2.778 \times 10^{-4}$ degrees $=1.667 \times 10^{-2}$ minutes $=4.848 \times 10^{-6}$ radians
slug	$=1.459 \times 10^{1}$ kilograms $=3.217 \times 10^{1}$ pounds
sphere (solid angle)	$=1.257 \times 10^{1}$ steradians
square centimeter	$=1.973 \times 10^{5}$ circular mils $=1.076 \times 10^{-3}$ square feet $=1.550 \times 10^{-1}$ square inches $=1.0 \times 10^{-4}$ square meters $=3.861 \times 10^{-11}$ square miles $=1.196 \times 10^{-4}$ square yards
square foot	$=2.296 \times 10^{-5}$ acres $=9.29 \times 10^{2}$ square cms $=1.44 \times 10^{2}$ square inches $=9.29 \times 10^{-2}$ square meters $=3.587 \times 10^{-8}$ square miles $=1.111 \times 10^{-1}$ square y e.r.ds
square inch	$=1.273 \times 10^{6}$ ciscíar mils $=6.452$ square cms $=6.944 \times 10^{-3}$ square feet $=6.452 \times 10^{2}$ square millimeters $=7.716 \times 10^{-4}$ square yards $=1.0 \times 10^{6}$ square mils
square kilometer	$=1.076 \times 10^{7}$ square feet $=1.550 \times 10^{9}$ square inches $=1.0 \times 10^{6}$ square meters $=3.861 \times 10^{-1}$ square miles $=1.196 \times 10^{6}$ square yards

square meter	$=1.076 \times 10^{1}$ square feet $=1.55 \times 10^{3}$ square inches $=3.861 \times 10^{-7}$ square miles $=1.196$ square yards
square mile	$=6.40 \times 10^{2}$ acres $=2.788 \times 10^{7}$ square feet $=2.590$ square kilometers $=3.098 \times 10^{6}$ square yards
square millimeter	$=1.076 \times 10^{-5}$ square feet $=1.55 \times 10^{-3}$ square inches
square yard	$=2.066 \times 10^{-4}$ acres $=9.0$ square feet $=1.296 \times 10^{3}$ square inches $=8.361 \times 10^{-1}$ square meters $=3.228 \times 10^{-7}$ square miles
steradian	$=7.958 \times 10^{-2}$ spheres $=1.592 \times 10^{-1}$ hemispheres $=6.366 \times 10^{-1}$ spherical risht angles $=3.283 \times 10^{3}$ square degrees
$\begin{aligned} & \text { temperature }\left({ }^{\circ} \mathrm{C}\right)+273 \\ & \text { temperature }\left({ }^{\circ} \mathrm{C}\right)+17.78 \\ & \text { temperature }\left({ }^{\circ} \mathrm{F}\right)+460 \\ & \text { temperature }\left({ }^{\circ} \mathrm{F}\right)-32 \end{aligned}$	$\begin{aligned} & =1.0 \text { absolute temperature }\left({ }^{\circ} \mathrm{K}\right) \\ & =1.8 \text { temperature }\left({ }^{\circ} \mathrm{F}\right) \\ & =1.0 \text { absolute temperature }\left({ }^{\circ} \mathrm{R}\right) \\ & =5 / 9 \text { temperature }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$
ton (metric)	$=2.205 \times 10^{3}$ pounds
ton (long)	$=2.24 \times 10^{3}$ pounds
ton (short)	$=2.0 \times 10^{3}$ pounds $=9.0718 \times 10^{2}$ kilograms $=3.2 \times 10^{4}$ ounces $=8.9287 \times 10^{-1}$ tons (long) $=9.078 \times 10^{-1}$ tons (metric)

tons (short)/sq ft	$=9.765 \times 10^{3} \mathrm{kgs} / \mathrm{square}$:neter $=1.389 \times 10^{1}$ pounds $/$ square inch
watt	$=3.4129 \mathrm{Btu} /$ hour $=5.688 \times 10^{-2} \mathrm{Btu} /$ minute $=1.0 \times 10^{7} \mathrm{ergs} / \mathrm{sec}$ ond $=4.427 \times 10^{1}$ foot-pounds/minute $=7.378 \times 10^{-1}$ foot-pounds $/$ second $=1.341 \times 10^{-3}$ horsepower $=433 \times 10^{-2} \mathrm{~kg}$-calories/minute $=1.0 \times 10^{-3}$ kilowatts
watt-hour	$=8.413 \mathrm{Btu}$ $=3.6 \times 10^{10} \mathrm{ergs}$ $=2.656 \times 10^{3}$ foot-pounds $=8.605 \times 10^{2} \mathrm{~g} \mathrm{zam}$-calories $=1.341 \times 10^{-3}$ horsepower-hours $=8.605 \times 10^{-1}$ kilogram-calories $=1.0 \times 10^{-3}$ kilowatt-hours
watt (international)	$=1.000165$ watts (absolute)
week	$=1.68 \times 10^{2}$ hours $=1.008 \times 10^{4}$ minutes $=6.048 \times 10^{5}$ seconds
yard	$=9.144 \times 10^{2}$ centimeters $=9.14 / 4 \times 10^{-1}$ meters $=4.034 \times 10^{-4}$ nautical miles $=5.682 \times 10^{-4}$ statute miles
year	$\begin{aligned} & =3.65256 \times 10^{2} \text { days (mean solar) } \\ & =8.7661 \times 10^{3} \text { hours (mean solar) } \end{aligned}$

USEFLL PHYSICAL CONSTANTS	
Acceleration of gravity (g)	$\begin{aligned} & =32.17 \mathrm{ft} / \mathrm{sec}^{2} \\ & =980.6 \mathrm{~cm} / \mathrm{sec}^{2} \end{aligned}$
Velocity of sour d in dry air $C^{\circ} 0^{\circ} \mathrm{C}$ and 1 atmos.	$=33,136 \mathrm{~cm} / \mathrm{sec}$ cond $=1,089 \mathrm{feet} /$ second
Heat of fusion of water	$=79.7$ calories/gram $=144 \mathrm{Bta} / \mathrm{pound}$
Heat of vaporization of water © 1.0 atmos.	= 540 calories/gram $=970 \mathrm{Btu} /$ pound
Specific heat ot air	$=\mathrm{Cp}=0.238 \mathrm{cal} / \mathrm{gram}\left({ }^{\circ} \mathrm{C}\right)$
Density of air @ $0^{\circ} \mathrm{C}$ and 760 mm	$=0.991293 \mathrm{grams} /$ cubic cin
Velocity of light (c)	$=2.997902 \times 10^{10} \mathrm{~cm} / \mathrm{ser}$.
Avogadro's number (N)	$=6.061 \times 10^{23}$ molecules $/ \mathrm{gram}$-mole
Pi	$=3.14159265$
Naperian-logarithm base	$=2.71828133$
Radiation absorbtion dose (rad)	$=1.0 \times 10^{2} \mathrm{ergs} / \mathrm{gram}$
Roentgen	$=8.3 \times 10^{-1} \mathrm{rads}$

International Standard Prefixes

Conversion Table

Itre atompanying tahle o：futcotational Standard Piclixas ni．sy be used to indicate decimal point mosement and conversion of units．
linample 1：
（innvert 10 microns to milli reters．
Soltition：
Enter table at Micro in lett－hand column，pro－ it：ting horitontally to vertical Milli column．Move
 ligures．＇en mistons equal o．01 millimetet．
Example 2：
Convert 2 （etahmis to meyohms．
Solution：
Entering lefthand column at Teat，pojert to Mega column athd mote six．Two tetachme eypal 2，000，000 megohms．

GIVEN	TO OETAIN													
	¢	$\stackrel{\square}{5}$	$\stackrel{8}{8}$	号	$\stackrel{O}{\underline{\underline{x}}}$	号	$\stackrel{\mathbf{0}}{\mathbf{8}}$	$\frac{\grave{2}}{\bar{z}}$	吕	莍	$\overline{\bar{\Sigma}}$	$\stackrel{\text { O }}{\text { ¢ }}$	－	$\stackrel{8}{8}$
Tera	T		3	6	9	10	11	12	13	14	15	18	21	24
Giga	G	3		3	6	7	8	9	10	11	12	15	18	21
Mega	M	6	3		3	4	5	6	7	8）	9	12	15	18
Kilo	K	9	6	3		1	2	\leqslant			6	9	12	15
Hecto	h	10	7	4	1		1	2	3	4	5	8	11	14
Deka	dk	11	8	5	2	1	．	1	2	3	4	7	10	13
UNITY		12	9	46	3	2	1		1	2	3	6	9	12
Deci	d	13	10				2	1		1	2	5	8	11
Centi	c	14	11	8	5	4	3	2	1		1	4	7	10
Milli	m	15	12	9	6	5	4	3	2	1		3	6	9
Micro	μ	18	15	12	9	8	7	6	5	4	3	k	3	6
Nano	n	21	18	15	12	il	10	9	8			3	Y\％	3
Pico	P	24	21	18	15	14	13	12	11	10	7	5	\because	－

믄 ® 흘 를

Most of th. visualier the inch and iss c.nimus divvium, wiht tase.
Visuldsing the millimeter is wone hing difterem, and menanisid pio suy sixpm 1,nכul Here is ample reterence
guide, with nuheromponed on
 "0 10 and hers.

 a blandatd we ill many prod-
uts

Previously, we related "Inches
and Millimeters" and "Pounds and Millimeters" and "Pounds
and Grams" in useful linechart form. Now we relate
volume measure in terms of volume measure in terms of
cubic inches and cubic centicubic inches and cubic centimeters. To make the scales
more useful, common U.S.
liquid units have been added. liquid uniss have been added.
Nore, however, that the pints. quarts and gallons shown are
liquid measure, not dry measure.
Below are a few examples Below are a few examples
of how the charts can be used.
Most of us remember that Most of us remember and a liter are roughly equisalent. Most of us can't remember which is larger. liter is the larger (the quart
being 947 cc. or 0.947 liter). being 947 cc , or 0.947 liter).
The crror of this quart-liter
mental reference grows as the mental reference grows as the
volume goes up. For example,
4 gals (16 quaris) is closer to 4 gals (16 quaris) is closer to
15 liters than 16 liters. As another example, the
displacement of an Americanmade engme might be 250 cu
in. The equivalent, in mettic in. The equivalent, in methic
unis, s approximately 4100 cc , or t. I liters.
The chart to the fat right may be useful for equating flow, if
the time unit is kept the same. he time unit is kept the same.
For example, a flow is given as
30 liters/min. The flow may 130 liters $/ \mathrm{min}$. The flow may
he read in pal $/ \mathrm{min}$ by reading the equivalent of 1300 liters in
gallom. Thus. 130 liters/min ane almost $4,5 \mathrm{gal} / \mathrm{min}$.

FRACTION/DECIMAL CONVERSION

TEMPERATURE CONVERSION

To use the table, look for the temperature reading you have in the middle column. If the reading you have is in degrees Centigrade, read the Fahrenheit equivalent in the right hand column. If the reading you have is in degrees Fahrenheit, read the Centigrade equivalent in the left hand column.

-80 to 34			35 to 77			78 to 290		
C		F	C		F	C		F
-62	-80	-112	1.7	35	95.0	25.6	78	172.4
- 57	-70	-. 94	2.2	36	96.8	26.1	79	174.2
-51	-60	-76	2.8	37	98.6	26.7	80	176.0
-46	-50	- 58	3.3	38	100.4	27.2	81	177.8
-40	-40	- 40	3.9	39	102.2	27.8	82	179.6
-34	-30	- 22	4.4	40	104.0	28.3	83	181.4
-29	-20	- 4	5.0	41	105.8	28.9	84	183.2
-23	-10	14	5.6	42	107.6	29.4	85	185.0
-17.8	0	32	6.1	43	109.4	30.0	86	186.8
-17.2	1	33.8	6.7	44	111.2	30.6	87	188.6
-16.7	2	35.6	7.2	45	113.0	31.1	88	190.4
-16.1	3	37.4	7.8	46	114.8	31.7	89	192.2
-15.6	4	39.2	8.3	47	116.6	32.2	90	194.0
-15.0	5	41.0	8.9	48	118.4	32.8	91	195.8
-14.4	6	42.8	9.4	49	120.2	33.3	92	197.6
-13.9	7	44.6	10.0	50	122.0	33.9	93	199.4
-13.3	8	46.4	10.6	51	123.8	34.4	94	201.2
-12.8	9	48.2	11.1	52	125.6	35.0	95	203.0
-12.2	10	50.0	11.7	53	117.4	35.6	96	204.8
-11.7	11	51.8	12.2	54	129.2	36.1	97	206.6
-11.1	12	53.6	12.8	55	131.0	36.7	98	208.4
-10.6	13	55.4	13.3	56	132.8	37.2	99	210.2
-10.0	14	57.2	13.9	57	134.6	37.8	100	212.0
- 9.4	15	59.0	14.4	58	136.4	43	110	230
- 8.0	16	60.8	15.0	59	138.2	49	120	248
- 8.3	17	62.6	15.6	60	140.0	54	130	266
- 7.8	18	64.4	16.1	61	141.8	60	140	284
- 7.2	19	66.2	16.7	62	143.6	66	150	302
- 6.7	20	68.0	17.2	63	145.4	71	160	320
- 6.1	21	69.8	17.8	64	147.2	77	170	338
- 5.6	22	71.6	18.3	65	149.0	82	180	356
- 5.0	23	73.4	18.9	66	150.8	88	190	374
- 4.4	24	75.2	19.4	67	152.6	93	200	392
- 3.9	25	77.0	20.0	68	154.4	99	210	410
- 3.3	25	78.8	20.6	59	156.2	100	212	413.6
- 2.8	27	80.6	21.1	70	158.0	104	220	428
- 2.2	28	82.4	21.7	71	159.8	110	230	446
- 1.7	29	84.2	22.2	72	161.6	116	240	464
- 1.1	30	86.0	22.8	73	163.4	121	250	482
- 0.6	31	87.3	23.3	74	165.2	127	260	500
0.0	32	89.6	23.9	75	167.0	132	270	518
0.6	33	91.4	24.4	76	168.8	138	280	5.36
1.1	34	93.2	25.0	77	170.6	143	290	554

Formulas $-C=5 / 9(F-32)$ or $F=9 / 5 C+32$

High-Altitude and Space Pressure Environment

Line Chart Relates Hg Column to PSI

The height of a mercury column often is used is indicate pressure in pneumatic or Indratilic sostems. Here is a line dhat to convert columm height to the ssatem pressure in psi. The chant is based on the expression:

$$
\frac{14.696 \mathrm{psi}}{99.091 \text { (inches } \mathrm{Hg})}=0.401
$$

While only the range firom ero lo . 30 inches of merour is covened. latger or
smaller values ant be fomme bs moving the decimal point a like number of places on both sides of the line. For instance, is is seen that 1.5 inches of mercurs is equivalent to 0.73 psi. Moving the decimat print one place w the right givev 15 inches of meroury, which is seen wequal 7.36 psi. Mosing one step further, 150 inches of mercury would equal 73.6 psi. The conversion chant should prove useful when checking fluidic device specilis.dions. These often ate rated in terms of inches of mercury.

SCALES AND PROJECTIONS
Table VI. Length of One Degree of Longitude at Different Latitudes

Latitude	Statute Miles	Latitude	Statute Miles
0°	69.171	45	48.995
1	69.162	46	48.135
2	69.130	47	+1.261
3	69.078	48	46.372
4	69.005	49	45.469
5	68.911	69	44.552
6	68.796	51	43.621
7	68.660	52	42.676
8	68.503	53	41.719
9	68.326	54	40.749
10	68.128	55	39.766
11	67.909	56	38.771
12	67.670	51	37.764
13	67.411	58	36.745
14	67.131	59	35.715
15	66.830	60	34.674
16	66.510	61	33.622
17	66.169	62	32.560
18	65.808	63	31.488
19	65.427	64	30.406
20	65.026	65	29.315
21	64.606	66	28.215
22	64.166	67	27.106
23	63.706	68	25.988
24	63.227	69	24.862
25	62.729	70	23.729
26	62.212	71	22.589
27	61.676	72	21.441
28	61.121	73	20.287
29	60.548	74	19.126
30	59.956	75	17.960
31	59.345	76	16.788
32	58.717	77	15.611
33	58.071	78	14.428
34	57.407	79	13.242
35	56.726	80	12.051
36	56.027	81	10.857
37	55.311	82	9.659
38	54.578	83	8.458
39	53.829	84	7.255
40	53.063	85	6.049
41	52.281	86	4.841
42	51.483	87	3.532
43	50.669	88	2.422
44	49.840	89	1.211
45	48.995	90	0.000

Decimal to Binary Conversion Tables

The binary system of numbers is used wherever there is a need for "on-oll", or plas minus control. It is necessary in a number of athomatio controls such as mechanical and electronic tape systems. These charts were developed particularly for use with the mechanical Binotrol system which positions a shalt to a fraction of a degree within any number of revolutions. However, they are equally applicable to any problem involving the use ol binary numbers. They ant be used to convert from decimal units up to 32,767 to binary units or to convert from I -dygit binary units (t) decimal mits.

Decimal to Binary Conversion:

In Primary Table find decimal mumber cither equal to or next less than the desired decimal number. Call this the Primary decimal number. The binary number opposite Primary decimal number represents the first eight digits of the Final binary numbic. (In the Table a square without a " 1 " is equivalent to rero.) Suls. wact the Primary decimal number from the desired decimal number. The difference will always be less than 128. Look up the difference in the Secondary Table. The binary number opposite the difference represents the last seven digits of the inal binary number.

Example: Required to convert 90.125 to a binary number.

1. From Primary Table, Prinary decimal number is 20,096 .
2. The first cight digits of the binary number are 10011101.
3. Subtract 20,096 from 20,125 leaving 29.
4. Fint 29 in Secondary Table. last seven digits of binary number are 0011101.
5. Therefore the binary equivalent of 20,195 is 100111010011101.

Binary to Decimal Conversion

Find first eight digits of binary number in the Primary Table. Decimal number opposite this is the Primary decimal number. Find the last seven digits in the Secondary Table. This is the Secondary decimal number. Add Primary and Sccondary decimal number to find the Final decimal.

Example: Required to reduce th: binary number 100101101010110 to a decimal number.

1. L.ook up the first cight digits (10010110) in the Primary Table.
2. The Primary decimal number is 19,200 .
3. Look up the last seven digits (1010110) in the Secondary Table.

4. The Secondary decimal number is 86 .
5. The final decimal number is $19,200+86=$ 19,286
6. Therefore the decimal equivalent of 100101101010 110 is $19,286$.
Data Courtesy: Barnes Engineering Co., Stamford, Cons.

PRIMARY TABLE

SECONDARY TABLE

Coulomb Conyersion

This nomograph provides a simple method of conversion among the electrical quanti' es : coulombs, abcoulombs, faradays and ampere-hours. It lessens the confusion that often arises in using t.lese terms.
To use the nomograph, select the value in the known quantity, connect this with the pivot point to intersect other values. The decimal point should be adjusted (as indicated by the notation 10^{4}) to allow entrance on the selected line. This value should be returned to the answer.

the energy level of things

Emergy Conversion Chart

In the desigu of sistems where tioc engineer must deal with enetgy itl several forms, it is necessary to be familisr with the various expressions of energy and their measurcment. Einergy sulies muse be well known. as well in their entegy content. The accompanying chart. ly preventing several energy forms and sources toRellur, helps in this respect. Energy or power may be (bustitex from onc torm to another by merely drawing athotrontal line lectween verticat columns. Con-
 the nor'ogratut the the right.
Example:
Ikwired:-a gasoline elriven nustor geturaton with all cutprut of 2.5 kw .
How moms horsepower will be requited ankl how mally gations of gasoline will be convined under lull toxal coulitions?

Assume that sonversion cificiencies are:
I. Gasoline to merhanical $=15$ percent
2. Mechanisal to electrical $=85$ percent Solution: (lise chart will magorine turnerl sideways.) seqp 1. Fion 9.5 kw os cure It, draw a horiomatal line to the right interserting curve 16 at abmat 3.4 hp . sep 2. Fionn 85 jeicent on curse IS. draw a line
 38 hip. This is the required hp.
Sicp. 8 . Fionn 15 petcent on curve 18 , atraw a line though 3.8 ont cuive 17 . interserting curve 16 at 25.2 lip.
Siep 4. Fiom 25.2 on curve Iti, draw a horimutal line to the leti interserting curve 9 at 0.5 gatlons ${ }^{2} \mathrm{ker}$ lome. Besired: Equivalent of 5 hip in terms ol elertion solts: From 5 on curve 1 (or 10) proced horiontally to it. I-rseat curicila at 8.3 ($10-$) clectron volts.
Desired: 5 hp hours to Btu.
From 5 on cunce I (or lio) phaced to is (10) an rurves.
Note: lowen is expressed in terms ot energy notation pe: hour. 1 a express energy, then, merely climinate the " (hr) " notation
The basic lormula for cadh watical colamen is indicatced therem. The information lor colamms 1, 2, 3, I. and It was derived from standard plasrias tevts. Infar. mation for the other columm, wis obtained Irom the Eves Standard Oil Compan!, Buston, Mass., the Hon. wa Cas Compuav, the C. H. Sprague \& Son Company, Bonton, Mass., the "Smyth Report on Atomic Energy" published by Princeton University Press, from "Op. el.,tions Rexearch, Arnament, Launching." by Merrill, Gobliserg. Heimhole; published by D. Van Nostrand Comp.an), and the Bhw-Knox Company, Inc., Pitsbught, Pa. Nuclear encrgy is laved on complete fission ol uraniuma.

́…广远

Power unit conversion

With this nomograph. prepared by Huggins Lat--. sries, of Sunnyvale, Calif., you can quickly onr any of the common power units to dbm. To t. : a millimicrowatts or microwatts, simply lay a straightedge from the appropriate value on scale \mathbf{A} through the applicable point on scale B and read the value in dbm fron scale \mathbf{C}. For example, four millimicrowatts equals -54 dbm . To convert milliwatts, watts, or kilowatts, follow the same procedure but use scales A, D, and E. For example, two watts equals 33 dbm .

Torque
 Conversion
 Charts

Here is a family of charts relating the various methods of measuring torque. It should prove especially valuable when having to convert from one system of units to another.

TO CONVERT: INCH-GRAMS	
10	multimy ar
Inch sunces	0.03527
Inch-pounds	2.205(10-3:
Foot-pounds	1.8376(10.9)
Centimeter-kilograms	$2.58\left(10^{-4}\right)$
Mete-kilograms	2.54(10-1)
TO CONVERT: IMCH-OUNCES	
ז0	mutipiray
Inch-grams	28.3495
Inch.pounds	0.0625
Foot-pounds	$5.2087\left(10^{-31}\right)$
Centimeter.kilograms	72.808(10-3)
Meter-kilograms	728.08(10-9)

TO CONVERT: INCH-POUNDS

ro	multiply
Inch-grams	435.5924
Inch-ounces	16.0
Foot-pounds	0.08334
Centimeter-kilograms	1.152
Meter-kilograms	1.152(10-2)

TO	MULTIPLY BY
Inch-grams	5443.1088
Inch-ounces	192.0
Inch-pounds	12.0
Centimeter-kilograms	13.8257
Meter-kilograms	0.138257

 TO CONVERT:
 CENTIMETER-KILOGRAMS
 | T0 | multipiy ay |
| :---: | :---: |
| Inch.grams - | 393.7 |
| Inch-ounces | 13.8858 |
| Inch-pounds | $85.8108\left(10^{-2}\right)$ |
| Foot-pounds | $\left.72.346110^{-3}\right)$ |
| Meter-kilograms | 0.01 |
| TO CONVERT: METER-KILOGRAMS | |
| 10 | multipley |
| Inch-grams | 39370.0 |
| Inch-ounces | 1388.58 |
| Inch-pounds | 85.8108 |
| Foot-pounds | 7.2346 |
| Centimeter-kilograms | 100.0 |

Conversion Chart for Vibration Velocity Level And Vibration Acceleration Lovel

In the field of vibration (or structure-borne sound). it is in general practice to express and measure vibration levels in terms of the decibel. This quantity has always been employed in the field of air-borne sound. The standard expressios for the measurement of air-borne sound is the sound pressure level (SPL) and is measured in " db ".

Vibration velocity levels expressed in inches/second and vibration acceleration levels expressed in inches/second ${ }^{2}$ are expressed conveniently as "vdb", velocity decibels (re $10^{-6} \mathrm{~cm} / \mathrm{sec}$), and "adb", acceleration decibels ($\mathrm{re} 10^{-3} \mathrm{~cm} / \mathrm{sec}^{2}$), respectively.
The accompanying chart permits conversion of vibration level to either system.

CONVERSION TABLE - UNITS OF LUMINANCE

		Nit	Stilb	$\begin{gathered} \text { sougle } \\ \text { MECTOMETRE } \\ \text { CRRAE } \end{gathered}$	Apostlib	Milliapostilb	Microapostilb	Lambert	MIIIlambert	MicroJambert	Footlambert	Condie Per Sq. 11	Candic Par Sq. Inch
$\begin{aligned} & \text { init } \\ & \text { (nt })^{\prime} \end{aligned}$	$\frac{1 \text { Candela }}{m^{2}}$	1	10^{-4}	10^{4}	3.14	3.14×10^{3}	3.14×10^{6}	3.14×10^{-4}	3.14×10^{-1}	3.14×10^{2}	2.919×10^{-1}	9.29×10^{-2}	6.452×10^{-4}
$\begin{aligned} & 1 \mathrm{still}, \\ & (\mathrm{sb}) \end{aligned}$	$\frac{1 \text { Condelo }}{\mathrm{cm}^{2}}$	10^{4}	1	10^{8}	3.14×10^{4}	3.14×10^{7}	3.14×10^{10}	3.14	3.14×10^{3}	3.14×10^{6}	2.919×10^{3}	9.29×10^{2}	6.452
$\begin{array}{\|c\|} \hline 1 \text { Bougie e } \\ \text { Hectormitre } \\ \text { Corró } \\ \hline \end{array}$	$\left\|\frac{1 \text { Condale }}{(100 \mathrm{~m})^{2}}\right\|$	10^{-4}	10^{-8}	1	3.14×10^{-4}	$3.14: 10^{-1}$	3.14×10^{2}	3.14×10^{-8}	3.14×10^{-5}	3.14×10^{-2}	2.919×10^{-5}	9.29×10^{-6}	6.452×10^{-8}
$\begin{aligned} & 1 \text { Apostilib- } \\ & (=s b) \end{aligned}$	$\frac{1 \text { Candsla }}{1 \times \mathrm{xm}^{2}}$.	3.183×10^{-1}	3.183×10^{-5}	3.183×10^{3}	1	10^{3}	10^{6}	10^{-4}	10^{-1}	10^{2}	9.29×10^{-2}	2.957×10^{-2}	2.054×10^{-4}
$\begin{aligned} & \text { Milli- } \\ & \text { opomitb- } \end{aligned}$ (masb)	$\begin{aligned} & 1 \text { Condela } \\ & \pi \times 1000 \times m^{2} \end{aligned}$	3.183×10^{-4}	3.183×10^{-8}	3.183	10^{-3}	1	10^{3}	10^{-7}	10^{-4}	10^{-1}	9.29×10^{-5}	2.957×10^{-5}	-5.054×10 ${ }^{-7}$
1 Mieroapostilb= (μ asb)	$\frac{1 \text { Candela }}{1 \times 10^{6} \times \mathrm{m}^{2}}$	3.183×10^{-7}	3.183×10^{-11}	3.183×10^{-3}	10^{-6}	10^{-3}	1	10^{-10}	10^{-7}	10^{-4}	9.29×10^{-8}	2.957×10^{-8}	2.054×10^{-10}
$1 \mathrm{i} \text { ambert - }$ 1.1	$\frac{1 \text { Condela }}{\pi \cdot \mathrm{cm}^{2}} \cdot$	3.183×10^{3}	$3.183 \times 10^{-1 / 3}$	3.183×10^{7}	10^{4}	10^{7}	10^{10}	1	10^{3}	10^{6}	9.29×10^{2}	2.957×10^{2}	2.054
ins sent - (mL)		3.183	3.183×10^{-4}	3.183×10^{4}	10	10^{4}	10^{7}	10^{-3}	1	10^{3}	9.29×10^{-1}	2.957×10^{-1}	2.054×10^{-3}
1 Microlamberia ($\mu \mathrm{L}$)	$\frac{1 \text { Condela }}{\pi \times 10^{6} \times \mathrm{cm}^{2}}$	3.183×10^{-3}	3.183×10^{-7}	3.183×10	10^{-2}	10	10^{4}	10^{-6}	10^{-3}	1	9.29×10^{-4}	2.957×10^{-4}	+2.054×10 ${ }^{-8}$
1Foot -lambert(fit)	$\frac{1 \text { Condela }}{\pi x+t^{2}}$	3.426	3.426×10^{-4}	+3.426×10 ${ }^{4}$	10.764	1.0764×10^{4}	1.0764×10^{7}	1.0764×10^{-3}	1.0754	1.0764×10^{3}	1	0.3183	2.14×10^{-3}
PCandle Par Sq. ft.	$\frac{1 \text { Candela }}{\mathrm{ft}^{2}{ }^{\text {a }}}$	1.0764×10	1.0764×10^{-3}	1.0764×10	3.382×10	3.382×10^{4}	4.382×10 ${ }^{7}$	3.382×10^{-3}	3.382	3.382×10^{3}	3.14	1	C. 944×10^{-3}
$\begin{aligned} & \text { Candie } \\ & \text { Par } \\ & \text { Sq. Inch } \end{aligned}$	$\frac{1 \text { Candele }}{\text { inch }^{2}}$	1.55×10^{3}	1.55×10^{-1}	1.55×10^{-5}	4.869×10^{3}	4.869×10^{6}	3.869×108	4.869×10^{-1}	$4.869 \times 1 C^{2}$	4.869×10^{5}	4.524×10^{2}	1.44×10^{2}	1

Section 3

GRAPHIC SYMBOLS

Section 3

TECHNICAL AND GRAPIIC SYMBOLS

Included in this section are written and graphic symbols from such fields as mathematics, time-motion analysis, process analysis, functional analysis, computer processing and flow charting, electricity, air conditioning, architectural wiring symbology, and so forth.

Due to the practical impossibility of including the literally thousands of symbols used in the many related scientific and engineering disciplines with which the human factors engineer may have occasion to work, recommended standards from the USA Standards Institute's 1969 Catalog have been listed for the reader's reference. A quick comparison of several of these standards will convince the reader that the same notational symbols (principally the English and Greek alphabets with various subscripts and superscripts) are employed in several disciplines with unique mfanings in each case. It is important, therefore, that such symbols be used in the proper context if their meanings are to be relevant to the subject being discussed.

Also, such graphic symbols as those used in the fields of electricity and electronics tend to vary slightly from source to source. Thus, electronic graphic symbols required by certain military specifications may not be exactly similar to those shown in the corresponding USA Standard, although these differences are tending to diminish as time passes. Nevertheless, the user should be alert to the need for selecting the proper reference source for the graphics required under any specific contract.

The USA Standards Catalog is available from:
USA Standards Institute
10 East 40th Street
New York, New York 10016

RECOMMENDED USA STANDARDS (Available from USA Standards Institute)

Acoustics

Sl.1-1960	- Acoustical Terminology
Y10.11-1953 - Acoustics, Letter Symbols for	

Aeronautics
Yl0.7-1954 - Aeronautical Sciences, Letter Symbols for
Colorimécry
Z58.1.2-1952 - Colorimetry, Nomenclature and Definitions in the Field of

Communications
C42.65-1957 - Communications

Drawings
232.13-1950 - Abbreviations for Use on Drawings

Electrical/Electronics
Y32.2-1967 - Graphic Symbols for Electrical/Electronics Diagrailus
C83.37-1968 - Chassis Wiring, Color Coding of (EIA RS 336April 1967)
Y10.5-1968 - Quantities Used in Electrical Science and Electrical Engineering, Tetter Symbols for
Y10-19-1967 - Units Used in Electrical Science and Electrical Engineering, Symbols for

Engineering, General
Z10.1-1941 - Abbreviations for Scientific and Engineering Terms
Y10.17-1961 - Selecting Greek Letters Used as Letter Symbols for Eagineering Mathematics, Guide for

Flow Charting

X3.5-1968 - Flowchart Symbols and Their Useage in Information Processing

Heat/Thermodynamics/Plumbing
Al3.1-1956 - Identification of Piping Systems, Scheme for
Y10.4-1957 - Heat and Thermodynamics, Letter Symbols for

Hydraulics

Y10.2-1958 - Hydraulics, Letter Symbol: for

Illumination

C42.55-1956 - Illuminating Engineering:
D12.1-1963 - Roadway Lighting, Practice for
Y10.18-1967 - Letter Symbols for Illuminating Engineering
Z7.1-1967 - Illuminating Engineering, Nomenclature and Definitions for

Information Processing/Intelligibility
S3.2-1960 - Monosyllabic Word Intelligibility, Method for Measurement of
X3.12-1956 - Information Processing, Vocabulary for
Keyboards
X4.6-1966 - 10-Key Keyboard for Adding and Calculating Machines
X4.7-1966 - Typewriter Keyboards
Meteorology
Y10.10-1953 - Meteorology, Letter Symbols for
Physics
Z10.6-1948 - Physics, Letter Symbols for
Safety
Z2.1-1959 - Head, Eye and Respiratory Protection, Safety Code for
235.1-1968 - Accident Prevention Signs, Specifications for

Z53.1-1967 - Marking Physical Hazards and the Identification of Certain Equipment, Safety Coilur Code for

Traffic Control
D6.1-1961 - Manual on Uniform Traffic Control Devices
for Streets and Highways
Traisportation
C42.41-1956 - Transportation - Air
C42.42-1956 - Transportation - Land
C42.43-1956 - Transportation - Marine

MILITARY STANDARDS

AMRL-TR-66-115	- Standardization of Symbols and Units for Enviror ental Research. W.C. Kaufman, August 1966, WPAFB, Ohio - AFSC Aerospace Medical Division
MIL-STF-12	- Abbreviations for Use on Drawings and in Technical-Type Publications
MIL-STD-14	- Architectural Symbols
MIL-STD-15	- I Graphical Symbols for Electrical and Electroni.c Diagrams
	II Electrical Wiring Equipment Symbols
	III Electrical Wiring Symbols for Architectural and Electrical Layout Drawings
MIL-STD-16	- Electrical and Electronic Reference Designations
MIL-STD-17	- Mechanical Symbols
MIL-STD-18	- Structural Symbols
MIL-STD-23	- Nondestructive Testing Symbols
MIL-STD-101	- Color Code for Pipelines and for Compressed Gas Cylinders
MIL-STD-106	- Mathematical Symbols
MIL-STD-78.3	- Nomenclature and Abbreviat: is in Aircrew Stations
MLL-STD-1247	- Identification of Fipe, Hose, and Tube Lines for Aircraft, Missile, and frice Systems
MS-33558	- Numeral and Letter, Aircraft Instrument Dial, Standard Form of

ARITHMETIC AND ALGEBRA

GENFRAL. By conveation, the first few lower case letters of the Roman alphabet (a, b, c, . .:) are generally used to denote constant terms or coefficients and the last few letters of the Roman alphabet (. . x, y, z) are generally used to indicate variables. Greek ietters usually indicate specific constarits except $\alpha_{1} f_{1} 9$, and ϕ are commonly used h 'esignato angles. To simplify complicated expressions containing numerous or often repeated teims, the substitutio:: of a single capita ${ }^{1}$ Roman letter for a single factor is recommended; thus, the term ($b^{2}-4 a c$) may be replaced by n pitere $D=b^{2}-4 a c$.

+.	Addition, positive valuc, underestimation, approach through positive valces.
Subtraction, negativo valuc, orerestimation, approach through negative	
valuec.	

$>$	(IS) greater than.
	(IS) much greater than.
or \geq	Greater than or equal to; not less than.
\propto	Varies directly as.
N!	Factorial; continued product of all integral numbers from 1 to N , where N is an integral number.
- (superscript : numbers or letters)	Exponent; raised to the power of degree n (exponent indicates number of. iterations).
$\sqrt{5}$	Radical sign; superscript n indicates index of degrec of root. Index omitted in case of square root.
m/2 (superscript)	Fractional index; . . . raised to porrer of degree m/n.
- (superscript)	Negative exponent; changes the term to its reciprocal.
$\exp f\left(x_{1} y_{z} \ldots ..\right)$	Functional symbol; cxponestial function.
$\exp u$	Functional symbol; exponential u.
$i o r j$	Imaginary unit; j operator. $\sqrt{-1}$
$a^{\circ} 10^{\circ}$	Scientific notation; notation by powers of 10.
	Decimal point (placed on line). Separates whole numbers from numerators of decimal fractions or is placed to the left of the numerator of a decimal fraction.
-	Infinity symbol; algebraic number positively or negatively larger than any other number.
\rightarrow	A:row, approaches as a limit.
'(superscript)	N.ime; netational method of distinguishing between differing variables and constants.
" (superscript)	Double prime; notational method of distunguishing between differing variables and constants.
'"' (superscript)	Triple prime, notitional method of distinguishing between differing variables and consturic.
	Three dois; dots of omissin, meaning "and so forth."
$\log _{4} X$	Logerithm of X to base a.
$\log X$	Logarithm of X to base 10. (common system of logarithms).
$\ln X$	Logarithm of X to base e (Naperian system or Naiural Logarithm).
${ }^{2}$	
$P(n, r)$	Permutations of n things taken r at a time.
$C(n, r)$	Combinations of n things tatien r at a time.
11	Vertical bars; indicates absolute value of the quantity inside the hari: vector msernicude; determinant.
1111	Double vertical bars; indicates a matrix; set of quantities written in specific order of zors and columns.
a_{14}	Element in row i, coiumn j of c aterminant or matrix.
$\operatorname{det}\left(a_{13}\right)$	Deter:ninant with elemenis $a_{t s}$ (or determinant ef mat ix ($a_{4 j}$)).
space or halfspare	Used, instead oi commas, to separnte conveniens groups of digits.
subscript number or letter:	Notstional method of indicating differing values in a set or series.

ELEMENTAR) GEOMETRY

4, 4	Angle(s).
1, 1.	Perpendicular(s) : penpendictular to.
11.11.	Parallel(s), parallel to.
Δ, ${ }_{\text {. }}$	Triangle(s).
O, O	Circle(s).
$\square . \square$	Paralielogram(s).
ㅁ. $\square^{\text {a }}$	Squares(s). Do not use symbals for any other types of polygon:
$\square \square$	Trapezoid(s).
\approx	(IS) congruent (TO).
\sim	(IS) similar (TO).
$\underline{\underline{V}}$	(IS) equiangular.
\therefore	Three dots; hence therefore.
$\overline{\mathrm{AB}}$	Vinculum; chord $A B$ of a circle; length of line segment between 4 and B.
\triangle AB	Directed segrient B to A.
$\widehat{A B}$	Arc $A B$ of a circle.
\%	$\mathrm{Pi}_{\text {; }}$ coustant ratio of circumference of a circle to its diameter.

ANALYTIC GEOMETRY

x, y, z	Rectangular (Cartisian) coordinates of a point in spaca
x, y	Rectangular coo:dinat ; of a point in a plane.
$\boldsymbol{\alpha}$	Alpha; indicates dirsction angle with x-axis.
l	Indicates directional cosine (with x axis).
$\boldsymbol{\beta}$	Beta; indicates direction angle with y-axis.
m	Indicates directional cosine (with y-axis).
$\boldsymbol{\gamma}$	Gamma; indicates direction angle with z-Exis.
n	Indicates directional cosine (with 2 -axis).
r, θ, ϕ	Spherical coordinates of a point in space.
r, θ	Polar coordinates of a point in a plane.
\downarrow	Psi; indicates angle from radius vector to tangent oí plane curve.
$\boldsymbol{r}, 0,2$	Cilindrical coordinates of a point in space.
$p_{\text {c }}{ }^{5}$	Indicates intrinsic coordinates:
e	Eccentricity of a conic.
p	Semi-laus rectum.
m	Slope of a curve or line.
C	Circumference of a circle.
r	Radius of e circle.
5	Diameter of a circle.
-	Radius of curvature.
d	Perpendicular distancr from a point to a line (length of narmal).

TRIGONOMETRY

- (superscript)	Indicates degree(s).
θ o	Angle measured in radians.
- (superscript)	Prime, indicates minutes.
" (superscript)	Double prime; indicates seconds.
sin	Sine of angle.
cos	Cosine of angle.
tan	Tangent of angle.
cot	Cotangent of angle.
sec	Sccant of angle.
cse	Cosecant of angle.
vers	Versed sine of angle. 1-cose 0
covers	Coversed sine of angle.
hav	Haversine of angle. $\frac{1}{3}(1-\cos \theta)$.
cis 8	$\cos \theta+1 \sin \theta$.
arc sin or $\sin ^{-1}$	Inverse sine (0); angle whose sine is.
arc cos or $\cos ^{-1}$	Inverse cosine (of); angle whose cosine is.
$[\sin f(x)]^{*}$	The $\mathrm{n}^{\text {Lh }}$ power (0).

\&

HYPERBOLIC FUNCTIONS

sinh Hyperbolic sine.
cosh Hyperbolic cosine, ete.
aresinh or sinh ${ }^{-1}$ Inverse hyperbolic function (of); angle whose hyperbolic sine is.
arc cosh or cosh ${ }^{-1}$ Inverse hyperbolic function (ot) angle whose hyperbolic cosine is cta.
$[\sinh f(x)]^{4} \quad n^{2 x}$ power (0f).
$[\cosh f(x)]^{\mathbf{Z}} \quad n^{m}$ power (0f) etc.

CALCULUS

d	Differential operator.
${ }^{\text {d }}$	Differential operator of $\mathrm{n}^{\text {2m }}$ order.
$\frac{d}{d x}$	Derivitive operator of first order.
$\frac{d^{n}}{d}$	Derivitive operator of n^{4} order.
$d x$	
0	Curly d; indicates partial differentiation.
D	Differsntial operator.
D^{*}	Differential operator of $\mathrm{n}^{\mathbf{4}}$ order.
\dot{x}, \dot{z}	Indicates first and second derivatives with respect to time (Newtor's notation).
$d^{n} y / d x^{n}$	Derivitive of $n^{\text {L }}$ order.
" (superscript)	Double prime, order of differintiation.
" (superscript)	Triple prime; order of differentiation.

$\mathcal{S}, \mathcal{J}, \int \mathcal{S} \mathcal{S}$ Integral signs.

SPECIAL FUNCTIONS

 $J_{\mathbf{a}}(x)$. 1922, a9 $\cdot \because$ by 2. F. Adams in the Smithsonia Tables, 1922.
$B_{1}, B_{1}, B_{5}, \ldots$ Bernc." 1 and polynumials.
$B_{1}, B_{2}, B_{2}, \ldots$
γ
Garnin.-: 'iler's (Mascheronis) constant. (0.5772-)
$\Gamma(x)=\int_{0} \quad x^{n-1} e^{-x} d x$
The Gar - q eunction of the positive number n. Also called the factorial - $\int^{10} x^{n-1} e^{-x} d x \quad$ function
$B(m, n)=\quad$ The Beta function of any two positive numbers m and n

- $f^{\prime} x^{\text {m-1 }}$
$(1-x)^{n-1} d x$
$r_{x}{ }^{(\pi-1)}=$
- $\int_{:}^{=} e^{-z} d x$
$B_{x}(m, \pi)=$
- $\int^{r_{2}-2}$
$(1-x)^{n-1} d x$
The incomplete Gamma function.
The incomplete Beta function.

VECTOR ANALYSIS

	Vectors of unit magnitude.
$\bar{A} \cdot \bar{B}$.	Scalar product (dol product) of two rectors.
$\bar{A} \times \bar{B}$	The vector product (cruss product) of two vectars.
$A<\theta$	Indicates the vector $\bar{A}==\bar{i}+b j$ (or) $i a+j b$, where $a=\|\bar{A}\| \cos \theta, b=\|\bar{A}\| \sin \theta$ $\theta=\arctan b / a$, and $\|\vec{A}\|=\left(a^{2}+b^{n}\right.$:
∇	Del; differential operator. $i \frac{\partial}{\partial_{x}}+j \frac{\partial}{\partial_{z}}+\xi \frac{\partial}{\partial_{z}}$

Therblic symbols and colors.

ACTIVITIES DEFINED

Operation. An operation occurs when an object is intentionnlly changed in any of its physical or chemical characteristics, is assembled or c isassembled from another object, or is arranged for another operation, transportation, inspection, or storage. An operation also occurs when information is given or received o: when planning or calculating takes place.
Transportation. A transportation occurs when an object is moved from one place to another, except when such movements are a part of the operation or are caused by the operator at the work station during an operation or an inspection.
Inspection. An inspection occurs when an object is examined for identifisation or is verified for quality or nuantity in any of its characteristics.

Delay. A delay occurs to an object when conditions, except those which intentionally change the physical or chemical characteristics of the obiect, do not permit or require immediate performance of the next planned action.
Storage. A storage occurs when an object is kept and protected against unnuthorized removal.

Combined Activity. When it is desired to show activities performed either concurrenti, or by the same operator at the same woric station, the symbols - Ilnee sctivities are combined, as shown by the circle placed within the - it is: ; r.vent a combincd operation and inspection.
un. $\quad i \cdot$ 'ns outside the range of the definitions are encountered, the : : ourumarised in the following tabulation will enable the analyat - ut : fintinal
\because : … op. aticu
sei.. F. -4

Predomiriunt Renult
Produces or accompliches
Moves
Verifies
Interferes
Keeps

Process Analysis Basic Symbols

TYPICAL OPERATIONAL SEQUENCE DIAGRAM

MIL-H-46855

Notes on Operationa: Sequence Diagram

Symbols

0	Decision
0	Operation
\square	Iranealscion
D	Eeceipt
\square	Inspect; Monitor
∇	Store

Linke
M mechanical or manual
E electrical
V visual
S sound
etc.

Stations or subsysteas are shown by colume Sequential time progrescen dours the page

COMPUTER GRAPHICS AND NOTATIONS

NOTATIONS	MEANING
$:$	Is compared with
$=$	Equal to
\neq	Unequal
$>$	Is greater than
$<$	Is less than
\geqslant	Is greate than or equal to
\leqslant	Is less than or equal to
+	Plus
-	Minus
$\mathbf{\Sigma}$	Sum of
\mathbf{Y}	Yes
\mathbf{N}	No

USASI STANDARD FLOW CHART SYMBOLS

NAME
Input/Outpu
Processing
Annotation
Punch Card
Magnetic Tape
Punched Tape

Punch Card

USE

To represent the input/output function (I/O), i.e., the making available of information for processing (input), or the recording of processed information (output).

To represent the processing function i.e., the process of executing a defined operation or group of operations resultim: in a change in value, form, or location of information.

To represent the annotation function, i.e., the addition of descriptive comments or explanatory notes as clarification.

To represent an I / O function in which the medium is punched cards, including mark sense cards. partial cards, stub cards, etc.

To represent an I/O function in which the inedium is magnetic tape.

To represent an I/O function in which the medium is punched tar.e.

Document

Manual Input

Display

On-line Storage

Off-line Storage

Decision

To represent an I/O function in winich the medium is a document primarily intended for human use.

To represent an I/O function in which the information is entered manually at the time of processing, by means of online keyboards, switch settings, push buttons, etc.

To represent an I/O function in which the information is displayed for human use at the time of processing by means of on 'ine indicators, video devices, console printers, plotters, etc.

To represent an I/O function utilizing auxiliary mass storage of information that can be accessed on-line; e.g., magnetic drums, magnetic disks, magnetic tape strips, automatic magnetic card systems, or automatic microfilm chip or strip systems.

Tc represent any off-line storage of information, regardless of the medium on which the information is recorded.

To represent a decision type operation that determines which of a number of alternate paths is to be followed.

AMiPLIFIER

General
The triangle is pointed in the direction of transmission.
Amplifier type may be indicated in the triangle by words, standard abbreviations, or a letter combination from the following list.

BDG	Bridging	MON	Monitoring
BST	Booster	PGM	Program
CMP	Compression	PRE	Preliminary
DC	Direct Current	PWR	Power
EXP	Expansion	TRQ	Torque
LIM	Limiting		

Applications

3ooster amplifies with two inputs

Monitoring amplifier with two outputs

Bridging amplifer with adjustable gain

Program amplifier with associated attenuator

Amplifier with ansociated power supply

Amplifier with external feedback path

ANTENNA

General

Types or functions may be indicated by words or abbreviations adjacent to the symbol.

$$
\leftrightarrow
$$

Dipole

Counterpois

BATTERY

The long line is always positive, but polarity may be indicated in addition.
Example:

Generalized direct-current source

$$
H \vdash .
$$

One cell

$$
f 1
$$

Multicell

$$
-111-
$$

Multicell battery with 3 taps

Multicell battery wit'? adjustable tap

BREAKER, CIRCUIT
If it is desired to show the condition causing the breaker to trip, the relay-protective-function symbols in item 48.8 may be used alongside the breaker symbol.

General

Note 1-Uise appropriate number of single-line diagram symbols.

CONNECTOR
DISCONNECTING DEVICE
The connector symbol is not an arrowhead. It is larger and the lines are draws at a 90 -degree angle.

Female contact

Male contact

\longrightarrow

Separable connectors (engaged)

Application: engaged 4-conductor connectors; the plug has 1 male and 3 female contacts

Communication switchboard-type connector

2-conduyctor (jack)

2-conductor (plug)

Cathode ray tubes.

What eloctronatic defiection

Fer megatic dellection.

DEVICE, AUDIBLE SIGNALING

Bell. general; telephone ringer
Note -If specific identification is required, the abbreviation AC or DC may be added within the square.
TO SEE NOTE $=\square 0$

Buzzer

see note
$=\square$

Manually restored drop

Electrically restored drop
Tfind

Cömmunication switchboard-type lamp

If specific identification of loudspeaker parts is required, the following letter combinations may be added. The * and \ddagger are not part of the symbol.
*HN Horn
*HW Howler
*LS Ioudspeaker
*SN Siren
DEVICE, VISUAL SIGNALING
Annunciator, general

Annunciator drop or signal, shutter or grid type

Annunciator drop or signal, ball type

Hamd

Slaglobred ine

MICROPHONE

The following letter or letters in the symbol indicate color. In case of conflict with any other symbol, spell out.

A-Amber	G-Green	W-White
B-Blue	O-Orange	II-Wuorescant
C-Clear	R-Red	OP-Opelecent

D-

LIGHT, INDICATING.

Wuh sermlacia.

Ulumumatiase.

Plut, milchboand.

Gas alled (neon, ated.

Norn.-Lights used for ground Indication, aynechroo afrioce etan ahould bo labeled edjecont to the light.

Jepeled indicator or meniag ligher

Jeweled ladicator or waniag lely with puah to test circult.

Whth tarminale and red jewaled indicutor.

METER
INSTRUMENT
Note -The asterisk is not a part of the symbol. Always replace the asterisk by one of the following !etter combinations, depending on the function of the meter or instrument, unlessisome other identifiction is provided in the circle and explained on the diagram.

pLUGS, JACKS, RECEPTACLES.

Noapoloized, i-pale.

plug
Poleaxed.

Jack
PLUG OR PIN

Pin type.

Foo to mere

Docket tower
Pin trope, coaxial.

JACK

2-coaduator matchboard tripe

PLUG
JACK

3-cendvetor switchboard type (with cesillion
contact i)

SWITCH.

Centrifagal. See Governor Regulator.

Spring contact type.

Typica! rotary.

Figure 475. Shagie pola.

Selector type.

Pubbution. awlich, momentery conlet, mer ally open.

Tongle switch SPST-Ahown open

Togile awich SPST aormally aff, momemerily
an.

Toggle witich SPST mormolly on, momenterily olf.

Toggle with SPDT no off pettion.

Toggla awitch SPDT with off poeltion

Tougle awith SPDT on, off, momenterily an.

SYMBOLS FOR ELECTRICAL EQUIPMENT IN BUILDINGS AND BUILDING DISTRIBUTION SYSTEMS

ASARMS.

F

Fire-ulara box, well type.

Fine-alarea bax, peodewal typer

Fire-atorm bell.
CLOCKS.

Mative, wall.

FA

Five-alarm central mation

FS

Automatic fre-alerw derice.

Fut-olafm priatiag ragiter.
$D>$
Fire-alerna dresen

Fire-alarm mation, ely,

fire-alorm mamaltion

Tune namp

DISTRIBUTION.

Power manch

Brach circult, concualad in celliat or mall

Branch creuts concoaled in tloos

- - - -

Bramch circult/ axpoed.

Home rua to pancl boord. Ladicete ammber of circulta by aumber of crown.

Norm.-Any circult without furthar designation indicates a two-wiro circuit. For a greater number of wires indicate as follows: (3 wiros) (4 wires), ato

Nrys.-Une heavy lines and deaignate by number corresponding to linting in feedar sabedule.

Underlies duat and Junction ben. Timple sydem.

Nors.-For double or single ayatems allminate 0as of two linee. This aymbol is equally adaptable to auxillary ayatam layouta.

Motor.

(T)

Power mansformer (or draw to scala)

Connoller.
Electrical distribution, aerial

Pole, leagth, and clan en indioatod.

Pole with down guy, anchor length, clam of pole, and mreagth of guy in powacte as indiceted.

Electrical distribution underground.

Meabole, type es indieated

T

Tronatormer werlit

Smeat-lighaing manderd

Juaction box, celliag.

Junction bax, well.

Lampholder, celliag.

Lampholder, wall.

Lemphoider with pill owilch, cellinge.

Lempholder with pull awleh, wall

V

Lomi, vapordicharge, celllag,

Lamp, vapor-dicherere, wall

Light, alght, calliage.

Lلـght, alght, wall.

Light, exlt, cellias.

Light, cult, wall.

Radjo and coavenlamer.

Special purpose (describe with note on drawing).

Special purpoce.

Any standard symbol as shown in 605, with the aduition of a lower case subscript letter may be used to designate some special variation of standard equipment of particular interest in a specific set of architecturad plans. When used as shown on figure 697 they shall be listed in the koy of symbols on each dre.wing and, if necessary, further described in the epecifications.

TELEPHONE OUTLETS.

Outalde.

Intercamaecting.

Telaphone mulehboend

THEKMOSTAT.

Thermente.

SIGNALS.

Nuncei' cail deme ligho.
Norn.-Numbor Indicates number is lebts than more thas oos is required.

 combination.

Numer' call ration and restlo avilat double combination.

Signal cental mation.

W

Watchnomit mation.

Watchman's centrel wotion.
SWITCHES.

Dosblopolen

GRAPHICAL SYMBOLS	AIR CORDITIONIAE	
EVAPORATIVE CONDENSER		
EVAPORATOR, CIRCULAR, CEIING TYPE, FINNED	(8)	
EVAPORATOR, MANIFOLDED, bARE TUBE, GRAVITY AIR	$\left\{\begin{array}{llll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$	
EYAPORATO… MANIFOLDED, FINNED, FORCED AIR	$\text { \{o위밍ㅁㅇㅇ } 80$	
EVAPORATOR, MANIFOLDED, FINNED, GRAVITY AIR	\\| ololo	
EVAPORATOR, PLATE COILS, HEADERED OR MANIFOLD	$\text { द\}\}}$	
FLITER, LINE	-(1)	
FILTER \& STRAINER, UNE	- (2)	
FINNED TYPE COOLING UNIT, NATURAL CONVECTION		
FORCED CONVECTION COOLING UNIT	8	
GAUGE	1	
high side float	1	
IUMERSION COOLNG UNIT		

STANDARD WIRING SYMBOLS

Greek letter	Greek name	English equivalent	nussian leiter	Erglish equivalent
A e	Alohe	（1）	A	（＊）
B $\boldsymbol{\beta}$	Beta	（b）	56	（b）
Γ	Gun	（c）	B	（v）
			$\boldsymbol{\Gamma}$	（4）
Δ	Delue	（d）	Д	（d）
E	Epuibe	（e）	E	（ve）
25	zena	（a）	3世	（a）
			33	（a）
H_{\square}	Et	（a）	H	（i，e）
$\theta 0$	Trecta	（14）	亩道	（1） 9
			K 5	（a）
16	Lota	（t）	J \quad I	a）
\mathbf{K}＊	$\mathbf{x a p p e}^{\text {a }}$	（1）	M	（a）
$\boldsymbol{A} \boldsymbol{\lambda}$	Lambin	a）	H	（a）
			00	（0，0）
$\mathbf{M} \mu$	M	（m）	II	（b）
NV	Na	（m）	$\mathbf{P} \mathbf{p}$	（r）
		（tw）	C c	（6）
$\Xi \xi$	$\mathbf{x i}$	（t）	T	（1）
0 。	Onicron	（a）	\boldsymbol{y}	（00）
II	Pi	（p）	（1）	（1）
			X \times	（k）
$\mathbf{P} \boldsymbol{p}$	Rbo	（t）	$4 \cdot 4$	（ta）
20s	Siqus	（a）	प у	（ch）
T	Twu	（1）	III ш	（ab）．
\boldsymbol{T}	Uperiom	$(3,0)$	114	（alm）
			＇\％	8
¢ ϕ	Pki	（1）	HI	（a）
X X	Cwi	（H）	b b	，
			32	（c）
$\Psi \downarrow$	Pi	（m）	10 ¢	（a）
$\boldsymbol{\Omega} \boldsymbol{\omega}$	Gwes：	（0）	月 $\boldsymbol{8}$	（y）

HIGH CLOUDS（CH）MEAN LOWER LFVEL 20，000 FEET	
1．Cirrus（Ci） 2．Cirro－cumulus ${ }^{(} \mathbf{C c}$ ） 3．Cirro－stratus（Cs）	Thin and Feat．rerlike Thin－Cotion or Flakelike Very Thin－High Sheet Cloud
MIDDLE CLOUDS（CM）MEAN LEVELS 6500 TO 20，000 HEET	
4．Alto－cumulus（Ac） 5．Alto－stratus（As）	Puffy－Sheep B3ck Medium High－Uniform Sheet Cloud
LOIV CLOUDS（CL）MEAN LEVELS CLOSE TO SURFACE TO 6500 FEET	
6．Strato－cumulus（Sc） 7．Stratus（St） 8．Nimbo－stratus（Ns）	Globular Masses，or Rolls Low Uniform Sneet Cloud Low Amorphous and Rainy Layer
VERTICAL CLOUDS（CL）MEAN LEVELS 1600 TO 20，000 FEET	
9．Cumulus（ Cu ） 10．Cumulo－nimbus（Cb）	Dense－Deme－shaped and Puffy Towering Caulifower－Anvil Top

Section 4

DEFINITIONS

Section 4

DEFINITIONS

The definitions included in the following pages were selected from a such more comprehensive list developed from many sources, the principal of which are identified below. In order to make the present list practical from the standpoint of a pocket data book it was necessary to be very selective. The following criteria were used to guide the selection process:
a. The definition is known to be used frequently in human engineering work.
b. The definition is needed because there has been confusion as to the meaning of the word in the past.
c. The definition, although common to some disciplines, is not well known to others.
d. Multiole interpretations of meaning require that the word be defined according to a specific technical category.

The following references proved to be extremely helpful in compiling the definitions which follow and are recommended to the reader seeking terms that do not appear herein:

Thesaurus of Engineering and Scientific Terms - U.S. Department of Defense, ONR Project LEX, 1967; Defense Documentation Center, Cameron Station, Alexandria, Virginia

Dictionary of Technical Terms for Aerospace Use Allen, W.H.(Ed), Scientific and Technical Information Division, NASA SP-7, Washington, D.C., 1965

Aeronautical Dictionary - Adams, F.D. (Ed), NASA, U.S. Government Printing Office, Washington, D.C.

Navigation DicEionary - U.S. Navy Hydrographic Office, U.S. Government Printing Office, Washington, D.C.

A Glossary of Ocean Science and Undersea Tachmology Terms Hunt, L.M. \& Groves, D.C.(Eds), Compass Pıblications, Inc., 1111 N. 19th Street, Arlington, Va. 22209, 1965.

Aberration - In optics, a specific deviation from perfect imagery, for example:
a. Spherical - Due to spherical form of lens or mirror, central and marginal rays from a point source on the axis; converge to different foci.
b. Chromatic - Due to variation of refractive material, each wavelength of energy has a distinct focus.
c. Astigmatism - Rays from a point source off the axis coverged by a lens or mirror in planes at right angles to each other are brought to different foci.
d. Cona - Central and marginal rays from a point source not on the axis converge to different foci.

Ablation - The removal of surface material from a body by vaporization, melting, chipping, or other erosive process; specifically, the intentional removal of material from a nose cone or spacecraft during high-speed movement through a planetary atmosphere to provide thermal protection to the underlying structure.
Absolute systen of units - l. A system of units in which a small number or units are chosen as fundamental, and all other units are derived from them. 2. Specifically, a system of electrical units put into effect by international agreement on 1 January 1948.
Absolute zero - The theoretical temperature at which molecular motion vanishes and a body would have no heat energy; the zero point of the Kelvin and Rankine temperature scales.
Absorption - The process by which radiant energy is absorbed and converted into other forms of energy. See attenuation. Absorption takes place only after the radiant flux enters a medium and thus acts only on the entering flux, not on the incident flux, some of which may be reflected at the surface of the medium. A substance which absorbs energy may also be a mediun of refraction, diffraction or scattering; these processes, however, involve no energy retention or transformation and are to be clearly differentiated from absorption.

Accelerometer - A transducer which measures acceleration or gravitational forces capable of imparting acceleration. An acelerometer usually uses a concentrated mass (seismic mass) which resists movement because of its inertia. The displacement of the seismic mass relative to its supporting frame or container is used as a measure of acceleration.
Accessibility - A quality of design that permits ready and adequate access for testing, faulc detection, and repair or replacement.

Acclimatization - The adjustmients of a human body or other organism to a new environment; the bodily changes which tend to increase efficiency and reduce energy loss.

Accommodation - 1. The process by which the lens of the eye adjusts to objects at different distances by changing its curvature so that the image is focused on the retina. 2. Support facility for personnel (e.g., housing, work area, etc.).

Accumulator - 1. A device or apparatus that accumulates or stores up, as: fluid under pressure. 2. In computer technology, a device which stores a number and upon receipt of another number adds co and stores the sum. See counter.
Achromatic - Lacking in hue and saturation and therefore falling in a series of colors which varies only in lightness or brightness.

Acoustic dispersion - Acoustic dispersion is the change of speed of sound with frequency.
Acoustic impedance - The acoustic impedance of a given surface area of an acoustic medium perpendicular, at every point, to the direction of propagation of sinusoidal acoustic raves of given frequency, and having equal acoustic pressures and equal volume velocities per unit area at every point of the surface at any instance; the quotient obtained by dividing (1) the phasor corresponding to the acoustic pressure by (2) the phasor corresponding to the volume velocity.

Acoustic intensity - The limit approached by the quotient obtained by dividing the power of the acoustic energy being transmitted at a given time, through a given area, by the magnitude of this area, as the magnitude of this area approaches zero.

Acoustic interferometer - An acoustic interferometer is an instrument for making physical observations upon standing waves. It may be used, for example, to measure velocity, wave length, absoretion, or impedance.

Acoustic memory - A memory which uses a sonic delay line.
Acoustic ohms - Acoustic impedance is measured in acoustic ohms. One acoustic ohm is equal to one $\mathrm{gm} / \mathrm{cm}^{4} \mathrm{sec}$, or to one dyne $\mathrm{sec} / \mathrm{cm}^{5}$.

Acoustic radiometer - An acoustic radiometer is an instrument for measuring acoustic radiation pressure by determining the unidirectional steady-state force resulting Exer jeisection or absorption of a sound wave at its boundaries.

Acoustic refraction - Acoustic refraction is the process by which the direction of sound propagation is changed due to variations in the speed of sound in the medium from point to point. Refraction then is due to a nonuniformity of the medium itself.

Acoustics - Acoustics is the science of sound, including its production, transmission, and effects.

Acoustic scattering - Acoustic scattering is the irregular reflection, refraction, or diffraction of a sound in many directions.
Acoustic sounding - The indirect evaluation of water depth, using the principle of measuring the length of time necessary for a sound wave to travel to the bottom, reflect and travel back to the water surface.

Acoustic spectrograph - An instrument used to analyze the acoustic t_{i} ansmittive and reflective powers of marine life and thermal layers in terms of their effects on particular acoustic frequencies.

- Acoustic theodolite - An instrument designed to provide a continuous vertical profile of ocean currents, from the bottom to the surface, in a specific location.

Actinometry - The science of measurement of radiant energy, particularly that of the sun, in thermal, chemical, and luminous aspects.
Active maintenance time - The time during which preventive and corrective maintenance work is actually being done on the item.

Active repair time - The time during which one or nore technicians are working on the item to effect a repaj.r.

Active sonar - Active sonar is the method or equipment by which information concerning a distant object is obtained by evaluation of sound generated by the equipment.

Active technician time - That time expanded by the technician(s) in active performance of a maintenance task. Expressed in manhours, not calendar time.

Active transducer - i transducer whose output is dependent upon sources of power, apart from that supplied by any of the actuating signals, which power is controlled by one or more of these signals.
Acuity, visual - The ability of the eye to perceive form and detail in a plane perpendicular to the line of sight.

Adaptation level - Adaptation luminance.
Adaptation luminance - The average luminance (or brightness) of those objects and surfaces in the immediate vicinity of an observer. Also called adaptation brightness, adaptation level, adaptation 111 uminarice. High adaptation luminanc: tends to produce a high threshold contrast, thus reducing the estimated visual range. This effect of the adaptation luminance is to be distinguished from the influence of background luminance.
Adaptive control system - A control system which continuously monitors the dynamic response of the controlled system and automatically adjusts critical system parameters to satisfy preassigned response criteria, thus producing the same response over a wide range of environmental conditions.

Additive color mixture - Type of color mixing in which the colors that are mixed all stimulate the same retinal elements. This can be accomplished by viewing overlapping light beams projected on the same surface.

Address - A label that identifies a specific location in the computer memory or register, or an input/output device.
ADF bearing indicator - An instrument used with a radio direction finder to indicate automatically the relative, magnetic, or true bearing (or reciprocal) of a transmitter. A manual type of such an instrument is called an MDF bearing indicator.

Adiabatic - Without gain or loss of heat.

Adiabatic process - A thermodynamic change of state of a system in which there is no transfer of heat or mass across the boundaries of the system. In an adiabatic process, compression always results in warming, expansion in cooling. In meteorology the adiabatic process is often also taken to be a reversible process.

Adiabatic temperature gradient - The adiabatic temperature change on a vertical distance of 1000 meters.

A-display - In radar, a display in which targets appear as vertical deflections from a line representing a time base. A-scan or A-scope.

Adjustment: and calibration time - That element of Active Maintenance Time required to make se adjustment and/or calibrations necessary to place the item in specified condition.
Administrative time - That portion of Nonactive Maintenance Time that is not included in Supply Time.

Adsorption - The adhesion of a thin film of liquid or gas to the surface of a solid substance. The solid does not combine chemically w+th the adsorbed substance.

Aerobiology - The study of the distribution of living organisms freely suspended in the atmosphere.

Aerodynamic force - The force exerted by a moving gaseous fluid 4 pon a body completely immersed in it.

Aeroembolism - 1. The formation or literation of gases in the blood vessels of the body, as brought on by a too-rapid change from a high, or relatively high, atmospheric pressure to a lower one. 2. The disease or condition caused by the formation of gas bubbles (mostly nitrogen) in the body fluids. The disease is characterized principally by neuralgic pains, cramps, and swelling, and sometimes results in death. Also called decompression sickness.

Aeropause - A resion of indeterminate limits in the upper atmosphere, considered as s boundary or transition region between the denser portion of the atmosphere and space.

Afterbody - 1. A companion body that trails a satellite. 2. A section or piece of a rocket or spacecraft that enters the atmosphere unprotected behind the nose cone or other body that is protected for entry. 3. The afterpart of a vehicle.

Afterburner - A device for augmenting the thrust of a jet engine by burning additional fuel in the uncombined oxygen in the gases from the turbine.

Agravic illusion - An apparent movement of a target in the visual field due to otolith response in zerogravity. Also called oculoagravic illusion.

Air - The mixture of gases comprising the earth's atmosphere. The percent by volume of those gases found in relatively constant amount in dry air near sea level is very nearly as follows:
\%

```
nitrogen ( }\mp@subsup{N}{2}{}\mathrm{ )............................. 78.084
```



```
argon (A)...........................................................
carbon dioxide (CO2).....................0.0314 (variable)
neon (Ne)................................... 0.001818
helium (He).............................. 0.000524
methane (CH4)............................. 0.0002 (variable)
krypton (Kr).............................. 0.000114
hydrohen (H2)................................0.00005
nitrous oxide (N2O)........................0.0005
zenon (Xe)......................................... 0.0000087
```

Airborne equipment - Material deaigned to be transported by aircraft, as distinguished from weapons and equipment installed in and remaining a part of the aircraft.
Aircraft flight simulators .- Synthetic flight trainers, capztle af simulating complete flight of a specified aircraft from coc.i.it checkout and ground runup through an actual cross-country fligh: under total instrument conditions.

Airfoil - A structure or body designed to obtain a useful reaction on itself in its motion through the air.
Air position indicator - An airborne computing system which presents a continuous indication of the aircraft position on the basis of aircraft heading, airspeed, and elapsed time.
Airspace - Specifically, the atmosphere aiove a particular portion of the earth, usually defined by the boundaries of an area on the surface projected upward.

Airstart - An act or instance of starting an aircraft's engine while in flight, especially a jet engine after flameout.
Albedo - The ratio of the amount of electromagnetic radiation reflected by a body to the amount incident upon it, commonly expressed as a percentage. The albedo is to be distinguished from the reflectivity, which refers to one specific wavelength (monochromatic radiation).
Alga (plural, algae) - Any plants of a group of unicellular and multicellular primitive organisms that include the Chlorella, Scenedesmus, and other genera. The green algae and blue-green algae, for example, provide a possible means of photosynthesis in a closed ecological system, also a source of food.
Algorithri - A special mathematical procedure for solving a particular type of problen.
Alpha particle - A positively charged particle emitted from the nuclei of certain atoms during radioactiv disintegration. The alpha particle has an atomic weigtit of 4 ard a fositive charge equal in magnitude to 2 electronic charges; hence it is essentially a helium nucleus (helium atom stripped of its two planetary electrons).

Altimeter - An instrument for reasuring height above a reference datum; specifically an instrument similar to an aneroid barometer that utilizes the change of atmospheric pressure with altitude to indicate the approximate elevation above a given point or plane used as reference.

Altitude (symbol h) - In astronomy, angular displacement above the horizon; the arc of a vertical circle between the horizon and a point on the celestial sphere, measured upward from the horizon.

Altitude acclimatization - A physiological adaptation to reduced atmospheric and oxygen pressure.
Alveolar oxygen pressure - The oxygen pressure in the alveoli. The value is about 105 millimeters of mercury.
Alveoli - The terminal air sacs deep within the lungs.
Ambient - Encompassing σ_{n} all sides; the environment surrounding a body but undisturbed or unaffected by it. For example, ambient noise is the composite noise from all sources in a given environment excluding the desired signal and noise inherent in the measuring equipment and platform.

Ambient noise - The pervasive noise associated with a given environment, being usually a composite of sounds from sources both near and distant.

Ambinocular field - The total area that can be seen by either eye; it is not limited to the binocular field but includes, in addition, monocular regions visible to the right eye but not to the left, and vice versa.

Amblyopia - Dimness of vision for which no organic defect in the refractive system of the eye has been discovered. (Found in total color blindness, in albinism, in toxic conditions, and associated with excessive use of tobacco and various drugs.)

Ametropia - A general term embracing any sort of regular refractive defect in the eye.

Ampere - The unit of electric current; the constant current which, if maintained in two straight, parallel conductors of infinite length, of neg!igible circular sections, and placed 1 meter apart ir. a vacuum w: 11 produce between these conductors a force equal to 2×10^{-7} newtons per meter of length.
Amplifier - A device whict enables an input signal to control a source of power, and thus is capable of delivering at its output an enlarged reproduction of the essential cha'e :eristics of the signal. Typical amplifying elements are electre • . es, transistors, ard magnetic circuits.
Amplitude - The maximum value of the displacement of a wave or other periodic phenomenon from a reference position.

Amplitude moausation - l. In general, modulation in which the amplitude of a wave is the characteristic subject to variaiion. 2. Specifically, in telemetry those systems of modulation in which each component frequency f of the transmitted intelligence produces a pair of side'and frequencies at carrier frequency plus f and carrier
minus f.
Anacoustic zone - The region above an altitude of about 100 miles where the distance between the air molecules is greater than the wavelength of sound, and sound waves can no longer be propagated.

Analog - A similar thing, representation or model of an idea, object or physical system (see analog computer, analog display).
Analog computer - A computing machine working on the principle of measuring, as distinguished from cour.ting, in which the input data is analogous to a measurement continuum, such as linear lengths, voltages, resistances, etc., which can be manipulated by the computer.
Analog display - A visual display which presents a picture analogous to a real world scene.

Analog output - Transducer output in which the amplitude is continuously proportional to a function of the stimulus. Distinguished from digital output.

Analog to digital conversion - A process by which a sample of analog information is transformed into a digital code.
Analog to digital converter - A device which will convert an analog voltage sample to an equivalent digital code of some finite resolution. Also called digitizer, encoder.
Analysis of variance - A method for analyzing the total variance in a set of measurements into its component variances or parts which may be attributed to varying experimental factors.
AND - In Boolean algebra, the operation of intersection.
AND gate, and gate - A circuit or device used in computers whose output is energized only when every input is in its prescribed state. It performs the logical function of the AND, the Boolean operation of intersection. Also called intersector, AND circuit.

Anemometer - The general name for instruments designed to measure the speed (or force) of the wind. These instruments may be classified according to the means of transduction employed: those used in meteorology include the rotation anemometer, pressure plate anemometer, pressure-tube anemometer, bridled cup anemometer, contact anemometer, cooling-power anemometer, and sonic anemometer.
Ancroid - A thin, disk-shaped box or capsule, usually metallic, partially evacuated of air and sealed, which expands and contracts with changes in atmospheric or gaseous pressure.
Angel - A radar echo caused by a physical phenomenon not discernible to the eye.

Angle - The inclination to each other of two intersecting lines, measured by the arc of a circle intercepted between the two lines forming the angle, the center of the circle being the point of intersection.

Angle of attack - The angle between a reference line fixed with respect to an airframe and a line in the direction of movement of the body.

Angle of climb - The angle between the flight path of a climbing vehicle and the local horizontal.

Angle of descent - The angle between the flight path of a descending vehicle and the local horizontal.

Angle of deviation - The angle through which a ray is bent in refraction.

Angle of elevation - The angle in a vertical plane between the local horizontal and an ascending line, as from an observer to an object. Aiso called elevation angle. A negative angle of elevation is usually called an angle of depression.

Angle of incidence - The angle at which a ray of energy impinges upon a surface, usually measured between the direction of propagation of energy and a perpendicular co the surface at the point of impingement, or incidence.

Angle of reflection - The angle at which a reflected ray of energy leaves a reflecting surface, measured between the direction of the outguing ray and a perpendicular to the surface at the point of reflection. Compare angle of incidence.
Angle of refraction - The angle at which a refracted ray of energy leaves the interface at which the refraction occurred, measured between the direction of the refracted ray and a perpendicular to the interface at the point of refraction.
Angle of roll - The angle that the lateral body axis of an aircraft or similar body makes with a chosen reference plane in rolling; usually, the angle between the lateral axis and a horizontal plane. The angle of roll is considered positive if the roll is to starboard.

Angle of yaw - The angle, as seen from above, between the longitudinal body axis of an aircraft, rocket, or the like and a chosen reference direction. This angle is positive when the forward part of the longitudinal axis is directed to starboard. Also called yaw aigle.
Angstrom - A unit of length, used chiefly in expressing short wavelengths. It equals 10^{-10} meters or 10^{-8} centimeters.
Angular acceleration - The rate of change of angular velocity.
Angular resolution - Specifically, the ability of a radar to distinguish between two targets solely by the easurement of angles.
Angular velocity - The change of angle per unit time; specifically, in celestial mechanics, the change in angle of the radius vector per unit time.
Animated panels - Training aids used in teaching nomenclature, principles, and theory of operation of various components and systems. A device designed to illustrate system functional changes or process flow by means of moving mechanical elements or illuminated symbols.
Anisometropia - Unequal refractive power in the twe eyes.
Anode - The positive pole or electrode of any electron emitter, such as an electron tube or an electric cell. The negative pole or electrode is called a cathode.

Ar.omalistic period - The interval between two successive perigee passages of a satellite in orbit about a primary. Also called perigee-to-perigee period.
Anomalous propagation - In sonar, pronounced and rapid variations in echo strength caused by large and rapid local fluctuations in propagation conditions.
Aron:alous trichromatism - Form of trichromatism in which some of the proportions of colorimetric primaries required to match various colors are beyond normal limits. Anomalous trichromatism nay be either protanomaly, deuteranomaly, tritanomaly or some irregular form.

Anomaly - l. In general, a deviation from the norm. 2. In geodesy, a deviation of an observed value from a theoretical value, due to an abnormality in tiie observed quantity. 3. In celestial mechanics, the angle between the radius vector to an orbiting body from its p.imary (the focus of the orbital ellipse) and the line of apsides of the orbit, measured in the direction of travei, from the point of closest approach to the primary (perifocus).

Anoxia - A complete lack of oxygen available for physiological use within the body. Compare hypoxia. Anoxia is popularly used as a synonym for hypoxia. This usage should be avoided.

Anthropometry - The science of measuring the human body and its parts and functional capacities.
Antinode - l. Either of the two points on an orbit where a line in the orbit plane, perpendicular to the line of nodes, and passing through the focus, intersects the orbit. 2. A point, line, or surface in a standing wave where some characteristic of the wave field has maximum amplitude.

Aphelion - That point in a solar orbit which is most distant from the sun. The point nearest the suri is called perihelion.
Apogee - That point in a geocentric orbit which is most distant from the earth. That orbital point nearest the earth is called perigee.
Apostilb - A unit of luminance equal to $1 / \times 10^{-4}$ international candles per square centimeter. Compare stilb.
Apparent motion - Motion relative to a specific or implied reference point which may itself be in motion. Also called relative motion.
Apparent time - Time based upon the rotation of the earth relative to the apparent or true sun. This is the time shown by a sundial.

Area rule - A prescribed method of design for obtaining minimum zerolift drag for a given aerodynamic configuration, such as a wing-body configuration, at a given speed.

Arithmetic word - That portion of the computer word devoted to the performance of arithmetic operations; in NAREC, binary digits 0 through 44.
Artificial gravity - A simulated gravity established within a space vehicle by rotation or acceleration.

Artificial horizon - l. A gyro-operated flight instrument that shows the pitching and banking attitudes of an aircraft or spacecraft with respect to a reference line horizon, within limited degrees of movement, by means of the relative position of lines or marks on the face of the instrument representing the aircraft and the horizon. 2. A device, such as a spirit level, pendulum, etc., that establishes a horizontal reference in a navigation instrument.
Ascendent - The negative of the gradient. The ascendent of a function is a veclor with magnitude equal to the maximum spatial rate of change of that function at a given point at a given time.
Ascending node - That point at which a planet, planetoid, or comet crosses to the north side of the ecliptic; that point at which a satellite crosses to the north side of the equatorial plane of its primary. Also called northbound node. The opposite is descending node or southbound node.

A-scope - A radaiscope that presents the target range by a vertical deflection of the time base, or, in certain modified versions, by a horizontal deflection.

Aspect - The angle made by a target with the line joining it to the observation point is known as the aspect of the target.

Aspect ratio - The ratio of the square of the span of an airfoil to the total airfoil area, or the ratio of its span to its mean chord.

Aspheric - Not spherical; an optical element having one or more surfaces which are other than spherical.
Asteroid - One of the many small celestial bodies revolving around the sun, most of the orbits being between those of Mars and Jupiter. Also called planetoid, minor planet.
Astigmatism - Defect of the eye. Two types are recognized: regular, in which the error is due to a greater curvature of a refr ive surface (chiefly the cornea) in one meridian, and which may be corrected by a cylindrical lens; and irregular, in which the refraction is irregularly unequal within the pupillary area and which is not correctable except by contact lenses.

Astrobiology - The study of living organisms on celestial bodies other than the earth.

Astrodynamics - The practical application of celestial mechanics, astroballistics, propulsion theory, and allied fields to the problem of planning and directing the trajectories of space vehicles.
Astronomical constants - 1. The elements of the orbits of the bocies of the solar system, their masses relative to the sun, their size, shape, orientation, rotation, and inner constitution, and the velocity of light. 2. System of astronomical constants.
Astronomical unit - A unit of length, usually defined as the distance from the earth to the sun, $149,599,000$ kilometers.

Astrophysics - A branch of astronomy that treats of the physical properties of celestial bodies, such as luminosity, size, mass, density, temperature, and chemical composition.

Asynchronous computer - An automatic computer in which succeeding operations are started by signals indicating the completion of the previous operation, rather than by signals from a master synchronizer. Contrast to synchronous computer.
Atelectasis - Collapsed or airless state of all or part of a lung. Also calied apneumatosis.
Atnosphere - Term used in diving to describe pressure exerted by sea water. 1 ATM $=14.7$ PSI.

Atraospheric entry - The penetration of a planetary atmosphere by any object from outer space; specifically, the penetration of the earth's atmosphere by a manned or unmanned capsule or spacecraft.

Atmospheric optics - The study of the optical characteristics of the atmosphere and of the optical phenomena produced by the atmosphere's suspensoids and hydrometeors. It embraces the study of refraction, reflection, diffraction, scattering, and polarization of light, but is not conmonly regarded as including the study of any other kinds of radiation. Also called meteorological optics.
Atmospheric pressure - The pressure at any point in an atmosphere due solely to the weight of the atmospheric gases above the point concerned. (Refer to Section IV, Table .).
Atmospheric refraction - Refraction resulting when a ray of radiant energy passes obliquely through an atmosphere.

Atomic number - An integer that expresses the positive charge of the nucleus in multiples of the electronic charge e. It is the number of electrons outside the nucleus of a neutral (unionized) atcm and, according to widely accepted theory, the number of protons in the nucleus.

Atomic particle - One of the particles of which an atom is constituted, as an electron, neutron, or a positively charged nuclear partisle.
Atomic weight - The weight of an atom according to a scale of atomic weight units, awu, valued as one-twelfth the mass of the carbon atom ($\mathrm{C}^{12}=12.00000$).

Attenuation - Reduction in intensity.
Attitude - 1. The position or orientation of an aircraft, spacecraft, etc., either in motion or at rest, as determined by the relationship between its axes and some reference line or plane or some fixed system of reference axes. 2. An attribute of human behavior characterized by a persons feelings towards other persons, objects, processes, situations - classifiable as positive, negative, passive, aggressive.
Attitude control - l. The regulation of the attitude of an aircraft, spacecraft, etc. 2. A device or system that automatically regulates and corrects attitude, especially of a pilotless vehicle.

Attitude gyro - l. A gyro-operated flis,nt instrument that indicates the attitude of an aircraft or spacecraft with respect to a reference coordinata system throughout 360° of rotation about each axis of the sraft. 2. Broadly, any gyro-operated instrument that indicates attitude.

Attributes of color - The chromatic colors have the attributes of hue saturation, and brightness or lightness; but the achromatic colors do not have those of hue and saturation. All colors do have the general attributes of duration and extent, but these are rarely mentioned. (Syn. Dimensions of color)
Attributes of sensation - The fundamental, intrinsic characteristics of simple sensory response, generally recognized as quality, intensity, duration, and extensity; clearness or attensity sometimes also being included. (Syn. Dimensions of sensation.)

Audible sound - Sound containing frequency components lying between about 15 to 20,000 cycles per second.
Audio - Pertaining to the audiofrequency (audible to the human ear) range. The word audio may be used as a modifier to indicate a device or system intended to operate at audiofrequencies, e.g., audioamplifier.
Auditory sensation area - In acoustics, the frequency region enclosed by the curves defining the threshold of pain and the threshold of audibility.
Aural signal - A signal which must be heard by the ear and be interpreted wiihout benefit of visual instruments.

Autocorrelation - In statistics the simple linear internal correlation of members of a time series (ordered in time or other domains).

Autokinetic illusion - The illusion of a fixed object or light moving when gazed at steadily.

Automatic coding - A type of automatic programming in which some of the coding is taken over by the computer.

Automatic direction finder - A radio direction finder which automatically and continuously provides a measure of the direction of arrival of the received signal. Data are usually displayed visually.

Automatic frequency control - An arrangement whereby the frequency of an oscillator is automatically maintained within specified limits.
Automatic gain control - A process by which gairi is automatically adjusted as a function of input or other specified parameter.

Automatic pilot - Equipment which automatically stabilizes the attitude of a vehicle about its pitch, roll, and yaw axes. Also called autopilot.

Automaric tracking - Tracking in which a servomechanism automatically follows some characteristic of the signal; specifically a process by which tracking or data acquisition systems are enabled to keep their antennas continually directed by a moving target without manual operation.
Avogadro number, Avogadro constant - The number of molecules in 1 mole of gas (6.02252×10^{22} per mole).

Axis (plural axes) - 1. A straight line about which a body rotates, or along which its center of gravity moves (axis of translation). 2. A straight line around which a plane figure may rotate to produce a solid; a line of symmetry. 3. One of a set of reference lines for a coordinate system.
Azimuth - l. Horizontal direction or bearing. 2. In navigation, the horizontal direction of a celestial point from a terrestrial point, expressed as the angular distance from a reference direction, usually measured from 0° at the reference direction clockwise through 360°. 3. In astronomy, the direction of a celestial point from a terrestrial point measured clockwise from the north or the south point of the meridian plane. 4. In surveying, the horizontal direction of an object measured clockwise from the south point of the meridian plane.

Azimuth angle - Azimuth measured from 0° at the north or south reference direction clockwise or counterclockwise through 90° or 180°.
Azimuth error - An error in the indicated azimuth of a target detected by radar, resulting from horizontal refraction.
Azimuth marker - 1. A scale encircling the plan position indicatur (PPI) scope of a radar oin which the azimuth of a target from the radar may be measured. 2. Reference limits inserted electronically at 10° or 15° intervals which extend radially from the relative position of the radar on an offcenter PPI scope. These are employed for target azimuth determination when the radar position is not at the center of the PPI scope and hence the fixed azimuth scale on the edge of the scope cannot be employed.

Bacl:ground luminance - In visual-range theory, the luminance (bright:،ess) of the background against which a target is viewed. (See Section II - Units of Luminance).
Backlash - Dead space or unwanted movement in a control system.
Backscatter (in illumination) - Dispersion of luminant energy such that ambient visual conditions are either enhanced or degraded, i.e., backscatter from fog may cause glare; from a uniform surface, effective brightness control.

Ballistic body - A body free to move, behave, and be modified in appearance, contour, or texture by ambient conditions, substances, or forces as the pressure of gasses in a gun, by rifling in a barrel, by gravity, by temperature, or by air particles.
Ballistic missile - A missile designed to operate primarily in accordance with the laws of ballistics; i.e., it is guided during only a portion of its flight, thereafter it acts in a way similar to an artillery shell.
Bandwidth - 1. In an antenna, the range of frequencies within which its performance, in respect to some characteristic, conforms to a specified standard. 2. In a wave, the least frequency interval outside of which the power spectrum of a time-varying quantity is everywhere less than some specified fraction of its value at a reference frequency. 3. The number of cycles per second between the limits of a frequency band.

Bang-bang control - Flicker control, especially as applied to rockets. A control which provides a single, prescribed or finite, metered thrust burst (e.g., non-continuous).
Baralyme - A compressed pill consisting of a blended mixture of barium octohydrate and calcium hydroxide. It is used as a carbon dioxide absorbent in rebreathing (diving) systems.
Barany chair - (After Robert Barany, 1876-1936, Swedish physician.) A kind of chair in which a person is revolved to test his susceptibility to vertigo.

Baronil - The unit length used in graduating a mercury barometer in the centimeter-gram-second system.
Baroswitch (from barometric switch) - 1. Specifically, a pressureoperated switching device used in a radiosonde. 2. Any switch operated by a change in atmospheric pressure.
Barotrauma - A generic term for injury caused by pressure.
Barotropy - The state of a fluid in which surfaces of constant density (or temperature) are coincident with surfaces of constant pressure.
Barrier, acoustic - Structure and/or materials placed between a sound scurce and the listener to reduce the sound level reaching the listener's ear. (as opposed to sound absorption).
Barycenter - The center of mass of a system of masses, as the barycenter of the earth-moon system.

Baseline - Any datum that serves as a basis for either objective or subjective comparisons.

Base-timing sequencing - The control of the time sharing of a single transponder between several ground transmitters through the use of suitable coded timing signals.
Bathymetry - The art or science of determining depths of water.
B-display - In radar, a rectangular display in which targets appear as blips with bearing indicated by the horizontal coordinate and distance by the vertical coordinate. Also called B-scan or B-scope.
Beam - l. A ray or rays of radiated energy as in light or radar beams. 2. Extreme width of a ship at its widest part.

Beam splitter - A partially reflecting mirror which permits some incident light to pass through and reflects the remainder.

Beam width - A measure of the concentration of power of a directional antenna. It is the angle in degrees subtended at the antenna by arbitrary power-level points across the axis of the beam. This power level is usually the point where the power density is onehalf that which is pre-ent in the axis of the beam at the same distance from the antenna (half-power points). Also called beam angle.
Bearing - The horizontal direction of an object or point, usually measured clockwise from a reference line or direction through 360°.

Beat frequency - The frequency obtained when two simple harmonic quantities of different frequencies $f 1$ and $f 2$ are superimposed. The beat frequency equals $f 1-f 2$.

Beaufort Wind Scale - A scale (0 through 12) for showing the strength of wind, devised by Sir Francis Beaufort (see Table 1).
Bel - The bel is a unit of level when the base of the logarithm is 10. Use of the bel is restricted to level of quantities proportional to power.
Bends - 1. Pains in the exiremities, abdomen, and chest caused by aeroemphysema and in some instances by aeroembolism resulting from the reduction of ambient air pressure. 2. Popularly used as synonymous with aeroembolism (sense 2).
Bernoulli law or Bernoulli theorem - (After Daniel Bernoullj, 17001782, Swiss scientist.) In aeronautics, a law or theorem stating that in a flow of incompressible fluid the sum of the static pressure and the dynamic pressure along a streamline is constant if gravity and frictional effects are disregarded.

Bias ϵ rror - A measurement error that remains constant in magnitude for all observations. A kind of systematic error.
Billet - A military term referring to (a) living quarters or (b) work or job assignment.
Binary - l. Involving the integer two (2). See binary notation. 2. = binary cell. 3. = binary star.

Binary counter - A counter with two distinguishable states.
Binary notation - A system of positional notation in which the digits are coefficients of powers of the base 2 in the same way as the digits in the conventional decimal system are coefficients of powers of the base 10. (See Section I-Binary numbers).
Binocular field - The field of vision of the two eyes acting conjointly. (Vol. I, Section I - Anthropometry)
Binocular fusion - The combination of two images, falling upon the two retinas, into a single visual impression. The images may be alike, or may differ to some degree in form and color.

Binocular vision - Vision with the two eyes operating conjointly, usually with fixation of both on the same objective point. In general, characterized by a single perception of the objects fixated, but in certain conditions by doubling or by rivalry. An important factor in perception of space, giving projection and relief. Contrast with monocular.

Bioastronautics - The study of biological, behavioral, and medical problems pertaining to astronautics. This includes systems functioning in the environments expected to be found in space, vehicles designed to travel in space, and the conditions on celestial bodies other than on earth.
Biochemistry - Chemistry dealing with the chemical processes and compounds of living organisms.

Bioclimatology - The study of the relations of climate and life, especially the effects of climate on the health and activity of human beings (human bioclimatology) and on animals and plants.
Table 1 - The Beaufort Wind Scale

	Searaun's description of wind	Teep rearatas	Mode of estimating for a verage sized saling trawier	$\left\{\begin{array}{c} \text { Miles } \\ \text { per hour } \\ \text { (stat- } \\ \text { ute) } \end{array}\right.$	$\begin{gathered} \text { Miles } \\ \text { per hour } \\ \text { (napu- } \\ \text { (ical) } \end{gathered}$	$\begin{aligned} & \text { Meters } \\ & \text { secernd } \end{aligned}$	Equive: jent pre in millibars* (10 dynes per cmin)	Terms ised in U. S. Weather Bureau forecasts
-	Calm	Sea smooth as a riltro	No henimay	$\text { lhass } 1$	$\begin{aligned} & \text { Less } \\ & \text { than } \end{aligned}$	Less than 0.3	Less than	
1	richt aif	Small waveletilike scales; no foom cres	Suficient to give good steerage way to fishing	${ }_{1-3}^{1-8}$	man_{1-3}	$0.3-1.5$	0.005-0.03	Kichat.
2	Light brees	Wuves short; crests beglo to break	Fishing smacls witt iot iopsils and light canvas,	4	-6	1.0-3.3	0.03-0.1	
2	Ge:Ee breeze.	Foam has glassy appearance, not yet white.....	Smacks begin' to heel over slightly under topsails and light canvas, make up to 3 knots,	$8-12$	7-10	2.4-5. 4	0.1-0.2	Sentic.
4	Moderate b	ves now longer; many white horses..........	Oood worting breeze; smackss heel over con-	13-18	1-16	6. 5 -8. 0	0.2-0.5	Moderata
8	Fresh breeze.	Wnves pronounced and long: white foann crests.- Larser waves formi white foam crests nill over..-	Smacks shorten sail Smacts double-reef gaif mnirisaif	-	17-21	${ }_{\text {8. }}^{8.10 .10 .7}$	0.50 .1 .0	Fresh.
7	Strenk brezze...........				-		¢i.t-2	Stronge
8	Freshrale	Heipht of waves nnd crestitincreasing.............		47-54	41-47		5	Onic.
10	Whole zale.	High waves with lo. E (overhanging crests; largo						Whote gave.
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	3 torm. Hurticane.	High waves; shipe in slght hidden in troughs. Sea covered with streaky loam; air flled with spray.		$\begin{gathered} 64-75 \\ \text { Above } \\ 75 \end{gathered}$	$\begin{gathered} \text { Above } \\ 65-05 \end{gathered}$	$\left\|\begin{array}{c} 28.4-33.5 \\ 33.6 \mathrm{or} \\ \mathrm{above} \end{array}\right\|$	$\begin{array}{r} 6-8 \\ \text { Above } 8 \end{array}$	Huricano.

Biodynamics - The study of the effects of dynamic processes (motion, acceleration, weightlessness, etc.) on living organisms.
Bioluminescence - The emission of light by living organisms.
Bionics - The study of systems, particulariy electronic systems, which function after the marmer of, or in a manner characteristic of, or resembling, living systims.
Biosatellite - An artificial satellite which is specifically designed to contain and support man, animals, or other living material in a reasonably normal manner for an adequate period of time and which, particularly for man and animals, possesses the proper means for safe return to the earth. See ecological system.
Biosensor - A sensor used to provide information about a life process.
Biotechnology - The application of engineering and technological principles to the life sciences.
Biotelemetry - The remote measuring and evaluation of life functions, as, e.g., in spacecraft and artificial satellites.
Bit - l. An abbreviation of binary digit. 2. A single character of a language employing only two distinct kinds of characters. 3. A quantity of intelligence which is carried by an identifiable entity and which can exist in either of two states. 4. A unit of storage capacity; the capacity of bits of a storage device is the logarithm to the base two of the number of possible states of the device. 5. A quantum of information. 6. Loosely, a mark.

Bit rate - The frequency derived from the period of time required to transmit one bit.

Black - An achromatic color of minimum lightness (maximum darkness) which represents one limit of the series of grays, and which is the complement or antagonist of white, the other extreme of the gray series. Though typically a response to zeru or minimal stimulation, black air?ars always to depend upon surrounding contrast.
Black bor islackbody - An ideal emitter which radiates energy at the maximul ossible rete per unit area at each wavelength for any given temperature. A black body also absorbs all the radiant energy in the near visible spectrum incident upon it.
Black body radiation - The electromagneic radiat \ddagger on emitited by an ideal black body; it is tite theoretical maximum Hount of radiant energy of all wavelengths which can be emitted, \therefore body at a given temperature.
Blackout - A condition in which vision is temproarily obscured by a blackness, accompanied by a dullness of certain of the other senses, brought 0% by decreased blood pressure in the eye and a consequent lack of oxygen, as may occur, e.g., in pulling out of a high-speed dive in an airflane. Compare grayout, redout.
Bleed off - To take off a part or all of a fluid from a tank or line, normally through an escape valve or outlet, as in to bleed off excess oxygen from a tank.

Blind spot - A small area in tive retina, where the optic nerve leaves the eyeball. This area is not sensitive to light stimulation.
Blink - 1. A glare on the underside of extensive cloud areas created by light reflected from snow or ice covered surfaces; also observable in a clear sky. Blink caused by ice surfaces is usually yellowish-white in contrast to the whitish, brighter glare caused by snow surfaces. This distinction is sometimes difficult to perceive. In contrast to snowblink and iceblink, the sky is dark above bare land or open water surfaces. 2. The act of closing one's eyelid momencarily.
Blip - A spot of light or deflection of the trace on a radarscope, loran indicator, or the like, caused by the received signal, as from a reflecting object. Also called a pip or echo.
Boltzmann constant - The ratio of the universal gas constant to Avogadro number; equal to $1.38054 \times 10^{-16} \mathrm{erg} /{ }^{\circ} \mathrm{K}$. Sometimes called gas coustant per molecule; Boltzmann universal conversion factor.
Boolean algebra - The study of the maiilpulation of symbols representing operatioas according to the rules of logic. Boolean algebra corresponds to an algebra using only the numbers 0 and 1 , therefore can be used in programing digital computers wich operate on the binary principle.
Boresighting - The process of aligning a directicral antenna or weapon system by an optical procedure.

Boundary conditions - A set of mathematical conditions to be satisfied, in the solution of a differential equation, at the edges or physical boundaries (including fluid boundaries) of the region in which the solution is scught. The nature of these conditions usually is determined by the physical nature of the problen.
Bow - Forward part of a ship.
Bow and beam bearings - Success ${ }^{\circ}$, relative bearings (right or left) of 45° and 90° taken on a fixed object to obtain a running fix. The length of the rum between such bearings is equal to the distance of the craft from the object at the time the object is broad on the bean, neglecting current. The 45° bearing is also called a fourpoint besring.
Bow wave - A shock wave in front of a body such as an airfoil, or apparertly attached to the forwa:d tip of the body.

Brake parachute - Deceleration paracinate; also drogue parachute.
Branch - 1. In an electrical circuit, a portion of a network consisting of one or ore two-terminal elements in series. 2. The point in a computer program at which the machine will proceed with one of two or more possible routines according to existing conditions and instructions.

Breadboard - 1. An assembly of preliminary circuits or parts used to prove the feasibility of a device, circuit, system, or principle without regard to the final configuration or packaging of the parts. 2. To prepare a breadboard (sense 1).

Breakoff phenomenon - The feeling which sometimes occurs during highaltitude flight of being totally separated and detached from the earth and human society. Also called the breakaway phenomenon.
Breakwater - A structure protecting a shore area, harbor, anchorage or basin from waves.

Bremsstahlung effect - The emission of electromagnetic radiation as a consequence of the acceleration of charged elementary particles, such as electrons, under the influence of the attractive or repulsive force fields of atomic nuclei near which the charged particle moves.
Brightness - 1. Attribute of visual sensation determined by intensity of light radiation reaching the eye. Sometimes called lightness, tint, or value. Refers to variations along the achromatic scale of black to white. 2. Photometric measure of light emission per unit area of a luminous body or of a translucent or reflective surface, i.e., candlepower per unit area. 3. = luminance.

Brightness contrast - The relative difference in brightness between two objects, expressed as the ratio of the absolute brightness difference to the greater brightness.

Brightness level - Adaptation luminance.
Brightness ratio - Ratio of illumination on the object being viewed to the illumination of the surrounding area.
Brightness threshold, absolute - The intensity of the least visual stimulus (of any specified wave-length composition) sufficient to evoke a brightness in excess of that of the adjacent unstimulated visual field. The value is determined after complete dark adaptation but does not exclude the effect of processes normally active in the sense-organ.
Brilliance - That attribute of any color or visual sense-quality in respect to which it may be classed as equivalent to some member of a series of grays ranging from black to white. Distinguish from brightness, winich has reference solely te stimulus-magnitude.
British candle - International candle.
British thermal unit - The amount of heat required to raise 1 pound of water at $60^{\circ} \mathrm{F}, 1^{\circ} \mathrm{F}$.

Broken ice - Ice that covers from five-tenths to こight-tenths of the sea surface. Also called loose ic?, loose pack ice, open ice, open pack ice, slack ice.
B-scan - B-display.
B-scope - A cathode-ray indicator in which a signal appears as a spot with bearing as the horizontal coordinate and distance as the vertical coordinate. Also called B-display.

B-trace - The second trace of an oscilloscope having more than one, as the lower trace of a loran indicator.
Buddy breathing - In scuba, the sharing by two or more divers of the same breathing tank. See buddy sysiem.

Buddy system - In scuba diving, divers with few exceptions should work in pairs. This is probably the greatest single aid toward scuba safety, especially under unfavorable conditions. The divers should remain in sight of each other. In poor visibility, they should use a buddy line 6-10 feet long.

Buffer - In computers: 1. An isolating circuit used to avoid reaction of a driven circuit on the corresponding driving circuit. 2. A storage device used to compensate for a difference in rate of flow of information or time or occurrence of events when transmitting information from one device to another.

Burnout - 1. An act or instance of fuel or oxidant depletion or, ideally, the simultaneous depletion of both; the time at which this occurs. 2. An act or instance of something burning out or of overheating; specifically, an act or instance of a rocket combustion chamber, nozzle, or other part overheating so as to result in damage or destruction.

Cable - A nautical unit of horizontal distance, equal to 600 feet (100 fathoms) and approximately one-tenth of a nautical mile.

Caging - The process of sienting ard mechanically locking the spin axis of a gyro to an internal reference position.
Calendar day - The period from midnight to midnight. The calendar day is 24 hours of mean solar time in length and coincides with the civil day unless a time change occurs during the day.
Calendar life - That period of time expressed in days, months or years, which an item may remain snstalled in an operation environment as serviceable, and be expected to perform satisfactorily and reliably, but which should be removed at the expiration of designated time and returned for repair, overhaul or other maintenance action.

Calendar time - The total number of calendar days or hours in a designated period of observation.
Calorie - A unit of heat originaily defined as the amount of heat required to raise the temperaturc of 1 gram of water through $1^{\circ} \mathrm{C}$ (the gram-calorie or small calorie).
Canard - Pertaining to an aerodynamic vehicle in which horizontal surfaces used for trim and control are forward of the main lifting surface; the horizontal trim and control surfaces in such an arrangement.
Candela - The unit of luminous intensity in the International System of Units, 1960; equal to one-sixtieth of the luminous intensity from I square centimeter of a rlack body at $2046^{\circ} \mathrm{K}$ (the temperature of solidification of platinum). Also called candle.
Candle - l. Unit of light intensity. At a distance of jne foot, one candle produces an illumination of one foot-candle (equivalent to one lumen per square foot) upon a surface normal to the beam. 2. = candela.

Canonical time unit - For geocentric orbits, the time required by a hypothetical satellite to move one radian in a circular orbit of the earth's equatorial radius; 13.447052 minutes.

Capacity - In computer operations, a) the largest quantity which can be stored, processed, or transferred; b) the largest number of digits or characters which may regularly be processed; c) the upper and lower limits of the quantities which may be processed.

Capsuie - 1. A boxlike component or unit, often sealed. 2. A small, sealed, pressuri: cabin with an internal environment which will support iife in .. uar or animal during extremely high altitude flight, space flight, of emergency escape.
Capture - Of a central force field, as of a planet; to overcome by gravitational force the velocity of a passing body and bring the body under the control of the central force field, in some cases absorbing its mass.
Carbon dioxide excess - In diving CO_{2} excess is a possibility wherever carbon dioxide absorbing canisters are used or where, because apparatus design does not reduce apparatus deadspace, some carbon dioxide is re-inhaled. The chief symptoms, which furnish ample warning to trained men, are increased effort of breathing, a sense of breathlessness and headache.

Carbon monoxide poisoning - In diving, this type of accident usually occurs as a result of contamination of the diver's air supply by exhaust gases from an internal combustion engine.

Cardiovascular - Pertaining to the heart and the blood vessels.
Carrier - 1. In a semiconductor, a mobile conduction electron or hole. 2. In modulation of a signal, a wave suitable for being modulated as a sine wave, a recurring series of pulses, or a direct current.

Carrier wave - A wave generated at a point in the transmitting system and modulated by the signal.
Carry time - In computer operations, the time required for a binary chain to complete its response to an input pulse.
Cartesian coordinates - A coordinate system in which the locations of points in space are expressed by reference to three planes, called coordinate planes, no two of which are parallel.
Cassegrain telescope - A reflecting telescope in which a small hyperboloidal mirror reflects the convergent beam from the paraboloidal primary mirror through a hole in the primary mirror to an eyepiece in back of the primary mirror. Also called Cassegrainian telescope, Cassegrain.
Catheter - A hollow tube of metal, glass, hard or soft rubber, rubberized silk, etc., for introduction into a body cavity through a narrow canal, for the purpose of discharging the fluid contents of a cavity or for establishing that the canal is unobstructed.

Cathi - In an electron tube, an electrode through which a primary sti. in of electrons enters the interelectrode space.

Cathode-ray oscilloscope - An instrument which displays visually on the face of a cathode-ray tube instantaneous voltages of electrical signals. Either the intensity or the displacement of the trace may be controlled by the signal voltage. More commonly called oscilloscope. Also $=a l l e d$ cathode-ray oscillograph. See radarscope.

Cathode-ray tube - A vacuum tube consisting essentially of an electron gun producing a concentrated electron beam (or cathode ray) which impinges on a phosphorescent coating on the back of a viewing face (or screen). See Scope.

Cauchy number - A nondimensional number arising in the study of the elastic properties of a fluid. It may be written $U 2 p / E$, where U is a characteristic velocity; p is the density; and E the modulus of elasticity of the fluid. It is the square of the Mach number.
Caution light - An indicator light located on a control panel which denotes existence of a system malfunction and that the operator should be prepared to take corrective action. An amber color is generally prescribed for caution lights.

Cavitation - The formation of bubbles in a liquid, occurring whenever the static pressure at any point in the fluid flow becomes less than the fluid vapor pressure.

Cavitation noise - Cavitation noise is the noise produced in a liquid by the collapse of bubbles that have been created by cavitation.
C-band - A radar frequency band.
C-display - In radar, a rectangular display in which targets appear as blips with bearing indicated by the horizontal coordinate and angles of elevation by the vertical coordinate. Also called C-scan and C -scope.

Celestial coordinates - Any set of coordinates, measured in degrees, used to define a point on the celestial sphere, e.g., right ascension and declination.

Celestial guidance - The process of directing movements of an aircraft or spacecraft by reference to celestial bodies. Also called automatic celestial navigation.
Celestial-inertial guidance - The process of directing the movements of an aircraft or spacecraft by the measurement of inertial forces and reference to celestial bodies.
Celestial observation - In navigation, the measurement of the altitude and/or azimuth of a celestial body.
Celestial pole - Either of the two points of intersection of the celestial sphere and the extended axis of the earth, labeled N or S to indicate whether the north celestial pole or the south celestial pole.

Cell - Storage space for one bit of information in a digital computer.
Cent - In acoustics, the interval between two sounds whose basic frequency ratio is the twelve-hundredth root of 2 .

Center frequency - The assigned carrier frequency of a frequencymodulation (FM) station; the unmodulated frequency of an FM system.

Center of buoyancy - The center of buoyancy is the center of gravity of the displaced water or the location of the upward or buoyant force. It is the geometric center of volume of the displaced water. The center of buoyancy should not be confused with the center of gravity of the immersed or floating body. The center of gravity is the effective center of all the weights in a ship. The total weight acts downward on the ship as if it were concentrated at the center of gravity.

Center of mass - That point in a given body, or in a system of two or more bodies that act together in respect to another body, which represents the mean position of the matter in the body or bodies.
Centigrade temperature scale - A temperature scale with the ice point at 0° and the boiling point of water at 100°. Now called Celsius temperature scale.
Centimeter - One-hundredth of a meter; approximately 0.3937 U.S. inch, exactly $1 / 2.54$ inch.
Centimeter-gram-second system - A system of units based on the centimeter as the unit of length, the gram as the unit of mass, and the second as the unit of time.
Central tendency, measure of - Measure of a statistic calculated from a set of distinct and independent observations or measurements of a certain item or entity, and intended to typify those observations.
Centrifugal force - The apparent force in a rotating system, deflecting masses radially outward from the axis of rotation, with magnitude per unit mass $\omega^{2}{ }^{2}$, where $\boldsymbol{\omega}$ is the angular speed of rotation; and R is the radius of curvature of the path. This magnitude may also be written as V^{2} / R, in terms of the linear speed V. This force (per unit mass) is equal and opposite to the centripetal acceleration. Also called centrifugal acceleration.
Gentripetal acceleration - The acceleration on a particle moving in a curved path, directed toward the instantaneous center of curvature of the path, with magnitude V^{2} / R, where V is the speed of the particle and R the radius of curvature of the path. This acceleration is equal and opposite to the centrifugal force per unit mass.
Chain radar beacon - A radar beacon with a very fast recovery time.
Channel capacity (information theory) - The maximum transmission of information that a channel can provide. It is measured in bits by $\log _{2} \mathrm{c}$, where c is the number of classes of input messages that can be discriminated by the channel.
Charactron - A cathode ray tube which is capable of displaying alphanumeric characters and other symbols.
Charles-Gay-Lussac law - An empirical generalization that in a gaseous system at constant pressure, the temperature increase and the relative volume increase stand in approximately the same proportion for all so-called perfect gases. Mathematically, $t-t_{0}=1 / \mathrm{c}$ ($v-v_{0}$)/vo where t is temperature; v is volume; and c is a ccefficient of thermal expansion independent of the particular gas.

If the centigrade temperature scale is used and v_{0} is the volume at $0^{\circ} \mathrm{C}$, ther, the value of the constant c is approximately $1 / 273$. Also called Charles law, Gay-Lussac law.

Charpentier's bands - A series of alternating light and dark bands which follow a moving slit-shaped stimulus presented against a dark visual field and which are due to fluctuations of visual excitation similar to those which give rise to after-images.
Check-reading instruments - Displays which present dichotamous information, e.g., good-bad, yes-no, rather than quantative information.
Chemiluminescence - Any luminescence produced by chemica" action.
Chest-to-back acceleration - See physiological acceleration, Vol. I, Section 2.
Chi-square test - A statistical significance test based on frequency of occurrence; it is applicable both to qualilative attributes and quantitative variables. Among its many uses, the most common are tests of hypothesized probabilities or probability distributions (goodness of fit), statistical dependence or independence (association), and common population (homogeneity).

Chlorella - A genus of unicellular green algae, considered to be adapted to converting carbon dioxide into oxygen in a closed ecological system. Sen closed ecological system.

Chlorophyll - The green pigment, located in the chloroplasts, which is necessary to the process of photosynthesis.
Chloroplast - A specialized body in the cytoplasm which contains chlorophyll.

Chord - 1. A straight line intersecting a circle or other curve, or a straight line connecting the ends of an arc. 2. (symbol c). In aeronautics, a straight line intersecting or touching an airfoil profile at two points; specifically, that part of such a line between two points of intersection.
Chord length - The length of the chord of an airfoil section between the extremities of the section.

Chroma - The characterization of a color quality without reference to its brilliance or hue (saturation ' η ly'.
Chromatic aberration - In an optical system, the failure of rays of light irom : given point to come to a focus at a point, owing to the fact that light from different parts of the spectrum is refracted unequally.
Chromatic color - A color, or visual quality, which manifests hue and saturation, and therefore cannot be placed in an achromatic series.
Chromatic contrast - A change in hue saturation (or both), in a given area of the visual field, du. co the concomitant state of chromatic stimu'ation of an adjoinıng or neighboring area, or of the given area or its neighborhood at a closely preceding time.
Chromatic flicker - A pulsating or flicker phenomenon, due to differences in either dominant wave-length or purity, or both, between stimuli or equal luminance, which are alternately applied to the
same retinal area. Distinguished from flicker in general, which may involve also pulsations in brightness.
Chromaticity - The aspect of the color stimulas which is specified by dominant wave-length and purity (alternatively, complementary wavelength and purity) taken together.

Chromaticity diagram - A plane diagram, each point in which represents a different combination of dominant wave-length and purity, and which is usually constructed in some form of triangle with colorimetric primaries represented at the corners. The ICI standard chromaticity diagram is essentially a right triangle representing hypothetical primaries and the complete chromaticity gamut of the ICI standard observer. (See Figure 1).

CIE color system - The Commission Internationale de l'Eclairage color system which designates colors in terms of mixtures of theoretical colored lights. Based on the fact that all colors can be reproduced by proper combinations of the three primary colors of light, viz., red, green and blue. (See Table).
Circle of equal probability - A measure of the accuracy with which a rocket or missile can be guided; the radius of the circle at a specific distance in which 50 percent of the reliable shots land. Also called circular error probable, circle of probable error.

Circuit - A network providing one or more closed paths.
Circular area - Of a circle, the square of the diameter. Circular area $=1.2733 \times$ true area. True area $=0.785398 \times$ circular area.

Circular error probable - Circle of equal probability.
Cislunar - Of or pertaining to space between the Earth and the orbit of the Moon, or to a sphere of space centered on the Earth with a radius equal to the distance between the Earth and the Moon.

Clear - To restore a storage or memory device to a prescribed state, usually that denoting zero. See reset.
Climatization - All measures taken to provide for the satisfactory operation, packaging, transportation, and storage of ground equipment regardless of climatic conditions.
Clinometer - A device for measuring the amount of roll aboerd ship.
Clo - The amount of insulation which will maintain normal skin temperature of the human body when heat production is 50 kilogram-calorie per meter squared per hour, air temperature is $70^{\circ} \mathrm{F}$, and the air is still.

Closed circuit scuba - An underwater swimmer breathing system in which the rate of oxygen utilization is determined by the diver's metabolic consumption of oxygen rather than by the larger volune of gas required for ventilation as in the open circuit type.
Closed ecological system - A system that provides for the maintainance of life in an isolated living chamber through complete re-utilization of the material available, in particular, by means of a cycle wherein exhaled carbon dioxide, urine, and other waste matter are converted chemically or by photosynthesis into oxygen, water, and food.

FIG. 1 The (x, y)-chromaticity diagram of the ICI system. The abscissa is the ratio of the tristimulus value X to the sum of all three $(X+Y+Z)$. The ordinate is the ratio of Y to this sum. The parts of the spectrum locus are identified by wavelength in millimicrons. The region bounded by this locus and the straight line (purple border) joining its extremes represents all chromaticities producible by actual stimuli. The central curved line represents the chromaticities of the complete radiator and is called the Planckian locus. Points on this locus are identified by the temperature of the radiator expressed on the Kelvin scale.

Table 2. Chromaticity Coordinates (x, y, z) of the Spectrum Colors

Wavelength, m μ	Chromaticity Coordinates			Wavelength, $\mathrm{m} \mu$	Chromaticity Coordinates		
	x	y	z		x	y	z
380	0.1741	0.0050	0.8209	550	0.3014	0.6923	0.0061
385	0.1740	0.0050	0.8210	555	0.3373	0.6589	0.0038
390	0.1738	0.0049	0.8213	560	0.3731	0.6245	0.0024
395	0.1736	0.0049	0.3215	565	0.4087	0.5896	0.0017
				570	0.4441	0.5547	0.0012
400	0.1733	0.0048	0.8219				
405	0.1730	0.0048	0.8222	575	0.4788	0.5202	0.0010
410	0.1726	0.0048	0.8226	580	0.5125	0.4866	0.0009
415	0.1721	00048	0.8231	585	0.5448	0.4544	0.0008
420	0.1714	0.0051	0.8235	590	0.5752	9.4242	0.0006
				595	0.6029	0.3965	0.0006
425	0.1703	0.0058	0.8239				
430	0.1689	0.0069	0.8242	600	0.6270	0.3725	0.0005
435	0.1669	0.0086	0.8245	605	0.6482	0.3514	0.0004
440	0.1644	0.0109	0.8247	610	0.6658	0.3340	0.0002
445	0.1611	0.0138	0.8251	615	0.6801	0.3197	0.0002
				620	0.6915	0.3083	0.0002
450	0.1565	0.0177	0.8257				
455	0.1510	0.0227	0.8263	625	0.7006	0.2993	0.0001
460	0.1440	0.0297	0.8263	630	0.7079	0.2920	0.0001
465	0.1355	0.0399	0.8246	635	0.7140	0.2859	0.0001
470	0.1241	0.0578	0.8181	640	0.7190	0.2809	0.0001
				645	0.7230	0.2770	0.0000
475	0.1096	0.0868	0.8036				
480	0.0913	0.1327	0.7760	650	0.7260	0.2740	0.0000
485	0.0687	0.2007	0.7306	655	0.7283	0.2717	0.0000
490	0.0454	0.2950	0.6596	660	0.7300	0.2700	0.0000
495	0.0235	0.4127	0.5638	665	0.7311	0.2689	0.0000
				670	0.7320	0.2680	0.0000
500	0.0082	0.5384	0.4534				
505	0.0039	0.6548	0.3413	675	0.7327	0.2673	0.0000
510	0.0139	0.7502	0.2359	680	0.7334	0.2666	0.0000
515	0.0389	0.8120	0.1491	685	0.7340	0.2660	0.0000
520	0.0743	0.8338	0.0919	690	0.7344	0.2656	0.0000
				695	0.7346	0.2654	0.0000
525	0.1142	0.8262	0.0596				
530	0.1547	0.8059	0.0394	700	0.7347	0.2653	0.0000
535	0.1929	0.7816	0.0255	705	0.7347	0.2653	0.0000
540	0.2296	0.7543	0.0161	710	0.7347	0.2653	0.0000
545	0.2658	0.7243	0.0099	115	0.7347	0.2653	0.0000

Closed-loop system - A system in which the output is used to control the input.

Closed respiratory gas system - A completely self-contained system within a sealed cabin, capsule, or spacecraft that will provide adequate oxygen for breathing, maintain adequate cabin pressure, and absorb the exhaled carbon dioxide and water vapor.

Closing rate - The speed at which two bodies approach each other.
Clutter - Atmospheric noise, extraneous signals, etc., which tend to obscure the reception of a desired signal in a radio receiver, radarscope, etc.
Coated optics - Optical elements (lenses, prisms, etc.) which have their surfaces covered with a thin transparent film to minimize reflection and loss of light in the system.
Coaxial cable - A transmission line consisting of one conductor, usually a small copper tube or wire, within and insulated from another conductor of larger diameter, usually copper tubing braid. The outer conductor may or nay not be grounded. Radiation from this type of line is practically zero. Coaxial cable is sometimes called concentric line.

Cockpit procedure trainers - Trainers used to provide cockpit familiarization and orientation.
Coding, control-display - The application of color, shape, location or other features which enable an operator to identify a control or display more quickly.

Coefficient of thermal expansion - The ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature.

Coherent radar - A type of radar that employs circuitry which permits comparison of the phase of successive received target signals.

Collector - Any lens or mirror which collects or converges radiation.
Collimate - 1. To render parallel, as rays of light. 2. To adjust the line of sight of an optical instrument, such as a theodolite, in proper relation to other parts of the instrument.

Collimator - l. Optical system for rendering convergent or divergent. radiation parallel. 2. An optical device which renders rays of light parallel.
Color - Visual sensation determined by interaction of wavelength, intensity, and mixture of wavelengths of light. The corresponding attribuies of color are hue, brightness, and saturation.

Color attribute - (See Attributes of Color).
Color blindness - Inability to distinguish colors on the part of a person able to see shapes and forms.

Color code - A technique for simplifying the identification of electrical components and wiring, warning and caution displays, etc., based on color cues.

Color constancy - The relative independence of object colors of changes in illumination or of other viewing conditions.
Color deficient - A general term for relative inability to discriminate chromaticity or hue-as contrasted with colur blindness.
Color discrimination - Ahility to see and determine differences between color spectrum wavelengths of light. Physiological process attributed to cones of retina.
Color mixture - The presentation of two or more color stimuli to the same area of the retina effectively at the same time for the purpose of eliciting their combinel effect. Mixture may be r.ocomplished in various ways such as simulaneous projection, rapid alternation, or diffusive combination of the several stimuli concerned.

Colni sensation - Any elementary visual experience of a chromatic or achronatic nature which results from stimulation of the regina, as distinguished from tite physical considerations descriptive of the stimulus. More narrowly, those elementary visual experiences which exhibit hue.

Color shades - Colors of brightnesses or lightnesses which are darker than median gray. Contrast with tint.
Color stimulus - Radiant energy of any degree, wavelength, or composition within the ranges which are capable of adequate stimulation of retinal receptors. The term is sometimes limited to adequate stimuli for hueful responses. Color stimuli are sometims specified in the psychophysical terms of luminance, dominant wavelength, and purity.
Color temperature - The temperature of a blackbody or complete radiator at which it yields a color matching that of a given sample or radiant energy. The blackbody colors form a single series of relatively unsaturated visual qualities, ranging from red, through orange, white, pale blues, and violets, as the temperature is increased. The temperature is measured on the absolute or Kelvin scale.
Color tints - Colors of brightnesses or lightnesses which art lighter than median gray. Contrast with shade.

Color triangle - (See Chromaticity diagram).
Color weakness - A defect in color vision markeu , 'iminished color sensitivity rather than actual loss of any hue. h. called anomalous trichromatism.
Color zones - Regions of the retina which have dif:" ent charac' ristics as to chromatic response. For most indiviuuals and usual conditions, the central portions shows full chromatic response, while red and green responses disappfar at a moderately foripheral position, and blue and yellow fail toward the extreme periphery. Th: exact boundaries of any zone depend upon the extent, intensity, and chromatic power of the stimulus used; they vary also with the individual, and with the technique employed. Also cailed retinal zones.

Coma - 1. The gaseous envelope that surrounds the nucleus of a comet. 2. In an optical system, a result of spherical aberration in which a point source of light, not on the axis, has a blurred, comet-shaped image.

Command - A signal which initiates or triggers an action in the device which rcceives the signal. In compucer operations also called instruction.

Command control - The acquisition proces. ng, and dissemination of information required by a comander in „lanning, directing, ard controlling operations.

Command destruct - A command control system that destroys a flightborne test rocket, actuated cn command of the range safety officer whenever the rocket performance indicates a safety hazard.

Command guidance - The guidance of a spacecraft or rocket by means of electronic signals sent to receiving devices in the vehicle.
Common item - An item of supply used in two or more systems, subsystems, or pieces of support equipment, cluding related components and spares.

Communication links - Those links through which information is transmitted from one unit to another. They may be from man to man, from equipaent to man, from equipment to equipment and from man to equipment.

Commutatior - Sequer...l sampling, on a repetitive timesharing basis. of multiple data $: \cdots, z=s$ for transmitting or recording, $こ=b \neq t h$, c a single channel.

Compass - An instrument used in determining the azimuth or direction of a body relative to the meridian of a place. There are two principal kinds of compass in use, namely, the magnetic compass which is actuated by the earth's magnetism, and the gyro-compass aich is actuated by a rapidly spinning rotor which tends to place its axis of rotation parallel to the earth's axis of rotation. The first is subject to certain errors, known as variation and deviation, aud mav also be affected by other local attrartions. The gyrocompass is free from these disturbances and indicates direction relative to the true meridian of the earth.

Compass direction - Direction as indica+ed by a compass without any allowances for compass error. The direction irdicated by a magnetic compass may differ by a considerable amount from the true direction teferred to a meridian of the earth.

Compass error - The amount by which a compass direction differs from the true direction aue to the effects of magn_tic deviation and variation.

Compatibjilty (me -. achine) - A characteris:ic ascribed to the interface bet'veen an operator and the equipment he uses; indicates how well the interface matcit, human physical and mental capabilities and limitations.

Compile - In compute: termi iulogy, to assemble the necessary subroutines into a main routine for a specific problem.
Complementary color - 1. The waveleryth of light energy of a single frequency wist matches the colow of z reference standara when coinbined in suitable proportion with the light. 2. Color pigment, colurs opoosite one another on standard coler wheel (see Fig. 2).

FIG. 2 a. Color wheel (1-primaries, 2-secondaries, 3-tertiaries). b. Complementary colors. c. Adjacent complemeitary colors.
d. Monochromatic. e. Split complementary. f. Triad. g. Analogous colors.

Complementary wavelength - (See Somplementary color).
Complementation - In Boolean algebra, an operation in which items are described by stating that they do not belong to a particular class or classes. See Not ci.cuit.
Component - A combinatior of parts, subassemblies, or assemblies, usually self-contained, which performs a distinctive function in the operation of the overall equipment.
Concave - Curved inward (as a cave).
Condensation trail - A visible trail of condensed water vapor or ice particles left behind an aircraft, an airfoil, etc. in motion through the air. Also called a contrail or vapor trail.
Cones - Sensory elements found in the retina of the eye that constitute specific receptors for vision at high levels of illumination and for color vision.
Confidence factor - In statistics, the percentage figure that expresses confidence level, or proportion of times the statement should be correct that the estimated population parameter lies within the given confidence interval.

Confidence interval - In statistics, a range of values which is believed to include, with a preassigned degree of confidence (confidence level), the true characteristic of the lot or universe a given percentage of the time.
Confidence level - In statistics, the degree of desired trust or assurance in a given result.

Configuration - l. Relative position or disposition of various things, or the figure or pattern so formed. 2. A geometric figure, usually consisting princif.ally of points and connecting lines. 3. = planetary configuration. 4. A particular type of a specific aircraft, rocket, etc., which differs from others of the same model by virtue of the arrangement of its coruponents or by the addition or omission of auxiliary equipment as long-range configיration, cargo configuration.
Conical beam - The radar beam prodaced by conical scanning methods.
Conical scanning - Scanning in which the direction of maximum radiation generates a cone whose vertex angle is of the order of the beam widith. Such scanning may be either rotating or nutating, accoriing as the direction of polarization rotates or remains unchanged.
Conjunction - The situation of two celestial bodies having either the same celesti.il longitude or the same sidereal hour angle.
Console - Panels or cabinets upon which are mounted dials, switches and other apparacus used in cestrally concrolling electrical or mechanical devices.
Conspicuity - Degree of conspicuusness.

Constancy - The phenomenon that perceptual objects retain to a greater or lesser degree normal appearance in relative (though not in absolute) independence of the local stimulus conditions. Applied to the following properties: color, preservation of normal hue, saturation, and brightness under different illumination; form-persistence of the shapa of an object when, from geometrical optics, a change might be expected; maynitude-preservation of apparent size in spite of differences in the retinal image.
Continuous-flow system - An oxygen system in which the oxygen flows during both inspiration and expiration by the individual

Continuous-pressure breathing - A kind of pressure breathing in which a minimum amount of pressure variation exists inside the mask.
Continuous-wave radar - A general species of radar transmitting continuous waves, either modulated or unmodulated. The simplest form transmits a single frequency and detects only moving targets by the Doppler effect. This type of radar determines direction but usually not range. Also called CW radar.

Continuum - Something which is continuous, which has no discrete parts, as the continuum of real numbers as opposed to the sequence of discrete integers, as the background continuum of a spectrogram due to thermal radiation.

Contrail - Condensation trail.
Contrast - Difference in brightness between two portions of visual field, usually expressed in experimental procedure as: $\mathrm{C}=\frac{\mathrm{B} \text { (background) }-\mathrm{B} \text { (test field) }}{\mathrm{B}(\text { background })} \times 100 \%$

Contrast flicker - Flicker which is induced into a physically constant field by a neighboring flicker.
Control - 1. Device by which direction, regulation, or restraint is exer.ised over somethiag. 2. An activity or organization that directs or regulates an activity.
Control-display compatibility - The naturalness of the control used as it relates to the response made. For example, a clockwise turn of a rotary control is associated with an increase in values.

Control-display ratio - The ratio of the control movement of the control to the movement of the display indicator. The ratio may be in distance, as for levers, or revolutions as for rotary devices.

Control fee. - The impression of the stability and control of an aircraft that a pilot receives through the cockpit controls, either from the aerodymamir forces acting on the control surfaces or from forces simulating these aerodynamic forces.
Controlled environment - The environment of any object, such as an instrument, a man, or an unlaunched rocket, in which effects such as humidity, pressure, temperature, -tc., are maintained at predeternined levels.

Convergence - 'The turning of the two eyes toward each other so that their respective lines of sight meet at a point in space. Thus, the inage is formed at corresponding regions of the two retinas.

Convex - Curved outward.
Coordinate system - Any scheme for the unique identification of each point of a given continuum. The geometry of the system is a matter of convenience determined by the boundaries of the continuum or by other considerations. Also called reference frane.
Coriolis effects - The physiological effects (nausea, vertigo, dizzi.ness, etc.) felt by a person moving radially in a rotating system, as a rotating space station.

Coriolis force - An inertial force on a moving body, or particles, produced by the movement of the masses involved, perpendicular to the axis of the primary rotating system. Also called compound centrifugal force, deflecting force.
Corona - 1. The sut, - isible enveiope of the sun. Also called solar corona. 2. T.l. . . rmesy tenuous outer atmosphere of the sun now known to ext. \therefore. . the earth's orbit. 3. A set of one or more prismatical: . l :ed rings of small radii, concentrically surrounding the dis: F the sun, moon, or other luminary when veiled by a thin cloud.

Corona discharge - A luninous, and often audible, electric discharge that is intermediate in nature between a spark discharge (with, usually, its single discharge channel) and a point discharge (with its diffuse, quiescent, and nonluminous character). Also called brush discharge, St. Elmo's fire, corposant.

Corrective maintenance - That maintenance performed to restore an item to a satisfactory condition by providing correction of a malfunction which has caused degradation of the item below the specified : -formsas:-

Corrective maintenance time - The time that begins with the observance of a malfunction of an item and ends when the item is restcred to a satisfactory operating condition. It ma; be subdivided into Active Maintenance Time and Nonactive Maintenance Time. Does not necessarily contribute to equipment or system downtime in cases of alternate modes of operation or redundancy.

Correlation - l. In statistics, a retationship between two occurrences vhich is expressed as a number between minus one (-1) and plus one $(+1)$. 2. When used without further qualification, the statistical term correlation usually refers to simple, linear correlaition between two variables, x and y, and is measured by the product-moment coefficient of correlation p or its sample estimate r.
Correlation detection - A method of detection in which a signal is compared, point-to-point, with an intemally generated reference. Also called cross correlation detection.
Correiation tracking and ranging (Cotar) - A nonambiguous trajectorymeasuring system using short-baseline, single-station, continuouswave phase-comparison measure in two direction cosines and a slant range.

Correlation tracking and triangulation (Cotat) - A trajectory measuring system composed of several antenna baselines, each separated by large distances, used to measure direction cosines to an object. From these measurements its space position is computed by triangulation.

Cosine law of illumination - A purely geometric relationship between the illuminance of a surface and the angle of incidence of the illuminating rays. Mathematically, the illuminance I of the surface illuminated by a beam of flux density F incident at angle θ is $I=$ $\mathrm{F} \cos \theta$.
Coulomb - The unit of quantity of electricity; the quantity of electricity transported in 1 second by a current of 1 ampere.

Counter, digital readout - A numerical readout device which presents absolute numerical values on a mechanical drum, screen projection, solid state or other display.

Counterclockwise, control motion - Refers to movement of a rotary control knob to the left.

Course - 1. A predetermined or intended route or direction to be followed, measured with respect to a geographic reference direction; a line on a chart renresenting a course. 2. A line of flight taken by an aircraft, rocket, etc. 3. A radio beam in a radio range.
Critical - In reactor theory, capable of sustaining a chain reaction.
Critical damping - Critical damping is the minimum viscous damping that will allow a displaced system to return to its initial position without oscillation.

Critical flicker frequency - The minimum number of alternations per second of two different visual stimuli (or the frequency of any periodically variable stimulus) upon the same retinal area which will permit a constant effect in visual experience, as if from an invariable stimulus, i.e., which will result in the elimination of flicker. Cf. flicker.
Critical incidence (or angle) - The least angle of incidence at which total reflection takes place.
Criticality - The effect of a malfunction of an item on the performance of a system.

Critical speed - A speed of a rotating system that corresponds to a resonance frequency of :he system.
Cross couplin , - !inintentional control inputs introduced by an operator . . . 1% oriated with integrated control such as a joystick.
Crosstalk : st . . , hences in a comunicetion channel as a result.t $\quad \therefore=$.fr. .r.i communication channels.

Cryogenic i"土. . : : Il: e . \quad :als and alloys which are usable in

Cryogenics - 1. The study of the methods of producing very low temperatures. 2. The study of the behavior of materials and processes at cryogenic temperatures.

C-scan - C-display.
C-scope - C-display.
Curie - The unit of the rate of radioactive decay; the quanticy of any radioactive nuclide which undergoes 3.70×1010 disintegrations per second.

Current - l. The flow of electrons in an electrical conductor. 2. A horizontal movement of the water.

Cursor - A device used with an instrument to provide a movable revrence, as the runner of a slide rule or a rotatable plastic disk with inscribed crosslines, used in reading bearings on a plan position indicator.

Curve of regression - A realistic curve having a least-squares fit to the data points.

Curvilinear coordinates - Any linear coordinates which are not Cartesian coordinates. Examples of frequently used curvilinear coordinates are polar coordinates and cylindrical coordinates.

Cutaneous sense - Any of the senses whose receptors lie in the skin or immediately beneath it (or in the external mucous membranes): contact, pressure, warmth, cold, pain, and perhaps others.

Cybernetics - The study of methods of control and communication which are common to living organisms and machines.

Cycle - l. The complete sequence of values of a periodic quantity that occur during a period. 2. One complcte wave, a frequency of 1 wave per second. 3. Any repetitive series of operations or events.

Dalton's law - States that the total pressure exerted by a mixture of gases may be considered to be the sum of the pressures that would be exerted by each of the gases if it alone were present and occupied the total volume.

Damping - The suppiession of oscillations or disturbances; the ':issipation of energy with time.

Dark adaptation - The process by which the iris and retina of the eye adjust to allow maximum vision in dim illumination, following exposure of the eye to a relatively brighter illumination. (See Vol. I Section

Dark-adapted eye - An eye whose condition has been so modified by the wi:hdrawal of general light stimulation that faint stimulation has become more effective. Contrast with light-adapted eye.

Dark trace tube - A cathode-ray tube, on which the face is bright, and signals are displayed as dark traces or dark blips.

Dash - Term to describe a phase of an aircraft mission, usually the final run prior to release of a weapon.

Data link - Any communications channel or circuit used to transmit data from a sensor to a computer, a readout device, or a storage device.

Data point - A unit of fundamental information o,tained through the processing of raw data.

Data processing - Application of procedures, mechanical, electrical, computational, or other, whereby data are changed from one form into another.

Data reduction - Transformation of observed values into useful, ordered, or simplified information.

Data smoothing - The mathematical process of fitting a smooth curve to dispersed data points.
Datum - Any numerical or geometrical quantity or set of such quantities which can serve as a reference or a base for measurement of other quantities.
Datum line - Any line which can serve as a reference or base for the measurement of other quantities.

Datum plane - A plane from hhich angular or linear measurements are reckuned. Also called reference plane.

Datum point - Any point which can serve as a reference or base for the measurement of other quantities.

Dazzle - An expression used to describe extreme brightness characteristics of direct or reflected light; causes difficulty in seeing.

D-display - In radar, a C-display in which the blips extend vertically to give a rough estimate of distance.
Dead band - An arrangement incorporated in a guidance system which prevents an error from being corrected until that error exceeds a specified magnitude.
Dead man controls - Devices for shutting off or rendering mechanisms safe in case of accident or iliness of the operator.

Dead reckoning - In navigation, determination of position by advancing a previous known position for courses and distances.

Debug - 1. To isolate and remove malfunctions from a device, or mistakes from a routine or program. 2. Specifically, in electronic manufacturing, to operate equipment under specified environmental and test conditions in order to eliminate early failures and to stabilize equipment prior to actual use. Also called burn-in.

Decay time - 1. In computer operations, the time required for a pulse to fall to one-tenth of its peak value. 2. In charge-storage tubes, the time interval during which the magnitude of the stored charge decreases to a stated fraction of its initial value. 3. Approximately the lifetime of an orbiting object in a nonstable orbit. Decay :'e is usually applied only to objects with short orbit ifetimes aused by atmuspheric drag.

Deceleration parachute - A parachute attached to a craft and deployed to slow the craft, especially during landing. Also called a brake parachute, drogue parachute, parabrake.
Decibel - 1. A dimensionless measure of the ratio of two powers, equal to 10 times the logarithm to the base 10 of the ratio of two powers $\mathrm{P}_{1} / \mathrm{P}_{2}$. 2. One-tenth of a bel.
Decimal-to-binary conversion - The mathematical process of converting a quantity from decimal notation to the equivalent binary notation. For example: $1=1 ; 7=111 ; 23=10111$, etc. See binary notation.
Decision element - In computer operations, any device which as the result of the input of data issues one of two or more possible instructions.

Declination - Angular distance north or south of the celestial equator.
Decoder - 1. A device for translating electrical signals into predetermined functions. 2. In computer operations, a network or device in which one of two or more possible outputs results from a prescribed combination of inputs.
Decompression sickness - A disorder experienced by deep sea divars and aviators caused by reduced atmospheric pressure and evolved gas bubbles in the body, marked by pain in the extremities, pain in the chest (chokes), occasionally leading to severe central nervous symptoms and neurocirculatory collapse. See bends, dysbarism.

Deep scattering layer - Term applied to widespread strata in the ocean which scatter or return vertically directed sound such as in the case of echo sounding. These layers, which are evidently of biological origin, are located in depths ranging from 150 to 200 fathoms during the day with most of them migrating to or near the surface during the night.
Deep water - Water of depth such that surface waves are little affected by conditions on the ocean bottom. It is customary to consider water deeper than one-half the surface wave length as deep water.
Definition - The clarity, fidelity, sharpness, resolution and briiliancy of an image, as a photographic image.

Degaussing - Slang for demagnetize.
Degree of freedom - 1. A mode of motion, either angular or linear, with respect to a coordinate system, independent of any other mode. 2. Specifically, of a gyro the number of orthogonal axes about which the spin axis is free to rotate. 3. In an unconstrained dynamic or other system, the number of independent variables required to specify completely the state of the system at a given moment. 4. Of a mechanical system, the minimum number of independent generalized coordinates required to define completely the positions of all parts of the system at any instant of time.

Delayed reaction - In a reaction-time experiment, reactions believed to depend upo. higher cortical centers: discrimination reactions, choice reactions, etc.

Demand oxygen system - An oxygen system in which oxygen flows to the user during inspiration only.
Demodulation - The process of recovering the modulating wave from a modulated carrier.

Denitrogenation - The removal of nitrogen dissolved in the blood and body tissues, usually by breathing of pur:- oxygen for an extended period of time in order • prevent aeroembolism at high altitudes.

Dependent variable - Any variable considered as a function of other variables, the latter being called independent. Compare parameter. Whether a given quantity is best treated as a dependent or independent variable depends upon the particular problem.
Depot Maintenance - Maintenance performed on material requiring a major overhaul or a complete rebuilding of parts, subassemblies, assemblies, and end items.
Depth angle - The angle between the horizontal and the bearing of the submerged target as seen from own ship.
Depth perception - The ability to estimate depth or distance between points in the field of vision.

Descending node - That point at whicn a planet, planetoid, or comet crosses to the south side of the ecliptic; that point at which a satellite crosses to the south side of the equatorial plane of its primary. Also called southbound node. The opposite is ascending node or northbound node.

Design gross weight - The gross weight at take-off that an aircraft, rocket, etc, is expected to have, used in design salculations.

Destruct - The deliberate action of destroying a rocket vehicle after it has been launched, but before it has completed its course.

Detection - See recognition.
Deuteranomalous Trichromat - An individual having deuteranomalous vision, viz., deuteranomaly.

Deuteranomaly - Form of trichromatism in which the luminosity function is within normal limits, but in which an abnormally large proportion of stimuius green is required in a red-green stimulus mixture in order to match a given yelluw.
Deuteranope - Individual having deuteranopic vision.
Deuteranopia - Form of $\because i$ hromatism in which green and purplish red stimuli are confused, but a normal proportion suffices to match a given yelln, and the luminosity function also is within normal limits. sometimes called green blindness.

Deuterium - A heavy isotope of hydrogen having one proton and one neutron in the nucleus.

Deviation - l. In statistics, the difference between two numbers. Also called departure. Commonly applied to the difference of a variable from its meain, or to the difference of an observed value from a theoretical value. 2. = magnelic deviation. 3. In radio transmisoion
the apparent variation of frequency above and below the unmodulated or center frequency.
Dewpoint - The temperature to which a given parcel of air must be cooled at constant pressure and constant water-vapor content in order for saturation to occur; the temperature at which the saturation vapor pressure of the parcel is equal to the actual vapor pressure of the contained water vapor. Any further cooling usually results in the formation of dew or frost. Also called dewpoint temperature.
Diastolic blood pressure - The pressure exerted by the blood during periods between cardiac contraction.

Dichromat - Individual having dishromatic vision.
Dichromatism - Form of vision yielding colors which require in general two independently adjustable primaries (such as red and green, or blue and yellow) for their duplication by stimulus mixture. Dichromatism may be aither protanopia, deuteranopia, tritanopia, or some irregular form such as tetartanopia.
Difference limen - The small amount of difference between two compared stimuli which gives rise (statistically) to a per cived difference as often as it does not. The difference limen is the same as the average just noticeable difference. Also callet differential threshold, threshold of difference.

Differential analyzer - An analog computer designed and used primarily for solving differential equations.
Differential pressure - The pressure difference between two systems or volumes.
Differential sensitivity - The 50 percent detectable ratio between tine sum of echo strength and background noise and the background noise.

Differentiator - 1. In computer operations, a device whose output is propurtional to the derivative of an input signal. 2. In electronics, a transducer whose output waveform is the time derivative of its inf" waveform.
Diffractic. - l. A modification wh: H light undergoes, as in passing by the edges of opaque bodies or through narrow slits, in which the rays appear to be deflected, producing fringes or parallel light and dark or colored bands. 2. The name given to that process which allows sound waves to bend around obstacles that are in their path.

Diffuse sky radiation - Solar radiation reaching the earth's surface af'er having been scattered from the direct solar beam by molecules or surnensoids in the atmosphere. Also called skylight, diffuse skyliuat, sky radiation.
Diffuse sound - Sound energy for which energy is uniform in the region considered and when all directions of energy flux at all parts of the region are equally probable.

Digit - 1. A single symbol or character represerting an integral quality. 2. Any one of the symbols used in positional notision as coefficients of eack nower, or order, of the base.
Digital - Using discrete expressions to represent variables.
Digital computer - A computer which operates with information, numericai or otherwise, represented in a digital form.
Digital output - Transducer output that represents the magnitude of the stimulus in the form of a series of discrete quantities coded to represent digits in a system of notation. Compare analog output.
Digitize - Changing an analog measurement into a number expressed in digits.

Diopter - Measurement of the focusing power of a lens according to the reciprocal of the focal length of the lens. A lens of one diopter focuses parallel rays at 1 meter.

Dioptric light - A light concentrated into a collimated beam by means of refracting lenses or prisms.
Diplopia - Any condition of the ocular mechanism in which a single external object is seen double.

Dipole - 1. A system composed of two, separated, equal electric or majnetic charges of opposite sign. 2. = dipole antenna.

Dipole antenna - A , '土ight radiator, usually fed in the center, and producing a maxiwum of radiation in the plane normal to its axis. The length specified is the overall length.

Directional gyrn - 1. A two-Negree-of-freedom gyro with a provision for maintaining its spin axis approximately horizontal. 2. A flight instrument ircorporating a gyro that holds its position in azimuth and thus can be used as a directional reference.

Directional stability - The rroperty of an aircraft, rocket, eic., enabling it to restore itself from a yawing or sideslipping condition. Also called weathercock stability.

Direction finder - Radio direction finder.
Direct moiion - Eastward or counterclockwise motion of a planet or other object as seen from the Nor:th Pole (motion in the direction of increasing right ascension).

Discrete - Composed of distinct or discontinuous elements.
Discrete variable - A quantity that may assume any one of a number of individually distinct or separate values.

Dish - A parabolic reflector type of radio ur radar antenna.
Dispersion - I. In rocketry, (a) deviation from a prescribed flight path, (b) specifically, circular dispe::sion. 2. A measure of the scatter of data points around a mean value or around a regression curve. 3. The process in which radiation is separated into 2 is component waveleagths.
Disylacemenc - A vector quantity that specifies the change of position of a body or particle usually measured from tr. nean pusition or position of rest.

Display - The presentation of the output data of any device or system in a form suitable for human perception and interpretation.

Distance measuring equipment - A radio aid to navigation which provides distance information by measuring total round-trip time of transmission from an ini errogator to a transponder and return.

Distortion - 1. An undesired change in waveform. 2. In a system used for transmission or reproduction of sound, a failure by the system to transmit or reproduce a received waveform with exactness.

Distribution-free statistics - A branch of statistics making no assumptions about the distribution.

Diurnal - Having a period cf, occurring in, or related to a day.
Diurnel aberration - Aberration caused by the rotation of the earth. The value of dirmal aberration varies with the latitude of the observer and ranges from zero at the poles to 0.31 second of arc.

Divergence - l. The expansion or spreading out of a rector field; also a precise measure thereof. 2. A static instability of a liftirig surface or of a body on a vehicle wherein the aerodynamic loads tending to deform the surface or body are greater than the elastic restoring furces.

Docking - The act of coupling two or more orbiting objects; the operation of mechanically connecting together, or in some manner bringing together, orbital payloads.

Dogleg - A directional turn made in the launch trajectory to produce a more favorable crbit inclination.

Doppler effect - The change in frequency with which energy reacines a receiver when the receiver and the energy source are in motion relative to each otkar. Also called Doppler shift.

Doppler navigation - Dead reckoning performed automatically by a device which gives a continuous indication of position by integrating the speed derived from measurement of the Doppler effect of echoes from directed beams of radiant energy transmitted from the craft. See Doppler radar.

Doppler radar - A radar which detects and interprets the Doppler effect in terms of the radial velocity of a target.

Doppler shift - l. = Doppler effect. 2. The magnitude of the Doppler effect, measured in cycles per second.
Dorsal - Toward or pertaining to the back, or upper surface.
Dosimeter - 1. An instrument for measuring the ultraviolet in solar and sky radiation. Compare actinometer. 2. A device, worn by persons working around radioactive material, which indicates the dose of radiation to which they have been exposed.

Double-dabble - A technique for binary to decimal conversion. Starting with the most significant bit, proceed, bit-by-bit, as follows: if the next bit is 0, double what you have (duuble); if the next bit is 1 , double what you have and add 1 (dabble). Thus, 111 (binary) $=$ 7 (decimal); 10111 (binary) $=23$ (decira.).

Double stars - Stars which appear as single points of light to the eye but which can be resolved into two points by a telescope.

Down range - The airspace extending downstream on a given rocket test range.
Downtime - A period (calender time) during which equipment is not operating correctly because of machine failure.
Draft - The depth to which a vessel is submerged. Draft is customarily indicated by numerals called draft marks at the bow and stern. It may also be determined by means of a draft gauge.

Drag - A retarding force acting upon a body in motion through a fluid, parallel to the direction of motion of the body. It is a component of the total fluid forces acting on the body. See aerodynamic force.

Drag coefficient - A coefficient representing the drag on a given airfoil or other body, or a coefficient representing a particular element of drag.

Drag parachute - 1. = drogue parachute. 2. Any of various types of parachutes attached to high-performance aircraft that can be deployed, usually during landings, to decrease speed and also, under certain flight conditions, to control and stabilize the aircraft.

Drift - 1. The lateral divergence from the prescribed flight path of an aircraft, a rocket, or the like, due primarily to the effect of a crosswind. 2. A slow movement in one direction of an instrument pointer or other marker. 3. A slow change in frequency of a radio transmitter. 4. The angular deviation of the spin axis of a gyro from a fixed reference in space. 5. In semiconductors, the movement of carriers in an electric field.

Drift iate - The amount of drift, in any of its several senses, per unit time (e.g., straying from normal position, course or operating level).
Drogue - i. A device, usually shaped like a funnel or cone, dragged or towed behind something and used, e.g., as a sea anchor. 2. A funnelshaped part at the end of the hose of a tanker aircraft, used in air refueling to drag the hose out and stabilize it and to receive the probe of the receiving aircraft. $3 .=$ drogue parachute.
Drogue parachute - 1. A type of parachute attached to a body used to slow it down; also called deceleration parachute or drag parachute. 2. A parachute used specifically to pull something, usually a larger parachute, out of stowage, as, a drogue parachute deploys a drag parachute.
Drogue recovery - A type of recovery system for space vehicles or space capsules after initial reentry into the atmosphere using deployment of one or more small parachutes to diminish speed, to reduce aerodynamic heating, and to stabilize the vehicle so that larger recovery parachutes can be safely deployed at lower altitudes without too great an opening shock.
Drone - A remotely controlled aircraft.
Dry weight - The weight of a rocket vehicle without its fuel.

Ducted-fan engine - An aircraft engine incorporating a fan or propeller enclosed in a duct.; especially, a jet engine in which an enclosed fan or propeller is used to ingest ambient air to augment the gases of combustion in the jetstream.
Duplexer - A device which permits a single antenna system to be used for both transmitting and receiving. Duplexer should not be confused with diplexer, a device permitting an antenna system to be used simultaneously or separately by two transmitters.
Dust - In meteor terminology, finely divided solid matter, with particle sizes in general smaller than micrometeorities, as meteoric dust, meteroritic dust.
Dye marker - A substance which, when placed in water, spreads out and colors the water immediately surrounding so as to make a spot readily visible from the air.

Dynamic balance - The condition which exists in a rotating body when the axis about which it is forced to rotate, or to which reference is made, is parallel with a principal axis of inertia. No products of inertia about the center of gravity of the body exist in relation to the selected rotational axis.

Dynamic load - A load imposed by dynamic action, as distinguished from a static load. Specifically, with respect to aircraft, rockets, or spacecraft, a load due to an acceleration of craft, as imposed by gusts, by maneuvering, by landing, by firing rocket:s, etc.
Dynamic pressure - The pressure of a fluji resulting from its motion, equal to one-half the fluid density times the fluid velocity square ($\frac{1}{2} \rho^{2}$). In incompressible flow, dynamic pressure is the difference between total pressure and statitc pressure. Also called kinetic pressure. Compare impact pressure.

Dynamic storage - Storage in which information is moving in time, and not always available instantaneously.
rynamometer - An instrument for measuring power or force; specifically, an instrument for measuring the power, torque, or thrust of an aircraft engine or rocket.
Dyne - That unbalanced force which acting for 1 second on a body of 1 gram mass produces a velocity change of 1 centimeter per second. The dyne is the unit of force in the CGS system.
Dysbarism - A condition of the body resulting from the existence of a pressure differential between the total ambient pressure and the total pressure of dissolved and free gases within the body tissues, fluids, and cavities.
Dyspnea - Sho. ness of breath, difficult or labored respiratıun.

Earthlight - The illumination of the dark part of the inoon's disk produced by sunlight reflected onto the moon from the earth's surface and atmosphere. Also called earthshine.

Ebb tide - A non-technical term referring to that period of the tide between a high water and the succeeding low water; falli"§ tide.

Ebullism - The formation of bubbles, with particular reference to water vapor bubbles in biological fluids caused by reduced ambient pressure; the boiling of body fluids.
Eccentricity (symbol e) - 1. Of any conic, the ratio of the length of the radius vector thrcugh a point on the conic to the distance of the point from the directrix. 2. Of an ellipse, the ratio of the distance between the center and focus of an ellipse to its semimajor axis. Also called numerical eccentricity. 3. Of an ellipse, the distance between the center and the focus. Also called linar eccentricity.

Echo - 1. A wave that has been reflected or otherwise returned with sufficient magnitude and delay to be detected as a wave distinct from that directly transmitted. 2. In radar, a pulse of reflected radiofrequency energy; the appearance on a radar indicator of the energy returned from a target. Also called blip.

Ecliptic - The apparent annual path of the sum among the stars; the intersection of the plane of the earth's orbit with the celestial sphere.

Ecological system - A habitable environment, either created artifically, as in a manned space vehicle, or occurring naturally, such as the environment on the surface of the earth, in which man, animals, or other organisms can live in mutual relationship with one another and the environment.

Ecology - The study of the environmental relations of organisms.

Ecosphere - 1. = biosphere. 2. A volume of space surrounding the Sun, extending from the orbit of Venus past the orbit of Mars, in which some biologists believe conditions are favorable for the development and maintenance of life.

E-display - In radar, a rectangular display in which targets appear as blips with distance indicated by the horizontal coordinate and evaluation by the vertical coordinate. Also called E-scan and Escope.

Effective acoustic center - The effective acoustic center of an acoustic generator is the point from which the spherically divergent sound waves, observable at remote points, appear to diverge.

Effective temperature - In physiology, the temperature at which motionless, saturated air would induce, in a sedentary worker wearing ordinary indoor clothing, the same sensation of comfort as that induced by the actual conditions of temperature, humidity, and air movement.

Efficiency - 1. Of a device with respect to a physical quantity which may be stored, transferred, or transformed by the device, the ratio of the useful output of the quantity to its total input. Unless specifically stated otherwise, the term efficiency means efficiency with respect to power. 2. (Human $\mathrm{f}^{\mathrm{e}} \mathrm{E}$ Sormance) the effectiveness of work output relative to specified task objectives.

Egress - Pertains to access for departing from ail opciating or passenger station within a vehicle or work area.

Eight ball - Common name given to a flight attitude indicator.
Ejection capsule - 1. In an aircraft or manned spacecraft, a detachable compartment serving as a cockpit or cabin, which may be ejected as a unit and parachuted to the ground. 2. A satellite, probe, or unmanned spacecraft, a box-like unit, usually containing recording instruments or records of observed data, which may be ejected and returned to earth by a parachute or other deceleration device.

Elastomers - Rubber-like compounds.
E-layer - A division of the ionosphere, usually found at an altitude between 100 and 120 kilometers in the E-region. It exhibits one or more distinct maximums and sharp gradients of free electron density, It is most promounced in the daytime but does not entirely disappear at night. Also called El-layer, Kennelly-Heaviside layer, Heaviside layer.
Electrode - A terminal at which electricity passes from one medium into another. The positive electrode is called anode; the negative electrode is called cathode.

Electroluminescence - Emission of light caused by an application of electric fields to solids or gases.

Electromagnetic radiation - Energy propagated through space or through material media in the form of an advancing disturbance in electric and magnetic fields existing in space or in the media. The. term radiation, alone, is used commonly for this type of energy, although it actually has a broader meaning. Also called electromagnetic energy or simply radiation.
Electromyogram - A record of the response of a muscle to an electric stimulation.

Electronic data processing - The use of electronic devices and systems in the processing of data so as to interpret the data and put them into usable form.

Electroluminescent display - A solid state display based on the principles of electroluminescence.
Embolism - Large amounts of air in the blood stream which, reaching the heart, cause it to fail; small amounts are resorbed and cause no symptoms.
Emittance - 1. The radiant flux per unit area emitted by a body. 2. The ratio of the emitted radiant flux per unit area of a sample to that of a black body radiator at the same temperature and under the same conditions.
Emphysema - Refers to a swelling or inflation due to abnormal presence of air in the tissues. Subcutaneous emphysema is the presence of air in the tissues just under the skin. Mediastinal emphysema is the presence of air in the tissues in the vicinity of the heart and large blood vessels in the middle of the chest. Unless extreme, neither of these conditions is likely to cause serious difficulty.

Empty field myopia - Involuntary accommodation of the eyes in the absence of visual objects on which to fo us; often occurs with pilots at high altitudes and results in temporary nearsightedness.

End item - A final cumbination of end products, component parts, and/or materials that is ready for its intended use; e.g., a missile, a mobile guidance unit, a launcher.

Endoskeleton - An internal support.ing framework or structure.
Energy management - In rocketry the monitoring of the expenditure of fuel for flight control and navigation.

Entry corridor - Depth of the region between two trajectories which define the design limits of a vehicle which will enter a planetary atmosphere.

Envelope - 1. Of a variable, a curve which bounds the values which the variable can assume, but does not consider possible simultaneous occurrences or correlations between different values. 2. The bounds within which a certain system can operate, as a flight envelope, especially a graphic representation of these bounds skowing interrelationships of operational parameters.
Ephemeris time - The uniform measure of time defined by the laws of dynamics and deternined in principle from the orbital motions of the planets, specifically the orbital motion of the earth as represented by Newcomb's Tables of the SLn.
Epicenter - In seismology, the point of the earth's surface directly over the focus or theoretical point of origin of an earthquake.
Episcotister - A disk with adjus able open and closed sectors together with a mechanism for ::otating it. Used for adjusting or equating luminances and for the short exposure of visual material, especially in the study of flicker.
Equinoctial - Celestial equator.
Equinoctial system of coordinates - Celestial equator system of coordinates.
Equinox - One of the two points of intersection of the ecliptic and the celestial equator, occupied by the sun when its declination is 0°.
Equivalent foot-candle - foot-lambert.
Erg - The unit of energy or work in the centimeter-gram-second system; the work performed by a force of 1 dyne acting through a distance of 1 centimeter.
E-scan - E-display.
Escape velocity - The radial speed which a particle or larger body must attain in order to escave from the gravitational field of a planet or star. When friction is neglected, the escape velocity is $\sqrt{2 \mathrm{Gm} / \mathrm{r}}$ where G is the universal gravitational constant (see gravitation); m is the mass of the planet or star; and r is the radia. distance from the center of the planet or star. Also called escape speed.

Eulerian angles - A system of three angles which uniquely define with reference to one coordinate system (e.g., earth axes), the orientation of a second coordinate system (e.g., body axes). Any orientation of the second system is obtainable from that of the first by rotation through each of the three angles in turn, the sequence of which is important.

Eulerian coordinates - Any system of coordinates in which propertics of a fluid are assigned to points in space at each given time, without attempt to identify individual fluid parcels from one time to the next. Eulerian coordinates are to be distinguished from Lagrangian coordinates. The particular coordinate system used to identify points in space is quite independent of whether the representation is Eulerian or Lagrangian.

Euphotic zone - For the purpose of biological investigations, the sea is divided vertically into three zones with respect to the amount of light present. These are: 1. The euphotic zone, 2. the disphotic zone, and 3. the aphotic zone. The euphotic zone is supplied with sufficient light for the photosynthetic processes of plants. It extends from the surface to 80 or more meters.

Exobiology - That field of biology which deals with the effects of extraterrestrial environments on living organisms and with the search for extraterrestrial. life.

Exoskeleton - 1. An external supporting structure or covering. 2. A recently developed device worn and operated by man to provide increased manual force capability.

Excojinere - The outermost, or topmost, portion of the atmosphere. Its lower boundary is the critical level of escape, variously estimated at 500 to 1000 kilometers above the earth's surface. Also called region of escape.

Expiratory reserve - The volume of air that can be expelled from the lungs after a normal expiration.

Explosive decompression - A very rapid reduction of air pressure inside a cabin, coming to a new static condition of balance with the external pressure.

Exposure suit - A suit designed to protect a person from a harmful natural environment, such as cold water.

Extinction coefficient - Ir meteorology, a measure of the space rate of diminution, or extinction, of any transmicted light; thus, it is the attenuation coefficient applied to visible radiation.

Extragalactic - Outside our galaxy, which is the Milky Way.
Extraspectrum hue - A hue which is not characteristically evoked iy any color stimulus in the spectrum. Extraspectrum hues range from the extreme violet through the serjes of purples and magentas, and include the psychologically primary red itself.

Extraterrestrial life - Life forms evolved and existing outside the terrestrial biosphere.
Extraterrestrial radiation - In general, solar radiation received just outside the earth's atmosphere.

Extremely high frequency - See frequency bind.
Extremely low frequency - See frequency band.
Extreme value - In statistics, the upper or lower bound of the random variable which is not expected to be exceeded by a specified percentage of the population within a given confidence interval.
Eyeballs in, eyeballs out, eyeballs down, eyeballs up, eyeballs left, eyeballs right - Expressions used to indicate effect of acceleration on human operators. Eyeballs-in associated with forward acceleration, etc.

Facsimile (transmission) - In electrical communications, the process, or the result of the process, by which fixed graphic material including pictures or images in scanned and the information converted into signals which are used either locally or remotely to produce in record form a likeness (facsimile) of the subject copy.

Fahrenheit temperature scale - A temperature scale with the ice point at 32° and the boiling point of water at 212°.

Fail-safe design - Design considerations to prevent probable equipment failures or malfunctions which may injure the operator or damage the equipment.

Failure modes and effects analysis - An analytic procedure which defines the possible ways in which a particular system might fail, including an estimate of probable effects of each failure on system performance.
Farad - The unit of electrical capacitance, the capacitance of a condenser between the plates of which there is a difference of potential of 1 volt when it is charged by a quentity of electricity equal to 1 coulomb.

Fathom - The common unit of depth in the ocean, equal to six feet (or 1.83 meters). It is also sometimes used in expressing horizontal distances, in which case 100 fathoms make one cable or very nearly one-tenth nautical mile.
Fatigue - 1. A weakening or deterioration of metal or other material occurring under load, especially under repeated cyclic, or continued loading. 2. State of the human organism after exposure to any type of physical or psychological stress (e.g., pilot fatigue).
Fatigue, retinal - Depletion of tha capacity of the retina to respond to light and color stimuli. Postulated to explain negative afterimage, successive contrast, etc.
Fatigue, visual - Decreased ability of visual performance and/or characteristic sensations or feeling resulting from prolonged visual work.

Fault correction time - That element of Active Repair Time required under a specified maintenance philoscphy to correct the malfunction. It may consist of correcting the malfunction with the faulty item in place, removing and replacing the iten with a like serviceable item, or renoving the item for corrective me:intenance and reinstalling the same item.

Fault location time - That element of Active Repair Time required for testing and analyzing an item to isolate a malfunction.

F-display - In radar a rectangular display in which a target appears as a centralized blip when the radar antenna is aimed at it. Horizontal and vertical aiming.errors are respectively indicated by the horizontal and vertical displacement of the blip. Also called F-scan, F-scope, F-indicator.

Fechner's law - The intensity of the sensory response is proportional to the logarithm of the stimulus intensity. The logarithmic relation fails to hold experimentally, but a general principle of diminishing returns seems characteristic of all sensory response.

Feedback - l. The return of a portion of the output of a device to the input; positive feedback adds to the input, negative feedback subtracts from the input. 2. Information, as to progress, results, etc., returned to an originating source. 3. In aeronautics, the transmittal of forces initiated by aerodynamic action on a control surfaces or rotor blades to the cockpit controls; the forces so transmitted.

Feedback control loop - A closed transmission path (loop), which includes an active transducer and which consists of a forward path, a feedback path, and one or more mixing points arranged to maintain a prescribed relationship between the loop input signal and the loop output signal.

Feedback control system - A control system, comprising one or more feedback control loops, which combines functions of the controlled signals with functions of the commands to tend to maintain prescribed relationships between the commands and the controlled signals.

Feel - The sensation or impression that a pilot has or receives as to his, or his craft's, attitude, orientation, speed, direction of movement or acceleration, or proximity to nearby objects, or, as most often used, as to the aircraft's stability and responsiveness to control. See control feel.

Fermi - A unit of length equal to 10^{-13} centimeters.
Fidelity - The accuracy to which an electrical system, such as a radio, reproduces at its output the essential characteristics of its input signal.

Fiducial mark - An internally generated identification mark on a film; two or more of these are generally used for orienting a film for reading, and for determining the geometric center of the film.

Field lens - Lens used to effect transfer of the image formed by an optical system.
Field luminance - Adaptation luminance.
Field maintenance - Maintenance performed by designated maintenance activities in direct support of using organizations.
Field strength - I. For any physical field, the flux density, intensity, or gradient of the field at the point in question. Also called field intensity. 2. = signal strength, in radar. $3 .=$ electric field strength.

Figure - Any group of visual impressions which is perceived as a unit pattern or object.
Filtering - l. The decomposition of a signal into its harmonic components. 2. The separation of a wanted component of a time series from any unwanted residue (noise).

Fin - 1. A fixed or adjustable airfoil or vane attached longitudinally to an aircraft, rocket, or similar body to provide a stabilizing effect. 2. A projecting flat plate or structure, as a cooling fin.

Fineness ratio - The ratio of the length of a body to its maximum diameter, or, sometimes, to some equivalent dimension -- said especially of a body such as an airship hull or rocket.

Fix - In navigation, a relatively accurate position determined without refererce to any former position. It may be classed as visual, sonic, celestial, electronic, radio, hyperbolic, Loran, radar, etc., depending upon the means of establishing it.

Fixation point - Point in the visual field at which the observer is looking directly. It is the point whose image falls on the center of the fovea.

Fixed satellite - A satellite that orbits the earth from west to east at such a speed as to remain fixed over a given place on the earth's equator at approximately 35,900 kilometers altitude.

Flameout - The extinguishment of the flame in a jet engine from cause other than deliberate shutoff.

Flare - 1. A bright eruption from the sun's chromosphere. Compare prominence. 2. Pyrotechnic devices used for signalling or to provide illumination. 3. An expansion at the end of a cylindrical body as at the base of a rocket.

Flashpoint - The temperature at which a substance, as fuel oil, will give off a vapor that will flash or burn momentarily when ignited.
Flicker, filicker phenomenon - A rapid pericdic change perceived in a visual impression, due to a corresponding rapid periodic charıge in the intensity or some other character of the stimulus. Flicker disappears when the frequency of the stimulus-change exceeds a ate called the critical flicker frequency, which is about 25 to 30 cycles per second, when each cycle consists of a moderately bright and a wholly dark half-period; the critical rate is somewhat higher at higher intensity-levels and somewhat lower for lower intensities; the rate is lowered with decrease in the intensity-difference between, parts of the period.
Flicket photometry - A method of phot pmetry in which two different color stimuli are alternately presented to the eye at a suitable rate; the stimuli are corsidered equal in luminance when the flicker is'at a minimum.
Flicker, visual - A prapid periodic change in a visual impression, due to a corresponding rapid cyclic change in the intensity or some other characteristic of the s'cimulus.

Flight attitude - The aspect that an aircraft, rocket, etc., presents at any given moment, as determined by its inclinations about its three axes.

Fi.ightpath angle - The angle between the horizontal and a tangent to the flightpath at a point.
Flight simulator - A taining device or apparatus that simulates certain conditions of : : ual flight or of flight operations.

Flip-flop - l. A devic having two stable states and two inplit term'nals (or types of input signals) each of which corresponds with one of the two states. the circuit remains in either state until caused to change to the other state by application of the corresponding signal. 2. A similar bistable device with an input which allows it to act as a single-stag. binary counter.

Flow chart - A graphical representation of a mission or a sequence of operations using symbols to represent the operations (see Section 3).
Flourescence - Emission of light or other radiant energy as a resilt o! and only during absorption of radiation of a different wavelength from some other source. Also called photoluminescence. See luminescence. Compare phosphorescence.
Flutter - An aeroelastic self-excited vibration in which the external source of energy is the airstream and which spends on the elastic, inertial and dissipative forces of the system in addition to the aerodynamic forces.
Flux density - The flux (rate of fiow) of any quantity, us:ally a form of energy, through a unit area of specified surface. (Note that this is not a volumetric density like radiant density.)

Flyby - An interplanetary mission in which the vehicle passes elose to the target planet but does not impact it or go into orbit around it.
Flying spot - A rapiuly moving spot of light, usually generated by a cathode-ray thie and used to scan a surface containing visual information.
F/number (relative aperture) - Ratic of diameter to focal length of a lens or mirror.

Focal length - The distance between the optical center of a lens, or the surface of a mirror, and its focus.

Focal plane - A plane parallel to the plane of a lens or mirror and passing through the focus.

Focal point - The point at which a lens or nirror will focus parallel incident radiation. Also called focus.

Focus (plural focuses) - 1. That point at which parallel rays of light meet after being refractec jy a lens or reflected by a mirror. Also called focal point. 2. A point having specific significance relative to a geometrical figure.

Foot - The foot (international) is exactly 0.3048 meter.

Foot-candle - A unit of illuminance, incident light, or illumination equal to 1 lumen per square foot. This is the illuminance provided by a light source of one candic at a distance of 1 foot, hence the name. Compare lux, phot. (See also Vui. i, Section 2).

Foot-lambert - A unit of luminance (or brightness) equal to $1 / \pi$ candle per square foot, or 1 lumen per square foot. In Great Britian this is also called the equivalent foot-candle.
Foot-to-head acceleration - See physiological acceleration.
Force - The cause of the acceleration of material bodies measured by the rate of change of momeritum produced on a free body.

Fortran - A commonly-used conpuċer programming language for scientific and engineering applications.

Fovea - A small depression in the central ragion of the retina, containing only cone.

Foveal vision - Vision in shici the eye is so oriented toward the pertinent light source \pm s to have the light fall upon that central portion of the retina called the fovea.

Free ascent - An emeigency ascert by a diver accomplished by floating to the surface by means of nacural or assisted buoyancy.

Free atmosphere - That portion of the earth's atmosphere, above the planetary boundary layer, in which the effect of the earth's surface friction on the air motion is negligible, and in which the air is usually treated (dynami،ally) as an ideal fluid.
Freeioard - lut additional height of a marine structure above the design high water level to prevent overflow. On a ship, the distance from the water line to main deck or gunwale.
Free fall - 1. The fall or drop of a body, such as a rocket, not guided, not under thrust, and not retarded by a parachute or other braking device. 2. The free and unhampered motion of a body along a Keplerian trajectory, in which the force of gravity is counterivalanced by the force of inertia. See weightlessness.

Free flight - Unconstrained or unassisted flight, as: (a) the flight of a rocket after consumption of its propellant or after motor shutof:; (b) the flight of an unguided projectile; (c) the flight in certain kinds of wind tunnel of an unmounted model.

Free gyro - 1. A two-degree-of-freedom gyro whose spin axis may be oriented in any specified attitud ?. A gyro rot provided with an erection system, i.e., a gyro free to move about i.t.s axes.

Frequency - The number of cycles occurrin : Fin unit of time.
Frequency band - A continuous range of $\hat{i} \quad \cdots \quad$ extending between two limiting frequencies. (See Tabje, $\therefore . . \ldots$ 3b).

Frequency moduiation - fngls modulation of a sine-wave carrier in which the instantaneous frequency of the modulated wave differs from the carrier frequency by an amount proportional to the instantaneous value of the modulating wave.

Table 3a - Frequency Bands

Frequency band	Approximate frequency range, gigacycles	Approximate wavelength range centimeters
P-band.	0.225 to 0.39	140 to 76.9
L-band.	0.39 to 1.55	76.9 to 19.3
S-band.	1.55 to 5.20	19.3 to 5.77
X-band.	5.20 to 10.90	5.77 to 2.75
K-band.	10.90 to 36.00	2.75 to 0.834
Q-band.	36.00 to 46.00	0.834 to 0.652
V-band.	46.00 to 56.00	0.652 to 0.536

Table 3b - Frequency Bands

Band number	Frequenc	range	Metric subdivision waves	Atlantic City frequency subdivision	
4	3-	30	Myriametric	Very-low	VLF
5	30-	300	Kilometric	Low	LF
6	300-	3,000	Hectometric	Medium	MF
7	3,000-	30,000	Decametric	High	HF
8	30-	300	Metric	Very-high	VHF
9	300-	3,000	Decimetric	Ultra-high	UHF
10	3,000-	30,000	Centimetric	Super-high	SHF
11	30,000-	300,000	Millimetric	Extremely high	EHF
12	300,000-3	,000,000	Decimillimetric	----	---

Frequency response - 1. The portion of the frequency spectrum which can be sensed by a device witnin specified limits of amplitude error. 2. Response of a system as a function of the frequency of excitation.

Fresnel lens - A lens which utilizes the refractive properties of a multiprism surface to control light emission direction (e.g., concentrates light rays into a narrow beam, as in a spotlight).
Frustration threshold - The point at which an aggressive attitude is generated due to interference with normal goal-seeking activity. Generally considered that stage at which a barrier to goal-seeking cannot be circumvented and irrational responses are exhibited.
Fuel cell - 1. A fuel tank, especially one of a number of fuel tanks, as in an airplane's wing; also, a compartment within a fuel tank. 2. A device which converts chemical energy sirectly into electrical energy but differing from a storage battery in that the reacting chemicals are supplied continuously as needed to meet output requirements.
Full pressure suit - A suit which completely encloses the body and in which a gas pressure sufficiently above ambient pressure for maintenance of function, may be sustained.

Eunction - 2. A magnitude so related to another magnitude that for any value of one there is a corresponding value of the other. 2. Term used to describe an operational requirement, the performance of which may be done by man or machine (See Function Analysis).

Functional reserves - The ability of the body to accomplish additional muscular or other activity and useful work beyond the normal level of activity of an individual.

Function analysis - A technique for identifying the human and/or equipment requirements for adequately meeting system/operational needs. Man-machine function analyses (or allocations) are primarily conducted to determine whether functions will be performed by man, by machine, or by a combination of both.
Fundamenta: frequency - l. Of a periodic quantity, the lowest component frequency of a sinusoidal quantity which has the same period as the periodic quantity. 2. Of an oscillating system, the lowest natural frequency. The normal mode of vibration associated with this frequency is known as the fundamental mode. 3. The reciprocal of the period of a wave.

Fundamental resionse curves - The set of three spectral sensitivity or mixture curves (usually plotted with relative luminosity as a function of wave-iength) which represent the actual sensitivities according to trireceptor theories of color vision. The maxima of these response curves are believed to be about 450,540 , and 590 millimicrons, respectively.
G or g - An acceleration equal to the acceleration of gravity, 980.665 centimeter-second-squared, approximately 32.2 feet per second per second at sea level; used as a unit of stress measurement for bodies uncergoing acceleration. See gravity.

Gage pressure - In engineering literature, a term used to indicate the difference between atmospheric pressure and absolute pressure, as read from a differential manometer.

Gain - l. A general term used to denote an increase in signal power in transmission from one point to another. Gain is usually expressed in decibels and is widely used to denote transducer gain. 2. An increase or amplification.

Galaxy - A vast assemblage of stars, nebulae, etc., composing an island universe separated from other such assemblages by great distances.
Gale - Wind of a force exceeding a specified value, usually 30 miles per hour. In the United States, winds of force $7,8,9$ and 10 on the Beaufort scale ($32-63$ miles per hour or 29-55 knots) are classed as gales. Wind of force 7 (32-38 miles per hour or 28-33 knots) is classified as a moderate gale; wind of force 8 ($39-46$ miles per hour or 34-40 knots) as a fresh gale; wind of force 9 ($47-54$ miles per hour or $41-47$ knots) as a strong gale; and wind of force 10 (55-63 miles per hour or 48-55 knots) as a whole gale.

Gals - Measurements of gravity are expressed in gals (for Galileo) and milligals. One gal is equal to an acceleration of one centimeter per second per second. Values of gravity on the earth's surface range approximately between 978.040 gals at the equator to 983.2213 gals at the poles (± 5200 millijals). A one foot change in elevation is equivalent to $\vec{a} .094$ milligal change in gravity on land or a .068 milligal change under water.

Gamma ray - A quantum oi electromagnetic radiation emitted by a nucleus, each such photon beirg emitted as the result of a quanturn transition between two energy level, of the nucleus. Gamma rays have energies usually between 10 thousand electron volts and 10 million electron volts with correspondinglv short wavelengths and high frequencies. Also called gamma radiaiion.
Gantry - A frame structure that spans over something, as an elevated platform that runs astride a work area, supported by wheels on each side; short for gantry - rane or gantry scaffold.
Gate - 1. To control passage of a signal as in the circuits of a computer. 2. A circuit having an output and inputs so designed that the output is energized only when a definite set of input conditions are met. In computers, called AND-gate.
Gauss - A unit of magnetic induction (or magnetic flux density) equal to 1 dyne per unit cgs magnetic pole.
Gaussian distribution - Normal distribution.
Geocentric - Relative to the earth as a center; measured from the center of the earth.

Geodesic line - The shortest line on a mathematically derived surface, between two points on the surface. Also called geodesic.

Geodesy - The science which deals mathematically with the size and shape of the earth, and the earth's external gravity field, and with surveys of such precision that overall size and shape of the earth must be taken into consideration.

Geodetic line - A geodesic line on the spheriodal earth. Also called geodesic. Compare geodesic line.
Geodetic survey - 1. A survey which takes into account the size and shape of the earth. 2. An organization engaged in making geodetic surveys, sense l.
Geographical mile - The lengih of l minute of arc of the equator, or 6089.08 feet.

Geographical position - l. That point on the earth at which a given celestial body is in the zenith of a specified time. 2. Any position on the earth defined by :neans of its geographic coordinates, either astronomical or geodetic.
Geographic coordinates - Coortinates defining a poinc on the surface of the earth, usually laticude and longitude. Also called terrestrial coordinates, geographical coordinates.
Geumagnetism - 1. The magnetic phenomena, collectively considered, exhibited by the earth and its atmosphere and, by extension, the magnetic phenomena. an interplanetary space. 2. The study of the magnetic
field of the earth. Also called terrestrial magnetism.
Geometric mean - A measure of central position. The geometric mean of n quantities equals the $n^{\text {th }}$ root of the product of the quantities.
veophysics - The study of the physical characteristics and properties of the Earth.

Geo otential - The potential energy of a unit mass relative to sea level, numerically equal to the work that would be done in lifting the unit mass from sea level to the height at which the mass is located; commonly expressed in terms of dynamic height or geopotential he: $\mathrm{r}=$.
Gimbal - l. A device with two mutually perpendicular and intersecting axes or rotation, thus giving free angular movement in two directions, on which an engine or other object may be mounted. 2. In a gyro, a support which provides the spin axis with a degree of freedom. 3. To move a reaction engine about on a gimbal so as to obtain pitching and yawing correction moments. 4. To mount something on a gimbal.

Gimbal lock - A condition of a two-degree-of-freedom gyro wherein the alinement of the spin axis with an axis of freedom deprives the gyro of a degree of freedom, and therefore of its useful properties.

Glide path - l. The flight path of an aeronautical vehicle in a glide, seen from the side. 2. The path used by an aircraft or spacecraft in approach procedure and which is generated by an instrument-landing facility.

Glide slope - l. An inclined surface which includes a glide path and which is generated by an instrument-landing facility. 2. = slope angle. 3. = gliding angle.

Glitter - The spots of light reflected from a point source by the surface of the sea. Statistical analysis of glitter patterns has revealed relationships from which the roughness of the sea can be determined by the study of photographs of the glitter.
Glossiness - An attribute of the surface mode of appearance which ranges from matt to maximum. Low glossiness is characteristically evoked by reflection from rough diffusing surfaces and high gloss from smooth surfaces. (See Figure 3).
G-meter - A meter that indicates acceleration.
Go, No-go display - A visual display which provides only two alternate choices of information (e.g., ON-OFF, START-STOP, etc.).

Gox - Gaseous oxygen.
Gradient - 1. The space rate of decrease of a function. 2. Often loosely used to denote the magnitude of the gradient or ascendant. 3. Either the rate of change of a quantity (as temperature, pressure, etc.) or a diagram or curve representing this.
Gram - The standard of mass in the metric system.
Gram-centimeter - The CGS (gram-centimeter-second) gravitation unit of work.

Kind of Glossiness	Correlate in Terms of Luminous Durctional	Diagram of the Angular Conditions
Specular	Ratio of $R_{60,-60}$ for the specimen to that of a perfect mirror.	
Sheen	Ratio of $\boldsymbol{R}_{\mathbf{8 5},-\mathbf{8 5}}$ for the specimen to that of a perfect mirror.	
Contrast	Ratio of $R_{60,-60}$ (specular) to $R_{60.0}$ (diffuse).	
Distinctness of image	Rate of change of $R_{i, \ldots \theta}$ with angie of incidence, i, where the angle of view - θ differs by a few minutes of anc from that of mirror reflection, $-\boldsymbol{i}$.	
Absence of bloom	Ratio of $R_{\mathrm{i},-\mathrm{i}}$ to $R_{\mathrm{i},-\boldsymbol{\theta}}$. where the angle of view $-\theta$ d:ffers from the angle of mirror reflection $-i$ by a few degrees.	

Figure 3 - Various Kinds of Glossiness and Their Correlates

Gram-molecule - The mass in grams of a substance numerically equal to its molecular weight.

Graph - A diagram indicating the relationship between two or more variables.

Grass - 1. Sharp, closely spazed discontinuities in the trace of a cathode-ray tube, produced by random interference; so namer vecause of their resemblance to blades of lawn grass. 2. In radar, a descriptive colloquialism used to refer to the indication of noise on an 'A' or similar type of cisplay.
Graticule - 1. The network of lines representing parallels and meridians on a map, chart, or plotting sheet. 2 . A scale at the focal plane of an optical instrument to aid in the measurement of objects. See reticle.
Gravireceptors - Highly specialized nerve endings and receptor organs located in skeletal muscles, tendons, joints, and in the inner ear which furnish information to the brain with respect to body position, equilibrium, and the direction of gravitational forces. See gravitation.

Gravitation - The acceleration produced by the mutual attraction of two masses, directed along the line joining their centers of masses, and of magnitude inveisely proportional to the square of the distance between the two centers of mass.

Gravitational constant - The coefficient of proportionality in Newton law of gravitation: $G=6.670 \pm 0.005 \times 10^{-8}$ dyne-centimeter squared per gram squared. Also called constant of gravitation, Newtonian universal constant of gravitation.
Gravity - 1. Viewed from a frame of reference fixed in the earth, force imparted by the earth to a mass which is at rest relative to the earth. Since the earth is rotating, the force observed as gravity is the resultant of the force of gravitation and the centrifugal force arising from this rotation and the use of an earthbound rotating frame of reference. It is directed normal to sea level and to its geopotential surfaces. 2. = acceleration of gravity. 3. By extension, the attraction of any heavenly body of any mass; as Martian gravity.
Gravity potential - The work required or gained in moving a unit mass from sea level to a point above or below sea level. The unit in m.t.s. system is one dynamic decimeter.

Gray - An achromatic color of any lightness intermediate between the extremes of black and white. Gray is typically a response to an achromatic stimulus situation involving contrast.
Grayout - A temporary condition in which vision is hazy, restricted, or otherwise impaired, owing to insufficient oxygen. Compare blackout.
Great circle - The intersection of a sphere and a plane through its center. Also called orthodrome.

Greenhouse effect - The heating effect exerted by the atmosphere upon the earth by virtue of the fact that the atmosphere (mainly, its water vapor) absorbs and reemits infrared radiation. In detail: the shorter wavelengths of insolation are transmitted rather freely through the atmosphere to be absorbed at the earth's surface. The earth then reemits this as long-wave (infrared) terrestrial radiation, a portion of which is absorbed by the atmosphere and again emitted. Some of this is emitted downward back to the earth's surface (counterradiation).

Greenwich civil time $=$ Greenwich mean time. (United States terminology from 1925 through 1952.)

Greenwich hour angle - Angular distance west of the Greenwich celestial meridian; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of the Greenwich celestial meridian and the hour circle of a point on the celestial sphere, measured westward from the Greenwich celestial meridian through 360°; local hour angle at the Greenwich meridian.
Greenwich mean time - Local mean time at the Greenwich meridian; the arc of the celestial equator, or the angle at the celestial pole, between the lower branch of the Greenwich celestial meridian and the hour circle of the mean sun, measured westward from the lower branch of the Greenwich celestial meridian through 24 hours; Greenwich hour angle of the mean sun, expressed in time units, plus 12 hours. Called Greenwich civil time in U.S. terminology from 1925 through 1952. Also called universal time, Z-time.

Greenwich meridian - The meridian through Greenwich, England, serving as the reference for Greenwich time.

Ground - l. The unfocused surroundings and interstices of a figure or object, perceived as lying beyond and not belonging to the figure or object, e.g., the background in a painting. Figure and ground are sometimes reversible, as when an interwoven black-white pattern may appear either as a white figure on a black background, or vice versa; electrical - Low potential current return path.
Ground-controlled approach (GCA) - A ground radar system providing information by which aircraft approaches may be directed via radio communications. Also attributively, as in GCA controller, GCA equipment, GCA landing, GCA weather, etc.

Ground-controlled intercept - A radar system by means of which a controller may direct an aircraft to make an interception of another aircraft.

Ground-effect machine - A machine that hovers or moves just above the ground by creating a cushion of supporting air between it and ground surface and by varying the thrust vector and magnitude to regulate direction and rate of: motion.

Ground-handling equipment - Equipment on the ground used to move, lift, or transport a space vehicle, a rocket, or component parts.
Ground return - Radar echoes reflected from the terrain. Also called ground clutter, land return.

Ground servicing equipment - This includes aircraft tow bars, chocks, cradles, dollies, hoists, jacks, ladders, scaffolds, stands, supports, and similar items.
Ground-support equipment - That equipment on the ground, including all implements, tools, and devices (mobile or fixed), required to inspect, test, adjust, calibrate, appraise, gage, measure, repair, overhaul, assemble, disassemble, transport, safeguard, record, store, or otherwise function in support of a rocket, space vehicle, or the like, either in the research and development phase or in an operational phase, or in "support of the guidance system used with the missile, vehicle, or the like.

Ground wave - A radio wave that is propagated over thr earth and is ordinarily affected by the presence of the earth's surface and the troposphere. The ground wave includes all components of a radio wave over the earth except ionospheric and tropospheric waves. Compare sky wave.

G-scan - Display of g-force information.
G-suit or g-suit - A suit that exerts pressure on the abdomen and lower parts of the body to prevent or retard the collection of blood below the chest under positive acceleration. Compare pressure suit.
G-tolerance - A tolerance in a person or other animal, or in a piece of equipment, to an acceleration of a particular value and direction with respect to the object.

Guided missile - Broadly, any missile that is subject to, or capable of, some degree of guidance or direction after having been launched, fired, or otherwise set in motion.

Gyro - l. A device which utilizes the angular momentum of a spinning mass (rotor) to sense angular motion of its base abcut one or two axes orthogonal to the spin axis. Also called gyroscope. 2. Short for direction gyro, gyrocompass, etc.
Gyrocompass - A compass that is actuated by a capdly spinning rotor which tends to place its axis of rotation paralict to the earth's axis of rotation. It indicates direction relative to the true north.
Gyro horizon - 1. An artificial horizon or an attitude gyro. 2. A flight indicator.

Half-life - The average time required for one half the atoms in a sample of a radioactive element to decay.

Halo - A narrow bright band which is observed surrounding the dark after-image of a bright stimulus.
Hard landing - An impact landing of a spacecraft on the surface of a planet or natural satellite destroying all equipment except possibly a very rugged package.
Harmonic - 1. An integral multiple or submultiple of a given frequency; a sinusoidal component of a periodic wave. 2. A signal having a frequency which is a harmonic (sense 1) of the fundamental frequency.

Harmonic motion - The projection of circular motion on a diameter of the circle of such motion.

H-display - In radar, a B-display modified to include indication of angle of elevation. The target appears as two closely spaced blips which approximate a short bright line, the slope of which is in proportion to the sine of the angle of elevation. Also called H-scan, H -scope, H -indicator.

Heading - The horizontal direction in which a craft is pointed, expressed as angular distance from a reference direction, usually from 0° at the refere:ce direction clockwise through 360°.

Head-to-foot acceleration - See physiological acceleration.
Heat barrier - Thermal barrier.
Heat exchanger - A device for transferring heat from one fluid to another without intermixing the fluids, as (a) a regenerator and, (b) an apparatus for cooling or heating the air in a wind tunnel. See radiator, sense 2.

Heat shield - l. Any device that protects something from heat. 2. Specifically, the protective structure necessary to protect a reentry body from aerodynamic heating. See heat sink.

Heat sink - A contrivance for the absorption or transfer of heat away from a critical element or part.
Heaviside layer - E-layer.
Hedgehogs - Groups of relatively small projectiles which land in the water in mixed patterns, sink and explode upon contact with a submarine.

Henry - The unit of electrical inductance; the inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current in the circuit varies uniformly at the rate of 1 ampere per second.
Hertz - The unit of frequency, cycles per second.
Heterodyne - To mix two radio signals of different frequencies to produce a third signal which is of lower frequency; i.e., to produce. beating.

Heterosphere - The upper portion of a two-part division of the atmosphere; the layer above the homosphere.
Heuristic program - A set of instructions that imitates the behavior of human operations (i.e., response modification based on previous current and anticipated conditions which are not pre-planned).
Hibernating spacecraft - A spacecraft maintaining an orbit without using propellant power and without maintaining orientation within the orbit, but with inherent power capability.
High frequency - See frequency bands.
High-pass filter - A wave filter having a single transmission band extending from some critical or cutoff frequency, not zero, up to infinite frequency.

H-indicator - H-display.
Hohmann orbit - A minimum energy transfer orbit.
Holddown test - The testing of some system or subsystem in a rocket while the rocket is firing but restrained ir a test stand.

Homing - The following of a path of energy waves to or toward their source or point of reflection.

Homing beacon - A beacon proriding homing guidance. Also called homer.
Homosphere - The lower portion of a two-part division of the atmosphere according to the general homogeniety of atmospheric composition; opposed to the heterosphere. The region in which there is no gross change in atmospheric composit: 1 , that is, all the atmosphere from the earth's surface to about' kilometers.
Hookah - In free diving an apparatus consisting of a denand regulator worn by the diver and a hose connected to a compressed air supply at the surface.
Horizon - That great circle of the celestial sphere midway between the zenith and nadir, or a line resembling or approximating such a circle.

Horopter - The locus of all points in the binocular field of vision, the images of which fall upon identical points on the two retinas, viz., the images of which are normally seen as single.
Hour angle - Angular distance west of a celestial meridian er hour circle; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of a celestial meridian or hour circle and the hour ciicle of a celestial body or the vernal equinox, measured westward through 360°.
Hovercraft and ground effect machin:̇i - Ships designed tc iover above water and supported by air trapped between the bottom of the ship and the water. The supporting air cushion is augmented at high speeds (1.e., 100 knots) by the forward motion of the craft. (Note: Various types of grounc effect machines are: Air Curtain, Plenum, Ram Wing, Diffuser-Recirculation, Water Curtain, and Skegs.)
Hue - The attribute of color determined primarily by the wavalength of light enteri:ng the eye. Spectral hues range from red through orange, yellow, green, and blue to violet.
Human engineering (human factors engineering) - The activity or science of designing, building, or equipping mechanical devices or artificial environments to the anthropometric, physiological, or psychological requirements of the men who will use them.

Human factors - The study of psychophysical, psychological, and physiological variables which affect man's performance in an operational system. See human engineering.
Human-induced failures - Those failures and malfunctions of equipment components directly attributable to some act or omission by a human operator. Examples of human-induced failure events include: activation cf the wrong control, rough handling, and incorrect wiring. Sources of human-induced failures may include: poor design, incorreat process or test procedures, improper inspection, and inadequate
training or supervision.
Human operator - A person who participates in some aspect of operation or support of a space system and its associated equipment and facilities. (Generally refers to one who operates equipment as opposed to one who maintains the equipment).

Human-performance assurance - A method or approach for reducing and eliminating sources of human-induced failures by implementing an adequate human engineering and serviceability effort during the project life aycle of space systems.

Human engineering research - Research and development necessary to obtain the scientific knowledge required to accomplish the Human Engineering Program. This includes consideration of the following basic human characterisitcs: a) Sensory capacities, b) Mobility and muscle strength, c) Information-handling and decision-making, d) Common skills and capacicy for learning new skills, e) Capacity for team or group effort, f) Body dimensions, and g) Effects of working environments upon human physical and mental performance.
Humidity - 1. The amount of water vapor in the air. 2. Specifira: \bar{y}, relative humidity.

Hunting - An attempt by a computer control system to seek-out a condition of equilibrium.
Hurricane force - Winds with a force above 75 miles per hour.
Hydrodynamics - The study of fluid motion.
Hydrography - The science which leals with the measurement of the physical features of the oceans, seas, lakes, rivers, and other waters, and their margi, tal land areas, with special reference to the elements that affect safe navigation, and the pubiication of such information in a suitable form for use by navigators.
Hydrology - The scientific study of the waters of the earth, especially with relation to the effects of precipitation and evaporation upon the occurrence and character of water in streams, lakes and on or below the land surface. In terms of the hydrologic cycle, the scope of hydrology may be defined as that portion of the cycle from precipitation to re-evaporation or return of the water to the seas.

Hydrosphere - The water portion of the earth as distinguished from the solid part, called the lithospherc, and from the gaseous outer envelope, called the atmosphere.

Hyperbarism - Disturbances in the body resulting from an excess of ambient pressure over that within the body fluids, tissues, and cavities.

Hyperbola - An open curve with two branches, all points of which have a constant difference in distance from two fixed points called focuses.

Hyperbolic navigation - Radio navigation n which a hyperbolic line of position is established by signals $1 c$.-ived from two stations at a constant time difference.

Hypergolic propellants - Rocket prcsellants that ignite spontaneously when mixed with each other.

Hyperopia - Synonym for farsightedness; a defect of the eye such that, with accomadation relaxed, parallel rays of light focus behind the retina.

Hyperpnea - Abnormally rapid or deep breathing.
Hypersonic glider - An unpowered vehicle, specifically a reentry vehicle, designed to fly at hypersonic speeds.
Hyperventilation - A term applied to breathing more than is necessary to keep the body's carbon dioxide tensions at the proper level. If carried to an extreme, hyperventilation can be dangerous.
Hyperbarism - Disturbances resulting from a decrease of ambient pressure to less than that witt in the body fluids, tissues, and cavities.

Hypocapnia - Deficiency of carbon dioxide in the blood and body tissues, which may result in dizziness, confusion, and muscular cramps.

Hypoventilation - A respiratory-minute volume, or pulmonary ventilation that is less chan normal. Also called underbreathing.
Hypoxia - Oxygen deficiency in the body tissues.
Hysteresis - 1. Any o.: several effects resembling a kind of internal friction, accompanied by the generation of heat within the substance affected. 2. The delay of an indicator in registcring a change in a parameter being measured.

I-display - In radar, a display in which a target appears as a complete circle when the radar anterna is correctly pointed at it and in which the radius of the circle is proporticnal to target distance. When not correctly pointing at the ta:get, the circle reduces to a segment of a circle, the segment length being reciprocal to the direction of pointing error. Also called I-scan, I-scope, I-indicator.

Illuminance - The total luminous flux received on a unit area of a given real or imaginary surface, expressed in such units as the foot-candle, lux, or phot. Illuminance is analogous to irradiance, but is to be distinguisined from the latter in that illuminance refers only to ligitt and contains the luminous efficiency weighting factor necessitated by the nonlinear wavelength-response of the human eye. Compare luminous intensity.
Illuminant color - Color seen as glowing, luminous, or belonging to an illuminant, viz., in the illuminant mode of $s z_{t}$ rance. Commonly referred to a comparatively small area of $h . \because \quad$ ightness, viz., brighter than white under similar conditions viewing. Examples: color of perceived flame, tungsten lamp, neor sign, flourescent fabsic. Alsc called glow, glowing color.
Illumination colos. Color seen as belonging to illumination distributed in space, viz., color in the illumination mode of appearance. Examples: color of sunlight in a room, red iight flooding a stage, etc.

Illumination fiicker - Flicker seen as belonging to the illumination of the illuminated space rather than to the surfaces or objects seen in it.

Illumination, Law of - The principle that the illuminance of a surface varies directly as the luminous intensity of the light-source, inversely as the square of its distance, and directly as the cosine of the angle made by the light-rays with the perpendicular to the surface.

Illusion - A misinterpretation of certain elements in a given experience, so that the experience does not represent the objective situation.

Image, optical - The picture or reproduction of an object produced by a lens, reflector, or optical system, as a result of the focusing in the light emanating from each point in the object.
Image, reginal - The optical image of external objects formed upon the retina by the refracting surfaces of the eye.

Impact acceleration - The acceleration generated by very sudden starts or stops of a vehicle. The term is usually applied in the context of physiological acceleration.

Impact pressure - That pressure of a moving fluid brought to rest which is in excess of the pressure the fluid has when it does not flow, i.e., total pressure less static pressure.

Impedance - 1. The apparent opposition in an electrical circuit to the flow of an alternating current that is analogous to the actual electrical resistance to a direct current and that is the ratio of effective electromotive force to the effective current; 2 . the ratio of the pressure to the volume displacement at a given surface in a sound transmittive medium.

Impeller - l. A device that imparts motion to a fluid; specifically, in a centrifugal compressor, a rotary disk which, faced on one or both sides with radial vanes, accelerates the incoming fluid outward into a diffuser. Also called impeller wheel. 2. That part of a centrifugal compressor comprising this disk and its housing.

Implosion - The rapid inward collapsing of the walls of a vacuum system or device as the result of failure of the walls to sustain the ambient pressure.
Impulse - 1. The product of a force and the time during which the force is applied. 2. Psychology; human response which is generally devoid of orderly thought processes.
Impulse noise - Noise generated in discrete energy bursts, not of random nature, which has a characteristic wave shape of its own.
Incandescence - Emission of light due to high temperature of the enitting material. Any other emission of light is called luminescence.

Inch - Exactly 2.540 centimeters.
Incidence - l. Partial coincidence, as a circle and a tangent line. 2. The impingement of a ray on a surface. See angle of incidence.

Incipient failure - A degradation failure which is just beginning to exist or appear.
Increment - A change in the value of a varícile. A negative increment is also called decrement.

Independent variable - Any of those variables of a problem, chosen according to convenience, which may arbitrarily be specified, and which then determine the other or dependent variables of the problem.
Index level - The index levei of a sound is defined as the level which that sound would have at a point one yard from the point of its apparent origin, assuming such a point to exist, if it were generated at this apparent source point but produced the same effects at distant points as the effects it actually does produce.
Index of refraction - The ratio of the velocity of light in a vacuum to the velocity of light in a refractive material for a particular wavelength of light.
Indicator - A visual readout device or instrument which provides information about system conditions which cannot readily be determined directly by an operator. Generally refers to an instrument which has no provision for storing information.
Induced color - A color or change in color which appears in a given portion of the subjective visual field, due not to direct stimulation of the corresponding portion of the retina, but to concomitant stimulation of other portions.
Induced failure - A failure basically caused by a physical condition or phenomenon external to the failed item.
Inert gas - Any one of six gases, helium, neon, argon, krypton, xenon, and radon, all of whose shells of planetary electrons contain stable numbers of electrons so that the atoms are almost completely chemically inactive. Also called rare gas.
Inertia - Resistance to acceleration.
Inertial coordinate system - A system in which the (vector) momentum of a particle is conserved in the absence of external forces. Thus, only in an inertial system can Newton laws of motion be appropriately applied.

Inertial force - A force is a given cnordinate system arising from the inertia of a parcel moving with respect to ano: ser coordinate system. The inertial force is proportional and directionally opposite to the accelerating force. Also called inertia force.
Inertial guidance - Guidance by means of accelerations measured and integrated within the craft.
Inertial navigation - Dead reckoning performed automatically by a device which gives a continuous indication of position by integration of accelerations since leaving a starting point.
Inertial orbit - The type of orbit described by all celestial bodies, in conformance with Kepler laws of celestial motion.

Inertial space - A stationary frame of reference, or set of coordinates, for calculating trajectories.

Inferior conjunction - The conjunction of an inferior planet and the sum when the planet is between the earth and the sun.
Inferior planets - The planets with orbits smaller than that of the cacth: Mercury and Venus.
Inflection - 1. Reversal of direction of curvature. 2. Special emphasis given to a word or group of words in speaking by changing the pitch, loudness or other characteristics of vocalization.

Infrared radiation - Electromagnetic radiation lying in the wavelength interval from about 75 microns to an indefinite upper boundary sometimes arbitrarily set at 1000 microns (0.01 centimeter). Also called longwave radiation.

Infrasonic frequency - A frequency below the audiofrequency range.
Ingress - Pertains to access for entering an operating or passenger station within a vehicle or work area.

In phase - The conditior of two or more cyclic motions which are at the same part oi their cycles at the same instant. Also called in step.

Input - 1. The path through which information is applied to any device. 2. The means for supplfing information to a machine. See input equipment. 3. Information or energy entering into a system. Compare output. 4. The quantity to be measured, or otherwise operated upon, which is received by an instrument. Also called input signal.
Input equipment - Specifically, the hardware through which information is fed into a computer.

Input section - That portion of machine hardware through which information passes into the computer.

Insolation (contracted from incoming solar radiation) - 1. In general, solar radiation received at the earth's surface. 2. The rate at which direct solar radiation is incident upon a unit horizontal surface at any point on or above the surface of the earth.

Instability - l. The condition of a body if, when displaced from a state of equilibrium, it continues, or tends to continue, to depart from the original condition. Compare stability. 2. Combustion instability.

Instruction code - An artificial language for describing or expressing the instructions which can be carried out by a digital computer.
Instrumentation - 1. The installation and use of electronic, gyroscopic, and other instruments for the purpose of detecting, measuring, recording, telemetering, processing, or analyzing different values or quantities as encountered in the flight of a rocket or spacecraft. 2. The assemblage of such instruments in a rocket, spacecraft, or the like. 3. A special field of engineering concerned with the design, composition, and arrangement of such instruments.

Instrument flight trainers - Synthetic flight trainers capable of approximating engine runup and flight control of a general type of aircraft. These trainers are used to familiarize the basic student in the employment and use of aircraft instruments and their functions.
Instrument landing system - A system which provides, in the aircraft, a display of the lateral, longitudinal, and vertical references necessary for a landing.
Integer - A whole number; a number that is not a fraction.
Integral - 1. Of or pertaining to an integer. 2. Serving to form a whole or a part of a whole, as an integral tank. 3. The result of a mathematical integration.

Integrated circuitry - A fabricated part which serves all or a portion of a Eunction and which is constructed by etching, diffusing, doping, etc. of a single piece of material. Sections of this material may be joined by the use of jumper wires ar printed circuitry.

Integrated controller - A control device which combines more than one aspect of an operation (e.g., control of steering, acceleration and braking in a single joystick).
Integraged display - A visual display which combines related information outputs or multiple physical parameters in a format that can be interpreted as a single function for purposes of response simplification (as opposed to a combined display which merely locates several pieces of information within a single display package).
Integrator - l. In digital computers, a device for accomplishing a numeric approximation of the mathematical process of integration. 2. A device whose output is proportional to the integral of an input signal.

Integration - 1. Coordination of menta: processes into a normal effective personality as with the individual's environment. 2. The or ation of finding a function whose differential is known; the operation of solving a differential equation.
Intensity - 1. The quantitative expression of the physical level of light or sound (e.g., the amount of light expressed in foot-candles, or the level of noise expressed in decibels above a reference level). 2. The qualtative expression of a behavioral response which describes the level of mental effort such as concentration on a task or attention paid to a given activity. 3. The qualitative and/or quantitative expression of a physical environment such as heat, cold, electromagnetic radiation, etc.

Intensity level - In acoustics, ten times the logarithm to the base 10 of the ratio of the intensity I of the sound measured to the reference intensity I_{0}. The reference intensity I_{0} must be stated.

Intensity-modulated indicator - One of two general classes of radar indicators, in which echoes from targets are presented as spots or areas of light whose intensity or brilliance is normally a function of the power of the echo signal.

Intensity modulation - The change of the brilliance (or intensity) of the trace on the screen of a cathode-ray tube in accordance with the strength of the applied signal.
Interaction - The effects from two or more items of such functional and physical characteristics as to be equivalent in performance and durability and capable of being exchanged one for the other without alteration of the items themselves or of adjoining items except for adjustment, and without selection for fit or performance.

Interchangeability - Interchangeability does not mean identity, but requires that a substitution of such like assemblies, subassemblies, and replaceable parts be easily effected without physical or electrical modifications to any part of the system or assemblies, including cabling, wiring, and mounting, and without resorting to component or part selection.

Interface - 1. A common boundary between two parts of a system, whether material or non-material. 2. Specifically, in a rocket vehicle or other mechanical assembly, a common boundary between two components. 3. Specifically, in fluid dynamics, a surface separating two fluids across which there is a discontinuity of some fluid property such as density or velocity or fo some derivative of these properties in a direction normal to the interface. 4. The input-output or other direct physical boundary between an operator and the equipment he uses e.g., control, display, seat, etc.

Interference - l. Extraneous signals, noises, etc. that hinder proper reception of the desired signal in electronic equipment. 2. The mutual effect of two or more meeting waves or vibrations of any kind. Sometimes called wave interference.

Intermediate frequency - The beat frequency used in heterodyne receivers, usually the difference between the received radio-frequency signal and a locally generated signal.

Intermittent pressure breathing - Pressure breathing in which different pressures are used at different points in the respiratory cycle, usually with a high pressure during inspiration and lower pressure during expiration.

International candle - The unit of luminous intensity formerly used as the internationai standard. On January 1, 1948, it was replaced with the candela, which is equal to $58.9 / 60$ or 0.98 international candle. Also called English candle, British candle.

Interrogation - Transmission of a radio signal or combination of signals intended to trigger a transponder or group of transponders.

Interrogator-responsor - A radio transmitter and receiver combined to interrogate a transponder and display the resulting replies. Often shortened to interrogator and sometimes called challenger.

Intersection - In Boolean algebra, the operation in which concepts are described by stating that they have all the characteristics of the classes involved. Intersection is expressed as AND.

Intervalometer - Any device that may be set so as to accomplish automatically a series of like actions, such as the taking of photographs, or the closure of electrical circuits, at constant predetermined intervals.
Invariable hues - The invariable hues are those which are independent of the Bezold-Brucke phenomenon, i.e., those hues which do not change with change in luminance of the stimulus. Purdy's average values for the spectrum stimuli to the invariables are: 474, 506, and 571 millimicrons, respectively.
Inverse-square law - A relation between physical quantities of the formula: x proportional to $1 / y^{2}$; where y is usually a distance; and x terms are of two kinds, forces and/or fluxes. For example, illumination varies inversely as the square of the distance of receiving plane from point source: $E=I / d^{2}$ where $E=i l l u m i n a t i o n$ in foot-candles; $I=$ source intensity in candles; and $d=$ distance in feet.

Inverter - 1. A device for changing direct current to alternating current. 2. In compuiers, a device or circuit which inverts the polarity of a pulse. Also called NOT circuit.
Ion - l. A charged atom or molecularly bound group of atoms; sometimes also a free electron or other charged subatomic particle. 2. In atmospheric electricity, any of several types of electrically charged submicroscopic particles normally found in the atmosphere. 3. In chemistry, atoms or specific groupings of atoms which have gained or lost one or more electrons, as the chloride ion or ammonium ion. Such ions exist in aqueous solutions and in certain crystal structures.
Ion engine - A reaction engine in which ions, accelerated in an electrostatic field, are used as propellant. Also called electrostatic engine.
Ionization - The process by which neutral atoms or groups of atoms become electrically charged, either positively or negatively, by the loss or gain of electrons; or the state of a substance whose atoms or groups of atoms have become thus charged.
Ionizing radiation - Any electromagnetic or particulate radiation capable of producing ions, directly or indirectly, in its passage through matter.

Ionosphere - The atmospheric shell characterized by a high ion density. Its base is at about 70 or 80 kilometers and it extends to an indefinite height.

Iris (Physiological) - A flat, ring-shaped structure situated within the eyeball immediately in front of the lens, containing unstriped muscle-fibers whose contraction and relaxation regulate the amount of light admitted through the pupil.
Irradiation - The apparent excess in size of a visual stimulus of relatively high intensity, e.g., of a white stimulus figure on a black ground, as compared with an equal black stimulus figure on white.

Isabnormal - A line connecting points having the same difference from normal, usually temperature, or indicating the same difference between actual and calculated values at different parallels.
Isallobar - A line connecting points having the same change of atmospheric pressure in a specified period.
Isallotherm - A line connecting points having the same change of temperature in a specified period.
Isanomal - A line connecting points having the same anomalies of temperature, pressure, etc.
I-scan - I-display
Isobar - A line of equal or constant pressure, specifically, such a line in a weather map.

Isobath - Depth contour.
Isobathic - Having equal depth.
Isobathytherm - A line or surface showing the depths in oceans or lakes at which points have the same temperature. Isobathytherms are usually drawn to show cross sections of the water-mass.
Isoclinic line - A line through points on the earth's surface having the same magnetic dip.

Compare isogonic line.
Isogonic line - A line through points on the earth's surface having the same magnetic variation. Compare isoclinic line.

Isolation - 1. In vibration studies, a reduction in the capacity of a system to respond to an excitation, attained by the use of a resildent support. 2. Perceptual isolation, referring to the lack of normal input to an operator through his sensory organs, resulting in lack of motivation, seduced attention and possible emotional trauma.
Isotherm - A line of equal or constant temperature. A distinction is made, infrequently, between a line representing equal temperature in space, choroisotherm, and one representing constant temperature in time, chronoisotherm.
Isotope - l. One of several nuclides having the same number of protons in their nuclei, and hence belonging to the same element, but differing in the number of neutrons and therefore in mass number A, or in energy content (isomers). Small quantitative differences in chemical properties exist between isotopes. 2. A radionuclide or a preparation of an element with special isotopic composition (allobar) as an article of commerce, so called because of the principal use of such materials as radioactive tracers. 3. In common usage, a synonym for nuclide (not recommended).

Jamming - Intentional transmission or reradiation of radio signals in such a way as to interfere with reception of desired signals by the intended receiver.

J-display - In radar, a modified A-display in which the time base is a circle. The target signal appears as a radial deflection from the time base. Also called J-scan, J-scope, J-indicator.
Jerk - A vector that specifies the time rate of change of the acceleration; the third derivative of displacement with respect to time.
Jet-assisted take-off (JATO, Jato, or jato) - l. A take-off utilizing an auxiliary jet-producing unit or units, usually rockets, for additional thrust. Hence JATO bottle, Jato unit, etc.; a rocket or unit so used. Where rockets are the auxiliary units, RATO
is the more specific term. 2. A JATO bottle or unit; the complete auxiliary power system used for assisted take-off.
Jetsam - See jettison.
Jet stream - A strong band of wind or winds in the upper troposphere or in the stratosphere, moving in a general direction from west to east and often reaching velocities of hundreds of miles an hour.

Jettison - The throwing overboard of objects, especially to lighten a craft in distress. Jettisoned objects that float are termed flotsam; objects that sink, jetsam; and heavy articles that are buoyed for future recovery lagan.
Jezebel - A submarine detection and classification system.
Jitter - l. Instability of the signal or trace of a cathode-ray tube. 2. Small rapid variations in a waveform due to deliberate or accidental electrical or mechanical disturbances or to changes in the supply voltages, in the characteristic of components, etc.
Joule - A unit of energy or work in the MKS system; the work done when the point of application of 1 newton is displaced a distance of 1 meter in the direction of the force. 1 joule $=10^{7} \mathrm{ergs}=1$ watt second.
Joule constant - The ratio between heat and work units from experiments based on the first law of thermodynamics: 4.1858×10^{7} ergs per 15° calorie. Also called mechanical equivalent oi heat.
J-scen - J-display.
J-scope - J-display.
Julie - An active aircorne submarine localization system which uses the explosive echo ranging technique or E2R.
Jumper - A direct electrical connection, which is not a portion of the conductive pattern, between two points in a printed circuit.
Jury rig - Any temporary or makeshift device, rig, or piece of equipment.

Just noticeable difference - The least amount of a stimulus which, added to or subtracted from a standard stimulus, produces a just noticeably different experience. Also called just perceptible difference, least noticeable difference, minimal change.

K-band - A frequency band used in radar extending approximately from 10.9 gigacycles per second to 36 gigacycles per second.

K-display - In radar, a modified A-display in which a target appears as a pair of vertical deflections or blips instead of a single deflection. When the radar antenna is correctly pointed at the target in azimuth, the blips are of equal height. When not correctly pointed, the difference in blip height is an indication of direction and magnitude of azimuth pointing error. Also called K-scan, K-scope, K-indicator.

Kelvin temperature scale - An absolute temperature sca_- independent of the thermometric properties of the working substance. On this scale, the difference between two temperatures T_{1} and T_{2} is proportional to the heat converted into mechanical work by a Carnot engine operating between the isotherms and adiabats through T_{1} and T_{2}. Also called absolute temperature scale, thermodynamic temperature scale.

Kennelly-Heaviside layer - E-layer.
Keplerian - Pertaining to motion in conformance with Kepler laws, as Keplerian trajectory, Keplerian ellipse.

Kepler laws - The three empirical laws governing the motions of planets in their orbits, discovered by Johannes Kepler (1571-1630). These are: (a) the orbits of the planets are ellipses, with the sun at a common focus; (b) as a planet moves in its orbit, the line joining the planet and sun sweeps over equal areas in equal intervals of time (also called law of equal areas); (c) the squares of the periods of revolution of any two planets are proportional to the cubes of their mean distances from the sun.
Kev - In nuclear physics: A unit of energy: $1 \mathrm{Kev}=1.6 \times 10^{-9}$ ergs. A unit of temperature: $1 \mathrm{Kev}=11.6 \times 106^{\circ} \mathrm{K}$.
Kill - The achievement of the desired destructive effect against a target: term relates to military weapon systems.
Kill radius - The distance from the center of detonation to the point on a spherical surface where there is a 50% probability of destroying specific targets.
Kilo - Prefix meaning multiplied by 10^{3}.
Kilocycle - One thousand cycles or 1000 cycles per second; Blz .
Kilogram - The unit of mass in the metric system; the mass of the International Prototype Kilogram, a cylinder of platinumiridiun alloy, stored at Seures, France, by the International Bureau of Weights and Measures.
Kilometer - A unit of distance in the metric system. One kilometer = 3280.8 feet $=1093.6$ yards $=1000$ meters $=0.62137$ statute miles $=$ 0.53996 nautical miles.

K-indicator - K-display.

Kinematics - The branch of mechanics dealing with the description of the motion of bodies or fluids without reference to the forces producing the motion.
Kinestheses - A sense mediated by end organs located in muscles, tendons and joints and stimulated by bodily movements and tensions.
Kinesthetic feedback - Sensory information obtained from disturbance of end organs within muscles, tendons and joints.

Kinetic energy - The energy which a body possesses as a consequence of its motion, defined as one-half the product of its mass m and the square of its speed $v, \frac{1}{2} m v^{2}$.
Kinetic theory - The derivation of the bulk properties of fluids from the properties of their constituent molecules, their motions, and interactions.
Kirchhoff's law - In any branching network of wires the algebraic sum of currents in all the wires that meet at a point is zero.

Klystron - An electron tube for converting direct-current energy into radio frequency energy by alternately speeding up and slowing down the electrons.

Knot - The unit of speed used in nar gation. It is equal to 1 nautical mile per hour or 1.1508 statute miles per hour.

K-scan - K-display.
K-scope - K-display.

Latitude - Angular distance on the earth's surface measured north and south of the equator from 0° to 90°.
Launch complex - The site, facilities, and equipment used to launch a rocket vehicle.

Launch vehicle - The part of the space vehicle which furnishes the propulsion and guidance during the initial part of the trajectory to provide the prescribed velocity, position, and attitude required for injection into the desired trajectory.
Launch window - The mission conditions which impose launch time limitations on the launch vehicle for any given trajectory, such as relative position of Earth and Moon or planets, mid-course propulsion capabilities. guidance limits, etc.

Law of equal areas - Kepler second law.

Layer depth - In oceanography, the thickness of the mixed layer; or the cepth of the top of the thermocline.
Zayer effect - Reduction in the echo and listening ranges on a target located within or beneath a thermocline.

Layer of no motion - A layer, assumed to be at rest, at some depth in the ocean. This implies that the isobarir surfaces wi.thin the layer are level, and hence they may be used as reference surfaces for the conputation of absolute gradient currents.

L-display - In radar, a display in which a target appears as two horizontal blips, one extending to the right and one to the left, from a central vertical time base. Also called L-scan, L-scope, L-indicator.

League - A unit of distance of indefinite value, varying from 2.4 to 4.6 miles. In the U.S. it is approximately 3 miles, either statute or nautical.

Least squares - Any statistical procedure that involves minimizing the sum of squared differences.
Leeward - The direction toward which the wind is blowing; the direction toward which the waves are traveling.
Labyrinthine - Referring to the labyrintin of the iamer ear which acts as an acceleration sensor.
Lag - 1. The delay between change of conditions nd the indication of the change on an instrument. 2. Desay in human reaction. 3. The amount one cyclic motion is behind another, expressed in degross. The opposite is lead.

Lambert - A unit of luminance (or buightness) equal to $1 / 1$ j candle per square centimeter. Physically, the lambert is the luminance of a perfectly diffusing white surface receiving an illuminance of ? lumen per square centimeter.
Landolt ring - A ring with a small gap at one point, used to test visual acuity by naving observer report orientation of the gap.
Lapse rate - The decrease of an atmospheric vaiiable with height, the variable 'fing temperature, unless otherijise specified.
Laser - A forice for producing intense narrow-band, highly directional light by . ission of energy stored in a moler ular or atomic system when stimulated by ail input signal.
Latent heat - The unit quantity of heat required frr isothfrmal change in state of a unit mass of matter.
Lateral - 1. Of or pertaining to the side; directe 0 : moving toward Lite side. 2. Of or pertaining to the lateral ax. . directid, moving, or located along, or parallel to, the lateral axis.

Lens - The transparent body, convex on its front and back surfaces, situated just behind the iris and pupil of the eye; it serves through changes in its shape brought about by the action of the ciliary muscles, to focus the eye for different distances.
Lens shapes -
a. Plano-convex - One convex side, one flat side.
b. Double convex (bi-convex) - Both sides convex.
c. Plano-concave - One concave side, one flat side.
d. Double concave (bi-concave) - Both sides concave.
e. Meniscus - One convex side, one concave side.

Level - In acoustics, the logarithu of the ratio of thit quantity to a reference quantity of the same kind. The base of the logarithm, the reference quantity, and the kind of level must be specified.

Library - In computer operations, a collection of programs, routines, and subroutines by which problems (and parts of problems) of many types can be solved.

Life sciences - The field of scientific disciplines encompassing biology, physiology, psychology, medicine, sociology, and other related areas.

Lift - l. That component of the tutal aerodynamic force acting on a body perpendi:ular to the undisturbed airflow relative to the body. 2. To lifi off, to take off in a vertical ascent. Said of a rocket vehicle.

L三ft ccefficient - A coefficient representing the lift of a given airfoil or other body.

Lift-drag ratio - The ratio of lift to drag obtained by dividing the lift by the drag, or the lift coefficient by the drag coefficient. Also called L/D ratio.
Light - Visible radiation (about 0.4 to 0.7 micron in vavelength) considered in terms of its luminous efficiency, i.e., evaluated in proportion to its ability to stimulate the sense of sight.
Light-adapted eye - An eye which has been exposed to light stimuli of relatively high intensity and has so become relatively insensitive to lower intensities. Cf. adaptation.

Light energy - Luminous energy. (See Table 4).
Light intensity - Luminous intensity.
Lightness - That attribute of most object colors by reference to which they can be classed as equivalent to members of the achromatic series ranging from black to white.

Lightening holes - Holes cut out of a structural material to reduce its weight.
Light sensation - A kind of sensation whose adequate stimulus is light and whose receptor is the eye.

Light-year - A unit of length used in expressing stellar distances equal to the distance clectro-magnetic radiation travels in i year. 1 light-year $=9.460 \times 1012$ kilometers $=63,280$ astronomical units $=0.3068$ parsecs.
Limb - The edge of the apparent iisk of a celestial body, as of the sun.

Limen - Threshold; a psychophysical concept denoting the lowest detectable intensity of any sensory stimulus.

Limiter - A device whose output is constant for all inputs above a predetermined value.

L-indicator - L-dispiay.
Table 4 - General Characteristics of Light Sources

Linear - 1. Of or pertaining to a line. 2. Having a relation such that a change in one quantity is accompanied by an exactly proportional change in a related quantity, such as input and output of electronic equipment.

Linear array - An antenna array whose elements are equally spaced along a strajght line.
Linear integer programming - Considers linear programming models where only integer solutions are admissible. A special case for integer programming is selective programming. In this case the variables in the solution can take only one of the preselected values.

Line of pesition - In navigation, a line representing all possible locations of a craft at a given instant.
Line of sight - 1. The straight line between the eye of an observer and the observed object or point. Also called optical path. 2. Any straight line between one point and another, or extending out from a particular point. 3. In radio, a direct propagation path that does not go below the radio horizon.

Line printer - A printer, often used in conjunction with a computer, which is capable of printing an entire line of characters at one time.

Link analysis - An analysi: of the visual, auditory, and tactual links between man and machine or between one man and another involved in an operation. Primary objectives are determination of the importance of links, frequency of their use, and their adequacy.
Litre - A unit of volume equal to the space occupied by 1 kilogram of water.

Lccal civil time - See local mean tir..
Loralization, auditory - The capability of an observer to identify the position of a sound source with reference to himself.
Local mean time - Local hour angle of the mean sun, expressed in time units, plus 12 hours. Mean time reckoned from the upper branch of the local meridian is called local astronomical time.
Local meridian - The meridian through any particular place or observer, serving as the reference for local tine, in contrast with Greenwich meridian.
Local time - Time based upon the local meridian as reference, as contrasted with that based upon a zone meridian, or the meridian of Greenwich.
Logarithm - The power to which a fixed number, called the base, usually 10 or e (2.7182818), must be raised to produce the value to which the logarithm corresponds.
Logarithmic scale - A scale graduated in the logarithms of uniformly spaced consecutive numbers.
Logical element - In a computer n_{i} data-processing system, the smallest building blocks which can be represented by operators in an appropriate system of symbolic logic. Typical logical elements are the AND gate and the flip-flop, which can be represented as operators in a
suitable symbolic logic.
Longitude - Angular distance on the earth's surface measured east and west of the Greenwich meridian from 0° to 180°.

Longitudinal axis - The fore-and-aft line through the center of gravity of a ciaft.
Look angles - The elevation and azimuth at which a particular satellite is predicted to be found at a specified time. Look angles are used in satellite tra- ing and data acquisition to minimize the anount of searching ne: . to acquire the satellite in the telescope field of view or the antenna beam.

Loran (long range navigation) - An electronic navjgational system in which hyperbolic lines of position are deternined by measuring the difference in the time of reception of synchronized pulse signals from two fixed transmitters.

Loudness - The intensive attribute of an auditory sensation, in terms of which sounds may be ordered on a scale extending from soft to loud. Loudness is measured in sones.

Lower branch - That half of a meridian or celestial meridian from pole to pole which passes through the antipode or nadir of a place.
Low frequency - See frequency bands.
Low-pass filter - A wave filter having a single transmission band extending from zero frequency up to some critical or bounding frequency, not infinite.
Low vacuum - The condition in a gas-filled space at pressures less than 760 torr and greater than some lower limit.
Lox - Liquid oxygen.
L-scan - L-display.
L-scope - L-display.
Lubber's line - A reference line on any direction-indicating instrument, marking the reading which coincides with the heading.

Lumen - A unit of luminous flux equal to the luminous flux radiated into a unit solid angle (steradian) from a point source having a luminous intensity of 1 candela.

Luminance - In photometry, a measure of the intrinsic luminous intensity emitted by a source in a given direction; the illuminance produced by light from the source upon a unit surface area oriented normal to the line of sight at any distance from the source, divided by the solid angle subtended by the source at the receiving surface. Also called brightness, but luminance is preferred.
Luminescence - Light emission by a process in which kinetic heat energy is not essential for the mechanism of excitation.

Luminosity - luminous efficiency.
Lum: \quad ity coefficients - The coefficients by which the color mixture dat.. for any color need to be multiplied so that the sum of the three products is the luminance of the color sample to be specified.

Luminous - l. In general, pertaining to the emission of visible radiation. 2. In photometry, a modifier used to denote that a given physical quantity, such as luminous emittance, is weighted according to the manner in which the response of the human eye varies with the wavelength of the light.

Luminous flux - Luminous energy per unit time; the flux of visible radiation, so weighted as to account for the manner in which the response of the human eye varies with the wavelength of radiation. See luminous efficiency.
Luminous intensity - Flux per unit solid angle, usually expressed in candles. Also called candlepower, light intensity. Compare luminance, illuminance.
Lunar day - The duration of one rotation of the earth on its axis, with respect to the moon (about 24 hours 50 minutes of mean solar time).
Lunar gravity - Approximately $1 / 6$ of the earth's gravity.
Lux - A photometric unit of illuminance or illumination equal to 1 lumen per square meter. Compare foot-candle, phot.

Mach - Mach number. (See Section 1 for Mach/speed equivalents).
Machine language - l. A language, occurring within a computer, ordinarily not perceptible or intelligible to persons without special equipment or training. 2. A translation or transliteration of sense l into more conventional characters but frequently still not intelligible to persons without special training.
Machmeter - An instrument that measures and indicates speed relative to the speed of sound, i.e., that indicates the Mach number. Also called Mach indicator.

Mach number - The ratio of the speed of a body or of a point on a body with respect to the surrounding air or other fluid, or the speed of a flow, to the speed of sound in the medium; the speed represented by this number.

Macroscopic - Large enough to be visible to the naked eye or under low order of magnification.

Macula, Macula Lutea - A yellow pigmented area situated centrally about the fovea of the retina. Also called yellow spit.
Magnetic anomaly detector - A system which detects local changes in the earth's magnetic field.
Magnetic deviation - The angle between the magnetic meridian and the axis of a compass card, expressad in degrees east or west.
Magnetic dip - The angle between the horizontal and the direction of a line of force of the earth's magnetic field at any point.

Magnetic drum - A memory device used in computers, a rotating cylinder on which information may be stored as magnetically polarized areas, usually along several parallel tracks around the periphery.

Magnetic lines of force - Imaginary lines so drawn in a region containing a magnetic field to be everywhere tangent to the magnetic field intensity vector if in vacuum or non-magnetic material, or parallel to the magnetic induction vector if in a magnetic medium.

Magnetic north - That point on the earth's surface in the vicinity of the north geographic pole where the earth's magnetic field appears to converge.

Magnetic poles - In geomagnetism, either of the two points on the earth's surface at which the magnetic meridians converge, i.e., where the magnetic field is vertical. The exact locations of these two magnetic poles shift in complex fashion.

Magnetic storage - In computer terminology, any device which makes use of the magnetic properties of materials for the storage of information.

Magnetic tape - A ribbon of paper, metal, or plastic, coated or impregnated with magnetic material on which information may be stored in the form of magnetically polarized areas.

Maintainability - A quality of the combined features and characteristics of equipment design which permits or enhances the accomplishment of maintenance by personnel of average skill, under the natural environmental conditions in which it will operate.

Maintainability index - A quantitative figure of merit which relates the maintainability of an item to a standard reference.
Maintenance - The function of retaining material in or restoring it to a serviceable condition.
Maintenance task - Any action(s) required to preclude the occurrence of a malfunction or restore an equiprent to satisfactory operating condition.

Maintainer - A maintenance technician trained to inspect, service, repair, test and/or adjust a specific equipment.
Man-machine system - A system in which the functions of the man and the machine are interrelated and necessary for the operation of the system.

Manned - Of a vehicle occupied by one or more persons who nomally have control over the movements of the vehicle, as in a manned aircraft or spacecraft, or who perform some useful function while in the vehicle. As opposed to non-vehicle systems which are also manned for operation and/or maintenance.

Man-rated - A manned vehicle which meets pre-specified safety-offlight criteria.

Maser - An amplifier utilizing the principle of microwave amplification by stimulated emission of radiation. Emission of energy stored in a molecular or atomic system by a microwave , ower supply is stimulated by the input signal.

Matrix - 1. Any rectangular array of elements composed of rows and columns; specifically, such an array consisting of numbers or mathematical symbols which can be manipulated according to certain rules. 2. In electronic computers, any logical network whose configuration is a rectangular array of intersections of its input-output leads, with elements connected at some of these intersections. The network usually functions as an encoder or decoder. Loosely, any encoder, decoder, or translator.

M-display - In radar, a display in which target distance is determined by moving an adjustable blip along the biseline until it coincides with the horizontal position of the targit signal deflections. The control which moves the blip is calibsated in distance. Also called M-scan, M-scope, M-indicator.
Mean - Arithmetic mean.
Mean error - Root-mean-square error.
Mean square - Referring to the arithmetic mean of the squares of the values under consideration, as mean-square amplitude, mean-square error.
Mean-square error - The quantity whose square is equal to the sum of the squares of the individual errors. divided by the number of those errors.

Mean sun - A fictitious sun conceived to move eastward along the celestial equator at a rate that provides a uniform measure of time equal to the average apparent time; the reference for reckoning mean time, zone time, etc.

Mean time - Time based upon the rotation of the earth relative to the mean sun.

Mean-time-between-failure - The limit of the ratio of item operating time to the number of observed failures (r) as the number of failures approaches infinity.

Mean-time-to-failure - The average of mean life of an irreparable device.

Mechanoreceptor - A nerve ending that roacts to mechanical stimuli, as touch, tension, and acceleration.
Median - T midfle term of a series, or the interpolated value of the two middle terms if the number of terms is even. Compare mean.

Medium frequency - See Frequency bands.
Megacycle - One million cycles; one thousand kilocycles.
Mel - A unit of acoustic pitch - By definirion, a simple tone of frequency 1000 cycles per second, 40 df ls above a listener's threshold, produces a pitch of 1000 me. The pitch of any sound that is judged by the listener to be n ames that of a l-mel tone is n mels.

Memory - 1. Recall and recognition of anything previously learned or experienced. 2. The component of a computer, control system, guidance system, instrumented satellite, or the like, designed to provide ready access to data or instructions previously recorded so as to make them bear upon an immediate problem, such as the guidance of a physical object, or the analysis and reduction of data.
Meridian - A north-south reference line, particularly a great circle through the geographical poles of the earth. The term usually refers to the upper branch, that half, from pole to pole, which passes through a given place, the other half being called the lower branch.
Mesopic vision - Vision intermediate between photopic and scotopic vision, and consequently attributed tc the combined functioning of the rods and cones.
Metabolic reserves - The energy source stored in chemical form, such as carbohydrates, that can be efficiently mobilized and utilized by the body, particularly for muscular activity and work beyond the normal level of activity of an individual.
Metabolism - The utilization of oxygen by all cells of the body for the production of energy and heat. In this process carbon dioxide is produced.
Metamers, metameric colors - Color stimuli which have different spectrophotometric characteristics but which elicit identical colors under favorable conditions of comparison.

Meter - l. The basic unit of length of the metric system. 2. A device for measuring, and usually i.tdicating, some quantity.

Method of attributes - In reliability testing, measurement of quality by noting the presence or absence of some characteristic (attribute) in each of the units in the group under consideration and counting how many do or do not possess it.

Method of average error - The psychophysical method in which the subject manipulates the variable stimulus until he judges it to match the standard. The error is then measured.

Method of constant stimuli - Psychophysical method in which the frequency with which a sensation occurs is measured as a function of the variation in magnitude of the stimulus. A few discrete stimuli are used and each is presented many times.

Method of limits - Method of investigation which proceeds by gradually decreasing the value of a given stimulus (or the difference between two stimuli) until it is no longer noticeable; and also by increasing the stimulus value (or the difference between two stimuli) from a definitely imperceptible value until it becomes just noticeable.
Method of paired comparison - Method in which each member of a series is compared with every other member with respect to a given characteristic.
Micrometeorite penetration - Penetration of the thin outer shell (skin) of space rehicles by small particles travelling in space at high velocities.

Micron - A unit of length equal to one-millionth of a meter or onethousandth of a millimeter.

Midcourse guidance - Guidance of a rocket from the end of the launching phase to some arbitrary point or at some arbitrary time when terminal guidance begins. Also called incourse guidance.

Mil - 1. One-thousandth of an inch. 2. A unit of angular measurement, $1 / 6400$ of a circle.

Millimeter - One-thousandth of a meter; one-tenth of a centimeter; 0.039370 U.S. inch.

Millimeter of mercury - A unit of pressure corresponding to a column of mercury exactly 1 millimeter high at $0^{\circ} \mathrm{C}$ under standard acceleration of gravity of 980.665 centimeters per second squared.

Minimum separable acuity - Smallest space between two lines that can be discriminated as a gap. It is measured in terms of the angle subtended by the gap, measured at the eye.
Minimum visible acuity - Least area of a uniform brightness that can activate the eye. It is measured in terms of the angle subtended by the area, measured at the eye.

Minute - l. The sixtieth part of an hour. 2. The sixtieth part of a . degree of arc.

Mission profile - A time-secuence description of the events required, as well as the necessary .ucations and conditions of their occurrence, in order to accomplish the objectives of the mission.

Mission task - The specified purpose for which a device must perform.
Mobile training units - Training aids representing major aircraft components and related airborne and supporting equipment representative of a specific type and model of aircraft.
Mockup - A full-sized replica or dummy of something, such as a spacecraft, often made of some substitute material such as wood, and sometimes incorporating actual functioning pieces of equipment such as engines controls, displays, etc.

Mode - 1. A functioning position or arrangement that allows for the performance of a given task. 2. A measure of central tendency; the score occurring in the largest number of cases.

Moment - A tendency to cause rotation about a point or axis, as of a control surface about its hinge or of an airplane about its center of gravity; the measure of this tendency, equal to the product of the force and the perpendicular distance between the point of axis of rotation and the line of action of the force.
Moment of inertia - Of a body about an axis, $\Sigma \mathrm{mr}^{2}$, where m is the mass of a particle of the body and r is its distance from the axis.
Momentum - Quantity of motion, the measure of resistance of a moving body to a change in direction.

Monitor - To observe, listen in on, keep track of, or exercise surveillance over by any appropriate means, as, to monitor radio signals; to monitor the flight of a rocket by radar; to monitor a landing approach.
Monochronatic - Pertaining to a single wavelength or, more commonly, to a narrow band of wavelengths.
Monochromatism - Form of visual deficiency in which the colors can be matched with a single adjustable piimary.

Monocular field - Field of vision with one eye alone.
Monte Carlo method - A technique that permits computer simulation of a brute-force empirical approach. This empirical approach involves the mathematical construction of a number of possible models under study from constituents selected at random from representative populations.

Motion parallax - The apparent difference in rate of movement of two objects actually moving at the same velocity but at different distances from the observer.

Motion study (time and motion study) - An analysis technique which examines task elements according to the time required to perform each element.

M-scan - M-display.
M-scope - M-display.
Multiplexer - A mechanical or electrical device for time sharing of a circuit.

Munsell color notation - A system of letters and numbers of which the Munsell color samples are notated or specified with respect to hue, value, and chroma. Unspecified surface colors can be specified by comparison with the Munsell samples and assignment of the appropriate notation.

Munsell colors - A series of about 1000 standard samples of chromatic and achromatic surfaces, each specified by a letter-number system of notation with respect to Munsell hue, value, and chroma (analogues of hue, lightness, and saturation).
Musculo-skeletal - Pertaining to the human muscle and skeletal sustems.

Nautical mile - A unit of distance used principally in navigation; defined as the length of one minute of arc along any great circle on the earth's surface. Since this actual distance varies slightly with latitude, a nautical mile by international agreement is defined as 1852 meters (6076.103 feet or 1.1508 statute miles).

N-display - In radar, a display similar to the K-display in which the target appears as a pair of vertical deflections or blips from the horisontal time base. Direction is indicated by the relative amplitude of the vertical deflections; target distance is determined by moving an adjustable signal along the baseline until it coincides with the horizontal position of the vertical deflections. The horizontal control is calibrated in distance. Also called N -scan, N -scope, N -indicatur.
.regative acceleration - Deceleration.
Negative feedback - Feedback which resulis in decreasing the amplification.

Negative g - In designating the direction of acceleration on a body, the opposite of positive g, for example, the effect of flying an outside loop in the upright seated position. See physiological acceleration.

Neuromuscular - Pertaining jointly to nerves and muscles, as neuromuscular junction.
Nitrogen narcosis - The narcotic effect related to the partial pressure of inspired nitrogen; a function of depth of diving and the percentage of nigrogen in the respired gas.

Nodal point - The point in the eye through which all straight lines pass which join points in the stimulus field with their respective retinal images.

Node - 1. One of the two points of intersection of the orbit of a planet, planetoid, or comet sith the ecliptic, or of the orbit of a satellite with the plane of the orbit of its primary. Also called nodal point. 2. A point, line, or surface in a standing wave where some characteristic of the wave field has essentially zero amplitude. 3. A terminal of any branch of a network or a terminal common to two or more branches of a network. Also called junction point, branch point, or vertex.
Noise - Noise is any undesired sound. By extension, noise is any unwanted disturbance within a useful frequency band, such as undesired electric waves in a transmission channel or device. Also used to describe unwanted or interfering characteristics of visual or other sensory input systems.

Noise level - The transmission levcl of interference computed from its equivalent plane wave intensity is usually spoken of as the noise level.

Non-parametric statistics - A branch of statistics making no assumptions about the nature of the distribution.

Normal - l. Equivalent to usual, regular, rational or standard conditions. 2. Perpendicular, e.g., the line normal to a surface or to another line, normal line of sight, etc.
NOR circuit - A circuit that has an output only when all inputs are out.

Normal distribution - The fundamental frequency distribution of statistical analysis. Also called Gaussian distribution.

Normalize - 1. To change in scale so that the sum of squares, or che interral of the squares of the transformed quantity is unity. 2. To transform a random variable so that the resilling random variable has a normal distribution. 3. In computer operations, to adjust the exponent and coefficient of a floating-point result so that the coefficient is in the prescribed normal range. Also called standardize.
NOT circuit - In computers, a device or circuit which inverts the polarity of a pulse. Also called inverter.

NTDS - Navy Tactical Data Sy : cem. Under this system, computer-fed consoles display a schematic picture of enemy targets, their type and movements, as well as the defensive and offensive position of friendly ships and aircraft.
Nystagmus - An involuncary oscillation of the eyeballs, especially occurring as a result of eye fixations and stimulations of the inner ear during rotation of the body.

Object color - Color seen as belonging to an object. This includes surface and volume colors to the extent that surfaces and volumes are perceived as objects or parts of objects. Object colors are relatively insensitive to changes in viewing conditions, viz., they exhibit the phenomenon of constancy.

Objective - The lens or combination of lenses which receives light rays from an object and refracts them to form an image in the focal plane of the eyepiece of an optical instrument, such as a telescope. Also called object glass.

Oculogyral illusion - The apparent movement of an image in space in the same direction as that in which one seems to be turning when the semicircular canals are stimulated.

Omnibearing - A bearing toward an omni-directional radio-range station, as given to an aircraft by the omnicirectional radio range.
Omnirange - A radio navigation system providing a direct indication of the bearing of the omnirange facility from 3 vehicle. Usually used in combination with distance-measuring equis. ${ }^{\prime}$. Also called omnidirectional range.
Opacity - Of an optical path, the reciprocal of trar mission. Sae transmittance.
Open circuit scuba - A swimmer underwater breathing system in which expired gases are vented overboiid.

Open loop - A system operating without feedback. or with only partial feedback. See closed loop system.
Open system - A system that provides for the body's metabclism in an aircraft or spacecraft cabin by removal oí respiratory products and of waste from the cabin and by use of stored food and oxygen. Compare closed ecological system.

Operand - In co:quter operations, a word on which an cperation is to be performed.

Operetional ground equipment - Ground equipment required in direct support of operation as opposed to maintenance of $\cdot \square$ aerospace vehicle.

Operative temperacure - In the study of human bioclimatology, one of several parameters devised to measure the air's cooling effect upon a human body. It is equal to the temperature at which a specified hypothetical environment would support the same heat loss from an unclothed, reclining human body as the actual environment. In the hypothetical environment, the wall and air temperatures are equal and the air movement is 7.6 centimeters per second From experiment it has been found that the operative temperature

$$
T_{0}=0.48 t_{r}+0.19\left[\sqrt{v t_{a}}-(\sqrt{v}-2.76) t_{s}\right]
$$

where t_{r} is the mean radiant temperature: t_{a} is the mean air temperature; t_{s} is the mean skin temperature (all in ${ }^{\circ} \mathrm{C}$); and v is the airspeed in centimeters per second.

Operator task - A group of related activities required in performing (with other tasks) a more comprehensive system functional activity.

Optical axis - Of an antenne a line parallel to, but offset from, the electrical axis of an ant

Optical line of sight - The generally curved pach of visible light through the atmosphere.
Optical systens, primary types -
a. Refractive - Uses refractive elemerts (lenses to collect and foclu radiation).
b. Reflective - Uses refiective elements (mirrors) to collect and forus radiation.
c. Cathioptric - Uses combination of refractive and reflective elements to collect and focus radiation.

1. Maksutov System (also called Bouwers or concentric system A thick meniscus lens having spherical surfaces is used to minimize the spherical aberrations of a spherical primary mirror.
2. Schmidt System - The aberrations of a spherical nirror are corrected by the use of refractive corrector element having aspheric surfaces.

Optic disc - A small, lcw eminence on tne inner surface of the retina, withi. the eyrball, formed ly the nerve-fibers of the etina, as they collect just before emerging from the eyeball to form the optic rar:e.
Opti= nerve - The second cranial nerve, which connects the retina of the cye with the visual centry.

Optimal - 1. Pcrtaining to a trajactory, pati, or control motion, one that minimizes on maximizes some s intaty or combination of quantit'es such as fuel, time; energy, distance, heat iransfer, etc. This optimum condition, or path, is comonly calculated by a type of iluthematics known as calculus of variacions. 2. Reさers also to "best fit" for mar-machine system design or procedure.

OR - 1. The logical operator which has the property that A or B is true if either A is true or B is true. 2. In Boolean algebra, the operation of union.

Orbital elements - A set of seven parameters defining the orbit of a body attracted by a central, inverse-square force. Several different sets of parameters have been used. For artificial satellites the elements usually given are: longitude of the ascending node, $\boldsymbol{\Omega}$; inclination of the orbit plane, i; argument of perigee, ω; eccentricity, e; semimajor axis, a; mean anomaly, M; and epoch, t_{0}.

Orbital velocity - The average velocity at which an earth satellite or other orbiting body travels around its primary.
Order of magnitude - A factor of 10.
Organizational maintenance - Maintenance performed by a using organization on its assigned equipment.
OR-gate - A gate whose output is energized when any one or more of the inputs is in its prescribed state. An OR-gate performs the function of the logical inclusive-OR, of Bcolean algebra.
Oscilloscope - I. An instrument for producing a visual representation of oscillations or changes in an electric current. 2. Specifically, a cathode-ray oscilloscope.
Ostwald colors - A series of several hundred chromatic and achromatic samples, each corresponding to a certain theoretical pigment combinaiion of "full color content, white content, and black content"; and designated in an arbitrary letter-number system of notation.
Otolith organs - Structures of the inner ear (utricle and saccule) which respond to linear acceleration and tilting.

Outgassing - The evolution of gas from a material in a vacuum.
Out of phase - The condition of two or more cyclic motions which are not at the same part of their cycles at the same instant. Also called out of step. Compare in phase.

Oxidizer - Specifically, a substance (not necessarily containing oxygen) that supports the combustion of a fuel or propellant.

Packaging - Expression applied to design of equipment enclosures, chassis and control-dispiay panels.

Parabola - in open curve all points of which are equidistant from a fixed point, called the focus, and a straight line.
Parabolic reflector - A reflecting surface having the cross section along the axis in the shape of a paraboia.

Paraboioid - A surface of revolution generated by zevolving a section of a parabola about its major axis.

Parabrake - Deceleration parachute.

Paracentral vision - Vision mediated by the zone of the retina immediately surrounding the fovea centralis.
Parafoveal vision - Vision in rich the eye is so oriented toward the pertinent light source as t, have the light fall upon some portion of the retina surrounding the fovea. Also called scotopic vision. See foveal vision.

Parallax - The difference in the apparent direction or position of an object when viewed from different points expressed as an angle.
Parameter - 1. In general, any quantity of a problem that is not an independent variable. More specifically, the term is often used to distinguish, from dependent variables, quantities which may be assigned more or less arbitrary values for purposes of the problem at hand. 2. In statistical terminology, any numerical constant derived from a population or a probability distribution. Specifically, it is an arbitrary constant in the mathematical expression of a probability distribution.
Parametric equations - A set of equations in which the independent variables or coordinates are each expressed in terms of a parameter. For example, instead of investigating $y=f(x)$ or $F(x, y)=0$, it is often advantageous to express both x and y in terms of a parameter u : $x=g(u) ; y=G(u)$. The parameter may or may not have a useful geometric or physical interpretation.
Parking orbit - An orbit of a spacecraft around a celestial body, used for assembly of components or to wait for conditions favorable for departure from the orbit.
Parsec - A unit of length eq'al to the distance from the sun to a point having a heliocentric parallax of 1 second (1"), used as a measure of stellar distance. The name parsec is derived from the words parallax second.

Part - 1. One of the constituents into which a thing may be divided. Applicable to a major assembly, subassembly, or the smallest individual piece in a given thing. 2. Restrictive. The least subdivision of a thing; a piece that functions in interaction sith other elements but is itself not ordinarily subject to disassembly.
Fartial derivative - The ordinary derivative of a function of two or more variables with respect to one of the variables, the others being considered constants. If the rariables are x and y, the partial derivatives of $f(x, y)$ are written $\partial f / \partial x$ and $\partial f / \partial y$, or $D_{x} f$ and $D_{y} f$, or f_{x} and E_{y}. The partial lerivative of a variable with respect to time is known as the locai derivative.
Partial pressure - The pressure exerted by a designated component or components of a gaseous mixture.

Partial pressure suit - A skintight suit which doas not completely enclose the body but which is capa' ie of exerting pressure on the major portion of the body in orde co courteract ${ }^{2 n}$ increased oxygeik pressure in the lungs.

Passive sonar - Passive sonar is the method or equipment by which information concerning a distant object is obtained by evaluation of sound generated by the object.
Peak sound pressure - For any specified time interval, the maximum absolute value of the instantaneous sound pressure in that interval.
Pelorus - An instrument used on a boat in connection with a log line to obtain the direction of current. In its simplest form, it is a disk about 8 inches in diameter and graduated clockwise for every 5° or 10°. It is mounted rigidly on the boat, usually with the 0° mark forward and the diameter through this mark parallel with the keel of the boat.

Pencil beam - Emission, from an antenna, having the form of a narrow conical beam.
Perception - The awareness of external objects, qualities, or relations, which ersues directly upon sensory processes.

Pericynthian - That point in the trajectory of a vehicle which is closest to the moon.

Perigee - That orbical point nearesi the earth when the earth is the center of attraction.

Perihelion - That point in a solar orbit which is nearest the sun.
Perimeter - An instrument for mapping the sensibility of the retinal field; it consists typically of a quadrant rotating about one of its limiting radii as an axis so that on every point of this arm, and at every angle (corresponding to some pcint on the retina) a stimulus can be given and the visual impression recorded on a chart, the eye being placed at the center of the quadrant and fixated upon its center of rotation. Sometimes a semi-circular arm is used rotating about its middle radius.

Perici - 1. The interval needed to complete a cycle. 2. = orbital pericd. 3. Specifically, the interval between passages at a fixed point of a given phase of a simple harmonic wave; the reciprocal of frequency.
Periphery of retina - The region of the retina remote from the center of vision, as distinguished from the central region. Defines peripheral visual limits.
Permanent nemory - In computer terminology, storage of information which remains intact when the power is turned off. Also called nonvol:tale storage.

Personnel subsystem - Those aspects of a system which relate to the operational and support personnel required. Includes mari-nachine interface design and trained personnel requirements for effective systen performance. (See PSS/Hardware development interaction Figure 4).
Phase angle - 1. The phase differer e of two periodically recurring phenomena of the same frequency, :xpressed in angular measure. 2. The angle at the celestiai body between the sun and earth.

Figure 4 - atypical manned wisapon-system development model

Phase modulation - Angle modulation in which the angle of a sinewave carrier is caused to depart from the carrier angle by an amount proportional to the instantaneous value of the modulating wave.
Phon - The unit of loudness level of sound, numerically equal to the sound pressure level in decibels, relative to 0.0002 microbar, of a simple 1000 cycle per second tone judged by listeners to be equivalent in loudness. Compare sone.
Phosphorescence - Emission of light which continues after the exciting mechanism has creased. See lumintscence. Compare flourescence.

Phot - A photometric unit of illuminance or illumination equal to 1 lumen per square centimeter. Compare foot-candle, lux.

Photochromatic interval - The range of visual stimulus-intensity, for a chromatic stimulus, between the absolute threshold or limen for light-perception, and the threshold for hue. There is said to be no photochromatic interval for long wave light, i.e., in the red end of the spectrum. Also called colorless interval.

Photochromic display - A large screen display which retains a trace when exposed to ultra violet light.

Photogrammetry - The art or science of obtaining reliable measurements by means of photog aphy.
Photoluminescence - Flouresrence. See luminescence.
Photopic vision - Vision associated with levels of illumination 0.01 foot-lambert or higher, characterized by the ability to distinguish colors and small detail. Also called foveal vision. Compare scotopic vision.

Photopic adaptation - The decreased visual sensitivit; to light, sometimes manifest by decreased brightness of a fixed stimulus, which is dependent on relatively intense light stimulation.

Fhotureceptor - The visual receptor, the adequate stimulus for which is the luminous energy of the spectrum in the human; cones and rods.
Photosynthesis - A process operating in green plants in which carbohydrates are formed from carbon -ioxide and water in the presence of chlorophyll, using light energy and releasing oxygen.
Physiological acceleration - The acceleration experienced by a human or animal test subject in an accelerating vehicle. (See Volume I, Section 3).
Pickoff - A s, • device that responds to angular movement to create a signal $\quad \cdot$ sine type of control, as a pickoff on a gyro in an ant. ...: :i

P-indic. \quad 'le ...itis indicator (PPI).
Ping - \because. . projected by an echo-ranging transducer.

 Also ca . ti^{\prime} :

Pipper - A small hole in the reticle of an optical sight or computing sight; a pipper image.
Pitch - 1. Of a vehicí, an angular displacement about an axis parallel to the lateral axis of the vehicle. 2. In acoustics, that attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high.

Pitch attitude - The attitude of an aircraft, rocket, etc., referred to the relationship between the longitudinal body axis and a chosen reference line or plane as seen from the side.
Pitch axis - A lateral axis through an aircraft, missile, or simila: body, about which the body pitches. It may be a body, wind, or stability axis. Also called a pitching axis.
Pitching moment - A moment about a lateral axis of an aircraft, rocket, airfoil, etc.

Pitchover - 1. The programied turn from the vertical that a rocket takes as it describes an arc and points in a direction other than vertical. 2. The point-in-space of this action.

Pitot-static tube - A device consisting essentially of a unit combination of a pitot tube and a static tube arranged coaxially or otherwise parallel to one another, used principally in measuring impact and static pressures; also called pitot-static head.
Plan position indicator - l. A cathode-ray indicator in which a signal appears on a radial line. Distance is indicated radially, and bearing as an angle. 2. In radar technique, a cathode-ray indicator on which blips produced by signals from reflecting objects and transponders are shown in plan position, thus forming a maplike display. Also called P-indicator, P-scan, P-scope.

Poisson distribution - A one-parameter discrete frequency distribution giving the probability that n points (or events) will be (or occur) in an interval (or time) x, provided that these points are individually independent and that the number occurring in a subinterval does not influence the number occurring in any other nonoverlapping subinterval. It has the form: $f(n, x)=e^{-\sigma}(\sigma x) n / n$! The mean and variance are $\sigma x, a \cdot f$ is the average density (or rate) with which the events occur. When $0 x$ is large, the Poisson distribution ep. proaches the normal distribution. The binomial distribution approaches the Poisson when the number of events n becomes large and the probability of success P becomes small in such a way that $n P \rightarrow \mathbf{C x}^{\mathbf{N}}$.
Population - In statistical usage, any definite class of individuals or objects. Also called universe. Compare sample.
Port - Left side of a ship (looking forward) - opposite of starboard.
Positive acceleration - l. Acceleration such that speed increases. 2. Accelerating force in an upward sense or direction, e.g., from bottom to top, seat to head, etc.; acceleration in the direction that this force is applied. See physiological acceleration.

Pound - 1. A unit of mass equal in the United States to 0.45359237 kilogram, exactly. 2. Specifically, a unit of measurement of the thrust or force of a reaction engine representing the weight the engine can move, as an engine with 100,000 pounds of thrust. Ste poundal, pound mass. 3. The force exerted on ' pound mass by the standard acceleration of gravity. See gravit., sense 2.

Poundal - A unit of force; that unbalanced force which, acting on a body of 1 pound mass, produces an acceleration of 1 foot per second squared. See pound, pound mass.

Pound mass - 1. A mass equal of 0.45359237 kilogram. 2. A unit of measure of the inertial property equal to the mass of a body weighing 1 pound at the standard acceleration of gravity (980.665 centimeters per second squared).
Power - 1. Rate of doing work. 2. Luminous intensity. 3. The number of times an object is magnified by an optical system, such as a telescope. Usually called magnifying power. 4. The result of multiplying a number by itself a given number of times, as the third power of a number is its cube; the superscript which indicates this process as in $2^{3}=2 \times 2 \times 2$.

Precession - Change in the direction of the axis of rotation of a spinning body, as a gyro, when acted upon by a torque.
Preparation time - That element of Active Repair Time required to obtain necessary test equipment and maintenance manuals, and to set up necessary equipment in preparation for fault location.
Presbyopia - A condition of the eye characterized by ability to see distant objects clearly and inability to obtain a clear picture of nearby objects, due to inelasticity of the lens, with consequent reduction of accommodation, which develops with advancing age.
Pressure altitude - 1. Altitude in the earth's atmosphere above the standard datum plane, stundard sea level pressure, measured by a pressure altimeter. 2. The altitude in a standard atmosphere corresponding to atmospheric pressure encountered in a real atmosphere. 3. The simulated altitude created in an altitude chamber.

Pressure breathing - The breathing of oxygen or of a suitable mixture of gases at a pressure higher than the surrounding pressure.
Pressure-breathing system - An oxygen system in which oxygen is injected inside the respiratory ducts through a pressure higher than the surrounding pressure.
Pressure-demand oxygen system - A demand oxygen system that furnishes oxygen at a pressure higher than atmospheric pressure above a certain altitude.
Pressure suit - A garment designed to provide pressure upon the body so that respiratory and circulatory functions may continue normally, or nearly so, under low-pressure conditions, such as occur at high altitudes or in space without benefit of a pressurized cabin.
Preven+ive maintenance - That maintenance performed to retain an item in san sfactory operational condition by providing systematir, inspection, detection, and prevention of incipient failures.

Primary colors - Three colors whose normal stimuli, when mixed additively in proper proportions, are capable of yielding colors of all hues (within a wide range of saturations) and the gray series. This usage relates especially to theories of color vision of the tri-receptor type. (For mixing paint pigment, primaries are red, yellow, blue; for light, they are red, blue, green).
Primary hues . The four psychologically simple or unique hues of normal trichromats. A primary hue is unmixed, viz., it does not partake of the specific nature of any one of the other three; thus a primary red is neither bluish nor yellowish nor greenish, the primary yellow is neither reddish nor greenish nor bluish, etc. Also called psychological primaries, principal hues, unitary hues.
Prime meridian - 1. The meridian of longitude 0°, used as the origin for measurement of longitude. The meridian of Greenwich, England, is almost universally used for this purpose. 2. Any meridian in any coordinate system used as an origin for measurement of longitude.

Probability - The chance that a prescribed event will occur, represented as a pure number P in the range $0 \leq P \leq 1$. The probability $n f$ an impossible event is zero and that of an inevitable event is unity.

Probable error - In statistics, that value ep for which there exists an even probability (0.5) that the actual error exceeds e_{p}. The probable error e_{p} is 0.6745 times the standard deviation σ.
Program - 1. In computer operations, a plan for the solution of a problem. 2. To create a plan for the solution of a problem.

Proportional control - Control of an aircraft, rocket, etc., in which control-surface deflection is proportionai to the movement of the remote controls.

Proportional navjgation - The control of the angular rate of the velocity vector of a vehicle in proportion to the apparent relative angular velocity of its moving target.
Proprioceptive stimulation - Stimulation originating within the deeper structures of the body (muscles, tendons, joints, etc.) for sense of body position and movement and by which muscular movements can be adjusted with a great degree of accuracy and equilibrium can be maintained.

Protanomaly - Form of trichromatism in which the luminosity curve is abno-mally low at the long-wave end, and an abnormally large proportion of stimulus red is required in a red-green stimulus mixture in order to match a given yellow.
Protanope - Individual having protanopic vision.
Protanopia - Form of dichromatism in which red and blue-green stimuli are confused and the luminosity is abnormally low at the long-wave end; but a normal proportion of red and green stimuli suffices to match a given yellow. Sometimes called red bliadness.

Prototype - 1. A production model of a system suitable for ccorplete evaluation of mechanical and electrical form, design, and performance. 2. The first of a series of similar devices. 3. A physical standard to which replicas are compared, as the prototype kilogram.
Pseudo-isochromatic charts - Charts for testing color deficiency, comprised of colored spots which yieid a recognizable pattern (number, letter, i. gular line) to a normal observer, but yield a different or not recognizable pattern to an abnormal observer.

Psychomotor ability - Of or pertaining to muscular action ensuing directly from a mental process, as in the coordinated manipulation of aircraft or spacecraft controls.

Psychophysical methods - Standardized procedures for presenting stimulus material to subject for judging and for recording his results. Originally developed for determining functional relations between physical stimuli and correlated sensory responses, but now used more widely.

Psychophysical quantity - A physical measurement, as a threshold, dependent on human attributes or perception.

Pulmonary - Pertaining to, or aifecting, the lungs or any component of the lungs.

Pulse radar - A type of radar, designed to facilitate range measurement, in which the transmitted energy is emitted in periodic short pulses. Also called pulsed radar. Compare continuous-wave radar.

Pupil - The circular opening in the iris, which forms the diaphragm of the optical system of the eye, regulating the amount of light admitted to the eye by contracting as the light increases, or the reverse.

Purge - To rid a line or tank of residual fluid, especially of fuel or oxygen in the tanks or lines of a rocket after a test firing or simulated test firing.

Purity - A measure of the degree to which a color stimulus approaches the condition required for maximum saturation. There are various measures of purity, but all of them are based on the ratio of the spectrum and achromatic components of the stimulus mixture.
Purkinje after-image - The second positive visual after-sensation which appears most plainly in the hue complementary to that of the primary sensation.
Purkinje effect - The response of the human eye which makes it less sensitive to lights of longer wavelengths under conditions of decreased illumination, e.g., red appears darker at night than blue having the same brightness under photopic conditions.
Purkinje phenomenou - A phenomenon concerning the perceived brightness of different color stimuli; namely, that as the spectrum is darkened, the long-wave end darkens more rapidly than the short-wave end, e.g., red brightens in an intense general illumination, blue in faint illumination. Concomitant dark adaptation is required, since the effect rests upi the transition from cone to rod vision.

Q - Dynamic pressure.
Quality control - A management function to control the quality of articles to conform to quality standards.

Quality factor - A measure of the sharpness of resonance or frequency selectivity of a resonant vibratory system having a single degree of freedom, either mechanical or electrical. In a mechanical system, this quantity is very nearly equal to one-half the reciprocal of the damping ratio. When used with reference to a lightly damped system, it is also approximately equal to the following: (1) transmissibility at resonance; (2) π / δ where δ is the logarithmic decrement; (3) : $\pi W / \Delta W$ where W is the stored energy and ΔW the energy dissipation per cycle; and (4) $f_{r} / \Delta f$ where f_{r} is the resonance frequency and Δf is the bandwidth between the half-power points. Historically the letter Q was an arbitrarily chosen symbol to designate the ratio of reactance to resistance of a circuit element. The name quality factor was introduced later.
Quantitative display - A display which provides numerical ralues (as opposed to one in which only qualitative information is provided).

Quiet sun - The sun when it is free from unusual radio wave or therma? radiation such as that associated with sun spots.
Quiet - 1. (Acoustics) generally devoid of or free from loud cr disturbing sound. 2. (Physics) generally devoid of motion. 3. (Physiological) state of rest or minimum activity.

Radar - The name is derived from the words, Radio Detection and Ranging. Radar is a system of determining the distance of an object by measuring the interval of time between transmission of a radio signal and reception of a signal returned as an ccho, or by a transmitter triggered by the outgoing signal.
Radar altitude - The altitude of an aircraft or spacecraft as determined by a radio altimeter; thus, the actual distance from the nearest terrain feature.
Radar beacon - A beacon transmitting a characteristic signal on radar frequency, mitting a craft to determine the bearing and sometimes the range O_{\perp} che beacon.
Radar horizon - The angle of elevation at which the beam from a radar antenna is intercepted by the earth's horizon.

Radar indicator - Radarscope.
Radar mile - A time unit of 10.75 microseconds duration; the time it takes for the signal emitted by a radar to travel from the radar to a tarset ne mile distant and return to the radar.
Radar range - 1. The distance from a radar to a target as measured by the radar. 2. The maximum distance at which a radar set is effective in detecting targets.

Radar scan - 1. The searching motion of a radar beam in any of various path configurations; the pattern of the motion of a radar beam.
2. Radar scaming.

Radarscope - The cathode-ray tube or oscilloscope in a radar set, which displays the received signal in such a manne:: as to indicate range, bearing, e tc. Someitimes called a radar indicator.

Radarscope display - The visual presentation or picture displayed on a rader screen.
Radar screen - 1. A radar network. 2. A cathode-ray screen in a radar set.

Radial - Motion along a radius.
Radial velocity - In radar, that vector component of the velocity of a moving target that is directed away from or toward the ground station.

Radian - The angle subtended at the center of a circle by an arc equal in length to a radius of the circle. It is equal to $360^{\circ} / 2 \mathrm{~T}$ or approximately 57 degrees 17 minutes 44.8 seconds.

Radiant energy - Quanta of energy travelling through space in the form of electromagnetic waves of v irious lengths.

Radiation - 1. The process by which electromagnetic energy is propagated through free space by virtue of joint undulatory variations in the electric and magnetic fields in space. This concept is to be distinguisher \because om conduction aud convection. 2. The process by which energy is propagated through any medium by virtue of the wave motion of that medium, as in the propagation of sound waves through the atmosrhere, or ocean waves along the water surface. 3. = radiant energy. $\dot{4} .=$ electromagnetic radiation, specifically, high-energy radiation such as gamma rays and X-rays. 5. Corpuscular emissions, such as α or β radiation. 6. = nuclear radiation. 7. = radioactivity.
Radiation dose - The am nt of radiation absorbed by a material, system, or tissue in a given amount of time; usually measured in one of the commonly accepted units as roentgen, roentgen-equivalent-man, roentgen-equivalent-physical, etc.

Radiation shield - 1. A device used on certain types of instruments to prevent unwanted radiation from biasiang the measurement of a quantity. 2. A device used to protect human beings from the haimful effects of nuclear radiation, cosmic radiation, or the like. 3. = heat shield.

Radiation sickness - A syndrome following intense acute exposure to ionizing radiations. It is characterized by nausea and vomiting a few hours after exposure. Further syaptoms include blevdy diarrhea, hemorrhage under the skin (and internally), epilation (hair falling), and a dec"sase in blood-cell level.

Radiator - 1. Any source of radiant energy, especially ele:tromagnetic radiation. 2. A device that dissipaces the heat from something, as from water or oil, not necessarily by rad.acion only.
Radioactive . Exhibiting or pertairing to radioactivity.
Radioactivity - Spontaneous disintegration c: atomic nuclei with emission of corpuscular or electromagnetic radiations.

Radio altimeter - A device that measures the altitude of a craft above the terrain by measuring the elapsed time between transmission of radio waves from the craft and the reception of the same waves reflected from the terrain. Also called radar altimeter.

Radio astronomy - The stury of celestial objects through observation of radiofrequency waves emitted or reflected by these objects.

Radiobiology - The study of the effects produced on living organisms by radiation.
Radio direction finder - A radio-receiving set, together with its associated equipment, used to determine the direction from which a radio signal is transmitted.

Radio energy - Electromagnetic radiation of greater wavelength (lower frequency) than infrared radiation, that is, of wavelength greater than about 1000 microns (0.01 centimeter). The high-frequency end of the radio-energy spectrum is known as microwave radiation.
Radiofrequency - 1. A frequency at which coherent electromagnetic radiation of energy is useful for communication purposes. 2. Specifically, the frequency of a given radio carrier wave.
Radiosonde - Ar instrument, usually balloon-borne, for the simultaneous measurement and transmission of meteorological data while moving vertically through the atmosphere.
Radius vector - A straight line connecting a fixed reference point or center with a second point, which may be moving; specifically, in astronomy, the straight line connecting the center of a celestial body with the center of a body which revolves around it, as the radius vector of the moon.
Radome - (From radar dome. Pronounced raydome.) A dielectric housing for an antenna.

Ram air - Air entering an airscoop or air inlet as a result of the high-speed forward movement of a vehicle.

Ramjet engine - A type of jet engine with no mechanical compressor consisting of a specially shaped ube or duct open at both ends, the air necessary for combustion being shoved into the duct and compressed by the forward motion of the engine, where the air passes through a diffuser and is mixed with fuel and burned: the exhaust gases issuing in a jet from the rear opening. The ramjet engine cannot operate under static conditions. Often called a ramjet. Also called Lorin tube.
Random - Eluding precise prediction, completely irregular. Compare stochastic.
Random access - Equal access time to all memory locations, independent of the location of the previous memory reference.
Random error - Errors that are not systematic, are not erratic, and are not mistakes.
Random noise - An oscillation whose instantaneous amplitudes occur, as a function of time, according to a normal (Gaussian curve). Also called Gaussian noise, random Gaussian noise.

Random number - An expression formed by a set of digits selected from a sequence of digits in which each successive digit is equally likely to be any of the digits.
Random sample - A sample taken at random from a population.
Range - 1. The difference between the maximum and minimum of a given set of numbers; in a periodic process it is twice the amplicude, i.e., the wave height. 2. The distance between two objects, usually an observation point and an object under observation. 3. A maximum distance attributable to some process, as in visual range or the range of a rocket. 4. An area in and over which rockets are fired for testing, as Atlantic Missile Range. 5. = radar range.
Range error - The error in radar range measurement due to the propagation of radio energy through a nonhomogeneous atmosphere. This error is due to the fact that the velocity of radio-wave propagation varies with the index of refraction and that ray travel is not in straight lines through actual atmospheres. The resu.ting range error is generally insignificant. Compare azimuth error.

Range gating - The use of circuits in radar to suppress signals from all targets falling outside selected range limits.
Range-height-indicator scope - A type of radar indicator (radar-scope); an intensity-modulated indicator on which echoes are displayed in coordinates of slant range and elevation angle, simulating, thereby, a vertical cross section of the atmosphere along some azimuth from the radar.

Range marker - The index marks displayed on radar indicators to establish the scale or facilitate determination of the distance of a target from the radar. On the plan-position-indicator scope, for example, range markers take the form of concentric circles with the position of the radar at the center. Also called distance marker.
Range rate - The rate at which the distance from the measuring equipment to the target or signal source being tracked is changing with respect to time.
Range ring - A circle on a plan-position-indicator, particularly one with an adjustable diameter, to indicate distance from the antenna.

Rankine temperature scale - A temperature scale with the degree-interval of the Fahrenheit temperature scale and the zero poini at absolute zero. The ice point is thus 401.69 degrees Rankine and the boiling point of water is 671.69 degrees Rankine.
Raster - The pattern followed by the olectron-beam exploring element scanning the screen of a television transmitter or receiver.

Rate gyro - A single-degree-of-freedom gyro having primarily elastic restraint of its spin axis about the output axis. In this gyro an output signal is produced by gimbal angular displacemert, relative to the base, which is proportional to the angular rate of the base about the input axis.

Rate of decay - 1. Of a sound, the time rate at which the sound pressure level (or other stated characteristic) decreases at a given point and at a given time. A commonly used unit is the decibel per second. 2. Of a radioactive nuclide, the number of nuclei of that nuclide changing (or disintegrating) per unit time. It is usually expressed as the instantaneous rate of decay by $-\mathrm{dN} / \mathrm{dt}$ where N is the total number of the state nuclides present at the given time t.
Ray - 1. An elemental path of radiated energy; or the energy following this path. It is perpendicular to the phase fronts of the radiation. 2. One of a series of lines diverging from a common point, as radii from the center of a circle. 3. A long, narrow, light-colored streak on the lunar surface originating from a crater. Rays range in length to over 150 kilometers and usually several radiate from the same crater, like spokes of a wheel.
Reaction engine - An engine that develops thrust by its reaction to a substance ejected from it; specifically, such an engine that ejects a jet or stream of gases created oy the burning of fuel within the engine.
Reaction motor - Reaction engine.
Reaction time - In human engineering, the interval between an input signal (physiological) or a stimulus (psycho-physiological) and the response elicitec by the signal. (See Vol. I, Section 6).

Read in - In computer operations, to introduce information into storage.
Readout - 1. The action of a radio transmitter transaicinng data either instantaneously with the acquisition of the data or k playing a magnetic tape upon which the data have been recorded. 2. The data transmitted by the action described in sense 1. 3. In computer operations, to extract information from storage.
Readout indicators - Any type of indicating instrument f rom which meaningful information and data can be directly obtained and used.

Real time - Time in which reporting or events or rccordiag of events is simultaneous with the events.

Real-time data - Data presented in usable form at essentially the same time the event occurs.

Rearward acceleration - See physiological acceleration.
Rebreather - An oxjgen system with a circuit closed to the atmosphere, to which oxyger is added to meet the user's needs; carbon dioxide and water vapor are emoved from the expired gas.
Receiver - 1. The initial component or sensing element of a measuring system. For : ample, the receiver of a thermo-electric thermom cer is the measuriag thermocouple. 2. An instrument used to detect the presence of and to determine the information carried by electromagnetic radiation. A receiver includes circuits designed to detect amplify, rectify, and shape the incoming radio-frequency signals received at the antenna in such a manner that the information-containing component of this received energy can be delivered to the desired indicating or recording equipment.

Receptor - A sensory nerve ending or organ in a living organism that is sensitive to physical or chenical stimuli.

Reciprocating engine - An engine, especially an internal-combustion engine, in which a piston or pistons moving back and forth work upon a crankshaft or other device to create rotational movement.

Recognition - The psychological process in which an observer so interprets the visual stimuli he receives from a distant object that he forms a correct conclusion as to the exact nature of that object.

Recoverable - Of a rocket vehicle or one of its parts, so designed or equipped as to be located after flight and recovered with or without damage.
Recovery capsule - A capsule designed to be recovered after reentry vehicle.

Recovery gear - The devices and equipment used to mark and locate a nose cone or other part of a rocket vehicle after impact.

Recovery package - A package attached to a reentry or other body designed for recovery, containing devices intended to locate the body after impact.

Rectifier - A static device having an asymmetrical conduction characteristic which is used to convert attending current into direct current.

Recurrent image - A visual, auditory, or other image which persistently returns.

Recurrent vision - A succession of positive and negative after-images or after-sensations.

Red-green blindness - A common form of partial color blindness, or dichromatism, in which red and green stimuli are confused because they are seen as various saturations and brightnesses of yellow, blue, or gray. Cf. Protanopia and deuteranopia.

Redoat - The condition occurring under negative g in which objects appear to have a red coloration due to uncertain causes, possible venous congestion of engorged eyelids. Compare blackout.

Redundancy - l. In information theory: of a source, the amount by which the logarithm of the number of symbols available at the source exceeds the average information content per symbol of the source. 2. The existence of more than one means of accomplishing a given task, where all means must fail before there is an overall Eailure to the system; e.g., that design which makes additional electrical paths available to a function.

Reentry - The event occurring when a spacecraft or other object comes back into the sensible atmosphere after being rocketed to higher altitudes; the action involved in this event.

Reentry vehicle - Any payload carrying vehicle designed to leave the sensible atmosphere and then return through it to earth.
Reflectance - The ratio of the radiart flux reflected by a body to that incident upon it. Also called reflection factor.

Reflection - The process whereby a surface of discontinuity turns back a portion of the incident radiation into the medium through which the radiation approached.

Reflectivity - A measure of the fraction of radiation reflected by a given surface; defined as the ratio of the radiant energy reflected to the total that is incident upon that surface.

Refraction - A change in the angle of propagation of a wave in passing from one medium to another of different density or elasticity.

Refractive index - A numerical expression indicating the degree to which the path of light or radiant energy is bent in passing from one transparert medium into another.

Refactory - A material, usually ceramic, that resists the action of heat, does not fuse at high temperatures, and is very difficult to break down.

Regenerative cooling - The cooling of a part of an engine by the fuel or propellant being delivered to the combustion chamber; specifically, the cooling of a rocket-engine combustion chamber or nozzle by circulating the fuel or oxidizer, or both, around the part to be cooled.

Register - A device capable of retaining information, often that contained in a small subset (e.g., one word) of the aggregate information in a digital computer. See storage.

Regression - The statistical counterpart or analog of the functional expression, in ordinary mathematics, of one variable in terms of others. Thus, regression curve, regression coefficient.

Relative - Of angle measurements in navigation, measured from the heading of a craft, as relative bearing.

Relative coordinate system - Any coordinate system which is moving with respect to an inertial coordinate system.
Relative humidity - The (dimensionless) ratio of the actual vapor pressure of the air to the saturation vapor pressure. The corresponding ratios of specific humidity or of mixing ratio give approximations of sufficient accuracy for many purposes in meteorology. The relative humidity is usually expressed in percent. Also called humidity. See dewpoint. The ratio of mixing ratio to saturation mixing ratio is preferred as a definition of relative humidity by the International Meteorological Organization.

Relative motion - Motion of one object or body measured relative to arother. Usually called apparent motion when applied to the change of position of a celestial body as observed from the earth. See also apparent motion.
Reliability - The probability that system, subsystem, component, or paat will perform its intended functions under defined conditions at a designated time and for a specified operating period.

Rem - Abbreviation for roentgen-equivalent-man.
Remote control - Control of an operation from a distance, especially by means of electricity or electronics; a controlling switch, lever, or other device used in this kind of control; as in remote-control armament, remote-control switch, etc.

Remote indicating - Of an instrument, displaying indications at a point remote from it:s sensing element, often by electrical or electronic means.

Rendezvous - 1. The event of two or more objects meeting with zero relative velocity at a preconceived time and place. 2. The point in space at which such an event takes place, or is to take place.

Rep - Abbreviation for roentgen-equivalent-physical.
Repair - The process of returning an item to a specified condition including Preparation, Fault Location, Item Procurement, Fault Correction, Adjustment and Calibration, and Findl Test.

Reparability - The probability that, when the actual repair begins, the system will be repaired in a given period of time with a given manpower expenditure.

Reset - 1. To restore a storage device to a prescribed state. 2. To place a binary cell in the initial or zero state. See clear.
Resistance - 1. In electricity, the factor by which the square of the instantaneous conduction current must be multiplied to obtain the power lost by heat dissipation or other permanent radiation of energy away from the electrical current. 2. In mechanics, the opposition by frictional effects to forces tending to produce motion.

Resolution - 1. The ability of a film, a lens, a combination of both, or a vidicon system to render barely distinguishable a standard pattern of black and white lines. 2. In radar, the minimum angular separation at the antema at which two targets can be distinguished (a function of beamwidth); or the minimum range at which two targets at the same azimuth can be separated (equal to one-half the pulse length). 3. Of a gyro, a measure of response to small changes in input; the maximum value of the minimum input change that will cause a detectable change in the output for inputs greater than the threshold, expressed as a percent of one-half the input range.

Resonance - The phenomenon of amplification of a free wave or oscillation of a system by a forced wave or oscillation of exactly equal period. The forced wave may arise from an impressed force upon the system or from a boundary condition. The growth of the resonant amplitude is characteristically linear in time.

Resonance frequency - A frequency at which resonance exists. Also called resonant frequency.
Resonator - In radio and radar applications, a circuit which will resonate at a given frequency, or over a range of frequencies, when properly excited.
Respiration - The interchange of gases of living organisms and the gases of the medium in which they live. Respiration applies to the interchange by any channel as pulmonary respiration, cutanecus respiration, etc.
Respiratory rate (frequency) - Indicates the number of complete respiratory cycles that take place in 1 minute. At rest, a normal adult will have a respiratory rate somewhere between 10 and 20 "breaths" per minute. The rate normally increases during work.

Responder - 1. In general, an instrument that indicates reception of an electric or electromagnetic signal. 2. = transponder.

Response - The muscular contraction, glandular secretion, or any other activity of an organism which results from stimulation.

Resultant - The sum of two or more vectors.
Reticle - A system of lines, wires, etc., placed in the focal plane of an optical instrument tc serve as a reference. Also called reticule.
Reticule - Reticle.
Retina - Jnner coating of the eyeball, which receives the image formed by refraction of light rays at the cornea and lens; it is made up of rods and cones, the receptor cells for vision.

Retinal disparity - The difference which exists between the images formed in the right and left eyes when a solid object is viewed binocularly.

Retinal field - The extended mosaic of the rod and cone receptor elemencs of the retina, which forms something of an anatomical correlate of the stimulus field.

Retinal illuminance - The illuminance of the retina, the usual units being the troland and the lux.

Retinal rivalry - Alternation of sensations first from one eye and then from the other, when the two eyes are simultaneously stimulated by different colors or figures. Also called binocular rivalry. Contrast with binocular fusion, in which the two impressions are fused into a single impression.

Retrofire - To ignite a retrorocket.
Retrograde motion - 1. Motion in an orbit opposite to the usual orbital direction of celestial bodies within a given system. Specifically, of a satellite, motion in a direction opposite to the direction of rotation of the primary. 2. The apparent motion of a planet westward among the stars. Also called retrogression.

Retrorocket - A rocket fitted on or in a spacecraft, satellite, or the like to produce thrust opposed to forward motion.

Retrothrust - Thrust used for a braking maneuver; reverse thrust.
Reverberation - 1. The persistence of sound in an enclosed space, as a result of multiple reflections after the sound source has stopped. 2. The sound that persists in an enclosed space, as a result of repeated reflection or scattering, after the source of the sound has stopped.

Revolution - 1. Motion of a celestial body in its orbit; circular motion about an axis usuaily external to the body. 2. One complete cycle of the movement of a celestial body in its orbit, or of a body about an external axis, as a revolution of the earth about the sun.
Revolve - To move in a path about an axis, usually external to the body accomplishing the motion, as in the planets revolve about the sun. Hence revolution. See rotate.

Rhodopsin - A substance found in the rods of the dark-adapted eye, which bleaches rapidly on exposure to light, and is believed to be the substance underlying scotopic or twilight vision.
Rho-theta system - 1. Any electronic navigation system in which position is defined in terms of distance, or radius ρ and bearing θ with respect to a transmitting station. Also called an R-theta system. 2. Specifically, a polar-coordinate navigation system providing data with sufficient accuracy to pernit the use of a computer which will provide arbitrary course lines anywhere within the coverage area of the system.

Ribbon parachute - A type of parachute having a canopy consisting of an arrangement of closely spaced tapes. This parachute has high porosity with attendant stability and slight opening shock.
Right ascension - Angular distance east of the vernal equinox; the arc of the celestial equator, or the angle at the celestial pole, between the hour circle of the vernal equinox and the hour circle of a point on the celestial sphere, measured eastward from the hour circle of the vernal equinox through 24 hours.
Rocket engine - A reaction engine that contains within itself, or carries along with itself, all the substances necessary for its operation or for the consumption or combustion of its fuel, not requiring intake of any outside substance and hence capable of operation in outer space. Also called rocket motor.
Rod - A type of photoreceptive cell in the retina of the mamalian eye. Rods are involved in detection of movement and scotopic vision (night vision).
Rod threshold - The dimmest illumination in which the rods of the retina can function.

Roentgen - A unit of radiation, that quantity of X-rays or gamma rays which will produce, as a consequence of ionization, l electrostatic unit of electricity in 1 cubic centimeter of dry $1 r$ measured at 0° C and standard atmospheric pressure.
Roentgen-equivalent-man - A unit of radiation which when absorbed by a human being, produces the same effect as the absorption of 1 roentgen of high-voltage X -rays. See rem.
Roentgen-equivalent-physical - A unit measuring a purely physical effect of radiation by the number of ion pairs produced per unit volume of target material per time unit. One rep is equivalent to the absorption of 93 ergs per gram of tissue. See rep.
Roll - l. The act of rolling; rotational or oscillatory movement,f an aircraft or similar body about a longitudinal axis through 'he body--called roll for any degree of such rotatior. 2. The amount of this movement, i.e., the angle of roll.
Roll axis - A longtudjnal axis through an aircraft, rocket, or similar body, about which the body rolls.

Rolling monent - A moment that tends to rotate an aircraft, a rocket, etc., about a longitudinal axis. This moment is considered positive when it tends to depress the starboard side of the body.

Root-mean-square error - In statistics, the square root of the arithmetic mean of the squares of the deviations of the various items from the arithmetic mean of the whole. Also termed standard deviation.
Rotate - To turn about an internal axis. Said especially of celestial bodies. Hence rotation. Compare revolve.
Rotational speed - Revolutions per unit time.
Rubber suit - A partial or complete diving suit desig. ed primarily for the purpose of insulation (preservation) of body heat. The suits are classified as "wet" and "dry".

Saccadic movements - Sudden movement of the eyes from one fixation point to another.
Sagittal - Pertaining to the median plane of the human body or any plane parallel thereto.
Sample - In statistics, a group of observations selected from a statistical population by a set procedure. See random sample.
Sandwich construction - A type of construction in which two sheets, sides, or plates are separated by a core of stiffening material, generally lightweight.
Satellite - 1. An attendant body that revolves about another body, the primary; especially in the solar system, a secondary body, or moon, that revolves about a planet. 2. A manmade object that revolves about a spatial body, such as Explorer I orbiting about the earth. 3. Such a body intended and designed for orbiting, as distinguished froni a companion body that may incidentally also orbit, as in "the observer actually saw the orbiting rocket rather than the satellite." 4. An object not yet placed in orbit, but designed or expected to be launched into an orbit.
Saturation - Extent to which a chromatic color differs from a gray of the same brightness, measured on an arbitrary scale from 0% to 100% (where 0% is gray).
Saturation diving - A diving technique in which the diver stays at depths for a period long enough to permit his body cells to become totally saturated with inert gas, at this point decompression requirements do not change regardless of how long the diver stays at that depth.
Saturation vapor pressure - The vapor pressure of a system, at a given temperature, wherein the vapor of a substance is in equilibrium with a plane surface of the pure liquid of solid phase of that substance; that is, the vapor pressure of a system that has attained saturation but not supersaturation.
Scalar - Any physical quantity whose field can be described by a single numerical value at each point in space.

Scalar product - A scalar equal to the product of the magnitudes of any two vectors and the cosine of the angular θ between their positive directions. Also called dot product, direct product, inner product. See vector product.

Scan converter - A double-ended cathode-ray tube for converting from one mode of display scan to another (e.g., polar to raster).
Scanning - In radar, the motion of the radar antenna assembly when searching for targets.

Scanning sonar - Echo-ranging system in which the ping is transmitted simultaneously throughout the entire angle to be searched, and a rapidly rotating narrow beam scans for the returning echoes.

Scatter - $1 .=$ scattering. 2. The relative dispersion of points on a graph, especially with respect to a mean value, or any curve used to represent the points. See dispersion. 3. To accomplish scattering.

Scintillation - l. Generic term for rapid variations in apparent position, brightness, or color of a distant luminous object viewed through the atmosphere. 2. A flash of light produced in a phosphor by an ionizing event. 3. On a radar display, a rapid apparent displacement of the target from its mean position. Also called target glint or wander. This includes but is not linited to shift of effective reflection point on the target.

Scope - (Short for cathode ray scope) generally applied to radar and sonar displays. See Figure 5 for rhods for displaying parameters. Sometimes called radarscope.

Scotoma - A blind or partially blind area in the visual field.
Scotopic adaptation - Like dark adaptation, but more explicit reference to the part played by the rod-jystem of the retina.

Scotopic vision - Vision which occurs in faint light, or after dark adaptation. Sometimes called twilight or night vision. Hues and saturations cannot be distinguished. Compare photopic vision.

Sealed cabin - The occupied space of an aircraft or spacecraft characterized by walls which do not allow any gaseous exchange betwecia the inner atmosphere and its surrounding atmospliere and containing its own mechan:sms for maintenance of the inside atmosphere.

Search radar - A :adar designed for the approximate location of (usually airborne) objects. Search radar beams are usually wide, wider in the vertical than in the horizontal, making it possible to scan large volumes of space quickly.

	TYPE B.	
		TYPE F A2IMITN ERROR
Length of wings inversely proportional to range		
TYPE J Like Type A, but time base is cir. cular \& sig. nals aph aar as pips	When pips of equal size, antenna on Tgt.	TYPE L
		TYPE P (PPI) Range measured radially from center

Figure 5 - Scope Types

Sea state - The numerical or written cescription of ocean surface roughness. For more precise usage sea state may be defined as the average height of the highest one-third of the waves observed in a wave train, referred to a numerical code which covers an increasing range of such heights as indicated by the table below:

Code	Wave Height (feet)
0	0
1	$0-1 / 3$
2	$1 / 3-12 / 3$
3	$12 / 3-4$
4	$4-8$
5	$8-13$
6	$13-20$
7	$20-30$
8	$30-45$
9	over 45

Seat-to-head acceleration - See physiological acceleration.

Secchi disk - A white disk which, when submerged to varying depths, aids in determining the color and depth of light penetration in the sea.

Secondary - Refers to human operator functions, displays, controls, etc., as opposed to primary.
Selective absorption - Absorption which varies with the wavelength of radiation incident upon the absorbing substance.

Selestive sca-cering - Scattering which varies with the wavelength of radiation incident upon the scattering particles.
Selectivity - The cepability to differentiate.
Self-adaptive control system - A particular type of stability augmentation system which changes the response of a given control input by constantly sampling response and adjusting its gain, rather than having a fixed or selective gain system.
Semicircular canals - Structures of the inner ear, the primary funcion of which is to register movement of the body in space. They respond to change in the rate of movement.
Semiconductor - An electronic conductor, with resistivity in the rarge between metals and insulators, in which the electrical charge carrier concentration increases with increasing temperature over some temperature range. Certain semiconductor, possess two types of carriers, namely, negative electrons and positive holes:

Sensation - Subjective response or any exi. . \because : roused by stimulation of a sense organ.
Sensaticn level - The level of psycho-ptiysioiogic stimulation above the threshold.
Sensibility - In measurements, the suallest change that is reliably detectable.

Sensible atmosphere - That part of the atmosphere that offers resistance to a body passing through it.

Sensibie temperature - The temperature at which average indoor air of moderate humidity would induce, in a lightly clothed person, the same sensation of comfort as that induced by the actual environment. Compare effective temperature.
sensitivity - 1. The ability of electronic equipment to amplify a signal, measured by the minimum strength of signal input capable of causing a desired value of output. The lower the input signal for a given output, the higher the sensitivity. 2. In measurements, the derivative representing the change in instrument indication produced by a change in the variable being measured. 3. (Physiological) degree to which iuman receptors accept or respond to energy inputs.
Sensor - 1. The component of an instrument that converts an input signal into a quantity which is measured by another part of the instrument. Also called sensing element. 2. The nerve endings or sense organs which receive information from the environment, from the organism, or from both.
Sequential control - Control by completion of a series of one or more events in a pre-specified order.
Serviceability - Equipment design, configuration, installation, and operation that minimize maintenance, inspection, and servicing. Serviceability analyses are performed to determine what must be accomplished to achieve this objective.

Servo system - Control system with feedback. The behavior of a servo is governed, not by the input signal alone, but by the difference between the input and some function of the output.

Servicing - The performance of any act (other than preventive or corrective maintenance) required to keep an item of equipment in operating condition, such as lubricating, fueling, oiling, cleaning, etc., but does not include periodic replacement of parts or any corrective maintenance tasks.

Set - 1. (Material set) the act of becoming rigid or assuming a change in form which becomes essentially permanent. 2. (Mental set) incliration to think or act in a certain way. 3. (Mathematical) a number of things of the same kind that belong or are used together.
4. (Hardware) an apparatus of electronic components assembled so as to function as a unit.
Shade - Any color darker, i.e., of lower lightness, than median gray.
Shadow zone - Region in which refraction effects cause exclusion of echo-ranging signals (sound).

Shallow-water hlackout - A carbon dioxide accumulation or excess in a breathing system which causes the diver to lose consciousness without the usual warning of dyspnea or other symptoms such as headache, nausea, dizziness or weakness.
Shear strength - In materials, the stress required to produce fracture in the plane of cross section, the conditions of loading being
such that the directions of force and of resistance are parallel and opposite although their paths are offset a specified minimum ataount.
Shelf life - The length of time an item can be stored under specified conditions and still meet specifications.

Shoran (from short-range navigation) - A precision electronic position fixing system using a pulse transaitter and receiver and two transponder beacons at fixed points.
Sideband - 1. Either of the two frequency bands on both sides of the carrier frequency within which fall frequencies of the wave produced by the process of modulation. 2. The wave components lying within such a bend.

Sidereal - Of or pertaining to the stars.
Sigma - Standard deviation.
Signal-to-noise ratio - A ratio which measures the comprehensibility of a data source or transmission link, usually expressed as the root-mear-square signal amplitude divided by the root-mean-square noise amplitude.

Simple harmonic motion - A motion such that the displacement is a sinusoidal function of time.
Simulation - A set of test conditions designed to duplicate field operating and usage environments.

Simulator - Any machine or apparatus that simulates a desired condition or set of conditions, such as a flight simulator.

Sine wave - A wave which can be expressed as the sine of a linear function of time, or space, or both.

Single-degree-of-freedom system - A mechanical system for which only one coordinate is required to define completely the configuration of the system at any instant. See degree of freedom.

Single-sideband transmission - That method of operation in which one sideband is transmitted and the other sideband is suppressed. The carrier wave may be either transmitted or suppressed.

Sink - l. In the . athematical representation of fluid flow, a hypothetical point or place at which the fluid is absorbed. 2. A heat sink.

Sinus - A hollow or cavity; a recess or pocket. Specifically, sinuses: air cavities lined by mucous membrane which communicate with the nasal cavity; the ethmoidal, frontal, sphenoidal, and maxillary sinuses.

Sinusoidal - Having the form of a sine wave.
Skew - The condjtions which combine to cause some degree of nonsynchronism of supposedly parallel bits when bit-coded characters are read from magnetic tape.
Skewness - A statistical measure of the asymmetry in a distribution.

Skin diving - Diving without the use of scuba or artificial breathing apparatus.
Sky wave - In radio, radio energy that is received after having been reflected by the ionosphese.
Slant range - The line-of-sight range of a radar or radio. See range.
Slave station - In a hyperxilic navigation system, a station whose transmissions are contrilied by a master station. Often shortened to slave. See hyperbclic avigation.
Slaving - Of a gyro, the use of a torquer to maintain the orientation of the spia axis relative to an external reference such as a pendulum or magnetic compass.
Slew - To change the position of an antenna or range gear assembly by injecting a synthetic error signal into the positioning servoamplifier.
Slug - A unit of mass; the mass of a free body which if acted upon by a force of 1 pound would experience an acceleration of 1 foot per square second; thus approximately 32.17 pounds.
Sniffer - Gear designed to detect ionization traces in the atmosphere left by a snorkeling submarine.
Snorkel - A tube used by skin divers which permits breathing without raising the nose or mouth out of the water when swimming face down on the surface of the water. One end of the tube is held in the mouth of the swimer while the other end protrudes above the surface.

Snow-blindness - A temporary abnormality of the color sense, in which all objects are tinged with red. Caused by long-continued exposure to very bright light, as in Arctic exploration, on glaciers, in telescopic observation of the sun, watching welding operations, etc.
Sofar - 1 system of navigation providing hyperbolic lines of position determined by shore listening stations which receive sound signals produced by depth charges dropped at sea and exploding in a sound channel which is at a considerable depth in most areas.
Soft landing - The act of landing on the surface of a planet without damage to any portion of the vehicle or payload except possibly the landing gear.
Solar cycle - The periodic increase and decrease in the number of sunspots. The cycle has a period of about 11 years.
Solar day - 1. The duration of one rotation of the earth on its axis, with respect to the sun. This may be either a mean solar day, or an apparent solar day, as the reference is the mean or apparent sun, respectively. 2. The duration of one rotation of the sun on its axis.
Solar time - Time based upon the rotation of the earth relative to the sun.
Solid angle - A portion of the whole of space about a given point, bounded by a conical surface with its vertex at that point and measured by the area cut by the bounding surface from the surface of a sphere of unit radius centered at that point. See steradian.

Solid propellant - Specifically, a rocket propellant in solid form, usually containing both fuel and oxidizer combined or mixed, and formed into a monolithic (not powered or granulated) grain.
Solid-state devices - Devices which utilize the electric, magnetic, and photic properties of solid materials, e.g., binary magnetic cores, transistors, etc.
Solstice - l. One of the two points of the ecliptic farthest from the celestial equator; one of the two points on the celestial sphere occupied by the sun at maximum declination. 2. That instant at which the sun reaches one of the solstices, about June 21 (summer solsticu: oi December 2? (winter solstice).
Sonar - An acronym derived from the expression "SOund NAvigation and Ranging". The method or equipment for determining, by underwater sound, the presence, location, or nature of objects in the sea. Active Sonar (echo-ranging sonar) is the method or equipment by which information concerning a distant object is obtained by evaluation of sound generated by the equipment. Passive Sonar (listening sonar) is the method or equipment by which information concerning a distant object is obtained by evaluation of sound generated by the object itself.

Sone - A unit of loudness. A simple tone of frequency 1000 cycles per second, 40 decibels above a listener's threshold, produces a loudness of 1 sone.

Sonic - 1. In aerodynamics, of or pertaining to the speed of sound; that which moves at acoustic velocity as in sonic flow; designed to operate or perform at the speed of sound, as in sonic leading edge. 2. Of or pertaining to sound, as in sonic amplifier.

Sonic barrier - A popular term for the large increase in drag that acts upon an aircraft approaching acoustic velocity; the point at which the speed of sound is atttained and existing subsonic and supersonic flow theories are rather indefinite. Also called sound barrier.

Sonic boom - A lwise caused by a shock wave that emanates from an aircraft or other object traveling at or above sonic velocity.
Sonic speed - Acoustic velocity; by extension, the speed of a body traveling at a Mach number of 1.
Sound barrier - Sonic barrier.
Sound energy - The sound energy of a given part of a medium is the total energy in this part of the medium minus the energy which would exist in the same part of the medium with no sound waves present.
Sound-energy flux - The sound-energy flux is the average rate of flow of sound energy for one period through any specified area.

Sound intensity - In a specified direction at a point, the average rate of sound energy transmitted in the specified direction through a unit area normal to this direction at the point considered. Also called sound energy flux density, sound power density.

Sound level - Specifically, a weighted sound pressure level, obtained by the use of metering characteristics and the weightings A, B, or C specified in American Standard Publication 224.3-1944: Sound Level Meters for Measurement of Noise and Other Sounds. The weight.ing employed must always be stated. The reference pressure is 0.0002 microbar or dynes per cm^{2}.

Sound pressure - At a point, the total instantaneous pressure at that point in the presence of a sound wave minus the static pressure at that point.

Sound pressure level - In decibels, 20 times the logarithm to the base 10 of the ratio of the sound pressure to the reference pressure. The reference pressure must be explicitly stated.
Space suit - A pressure suit for wear in space or at very low ambient pressures within the atmosphere, designed to permit the wearer to leave the protection of a pressurized cabin.
Span - 1. The dimension of a craft measured between lateral extremities; the measure of this dimension. 2. Specifically, the dimension of an airfoil from tip to tip measured in a straight line. 3. Anthropometric description of distance between human body elements, e.g., arm span, etc.

Sparkle, glitter - Changes of limited extent in color, especially in brightness, and involving movement.

Special weapons trainers - Training devices for special weapons type munitions for the training of personnel on the munition system, test, and preflight check, ground handling operations and in-flight monitoring procedures.
Specific impulse - A perfonnance parameter of a rocket propellant, expressed in seconds, equal to the thrust F in pounds divided by the weight flow rate $\dot{\mathrm{w}}$ in pounds per second: Isp $=\mathrm{F} / \dot{\mathrm{w}}$.
Spectral - 1. Of or pertaining to a spectrum. 2. Referring to thermal radiation properties, for ratios such as emittance, reflectance, and transmittance, at a specified wavelength; for powers, such as emissive power, within a narrow wavelength band centered on a specified wavelength.
Spectral line - A bright, or dark, line found in the spectrum of some radiant source. Bright lines indicate emission, dark lines indicate absorption.

Spectrum - 1. In physics, any series of energies arranged according to wavelength (or frequency). 2. The series of images produced when a beam of radiant energy is subject to dispersion. 3. Short for electromagnetic spectrum or for any part of it used for a specific purpose, as the radio spectrum (10 kilocycles to 300,000 megacycles). 4. In mathematics, $=$ function. 5. In acoustics, the distribution of effective sound pressures or intensities measured as a function of frequency in specified frequency bands.

Spectrum colors - The series of saturated colors normally evoked by photopic stimulation of the retina with radiant energy of continuously differing single wavelengths through the visible range. Purple is not a spectrum color.
Spectrum line - Any one of the narrow lines, each representing light or a definite wavelength, which are observed in the solar and other spectra, certain groups of lines being characteristic of specific chemical elements. These lines are characteristic of substances in the gaseous state, and appear bright when due to emission from these, or dark when due to absorption by them.

Specular reflection - Reflection in which the reflected radiation is not diffused; reflection as from a mirror. Also called regular reflection, simple reflection.

Speed of light - The speed of propagation of electromagnetic radiation through a perfect vacuum; a universal dimensional constant equal to $299,792.5 \pm 0.4$ kilometers per second. Also called velocity of light.

Spherical coordinates - A system of coordinates defining a point on a sphere or spheriod jy its angular distances from a primary great circle and from a reference secondary great circle, as latitude and longitude.

Spin axis - The axis of rotation cf the rotor of a gyro.
Spin stabilization - Directional stability of a spacecraft obtained by the action of gyroscopic forces which result from spinning the body about its axis of symmetry.
Spin table - A flat round platform on which human and animal subjects can be placed in various positions and rapidly rotated, much as on a phonograph record, in order to simulate and study the effects of prolonged tumbling at high rates.
Spoiler - A plate, series of plates, comb, tube, bar, or other device that projects into the airstream about a body to break up or spoil the smoothness of the flow, especially such a device that projects from the upper surface of an airfoil, giving an increased drag and a decreased lift.

Square wave - 1. An oscillation, the amplitude of which shows periodic discontinuities between two values, remaining constant between jumps. 2. Specifically, in radar a pulse initiated by a rapid rise to peak power, maintained at a constant peak power over the finite pulse length, and terminated by rapid decrease from peak power.
Squeeze - Squeeze in diving is due to the effect of increasing external pressure upon the ears and sinuses, the face plate or the swim suit, uncompensated by an equal increase in pressure from within.
Squib - l. Any of various small explosive devices. 2. An explosive device used in the ignition of a rocket. Usually called an igniter.

Stability - 1. The property of a body, as an aircraft or rocket, to maintain its attitude or to resist displacement, and, if displaced, to develop forces and moments tending to restore the original condition. 2. Of a fuel, the capability of a fuel to retain its characteristics in an adverse environment, e.g., extreme temperature.

Stability augmentation system - An auxiliary system to the basic manual vehicle control system whereby response of the control surfaces to inputs by the pilot can be adjusted to give a preselected vehicle response by selection of certain fixed gairs in a standard feedback loop on control-surface output.

Stable platforms - A gyroscopic device so designed as to maintain a plane of reference in space regardless of the movement of the vehicle carrying the stable platform.

Stadimeter - An instrument for determining the distance to an object of known dimension by measuring the angle subtended at the observer by the object. The instrument is graduated directly in distance.
Stage - 1. A self-propelled separable element of a rocket vehicle. 2. A strip or process through which a fluid passes, especially in compression or expension. 3. A set of stator blades and a set of rotor blades in an axial-flow compressor or in a turbine; an impeller wheel in a radial-flow compressor.

Staging - The process or operation during the flight of a rocket vehicle whereby a full stage or half stage is disengaged from the remaining body and made free to decelerate or be propelled along its own flightpath.

Stagnation point - A point in a field of flow about a body where the fluid particles have zero velocity with respect to the body.
Standard air - Air having a density of 0.07651 pounds per cubic foot at 59.6 degrees F.

Standard artillery atmosphere - A set of values describing atmospheric conditions on which ballistic computations are based: namely, no wind, a surrace temperature of $15^{\circ} \mathrm{C}$, a surface pressure of 1000 millibars, a surface relative humidity of 78 percent, and a lapse rate which yields a prescribed density-altitude relation.
Standard atmosphere - A hypothetical vertical distribution of atmospheric temperature, pressure, and density which, by international agreement, is taken to be representative of the atmosphere for purposes of pressure altimeter calibrations, aircraft performance calculation, aircraft and rocket design, ballistic tables, etc.
Standard deviation - Statistical term used te indicate the variability of scores or measurements.

Standard observer - An hypothetical observer with a visual response mechanism possessing the colorimetric prope:ties_defined by the 1931 ICI tables of the distribution coefficients; $\bar{x}, \bar{y}, \bar{z}$, and the trichromatic coefficients, x, y, z, of the equell energy spectrum. The \bar{y} coefficients of the equal energy spu-irum are the relative luninosity values defining the standard observer for photometry.

Standard operating procedure - Formal uperating procedure documented for guidance and compliance by system personnel.
Standard pressure - 1. In meteorology, usually a pressure of 1000 millibars, but other pressures may be used as standard for specific purposes. 2. In physics, a pressure of l standard atmosphere.
Standing wave - A periodic wave having a fixed distribution in space which is the result of interference of progressive waves of the same frequency and kind. Such waves are characterized by the existence of nodes or partial nodes and antinodes that are fixed in space.
Star - A self-luminous celestial body exclusive of nebulas, comets, and meteors; any one of the suns seen in the heavens. Distinguished from planets or planet satellites that shine by reflected light.
Starboard - The right side of a craft, facing forward. The opposite is port.

Static - L. Involving no variation with time. 2. Involving no movement, as in static test. 3. Any radio interference detectable as noise in the audio stage of a receiver.

Static pressure - 1 . The pressure with respect to a stationary surface tangent to the mass-flow velocity vector. 2. The pressure with respect to a surface at rest in relation to the surrounding fluid.
Static testing - The testing of a rocket or other device in a stationary or hold-down position, either to verify structural design criteria structural integrity, and the effects of limit loads or to measure the thrust of a rocket engine.

Stationary orbit - An orbit in which the satellite revolves about the primary at the angular rate at which the primary rotates on its axis. From the primary, the satellite thus appears to be stationary over a point on the primary. A stationary orbit with respect to the earth is commonily called a 24 -hour orbit.
Station keeping - 1. The sequence of maneuvers that maintains a vehicle in a predetermined orbit. 2. The collectic, ${ }^{5}$ nonitoring and control tasks essential to keep a station operatlonal.

Statistically significant difference - A difference in the: results obtained under two experimental conditions which can legitimately be concluded not to be due to chance; usually significant differences are arbitrarily considered to be differences that would be expected to occur by chance no more than 1% (or 5%) of the time.
Stator - In machinery, a part or assembly that remains stationary with respect to a rotating or moving part or assembly such as the field frame of ar: electric motor or generator, or the stationary casing and blades surrounding an axial-flow-compressor rotor or turbine wheel; a stator blade.

Statute mile - 5280 feet $=106093$ kilometers $=0.869$ nautical mile. Also called land mile.
Steady state - The condition of a substance or system whose local physical and chemical properties do not vary with time.

Stellar guidance - Celestial guidance.

Stellar inertis.l guidance - The guidance of a flight-borne vehicle by a combination of celestial and inertial guidance; the equipment which accomplishes the guidance.
Stern - Aft part of a ship.
Steradian - A unit of measure of solid angles. It is the solid angle subtended at the center of the sphere by a portion of the surface whose area is equal to the square of the radius of the sphere.

Stilb - A unit of luminance (or brightness) equal to 1 international candle per square centimeter. Compare apostilb.

Stimulus - Energy, external or internal, which excites a receptor.
Stimulus field - The extended totality of visual stimuli which act upon the unmoving eye at a given moment.

Stochastic - Conjectural; in statistical analysis = random.
Stochastic process - An ordered set of observations in one or more dimensions, each being considered as a sample of one item from a probability distribution.
Storage - 1. The act of storing information. See store. 2. Any device in which information can be stored. Also called a memory device. 3. In a computer, a section used primarily for storing information. Such a section is sometimes called a memory or a store. 4. Refers to location or facility for storing material (temporary or longterm).

Storage capacity - The amount of information, usually expressed in bits (i.e., the $\log _{2}$ of the number 0 : distinguishable states in which the storage can exist), that can be retained in storage. Also called memory capacity.

Store - l. To retain information in a device from which it can later be withdrawn. 2. To introduce information into such a device. 3. A container, rocket, bomb, or vehicle carried externally in a craft.

Stratosphere - See atmospheric shell.
Stress - 1. The force per unit area of a body that tends to produce a deformation. 2. The effect of a physiological, psychological, or mental load on a biological organism which causes fatigue and tends to degrade proficiency.

Strong color - A color of liigh saturation.
Subassembly - Two or more parts which form a portion of an assembly or a unit: replaceable as a whole, but having a part or parts which are individually replaceable.

Subaudio frequency - A frequency below the audiofrequency range, below about 15 cycles per second.
Subharmonic - A subharmonic is a sinusoicial quantity having a frequency that isi an integral submultiple of the fundamental frequency of a periodic quantity to which it is related.

Sublimation - The transition of a substance directly from the solid state to the vapor state, or vice versa, without passing through the intermediate liquid state.
Subroutine - A set of instructions necessary to direct a computer to carry out a well-defined mathematical or logical operation; a subunit of a routine, usually coded in such a manner that it can be treated as a black bow by the routine using it.
Subsonic - In aerodynamics, of or periaining to, or dealing with speeds less than acoustic velocity, as in subsonic aerodynamics.

Subsystem - A major functional sub-assembly or group ó items or equipment which is essential to operational completeness of a system.
Subtend - To be opposite, as an arc f a circle subtends an angle at the center of the circle, the angse beirg formed by the radji joining the ends of the arc with the center.
Subtractive color mixture - Method c_{i} color mixture in which a beam of light is passed through two or more transparent colored filters in succession. Only those wavelengths which are common to both or all will be transmitted. By this method, white light passing through broad band yellow and blue filters gives green.
Superior conjunction - The conjunction of a planet and the sin when the sun is between the earth and the other planet.
Supersonic - Of or pertaining to, or dealing with, speeds greater than the acoustic velocity.

Sweep - The motion of the visible dot across the face of a cathoderay tube, as a result of deflections of the electron beam.

Switch indicator - A push-button switch device which serves also as an indicator (generally internally-illuminated).
Svmbiosis - The living together of two or more organisms ir an association which is mutually advantageous.

Synchronous - Coincident in sime, phase, rate, etc.
Synchronous computer - A computer in which the startiaz tine of every ordinary operational cycle is controlled by signals which occur at regular intervals. Contrast with asynchronous computer.

Synergism - Cooperative action of discrete units such that the total effect attained is greater than the sum of the independent effect.s.
System - A composite of equipment, skills, and techniques (including all related facilities, equipment, materiel, services, and personnel) that is capable of performing and/or supporting an operational role. (AFR 375-1).

Systematic error - An error that is always a function of the magnitude of the quantity observed. When the error is constant it is called a bias error. Systematic errors are often caused by false elements in an instrument. An example is an eccentrically mounted azimuth circle or an azimuth circle with graduation errors.

Target - 1. Any object, point, etc., toward which something is directed. 2. An object which reflects a sufficient amount of a radiated signal to produce an echo signal on detection equipment.

Target acquisition - The process of optizally, manually, mechanically, o. electronically orienting a tracking system in direction and range to lock on a target.

Target discrimination - l. Resolution of a radar. 2. The act of perseiving a desired signal within a background of noise.

Target signal - The radar energy returned to a radar by a target. Also called echc signal, video signal.

Target strength - Measure of reflecting power of the target. Ratio, in decibels, of the target echo to the echo from a six-foot diameter perfectly reflecting sphere at the same range and depth.

Task analysis - An analytical process employed to deternire the specific behaviors required of human components in a man-machine system. It involves determining, on a time basis, the detailed pir. formance required of a man and machine, the nature and extent of their interactions, and the effects of envirommental conditions and malfunctions. Within each task, behavioral steps are isolated in terms of perceptions, decisions, memory storage, and motor outputs required, as well as the errors which may be expected. The data are used to establish equipment design criteria, personnel, training requirements, etc.

Telemetry - The science of measuring a quantity or quantities, transmitting the resuits to a distant station, and there inteiprting, indicating, and/or recording the yaantities measured.

Terminal - l. A point at which any element in a circuit may be directly connected to one oz more other elements. 2. Pertaining to a final condition or the last division of something, as termiral ballistics.
Terminal guidance - Guidance from an arbitrary point, at which midcourse guidance ends, to the destination.

Terminal velocity - The maximum velocity attainable, especially by a freely falling body, under given conditions.

Terminator - The line separating illuminated and dark portions of a celestial body, as the moon, which is not self luminous.

Tesla - The unit of magnetic flux density, one weber per square meter.
Theodolite - An optical instrument which consists of a sighting telescope, mounted so that it is free to rotate around horizontal and vertical axes, and graduated scales so that the angle of rotation may be measured. The telescope is usually fitted with a rightangle prism so that the observer continues to look horizontally into the eyepiece, whatever the variation of the elevation angle.

Thermal - l. Of or pertaining to heat or temperatuie. 2. A vertical air current caused by differential heating of the terrain.

Thermal barrier - A popular term for speed $1 \mathbf{j}$ ' tations within an atmosphere imposed by aerodynamic heating. Also vi.led the heat barrier.

Thermal emission - The process by which a body emits electromagnetic radiation as a consequence of its temperature only.

Thermionic emission - Direct ejection of electrons as the result of heating the material, which raises electron eneigy beyond the binding energy chat holds the electron in the material.

Thermocline - That region in oceans where maximum temperature changes occur with increased depth. Layer of water whose temperature is different than water above or below it.

Thermocouple - A device which converts thermal energy directly into electrical. .n its basic form it consists of two dissimilar metallic electrical conductors connected in a closed loop. Each junction forms a thermocouple.

Thermonuclear - Pertaining to a nuclear reaction which is triggered by particles of high thermal energy.
Thermopile - 1. A transducer for converting thermal energy directly into electrical energy, composed of pairs of thermocouples which are connected either in series or in parallel.
Therblig (Time and Motion Stidy) - Term applied to movement elements of a work task. (See Section 3, pages 10,11 and Table 5, this section.)

Three-body problem - That probiem in classical celestial mechanics which treats the motion of a small body, usually of negligible mass, relative to and under the gravitational influence of two other finite point masses.

Threshold - Generally, the minimum value of a signal that can be detected by the system or sensor under consideration (including human perception).

Thi shold contrast - The smallest contrast of luminance (or brightress) that is perceptible to the haman eye under specified conditions of adaptation luminance and target visual angle. Also called conirast threshold, liminal contrast. Compare threshold illuminance. Psychophysically, the existence of a threshold contrast is merely a special case of the general rule that for every sensory process there is a corresponding lowest detectable intensity of stimulus, i.e., a limen.

Threshold illuminance - The lowest value of illuminance which the eye is capable of detecting under specified conditions of background luminance and degree of dark adaptation of the eye. Also calied flux-density ihreshold. Compare threshold contrast.

Threshold of audibility - For a specified signal t. minimum effective sound pressure level of the signal chat is caf :- of evoking an auditory sensation in a specified fraction of trails. The characteristics of the signal, the manner in whıch it is presented to the listener, and the point at which the sound pressure level is measured must be a cified. Also called threshold of detectability.

Threshold of detectability - Threshold of audibility.

Threshold of discomfort - In acoustics, for a specified signal, the minimum effective sound pressure level of that signal which, in a specified fractiun of the trials, will stimulate the ear to a point at which the sensation of feeling becmes uncomfortable. The term applies similarly for other senses.
Threshold of feeling - In acoustics, for a specified signal, the minimum sound pressure level at the entrance to the external auditory canal which, in a specified fractior of the trials, will stimulate the ear to a point at which there is a sensation of feeling that is different from the sensation of hearing. Also called tickle.
Threshold of pain - In acoustics, for a specified signal, the minimum effective sound pressure level of that signal which, in a specified fraction of the trials, will stimulate the ear to a point at which the discomfort gives way to definite pain that is distinct from mere non-noxious feeling of discomfort. The term applies similarly for other senses.
Thrust - 1. The pushing or pulling force developed by an aircraft engine or a rocket engine. 2. The force exerted in any direction vy a fluid jet or by a powered screw, as, the thrust of an antitorque rotor. 3. Specifically, in rocketry, $F=m v$ where m is propellant mass flow and v is exhaust velocity relative to the vehicle. Also called momentum thrust.

Thrust reverser - A device or apparatus for reversing thrust, especially of a jet engine.
Tickle - Threshold of feeling.
Timbre - That attribute of auditory sensation by which a listener discriminates between two sounds of similar loudness and pitch, but of different tonal quality.

Time - A measure of duration; interval between two events; a particular moment, hour, day, or year as fixed by a timepiece, calender or some other arbitrary reckoning system.
Time and motion study - A method for analyzing task elements in terms of "time to perform" (see Table 5).

Time-line analysis - Reducing or charting a function on a time base. The analysis can be performed first at the broader functional levels and then be repeated with successively greater precision at successively narrower levels of function.
Time of useful consciousness - The period between loss of oxygen supply (at altitude) and the inability of the individual to function efficiently.
Time signal - 1. An accurate signal marking a specified time or time interval. It is used primarily for determining errors of timepieces. Such signals are usually sent from an observatory by radio or telegraph. 2. In photography, a time indication registered on the film to serve as a time reference for interpretation of the date recorded on the film.

Abbreviation	Therblig	Definition
TL	Transport Loaded	The act of moving a Transportation Means with a load or against a resistance
TE	Transport Empty	The act of moving a Transportation Means without a load or to a point from which it can be moved against a resistance
D	Direct	The act of guiding actions with sensory movements
G	Grasp	The act of gaining complete managing control
H	Hold	The act of maintaining complete managing control
RL	Release Load	The act of completely relinquishing managing control
UD	Unavoidable Delay	The delay in the operation which is beyond the control of the operator
AD	Avoidable Delay	The delay in the operation which is under the control of the operator
BD	Balance Delay	The delay in the operation caused by the rervous limitations of the human body.
\mathbf{R}	Rest	The delay in the operation which permits elimination of fatigue
PP	Pre-position	The act of rearranging Transportation Means, the part being transported, or any other part to have them in readiness for continuing the main operation
P	Position	The act of bringing two parts to an exact and pre-determined relationship with each other after the transportation is complete
SE	Select	The act of making a choice between two or more pieces which are in a known location
S	Search	The act of determining the location of anything
I	Inspect	The act of examining the characteristics of anything
PL	Plan	The act of determining a method for accomplishing anything
U	Use	The act of performing a mechanical or chemical operation

Table 5 - Basic Motions of Motion-Time-Analysis

Time tick - A time signal consisting of one or more short audible sounds or beats.

Time to unconsciousness - The period between loss of oxygen supply (at altitude) and the onset of unconsciousness.

Tiuit zone - See zone time.
Tint - Any color lighter, i.e., of nigher lightness, than median gray. May imply weak saturation as well as relatively high lightress.
Tolerance - The allowable variation in measurements within which the dimensions of an item are judged acceptable.
Topocentric - Of measurements or coordinates, referred to the position of the observer on the earth as the origin.
Topography - The general configuration of the land surface (or the ocean bottom); the sum total of the results of erosion and deposition on the physiographic features of a region.
Torque - The product of a force and the distance of its line of action from the axis.

Torquing - Tightening of a rotary fastener, usually to a predetermined value.

Torr - Provisional international standard term to replace the Engiish term millimeter of mercury and its abbreviation mm of Hg (or the French mm de Hg).
Trace - The line appearing on the face of a cathode-ray tube when the visible dot repeatedly sweeps across the face of the tube as a result of deflections of the electron beam.

Track - 1. The path or actual line of movement of an aircraft, rocket, etc., over the surface of the earth. 2. To observe or plot the path of something moving.

Traffic pattern - 1. An officially prescribed pattern which regulates the approach and departure of aircraft about an air terminal or control center. 2. Designated or natural flow of personnel among work stations and facilities or vehicular traffic within a road network.

Train - 1. Anything, such as luminous gas or ionized particles, left along the trajectory of a meteor after the head of the meteor has passed. 2. To point, as in tracking a target.

Transceiver - A combination transmitter and receiver in a single housing, with some components being used by both units. See transponder.
Transducer - A device capable of being actuated by energy from one or more transmission systems or media and of supplying related energy to one or more other transmission systems or media, as a microphone, a thermocouple, etc.

Transfer orbit - In interplanetary travel, an elliptical trajectory tangent to the orbits of both the departure planet and the target planet. Also called transfer ellipse.

Transillumination - The passing of light through media or material for purposes of increasing its "readability," an organ of the body for medical examination.

Transistor - An active semiconductor device with three or more electrodes.

Transit - 1. The passage of a celestial body across a celestial meridian, usually called meridian transit. 2. The apparent passage of a celestial body across the face of another celestial body or across any point, area, or line. 3. An instrument used by an astronomer to determine the exact instant of meridian cransit of a celestial body. 4. A reversing instrument used by surveyors for accurately measuring horizontal and vertical angles; a theodolite which can be reversed in its supports withou': being Iifted from them.

Translation - Movement in a straight line without rotation.
Transmission level - The intensity level of the audio signal in a communications system.
Transmission loss - The reduction in the magnitude of some characteristic of a signal between two stated points in a transmission system. Also called loss.
Transmittance - Ratio of tranmitted to incident luminous flux (expressed as percent).

Transmitter - A device used for the generation of signals of ar.j type and form which are to be transmitted. See recei. or.

Transonic - Pertaining to that which occurs or is occurring within the range of speed in which flow patterns change from subson.. to supersonic or vice versa, about Mach 0.8 to 1.2 , as in transonic flight, transonic flutter; that operates within this regime, as in transonic aircraft, transonic flow or transonic speed, as in transonic region, transonic zone.

Transpiration - The passage of gas or liquid through a porous solid (usually under conditions of molecular flow).

Transponder - An automated receiver/transmitter for transmitting signals when triggered by an interrogating signal.
Transverse acceleration - (viz. physiol.) Perpendicular to long axis of human body.
Transverse vibration - Vibration in which the direction of motion of the particles is perpendicular to the direction of advance of the vibratory motion, in contrast with longitudinal vibration, in which the direction of motion is the same as that of advance.
Trianomaly - Rare type of trichromatism in which an abnormally large proportion of blue stimulus is required in a blue-green mixture to match a given cyan.

Trichromatic theory - A color theory based upon the facts of trichromatic mixture, namely that all hues may be derived from the mixture of two or more of three primaries.

Trichromatism -Form of vision yielding colors which require in general three independently adjustable primaries (such as red, green, and blue) for their duplication by stimulus mixture. Trichromatism may be either anomalous trichromatism or normal color vision.
Triplexer - A dual-duplexer which permits the use of two receivers simultaneously and independently in a radar system by disconnecting the receivers during the transmitted pulse.
Tritanope - Individual with tritanopic vision.
Tritanopia - Form of dichromatism in which reddish blue and greenish yellow stimuli are confused. Tritanopia is a common result of retinal disease, but in rare cases may be inherited. Sometimes called blue blindness.

Troland - Unit of retinal illuminance equal to that produced by viewing a surface whose luminance is 1 candle per square meter through an artificial pupil whose area is 1 square millimeter centered on the natural pupil.
Tropopause - The buindary tetween the troposphere and stratosphere.
Troposphere - The lower layer of the earth's atmosphere, extending from the surface of the earth to an altitude of ten miles.

Troubleshooting - Locating and diagnosing malfunctions or breakdowns in equipment by means of systematic checking or analysis.
True altitude - Instrument (barometric) altitude corrected for atmospheric temperature and pressure.
True north - The direction from any point on the earth's surface toward the geographic North Pole.

Trunk - Human body torso.
T-time - Any specific time, minus or plus as referenced to zero or launch time, during a countdown sequence that is intended to result in the firing of a rocket propulsion unit that launches a rocket vehicle.

Tumble - 1. To rotate end over end--said of a rocket, of an ejection capsule, etc. 2. Of a gyro, to precess suddenly and to an extreme extent as a result of exceeding its operation limits of bank or pitch.
Turbidity - The state or condition of having the transparence or translucence disturbed, as when sediment in water is stirred up, or when dust, haze, clouds, etc., appear in the atmosphere because of wind or vertical currents.

Turbofan - A turbojet engine in which additional propulsive thrust is gained by extending a portion of the compressor or turbine blades outside the inner engine case.

Turbojet engine - A jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel (or for heating by a nuclear reactor), the gases of combustion (or the heated air) being used both to rotate the turbine and to create a thrust-producing jet. Often called a turbojet.

Turbulence - 1. A state of fluid flow in which the instantaneous velocities exhibit irregular and apparently random fluctuations so that in practice only statistical properties can be recognized and subjected to analysis. Compare laminar flow.

Turn error - Any error in gyro output due to cross-coupling and acceleration encountered during vehicle turns.

Ultrasonic - In acoustics, of or pertaining to frequencies above those that affect the human ear, i.e., more than 20,000 vibrations per second.

Ultra-violet - Radiant energy of wavelengths shorter than the extreme violet and lying beyond the ordinarily visible spectrum. Usually assigned to vibrations below 400 or 390 millimicrons.
Ultraviolet radiation - Electromagnetic radiation of shorter wavelength than visible radiation; roughly radiation in the wavelength interval frum 100 to 4000 angstroms. Also called ultra-violet. See X-ray.
Umbilical cord - Any of the servicing electrical, gaseous, or fluid lines between the ground or a tower and an uprighted rocket vehicle before the launch or between an astronaut or aquanaut and their source of supply (e.g., life support, communications, etc.). Often shortened to umbilical.

Umbra - 1. The darkest part of a shadow in which light is completely cut off by an intervening object. A lighter part surrouncing the umbra, in whicn the light is only partly cut off, is called the penumbra. 2. The darker central portion of a sun spot, surrounded ty the light penumbra.
Undamped natural frequency - Of a mechanical system, the frequency of free vibration resulting from only elastic and inertial forces of the system.

Union - In Boolean algebra, the operation in which concept:s are described by stating that they have the characteristics of one or more of the classes involved. Union is expressed as OR.

Universe - 1. In statistical terminology, = population. 2. (Celestial) composite of all the stacs and planets.
Universal gravitational constant - See gravitation.
Up Doppler - When a target is moving toward a transducer the echo will be of higher frequency than the reverberacion regardless of whether the range is opening or closing.

Upper branch - That half of a meridian or celestial meridian from pole to pole which passes through a place or its zenith.

Upper stage - A second or later stage in a multistage rocket.

Upper transit - Transit of the upper branch of the celestial meridian. Also called superior transit, upper culmination. Transit of the lower branch is called lower transit.

Vacuum - A given space filled with gas at pressures below atmospheric pressure. Various approximate ranges are: low vacuum, torr......................... 760 to 25 medium var.uum, torr...................... 25 to 10^{-3} high vacuum, torr....................... 10^{-3} to 10^{-6} very high vacuum, torr................. 10^{-6} to 10^{-9} ultrahigh vacuum, torr.................. 10-9 and below
Value - 1. The dimension of the Munsell system of color which corresponds most closely to lightness. 2. Numerical quantity. 3. Worth, as in value engineering.
Van Allen belt, Van Allen radiation belt - (For James A. Van Allen, 1915.) The zone of high-intensity particulate radiation surrounding the earth beginning at altitudes of approximately 1000 kilometers.

Vapor train (Vapor Trail) - Condensation trail.
Variance - In statistics, a measure of variability (or spread); the mean-square deviation from the mean, that is, the mean of the squares of the differences between individual values of x and the mean value μ.
Variatic: - The angle between the magnetic and geographical meridians at ary place, expressed in degrees east or west to indicate the direction of magnetic north from true north.

Vector -Any quantity, such as a force, velocity, or acceleration, which has both magnitude and direction at each point in space, as opposed to a scalar which has magnitude only. Such a quantity may be represented geometrically by an arrow of length proportional to its magnitude, pointing in the assigned direction.
Vector product - A vector whose magnitude is equal to the product of the magnitudes of any two given vectors and the sine of the angle between their positive directions. Also called cross product, outer product. See scalar product.

Vector quantity - Vector.
Vector steering - A steering method for rockets and spacecraft wherein one or more thrust chambers are gimbal mounted so that the direction of the thrust force (thrust vector) may be tilted in relation to the center of gravity of the vehic'e to produce a turning movement.
Vehicle control system - A system, incorporating control surfaces or other devices, which adjusts and maintains the altitude and heading, and sometimes speed, of a vehicle in accordance with signals received from a guidance system.

Velocity - A vector quantity equal to speed in a given direction.
Ventilation - The systematic exchange of air (e.g., as in the human respiratory system or in an air conditioning system) for the purpose of sustaining life, removing toxic gases and/or providing a comfortable work environment.

Ventilation garment - A lightweight, specially designed garment that is integrated with the pressure suit for providing adequate evaporation and heat dissipation from the surface of the body, by circulating dry air through the porous material.
Ventral - Pertaining to the belly, or the underside of a vehicle, as ventral camera.

Venturi tube - A short tube of smaller diameter in the middle than at the ends. When a fluid flows through such a tube, the pressure decreases as the diameter becomes smaller, the amount of the decrease being proportional to the speed of flow and the amount of restriction.

Vernal equinox - That point on the ecliptic where the sun changes from southerly to noriherly declination. Marks the beginning of spring and summer in the northern hemisphere.

Vernier - A scale or control used for fine adjustment to obtain a more precise reading of an instrument or closer adjustment of any equipment.

Vernier engine - A rocket engine of small thrust used primarily to obtain a fine adjustment in the velocity and trajectory of a rocket vehicle just after the thrust cutoff of the last sustainer engine, and used secondarily to add thrust to a booster or sustainer engine. Also called vernier rocket.
Vertex - 1. The highest point of a trajectory or other curve, as the vertexes of a great circle, the points nearest the poles. 2. Node, sense 3.

Vertical circle - A great circle of the celestial sphere, through the zenith and nadir. Vertical circles are perpendicular to the horizon.

Vertigo - The sensation that the outer world is revolving about the subject (objective vertigo) or that he himself is moving in space (iubjective vertigo).

Video - Pertaining to the picture signals in a television system or to the information-carrying signals which are eventually presented on the cathode-ray tubes of a radar.

Vidicon - A television pickup tube utilizing a photoconductor as the sensing element. In conjunction with a telescope this is known as a vidicon telescope.

Virtual image - An image that cannot be shown on a surface but is visible, as in a mirror.

Viscosity - That molecular property of a fluid which enables it to support tangential stresses for a finite time and thus to resist deformation; the ratio of shear stress divided by shearing strain.

Viscous damping - The dissipation of energy that occurs when a particle in a vibrating system is resisted by a force that has a magnitude proportional to the magnitude of the velocity of the particle and direction opposite to the direction of the particle.

Visibility - The capacity of radiant energy, within a certain range of wave-lengths, to excite a visual receptor process and thereby evoice the phenomenon of brightness.

Vision - The sense whose receptive organ is the eye, whose normal stimulus is radiant energy, and whose response is color (See Figure 6).

Vision, foveal - Visual sensations or perceptions due to stimulation of the fovea centralis, or center of the retina. Contrast with peripheral vision.

Vision, peripheral - Visual sensations or perceptions due to stimulation of the outlying protions of the retina. Contrast with foveal vision.
Vision, persistence of - The tendency of visual excitation to outlast the stimulus, or more generally the tendency of changes in visual sensory response to lag behind changes in the stimulus.
Visual acuity - A more concentrated form of visibility; it is the resolving ability of the eye to discern fine details.
Visual adaptation - Adjustive change in visual sensitivity due to continued visual stimulation. Three recognized types are: (1) scotopic or dark adaptation, (2) photopic or light adaptation, and (3) chromatic or color adaptation.
Visual angle - The angle subtended by an object of vision at the nodal point of the eye. The magnitude of this angle determines the size of the corresponding retinal image, irrespective of the size or distance of the object.
Visual field - That part of space that can be seen when head and eyes are motionless, (or) the totality of visual stimuli which act upon the unmoving eye at a given moment.

Visual photometry - A subjective approach to the problem of photometry, wherein the human eye is used as the sensing element; to be distinguished from photoelectric photometry.
Visual range - The distance, under daylight conditions: at which the apparent contrast between a specified type of target and its background becomes just equal to the threshold contrast of an observer; to be distinguished from the night visual range. Also called daytime visual range.
Visual space - This term, like visual field, refers to the extended world as perceived by means of the eyes but is commonly used in a more generic and abstract way in discussions of the perception of distance and length, of depth or distance away from the retina, and of form or figure in two and three dimensions.

Radicmetric (Photometric and Colorimetric	Perceptual
Spectral radiance	Luminance	Brightness (dim to bright)
	Dominant wavelength and purity, or chromaticity coordinates	Hue and saturation, or red-green, blue-yellow
Spectral transmittance	Luminous transmittance	Lightness (dark to clear)
$\mathrm{O} \rightarrow-\pi \rightarrow+$	Dominant wavelength and purity, or chromaticity coordinates	Hue and saturation, or red-green, blue-yellow
Spectral directional reflectance	Luminous directional reflectance	Lightness (black to white)
	Dominant wavelength and purity, or chromaticity coordinates,	Hue and saturation, or red-green, blue.yellow
	or Munsell value	Lightness (black to white)
	Munsell hue	Hue $\}\{$ red-green
\cdots	Munsell chroma	Saturation $\}$ blue-yellow

[^5]Volt - The unit of electric potential difference and electromotive force, equal to the difference of electric potential between two points of a conductor carrying a constant current of 1 ampere when the power dissipated between these points equals 1 watt.
Volume level - In an electric circuit, the level, as measured or a standard volume indicator, of a complex wave such as produced by speech or music. Often shortened to vilume.

Walk-around bottle - A personal supply of oxygen for the use of crew uembers when temporarily disconnected from the craft's system.

Warmup time - Time measured from the application of power to an operable system to the instant when the system is capable of functioning in its intended manner.

Waming light - A red indicator light used to indicate a requirement for immediate attention or action by the nbserver.
Water suit - A liquid-filled pressure garment.
Natt - The unit of power in the MKSA syatem; that power which produces energy at the rate of 1 joule per second.

Weak color - A colur of low saturation.
Weapon system - An instrument of combat such as an air vehicle together with all functioning equipment, the skills necesse:y to operate the equipment, and the supporting facilities and services required to enable the instrument of combat to bc a single unit of striking power in its operational environment.
Weber-Fechner law - An approximate psychophysical law relating the degree of response or sensation of as sense organ and the intensity of the stimulus.
Weight - i. H° force with which a body is attracted toward the earth. 2. line product of the mass of a body and the acceluration acting cr. : noty.
Weightlessness - 1. A wndition in which no acceleration, whether of gravity or other force, can be detected by an observer within the system in question. 2. A condition in which gravitatiunal and other external forces acting on a body produce no ctfect, either internal or external, on the body.

Wet suit - See rubber suit.
White - An achromatic color of maximum lightness which represents one limit of the series of grays, and which is the complement or antagonist of black, the other extreme of the gray series. White is typically evoked by any mixture of wavelengths Eram a highreflectance matt surface, which approximates average daylight or the equivalent co or temperature; but white depends also upon surrounding contrast.

White body - A hypothetical body whose surface absorbs no electro.alagnetic radiation of any wavelength, i.e., one wh ch exhibits zeio absorptivity for all wavelengths; an idealization exactly opposite to that of the black body.
White noise - A sound or electromagnetic wave whose spectrum is continuous and uniform as a function of frequency.

Whiteout - An atmospheric and surface condition in the arctic in which no object casts a shadow, the horizon being indiscernible, and only very dark objects being seen. Also called "milky weather." (This condition is brought on when snow cover is complete and the clouds so thick and uniform that light reflected by the snow is of about the same intensity as the light of the sun after passing through the clouds.)

White room - A clean and dust-free room used for assembly and repair of precise mechanisms such as gyros.
Window - 1. Any device introduced into the atmosphere for producing an appreciable radar echo, usually for tracking some airborne device or as a tracer of wind. 2. Any gap in a linear continuum, as atmospheric windows, ranges of wavelengths in the electromagnetic spectrum to which th 2 atmosphere is transiarent, or firing windows, intervals of time during which coi itions are favorable for launching a spacecraft on a specific mission. 3 . Aperture for viewing by human operator.
Windscreen - A windshield.
Windshield - Anything that serves to shield against wind (usually transparent) allowing forward vision.
Work - 1. Energy resulting from the motion of a system against a force and existing only during the process of energy conversion. 2. Expression for human effort (often measured in ergs, or specific output results in terms of parts/unit time); general description of task, i.e., "his work involves nroduction of piece parts."

Work space layout - A design of a work area of work station to include provisions for seating, physical movement of human operators, operational maintenance, and other factors permitting adequate person-to-person contact and man-fachine interaction.

Work Study - Objective, systematic, analytical, and critical examination of work methods, techniques, and procedures.
Write - In computer terminology, record.

X-band - A frequency band used in radar extending approximately from 5.2 to 10.9 k . lomegacycles per second.

X-ray - Nonnuclear electromagnetic radiation of very short wavelength, lying within the interval of 0.1 to 100 angstroms (between gamma rays and ultraviolet radiation). Also called X-radiation, Roentgen ray.

Yard (international) - Exactly 0.9144 meter. The U.S. yard before 1 July 1959 was 0.91440183 meter.
Yaw - 1. The rotational or oscillatory movement of an aircraft, rocket, or the like about a vertical axis. 2. The amount of this movement, i.e., the angle of yaw. 3. To cause to rotate about a vertical axis. 4. To rotate or oscillate about a vertical axis.

Yaw angle - Angle of yaw.
Yaw axis - A vertical axis through an aircraft, rocket, or similar body, about which the body yaws. It may be a body, wind, or stability axis. Also called a yawing axis.
Yawing moment - A moment that tends to rotate an aircraft, an aira rocket, etc., about a vertical axis. This moment is considered positive when it rotates clockwise.

Zenith - That point of the celestial sphere vertically overhead. The point 180° from the zenith is called the nadir.
Zero-g - Weightlessness.
Zero gravity - Weightlessness.
Zone time - A world-wide time-keeping system based on the division of the earth's surface into 24 time zones 15° in width within which all inhabited areas use the local civil time of the central meridian.

Z-time - Greenwich mean time. Also referred to as Zulu time.

GLOSSARY OF ACCEPTABLE. TASK ANALYSIS ACTION VERBS IN THE HUMAN FACTORS CONTEXT

A
Activate - Provide the initial force or action to begin an operation of some equipment configuration.

Adjust - Manipulate controls, levers, linkages and other equipment items to return equipment from an out-of tolerance condition to an in-tolerance condition.

Affect - Influence or produce an effect (it presupposes a stimulus powerful enough to elicit a response or reaction).
Agree - Ascertain if the actual relationship between specified components is in accord with a prescribed relationship.

Alert - Inform designated persons that a certain condition exists in order to bring them up to a watchful state in which a quick reaction is possible.

Align - Adjust controls to matcı visual indicators, such as pointers, line of sight, wave forms, or aural signals, until coincidence is achieved.

Apply - Utilize sufficient force, manual (as opposed to automatic functions) or mechanical, to accomplish a desired objective.
Assemble - Perform the various manual operations necessary to place, align, fit, or secure together two or nure equipment items to complete a subunitary or unitary complex.

Attach - Fasten one object onto another; in general, it will be a smaller object onto a larger object (e.g., to attach a lock on a door).

Attain - Achieve or accomplish a desired goal or condition.
Attempt - Endeavor to accomplish a task or goal, but with the realization that failure is a possibility.

C

Calibrate - Determine accuracy, deviation, or variation by special measurement or by comparison with a standard.
Change - Choose an alternate or different method of operation, unit of equipment, eic., of some component in the present configuration.
Check - Examine to determine if a given action produces a specified result; to determine that a presupposed condition actually exists, or to confirm or determine measurements by the use of visual, auditory, tactile, or mechanical means.

Checkout - Perform routine procedures, which are discrete, ordered, stepwise actions designed to determine the status or assess the performance of an item of equipment or a unit-Typical examples of these routine procedures are the procedures used to checkout the performance level of a vacuum tube, and aircraft preflight checkout procedures.

Clean - Wash, sweep, dazontaminate, etc., equipment units and areas.
Close - Perform the 'sition of blocking direct access to an enclusure (e.g., ciose door; close lid on box).

Code - Convert a message, document, etc., from ordinary language to a coded system of letters, words, numbers, or symbols.

Communicate - Perform the operation of transmitting, emitting, or receiving signals, signs, writing, images, sounds, or intelligence of any nature by wire, radio, visual, or other electromagnetic systems.
Compare - Examine the characteristics of two or more items to determine their similarities and differences.

Complete - Finish an entire task, operation, or mission, or to finish a clear!y defined step in a task, operation, or mission.

Compose - Make up of component parts (e.g., a task or unit of equipment).

Connect - Couple or join prepositioned, keyed, or matched equipment units in a permanent, semipermanent or temporary union.
Continue - Proceed in the performance of some action, procedure, etc., or to remain on the same course or direction (e.g., continue to check the temperature fluctuations; continue to adjust the controls; and continue on the same heading).

Coordinate - Bring two or more separate items into a common action or condition.

Count - Determine by numerical methods the number of units in a collection.

D

Deactivate - Remove the force so that an equipment configuration ceases operation.
necode - Convert a message, document, etc., from a system of letters, winrds, numbers, or symbols to ordinary language.

Delay - Wait a brief period of time before taking a certain action or making a response.

Depress - Apply manual (as opposed to automatic) pressure to activate or initiate an artion, or to cause an item of equipment to function or c.ase to function.

Determine - Find, discover, or detect a condition (e.g., determine degree of angle.)

Disassemble - Perform the various manual operations (as opposed to automatic) necessary to take a hardware item apart to its next smaller unit or down to all removal parts.

Discard - Remove, separate, or dispose of something that originally was of use but which is no longer functional or may have salvage value (e.g., a faulty part, an obsolete procedure).
Disconnect - Separate keyed or matched equipment units in a routine nondestructive manner.

Disengage - Change or make a setting in a routine nondestructive manner on some form of positioning, holding or power transfer device so that it no longer restricts movement, or permits the transfer of power (e.g., positioning device, guide pins; holding device, cotterpins; power transfer device, clutch).

E

Enable - Bring to a state of readiness.
Engage - Make a setting in a routine nondestructive manner on some form of positioning, holding or power transfer device so that it restricts movement, or permits the transfer of power (e.g., to cause the teeth of one gear wheel to engage those of another).

Establish - Set up initial condition or procedure.
Evaluate - Judge or appraise the worth or amount, of a unit of equipment, operational procedure or condition (e.g., evaluate status of life support systems).

Execute - Carry out a direct order, which most often is a part of an existing plan.

Extend - Stretch, draw out, or move out from an enclosure (e.g., to extend a flap).

F

Fill - Pour or put into a receptacle (e.g., fill an aircraft's tanks with fuel).

Fly - Move a manned or unmanned aircraft or spacecraft through the air or space after it is airborne.
Follow - Proceed along or succeed in order or time.

Gain - Increase an advantage or control, over the previous condition (e.g., gain an altitude advantage over a hostile aircraft; gain increased control through manual operations.

H

Handle - Move, turn, raise, lower, lift, etc. objects and equipment items manually or with equipment, such as hoists.

I

Identify - Determine by some rational systematic manner what something is and its precise characteristics.

Illuminate - Light an area or display surface.
Include - Add a constituent, component, or subordinate part of a task, operation, or equipment unit.
Inform - Pass on information in some appropriate manner to one or more persons about a condition, event, etc., of which they should be aware.
Initiate - Give a start to a plan, idea, request, or some form of human action (e.g., initiate a new safety procedure).

Input - Provide instructions and data to a machine by electro/ mechanical means (e.g., counter, gauge, switches, dials, punched tapes, and magnetic tapes).
Insert - Place, put, or thrust something within an existing context (e.g., insert a part in the equipment, insert a request in the compute.).
Inspect - Perform critical visual examination of operating equipment units for a specific condition and determine whether the equipment should continue in operation, or determine whether new or restored equipment requires any repairs before being checked out, tested, or placed in operation--also, examine particular parts after disassembly for wear, deterioration or defects.
Install - Perform the manual (as opposed to automatic) operations necessary to attach or connect (mount) an equipment unit in the next larger assembly or system.
Instruct - Impart information in an organized, systematic manner to one or more persons.
Insure - Make certain by some direct act or observation that a desired or necessary action, task, operation, etc., has been performed or accomplished.
Interrogate - Examine, or query a system regarding the status or conditions of its components.

Isolate - Locate the cause of an equipment malfunction.

L

Land - Bring an aircraft down, and stop it upon a surface, either gromd, snow, ice, water, or other surface or plai_orm such as carrier deck (excludes taxiing).

Launch - Start the flight of a missile or rocket.
Listen - Give attention to particular verbal or other audible sounds.
Load - Provide inputs to a system, component, or assembly.
Loosen - Reduce a force in order to release some type of holding device (e.g., loosen a screwclamp).
Lower - Move an object in a downward direction, attitude, or angle.

M

Maintain - Keep a unit of equipment operational or in commission (e.g., an aircraft).

Monitor - Observe continually or periodicalıy visual displays, or listen for or to audio displays, or vibrations in oriee to determine equipment condition or operating status.

0

Observe - Note the presence of mechanical motion, the condition of an indicator, or audio display, or other sources of movement or audible sounds on a nonperiudic basis.
Open - Perform the operation of providing direct access to an enclosure (e.g., open door, open lid on box).
Operate - Control equipment mechanically, electrically, manually, etc., in crder to accomplish a specified predetermined purpose.

Order - Issue a command to carry out a certain procedure, operation, or directive.

Overhaul - Disassemble equipment units down to all removable parts, clean, inspect critically, repair, restore, and replace where necessary; assemble, adjust, align, recalibrate, and verify operational readiness by test or checkout, and package for transportation or storage.

P

Package - Make a protective cover for an item with some type of material (paper, wood, metal, and plastic) to protect it and facilitate its transportation to a new location or to put in a protected and convenient form for storage.
Park - Stop and keep a vehicle stationary for a period of time on a roadway or runway.
Pass - Meet a specified J . Evel of acceptabilicy.
Perform - Carry out some action from preparation to completion (It is understood that some special skill or knowledge is required to successfully accomplish ine action.)

Persist - Continue an operation or task in spite of difficulties that may arise from undesirable working conditions.

Place - Transport an object to an exact location.
Playback - Run a tape or record of some desired information for instruction or to check certain information.
Plug - Insert a fitting into a receptacle or establish some type of electrical circuit.

Position - Turn, slide, rotate, or otherwise move a switch, lever, valve handle, or similar control device to a selected orientation about some fixed reference point.

Prepare - Perform initial actions, such as check, connect, refill, etc., which precede the accomplishment of a specific job operation or which ready equipment for subsequent use.
Present - Cause presence of some form of foreseeable information on a standard display surface, such as a CRT, dial, and gauge.

Proceed - Move, pass, or go forward or advance, in an orderly or regulated manner.

Provide - Furnish in advance the materials, supplies, facilities, information, etc., for which a need can be foreseen.th
Pull - Exert a force on an object in such a manner that the ocect will move or tend to move in the direction of the force.
Push - Exert a force on an object in such a manner that the object will move or tend to move away from the origin of the force.

R

Raise - Move an object in an upward direction, attitude, or angle.
Read - Use ones eyes to comprehend some standardized form of visual symbols (e.g., sign, gauge, or chart).
Receive - Acquire the status of equipment or action in progress by visual or auditory means (e.g., receive message from air traffic control).

Record - Make a permanent account of the results of some action, test, event, etc., so that the authentic evidence will be available for subsequent examination.

Refer - Lake use of source material or prescribed routines for verificaticn or when some procedure or step in an operation does not check out correctly.

Release - Remove the manual application of pressure to stop an action, or activate or deactivate an item of equipment.

Remain - Stay within prescribed limit constraints (e.g., time, space, cost, etc.).

Remove - Perform the various manual operations necessary to take an equipment item out of the next larger assembly or system.

Repair - Restore or replace damaged, worn-out, or malfunctioning equipment so that it is serviceable, usable, or in operational condition.
Repeat - Perform the same series of tests, operations, etc., over again, or perform an identical series of tasks, tests, operations, etc.
Replace - Return an item of equipment to its normal operational location.

Report - Order specified persons to contact, or to report at a specified location; usually the time is specificd or it is understood that the interested persons are aware of the time limitations.

Request - Ask for something in a formalized routine manner, which is in line with set procedures.
Require - Demand that a condition(s) be met in order that a desired objective can be accomplished.
Respond - Answer an inquiry or react to a verbal, visual, auditory, tactile, or olfactory stimulus.
Resume - Restart an operation or procedure at the point where its progress was halted or interrupted.
Retract - Withdraw an item of equipment into a large equipment unit (e.g., retract an aircraft's landing gear).

Return - Go or come back again to a place, person, or condition.
Review - Examine work perfo med or documents produced to determine its adequacy, correctness, preciseness, etc.

Revise - Make a new, improved, or up-to-date version of a document, procedure, regulation, or the like.
Rotate - Apply manual torque to cause a multiple position rotary switch or a constantly varying device like a handwheel, thumbwheel, or potentiometer to move in a clockwise or counterclockwise manner.

Secure - Fasten, tie, clamp, or in some other manner, restrict the movement of a unit of equipment, or cargo, so that movements of the transporting device (e.g., truck, aircraft, or ship), or the base it is on, will not result in its shifting position or being damaged.

Select - Choose, or be commanded to choose, and alternative fxim among a series of similar choices (e.g., select a proper tt..Asmission frequency).
Service - Perform cleanup, lubrication, and replenishment of such necessities as fuel, in order to prepare a vehicle, or a unit of equipment (e.g., aerospace ground equipment, rifles, or drillpresses) for operation.

position.

Setup - Perform those discontinuous or procedural actions necessary to prepare an end-item or an item of support equipment for a maintenance activity, such as checkout (The term is similar to "Prepare," but is more specific in that it relates only to those preparatory actions associated with a single item of equipment.)
Steer - Direct the course of a vehicle by mechanical means.
Stop - Halt some action currently in progress.
Store - Deposit parts, equipment, or other material in a warehouse, container, etc., for use at some future time.

T

Take - Acquire temporary possession or control of an operational system or a supporting facility, or have exclusive use of the operational system or support facility for a limited period of time (e.g., direct that a co-pilot take contrcı of an aircraft-direct that an aircraft take over exclusive use of a runway for takeoff).
Taxi - Travel along the ground under an aircraft's own power or on the water, if a seaplane, when picking out a starting place for a takeoff, after coming in for a landing, or when changing locations on the ground.
Test - Conduct a formalized program such as Personnel Subsystem Test and Evaluation (PSTE) that generates data* used by the government and contractors during the developmental and operational stages to evaluate the performance of a system or any part thereof against certain standards.

Throw - Change manually the setting of a toggle switch from one position to another.
Tighten - Apply a force to secure some type of fastner (e.g., tighten a screwclamp).
Transfer - Change from one form of operation to another, or move an item of equipment from one complex to another so that the mode of operation is changed.
Transmit - Send out a signal by means of radio waves.
Transport - Move one or more items from one location to another.
Troubleshoot - Examine and analyze failure reports, equipment readouts, test equipment meter valves, failure symptoms, etc., to isolate the source of the malfunction.

[^6]Tune - Adjust an item of equipment to a prescribed operating condition.

U

Use - Utilize some unit of equipment or operational procedure.

W

Wait - Stay or remain in a state of readiness to perform a given action.

Walk - Use ones own legs to move a restricted distance from one location or position to another location or position.

Section 5

ACRONYMS AND ABBREVIATIONS

Section 5

ACRONYMS \& ABBREVIATIONS

The ternis listed on the following t, is were selected from a much more extensive list developed irom many sources. in order to make the present list practical from the standpoint of a pocket data book it was necessary to be highly selective.

The following criteria were used in the selection process:
a. The item was known to be used frequently with reference to hurian engineering activities.
b. The item appears to be relatively permanent and not subject to early obsolescence.
c. It has been comon pratice for a number of years to use the acronym or abbreviation in correspondence or reports in place of the full i.srd or phrase.
d. Multiple interpretations require that the term be defined according to a specific technical categury.

The only distinction made herein between an acronym and an abbreviation is the one commonly made, namely, that althougt both are corprised of the initial letters or parts of several words, acronyms are those combinations of letters that can be conveniently pronounced as a word.

A

AADS	- Army Air Defense System (formerly FABMDS)
AAE	- Aerospace ancillary equipment
AAM	- Air-to-air missile
AAP	- Apollo Applications Program
AASR	- Airport and airways surveillance radar
AATRI	- Army air traffic regulation and identification
AAW	- Anti-air warfare
ABC	- Advanced biomedical capsule
ABLE	- Activity balance line evaluation (PERT)
ABM	- Anti-ballistic missile
ABMA	- Army Ballistic Missile Agency
ABRLS	- Advanced ballistic re-entry system
ABSAP	- Airborne search and attack plotter
ACBWS	- Automatic chemical biological warning system
ACIC	- Aeronautical Chart and Information Center (USAF)
ACRE	- automatic checkout and readiness equipment
ADC	- Air Defense Command
ADF	- Automatic direction finder
ADP	- Automatic data processing
ADPS	- Automatir data processing system
AEC	- Atomic Energy Commission
AEDC	- Arnold Engineering Development Center
A/E ratio	- Absorbtivity-emissivity ratio
AEV	- Aerotiermodynamic elastic vehicle
AEW	- Airborne early warning
AFC	- Automatic frequency control
AFCE	- Automatic fiight control equipment
AFLC	- Air Force Logistics Command
AFR	- Air Force regulation
AFSC	- Air Force Systems Command
AGACS	- Automatic ground-to-air communications system
AGC	- Automatic gain control
A.	- Anti-jam
ALBM	- Air launched ballistic missire
ALGOL	- Algorithmic language
AMC	- Army Materiel Command
AMD	- Aerospace Medical Division
AMPS	- Automatic message processing system
AMR	- Atlantic Missile Range
AMRL	- Aerospace liedical Research Laboratory
ANIP	- Arm.;-Navy İnstrumentation Program
API	- Air-position indicator
APOTA	- Automatic positioning telemetering antenna
APU	- Auxiliary power unit
ARIS	- Advanced range instrumentation ship
ARO	- irmy Research Office
ASDEFLORANT	- Antisubmarine Defense Force, Atlantic Fleet. U.S. Naval Base, Norfolk, Virginia
ASDIC	- British echo-ranging equipment (derived from: Anti-Sumarine Development. Investigation Committec)

ASIRC	Aquatic Sciences Information Retrieval Center
ASM	Air-to-surface missile
ASPR	- Armed Services Procurement Regulation (AFR 70-1)
ASR	Air-sea rescue operations
ASROC	Anti-submarine roc'.at
ASTIA	Armed Services Tc shnical Infoniation Administration (now called Defense Documentation Center - DDC)
ASTOR	- A nuclear torpedo
ASW	- Anti-submarine warfare
ASWEPS	- Anti-submarine warfare environmental prediction system
ASWTNS	- ASW tactical navigation system
ATC	- Air Training Command
ATDS	- Airdorne tactical data system
ATS	- Air transportable sonar
AUDIT	- Automatic unattended detection inspection transmitter
AUM	- Air-to-underwater missile
AUTEC	- Atlantic Underwater Test and Evaluation Center
AVE	- Aerospace vehicle equipment
AWACS	- Airborne warning and control system
AWS	- Air Weather Service (meteorology)

B

BAMBI
BDI
BECO
BEMA
BFO
BOSS
BUDOCKS
BUMED
BUPERS
BUSANDA
BUSHIPS
BUSTDS
BUWEPS

C

CAB	- Civil Aeronautics Board
CADPO	- Communications and data processing operation
CAVU	- Ceiling and visibility unlimited
CB	- Center of bouyancy
CCTV	- Closed circuit television
CCM	- Counter, counter-measures
CCN	- Contract change notice
CD	- Contract uefinition
CDR	- Critical design revier
CEI	- Contract end item
CELESCOFE	- Celestial telescope
CEP	- Circle of equal probability

CERC	- Coastal Engineering Research Center (formerly Beach Erosion Board)
CF	- Concept formulation
CG	- Cenier of gravity
CGOU	- Coast Guard. Oceanographic Unit
CGES	- Central gyro reference system
CGS	- Coast and Geodetic Survey
CIA	- Central Intelligence Agency
CIC	Combat information center
CINCLANT	- Commander-in-Chief, Atlantic (USN/Allies)
CINCLANTFLT	- Commander-in-Chief, Atiantic Fleet (USN)
CINCNELM	- Commander-in-Chief. Naval Forces, Easter Atlantic and Mediterranean
CINCPAC	- Commander-in-Chief, Pacific (USN/USA/USAF)
CINCPACFLT	- Commander-in-Chief, Pacific Fleet (USN)
CM	Command module
CNM	- Chief of Navy Materiel
CNR	- Chief of Naval Research
CNO	- Chief of Naval Operations
CO	- Commanding officer
COHU	Coherent oscillator
COLISAR	- Coherent light detection and ranging
COMASNFORPAC	- Commander Antisubmarine Warfare Force, Pacific Fleet
CONASWFORLANT	- Commander Antisubmarine Warfare Force, Atlantic
COMINT	- Comunnications intelligence
COMOPTEVFOR	- Commander Operational Test and Evaluation Force
ConAc	Continental Air Command
ConAD	- Continental Air Defense Command (́USN/USA/USAF)
CONUS	Continental U.S.
COSAR	- Compression scanning array radar
COZI	- Communications zone isdicator
CPM	- Critical path method (PERT)
CPO	- Chief Petty Officer
CET	- Cathode-ray tube

D

DA	- Department of the Army
DASH	- Drone anti-submarine helicopter
DCA	- Defense Communications Agency (DoD)
DCA	- Digital Computer Association
DCAA	- Defense Contract Audit Agency
DCAS	- Data collection and analysis system (NASA); also, Defense Contract Administration Services
DDC	- Defense Documentation Center
DDI	- Depth deviation indicator
DDP	- vigital data processor
DEI	- Development engineering inspection
LESLANT	- Destroyer Forces, Atlantic
DF	- Direction findei
DLRV	- Dual-mode lunar rovin, vehicle

- Engineering change proposal

ECS

- Environmental control system
- Electronic data processing
- Electro-encephalogram
- Explosive echo ranging

EKG

- Extremely high frequency
- Electrocardiogram

EL
ELF
ELINT
EM
EMR
EMU
EOD
ERTS
ESHP
ET
ETA
ETD
EVA
EW

- Distance measuring equipment
- Department of Defense
- Department of the Navy
- Department of Transportation; also, Department of the Treasury
- Dead reckoning
- Dead reckoning analyzer
- Dead reckoning analog indicator
- Direct radar scope camera
- Dead reckoning tracer
- Deep research vehicle
- Double sideband
- Deep space instrumentation facility (worldwide network of tracking stations operated for the NASA by the Jet Propulsion Laboratory)
- Deep scattering layer
- Deep submergence rescue vehicle
- Deep rutn icice systems project
- Dees , .isence systems review group
- Dean t-.gence search vehicle
- De; $\quad \ldots . . \therefore r_{i}$ Mines and Technical Surveys

E

- Eiectroluminescence
- Extremely low frequency
- Electromagnetic intelligence
- Enlisted man
- Electromagnetic radiation
- Extravehicular mobility unit
- Explosive ordnance disposal
- Earth resources technolcgy sateliite
- Equivalent shaft horsepowar
- Ephemeris time
- Estimated time of arrival
- Estimated time of departure
- Extravehicular activity
- Electronic warfare

F
FAA

- Federal Aviation Agency

FACI - First article configuration inspection
FCC - Federal Communicatıons Comirission

FFDS	- Fleet flag data system
FLIP	- Floating instrument platform
FM	- Frequency modulation
FMO	- Frequency modulated oscillator
FRAM	- Fleet rehabilitation and modernization program
FRESH	- Foil research hydrofoil
FTD	- Foreign Technology Division

G

GCA	- Ground controlled appioach
GCI	- Ground controlled interception
GCT	- Greenwich civil time
GEM	- Ground effects machine; also, guidance evaluation
	missile
GFE	- Government furnished equipment
GFP	- Government furnished property
GLOTRAC	- Global tracking network
GMT	- Greenwich mean time
GOR	- General operational requirement
GPI	- Ground position indicator
GQ	- General quarters (battle conditions)
GSE	- Ground-support equipment
GSS	- Globa? surveillance system

H

HF	- High frequency
HIAD	- Hardbook of Instructions for Aircraft Design
HIAGED	- Handbook of Instructions for Aerospace Ground Equipment Design
HIAPSD	- Handbook of Instructions for Aerospace Personnel Subsystems Design
HIAVED	- Handbook of Instructions for Aerospace Vehicle Equipment Design
HIMSD	Handbook of Instructions for Missile System Design
HO	- Hydrographic Office (now Navy Oceanographic Office)
HOBS	- High orbital bombardment system
HP	- High pass
HST	- Hypersonic transport
HUFF-DUFF	- High-frequency directior finder
HUK	- Hunter-k:Iler Naval force or unit
HumRro	- B.: Resuurces Research Office
HYDRO	

I

IAC	- $\because: \therefore \therefore$, Essembly and checkout
IC	.- \cdot ot .r mication
ICAO	A: es. - 1 :~: Civil Aviation Organization 1. . moced as a word)

ICI	- International Chromaticity Index
ICW	- Interrupted continuous wave
IDA	- Institute for Defense Analysis
IF	- Intermedicice frequency
IFF	- Identification, friend or foe
ILAS	- Instrument low approach system
ILS	- Instrument landing system
IMBLMS	- Integrated Medical/Behavioral Laboratory Measurement System
IMI	- Intermediate manned interceptor
${ }_{2}$ MP	- Inflatable micrometeroid paraglide
IMPACT	- Implementation planning and control technique
IMU	- Inertial measurement unit
IPS	- Interpretative programming system
IR	- Interrogator-Responder; also Infra-red
ISA	- Instrument Society of America
ISO	- International Standardization Organization

J
JAN - Joint Army-Navy
Jnd

- Just noticeable difference

JPL - Jet Propulsion Laboratory

L

LAAR - Liquid air accumulator rocket
LADAR - Laser detection and ranging
LASER - Light amplification by stimulated emission of radiation
LAW - Light anti-tank weapon
LRV - Lunar roving vehicle

M

MDSS	- Microméeoroid deep space satellite
MEW	- Microv re early warning
MF	- Medium frequency
MGE	- Maintenance ground equipment
MIDAS	- Missile defense alaim satellite
MINPAC	- Mine Warfare Forces, Pacific (USN)
MMRBM	- Mobile, mid-range ballistic missile (Air Force)
MODEM	- Modulator/Demodulator
MOL	- Manned orbiting laboratory
MOLAB	- Mobile (lunar) laboratory
MOPAR	- Master oscillator power amplifier radar
MPE	- Maximum permissible exposure (radiation)
MRBM	- Medium-range ballistic missile
MSTS	- Military sea transport service

MTBF	- Mean time between failures
MTBM	- Mean time between maintenance actions
MTD	- Mobile training detachment
MTDS	- Marine tactical data system
MTI	- Moving target indicator
MTU	- Mobile training unit
MTTR	- Mean time to repair
MX	- Multiplex

N

NADC	Naval Air Development Center
NATEC	- National Aviation Facilities Experimental Center (FAA)
NAMC	- Nava? Air Material Center
NAS	- Naval Air Station; also, National Academy of Sciences
NASA	- National Aeronautics and Space Administration
NAS/NRC	- National Academy of Sciences-National Research Council
NASL	- Naval Applied Sciences Laboratory
NATO	- North Atlantic Treaty Organization
NAVAIRLANT	- Naval Air Forces, Atlantic
NAVAIRPAC	- Naval Air Forces, Pacific
NAVOCEANO	- U.S. Naval Oceanographis Office
NAVSAT	- Navigational satellite
NAVUWSEC	- Naval Underwater Weapons Systems Engineering
NBS	- National Bureau of Standards
NCEL	- Naval Civil Engineering Laboratory, Port Hueneme, California
NEES	- Naval Engineering Experimental Station, Annapolis, Maryland
NELC	- Navy Electronics Laboratory Center, San Diego, California
NERVA	- Nuclear engine for rocket vehicle application
NMDL	- Navy Mine Defense Laboratory, Panama City, Florida
NODC	- National Oceanographic Data Center, Washington, D.C.
NOL	- Naval Ordnance Laboratory, White Oak, Maryland
NOL CORONA	- Naval Ordnance Laboratory, Corona, Califormia
NOMAD	- Navy Oceanographic and Meteorological Automatic Device
NOO	- Navy Oceanographic Office
NORAD	- North American Air Defense Command
NORC	- National Oceanographic Research Center
NOTS	- Navai Ordnance Test Station, Chine Lake, California
NPO	- Navy Purchasing Office
NPRA	- Naval Personnel Research Activity
NRC	- National Research Council
NRL	- Naval Research Laboratory
NSF	- National Science Foundation
NSIA	- National Security Industrial Association
NTDC	- Naval Training Device Conter
NTDS	- Naval Tactical Data System
NUC	- Naval Undersea Research and Development Center
NUOS	Naval Underwater Ordnance Station

NU-T,	Navy Underwater Sound Laboratory, New London,
NWL	Connecticut

0

OAO	- Orbiting astronomical observatory
OAR	- Office of Aerospace Research
OGE	- Operating ground equipment
OGO	- Orbiting geophysical observatory
OJT	- On-the-job training
ONR	- Office of Naval Research
OOD	- Officer of the deck
OPAL	- Optical platform alighment linkage
OPTEVFOR	- Operational test and evaluation force
ORT	- Operational readiness training
OS	- Ocean station
OSO	- Orbiting solar observatory
OSR	- Operational support requirement
OST	- Office of Science and Technology
OSTE	- Operational support test and evaluation

P

PADAR - Passive airborne detection and ranging
PAM - Pulse amplitude modulation
PAR - Precision approach radar; also, Peactime Air Reconnaisance
PDR - Precision depth recorder
PE - Probable error
PED - Personnel-equipment data
PEP - Program evaluation procedure (former Air Force designation for PERT)
PERT . - Perfornance evaluation and review technique
PFM - Pulse frequency modulation
PGR - Precision graphic recorder
PHIBLANT - Amphibious Forces, Atlantic
PHIBPAC - Amphibious Forces, Pacific
PLSS - Portable life support system
PM

- Phase modulation

PMR - Pacific Missile Range
PNL - Pacific Naval Laboratory
PPI - Plan position indicator
PPS - Pulses per second
PREAMP - Preamplifier
PRISM - Program reliability information system (Navy)
PSAC

- President's Scientific Advisory Committee

PSPP - Proposed system pockage plan
PSS - Personnel subsystem
PSTE - Personnel subsystem test and evaluation
PTDP - Preliminary technical deselopment plan

QQPRI

- Qualitative. and quantitative perconnel requirements information

R

RADC - Rome Air Development Center
RADCM - Radar countermeasures and deception
RADIST - Radar distance indicator
RAPCON - Radar approach control center
RAS - Requirements ailocation sheet
RAT - Rocket-assisted torpedo
RATAN - Radar and television aid to navigation
RATCC - Radar air traffic control center
RATO - Rocket-assisted take-off
RATT - Radio teletype
RCM - Radar countermeasures; also radio countermeasure
REM - Roentgen-equivalent man
REMAD - Remoie magnetic anomoly detection
REP - Roentgen-equivalent physical
RF

- Radio frequency

RFI

- Radio frequency interference

RFP - Request for proposal
RHI - Range-height indicator
RM - Range marks
RMI

- Radio magnetic indicator

RMS - Root mean square
RMU - Remote maneuverang unit
RPIE - Real-property installed equipment
RPU - Remote phone unit
RUM - Remote underwater manipulator
RTG - Radioisotopic thermal generator
R/V - Research Vehicle

S

SAC	- Strategic Air Command
SAGE	- Semi-i romatic ground environment
EAM	- Surface-to-air missile
SATCCM	- Army Satellite Communications Agency
SCN	- Specification change notice
SCORE	- Signal communications by orbiting relay equipment
SCUBA	- Self-contained underwater breathing apparatus
SEIS	- Submarine emergency identification signal
SERVLANT	- Service Forces, Atlantic
SERVPAC	- Service Forces, Pacific
SHF	- Super high frequency

SHORAN	- Shoni-range aid to navigation
SINS	- Ships internal navigation system; also, stellarinertial navigation system
SISS	- Submarine integrated sonar system
SLAM	- Supersonic low-altitude missile
SM	- Strategic missile
SNAF	- System for nuclear auxiliary power
SNR	- Signal-to-noise ratio
SOFAR	- Sound fixing and ranging
SONAR	- Sound navigation and ranging
SOP	- Standard operation procedure
SOR	- Specific operational requirement
SPADATS	- Space detection and tracking system
SPAR	- Seagoing platform for acoustic research
SPASUR	- Space surveillance
SPD	- System program director
SPO	- System program office
SR	- Study requirement
SRA	- Specialized repair activity
SRBM	- Short-range ballistic missile
SS	- Navy designation for a submarine
SSB	- Single sideband
SSM	- System support manager; also, surface-to-surfáce missile
SST'	- Supersonic transport
STRAC	- Strategic Army Corps
SUBIC	- Subnarine integrat.ed control system
SUM	- Surface-to-underwater missile
SURIC	- Surface ship integrated control system
SYiN	- Synchronizing

T

TAC	- Tactical Air Command
TACAN	- Tactical air navigation
TACS	- Tactical air control systeta
TCTO	Time compliance technical order
TDP	- echnical development plan
TEA	- Task-equipment analysis
TEPI	- Training equipment planning information
TM	- Technical Manual
TO	- Technical Order
T/O	- Table of organization
TRACALS	- Traffic control, approach and landing system

U

UDT - Underwater demolition team
UHF
UNACOM

- Ultra-high frequency

UNICOM

- Universal Army communication system

UNREP

- Universal integrated cummunication system
- Underway replenishment

URV	- Underseas research vehicle
USAFA	$-\quad$ U.S. Air Force Academy
USCG	- United States Coast Guard
USC\&GS	- United States Coast \& Geodetic Survey
(US)GS	- Geological survey (Department of the Interior)
USN	- United States Navy
(USN)HO	- Hydrographic Office (although now officially the
	\quad U.S. Naval Oceanographic Office, H.O. is still
	used in referring to charts and publications)
USNUSL	- U.S. Navy Underwater Sound Lab
USSTRICOM	- U.S. Strike Command
UST	- Undersea technology
USWB	- U.S. Weather Bureau
UTS	- Underwater telephone system
UV	- Ultraviolet radiation

V

VAR	- Visual-aural radio r nge; also, volt-ampere reactive
VDS	- Variable-depth sonar
VF	- Voice frequency
VFR	- Visual flight rules
VHF	- Very- Gh frequency
VID	- Vide.
VLF	- Very-low frequency
VLR	- Very long ranga
VODAT	- Voice-operated device for automatic transmission
VOR	- VHF omnidirectional radio range
V/STOL	- Vertical/short take-off and landing (aircraft)
VTOL	- Vertical take-off and landing (aircraft)

W

W/D	- Weight/displacement ratio
WO	- Warrant officer
WWMCS	- Worlc'wide Miiitary Command System

X

X0

- Executive officer

U.S. Navy Ship Designations A

ACM	-	Minelayer, Auxiliary Ship
AD	-	Dsitroyer Tender
AE	-	Amrunition Ship
AF	-	Store Ship
AFS	-	Combat Store Ship
AG	-	Miscellaneous Auxiliary
AGB	-	Icebreaker
AGC	-	Amphibious Force Mlagship
AGDE	-	Escort Research Ship
AGEH	-	Hydrofoil Research
AGM	-	Missile Range Instrumertation Ship
AGOR	-	Auxiliary General Oceanographic Research Ship
AGR	-	Radar Picket Ship
AGS	-	Auxiliary General Survey (Hydrographic) Shit'
AGSC	-	Auxiliary General Survey Coastal Ship
AGSL	-	Satellite Launching Ship
AG(SS)	-	Auxiliary Submarine
AH	-	Hospital Ship
AM	-	Minesweeper
AMS	-	Minesweeper, Coastal
AN	-	Net Laying Ship
AO	-	Oiler
AOE	-	Fast Combat Support Ship
AOG	-	Gasoline Tanker
AOR	-	Replenishment Fleet Tanker
AO(SS)	-	Submarine Oiler
AP	-	Transport
APA	-	Attack Transport Ship
APB	-	Self-Propelled Barracks Ship
APC	-	Small Coastal Transport
APD	-	High Transport Ship
AP(SS)	-	Trassport Submarine
AR	-	Repair Ship
ARB	-	Battle Damagf Repair Ship
ARC	-	Cable Repairing or Laying Ship
ARD	-	Floating Drydock
ARG	-	Internal Combustion Engine Repair Ship
ARL	-	Landing Craft Repair Ship
ARS	-	Salvage Ship
ARSD	-	Salvage Lifting Vessel
ARST	-	Salvage Craft Tender
ARV	-	Aircraft Repair Ship
ARVA	-	Aircraft Repair Ship (Aircraît)
ARVE	-	Aircraft Repair Ship (Engine)
AS	-	Submarine Tender
ASR	-	Submarine Rescue Vessel
ASSA	-	Cargo Submarine
ASSP	-	Transport Submarine
ATA	-	Auxiliary Ocean Tug
ATF	-	Fleet Ocean Tug

AV	-	Seaplane Tender
AVB	-	Advanced Aviation Base Ship
AVM	-	Guided Missile Ship
AVP	-	Small Seaplane Tender
AVS	-	Aviation Supply Ship
AVT	- Auxiliary Aircraft Transport	
AW	-	Distilling Ship

B
BB

- Battleship

C

CAG	-	Guided Missile Heavy Cruiser
CB	-	Large Cruiser
CC	-	Command Ship
CG	-	Guided Missile Cruiser
CGC	-	Coast Guard Cutter
CL	-	Light Cruiser
CLAA	-	Anti-Aircraft Light Cruiser
CLE	-	Tactical Command Ship
CLG	-	Guided Missile Light Cruiser
CLK	-	Hunter Killer Ship
CV	-	Aircraft Carrier
CVA	-	Attack Aircraft Carrier
CVB	-	Large Aircraft Carrier
CVE	-	Escort Aircraft Carrier
CVHA	-	Helicopter Assault Ship
CVL	-	Small Aircraft Carrier
CVS	-	ASW Support Aircraft Carrier

D

DD
DDE
DDG - Guided Missile Destroyer
DDK - Hunter-Killer Destroyer
DDR - Radar Picket Destroyer
DE - Escort Vessel
DEC - Control Escort Vessel
DEG - Guided Missile Escort
DER - Radar Picket Escort Vessel
DL - Frigate
DLG - Guided Missile Frigate
DM - Minelayer, Destroyer
DMS - Minesweeper, Destroyer

I

L

LPD	-	Amphibious Transport, Dock
LPH	-	Amphibious Assault Ship
LS	-	Light-Ship
LSD	-	Dock Landing Ship
LSM	Medium Landing Ship	
LSMR	-	Medium Landing Ship (Rocket)
LST	-	Tank Landing Ship
LSV	Vehicle Landing Ship	

M

MCS	-	Mine Warfare Comnand and Support Ship
MHA	-	Mine Hunter, Auxiliary
MHC	-	Mine Hunter, Coastal
MMA	-	Minelaver, Auxiliary
MMF	-	Minelayer, Fleet
MSA	-	Minesweeper, Auxiliary
MSC	-	Minesweeper, Coastal
MSC(0)	-	Minesweeper, Coastal (Old)
MSF	-	Ainesweeper, Fleet (Steel Hulled)
MSI	-	Minesweeper, Inshore
MSO	-	Minesweeper, Ocean (Nonmagnetic)
MSS	-	Minesweeper, Special

P

PC	-	Sub Chaser
PCE	-	Escort Sub Chaser
PCER	-	Rescue Escort
PCH	-	Sub Chaser, Hydrofoil
PCS	-	Sub Chaser
PF	-	Patrol Escort
PGM	-	Motor Gunboat
PT	-	Motor Torpedo Boat
PTC	-	Motor Sub Chaser
PTF	-	Fast Patrol Boat
PY	-	Yacht

S

- Submarine
- Fleet Ballistic Missile Subnarjne
- Guided Missile Submarine
- Killer Submarine
- Oiler
- Radar Picket Submarine
- Target Submarine

MILITARY AIRCRAFT MODEL DESIGNATIONS

BASIC MISSIO:-AND TYPE SYMBBOLS Letter
 Type

- Type Symbols

MODIFIED MISSION SYMBOLS
(Prefin Lettera)

Letter
 Titb

A	Atteck
C	Cargo/Traneport
D	Director
E	Special Electronic Inatallation
H	Search/Rescue
K	Tanker
L	Cold Weather
M	Misaile Carrier
0	Drone
R	Reconnaiesance
S	Antisubmarine
T	Trainer
U	Utility
V	Staff
W	Weathr

EXAMPLE
YRF-8AVO

"AN" NOMENCLATURE SYSTEM FOR ELECTRONIC EQUIFMENT

[^7]
ALDREVIATIONS AND SYMBOLS

Abbrevialluns

SPELLING AND SYMBOLS FOR UNITS

From "Units of Weight and Measure"
L. B. Chisholm, National Bureau of Standards

Miscellaneo:s Publication 286 (May, 1967)
The apelling of the names of unita as adopted by the National Bureau of Standards is that given in the list below. The spelling of the metric units is in accordance with that given in the lew of July 28, 1866, legalizing the Metric System in the United States.

Following the name of each unit in the list below is given the symbel that the Bureau has adopted. Attention is particularly called to the following principles:

1. No period is used with symbols for units. Whenever "in" for inch might be confused with the preposition "in", "inch" should be spelled out.
2. The exponents " 1 " and "ss" are used to signify "square" and "cubic," respectively, instead of the symbols "sq" or "cu," which are, however, frequently used in technical literature for the U. S. Customary units.
3. The same aymbol is used for both singular and plural.

Some Units and Their Symbale

Unit	Symbol	Unit	Symbal	Unit	Symbol
acre	acre	fathom	fath	millimeter	mm
are	a	foot		minim	minim
barrel	bbl	furlong	furlong	ounce	O2
board foot	fbm	$\underset{\text { grain }}{\text { gallon }}$		ounce, avoirdupois ounce liquid	O3 avdp lig am
bushel	bu	grain	grain	ounce, liquid	liq or
carat Celsius, degree centare centigram centiliter	c${ }^{\circ} \mathrm{C}$cacgCg^{1}	gram hectare hectogram hectoliter hectometer	$\begin{aligned} & \mathrm{g} \\ & \mathrm{ha} \\ & \mathrm{hg} \\ & \mathrm{hl} \\ & \mathrm{hm} \end{aligned}$	ounce, troy peck pennyweight pint, liquid pound	02 tr peck dwt $\operatorname{liq} \mathrm{pt}$ lb
centimeter chain cubic centimeter cubic decimeter cubic dekameter	cm ch cm^{3} dm^{3} dam 2	hogshead hundredweight inch International Nautical Mile	hhd cwt in	pound, avoirdupaia pound, troy quart, liquid rod second	lb avdp lb tr liq $q t$ rod
			INM		
cubic foot cubic hectometer cubic inch cubic kilometer cubic meter	$\begin{aligned} & \mathrm{it}^{\mathrm{it}} \\ & \mathrm{hm}^{2} \\ & \mathrm{in}^{2} \\ & \mathrm{~km}^{2} \\ & \mathrm{~m}^{\mathbf{2}} \end{aligned}$	Kelvin, degree kilogram kiloliter kilometer link	$\begin{aligned} & { }^{\circ \mathrm{K}} \\ & \mathbf{k g} \\ & \mathbf{k l} \\ & \mathbf{k m} \\ & \text { kink } \end{aligned}$	square centimeter square decimeter square dekameter square foot square hectometer	$\begin{aligned} & \mathrm{cm}^{2} \\ & \mathrm{dm}^{2} \\ & \mathrm{dam}^{2} \\ & \mathrm{ft}^{2} \\ & \mathrm{hm}^{2} \end{aligned}$
cubic mile cubic millimeter cubic yard decigram deciliter		liquid liter meter microgram microinch	liq liter m μ $\mu \mathrm{m}$	squaré inch square kilometer square meter square mile square millimeter	in^{2}
					km^{4}
					m^{3}
					mi^{2}
					mm^{2}
decimeter dekagram dekaliter dekameter dram, avoirdupois	dm dag dal dam dr avdp	microliter micron mile milligran milliliter	$\begin{aligned} & \mu \mathrm{l} \\ & \mu \mathrm{~m} \\ & \mathrm{mi} \\ & m \mathrm{~m} \\ & \mathrm{ml} \end{aligned}$	square yard stere ton, long. ton, metric ton, short yard	yd^{2}
					stere
					long ton
					${ }_{\text {a }}$
					short ton

PRACTICAL ELECTRICAL UNITS

Quantity	Sym	Equation (сळв)	Practical unit
Current.	I, i	$\begin{aligned} & I=E / R_{i} I=E / Z \\ & I=Q / t \end{aligned}$	Amp
Charge	Q. 8	$Q=i t ; Q=C E$	Coulomb
Electromotive force.	E.	$E=I R ; E=W / Q$	
Resistance	R. r	$R=E / I ; R=\alpha / A$	Ohm
Resirtivity	p	$\rho=R A / l$	Ohm-cm
Conductance.	G. 0	$G=r A / l$	Mho, siemens
Conductivity.	$\stackrel{r}{ }{ }^{-}$	$r=1 / p=l / R A$	Mho per cm
Capacitance.... Capacitivity (dielectric constant)	C ϵ_{r}	$C=Q / E$ Numeric	Farad
Self-inductance .	L	$L=-N \frac{d \phi}{d i}$	Renry
Mutuel inductance.	M	$M=K \sqrt{L_{2} L_{2}}$	Heary
Energy .			
	whr	$\text { whr }=e i T$	Watthour
	kwh	$\begin{aligned} & \mathrm{kwh}=e i T / 1.000 \\ & P=E I \end{aligned}$	Kilowatt-hour
Apparent power.			Volt-amp
Active power....	$\boldsymbol{P}, \boldsymbol{p}$	$\left\{\begin{array}{l} P=\frac{\omega w}{d l}=e i \\ P=E I \cos \theta \end{array}\right.$	Watt
Reactive power	$j Q$	$Q=E I \sin \theta$	Var
Power factor	pt	$\mathrm{p} f=\frac{P}{E I}$	
Time constant.			Sec
Frequency.	f	$f=1 / T$	Cycles per aec
Period...	T	$T=1 / f$	Sec
Angular velocity.	ω	$\omega=2 \pi f$	
Reactance, inductive......	\boldsymbol{X}_{L}	$X_{L}=2 \pi f L$	Ohm
Reactance, capacitive.	\boldsymbol{X}	$X \mathrm{Xc}=1 /(2 \pi f C)$	Ohm
1 mpedance.	\boldsymbol{z}	$Z=E I^{\prime}$	Ohm
Conductance. Susceptance.	$\underset{B}{G}$	$\left\|\begin{array}{l} =\sqrt{R^{2}+(X L-X C)^{2}} \\ 0=R / Z^{2} \\ B=X / Z^{2} \end{array}\right\|$	Mho Mho
Admitlance.	\boldsymbol{Y}	$\begin{aligned} Y & =I / E \\ & =\sqrt{G^{2}+B^{2}} \end{aligned}$	Mho

Section 6
REFERENCE SOURCES

Section 6

BASIC REFERENCE SOURCES

Since the number of reference sources related to the many scientific and engineering disciplines with which the human factors engineer may come in contact is almost limitless, only a few, carefully selected basic reference documents are included here. However, these in turn will lead the reader to many others.

Two lists are included. The first consists primarily of commercial or trade publications. The second list is comprised of military standards, reports, regulations and specifications relating to applied human factors in the development of military systems.

It is recognized that every experienced human engineering practitioner will have his own favorite reference texts, and the omission of any such documents frum these lists is not in any way intended to minimize their value. Rather it is an attempt to provide the less experienced practitioner with a list of those publications which the great majority of human factors engineers consider essential.

Experience will provide the background for making personal selections and building individual libraries and reference files.

GENERAL PUBLICATIONS

(alphabetically arranged)

Sell, S.B. \& Berry, C.A. - Human Factors in Jet and Space Travel. The Ronald Press Co., New York, 1961

Spector, W.S. (Ed) - Handbook cf Biological Data. WADC Technical Report 65-273, 1956 (ASTIA AD 110501)

Taichner, W.H. \& Olson, D. - Predicting Human Performance in Space Environments. NASA. CR-1370, Clearinghouse for Scientific and Technical Information, Springfield, Va

Tiffin, J. \& McCormick, E.J. - Industrial Psychology. PrenticeHall, Fnglewood Cliffs, N.J., 1965

Webb, P. (Ed) - Bioastronautics Data Book. Scientific \& Technical Information Division, NASA, 1964

Webb, Paul, Associates - NASA Life Sciences Data Book (NASA SP-3006). National Aeronautics and Space Administration, Office of Manned Space Flight, Washington, D.C., 1964

Weik, M.H. - Standard Dictionary of Computers \& Information Processing. Hayden Book Co., New York, 1969

Woodson, W.E. \& Conover, D.W. - Human Engineering Guide for Equipment Designers. University of California Press, Berkeley, Califormia, 1964

Wulfeck, J.W. et al - Vision in Military Aviation. Technical Report No.58-399, Aerospace Systems Division, WPAFB, Ohio, 1958

The Human Factors $S_{:}=$iety, Journal of the Human Factors Society, Cumulative Index to Human Factors, Volumes 1-10 (1958-1968). P.O. Box 1396, Santa Monica, California, 90406

MILITARY PUBLICATIONS

AFSC DH 3-3	Ground Equipment and Facilities. Air Force Systems Command Design Handbook Series 3-0. Space \& Missile Systems, Andrews AFB, Washington, D.C., 20331.
MIL-STD 803A-3	(USAF) Human Engineering Design Criteria for Aerospace Vehicles and Vehicle Equipment (in prep).
AFSC DH l-6	System Safety. Air Force Systems Command/ NASA Design Handbook Series 1-0. Space \& Missile Systems, Andrews AFB, Washington, D.C., 20331.
AFSC 80-3	Handbook of Instructions for Aerospace Personnel Subsystem Design. Headquarters, Air Force Systems Command, Andrews AFB, Washington, D.C.
AFR 30-8	Development of a Personnel Subsystem for Aerospace Systems.
AFM 35-99	Human Reliability Program, Chapter 6, Attachment 3.
NAVEXOS P-643	Handbook of Human Engineering Data for Design Engineers. Commanding Officer, Naval Aviation Supply Depot, 5801 Tabor Avenue, Philadelphia, Pa., Attn: Code CDS.
MIL-STD 267A	Standard Human Engineering Design Criteria.
HEL STD S-1-63B	Maximum Noise Leval for Army Materiel Command Equipment. US Army Human Engineering Laboratories, Aberdeen Proving Ground, Maryland.
HEL STD S-2-64	Human Factors Engineering design Standard for Vehicle Fighting Compartments. US Army Human Engineering Laboratories, Aberdeen, Md.
HEL STD S-3-65	Human Factors Engineering Design Standard for Missile Systems and Related Equipment. US Army Human Engineering Laboratories, Aberdeen Proving Ground, Md.
HEL STD S-4-65	Human Factors Engineering Requirements for the Development of US Army Materiel. US Army Human Engineering Laboratories, Aberdeen Proving Ground, Md.
HEL STD S-6-66	Human Factors Engineering Design Standard for Wheeled Vehicles. US Army Human Engineering Laboratories, Aberdeen Proving Ground, Md.

MIL-A- 8806	Acoustical Noise Level in Aircraft, General Specification sor
MIL-H- 8810	Handles, Control, Aircraft
MIL-E- 16400	Electronic Equipment, Naval Ship and Shore, General Specification
MIL-K- 25049	Knob, Control, Equipment, Aircraft
MIL-C- 25050	Color, Aeronautical Lights and Lighting Equipment, General Requirements For
MIL-H- 25095	Handbook, Field Maintenance Instructions (for Airborne Electric Equipment) (supersedes MLL-H-7490)
MIL-D-26239	Data, Qualitative and Quantitative Personnel Requirements Informstion (QQPRI)
MIL-L-27160	Lighting, Instrument, Integral, White, General Specification for
MIL-S-38130	Safety Engineering of Systems and Associatrd Subsystems and Equipment, General Requirements for
MIL-H-46819	Human Factors Engineering in Development of Missile Systems
MIL-H-46855	Human Engineering Requirements for Military Systems, Equipment and Facilities
MIL-STD- 12	Abbreviations for Use on Drawings and in Technical-Type Publications
MIL-STD-101	Color Code for Pipelines and for Compressed Gas Cylinders
MIL-STD-203	Aircrew Station Controls and Displays for Fixed Wing Aircraft
MIL-STD-250	Cockpit Controls Location and Actuation of, for Helicopters
MIL-STD-411	Aircrew Station Signals
MIL-STD-470	Maintainability Program Requirements for Systems and Equipment
MIL-STD-721	Definitions of Effectiveness Terms for Reliability, Maintainability, Human Factors, and Safety
MIL-STD-740	Airborne and Structurebcrne Noise Measurement and Acceptance Ciriteria of Shipboard Equipment
MIL-STD-783	Nomenclature and Abbreviations in Aircrew Stations

MIL-STD-795	Color
MIL-STD-850	Aircrew Station Vision Requirements for Military Aircraft
MIL-STD-1247	Identification of Pipe, Hose, and Tube Lines for Aircraft, Missile, and Space Systems
MIL-STD-1472	Human Engineering Design Criteria for Military Systems, Equipment and Facilities
MS-33553	Numeral and Letter, Aircraft Instrument Dial, Standard Form of
Fed Std No. 3	Color, Aeronautical Lighting
Feu std No. 595	```Color (Requirements for Individual Color Ships)```
MSFC-STD-267	Human Engineering Design Criteria, Standard for
$\begin{aligned} & \text { USAO TECH MEMO } \\ & 21-61 \end{aligned}$	Manual of Standard Practice for Human Factors in Military Vehicle Design
AR 385-16	Safety for Systems, Associated Subsystems and Equipment
AR 746-5	Color and Marking of Army Materiel
AMCR 70-1	Application of Human Factors Engineering
AMCR 385-12	Safety
MICOM Reg 70-1	Human Factors Engineering
AFBSD 61-99	Human Engineering, Development of System, General Specification for
AFBSD 62-41	System Safety Engineering, General Specification for Development of Ballistic Missile Systems
AFiSD 62-53	WS-133B Maintainability Design Criteria
AFBSD 62-79	Life Support Subsystem Criteria (WS-133B)
AFBSD 62-101	System Analysis; Procedures for System Definition
AFBSD 61-94	Personnel Planning Information for Space System Research and Development Test Sites
AFBSD 62-44	Human Engineering for Air Force Satellite Control System
BSD 65-10	Personnel Subsystem Test and Evaluation
BSD 65-14	Personnel Subsystem Definition and Development
AFM 11-1	Air Force Glossary of Standardized Terms and Definitions

AFM 11-2	Air Force Manual of Ab
AFM 32-3	Ground Safety - Accident Prevention Handbook
AFM 127-201	Missile Safety Handbook
$\begin{aligned} & \text { AFSCM 80-1 } \\ & \text { (HIAD) } \end{aligned}$	Handbook of Instructions for Aircraft Designers Vol. I - Piloted Aircraft Vol. II - Guided Missiles Vol. III - Aircraft Design Control Drawings
AFSCM 80-5 (HIGED)	Handbook of Instructions for Ground Equipment Designers
AFSCM 80-6 (HIAGSED)	Handbook of Instructions for Ground Support Equipment Designers
AFSCM 80-7 (HIAVED)	Handbook of Instructions for Aerospace Vehicle Equipment Designers
AFSCM 80-8 (HIMD)	Handbook of Instructions for Missile Designers
AFSCM 80-9 (HIASD)	Handbook of Instructions for Aerospace System Designers
AFSCM 122-1	The Nuclear Weapons Safety Program
AFSCM 375-5	System Engineering Management Manual
NAVSHIPS $943 \angle 4$	Maintainability Design Criteria Handbook for Designers of Shipboard Electronic Equipment
MIL-HDBK-220	Glossary of Training Device Terms
ANA 261	Abbreviations and Contractions, Approved ${ }^{\text {th }}$ List of
NAVSHIPS 94324	Human Engineering Guidelines for Maintainability
WADC TR 52-204	Handbook of Acoustic Noise Control (AD 18206)
ASD TR 61-381	Guide to the Design of Mechanical Equipment for Maintainability
AFSWC TR 59-11	Hunan Factors Handbook for Design of Transporting, Positioning, and Lifting Ground Support Equipment
AFSWC TR 59-12	Human Factors Handbook for Design of Testing and Monitoring of Ground Support Equipment
AFSWC TR 59-13	Human Factors Handbook for design of Prutective and Storage Ground Support Equipment

OPNAV INST 5250.1 Guidance and Instructions Pertaining to Work Study in Fleets
 NAVSHIPS 3910.3 Human Engineering Requirements for Bureau of Ships Systems and Equipments, Implemantation of

NOTE:
A useful compendiúm of military documents re-
lating to the various aspects of human factors is the following:
"Regulatory and Advisory Documents
Applicable to Human Factors, Per-
sonnel, and Training Requirements""
Third Edition, published by Man
Factors, Inc., 4433 Convoy St.,
San Diego, Calif. 9:2111, 1969.

[^0]:

[^1]: - $4 . \div u$

[^2]:

[^3]:

[^4]: Nomogram JV solves Equation 6:

 $$
 D=A(\mathbf{n}-1)
 $$

[^5]: Figure 6 - Summary of Stimulus Correlates for the Percepticin of Color by a Daylight-Adapted Observer

[^6]: * Data consist of any representation such as characters or analog quantities to which meaning may be assigned. Data may be expressed in digital, graphic, or symbolic forms, such as writings, sound, recordings, pictoral reproductions and drawings. information is the meaning assigned to data by known conventions.

[^7]: *Vehicles only function is transporting the gear.

