
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



1	 -

L IN

	
1	 X-732=71-181

	

i	 ;	 :^	
r^	

PREPRINT'	 -

sTr,

\.CAN THE(\.^At'TIT,U®E STABILITY OF THE

	

t ^^ ^i 	 l	 S.Q► S A-̂ PAECR^► FT

	

}	 4 •	 Y	 :-t	

j

,G .;',;F L E I S'H E

1' --1 ^ . of •	 ( 	 ^	 ti , •	 y`	 (	 .	 y.	 ,^	 ,'

_	 f	 / ,

_(7 ti.) l: f	
I	 -	 y ^ 	 - 	 rte'	 .

	

}	 f'^	 - MARCH-1971. 	 tt^^jĵ^^jj •̂^ ..
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DEFINITION OF PARAMETERS

IT = Spacecraft Transverse Moment of Inertia (19.57 slug-ft 2 )

?	 = Spacecraft Polar Moment of Inertia (21.19 slug-ft'- )

Iii, = Momentum Wheel Polar Moment of Inertia (0.007488 slug-ft 2 )

IWT = Momentum Wheel Transverse Moment of Inertia (0.003744 slug-ft 2 )

BIi, = Momentum Wheel Damping Constant (0.005 ft-lb-s/rad)

cif = Natural Frequency of the Wheel Inertia Rim (98 rad/s)

BD = Damper Damping Constant (7.38 X 10 - 5 ft-]b-s/rad)

Kit, = Momentum Wheel Spring Constant (52.82 ft-lb/rad)

KD = Damper Spring Constant (4.5 X 10 - 5 ft-lb/rad)

1	 = Displacement Between Damper and Center of Mass Along the z-Axis (1.148 ft)

in = Damper End Mass (0.01475 slugs)

ro = Displacement Between Damper Hinge Point and Center of Mass Along a Transverse
Axis (0.0820 ft)

r l = Length of Damper Pendulum (0.629 ft)

Tiy = Rate of Energy Dissipation in the Momentum Wheel

TD = Rate of Energy Dissipation on the Main Spacecraft Body

Cos = Relative Angular Rate of Momentum Wheel (209 rad/s)

W
X

•	 WY = Spacecraft Body Angular Rates

wZ

0	 = Nutation Angle (Angle between the spacecraft polar axis and the spacecraft momen-
tum vector)

X	 = Spacecraft Nutational Frequency

H = Momentum Wheel Angular Momentum

v



ON THE ATTITUDE STABILITY OF THE SAS A SPACECRAFT

by

G. Fleisher and A. K. Sen

Goddard Space Plight Center

INTRODUCTION

I

The Small Astronomy Satellite (SAS) is a dual-spin system being designed and developed
for Goddard Space Flight Center by the Johns Hopkins Applied Physics Laboratory. Basi-
cally, the system consists of a high speed rotor (momentum wheel) housed inside the main
spacecraft body. The momentum wheel speed is maintained constant by the use of a syn-
chronous hysteresis motor. The body is spun up about its longitudinal axis and the spin
rate (1/12 rpm) is maintained by the use of magnetic torque coils. A nutation damper is
designed intentionally to be an energy dissipator; however, if additional energy dissipation
exists due to nonrigid elements in the momentum wheel, the attitude stability of the entire
spacecraft becomes questionable. The purpose of this analysis is, therefore, to identify and 	

4

model energy dissipation for SAS A in the body as well as in the momentum wheel and then
to analyze the effect of energy dissipation on system stability.

STABILITY CRITERIA

In Reference 1, Likins has shown that the necessary and sufficient conditions for dual-
spin stability are expressed by

^w + 
Ix 

< 0,	 (1)
w	 n	 t

where To and Try are energy dissipation rates for the main body (due to the on-board 	 I
damper) and for the momentum wheel, respectively. The frequencies X are expressed as
follows:

" = IZ + I ts - 1 w + Iry 
w	 (2a)

D	 IT	 z	 IT	 s

1	 --



•h 1

^W 
=	 Z 1 	 _ 1 coz +	 tvI 

_ 1 ws .	 (2b)
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Because TD and Tip, are negative quantities, ND and X,V must both be positive for abso-
lute stability under all conditions. It can be seen that if either XD or X,V is negative (A it, is
negative for SAS A) and the corresponding energy dissipation rate is large enough, Equation
1 might exceed zero. If this condition should occur, the nutational motion would build up,
and, eventually, the spacecraft would tumble. For the SAS A design, XD is positive; however
X IV is negative. The following paragraphs will show how expressions for T,V and TD are de-
rived for SAS A. In reality, the rate of energy dissipation for the momentum wheel will
affect the rate of energy dissipation for the body damper and vice versa. In this analysis,
TAU and TD will be computed independently of each other and will then be combined, with
the use of Equation 1, to give the system stability. This is valid, as it can be shown that even
for an assumed notation angle of 10 deg, the maximum flexing angle a 111x of the inertia ring
(Figure 1) is at least an order of magnitude smaller than the nutation angle.

Figure 1—Motion of incremental mass on the momentum wheel rim

due to flexibility of wheel structure.
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ENERGY DISSIPATION FROM THE MOMENTUM WHEEL (Tw)

The only source of energy dissipation for the momentum wheel to be considered here
is the flexibility of the inertia ring support. Because of the structural damping in the inertia
ring support, energy will be dissipated as the support both flexes and rotates without ball-
bearing deformation. If the flexing angle a is assumed to be small, this source of energy
dissipation can be modeled as a linear two-degree-of-freedom damping system which is
subjected to an inertial torque. The equations of motion for this energy dissipation from
the rotating wheel can be written as (see Appendix A)

IIV	 + B ►V«x + [KW + IrvTW2]a = XH tan 0 sin (Ws, - A)t	 (3)

IIVTay + away + 
[ Kiv + 11vT W s 1 ay = -VHtan0 cos (Ws, - X)t,	 (4)

where the constants BW and KW , which refer to the damping (rate) constant and the spring
constant of the flexible rotating wheel, respectively, were determined experimentally.

The necessary experiment was performed by the Johns Hopkins University Applied
Physics Laboratory. The values of B W and K1V were determined for both ail' and V8C1111111

conditions. The values used in this analysis were determined in air and represent worst-case
values (maximum destabilizing effect). With the wheel stationary and with the spin axis
vertical, an impulse was applied to the outer rim, or inertia ring. Instrumentation was set
up to provide a record of the vertical displacement of the inertia rin g as a function of time.
The motion of the ring indicated the response was essentially that of a second-order system.
With this assumption, the natural frequency Wf is found from the response Curve, and KW

is computed:

Kiy = IWT W f(Sa)

Also, front the response curve, ^wf is determined, by noting the time at which the initial
displacement has been reduced by a factor of I /e; then B1U is computed as

B1U = 2I1VT^Wf.	 (5b)

In terms of the constants BW and K1y , the steady-state solution of Equation 3 can be ex-
pressed as follows:

XH tan 0a =	 sin (Wst - >y).	 (6)

x [(KW + 2IWT Ws X )2 + B2 Ws 
11/2

TV

From Equation 3, the average energy dissipation rate due to a torque about the x'-axis can
be computed as

3
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TfVx — — BIV«avg

-13^N X 1 1.12 W 2 tan' 0

(7)2[(KiV + 211V7,W,X)2 + B2(,)2,1 

Similarly, the average energy dissipation rate T,Uy due to a torque about the y'axis can
be derived from Equation 4. Thus, the total average energy dissipation rate for the momen-
tum wheel is finally obtained:

11U = TIVX + TIvy

_ -K 1 taji 2 0,	 (8)

where

BWx2WsH2

K1	
[(KIU + 211VT <' X)2 + Bit', WS 1.

ENERGY DISSIPATION CAUSED BY THE PENDULOUS DAMPER (TD)

As in the previous case, with an initial nutation angle of amplitude 0 for the spacecraft,
the equation of motion for the pendulous damper can be written as (see Appendix A)

I17 R + BDR + KDa = _ (µ1H tan 0) sin xt.	 (9)
IT

The steady-state solution of Equation 9 is given by

a = _	 jAW tan 0	
sin (At - y).	 (10)

IT [(KD	 1m X2 )2 + B2 ^2 1 112

Whence, the average energy dissipation rate due to the pendulous damper call 	 computed
as

2TD = -BD

-K2 tan  0,	 (11)

4
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where

K2 = -

BD µ2 
x4 H2

	

21T2 [(KD 	Itn 
N2 ) 2 + 1?2 N2

NUMERICAL RESULTS AND CONCLUSIONS

As a stability criterion, substitution of Equations 8 and 1 I into Equation 1 now yields

- 
Kl _ K2 < 0.	 (12)

	

x iv	 TD

Equation 2b indicates that the parameter XIV for the SAS A is negative for all wheel
speeds of w ., > 0.007 rpm. For this condition, th..e stability criterion (Equation 12) reduces
to

KI 
< K2 .	 ( 13)

x 1v	 XD

Figure 2 show:; the quantit es Kl /X,, and K2/XD as functions of the momentum wheel
speed w.. This plot indicates that, although the SAS A spacecraft will not be unstable for
any wheel speed in the range 200-2000 rpm,* the degree of stability will be different at
different speeds. A convenient measure of this degree of spacecraft stability may be ob-
tained in terms of a safety factor which is computed by taking the ratio of the maximum
allowable K l (K l = 0.0452 for SAS A) to the actual value of K 1 at the operating wheel
speed selected. Thus, at the chosen operating speed of 2000 rpm for the SAS A momentum
wheel, the value of K, is found to be 15.'8 X 10 -4 ft-lb/s, and the safety factor is about 30.

Thus, it can be concluded that there is no potential problem of instability in the SAS A
due to the flexing of the momentum wheel inertia ring.

REFERENCES

1. Likins, P. W. "Attitude Stability for Dual-Spin Spacecraft", A Spacecraft and Rockets

4(12):1638-1643, December 1967.

2. Bainum, P. M., Fueclhsel, P. G., and MacKison, D. L. "On the Motion and Stability of
a Dual-Spin Satellite with Nutation Damping", AIAA Guidance, Control and Flight-
Mechanics Conference, Held in Princeton, New Jersey, August 1969, Paper No.
69-857, American Institute of Aeronautics and Astronautics, New York, N.Y.

In actual practice, (lie spacecraft may be shown to be stable for the entire range of wheel speeds between 0 and 2000 rpm.
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Appendix A

Equations of Motion

Energy Dissipation by the Momentum Wheel

Consider an elementary mass din on the rim of the momentum wheel (Figure 1) which
is subjected to inertial forces. If V, j', and k' represent unit vectors for the momentum wheel
with 0 as the center of mass for the whole spacecraft, so that

r = i'r cos 0 + j'r Sill
	 + k'z,	 (A 1)

then the y' and z' components of the inertial forces may be foun(l, using small-angle approx-
imations, as

dF2 = -dm[(c.oz + wS)ZrSill

d]'-= dnt [z + <-c'r sin $ - " t- cos o

+ wP (w + cwS )r cos o	
-^

+ CJ' (Co i.. c.cS )rSill ^J,	 (A2)

where dm = p{trdrdo, p being the mass per unit area of a wheel rim of any arbitrary
thickness h.

In order to find the moment about the x'-axis clue to the above forces, note that
z = (r Sill 	 ; thus, the total moment about the x'-axis due to the forces acting on all the
elementary masses oil 	 wheel rim is given by

Mx = ff  (r Sill 	 - ff zdr2

IT
= (2ph f  2 r.3 d) ( 

/
Jo sine Od^^ [i V + cox + cry (wZ + coS ) + (CO, + Co, )2 ax ]

+ (fo sin 0 cos 0 do[- cad, + w^. ( co-, + 
c"'S )11

= IrVT [«x + (wZ + w 5 )2 ax + wX + W
Y
I (W + W )1,

7



where /IV7. = m(d l + d 2 )/4, in is the mass of the wheel rinl and d l and d2 are, respectively,
the inner and outer radius of the rim.

The torque given by Equation A3 must equal the sun of the damping and the restoring
(spring) torques arising from the values of B II , and KII , for the momentum wheel. Thus,

IIVT«v + B {V ax + [Kill + IIVT(Wz + WS )2 ]ax = - /IVT [W^. + W:,(wz + w,	 (M)

or, in terms of the angular rates Wx and W I , of the spacceraft body,

/IV 7. a, + B W ax + [Kill + IIV7.(Wz + c'as)21«r

_ -IIVT I [wl, - (wz + 2(os )Wx ] sin ws t + [wx + (co, + 2w s )wj, l cos wst

—/IVT [(cvji — 2ws wx ) sill 	 + (cax + 2w,wj,) cos ws t ) ,	 (A5)

(since wz << cod.

Now if, as an approximation, the spacecraft is assumed to be freely notating with a constant
amplitude 0 (though, in reality, 0 will be a slowly-varying time function because of the
presence of dissipation), we have

Wx = WO cos A t

Wj, = wo sin At,
	 (A6)

where

coo = (111IT ) tall 0,

and H (_ Iz Wz + I► v ws ) is the z component of the total angular nlomentunl vector.

Thus, by the use of Equation A6, the torque equation given by Equation A5 can be
reduced to

I{vT«r + I'IV ax F (K{V + Ilvrws )ax

_ - w 7 H tail 0 (X - 2w s ) sin (Ws - X )t =All tan 0 sill 	 - A)t,	 (M)
T

since Wz < A << Ws,

A 
= (Iz 	 /T)Wz + JIv-)S - I{yWs

1'r

and, for the momentum wheel,

11V = ...II,T.

I
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• Similarly, if the moments about the y ' -axis (for which Z = a
)
,P cos	 are considered

and Equation A2 is used, it call
	 shown that

47a), + 13 11,6, + (Kiy + 1111T W 2 )at = -NH tan 0 cos (cw s - X)t.	 (A8)

Pendulous Damper

For the case of a single pendulous damper, the equation of motion as derived by
Bainum ct al. (Reference 2) call 	 expressed as

	

IM + 1 ,, + Ko (3 = µ(w, - Wy WZ ),	 (A9)

where !/7 = mri µ = mr l 1 and a is the damper angle. It is assumed that (m/Al) < 1, cvz = 0,

and ro =0.

Again, with the angular rates of the spacecraft body as given by Equation A6, the
equation of motion for the pendulous damper can be reduced to

I^^R + B,( + KO _ -µ(X + co,)coo sin Xt	 ?

_ -	
1 
tan 0 

sin At,	 (A10)_ 
T	 _

(since WZ < X).

9
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