General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

GENERALLY APPLICABLE SOLUTIONS FOR

TWO-PERSON MEDIAN GAME THEORY
by
John E. Walsh

Technical Report No. 51
Department of Statistics THEMIS Contract

December 18, 1969

Research sponsored by the Office of Naval Research Contract N00014-68-A-0515 Project NR 042-260

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

GENERALLY APPLICABLE SOLUTIONS FOR TWO-PERSON MEDIAN GAME THEORY John E. Walsh

Southern Methodist University*

ABSTRACT

Two-person median game theory has application advantages over expected-value game theory. For example, median game theory is usable when the values in one or both payoff matrices do not satisfy the arithmetical operations (but can be ranked within each matrix). Also, the class of games where the players have optimum solutions is huge compared to (and includes) this class for expected-value game theory. Moreover, there is a much larger class where one player, but not necessarily the other, has an optimum solution (no expected-value analogue occurs). The overwhelmingly large class of median games, however, is that where at least one player does not have an optimum solution. That is, for one or both players, no strategy exists (pure or mixed) such that the player can simultaneously be as protective as possible for himself and as vindictive as possible toward the other player. To reasonably resolve such situations a "relative desirability" function, suitably chosen, is used to order pairs of payoffs, a payoff to each player, that occur for some of the combinations of pure strategies (according to increasing desirability to the player considered). This provides the basis for a compromise "optimum" solution and identification of a corresponding "optimum" strategy.

[^0]
INTRODUCTION AND DISCUSSION

The case of two players with finite numbers of strategies is considered. Each player selects his strategy separately and independently of the strategy choice by the other player. Median game theory and its application advantages over expected-value game theory are discussed in ref. 1 (also see ref. 2).

The class of median competitive games, and of one player median competitive (OPMC) games, are identified in ref. 1. These identifications are stated in terms of the pairs of payoffs that correspond to the strategy combinations for the players (called I and II). A game is OPMC for player I (II) if and only if he can assure, with probability at least $1 / 2$, that a pair in set I (set II) occurs. Set I (set II) consists of the pairs such that both the payoff to player I (II) is at least $\mathrm{P}_{\mathrm{I}}{ }^{\left(\mathrm{P}_{\mathrm{II}}\right)}$ and the payoff to player $I I$ (I) is at most $P_{I I}^{\prime}\left(P_{I}^{\prime}\right)$. Here $P_{I}\left(P_{I I}\right)$ is determined as the largest value that player I (II), acting as protectively as possible, can assure himself with probability at least 1/2. Also, a smallest value $P_{I}^{\prime}\left(P_{I I}^{\prime}\right)$ occurs in the payoff matrix for player I (II) such that vindictive player II (I) can assure, with probability at least $1 / 2$, that player I (II) receives at most this amount. A way of evaluating $P_{I}, P_{I I}, P_{I}^{\prime}, P_{I \prime}$, and of deciding whether a game is OPMC for a player, is given in ref. 1. A game is median competitive if and only if it is OPMC for both players.

When a game is OPMC for a player, the median optimum solution given in ref. 1 would seem satisfactory for that player. However, the overwhelmingly large class of games is that where an OPMC situation does not occur for at least one player.

A generalization of the OPMC concept is needed to obtain "optimum" solutions for players in games that are not OPMC for them. A method is given for supplementing the pairs of set I (set II) for player I (II) until (the first time) some pair of this set can be assured with probability at least 1/2. Specifically, a suitable "relative desirability" function is chosen for selecting the pairs for the set (according to increasing desirability to the player considered).

This function is such that all pairs of set I (set II) have the maximum desirability for player I (II). Let ($p_{I}, p_{I I}$) denote a general pair. For player I, relative desirability is a nonincreasing function of $P_{I}-p_{I}$ for fixed $p_{I I}-P_{I I}$, and a nonincreasing function of $p_{I I}-P_{I I}^{\prime}$ for fixed $P_{I}-p_{I}$. Likewise, for player $I I$, relative desirability is a nonincreasing function of $P_{I I}-p_{I I}$ for fixed $p_{I}-P_{I}^{\prime}$, and a nonincreasing function of $p_{I}-P_{I}^{\prime}$ for fixed $P_{I I}-p_{I I}$.

Subject to these weak restrictions, which are intuitively justified, the relative desirability function for a player can be of any form. Of course, the relative desirability function for one player need not be even roughly the same as that for the other player. Also, neither player needs to know anything further about the relative desirability function for the other player. In fact a player does not need an explicit function as long as his ordering of pairs satisfies the restrictions.

A compromise median optimum solution is obtained through ordering of the pairs, separately for each player, according to increasing desirability. Also, a corresponding median optimum strategy is developed. These results and statements about their derivation are given in the next, and final, section.

RESULTS

Since the game is not OPMC for the player considered, say player I, a pair of set I cannot be assured with probability at least $1 / 2$. However, pairs not in set I can be ordered according to their desirability to player I.

Consider the payoff matrix for player I. The rows of this matrix correspond to the strategies for player I while the columns are the strategies for the other player. First mark the payoffs in this matrix that occur for the pairs of set I. Then, according to decreasing desirability, mark the payoffs for the other pairs, where all pairs of equal desirability are marked at the same time. Continue until the first time that marks in all columns can be obtained from two or fewer of the rows. Now, remove the marks for the least desirable pair(s) of those that received marks. Then, by the following method, determine whether some one of the remaining marked pairs can be assured with probability at least $1 / 2$. The method is to replace every marked value in the matrix by unity and all others by zero. The resulting matrix of ones and zeroes is considered to be for a zero-sum game with an expected-value basis and is solved for the value of the game to player I. Some one of the remaining marked pairs can be obtained with probability at least $1 / 2$ if and only if this game value is at least $1 / 2$.

Suppose that player I cannot assure a remaining marked pair with probability at least $1 / 2$. Then the maximum level of desirability that can be assured with probability at least $1 / 2$ is the level corresponding to a pair that just had its markings removed. Otherwise, remove the
marks for the least desirable pair(s) of those still having marks. Then, as just discussed, determine whether some one of the remaining marked pairs can be assured with probability at least $1 / 2$. If not, the maximum level of desirability that can be assured with probability at least $1 / 2$ is the level corresponding to a pair that just had its markings removed (at this step). If a probability of at least $1 / 2$ can be assured, continue in the same way until some one of the remaining marked pairs cannot be assured with probability at least $1 / 2$. Then, the maximurn desirability level that can be assured with probability at least $1 / 2$ is tine level for a pair that just had its markings removed (at this last step).

Use of "level of desirability," rather than statement of a lower bound for p_{I} and an upper bound for $p_{I I}$, seems appropriate, even though these bounds have determined values. The reason is that knowledge of the lower value of p_{I} and the lower value of $p_{I I}$ for a set of pairs does not necessarily establish the minimum level of desirability for the pairs of this set.

Now consider determination of a median optimum strategy for player I. Use the matrix marking that (ultimately) resulted in the smallest set of marked pairs such that a pair of this set can be assured with probability at least 1/2. Replace the marked values by unity and the others by zero, in the matrix for player I. Treat the resulting matrix as that for a zero-sum game with an expected-value basis. An optimum strategy for player I in this zero-sum game is a median optimum strategy for that player. The verification for these results is of the same nature as for the results of ref. 1. Suitably interpreted, Theorems 1 and 2 of ref. 1 provide this verification. For brevity, no specific justification is given.

REFERENCES

1. Walsh, John E., "Median two-person game theory for median competitive games." Report 45, Themis, Statistics Department, Southern Methodist University, Dallas, Texas, U.S.A., 1969, 13 pp. Submitted to Journal of the Operations Research Society of Japan.
2. Walsh, John E., "Discrete two-person game theory with median payoff criterion," Opsearch, Vol. 6 (1969), pp. 83-97.
(Security clasalfication of illte, body of abstraet and indexine annotntion must be entered when the overall report ts clasalfled)

SOUTHERN METHODIST UNIVERSITY

UNCLASSIFIED
26. GROUP

UNCLASSIFIED

Generally Applicable Solutions for Two-Person Median Game Theory
4. DESCRIPTIVE NOTES (Type of roport and Inclueive datee)

Technical Report
5. AUTHORIS) (First name, middle Initlal, leet name)

John E. Walsh

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.
11. SUPPLEMENTARY NOTES \quad 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
${ }^{3}$ ABSTAACLT TWO-person median game theory has application advantages over expected-value game theory. For example, median game theory is usable when the values in one or both payoff matrices do not satisfy the arithmetical operations (but can be ranked within each matrix). Also, the class of games where the players have optimum solutions is huge compared to (and includes) this class for expected-value game theory. Moreover, there is a much larger class where one player, but not necessarily the other, has an optimum solution (no exp':cted-value analogue occurs). The overwhelmingly large class of median games, however, is that where at least one player does not have an optimum solution. That is, for one or both players, no strategy exists (pure or mixed) such that the player can simultaneoudly be as protective as possible for himself and as vindictive as possible toward the other player. To reasonably resolve such situations a "relative desirebility" function, suitably chosen, is used to order pairs of payoffs, a payoff to each player, that occur for some of the combinations of pure strategies (according to increasing desirability to the player considered). This provides the basis for a compromise "optimum" solution and identification of a corresponding "optimum" strategy.

[^0]: * Research partially supported by Mobil Research and Development Corporation. Also associated with ONR Contract N00014-68-A-0515 and NASA Grant NGR 44-007-028.

