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DISCRETE TWO-PERSON GAME THEORY WITH MEDIAN PAYOFF CRITERION

John E. Walsh

Southern Methodist University and MATHEMATICA

ABSTRACT

The minimax concept for solution of discrete two-person games is based on

expected value considerations and has a zero-sum condition for payoffs. This

approach often is inapplicable due to strong violation of the zero-sum condition.

By use of a different criterion, based on median value considerations, a two-

person game theory can be developed that seems appropriate for a class of situa-

tions called competitive. It is also applicable for a hugely broader class of

practically important situations called median competitive. Consider cases where

each player is either protective toward himself or vindictive toward the other

player. A largest value P I ( PII ) occurs in the payoff matrix for protective

player I (II) such that he can assure himself at least this payoff with prob-

ability at least 50 percent. A smallest value PI (PI I ) occurs in the matrix

for player I (II) such that vindictive player II (I) can assure, with probability

at least 50 percent, that player I (II) receives at most this payoff. For com-

petitive and median competitive games, a player is simultaneously protective and

vindictive. Values of P I, P 	 PI I, and median optimum strategies are

nearly always determined without great effort. This can be done by solution of

zero-sum games (expected value basis) with identified payoff matrices containing

only ones and zeroes. Deciding on payoff values is simplified for the median

approach. Except for P I, PII , P I, and PI I it is sufficient to know the relative

order of the values for each payoff matrix. The median approach has the strong

practical advantage of being applicable even when payoffs in different matrices

cannot meaningfully be added or subtracted (such as when only relative ordering

is known for one or both matrices).

This research was aided by valuable comments from John P. Mayberry.

Research associated with ONR contract N00014-68-A-0515. Based on
methods developed under NASA Grant NGR 44-007-028.

Research performed under ONR contract N00014-68-C-0379.
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INTRODUCTION AND DISCUSSION

This paper presents a form of discrete two-person game theory that

is based on median value considerations (motivated by the median estimation 	
1

concept in statistics). Two extreme situations arise, depending on whether

a player is acting protectively for himself or vindictively towards the

other player. A protective player is interested in the largest payoff

such that he can assure himself at least this value with a probability

of at least 50 percent. A vindictive player is interested in the smallest

payoff such that he can assure, with a probability of at least 50 percent,

that the other player receives at most this value. A class of "Median

Optimum" strategies can be defined, for either the protective or vindictive

approach.

For a class of games called "competitive" (also for a much broader

class called "median competitive ,, ), there exist strategies which are

simultaneously median optimum from the protective viewpoint and from the

vindictive viewpoint. Consequently, for those games, identification of a

median optimum strategy as protective or vindictive is unnecessary. In

spite of certain parallels between the median-optimum viewpoint and the

minimax viewpoint, a pure strategy may be median optimum without necessarily
	 '	 I

being a minimax strategy.

The first introductory material outlines the median approach and some

of its properties. Then, some comparisons are made with the standard

minimax form of two-person game theory. 	 f

Each player has a separate matrix that states the payoff he receives

for each combination of a pure strategy of his with a pure strategy of

the other player. Both of these matrices are considered to be known to 	 }

I
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each player. The pair of payoffs to the players that occurs for a given

combination of a pure strategy for each player is an outcome of the game.

The first value in an outcome is the payoff to player I and the second

value is the payoff to player II.

Each player then imposes a preference-ordering on the outcomes. The

preference-ordering of a protective player I is considered to be such that

his own payoffs are nondecreasing and, by convention, the preference-ordering

of the protective player II is such that his own payoffs are nonincreasing.
I

In contrast, a vindictive player I imposes an ordering such that the payoffs

to player II are nonincreasing, and a vindictive player II imposes an

ordering where the payoffs to player I are nondecreasing. If there are

tied vali!es among the payoffs considered, there may be many alternative

orderings satisfying any one of those conditions. A vindictive player could

order within ties so as to be as advantageous to himself as possible. A

protective player could order within ties so as to be as disadvantageous

to the other player as possible. On the other hand, a protective player

could order within ties so as to be as advantageous to the other player as

possible, etc. Finally, more than one outcome could possibly have the

same pair of payoffs. A player may select among the possible orderings

of such "double ties" on the basis of the strategy combinations correspond-

ing to these outcomes. In all cases, each player (identified as protective

or vindictive) chooses a sequence that is called his preferred sequence.

The preferred sequences provide the basis for application of the median

approach.

A game is said to be competitive if the outcomes can be sequence

ordered so that the payoffs for player I are nondecreasing and the payoffs
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for player II are nonincreasing. The possible ordering of outcomes is

unique when the payoffs of player I are strictly increasing or those of

player II are strictly decreasing; then we assume that the preference

orderings of the two players are the same. However, more than one eligible

sequence order is possible when ties in payoff value occur for both players.

That is, the same outcome value could possibly occur for more than one

combination of strategies. Among these sequences (which are the same

in values of outcomes), each player selects his preferred sequence on the

basis of the strategy combinations corresponding to the pertinent tied

outcomes and from related probability considerations. If the preferred

sequence is still not unique, it can be chosen arbitrarily.

A largest payoff PI (PII) occurs in the matrix for player I (II) such

that he can assure at least this value with a probability of at least 50 per-

cent. A smallest' payoff PI (PI I ) occurs in the matrix for player I (II)

such that player I (II) receives at most this amount.

Let us consider determination of PI (PII) for a protective player

I (II). There exists a subset of outcomes in the preferred sequence for

protective player I (II) that consists of a determined outcome and all

outcomes above (below) it. Occurrence of an outcome in this identified

subset can be assured with a probability of at least 50 percent, but such

is not the case when the determined outcome is removed. A protective player

is considered to select his preferred sequence so as to minimize the number

of outcomes in the identified subset. When more than one eligible subset

has the minimum number of outcomes, a subset that has the highest assured

probability is used for the preferred sequence. The value of PI (PII)

is the payoff for player I (II) in the lowest (highest) outcome of his

i
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identified subset. Incidentally, one or more outcomes consecutively

adjacent to the identified subset could also have payoff PI (PII) for

player I (II).

Now, consider determination of the payoff PI I (PI), in the

other player's matrix, that is associated with a vindictive player I (II).

There exists a subset of outcomes in the preferred sequence for vindic-

tive player I (II) that is identified in the same way as was given for

evaluating P I and P II . The value of PI I (PI) is the payoff to player

II (I) in the lowest (highest) outcome of the identified subset for player

II (I) .

Detailed statement of results for the general case occurs in the

next section. However, some additional information about results for

competitive games is given here. When each player has a pure median

optimum strategy, player I (II) can guarantee (100 percent probability) at

least PI - 
P I (pII - pII), When player I (II) has a pure median optimum

strategy but player II (I) does not, player I (II) can guarantee at least

P
I (PII), and player II (I) can assure at least PI I (Pi) with a probability

greater than 50 percent. When neither player has a pure median optimum

strategy, • player I (II) can assure that he receives at least PI (pII)

with probability at least 50 percent, and that player II (I) receives at

most PI I (PI) with probability at least 50 percent.

It is instructive to consider some characteristics of the median

of a probability distribution for a situation where both players use mixed

strategies. The median value of a distribution is not necessarily unique.

That is, all the permissible values in an extensive interval can be medians

of a probability distribution. This property can be convenient. Suppose
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that the game is competitive and consider the set of median values for

player I (II). Also, suppose that both players use mixed strategies that

are optimum for the median approach. Then, all payoffs that are at

least equal to PI ( pIi) and at most equal to PI (PII) are medians of the

probability distribution of the payoff to player I (II). Thus, as would b--

expected in competitive situations, player I (II) seeks to maximize the

upper payoff PI (PII) in his set of median values and to minimize the lower

payoff PI T. ( PI) in the set of median values for player II (I). The properties

of a median allow this to be done simultaneously in such a way that P
I	 II

(p )

and P1 (pI i ) can be far apart in an ordering of the payoff values for

player I (II). It is thus possible for P I to be in the upper payoff

values for player I simultaneously with P II being in the upper values for

player II. In fact, this seems to occur for many kinds of combinations of

payoff matrices for players I and II in competitive games.

Required information about payoff matrices is not very great when

the median approach is used. It is sufficient to first determine the rela-

tive order (includes equality) of the values for each matrix, which

determines the locations of 
PI' pI, 

PII, and PI I . Deciding on values

for 
P I , PI, 

PII, and PI I completes the .i.nformation that is required

about the payoff matrices.

It is more difficult to determine the appropriateness of the median

approach when the game is :iot even roughly of a competitive nature.

Then, a low payoff for one player does not necessarily correspond to a

high payoff for the other. Thus, the median payoff, say to player I,

might be substantially different for the protective and vindictive situa-

tions. Also, cases where cooperation would increase the payoff to both

^I

i n
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players can occur. However, the median approach can be useful when

the players are not allowed to communicate (so that a player only knows

his own payoff matrix). Also, results like those developed for competitive

games can be obtained for a rather broad class of situations that are

termed median competitive.

The most general form of median competitive games, and corresponding

properties, have not been determined yet and provide a subject for future

investigation. An example of games that are median competitive, but not

necessarily competitive, is given here. The example consists of all

games that "generate" competitive games. A game is said to generate

a competitive game if, for both players, there exist sequences that are

eligible to be preferred sequences and for which the following two condi-

tions are satisfied: First, the payoffs of player I (II) that are in outcomes

above (below) the outcome determining PI (PII) are at least (most) equal to

PI ( PII ), and the payoffs in outcomes below this outcome are at most (least)

equal to PI (PII). Second, the payoffs of player I (II) that are below

(above) the outcome determining P I (PI I ) are at least (most) equal to

PI (PI I ), and the payoffs in outcomes below this outcome are at most

(least) equal to PI (PI I ). Then, new outcomes can be formed, by pairing

the payoffs of player I with those of player II, that satisfy the requirements

for a competitive game but leave the outcomes that determined 
PI' PII' PI'

PI I fixed and at the sane sequence positions. This is done so that the

groups of payoffs (without regard to order) in the identified subsets for
.	 t

I

the competitive game are the same as the groups in these subsets for the

original game. Since the results developed depend only on the outcomes

that determine PIl 
PII y P II 

PII and on the groups of payoffs in the
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identified subsets, the results for this competitive game also apply to

the game from which it was generated.

Perhaps the most attractive feature of the median approach is its

ability to handle competitive and median competitive games where payoffs

from different matrices cannot be meaningfully added or subtracted. This

permits use of a game theory approach for an important and extensive class

of Situations. In fact, many of the situations occurring in economics and

the social science areas (psychology, education, etc.) have matrices of

this kind, maybe due to the fact that only relative order can be determined

within a payoff matrix. However, situations of this class occur in virtually

all areas where game theory is potentially useful (including military appli-

cations).

Now let us compare the median approach with the minimax procedure

where a zero-sum condition is imposed on the two payoff matrices and the

criterion is the expected value of the payoff to player I. Discus^ion of

expected value and median value properties occurs first.

The outcome that results when one or both players use a mixed

strategy is a random value. This outcome can be identified by a repre-

sentative property of its probability distribution. The mean of this

distribution (expected value of the random outcome) is one representative

property that could be considered. The distribution median (not necessarily

unique) is another representative property that is useful. Each of these

properties has desirable and undesirable features. Neither has been shown

to be uniformly preferable to the other. The median is especially appropriate

when there is not much interest in the extensiveness of distribution tails.

The mean can be preferred when large deviations from the central part of the

i

i
i
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distribution are important, even though their probability of occurrence is

very small. Often, choice of whether to consider the expected value or the

median value is based on the utility and convenience aspects of the situation.

If, for the situation considered, useful and much more extensive results can

be obtained for the median, statisticians seldom hesitate to consider it

rather than the distribution mean.

Discrete two-person game theory is a case where median considerations

seem to lead to more extensive results of a worthwhile nature than do

expected value considerations. The median approach is applicable for the

rather broad class of competitive and median competitive games, including

games where one or both payoff matrices have ordinal numbers. The

minimax approach required cardinal numbers in both matrices but still

only applies to the small subclass of competitive games where the matrices

at least roughly satisfy a zero-sum condition. Values must be determined

for all (or nearly all) of the outcomes when the minimax approach is used.

Except for a few payoffs (usually four, and never more than four) only

relative order among the payoffs in each matrix must be determined for

the median approach.

For games of a zero-sum type, it would seem that a combined use

of the expected value c-iterion and the; median approach could be desirable.

That is, the strategy used by a player is at least approximately optimum

in an expected value sense and :Also assures at least an identified payoff

with a probability that has a lower bound not greatly below 5G a,.:^rcent.

The resulting median payment would ordinarily be less than P I for player

I and less than PII for player II. Such strategies are especially desirable

when values of payoffs are only roughly known but relative ordering is

1,I
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precisely known within each matrix. The determination of strategies with

these combined properties is another subject for future investigation.

Payoff values that represent "catastrophe" can appear in a payoff

matrix. A modification of the median approach is needed to avoid the

occurrence of such extreme payoffs. One possible method is to not use

any row that contains a catastrophic payoff. The usual median approach

would be applied to the payoff matrices resulting when these rows (columns

in the matrix for the other player) are removed. However, further investi-

gatiuns to obtain suitable modifications would seem to be needed.

Only discrete games are considered here. However, extension of the

median approach to continuous cases, and combinations of continuous and

discrete cases, seems definitely possible and worthwhile. This extension

is a further subject for future investigation.

The next section contains statements of how to determine P I, PI,

PII , PI I , and optimum strategies for each player. Also, properties of

results using the median approach are stated more precisely. The final

section contains the basis for the results (in terms of three theorems).

10
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RESULTS

Let the payoff matrix for player I (II) be stated so that rows

represent pure strategies for player I (II) and columns are pure strategies

for player II (I). For all applications, a marking of some of the values

in the payoff matrices is made initially, with this being done separately

for each matrix. The case of a protective player is considered first.

For protective player I (II), first mark the position, in his matrix,

of his payoff in the last (first) outcome of his preferred sequence of out-

comes. Then do this for the next to the last (first) outcome for player

I (II), etc. Continue consecutively in his (protective) preferred sequence

of outcomes until the first time that this player can assure obtaining a

marked value with probability at least 1/2. The value of PI (PII) is the

last payoff marked in the matrix for player I (II). For competitive games,

PI (PI I ) is the payoff to player I (II) in the last outcome that was marked

in the matrix of player II (I).

Determination of P I (PII ), and the corresponding pairs, is perhaps

best accomplished by initially marking the matrix for player I (II) until

the first time that two or fewer rows contain marks in all the columns.

(The value of PI (PII) is greater than or equal to the last payoff marked

in this manner, and can be greater; based on Theorem 1.) Next, working

forward (backward) in the preferred sequence for protective player I (II),

remove the mark from the payoff (unique) that was marked last. 'Then,

replace the remaining marked values with ones and replace all other

payoffs in the matrix by zeroes. Consider this matrix of ones and zeroes

to be for a zero-sum game with an expected value basis. Solve for the

IM
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value of the game. If this game-value is less than 1/2, the marking is

completed by again marking the payoff whose mark was removed (which

also determines the corresponding outcome). If the game-value is at

least 1/2, continue in the same way (removing the mark from the last

payoff that was considered among those still marked, forming a matrix with

ones and zeroes, etc.). If the resulting game-value is less than 1/2 the

payoff whose mark was last removed is marked again and the marking is

completed. This marking procedure is continued until a game-value less

than 1/2 occurs. (This procedure, and that in the next paragraph, are

based on Theorem 2.) From examples, it seems that P I and PII are often

the payoffs that resulted in the first time that two or fewer rows contain

marked values in all columns of the respective matrices.

The zero-sum game (matrix of ones and zeroes) that occurs for the

final marking in evaluating P I or PII is also used to determine (protective)

median optimum strategies for the player with that matrix. That is, an

optimum strategy of this player for that game is also a median optimum

strategy. In particular, consider the situation for player I (II) when

PI (PII ) happens to be the payoff whose marking resulted in a pair of

rows that contain marked values in all columns (but no fully marked row

occurs). Examination of the zero-sum game shows that a mixed median

optimum strategy for player I (II) consists in choosing one of the rows

of this pair with probability 1/2 for each row.

For player I (II) vindictive, first mark the position in the matrix

for player II (I) that is in the last (first) outcome of the preferred

sequence of player I (II). Then do this for the next to last (first)
1	 .

outcome for player I (II). Continue consecutively in the (vindictive)
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preferred sequence for player 1 (II) until the first time that he can

assure obtaining a marked value :in the matrix of player 11 (1) with

probability at least 1/2. The value of P1 1 (PI) is the last payoff

marked in the matrix for player lI (1).

Determination of P 	 can be accomplished by initially marking

the matrix for player 11 (1), according to the vindictive preferred

sequence for player I (II), until the first time that two columns contain

marks in all the rows. Next-, remove the mark from the payoff that was

marked last. Replace the remaining marked values with ones and all

other payoffs by zeroes. Consider the resulting matrix to be for a zero-

sum game and solve for the game-value. If this game-value is greater

than 1/2, the marking is completed by again marking the payoff whose

mark was removed. If the game-value is at most 1/2, continue in the

same way with removal of another mark. If the resulting game-value

is greater than 1/2, again mark the payoff whose mark was last removed

and the marking is completed. This marking procedure is continued until

a game-value greater than 1/2 occurs. As for the protective case, it

seems that PZ and P1 T are often the payoffs that resulted the first

time that two or fewer columns contained marked values in all rows.

The zero-sum game that occurs for the final marking of the matrix

for player II (I) can be used to determine (vindictive) median optimum

strategies for player 1 (11). That is, an optimum strategy of player I (I1)

for this game, that is based on the matrix for player II (I), is also a

median optimum strategy. When P 	 happens to be the payoff that

resulted in a pair of columns with marks in all rows (but no fully marked 	 i

column occurs), a mixed median optimum strategy for player I (II) consists
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in selecting one of these two columns with probability 1/2 for each

column.

Statement of results occurs next. Cases where pure median optimum
i
I

strategies occur are considered first. In all cases, a protective player

I (II) can guarantee himself at least PI (PII) by using the fully marked

row in his matrix. A vindictive player I (II) can always guarantee that

player II (I) receives at most PI I ( P I ) by using the fully marked column

in the matrix for player II (I).

Now, consider the case where each player has a pure median optimum

strategy. When a protective player I (II) uses the fully marked row in

his matrix and a vindictive player II (I) uses the fully marked column

in the matrix for player I (II), player I (II) receives exactly P I = PT-

(P = 
PI I ) and player II (I) receives the payoff in his matrix that

corresponds to the strategy combination for this row and column. When

protective players I and II both use fully marked rows, player I sometimes

receives more than P I and/or player II sometimes receives more than PII.

When vindictive players I and II both use fully marked columns (in the

other player's matrix), player I sometimes receives less than PI and/or

player II sometimes receives less than PI I/ When the game is competitive

and each player has a pure median optimum strategy, P I = PI and P
II = PII;

also, when each player uses his pure median optimum strategy, player I (II)

receives PI 
(PII).

Now, consider the case where a pure median optimum strategy occurs

for player I (II) but not for player II (I). First, suppose that player

I (II) is protective. Then, player I (II) can guarantee himself at least

PI (PII ), and a protective player II (I) can assure himself at least

t0
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PII (PI ) with a probability of at least 1/2. Player I (II) can also

guarantee himself at least PI (PII) against a vindictive player II (I),

and player II (I) can assure that player I (II) receives at most P = pj
I	 I

(PII - PI I) with a probability greater than 1/2 (Theorem 3). Next, suppose

that player I (II) is vindictive. Then, player I (II) can guarantee that a

protective player II (I) receives at most PII = PII (P I = PI ), and player

II (I) can assure himself at least PII (P I ) with a probability greater than

1/2 (Theorem 3). Player I (II) can also guarantee that vindictive player

II (I) receives at most PI I (PI), and player II (I) can assure, with

probability at least 1/2, that player I (II) receives at most P (p'II ).
I 

Now consider competitive games. Then, PI = 
P I and PII = PII (Theorem 3).

Player I (II) can guarantee that he receives at least PI 
(p Ii ) 

and that

player II (I) receives at most P
II (PI)' player II (I) can assure that

he receives at least PII (PI) and also that player I (II) receives at

most PI (PII), with a probability greater than 1/2.

Finally, consider the case where no pure median optimum strategy

occurs for either player. Suppose that both players are protective. Then,

player I (II) can assure at least P I (PII ) with a probability of at least

1/2. When player I (II) is protective and player II (I) is vindictive,

player I (II) can assure that he receives at least PI (PII) with proba-

bility at least 1/2 and player II (I) can assure that player I (II)

receives at most 
PI 

(PII) with probability at least 1/2; these proba-

bilities are exactly 1/2 when both players use mixed median optimum

strategies. Next, suppose that both players are vindictive. Then,

player I (II) can assure that player II (I) receives at most P'
II 

(pI')

with a probability of at least 1/2. Now consider competitive games.

A

9
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Player I (11) can simultaneously assure, with probability at least 1/2,

that he receives at least PI 
(PII) 

and that player II (I) receives at

most P` ( pI ). When both players use mixed median optimum strategies,
1I	 .

player I (II) receives at least PI (PII) with probability exactly 1/2

and at most PI (PI I ) with probability exactly 1/2.

1^
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BASIS FOR RESULTS

i
The procedure for determining P I , PI I , and vindictive median optimum

strategies can, with suitable interpretation be obtained directly from

that for determining P
i , 

PII, and protective median optimum strategies.

Hence, verification for the protective case is sufficient.

The results for both players protective, or both vindictive, can

be directly verified from the properties of the procedures for determining

P I , PII , P I , and PI I . This is also the case for one player protective

and the other vindictive when both players have pure median optimum

strategies or neither player has a pure median optimum strategy.

A competitive game can be considered to be a combination of the

situation where player I is protective and player II vindictive with the

situation where player I is vindictive and player II protective. Thus, to

verify properties of competitive games, it is sufficient to present proof

for the pertinent case(s) of one player protective and the other vindictive.

Finally, it is to be noted that competitive players can have different

preferred sequences in the sense of different combinations of strategies

being associated with outcomes that have the same value. However, this

causes no difficulties in derivations since the preferred sequences are

the same with respect to the values of the outcomes.

The following three theorems contain the verification that is not

evident from the properties of the .procedures for determining 
PI' PII,

PI , and P,',.

Theorem 1.	 The procedure of marking payoffs (in his matrix) for a

player until the first time that two or fewer rows contain marked values
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in all columns guarantees that occurrence of a marked value can be

assured with a probability of at least 1/2.

Proof:	 First note that continued marking ultimately results in

this situation. When one row becomes fully marked, the probability is

unity that some one of the warked values can be assured by the player.

Next, suppose that a pair of rows is needed. When two mixed

strategies p l , ..., pr and ql, ..., qs are used (pure strategies are

special cases, and there are r rows and s columns), the probability

of the marked subset is

r

i=1 piQi

where Qi is the sum of the q's for columns that have marked payoffs in

the i-th row. The largest value of this probability that the player can

assure (by choice of p l , ..., pr ) is

min
G = ql, ... , qs

Let i(1) and i(2) denote the two rows

in all columns. For any minimizing s,

at most G , so that

(max i Qi ) .

that together contain marked payoffs

at of q' s I both Q, (1) and 
Qi(2)  

are

2G ^! Qi (1) + Qi 
(2) 

z 1 ,

and a probability of at least 1/2 can be assured. This probability can

exceed 1/2 but is exactly 1/2 when the unmarked payoffs are such that

two columns contain unmarked payoffs in all rows (since analogously, the
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set of unmarked payoffs can be assured with a probability of at least

1/2). It is also exactly 1/2 when there are two columns that have an

unmarked payoff in row i(1) or row i(2) and are such that no row of the

matrix has payoffs marked in both columns.

Theorem 2.	 A lower bound on the probability that a player can

assure one of a specified subset of outcomes, and corresponding optimum

strategies, can be determined by solution of a zero-sum game with an

expected value basis. The payoff matrix for this game has ones at the

positions that correspond to the (pure) strategy combinations for the

subset of outcomes, and zeroes elsewhere.
1

Proof:	 Let each player use an arbitrary mixed strategy (a pure

strategy occurs as a special case). The expression for the expected pay-
1

off of the zero-sum game is also the expression for the probability that

some one of the outcomes in the specified subset occurs.

Theorem 3.	 When protective player I (II) has a fully marked row

in his matrix, but vindictive player II (I) does not have a fully marked

column in this matrix, PI = P I (P 	 PI I ); also, player II (I) can assure

that player I (II) receives at most PI (PI I ) with a probability greater

than 1/2. Likewise, when vindictive player I (II) has a fully marked

column in the matrix for protective player II (I), but player II (I) does

not have a fully, marked row in this matrix,PII = 
PII (PI - PI )i

 also

player I (II) can assure himself at least PI (PII) with a probability

greater than 1/2.

Proof: Consider the outcome that corresponds to the last payoff

marked for protective player I (II) and the outcomes that do not correspond

to marked payoffs for player I (II). This set of outcomes can be assured
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with probability greater than 1/2 by vindictive player II (I). Otherwise,

player I (II) would have terminated his marking procedure earlier. The

payoffs for player I (II) in this set of outcomes are at most equal to

PI (PI I ), with equality holding for the outcome corresponding to the

last payoff marked for player I (II). This follows from the development

of preferred sequences for competitive games. Also, since player I (II)

has a fully marked row in his matrix, player II (I) cannot assure that

player I (II) receives any payoff less than PI with nonzero probability.

Thus, PI = P I (PII = PII) and player II (I) can assure, with a probability

greater than 1/2, that player I (II) receives at most P (P' ).
I	 II

A similar verification can be given for the case of vindictive player

I (II) having a fully marked column and protective player II (I) not having

a fully marked row.

I

t.'

i

it
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