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FORMATION  AND  PROPAGATION OF A SHOCK WAVE 

FROM A CONCAVE  BOUNDARY 

by  Dudley G. McConne l l  

Nat ional   Aeronaut ics  and  Space  Administrat ion 

SUMMARY 

This report shows  when  and  where a shock  wave  forms  in a two-dimensional flow 
field  and  presents a method for  predicting  the  shape  and  strength of the  shock  wave. 
Knowledge of the  point of formation,  the  strength,  and  the  shape of shock  waves are im- 
portant  in  the  design of inlets  and  the  design of blading  for  turbomachines. 

The  present  method  consists of first finding  the  envelope of characteristics  forming 
in  the flow  field  from  the  bounding  streamline, as suggested by Tollmien. In a simple 
wave  field,  where  one  family of characterist ics  consists of straight  lines,  the  envelope 
can be given  in  closed  form;  in a complex .wave field,  where  both  families are generally 
curved,  the  envelope  must  result  from a solution of the  whole flow field.  Once  the 
envelope is found, cr i ter ia  and  methods are presented  for  locating  the  shock  within  the 
envelope. In simple  waves,   the  shock  path  results  from a point by point  integration;  in 
complex  waves,  the  principle of minimum  entropy  production  may be used  to  pick  out 
the  most  likely  shock  location.  Specific  examples of the  simple  wave  case are pre- 
sented. 

INTRODUCTION 

The  object of this  report is to  solve  the  following  problem: For  given  upstream 
conditions and a given  boundary  profile,  determine  whether a shock  wave  will  occur  and, 
if so, find  the  location,  strength,  and  shape of the  shock  wave. 

The  motivation  for  this  study  comes  from  the  current  interest  in  supersonic  inlets 
and  supersonic  operation of turbines  and  turbocompressors.  Focused  characteristic 
inlets  have  been  successfully  designed  for  some  time;  however, at high  supersonic 
Mach  number  hidden  shocks  appear.  These  unexpected  shock  waves,  which  decrease 



the  efficiency of the  inlet,  have  not  yet  been  analyzed.  Furthermore,  there is interest  
in  finding  the  path of shock  waves  that  may  occur  during  off-design  operation.  There 
is a s imi l a r  need  to  study  the  formation of shock  waves  within  turbomachinery  blade 
rows  and  the  propagation of shocks  between  stages.  Impingement of a shock  wave on 
a blade  could  radically alter blade  loading  and flow incidence.  This  off-design  loading 
may  enhance  blade  flutter  and  lead  to  early  blade  failure.  Off-design flow incident 
would impair  performance. 

M. B. Abbott (ref. 1) shows  that  shock-wave  formation  always  results  from  the 
convergence of characterist ics.  A s  a compression  wave  processes  the  gas,  the  speed 
of sound  increases  behind  the  wave. In a train of compression  waves,  for  instance,  those 
coming  from a concave  boundary o r  an  accelerating  pistion,  trailing  waves  tend  to  over- 
take  the  leading  wave. If these  trailing  waves  coalesce  into  the  lead  wave,  the  wave 
front  steepens,  and its speed  increases.  As  coalesecence  continues,  the  process  through 
the  wave  finally  becomes  discontinuous;  that is, a shock  wave  forms. 

In steady,  plane,  supersonic  flow,  characteristics are propagation  paths  for  Mach 
waves. So the  coalescence of trailing  waves  shows  up  graphically as the  formation of 
an  envelope of characterist ics (refs. 2 and 3) .  This  process is shown in figure 1. 
Usually  the  envelope wi l l  be cusped  in its initial  point.  The  initial  point of the  envelope, 
the  cusp, is also  the  initial  point of the  shock  wave.  Courant  and  Friedrichs (ref. 2)  
Oswatitsch  and  Kuerti (ref. 3) and  others  discuss  the  general  nature of the  envelope  but 
do  not  give  details  on its calculation.  Tollmien (ref. 4) gives  more  detail but then  con- 
centrates  on a series extension of the  analytical  solution  downstream of the  envelope. 
He  does  not  calculate  the  shock  shape  within  the  envelope. 

The  present  treatment  considers a characteristic  envelope  and  the  resulting  shock 
wave  that  form  in  the  external flow over a concave  profile.  The  envelope  forms  in a 

CONSTANT-STATE 
FLOW APPROACHING 

ENVELOPE 

M,, a,, a, 

CUSPED INITIAL POINT-.. 

SIMPLE WAVE REGION 
OF STRAIGHT LINE 
CHARACTERISTICS 

Figure 1. - Formation of envelope in simple  wave flow. 
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simple  wave  region, so its shape and its starting  point  can  be  given  in  closed  form. A 
point by point  integration fixes the  shock  path  once  the  initial  point of the  envelope is 
known. 

SYMBOLS 

A 

B 

E1’E2 
F 

G 

K 

M 

m 

q 

R 

S 

x, Y 

CY 

Y 

‘5 rl 

71 

4 

w 

mean  slope  along  shock  wave,  defined  after  eq.  (7a) 

slope of characteristic,  defined after eq.  (7a) 

parametr ic   form of locus of characteristic  envelope 

function  giving  location of bounding s t reamline 

parametr ic   form of family of characteristics 

Mach  number 

slope 

magnitude of flow velocity 

channel  radii of curvature 

entropy 

spatial  coordinates,  physical  plane 

Mach  angle 

ratio of specific  heats 

characteristic  net  variables 

pressure  ratio  across  shock  wave 

flow deflection  angle 

Prandtl-Meyer  function 

1 

1 

Subs  c  ripts : 

A upstream  border of characteristic  envelope 

B return flow region of characteristic  envelope 

C downstream  zone of characteristic  envelope 

e envelope 

‘In analysis of channel  flow,  spatial  distances are measured  in  entrance half 
heights. 
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p  boundary  profile 

a condition of undisturbed flow 

ANALYSIS 

Envelope  Conditions  and  Shape 

If, as in figure 1, a compression  region  borders a region of constant  state,  at least 
one  family of characterist ics will consist of straight  lines.  This  family of lines  can  be 
written as 

G(x, y;xp)  = y - F(xp) - (x - x 11 
P (1)  

where  F(x ) is the  contour of the bounding  profile o r  bounding  streamline.  For  given 
upstream  conditions,  the  angle (Y of each  Mach  line  to  the  approaching flow direction 
is a function of profile  position x through 

P 
P 
P 

If an envelope  exists,  then  neighboring  characteristics wil l  intersect  along  the  envelope. 
And a characterist ic wil l  intersect  the  envelope at a point of tangency.  According  to 
Courant (ref. 5), these  conditions are both  necessary  and  sufficient,  subject to the con- 
straint  that  both  the  envelope and the  members of the  family  in  fact  have well defined 
tangents.  Thus,  since a well  defined  characteristic  field is given,  the  conditions for 
the  existence of an  envelope are in  fact  conditions on the  shape of the bounding s t ream-  
line. 

Assume  that an  envelope exists and is given by 

e 

Ye = 

Some  characteristic  intersects  the  envelope  in  the  point (xo, yo) such  that  (xo, yo) satis- 
fies the  equation 

C(:o,,yO;x e 1 ;  ) = 0 
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So we  may  write 

The  slope of the  characteristic  through  the  point of intersection is 

The  slope of the  envelope is 

If this is in  fact an envelope;  these  slopes  must  be  equal.  Consequently, 

The  result  is that 



Notice  that  the  curvature  (d8  dx ) must  be  positive (i. e.,  a concave  profile)  for  an  en- 
velope  to  exist  in a supersonic  compression  flow. If the  curvature is infiinte, as in a 
corner,  the  envelope  begins on the  profile itself. 

d P  

Shock Wave Region 

Tollmien (ref. 4) shows  that  the  shock  wave  and  the  envelope  have a common  starting 
point:  the  point fo r  which,  in  this  case, 

- = o  a 2G 
ax 2 

P 

Given  this  initial  point, it is possible  to  integrate  the  equation 

= tan as 

point by point  along  the  shock  wave - as being a known  function of the  upstream  Mach 
number  and  the flow angle 8 

P' 
An alternate  difference  technique could u s e  a simultaneous  solution of the  equations 

Ys,n+l - Ys,n - tan 9s, n+l 

X s , n + l  s , ~  

+ tan 9 
- 

- x  2 

Ys,n+l - Y p , n + ~  

s , n + l  - Xp,n+l 
= tan( y p  D+l  + a! 

X 9 -  p,  n+l 

which  amounts  to  about  the  same  thing. 
Figure 2 shows  the  envelope and shock  wave  which  develop  in a flow  that  approaches 

a profile of the  form  F(x ) = L - e f -=')up to its point of inflexion.  This  curve  has  an 
inflexion a t   x 2  = 1/2a; beyond this poinL the  profile is continued as a straight  line  at  the 
angle 

P 
P 

a = tan-'(+ e - 1 / 2  ) 
P 
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(a)  Approaching  Mach  flow, 2.0. (c)  Approaching  Mach flow, 6.0. 

Figure 2. - Comparison  of  envelope  and  shock  wave paths. 

_I 
2. 4 

For  the  conditions  given  in figure 2, the  shock  and  the  envelope  agree  closely  up  to flow 
deflections of about 5' to 8'. This is equivalent  to  the  region  where the Prandtl-Meyer 
epicycloid  approximates the shock  polar. A s  a measure of the  accuracy of the  shock 
path,  the far field  shock  angle,  using  the  present  method, w a s  within 1' of the  tabulated 
shock  angle f o r  two-dimensional  flow (ref. 6 )  for  the  range of Mach  numbers  considered. 

The  main  contribution of this  section  has  been  the  integration  for  the  shock  path 
using  the  initial  point of the  envelope as the  starting  point of the  integration. 

Corn plex Wave Region 

Simple  wave  shock  formation  occurs  most  often  in  external  flows.  Internal  flows 
usually  lead  to  complex  wave  interactions  since all boundaries  affect  the  flow.  However, 
in a complex  wave  field,  neither  family of characterist ics is a set of straight  l ines.  
Thus,  the  existence of an  envelope  can  only be known from a complete  solution of the 
flow problem,  that is, from a solution of the  fundamental  characteristic  equations 



Along  with  appropriate  initial o r  boundary  data,  these  equations  furnish  the  functions 
x( 5,  q) and  y(5, q) f o r  mapping  the  flow  variable q onto  the  physical  plane 

Characteristic  net  Physical  plane 

The  techniques  for  finding  the  mapping  functions are given  in  references 1 to 4. There- 
fore,   assume  that   such a mapping exists. And further,  following  Tollmien (ref. 4), 
assume  that  the  envelope  forms  because of the  convergence of left running  characteris- 
tics ( q =  constant). (See fig. 3. ) Along  such a characteristic, t is the  current  variable. 
Each  such  characteristic  will  touch  the  envelope  in  one  point te = te( q). Then  the 
mapping of the  envelope  in  the  physical  plane is 

Where  each  characteristic  touches  the  envelope,  the  slope of the  characteristic  will  equal 
the  slope of the  envelope.  Thus,  the  slope  along  the  characteristic is 

This  must  equal  the  slope of the  envelope at that  point 
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Figure 3. -Envelope in complex  wave  region. 

Crossmultiply  to  obtain 

This  equation  may  be  written as 

Exclude  the  exceptional  case (ax/a 5 )  = 0, which simply  implies  vertical  characteristics. 
Then,  the  general  condition  for  the  envelope is 

(E)= 0 

This  condition  shows  the  steepening  process at the  wave  front. It states that two Mach 
waves  coincide at one (x, y)  position. 

Fo r   ca ses  of interest,  the  envelope  will  form  within  the flow field.  Thus,  there 
will  be  some  extreme  value beyond  which  will  not go (fig. 3). Whether  this ex- 
t reme  value is a minimum or   maximum (as in ref. 4)  depends on the  curvature of the 



boundary  generating the wave  train. In any  event, at the extreme  value,  following ref- 
erence 4, a sufficient  condition is 

Let  the boundary of the envelope be given by 

Then 

So at the  extreme  value,  the  initial  point 

(This  result  excludes the unlikely  case  in  which (ax/a 7) becomes  infinite. ) Now the loca- 
tion of the envelope is known in  both s imple and  complex  wave  regions.  But  within the 
envelope  region the path of the shock  wave is still unknown. 

The  final  determination of the shock  wave rests on the minimum  entropy  production 
theorem (ref. 5). The reasoning is as follows (see fig. 4). Within the envelope, the 
mapping x = x((, v), y = y(<, 77) is triple  valued.  The  envelope  region B would be a field 
of return  flow.  At  any  value of (x, 5) there are three states available  to the gas: vA, 
%, qc. According  to the second  law,  the  shock  process  will take the gas  to the avail- 
able state with the locally  maximum  entropy.  Hence,  from  branch A to  branch C. 
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BRANCH  BRANCH C: BRANCH B: 
A: AP- REVERSE  FLOW 

r R E G l O N  OF POSSIBLE (%)> 
FLOW 

CONTINUING FLOW 
PROACH p )  > o  ($)<o 

I /  SHOCK TRANSITION / 

I BRANCH1 I BRANCH C: 
BRANCH B: 

A: AP- CONTINUING FLOW REVERSE  FLOW 

;;;pH I t$) > 0 ($)< 0 

(%)> r R E G l O N  OF POSSIBLE 
I /  SHOCK TRANSITION / 

/ ( !%)=(&)&ol '  
INITIAL POINT, ,I' 

CHARACTERISTIC COORDINATE, 7) 

Figure 4. -Typical  plot used to determine shock wave  path. 

Branch  B is not  allowed  since it would  imply a returning flow.  But it is still necessary 
to  choose  one  out of a continum of points  such  that xA and x coincide.  The  minimum 
entropy  production  theorem  will  pick  out  the  most  likely  value of xA - xc in  which  the 
shock wil l  occur. 

Since  the Mach angle (Y increases  through a shock  wave, (adi3~)~ > (ada~)~ .  

C 

Consequently,  the  jump  in 77 gets   larger  at larger  downstream  positions x. But  the 
jump  in 77 is proportional  to  the flow deflection i f  [ is constant. 

Since  shock  strength  increases  with flow deflection,  minimum  entropy  production  im- 
plies that the  shock will  occur at the earliest possible  location.  Hence,  the  shock  wave 
follows  the  envelope. 

The  entropy  jump  across  the  wave is found from 
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where 

and 

As  an  example,  consider  the  steady  plane flow contained  between two c i rcu lar   a rc  
walls  (fig. 5). The  inlet  conditions are 8, = 0 and M, = 1. 503. The  characteristic 

10 - 

SHOCK WAVE  COORDINATES 

6.76 1.54 
6.92 1.85 
7.07 2.15 
7.20 2.43 
7.32 2.71 
7.44 2.93 
7.54 3.24 

B l  I 
4 

I 
8 12 

I 
16 

AXIAL COORDINATE, x 
-20 

Figure 5. - Physical  layout of channel  showing  shock 'wave location.  Note: arc 
BAC is  the  beginning  of  the  complex wave f ie ld   shown' in   f igure 6. Upstream 
flow conditions:  Mach  1503;  flow  deflection angle, a 

map (a point  plot) is also  shown  (fig. 6 )  as it was obtained  from a machine  solution  and 
electronic  plotter.  The  point  plot  clearly  shows  the  convergence of the left running 
waves.  This  convergence  occurs  in  spite of a reflection of the  compression  waves off 
the  upper  expansion  surface.  Indeed,  the  envelope  forms  in a generally  expanding  flow; 
the  inlet Mach number is 1.503, but  the  envelope  forms at MA = 1.92 and SA = 25'. 
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AXIAL COORDINATE, x 

Figure 6. - Computer   p in t -p lo t   showing  character is t ics  
converging.  Upper  arc, 12; lower  arc, 16; Mach L 5; 
flow deflection  angle, 0. 

Figure 7 is a plot of the physical  coordinate  x as a function of the  characteristic 
coordinates 5 and q. The  initial  point of the  envelope is the  point  where 

and 

which  figure 7 verifies. For the  local flow  conditions of this  example (MA = 1.92)  there  
is a very  small  entropy  change  in  the  vicinity of the  initial  point, (AS/R) - 10-4. Never- 
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T / 501 503 505 M7  u)9 510 
CHARACTERISTIC COORDINATE, q 

Figure 8. - Locus of shock wave. Upper  arc, 12; lower  arc, 16; 
Mach 15; flow deflection  angle, 0. 



theless ,   the   pressure  change  across   the  jump is not  negligible (E = 1.15). Figure 8 shows 
the  locus of the  shock  wave  in  detail. 

SUMMARY  AND  CONCLUSIONS 

This  report  presents  methods  for  predicting  shock  formation  and  shock-wave tra- 
jectory  in  simple and  complex  wave  fields. In simple  wave  regions,  say  for  external 
flows,  the  method  consists of point  by  point  integration,  given  the  shock  slope  by  either 
method,  starting  out  from  the  initial  point of the  characteristic  envelope. In  complex 
wave  fields,  minimum  entropy  production  principle  indicates  that  the  shock  wave lies 
along  the  upstream  boundary of the  characteristic  envelope. 

At  the  present  time  these  methods are being  extended  to  technical  applications. In- 
tegral  boundary-layer  solutions are being  used  (refs. 7 and 8), along  with  the  simple 
wave  method, to predict  the  shock  trajectory  that  causes a laminar  boundary  layer  to 
separate  as it  approaches a concave  bend.  The  method  for  complex wave  flows is being 
extended  to  include  the  effect of envelope  interaction  with a boundary  and  to  include  the 
effect of channel  exit on the  shock  wave  path. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  March  31,  1971, 
129-01. 
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