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Background

A technique has been proposed to obtain global surveys of atmo-
spheric density profiles by means of a set of co-orbital earth satellites
[ Lusignan, et al., 1969]). The method involves measurements of phase
delays in microwave signals propagated between pairs of satellites, so
arranged that the signal passes through the atmosphere along a part of
its path.

A basic factor in the success of this technique is the influence of
random atmospheric variability (turbulence) on signal phase and ampli-
tude. These signal properties are also involved in the bandwidth re-
quired in the satellite terminal equipment. In addition, other atmo-
spheric propagation effects, notably fading, could have a significant
effect on the overall effectiveness of the system. The phenomenon of
principal concern in this respecf is the very deep (e.g., > 50 dB) fades
associated with certain types of refractive index gradients known to
occur.

The objectives of the experiment reported here were:

l. to obtain a basic statistical description of phase and fading

characteristics using a fixed propagation path chosen to simulate certain
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aspects of the satellite-to-satellite configuration; and,
2. in conjunction with the fixed path measurements, to obtain
simultaneous measurements of atmospheric index structure near the

propagation path.

Location

Since only the portions of the atmosphere above about 2.5 km are
to be probed in the proposed system, a path was sought with two high
terminals and a maximum surface clearance. Chiefly because of logis-
tic factors (e. g., roads, shelter, power, etc.) the path selected was
between Mt. Haleakala, Maui, Hawaii, and Mauna Loa, Hawaii. The
terminal elevations are 3025 m and 3300 m, respectively, and the path
length is 150 km,

Figures 1 and 2 show the locations and profile, including the half-

power beam widths of the antennas.

Radio Measurements

Three converging paths were instrumented at frequencies near
10 GHz. A single terminal at Mauna Loa Observatory was equipped
with a 2-m diameter parabolic dish having a 1. 2° beam width. The
Haleakala terminal was equipped with three 1. 25-m diameter dishes
having 1. 8° beams. These antennas were spaced along a line perpen-
dicular to the nominal direction of propagation with 10 m between the

first and second, and 100 m between the first and third., This permitted
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measurement of the variability of phase-front orientation.

The quantities recorded were:

l. Amplitudes of signals from each of the three antennas with a
dynamic range of from 20 to 50 dB, precision of 0.5 dB, and frequency
response from 0 to 30 Hz.

2. Phase variability on each of the three paths with unlimited dy-
namic range, 0.5 degree resolution (at the X-band frequency), and
response from 0 to 30 Hz.

3. Phase differences between the 10 m spaced antennas and be-
tween the 100 m pair, with same recording ranges, etc., as in (2). A

description of the phase measurement system is given in Appendix IV

(attached).

Atmospheric Measurements

A Piper "Aztec'" aircraft was equipped with a microwave refrac-
tometer and flown in the vicinity of the path to obtain refractive index
structure and statistics. Because of the locations of the beam intersec-

tions (Fig. 2), flights were concentrated between about 2 and 4 km ele-

vation.

Operations and Results

The radio signals were observed continuously from 0800 hours
June 15 through 0500 hours June 29. Aircraft flights were made on

23 occasions during this period.
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During the first four days of the run signal amplitudes were gener-
ally variable but without the characteristic ''V''-shaped appearance
associated with the very deep fades. In the next four days the deep fades
occurred a large fraction of the time. Figure 3 shows an example of
these two types of activity.

Initially, the plan was to obtain index profiles at two locations along
the path plus a record of horizontal index variability along the path; the
latter data would provide estimates of the index structure parameter
Cn which might correlate with signal variability [ Tatarski, 1961; Por-
cello, 1970 ].

At the onset of deep fading, it was decided to modify the flight plan
to obtain as many vertical sections (profiles) as feasible along the path.
These would show the horizontal extent of the vertical index features
that might be related to the deep fading.

As an approximate preliminary description of the fading, the data
have been divided into four groups in terms of the amplitude variability
within 30-min periods.

The groups are defined as follows:

Type A: < 5 dB peak to peak fading range.

Type B: > 5 dB peak to peak fading range.

Type C: > 5 dB with from 1 to 5 "V'"-shaped fades of > 15dB.

Type D: > 5 dB with over 5 '"V''-shaped fades > 15 dB.

10 0 oot ULl gl e b o

Mg



P

ORI WG 105 W A g G e e

ARt s

SR ——

This classification is used in Figs. 4 and 5, together with the cor-
responding flight patterns, to summarize the amplitude variability with
respect to time and time of day.

Figures 6, 7, and 8 show examples of index profiles obtained during
Flights 4 and 12, the same periods used for the fading samples in Fig. 3.
Two kinds of profiles were obtained from the refractometer data. The
""low-pass'' output of the refractometer was used to produce the familiar
profiles of N versus height. At the same time, a '"band-pass'' output
provides a profile of small-scale N variability as a function of height.
Both low-pass and band-pass profiles are shown for Flight 4 in Fig. 6.
They are plotted separately for Flight 12 in Figs. 7 and 8. Because of
the relatively low angle at which the plane ascends and descends (about
6°), the record is subject to horizontal index variations to an apprecia-
ble degree. Thus one should not assume that the resulting plots repre-
sent the true vertical structure of index.

A description and the results of the analysis of the refractometer
data from level flights along the propagation path is given in Appendix
I (attached). The results consist of values of the refractive index struc-

ture parameter, C_ , computed from level flight segments. A complete



sct of refractive index profile graphs is included as a part of this report
in separate Appendix II

Signal Data Analysis

From the l14-day measurement period, detailed statistical analysis
was performed on a sample of signal phase, phase difference, and
amplitude data taken from each of the 23 aircraft flight periods. (In
the results, note that '"'sample number' and '"flight number' are syn-

onymous, and that there was no flight 6.)

Each of the signal data samples is 40 min in length except for 7
samples which were shortened to avoid phase discontinuities. The dis-
continuities were caused by deep fading in 5 cases and by equipment
trouble in the other 2 cases. Frequent fading discontinuities precluded
statistical analysis of the phase data from samples 8, 11, and 12.

With the exceptions noted above, each signal sample was analyzed
to produce the cumulative distribution and power spectrum of each of
the phase and amplitude variables, and cross-correlation and coherency
functions of appropriate pairs of variables. The original analog mag-
netic tape recordings were digitized at the rate of 12. 5 points per vari-
able per second. Of these, every tenth point was used (without smoothing)
in the cross-correlation computations. For the power spectrum and co-
herency computations, the data were smoothed by averaging non-over-

lapping groups of 10 points in order to minimize aliasing effects. The



cumulative distributions were also computed from smoothed data.

The results of the signal data analyses are included as a part of
this report in separate Appendix III. They consist of the following:
1 Computer printouts of:

a. Cumulative distributions of phase and amplitude data

at each of the 3 antenna locations on Haleakala, and of 2 phase-differ-
ence records (from the 10-m path separation of antennas 1, 2, and the
100-m separation of antennas 1, 3). These include histograms, stand-

ard deviations, 10%, 50%, and 90% levels and (for amplitude) the mean

level.

b. Cross-correlation functions of the phase data for 10 and
100 meter path separations, and of the corresponding amplitude data.

c. Power spectra and coherency functions for the same data
mentioned in b above, and power spectra of the two phase-difference
variables.

Examples of the computer tabulations are given in Figs.
9 through 11,
2. Computer-generated graphs of:
a. Power spectra of phase, phase difference, and amplitude.
b. Coherency functions of phase and amplitude.

c. Cumulative distributions of amplitude.

Examples are given in Figs. 12 through 16.

With regard to units, the amplitude data are expressed in terms
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of decibels relative to an arbitrary reference level common to all the
samples recorded on a given path. Thus it is possible to compare am-
plitude levels from sample to sample on the same path (as is done in
the amplitude distribution graphs), but amplitude levels on different
paths should not be compared.

The phase data are all expressed in phase degrees at 9. 6 GHz

Because phase continuity was not maintained from sample to sample,
the phase levels listed in the distributions are simply relative to the

sample mean.

These restrictions on comparisons of phase and amplitude levels

do not, of course, apply to comparisons of phase and amplitude varia-
» bility and covariability (i. e., standard deviation, interdecile range,
cross-correlation coefficient, power spectral density, and coherency).
The only caution here would be with regard to the amplitude on path 2,
which was recorded with a detector having a smaller dynamic range
than those used on paths 1 and 3. Hence, the amplitude variability sta-
tistics from path 2 are less accurate than those from the other two

paths.
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Appendix I -

Estimation of the refractive index structure parameter Ci

One of the objectives of this experiment was to obtain estimates of
the atmospheric refractive index structure parameter Ci along the
propagation path in conjunction with the phase and amplitude variability
measurements. This was accomplished during 10 of the sample periods
in which flight pattern type I was flown. (See sketch in Fig. 4.)

Three estimates of Ci were obtained from the level portion of
each flight. Each Ci value was computed from a 3-minute segment
taken from the continuous magnetic tape record of refractive index
variations. Briefly, the steps in the computation were as follows:

L. The continuous analog tape record was digitized at the rate
of 800 points per second.

2. The power spectrum was computed over the frequency range
0.04 to 40 Hz, which is the pass band of the high-resolution output of
the refractometer. The high frequency end of the spectrum was con-
taminated by intrusion of the system noise spectrum, so that the effec-
tive frequency range of the analysis was from 0. 04 Hz to an upper limit
that varied from about 0.2 to 20 Hz, depending on the signal-to-noise
ratio of the data.

3. The structure function, D(r), was computed from each power
spectrum and the corresponding aircraft airspeed data for r (spatial

separation of refractive index points) ranging from 10 m to 1 km.
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4. Ci was then computed as the slope of a linear regression of

D(r) on rZ/ $ , in line with the defining equation:

D(r) = cir2/3 )

The Ci values are tabulated below. The data segments from each
flight are identified as "A'", "B", or '"C'". Segments "A'" were taken
near the northern, or Haleakala, end of the path; segments ''B'" were
taken near the middle of the path, and segments '"C'" were taken near

the southern, or Mauna Loa, end.
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R i = SIUR IRER

Flight No,

14
15
17

18

A

2.74x10

1.08 x 1073

3.24x 10'“’

2.82x10° 5

6.67x10" 2

7.41 x 10'16

1.39 x 10”13

2.27 x 10'14

7.04 x 10'14

-15 -2/3
m

Segment

B

l. 14 x 10°

3.21x 10'15

5.45 x 10'15

8.57 x 1071°

.37 x 10'15

2.78 x 10714

4,60 x 10'15

1,00 x 10714

9.66 x 10“15

4.74 x N

3% =

15 -
m

<

2.76 x 10

1.90 x 10”4

1.59 x 10712

2.29 x 1016

4.81x 10'15

.11 x 10'13

1.75 x 10~ ¢

7.27 x 10‘“>

4,52 x 10’15

7.82 x 10" 4

-15 _-2/3
m
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APPENDIX IV

Method of Measuring Phase, Phase Difference,
and Amplitude

The phase measurements were made using a technique developed
by Thompson and Vetter [1] and shown in Fig. l.

At the left terminal, a stable microwave signal is generated at
frequency f. This signal is fed to the antenna through a circulator
which also couples a small amount of power to the mixer to serve as
the local oscillator to heterodyne the small signal received from the
opposite teminal.

At the right terminal, a second microwave signal is generated and
phase locked below the frequency of the small signal received from the
left terminal by an amount &, . Most of this power is transmitted
back over the path with a small fraction be.nZ used as local oscillator
for the right-hand mixer.

The two mixers thus produce signals with frequencies and phases

respectively (left and right)

61n[¢o'¢1' nlL (f‘61)] ’

Cc

f
by [00 - 0a e 2]

where n, is the average refractive index along pathl (length L), and

®, and ¢, are reference phases for the two microwave signals.
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The left-hand IF is telemetered to the right terminal where its

phase is

L n; L
¢O'¢1'n4c—(f'6x)+ -t_bl

This signal and the local IF are compared in a phase recorder and give

an output of

2n,Lf{ E 2nyLb,

1 =

[ (o
Since
S £x10-8, &3 a g = MBI
2 c

the phase shift over path 1.

This process is repeated at antennas 2 and 3 using different fre-
quency offsets between the right-hand signal and the left-hand signal
to provide different IF's. Each pair of IF's is processed the same way
as described above to obtain the three path phase records, 8,, 63, and
85 , separately.

To minimize the errors in determining the phase differences be-
tween paths, the six IF signals (3 pairs) are combined as shown in
Fig. 2.

Lower side band mixers are used to combine X with Y and X' with
Y'. The result is two second IF's having frequency phases (with

63> 61)0

- 3] -




D: (65-64), [0, - 02 -L—cf(n; -ng)]

DY (B« bxhs [y =99 # Ec—f (n,-n,)-cE (ny 8, -ng8g)] .

Comparing these signals in a phase recorder gives

2Lf{

Biza = (n,-n,)+% (ng 65 - n, 6,)

Since ng s n, and (6, - 6,)<<{, we have

E’-{- 2 (8,-8,)= A8,,

By repeating this process with X, Z and X', Z', we obtain a record
of AB, 4 -
Amplitudes for all paths are recorded in terms of the IF signals at

the right-hand terminals using commercial amplitude detectors.

Reference

(1] Thompson, M. C., Jr., and M. J. Vetter (1958), "Single path

measuring system for three-centimeter radio waves,'" Rev. Sci. Instr.

29, No. 2, 148-150.
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