N71-28795

NASA CR-111834 Aerotherm Report No. 70-25

FINAL REPORT

DEMONSTRATION OF THE RANGE OVER WHICH THE LANGLEY RESEARCH CENTER DIGITAL COMPUTER CHARRING ABLATION PROGRAM (CHAP) CAN BE USED WITH CONFIDENCE

TASK I

COLLECTION OF PROPERTIES DATA AND ABLATION TEST DATA FOR THREE CHARRING MATERIALS, AND RESULTS OF QUALIFYING CALCULATIONS WITH CHAP

by

Carl B. Moyer Kenneth A. Green Mitchell R. Wool

December 1970

Prepared under Contract No. NAS1-10136

by

Aerotherm Corporation Moutain View, California

for

National Aeronautics and Space Administration Langley Research Center Langley Station Hampton, Virginia . á

.

ABSTRACT

Thermophysical and thermochemical material property data and ablation test data have been compiled for three charring ablators: low-density nylon phenolic, the Apollo heat shield material, and a filled silicone elastomer. These data are representative of the published data on these three materials. Comments are made on the accuracy and credibility of these data. Also, the analysis of the ablation test data, with the NASA Langley Research Center Charring Ablation Program (CHAP), is discussed.

TABLE OF CONTENTS

Section		Page No.
l	INTRODUCTION References	1-1 1-2
2	<pre>MATERIAL PROPERTIES 2.1 Low-Density Nylon Phenolic 2.1.1 Thermal Conductivity 2.1.2 Specific Heat 2.1.3 Emittance 2.1.4 Pyrolysis Kinetics 2.1.5 Heats of Formation or Heat of Pyrolysis 2.1.6 Specific Heat of Pyrolysis Gas 2.1.7 Surface Oxidation Kinetics 2.2 Avcoat 5026-39-HC/G 2.2.1 Thermal Conductivity 2.2.2 Specific Heat 2.2.3 Emittance 2.2.4 Pyrolysis Kinetics 2.2.5 Heats of Formation or Heat of Pyrolysis 2.2.6 Specific Heat of Pyrolysis Gas 2.2.7 Surface Oxidation Kinetics 2.3 Silicone Elastomer 2.3.1 Thermal Conductivity 2.3.2 Specific Heat 2.3.3 Emittance 2.3.4 Pyrolysis Kinetics 2.3.5 Heats of Formation or Heat of Pyrolysis 2.3.6 Specific Heat 2.3.7 Surface Oxidation Kinetics Gas 2.3.7 Surface Oxidation Kinetics 2.3.7 Surface Oxidation Kinetics and Melting References Tables</pre>	$\begin{array}{c} 2-1\\ 2-2\\ 2-2\\ 2-3\\ 2-4\\ 2-4\\ 2-6\\ 2-7\\ 2-7\\ 2-8\\ 2-8\\ 2-8\\ 2-8\\ 2-9\\ 2-9\\ 2-9\\ 2-9\\ 2-9\\ 2-9\\ 2-9\\ 2-9$
3	ABLATION TEST DATA COMPILATION 3.1 Data Presentation 3.2 Measurement Uncertainties 3.3 Rejected Data References Tables Figures	3-1 3-1 3-2 3-3 3-4
4	QUALIFYING CALCULATIONS 4.1 Criteria for Agreement Between Calculations and Measurement 4.1.1 General Remarks 4.1.2 Agreement Criteria 4.1.2.1 Surface Temperature 4.1.2.2 Surface Recession 4.1.2.3 Char Thickness 4.1.2.4 Thermocouple Criteria	$\begin{array}{c} 4 - 1 \\ 4 - 1 \\ 4 - 1 \\ 4 - 2 \\ 4 - 2 \\ 4 - 2 \\ 4 - 3 \\ 4 - 3 \end{array}$

TABLE OF CONTENTS (CONCLUDED)

Section

Page No.

4.2 General Assumptions and Remarks
4.3 Low Density Phenolic Nylon
4.4 Low Density Silicone Elastomer
4.5 Apollo Heat Shield Material, Avcoat 5026-39-HC/G 4 - 44-5 4-6 4-7 References 4-8 Tables Figures APPENDIX A - CONVERSION OF PYROLYSIS KINETICS DATA TO REACTION PLANE KINETIC CONSTANTS A-1

B-1

APPENDIX B - PROPERTY VALUES USED IN QUALIFYING CALCULATIONS

vì

LIST OF TABLES

Table		Section
2-1	Property Data Sources, Low Density Nylon Phenolic	2
2-2	Thermal Conductivity Sources, Low Density Nylon Phenolic	2
2-3	Thermal Conductivity vs. Temperature, Low Density ($\rho_{p}^{\simeq35}$ lb/ft³) Nylon Phenolic Virgin Material	2
2-4	Thermal Conductivity vs. Temperature, Low Density Nylon Phenolic Chars	2
2-5	Specific Heat Sources, Low Density Nylon Phenolic	2
2-6	Specific Heat vs. Temperature, Low Density Nylon Phenolic Virgin Material	2
2-7	Specific Heat vs. Temperature, Low Density Nylon Phenolic Chars	2
2-8	Emissivity (Emittance) Sources, Low Density Nylon Phenolic	2
2-9	Emittance, Low Density Nylon Phenolic Chars	2
2-10	Computed Specific Heat of "Best Estimate" Pyrolysis of Low Density Nylon Phenolic	2
2-11	Property Data Sources, Avcoat 5026-39-HC/G	2
2-12	Thermal Conductivity Sources, Avcoat 5026-39-HC/G	2
2-13	Thermal Conductivity, Avcoat 5026-39-HC/G, Virgin Materials and Low Temperature Chars	2
2-14	Thermal Conductivity, Avcoat 5026-39-HC/G, Charred Portions of Flight and Arc Cores and One 2460 ^O R Oven Char	2
2-15	Specific Heat Sources, Avcoat 5026-39-HC/G	2
2-16	Specific Heat vs. Temperature, Avcoat 5026-39-HC/G	2
2-17	Emissivity (Emittance) Sources, Avcoat 5026-39-HC/G	2
2-18	Emittance vs. Temperature, Avcoat 5026-39-HC/G	2
2-19	Property Data Sources, Filled Silicone Elastomer	2
2-20	Thermal Conductivity Sources, Filled Silicone Elastomer	c 2
2-21	Thermal Conductivity, Filled Silicone Elastomers, Virgin State	2
2-22	Specific Heat Sources, Filled Silicone Elastomer	2
2-23	Specific Heat vs. Temperature, Filled Silicone Elastomers	2
3-1	Ablation Test Data, Low Density Nylon Phenolic	3
3-2	Ablation Test Data, Low Density Silicone Elastomer	3
3-3	Ablation Test Data, Avcoat 5029-39-HC/G	3

LIST OF TABLES (conc.)

Table		Section	
3-4	Model Internal and Surface Temperature Data, Low Density Nylon Phenolic	3 . ^{7.2}	
3-5	Model Internal and Surface Temperature Data, Low Density Silicone Elastomer	3 dialeg	
36	Model Internal and Surface Temperature Data, Avcoat 5026-39-HC/G	3	
			v
4-1	Comparison of Results for Low Density Phenolic Nylon Tab. No. 23, Table 3-1	4	
4. m 2.	Comparison of Results for Low Density Silicone Elastomer Tab. No. 9, Table 3-2	4	
4-3	Comparison of Results for Avcoat 5026-39-HC/G Tab. No. 4 Table 3-3	4	
4 - 4	Char Thermal Conductivity	4	
			ŝţ
			10.
	n a sector a filo na subsector de sector Norma Sector a sector a sector a sector		

LIST OF FIGURES

Figure		Section
2-1	Thermal Conductivity vs. Temperature, Low Density (ρ _p ≃35 b/ft³) Nylon Phenolic Virgin Material	91 2 2.22
2-2	Thermal Conductivity vs. Temperature, Low Density Nylon Phenolic Charred Material	2
2-3	Specific Heat vs. Temperature, Low Density Nylon Phenolic Virgin Material	2
24	Specific Heat vs. Temperature, Low Density Nylon Phenolic Char	2
2-5	Emittance Low Density Nylon Phenolic Chars	2
2-6	Computed Specific Heat of "Best Estimate" Pyrolysis Gas of Low Density Nylon Phenolic (40% Nylon, 60% Phenolic Resin), from Ref. (2-20).	2
2-7	Thermal Conductivity,Avcoat 5026-39-HC/G Virgin Materials and Low Temperature Chars	2
2-8	Thermal Conductivity, Avcoat 5026-39-HC/G	2
2-9	Avcoat 5026/HC-G Specific Heat vs. Temperature	2
2-10	Emittance vs. Temperature, Avcoat 5026-39-HC/G	2
2-11	Measured Heats of Combustion Virgin Materials, Oven Chars, and Flight Cores	2
2-12	Thermal Conductivity, Filled Silicon Elastomers - Virgin State	2
2-13	Specific Heat vs. Temperature, Filled Silicon Elastomers	2
2-14	TGA Curve for NASA 602 Filled Silicone Elastomer	2
2-15	TGA Curves for Various Unfilled Silicone Elastomers	2
2-16	TGA Curves for Various Unfilled Silicone Elastomers	2
2-17	TGA Curves for Unfilled Silicone Elastomers	2
3-1	Ablation Test Data, Low Density Phenolic Nylon	3
3-2	Ablation Test Data, Low Density Silicone Elastomer	3
3-3	Ablation Test Data, Avcoat 5026-39-HC/G	3
4-1	Phenolic Nylon, Tab. No. 23, Table 3-1, Surface Temperature History	4
4-2	Phenolic Nylon, Tab. No. 23, Table 3-1, Temperature History for T/C Initially 0.104 in. from Surface	4
4-3	Phenolic Nylon, Tab. No. 23, Table 3-1, Temperature History for T/C Initially 0.211 in. from Surface	4
4-4	Silicone Elastomer Tab. No. 9 Table 3-2, Surface Temperature History	4
45	Silicone Elastomer Tab. No. 9, Table 3-2, Temperature History for T/C Initially 0.099 in. from Surface.	4

LIST OF FIGURES (conc.)

FigureSection4-6Avcoat 5026-39 HC/G, Tab. No. 4, Table 3-3,
Temperature History for T/C Initially 0.107 in.
from Surface44-7Avcoat 5026-39 HC/G, Tab. No. 4, Table 3-3,
Temperature History for T/C Initially 0.209 in. from
Surface4

LIST OF SYMBOLS

А	pre-exponential factor in reaction plane pyrolysis relation (2-5) and (A-5)	lb/ft ² -sec
^A oi	pre-exponential factor in pyrolysis equation (A-1)	sec ⁻¹
^A k	pre-exponential factor in Equation (2-6)	$lb/ft^2sec atm^n$
В	activation energy in reaction plane pyrolysis relation (2-5) and (A-5)	Btu/lb-mol
^B k	activation energy in Equation (2-6)	o _R
Cp	specific heat	Btu/lb ^O R
Cw	mass concentration of uncombined oxygen (e.g., O ₂) at ablating surface in Equa- tion (2-6)	lb/lb
E,E _i	activation energy in pyrolysis relations (2-2)	Btu/lb-mol
f _o	oxygen mass fraction in stream	lb ₀ /lb
^H , ^H f	see ΔH , $\overline{\Delta} H$, ΔH_{f}	
h	enthalpy	Btu/lb
h _T	total enthalpy	Btu/lb
k	thermal conductivity	Btu/sec-ft ⁰ R
^k fi	temperature function in pyrolysis equations (2-1), (2-2), (2-4)	sec ⁻¹
^k o _i	pre-exponential factor in equation (2-2)	sec
'n	surface recession rate	lb/ft ² -sec
m p	pyrolysis rate	lb/ft ² -sec

xi

reaction order in Equation (2-6) reaction order in pyrolysis equations ----(2-2), (2-4)stagnation pressure at test model atm local pressure at ablating surface atm Btu/ft²sec cold wall heat flux Btu/lb-mol^OR universal gas constant surface recession ft \circ_{R} temperature \circ_{R} pre-char temperature Tc1 'Tc2 \circ_{R} temperature at pyrolysis plane denotes thermocouple denotes thermgravimetric analysis mass (or weight) of TGA sample lb resin mass fraction lb_{resin}/lb depth ft GREEK ft_{resin}^3/ft^3 volume fraction of resin heat of pyrolysis Btu/lb dimensionless heat of pyrolysis ∆HRpio_

n

n_i

pt2

P_w

₫_{CW}

R

S

Т

qT

T/C

TGA

Ŵ

X

У

Γ

ΔH

ΔH

xii

Eicpppp

$^{\Delta \mathrm{H}}$ f	heat of formation	Btu/lb
ε	emittance	1000 UPER 1000
n _s	distance error on recession	ft
n _t	distance error in pyrolysis penetration depth	ft
θ	time	sec
ρ	density	lb/ft ³
°i	i constituent density	lb _i /ft ³
	SUBSCRIPTS	
a,b,c	denote individual tests in a sequence	
С	denotes char	
calc	denotes calculated	
f	see k_{f_i} , ΔH_{f}	
i	denotes constituent in pyrolysis	
m	denotes measured	
Ν	denotes nylon	
0	denotes original or virgin state; see also A _o , foi , ko	
p	denotes virgin plastic; also see T	
r	denotes residual or char state for constituent i	
S	denotes recession, see n _s	
T	see h _T	

see h_{T}

Т

t

Ŵ

1,2

denotes pyrolysis penetration depth, η_t

at ablating surface ("wall")

denotes sequence of i values; also see T_{c_1} , T_{c_2}

SECTION 1

INTRODUCTION

The present program aims to define the range of applicability of the Langley Research Center Charring Ablation Program (CHAP), described in References 1-1 and 1-2, using two versions of CHAP to predict test data over a wide range of conditions for three charring ablators: low density nylon phenolic, the Apollo heat shield material, and filled silicone elastomer.* The program has two major tasks, scheduled to run successively. Task I involves the collection of material properties data and ablation test data and the conduct of qualifying calculations to demonstrate successful operation of the CHAP code. For reporting purposes, Task I is organized into subtasks as follows:

Task	Activity
I	Properties and Test Data Collection; Qualifying Calculations
I.l	Properties Collection
I.2	Test Data Collection
I.3	Establishment of Agreement Criteria; Qualifying Calculations
I.4	Reporting and Review

Task II will involve extensive computer runs to determine one set of thermophysical and thermochemical properties for each kind of material and the range of applicability of the CHAF program for each material.

The present report is the Task I Final Report. It presents the material properties data and ablation test data which will subsequently be used in Task II, and describes the results of the qualifying calculations with the simpler CHAP I version of the ablation code**. Section 2 presents the properties data; Section 3 describes the ablation test data, and Section 4

*The thrust of this program is toward possible space shuttle studies, which will feature lower density materials. The three materials chosen represent a compromise between similarity to shuttle candidate materials on the one hand and the current availability of sufficient test data on the other.

**Chap II includes a complex "coking" or char densification model. Since no good test data exist to evaluate this code, qualifying calculations are less applicable.

reports the agreement criteria and the qualifying calculations. Because of the volume of data reported, references, figures and tables are numbered by section (with section number prefixes) and are placed at the end of the individual sections.

Mr. Stephen S. Tompkins of the Materials Division, Langley Research Center, Hampton, Virginia, was the technical representative for this project.

REFERENCES

- 1-1 Swann, Robert T., and Pittman, Claud M.: Numerical Analysis of the Transient Response of Advanced Thermal Protection Systems for Atmospheric Entry. NASA TN D-1370, July 1962.
- 1-2 Swann, Robert T., Pittman, Claud M., and Smith, J. C.: One-Dimensional Numerical Analysis of the Transient Response of Thermal Protection Systems. NASA TN D-2976, September 1965.

SECTION 2

MATERIAL PROPERTIES

Subtask I.l of the program involved the collection of material properties data on three materials, defined as follows:

- Low density nylon phenolic; composition by mass of about 23 to 37 percent phenolic (phenol formaldehyde) resin, 22 to 27 percent hollow phenolic microspheres (or Microballoons), 40 to 60 percent nylon (cloth or powder); nominal virgin density about 36 lb/ft³
- Low density silicone elastomer; composition by mass of about 72 to 78 percent silicone elastomer (polydimethyl siloxane or polymethylphenyl/dimethyl siloxane), 12 to 16 percent hollow silica microspheres, 8 to 12 percent hollow phenolic microspheres (or Microballoons), nominal virgin density about 34 to 40 lb/ft³
- Apollo heat shield material, commercially designated Avcoat 5026-39-HC/G; principally epoxy novolac with phenolic microspheres, with silica fibers added, gunned into phenolic/fiberglass honeycomb; nominal density 32 lb/ft³

Properties to be covered included those properties required as input to the CHAP code: virgin and char densities, pyrolysis kinetics, thermal conductivity, specific heat, emittance, heat of combustion (or equivalent thermochemical information), heat of pyrolysis (or equivalent heat of formation information), and the specific heat of the pyrolysis gases.

The following subsections summarize the data obtained. For each material, a descriptive summary table identifies the sources of all data collected. It should be noted that with few exceptions only measured property data are considered; inferential properties (such as properties "backed out" of reported ablation test data with charring ablator computer codes) were not collected. A subsidiary summary table for each property lists in some detail the temperature range considered by each of the measurements, the material preparation in each case, the method employed, and the reported accuracy of the measurements (usually not given). The tables also give an estimate of the overall accuracy of the data. This estimate was arrived at in each case by considering:

- The reported random error of the measurement technique and/or apparatus
- The observed randomness in the reported data
- The scatter in the data for different material specimens or samples
- Any anticipated bias in the data

These estimates are of necessity somewhat crude; they do provide, however, a useful idea of the approximate nature of the data.

The actual data are presented in graphs and tabulations. In most cases, the amounts of data points are sufficient to have allowed the original reporters to draw a line of "best interpretation"; in such cases it is this line which is reported, and not the original test data.

2.1 LOW-DENSITY NYLON PHENOLIC

The low density nylon phenolic considered here has been very thoroughly studied. The tables, graphs, and tabulations of this section summarize the data extracted from the literature. Table 2-1 summarizes pertinent information about the data sources for nylon-phenolic.

2.1.1 Thermal Conductivity

Table 2-2 summarizes the thermal conductivity source of information. Table 2-3 summarizes the virgin material thermal conductivity as a function of temperature; the same data is shown in Figure 2-1.

Table 2-4 and Figure 2-2 present the char conductivity as a function of temperature. The reported data cover a very wide range, indicating that char conductivity is a function of other parameters besides temperature. Various additional correlating parameters have been suggested:

- The "charring" or "pre-char" temperature, i.e., the highest temperature which the specimen has ever reached
- The length of time the specimen was exposed to this charring temperature
- The charring heating rate, or temperature rise rate during the charring process (which controls thepore size and other mechanical features of the char)
- The ambient pressure and atmosphere

These suggested correlating parameters are intended to clarify in some useful way the presentation of thermal conductivity data which are, in fact, functions of the entire previous history of the specimen. At the present time only attempts to correlate in terms of the first additional variable above could be tried, since data on the others are sparse and often not reported. One might hope to construct a plot with a form like the one shown in the following sketch:

The data of Figure 2-2 do not allow the construction of an orderly picture of this type, however.

The major part of the pyrolysis of nylon phenolic occurs between 1100°R and 1400°R. Thermal conductivity data for this temperature domain (except for materials pre-charred at a much higher temperature) are missing. This lack of data leaves open the interesting question of conductivity values for the pyrolysis zone of partially degraded material. Reference 2-5 contains some data for partially-pyrolyzed high density nylon phenolic which indicates that the conductivity for such material may be lower than the virgin values by substantial amounts.

2.1.2 Specific Heat

Table 2-5 summarizes the source information for specific heat measurements. Figure 2-3 shows the virgin material specific heat for temperatures up to a little over $1200^{\circ}R$. Appreciable pyrolysis of this material begins at about this temperature. These data are tabulated in Table 2-6.

Table 2-7 and Figure 2-4 present the char specific heat for low density nylon phenolic. The data show good consistency since the char is very nearly pure carbon; the complexities affecting the thermal conductivity data are largely irrelevant in this case.

2.1.3 Emittance

Table 2-8 summarizes the emittance source data for nylon phenolic. Table 2-9 and Figure 2-5 present the available emittance data for the chars of low density nylon-phenolic. Reported values at a given temperature vary; at 2850^OR for example the values range from 0.60 to 0.93, a substantial variation. Differences in reported emittance presumably stem from

- The different surface appearances caused by different heating rates
- Surface coatings formed of compounds of trace species existing in the virgin material

The depression in the emittance values of Reference 2-1 in the domain 3000° R to 4000° R is believed due to this latter possibility.

2.1.4 Pyrolysis Kinetics

References 2-5 and 2-11 present pyrolysis kinetic data in reduced form, as derived from thermogravimetric laboratory data. In the case of Reference 2-5 the reduced data are presented as the constants in an equation of the form

 $\frac{d\rho_{i}}{d\theta} = -k_{f_{i}}\rho_{o_{i}}\left(\frac{\rho - \rho_{r_{i}}}{\rho_{o_{i}}}\right)^{n_{i}}$

(2-1)

where

$$k_{f_i} = k_{o_i} e^{-E_i/RT}$$
(2-2)

where the i index identifies a specific reaction from the TGA data (which may or may not be readily associated with any specifically identifiable pyrolysis mechanism), and the subscripts o and r identify original (virgin) and residual (char) states. Reference 2-5 reports the following values for the kinetic constants in Equation (2-1):

 i i	k _{oi} (sec ⁻¹)	E _i /R (°R)	n	ρ _o (lb/ft³)	ρ _r (1b/ft ³)
Nylon	1.85 x 10 ¹³	47,100	1.0	71.0	0
 Phenolic (1)	1.40×10^4	15,400	3.0	20.25	0
Phenolic (2)	4.48 x 10 ⁹	36,800	3.0	60.75	40.5

Nylon phenolic is a composite of nylon and phenolic; the material density may be written

$$\rho = \Gamma (\rho_1 + \rho_2) + (1 - \Gamma) \rho_N$$
(2-3)

where 1 and 2 denote the two phenolic quantities and N denotes nylon, and T is the volume fraction of resin in the composite.* Note that ρ_1 and ρ_2 have the units lb_i/ft³ resin, and ρ_N has the units (lbs nylon)/(ft³nylon).

Nelson (Ref. 2-11) presents reduced TGA data for nylon and for some phenolic resins of interest, all based on the pyrolysis rate equations (2-1). The phenolics tested had pyrolysis curves best fitted by a three-component model in two cases. The following table summarizes the Nelson results

Material	Reaction No. i	^k o _i sec ⁻¹	E _i /R ° _R	ni	$\frac{\rho_{o_{i}}}{\rho_{o_{resin}}}$	$\frac{r_{i}}{r_{o}}$ resin
Phenolic I (Union Carbide "Bakelite" phe- nolic resin BRP-5549	1 2 3	5.17 x 10^8 2.50 x 10^5 2.17 x 10^7	24,865 21,838 30,270	3.0 1.3 3.1	0.052 0.068 0.880	0 0 0.540
Phenolic II (Union Carbide BJO-0930 microspheres)	1 2 3	2.17 x 10^{5} 9.67 x 10^{6} 1.30 x 10^{10}	15,135 26,378 37,189	2.0 3.0 3.0	0.097 0.165 0.738	0 0 0.558
Phenolic III (Evercoat Chemi- cal liquid cast- ing resin EC-251)	1 2	2.17 \times 10 ² 3.33 \times 10 ³	9,730 17,946	2.0	0.105 0.895	0 0.453
Nylon (DuPont Zytel 103 powder)		8.33 x 10 ¹⁴	50,162	1.0	1.000	0.070

*The resin mass fraction is, in terms of
$$\Gamma$$
, $x = \frac{\Gamma(\rho_{10} + \rho_{20})}{\rho_{p}}$

Farmer in Reference 2-12 presents rate constants for a variety of phenolic materials; these constants are based, however, on a single component pyrolysis rate equation slightly different from Equation (2-1) above

$$\frac{d\rho}{d\theta} = -k_{f}\rho_{o} \left[\frac{\rho_{o}}{\rho_{o} - \rho_{r}}\right]^{n-1} \left(\frac{\rho - \rho_{r}}{\rho_{o}}\right)^{n}$$
(2-4)

(2-5)

Farmer's values for k_f should be multiplied by the factor $[(\rho_o - \rho_r)/\rho_o]^{n-1}$ to obtain k_f values for comparison to values from References 2-5 and 2-11.

We do not tabulate Farmer's data here since the phenolics used are not exactly the phenolics used in the materials of interest in this program. The report does provide, however, much background data of general interest.

Data based on either of the two pyrolysis equations (2-1) and (2-4) are not directly useful as CHAP code input, since the computer program pyrolysis calculation is based on the "reaction plane" approximation that the <u>total</u> pyrolysis rate in the material is given by

 $\dot{m}_{p} = Ae^{-B/T}p$

where T_p is the temperature at the current location of the pyrolysis plane. Appendix A describes how the reported data can be related to the constants required for CHAP input.

2.1.5 Heats of Formation or Heat of Pyrolysis

The heat of pyrolysis for a nylon phenolic (60% resin, 40% nylon) has been reported in Reference 2-20 as 200 ± 20 Btu/lb. Heat of combustion information was used to compute the following heats of formation at 25°C:

$$\Delta H_{f} = -959 \text{ Btu/lb}$$

nylon 6-6

∆H_f = -823 Btu/lb phenolic resin

Various measured pyrolysis gas compositions were verified by using these heats of formation to compute a heat of pyrolysis which compared well with the reported value cited above. Appendix G of Reference 2-20 lists the final recommended composition; the inferred heat of formation for this "best estimate" pyrolysis gas was not reported, however.

2.1.6 Specific Heat of Pyrolysis Gas

Using the "best estimate" pyrolysis gas composition obtained in the manner described in Section 2.1.5 above, Reference 2-20 reports frozen and equilibrium specific heats for the pyrolysis gas. These are plotted in Figure 2-6 and tabulated in Table 2-10.

2.1.7 Surface Oxidation Kinetics

The basic thermochemical ablation model of the CHAP code is one of carbon oxidation. At low temperatures, the oxidation rate is controlled by chemical kinetic factors, represented in the code by the relation

$$\hat{\mathbf{m}}_{c} = \mathbf{A}_{k} e^{-\mathbf{B}_{k}/\mathbf{T}_{w}} (\mathbf{C}_{w} \mathbf{p}_{w})^{n}$$
(2-6)

The user must specify as input the pre-exponential factor A_k , the activation energy B_k , and the reaction order n.

The literature search did not discover any experimental work specifically aimed at quantifying the oxidation kinetic constants for nylon phenolic chars. Many experiments have of course been done on carbon oxidation kinetics, but since these are observed to depend strongly on the physical state of the surface and on small amounts of impurities in the carbon, it is not felt that the resulting data are particularly relevant to chars. For reference purposes, it is customary to use "Scala fast" kinetics (Reference 1-2), which are

n =
$$1/2$$

A_k = 6.73 x 10⁸ lb/ft²sec atm^{1/2}
B_k = 39,872^oR

An alternative set of "slower constants suggested in the contract work statement is

> n = 1 $A_k = 1 \times 10^{10} \text{ lb/ft}^2 \text{sec-atm}$ $B_k = 76,500^{\circ} R$

The CHAP code surface oxidation formulation of Reference 1-2 also introduces a constant λ representing the mass of char removed per mass of oxygen reacting at the surface. For a carbon char such as that of nylon phenolic, $\lambda =$ 0.75, representing the ratio of the molecular weight of carbon to that of oxygen.

For very high temperatures, sublimation is an important mechanism of carbon removal. It is modeled in the CHAP code with an exponential law requiring input constants. The cases of interest in the current study all fall below sublimation temperatures; hence the literature review did not cover sublimation.

2.2 AVCOAT 5026-39-HC/G

The material designated Avcoat 5026-39 is a phenolic novolac reinforced with silica fibers and lightened with phenolic Microballoons. The manufacturer regards the exact composition of this material as proprietary information. When used as the Apollo heat shield material, the composition is hand-filled into the cells of a low density phenolic glass hexagonal honeycomb (HC) with an injection gun (G). Despite the important practical use of this material, property data are relatively scarce, particularly at high temperatures.* Furthermore, most existing data are obtainable only from informal reports published during periods of compressed schedules during the Apollo development program; consequently, much supporting detail has not beenincluded in the reports.

Table 2-11 presents the data source summary information for Avcoat. Specific properties are discussed in the following subsections.

2.2.1 Thermal Conductivity

Table 2-12 summarizes the thermal conductivity source information for Avcoat. Figure 2-7 shows virgin material thermal conductivity up to 1400°R. Appreciable decomposition of Avcoat begins at about 1000°R; decomposition is nearly complete at 1400°R. Table 2-13 lists these virgin material conductivity data.

Table 2-14 and Figure 2-8 present Avcoat char thermal conductivity as a function of temperature. The data are sparse and scattered.

2.2.2 Specific Heat

Table 2-15 lists the summary data source information for Avcoat specific heat. Figure 2-9 shows specific heat data for both virgin material and a number of oven pre-chars for various charring temperatures, as well as some flight core data. The data show a good decreasing parametric trend of C_p(T) curve-location with pre-char temperature. Table 2-16 lists these data.

2.2.3 Emittance

Table 2-17 presents the data source summary for Avcoat emittance. Table 2-18 and Figure 2-10 present the emittance data for Avcoat chars and one virgin sample charred during the test.

Apollo program reports (Refs. 2-21 - 2-24) were mostly concerned with flight core studies and basic ablation mechanism studies, with property value determination not having a central role. This emphasis resulted from an obvious priority assignment: the material response needed to be clarified before improved design computing procedures could be used.

2.2.4 Pyrolysis Kinetics

Reference 2-24 lists reduced TGA data for Avcoat 5026-39-HC/G, based on a single component model. These data are apparently based on Equation 2-1, although the discussion is unclear on this point. The data presented are as follows:

Test	k _o	E/R	n
No.	(sec ⁻¹	(°R)	
T222 T223 T224 T225 T222/4 1488 C2/14	$.518 \times 10^{5}$ $.232 \times 10^{5}$ $.405 \times 10^{5}$ $.258 \times 10^{6}$ $.667 \times 10^{7}$ $.786 \times 10^{5}$ $.493 \times 10^{9}$	$.161 \times 10^{5}$ $.151 \times 10^{5}$ $.140 \times 10^{5}$ $.181 \times 10^{5}$ $.219 \times 10^{5}$ $.143 \times 10^{5}$ $.299 \times 10^{5}$	1.7 1.7 2.0 2.1 2.0 3.0

This data reduction apparently encompasses all worthwhile data collected previous to 1969, specifically including the unreduced TGA data reported in Reference 2-23.

2.2.5 Heats of Formation or Heat of Pyrolysis

No reduced heat of formation data were discovered. References 2-21 and 2-23 present some bomb calorimeter heat of combustion data, but these values may be influenced to an undetermined extent by reactions between silica and carbon in the char. Figure 2-11 shows these data.

No heat of pyrolysis data are reported in the literature.

2.2.6 Specific Heat of Pyrolysis Gas

The literature has no data on the pyrolysis gas of Avcoat 5026-39.

2.2.7 Surface Oxidation Kinetics

The general thermochemical ablation model of CHAP is discussed in Section 2.1.7. As was the case with nylon phenolic, no specific data covering the oxidation kinetics of Avcoat 5026-39-HC/G were discovered. The fast kinetics of Section 2.1.7 will be used for the initial Task II calculations.

In the case of Avcoat the quantity λ (the amount of char removed per lb of oxygen reacting at the surface) is twice the value for pure carbon since

half the Avcoat char is silica, and it is assumed that as carbon is removed by oxidation, a corresponding amount of silica flows away from the surface in condensed form. Thus $\lambda = 2 \times 0.75 = 1.5$.

The ablation literature for Avcoat does not include a data analysis of sufficient extent to clarify whether this oxidation model will be an adequate representation.

2,3 SILICONE ELASTOMER

The silicone elastomer to be considered during this program is described in the Introduction to Section 2. Appropriate silicone elastomers for the material considered can vary in chemical make-up between polydimethyl siloxane and polymethylphenyl siloxane, which are illustrated in the following sketch:

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ -Si \\ -Si \\ CH_{3} \end{array} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ -Si \\ -Si \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \\ C$$

Polydimethyl Siloxane Structure

Methylphenyl and Dimethylpolysiloxane copolymer

Usually the specific material featured in a data report will be specified only by the manufacturer's resin identification number. In most cases these are described simply as a dimethyl/methylphenyl product; the exact composition is not reported and indeed in most cases is not known. The data tabulations presented below identify the material in each case with all descriptions reported originally. Table 2-19 lists the general data source information.

2.3.1 Thermal Conductivity

Table 2-20 identifies the thermal conductivity source information for the silicone elastomers of interest here. Only virgin material conductivity data are reported in the literature. These are presented in Table 2-21 and Fig-ure 2-12.

2.3.2 Specific Heat

Table 2-22 describes the specific heat data sources. Table 2-23 and Figure 2-13 give the C_p data uncovered for the filled silicone elastomer material. The data are sparse but agree fairly well if one low temperature point is neglected.

2.3.3 Emittance

Only one emittance data point is presented in the literature. Pope (Ref. 2-15) measured ϵ equal to 0.71 ± 0.05 over the range 1750 K°(3150°R) to 2200°K (3960°R) for an arc heated char. Tables 2-8 and 2-17 contain descriptions of Pope's experimental method.

2.3.4 Pyrolysis Kinetics

The only reduced TGA data reported are by Nelson (Ref. 2-11). For General Electric RTV-602 dimethyl polysiloxane, Nelson gives the following single component values:

k _o	E/R	n	ρ _r /ρ _o
(sec ⁻¹)	(°R)		
5.33 x 10 ¹⁰	39,135	1.0	0.040

Nelson also reports constants for the phenolic microspheres used with the elastomer compound of interest here; these data were listed under the identification "Phenolic II" in Section 2.1.4 above.

Potentially useful unreduced TGA curves were presented in References 2-25, 2-26, and 2-28. These are reproduced in Figures 2-14 through 2-17. Note that the material of Figure 2-14 is a filled composite of the type of interest here; the other figures are for silicone resins only.

2.3.5 Heats of Formation or Heat of Pyrolysis

No information of this type is available in the literature.

2.3.6 Specific Heat of Pyrolysis Gas

No information on the pyrolysis gas specific heat appears in the literature. The pyrolysis of silicone resins is a subject of some conjecture.

2.3.7 Surface Oxidation Kinetics and Melting

The general thermochemical ablation model of CHAP is discussed in Section 2.1.7. As was the case of nylon phenolic and Avcoat 5026-39-HC/G, no specific data covering the oxidation kinetics of the silicone elastomer material were discovered. The fast kinetics of Section 2.1.7 will be used for the initial Task II calculations.

The quantity λ (the amount of char removed per lb of oxygen reacting at the surface) is not well defined for this material. The contract gives a value of $\lambda = 0.1$ which is from earlier unpublished data correlation studies conducted by the NASA Langley Research Center.

The chars of the silicone elastomer materials appear to show melting at higher temperatures. The current version of the CHAP code does not include the fixed melt temperature option available in earlier versions of the code. Instead, melting must be simulated by an appropriate choice of sublimation constants. The literature to date contains no complete study which would verify the adequacy of such a model. Unpublished data correlation studies by the NASA Langley Research Center suggest melting at about 3800^OR.

REFERENCES

- 2-1. Wilson, R. Gale, "Thermophysical Properties of Six Charring Ablators from 140° to 700°K and Two Chars from 800° to 3000°K," NASA TN D-2991, October 1965.
- 2-2. Engelke, W. T., Pyron, C. M., Jr., and Pears, C. D., "Thermophysical Properties of a Low-Density Phenolic-Nylon Ablation Material," NASA CR-809, July 1967.
- 2-3. Smyly, E. D., Pyron, C. M., Jr., and Pears, C. D., "An Investigation of the Mechanisms of Heat Transfer in Low-Density Phenolic-Nylon Chars, NASA CR-966, December 1967.
- 2-4. Smyly, E. E. and Pyron, C. M., Jr., "An Investigation of the Mechanisms of Heat Transfer and Low-Density Phenolic-Nylon Chars," <u>Seventh Confer-</u> <u>ence on Thermal Conductivity</u> (National Bureau of Standards, Gaithersburg, <u>Maryland, November 13-16, 1967</u>), Special Publication 302, National Bureau of Standards, Washington, D. C., September 1968, pp.425-453.
- 2-5. Kratsch, K. M., Hearne, L. F., and McChesney, H. R., "Thermal Performance of Heat Shield Composites During Planetary Entry." Unnumbered paper presented at the American Institute of Aeronautics and Astronautics -National Aeronautics and Space Administration National Meeting, Palo Alto, California, September 30-October 1, 1963 (also Lockheed Missiles and Space Company, Sunnyvale, California, Report LMSC-803099, October 1963), reprinted in Engineering Problems of Manned Interplanetary Exploration, American Institute of Aeronautics and Astronatics, New York 1963).
- 2-6. Sanders, H. G., Smyly, E. D., and Pears, C. D., "An Investigation of Some Thermal and Mechanical Properties of a Low-Density Phenolic-Nylon Ablation Material," Southern Research Institute, Birmingham, Alabama, NASA CR-66731, February 1969.
- 2-7. Rindal, R. A. and Kratsch, K. M., "Prediction of the Ablative Material Performance on a Scout Reentry Vehicle," Aerotherm Corporation, Mountain View, California, Aerotherm Report No. 66-4, July 15, 1966.
- 2-8. Lagedrost, J.F., Fabish, T.J., Eldridge, E.A., Deem, H.W., and Krause, H. H., "Thermophysical and Chemical Characterization of Charring Ablative Materials," Battelle Memorial Institute, Columbus, Ohio, NASA CR-73399, December 31, 1968.
- 2-9. Nagler, R. G., "The Thermal Conduction Process in Carbonaceous Chars," <u>Sixth Conference on Thermal Conductivity</u> (Dayton, Ohio, October 19-21, 1966), Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1968, pp. 1095-1103.
- 2-10. General Electric Co., Philadelphia, Pa., "Transient Determination of the Thermal Conductivity of a Low Density Phenolic Nylon Char," NASA CR-66099, July 23, 1965.
- 2-11. Nelson, J. B., "Determination of Kinetic Parameters of Six Ablation Polymers by Thermogravimetric Analysis," NASA TN D-3919, April 1967.
- 2-12. Farmer, R. W., "Thermogravimetry of Phenol-Formaldehyde Polycondensates, Part II - Empirical Kinetic Parameters," Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, AFML-TR-65-246, Part II, March 1967.

- 2-13. Goldstein, H. E., "Kinetics of Nylon and Phenolic Pyrolysis," Lockheed Missiles and Space Company, Sunnyvale, California, LMSC-667876, October 1965.
- 2-14. Goldstein, H. E., "Pyrolysis Kinetics of Nylon 6-6, Phenolic Resin and Their Composites," American Chemical Society (Division of Organic Coating and Plastics Chemistry), 155th Meeting (San Francisco, California, April 1968), Vol. 28, No. 1, 1960, pp. 131-145.
- 2-15. Pope, R. B., "Measurement of the Total Surface Emittance of Charring Ablators," AIAA Journal, Vol. 5, No. 12, December 1967, pp. 2285-2287.
- 2-16. Wilson, R. Gale, and Spitzer, C. R., "Visible and Near-Infrared Emittance of Ablation Chars and Carbon," <u>AIAA Journal</u>, Vol. 6, No. 4, April 1968, pp. 665-671.
- 2-17. Wilson, R. Gale, "Hemispherical Spectral Emittance of Abltion Chars, Carbon, and Zirconia (to 6000°F)," <u>Symposium of Thermal Radiation of Solids</u>, S. Katzoff, ed., NASA SP-55, 1965, pp. 259-275.
- 2-18. Wilson, R. Gale, "Hemispherical Spectral Emittance of Ablation Chars, Carbon, and Zirconia to 3700°K, NASA TN D-2704, March 1965.
- 2-19. Sykes, G. T., Jr., "Decomposition Characteristics of a Char-Forming Phenolic Polymer Used for Ablative Composites," NASA TN D-3810, February 1967.
- 2-20. Pike, R. W., April, G. C., and del Valle, E. P., "Evaluation of the Energy Transfer in the Char Zone During Ablation," Department of Chemical Engineering, Louisana State University, NASA CR-107533, May 1, 1969.
- 2-21. Ihnat, M.E., "Evaluation of the Thermal Properties of Materials," Vols. I and II, Avco Corpooration, Lowell, Massachusetts, AVSSD-0197-66-CR, June 28, 1966 and September 30, 1966.
- 2-22. Ihnat, M. E., "Evaluation of the Thermophysical Properties of the Apollo Heat Shield," Vols. I and II, Avco Corporation, Lowell, Massachusetts, AVSSD-0375-67-RR, August 8, 1967.
- 2-23. Alexander, J. G., Burrell, B., Crowley, D. P., Hill, R., Ihnat, M. E., Lamb, B., McBride, A., Morgida, J., Patterson, D. M., Polestra, F., Stein, E., and Steward, C. C., "Evaluation of the Thermophysical Properties of the Apollo Heat Shield - AS-501 Flight Core Study," Avco Corporation, Wilmington, Massachusetts, AVSSD-0206-68-RR, July 23, 1968.
- 2-24. Alexander, J. G., Burrell, B., Crowley, D. P., Morgida, J., Patterson, D. M., and Stewart, C. C., "Evaluation of the Thermophysical Properties of the Apollo Heat Shield - AS-502 Flight Core Study, AS-205 Flight Core Study, AS-503 Flight Core Study," Avco Corporation, Lowell, Massachusetts, AVATD-0198-69-RR, September 8, 1969.
- 2-25. Dolan, C. M., "Study for Development of Elastomeric Thermal Shield Materials," General Electric Co., Philadelphia, Pa., NASA CR-186, March 1965.
- 2-26. Thomas, H. K., Brash, M. P., Recesso, J. V., and Stein, E., "Ablative Composites for Lifting Reentry Thermal Protection," Avco Corporation, Lowell, Massachusetts, AFML-TR-67-270, Part I, September 1967.

- 2-27. Schwarzkopf Microanalytical Laboratory, Inc., Woodside, New York, "Determination of the Density and Chemical Profiles of Government-Furnished Charred Elastomeric Ablator Models," NASA, CR-66816, December 1968.
- 2-28. General Electric Company, Philadelphia, Pa., "Study of Elastomeric Heat Shield Materials for Apollo," NASA CR-91372, February 5, 1963.

i.....

-

PROPERTY DATA SOURCES LOW DENSITY NYLON PHENOLIC

r																	
U	Char 1400 ⁰ 7 to 40000F		o N	Char 2300 ⁰ R to 3900 ⁰ R	Q	Ŷ	° N	oz	No	oN	No	Мо	Char: 1900 ⁰ K 2400 ⁰ K	Char: 2900 ⁰ K .3.m to 2.5.m	Q	0 2	
×	Virjin: t8 800 ⁰ F Char: 900°F to 4500 ⁰ F	Virgin: -200 ⁰ F to 750 ⁰ F to Char: 1000 ⁰ F to 5000 ⁰ F	Chars: 400 [°] F to 1000 [°] F with different gases at different pressures	Char: 500 ^O R to 5000 ^O R approximate virgin data; data for partial degradation zone	Char 720°R to 5460°R	Virgin: 460 ⁰ R-1260 ⁰ R Char: 500 ⁰ R-5500 ⁰ R	Virgin: 20-300°C Char: (400°C): 20-400°C	Virgin: 0°C-480°C Char: (1000°C) 100-500°C	. Char: 1050 ⁰ R- 3250 ⁰ R	N	QN	No	6NO	0 M	°. N	No.	
Cp of Pyrolysis Gas	0	on	ON N	N	0 2	0 Z	o R	o z	°N N	Ř	No	No	0 N	0 2	0N N	Calculation for frozen s equilib- rium cases	from mea- sured py- rolysis gas composition
lleat of Pyrolysis	ON	N	No	No	Ņ	No	No	No	No	Ŷ	No	No	NO	NO	Xes	Xee	
h or c _p	Virgin: Lo 800 ⁰ F, Char: 1000 ⁰ F to 5000 ^F	Virgin: -200 ⁰ F to 600 ⁰ F to Char: 1000 ⁰ F to 5000 ⁰ F to	QN	Char: 0 to 5000 ⁰ R	2	Virgin: 460 ⁰ R-260 ⁰ R Char: 500 ⁰ R-5500 ⁰ R	Virgin: 0-240°C Char: (400°C): 0-400°C	Virgin: 0-240 ⁰ C	No	°N N	No	N	Ŋ	ê	2		
٩۴	So N	о <u>х</u>	^o x	-1311 Btu/lb (virgin)	0 X	S N	0 22	· 2	lio	0 N	No	Yes	0 Z	2			
Pyrolysis Kinetics	Копе	None	None	Yes - 3 component model	None	on N	ŝ	0 X	No	TGA data for all three; resins expressed as three components; nylons as one	Reduced TGA data, survey	No	N .	:	Č.	C M	
βc	13.1 1b/£t ³	15 16/ft ³	12 ± 0.3, 16.9 ± 0.8, 19.9 ± 0.2	18.8 lb/ft ³	15.6-18.7 1b/ft ³	с Х	° N	NO	No	ON	No	0.50 ppfor phenolic	Ŋ	Č Z	¢.	C X	
d d	37.4 ± 0.1 lb/ft ³	36.5 ± 0.3 Ib/ft ³	19,30, 6 42 1b/ft ³	75.6 1b/ ft ³	38.0-34.9 15/ft ³	0X	33.7 ± 1.2 1b/ft ³	34.4 lb/ ft ³	No	No.	NQ	No	No	0	NO	0 H	
Naterial Description	25% resin (UC)* 25% halloons 50% nylon powder (DuPont)	25% resin (UC)* 35% halloons . 43% nylon powder (DuFont)	25% resin (UC)* 35% balloons 40% nylon powder (Dufont)	50% resin 50% nylon cloth	37% resin (Hughes) 23% balloons 40% nylon powder (DuPont)	40% resin and balloons 60% nylon fabric or = 35 lb/ft3 oc = 15 lb/ft3	37% resin 23% balloons 40% nylon (Hughes 4 & 5)	25% resin 35% balloons 40% nylon (Langley)	50% resin 50% nylon	Tesin (UC)* Balloons (UC)* Nylon (DuPont)	Phenolic resins	Nylon 6 & CTL-91 LD resin;w/enalysis	Low density nylon phenolic	Low density nylon phenolic 25% resin, 35% balloons, 40%	Phenol-formalda- hyde resin, (UC)* BRP-5549	60% phenolic tesla 40% nylon	
Ref. No.2-		N .	. m vz	۰. م	v	~	8		6 01	7	12	13	15	9 ~ 60 H ~ M	19	20	0
Poference Identification	Wilson, R. Gale	Engelke, Fyron, Pears	Smyly, Pyron, Pears	Kratsch, Hearne, McChesney	Sanders, Smyly, Pears	Rindal, Kratsch	Lagedrost, J.F.		Nagler, R.G.	Velson, J.B.	Farmer, R.W.	Goldstein, H.E.	Pope	Wilson, R.Gale & Spitzer, C.R.	Sykes,G.F.,JT.	Pike, April,	*UC = Union Carbid

THERMAL CONDUCTIVITY SOURCES LOW DENSITY NYLON PHENOLIC

Estimated Accuracy	મા અ		± 20%	± 15%	<pre>1 20% (Cooling curve factor of two higher - due to cracking?)</pre>	Accept report	156	Accept report	Омкломп	108	Virgin: ± 20% Char: ± 50%	
Reported Accuracy	Not given		Not given	Not given	Not gåven	± 10% with poss. bias of 15%	Not given	± 7% with poss. bias of + 4%	Not given	Not given	Not given	41 41
Experimental Method	Radial outflow, 1° OD x 1° specimen (Nelpar)	Guarded hot plate, 3"D specimen (SoRI)*	Hybrid apparatus, radiai iniow through four sym- metrically located strips 1/4" x 1/2" x 2-1/4"	Guarded hot plate, 3"D specimen	Nybrid apparatus, radial inflow through four sym- metrically located strips 3/8" x 3/16" x 2"	Guarded comparative rod 1.00 specimens	Not described	Most data: hybrid radial in flow through four sym- merically located strips 3/8" x 5/16" x 2"	Not described	Guarded hot plate, 3"D x 1/2"	Guarded hot plate, 3"D x 1/2"	Helium arc and oxy- sectione tors, sient exposures, thermocouple responses matched with host con- duction computer cole
Temperature Rangu of Measurements	-269 ⁰ F to 480 ⁰ F	-267°F to 923°F	797 ⁰ F to 4360 ⁰ F	-242°F to 821°F	814 ⁰ F to 4925 ⁰ F	. 237 ⁰ F to 1073 ⁰ F	500 ⁰ R to 4500 ⁰ R	500 ⁰ R to 5400 ⁰ R	Virgin: 460 ⁰ R to 1260 ⁰ R Char: 500 ⁰ R to 5500 ⁰ R	200 ⁰ R to 300 ⁰ C	Virgin: 0°C-480°C Char: 100°C- 500°C	1050 ⁰ R to 1250 ⁰ R
Vacuum Conditions	Not described			l atm helium	Not described	Vacuum, nitrogen at l atm, and hellum at l atm	Not described	1 atm argon	Not described	Vacuum and 1 atm argon	Virgin: l atm argon Char: Vacuum	Not described
Materiàl State s Preparátion	Virgin, p _p = 37.4 ± 0.1 lb/ft ³		Char, 3"D disks exposed to acroheated nitrogen, 100 Btu/ft/sec for 120 seconds, surface temper- ature about 3000°f, 1/4" char produced	Virgin, p _p = 36.5 ± 0.3 lb/ft ³	Char, 3"D disks exposed to arc-heated nitrogen, 140 Btu/ft/sec for 90 seconds	Char, 14"D disks exposed to induction heated mix- ture of 30% nitrogen and 70% argon at 170 Btu/ft2 sec for 125-130 seconds, Tw = 4200°F	0p = 75.6 lb/ft ³ charred to 18.8 lb/ft ³ at 3 temperatures: 1460 ⁰ R, 2460 ⁰ R, 3460 ⁰ R	$p_{p} = \frac{38.0}{15.6} \text{ to } 34.9 \text{ lb/ft}^{3}$ $p_{p} = \frac{315.6}{15.6} \text{ to } 18.7 \text{ lb/ft}^{3}$ $p_{Tradec} \text{ chars performed}$ $slowly \text{ to } \text{ different tem-peratures, one rapidchar to 540^{\circ} R at bout430 Btu/ft5ec$	Virgin and char, other- wise not described	Virgin	Virgin and char pre- pared by unspecified means at about 1000 ⁰ C (2290 ⁰ R)	Charred in oxy-acety- lene torch at about 2000 Btu/ff/sec
Material Description	25% resin (UC) ° 25% balloons 50% nylon powder (DuPont)			25% resin (UC) ^a 35% balloons 40% nylon powder (DuPont)		25% resin (UC)* 35% balloons 40% nylon powder (DuPont)	50% resin 50% nylon cloth	37% resin (Hughes) 37% balloons 40% nylou powder (DuPont)	40% resin 60% nylon fabric PP = 35 lb/ft3 PC = 15 lb/ft3	37% resin 23% balloons 40% nylon (Hughes 4 & 5)	25% resin 35% halloons 40% nylon (Langley)	Resins 50% Nylon 50% "low density"
Ref. No.2-	-			2	ан. •		ۍ ۱	<u>ه</u>	7	8		10
Reference Identification	Milson, R. Gale		· ·	Engelke, Pyron, Pears		Smyly, Fyron, Pears	Kratsch, Hearne, Hcchesney	Sanders, Smyly, Pears	Rindal, Kratsch	Lagedrost, J.F.		Magler, R.G.

^aUC = Union Carbide SoRI = Southern Research Institute

the second second second

THERMAL CONDUCTIVITY VS TEMPERATURE LOW DENSITY ($\rho_{p} \approx 35 \text{ lb/ft}^{3}$) NYLON PHENOLIC VIRGIN MATERIAL

index and an an and an and an		2-8	25/35/40	Run 1							L.250	1.278	1.294	1.311	1.344	1.303	1.464	T.606	778°7	2.094	2.475	0 0 0
		2-8	37/23/40	Run 2								2.480	2.089	1.889	1.675	1.611			-		agent (600 kinsternet and	-
	c ft °R	2-8	37/23/40	Run 1						1. 1		1.633	1.683	1.722	l.775	l.780	Т.783	L。783				-
	.0 ⁻⁵ Btu/sed	2-7	40/60	Run I							1.253	1.278	1.292	1.311	1.347	1.383	L。422	L。458	L.497	L.530	L.569	-
	Units: 1	22	25/35/40	Run 1		1.250	1.308	1.450	1.700	1.380	1.286	l.278	L.278	1.286	L.342	L.383	L.422	1,458	1.483	1.500	L. 508	
and a second		2-1	25/25/50	Run 2		1.106	1. 361	l.547	1.686	1.792	L.872	L.939	1.992	2.025	2.056	2.044	L.992	1.894				
La annota di Annota Internazione di Annota Annota di		2-1	25/25/50	Run 1	l.556	1.561	l.593	1.661	1.842	2.014	1.630	1.486	1.428	l.417	1.419	1.467	L 583	L.689	т. 694	1.694	7-694	ç
		Reference	Material Resin/Balloons/Nylon	Temperature (R)	160	200	250	300	350	400	450	500	550	600	700	800	006	1000	1100	1200	T300	

THERMAL CONDUCTIVITY VS. TEMPERATURE LOW DENSITY NYLON PHENOLIC CHARS

~
μ
5
)
1
E.
4
C
đ
~
-
5
+
ó
щ
1
\subset
-
r
4
71
ž
E
Ē
12
-

	~
	2-6
	2-6
:ft~R	2-6
/sec	2-5
Btu	2-5
10	2-5
 ល	2-3
UNIT	2-3
	2-3

References	2-1	2-2	2-3	2-3	2-3	2-3	2-3	2-3	2-5	2-5	2-5	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-7	2-8	2-3	
Material: (Resin/Balloons/Nylon)	25/25/50	25/35/40	25/35/40						50/50	\$0/50	50/50 37	123/40 3	1/23/40 3	7/23/40 3	E 01/23/40	7/23/40	ioser	upper	40/60 2	64, 52/5	. 05/05	
Hominal PP (1b/ft)	37	37	19	30	42	19	30	45 29	76	76	76	35	35	55	35	35	35	2:	35	5	357	
C	1	2	1			;	;	 	2				1	4	17		11		1	•	•	
Pre-Char Temperature: (°R)	3500	~	4200	1	1	4200	!	;	1460	2460	3460	1460	2460	3460	4460	5460	5460	5460	~	2300	2	
Charring Heat Flux: (Btu/ft sec)	100	140	. 170	1	;	170	ł	.1	~	~	~	Low	I.ow	Low	Low	LOW	430	430	~	~	10001	
Vacuuma: (1 atm)	Hellum	~	Vacuum	Vacuum	Vacuum	Helium	Hellum	Helium	~	~	~	Aryon	Argon	Argon	Argon	Argon	Argon	hrgon	~	Vacuum	~	
Temp (°R)																		+ 			1	
500									0.186	0.680	3.611	0.183	0.589									
. 750			0.944	0.825	1.356	1.944	2.147	1.944	0.212	1.900	3.633	0.214	0.653			3.533	6.772			0.5166		
1000	1.467		996.0	0.999	1.439	2.061	2.278	2.355	0.347	1.967	3.666	0.297	0.744	1.611	2.122	3.550	6.619		1.467	0.6110	1.344	
1250	1.694	1.142	0.944	1.158	1.506	2.180	2.411	2.739	0.469	2.022	9.722	0.389	0.839	1.739	2.167	3.566	6.430		1.694	0.6610	0.7860	
1500	1.925	1.164	0.944	1.317	1.564	2.272	2.544	1111.6	0.647	2.130	3.786	0.503	\$ \$ 6.0	1.872	2.244	3.605	6.350		1.925	0.6888	0.6222	
1750	2.167	1.217							0.856	2.278	3.844	0.564	1.067	2.050	2.353	3.658	6.233	10.325	2.167		0.6610	
2000	2.403	1.283							1.130	2.450	1.953	0.800	1.283	2.239	2.480	3.708	6.136	9.300	2.403		0.7222	
2250	2.666	1.383							1.494	2.666	1.064	0.997	1.411	2.455	2.639	3.792	6.055	6.528	2.666		0.7310	
2500	2.916	1.525							1.906	2.950	4.222	1.222	1.630	2.833	2.828	3.897	166.2	7.866	2.916		0.8555 J	
3000	3.480	1.928							2.972	3.694	1.703	1.744	2.196	3.289	3.297	4.194	5.953	7.228	3.460		0110.1	
3500	4.094	2.536							4.200	4.805	5.444	2.444	2.947	3.936	3.936	4.611	6.022	7.036	1.094	•	1.1999	
4000	4.814	3.455							5.514	6.028	5.514	3.325	3.880	4.650	4.650	5.186	6.203	7.205	4.814			
4500	5.694	4.578							6.689	7.355	7.728	4.494	4.916	5.416	5.416	5.939	6.480	7.389	5.694			
4750	6.416	5.275										5.122	5.464	5.819	5.819	6.341	6.653	7.502	6.413			
2000		6.022										5.833	6.022	6.222	6.222	6.769	6.855	7.630			_~~	
. 5250		6.869										6.611	6.639	6.639	6.639	7.222	7.097	7.778		-		

SPECIFIC HEAT SOURCES LOW DENSITY NYLON PHENOLIC

Temperature Experimental Reported Estimated	Measurements Method Accuracy Accuracy On Cp	-200 ⁰ F to 750 ⁰ F Bunsen ice calorimeter, Not given ± 10% enthalpy measurement; sample 1/2" D x 1" (Melpar)	Dry drop calorimeter enthalpy measurement, samples 3/4" cubes (SORI)*	-320 ^O F to 799 ^O F Drop type ice calo- Not given ± 10% rimeter, enthalpy measurement	Dry drop calorimeter, enthalpy measurement -262 ⁰ F to 790 ⁰ F	Drop type ice calo- rimeter, enthalpy measurement 1025 ^O F to 5055 ^O F	Virgin: 200 ⁰ R to Not described Not given Unknown 1000 ⁰ R Char:	Virgin: 460 ⁰ R to Not described Not given Unknown 1260 ^R to Char: 500 ⁰ R to 6000 ^R to	Virgin: $0^{\circ}F_{c}$ to 24 Bunsen ice calo- 240°C rimeter, enthalpy (± 10 % on Char: $0^{\circ}C_{c}$ to measurement enthalpy) enthalpy)	0°C - 240°C Bunsen ice calo- Not given ± 10% rimeter, enthalpy (± 10% on measurement enthalpy)	9.00
Material State &	Preparation	Virgin, p _p = 37.4 ± 0.1 lb/ft ³		Char, J" D disks exposed to arc heated nitrogen, 100 Btu/ft ² sec for 120 seconds, surface tempera- ture about 3000°F, 1/4"	Virgin, p = 36.5 ± 0.3 lb/ft ³	Char, 3" D disks exposed to arc-heated nitrogen, 140 Btu/ft ² sec for 90 seconds	Virgin, $\rho_p = 75.6 \text{ lb/ft}^3$ Char, $\rho_p = 18.8 \text{ lb/ft}^3$	Virgin and char; other- wise not described	Virgin and 400 ⁰ C (1210 ⁰ R) char	Virgin, 34.4 lb/ft ³	
Material	Description	25% resin (UC)* 25% ballons 50% nylon powder			25% resin (UC)* 35% balloons 40% nylon powder (DuPont)		50% resin 50% nylon cloth	40% resin 60% nylon fabric	37% resin 23% balloons 40% nylon (Hughes 4 & 5)	25% resin 35% balloons 40% nylon (Langley)	
Ref.	No.2-	mi			~		ŝ		CC)		*****
Reference	Identification	Wilson, R.Gale		· .	Engelke, Pyron, Pears		Kratsch, Hearne, McChesney	Rindal, Kratsch	Lagedrost, J.F.		
SPECIFIC HEAT VS TEMPERATURE - LOW DENSITY NYLON PHENOLIC VIRGIN MATERIAL

TABLE 2-6

Units: Btu/1b^oR

-																	·····						
00 1 7	25/35/40			-					0.242	0.313	0.384	0.451	0.521	0.587	0.618	0.638	0.648	0.650					
2	37/23/40 (400 C°Char)								0.267	0.286	0.307	0.326	0.347	0.367	0.388	0.410	0.432	0.454	0.476	0.500	0.523	0.548	0.573
00 (1)	37/23/40						-		0.256	0.297	0.338	0.381	0.421	0.463	0.505	0.546	0.587	0.627					
2-7	40/60			0.191	0.209	0.252	0.282	0.311	0.338	0.367	0.395	0.422	0.447	0.471	0.496	0.519	0.539	0.553	0.564	0.568	0.570	0.570	
2-5	50/50 (75.6 lb/ft ³)		0.060	0.097	0.141	0.198	0.289	0.355	0.396	0.426	0.447	0.466	0.478	0.486	0.489	0.489	0.489	0.489	0.489				
2-2	25/35/40	- - 		0.191	0.209	0.252	0.282	0.311	0.338	0.367	0.395	0.422	0.447	0.471	0.496	0.519	0.539	0.553	0.564	0.568	0.570	0.570	
21	25/25/50			0.201	0.217	0.237	0.259	0.284	0.314	0.347	0.385	0.426	0.475	0.501	0.528	0.552	0.567	0.578	0.583	0.584	0.583	0.583	
2-1	25/25/50			0.158	0.193	0.226	0.260	0.293	0.311	0.357	0.387	0.417	0.448	0.478	0.506	0.535	0.564	0.592	0.621	0.648	0.677	0.705	0.733
Reference	Material: (Resin/Balloons/ Nylon)	Temp (°R)	200	250	300	350	400	450	500	550	600	650	700	750	800	850	006	950	1000	1050	1100	1150	1200

* *

SPECIFIC HEAT VS TEMPERATURE - LOW DENSITY NYLON PHENOLIC CHARS

Units: Btu/lb^OR

Reference	2-1	2-2	2-5	
Material (Resin/Balloons/ Nylon)	25/25/50	25/35/40	50/50	40/60
Temp (R)			Na kana katan ing kana kata katan kata	
500			0.150	0.100
750			0.233	0.187
1000	0,260		0.304	0.268
1250	0.332		0.362	0.335
1500	0.406	0.395	0.413	0.402
1750	0.469	0.446	0.459	0.458
2000	0.503	0.478	0.494	0.484
2250	0.516	0.502	0.524	0.497
2500	0.520	0.517	0.548	0.500
2750		0.528	0.568	
3000		0.531	0.583	
3250		0.536	0.596	
3500		0.540	0.606	
3750		0.542	0.614	
4000		0.546	0.620	
4250		0.548	0.624	
4500		0.552	0.626	
4750		0.555	0.628	
5000		0.558	0.628	
5250		0.561		
5500	A	0.565		

EMISSIVITY (EMITTANCE) SOURCES LOW DENSITY NYLON PHENOLIC

a the second second second second	Estimated Accuracy	መ ^ው 10 	d9 €∩ +1	Unknown	Accept report	ి జి ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ ఆ	
	Reported Accuracy	Not given	Not given	Not given	<pre>±10% plus unknown bias due to grey body assumption, tion, etc. Grey body assumption may cause data to be \$% to 10% low</pre>	e do reo de adé. Norma - récención y de adéa Norma - récención y de adéa Norma - recención Norma - rec	-
	Experimental Method	Blackbody comparison with radiometer, sample 1/2"D 3/16" to 1/8" thick, sam- ple temp. by thermocouple and pyrometer, c discov- ered by trial and error to convergence (assumed grey body)	Same as Reference 1	Not described	Simultaneous measurements with total pyrometer and monochromatic pyrometer plus grey body assumption allcws determination of formal and surface tem- perature. Lambert law assumed.	Arc-image reflectance measurement at various wavelengths; measures arc intensity, sample intensity with arc on (measuring emission + intensity with arc off (giving emission for subtraction)	
	Temperature Range of Measurements	1468 ⁰ F to 3861 ⁰ F	1524 ⁰ F to 3913 ⁰ F	2300 ⁰ R to 4500 ⁰ R	1900 ⁰ K to 2400 ⁰ K	2900 ⁰ K (5220 ⁰ R) in range .25 to 2.5 μm	
	Material State & Preparation	Char, 3"D disks exposed to arc-heated nitrogen, 100 Btu/ft ² sec for 120 seconds, surface tem- perature about 30000F, 1/4" char produced	Char, 3"D disks exposed to arc-heated nitrogen, 140 Btu/ft ² sec for 90 seconds	Char	Char, produced in arc- heated stream	Arc-jet chars, 1/2"D 1/4" thick a. 140 Btu/ft ² sec, 90 seconds b. 100 Btu/ft ² sec, 120 seconds	
	Ref. Material No.2- Description	<pre>1 25% resin (UC)* 25% balloons 50% nylon powder (DuPont)</pre>	2 25% resin (UC)* 35% balloons 40% nylon powder (DuPont)	5 50% resin 50% nylon cloth	15 Low density nylon phenolic	16 Low density nylon 17 phenolic a. 25% phenolic 35% balloons 40% nylon b. 25% phenolic 25% p	
	Reference Identification	Wilson, R. Gale	Engelke, Pyron, Pears	Kratsch, Hearne, McChesney	e do d	Wilson, R. Gale, & Spitzer, C.R.	* UC = Union Carbide

EMITTANCE - LOW DENSITY NYLON PHENOLIC CHARS

Reference	2-1	2-2	2-5	2-15	2-15	2-16
Temp (°R)						
2000	0.852	0.792				
2250	0.872	0.818				
2500	0.883	0.840	0.600	a the spin of		
2750	0.924	0.857				
2900	0.931	0.865				
3000	0.927	0.870				
3100	0.911	0.874				-
3250	0.876	0.878		a An air		
3500	0.775	0.880		0.670	0.660	
3650	0.716	0.878				
3750	0.711	0.874				
3850	0.759	0.870				с н. 1911
4000	0.837	0.858	0.616			
4100	0.866	0.850	0.632	0.670		
4200	0.883	0.837	0.650		l l	
4300	0.893	0.825	0.666		0.660	
4500	0.900	0.791	0.700			
5225	· · · · · · · · · · · · · · · · · · ·			· ·		0.812

COMPUTED SPECIFIC HEAT OF "BEST ESTIMATE" PYROLYSIS OF LOW DENSITY NYLON PHENOLIC

(40% Nylon, 60% Phenolic Resin)

Reference - 2-20

Temperature (°R)	Frozen (Btu/lb°R)	Equilibrium (Btu/lb°R)
-200	0.450	0.483
0	0.547	0.552
250	0.615	0.670
500	0.680	0.772
750	0.746	0.862
1000	0.803	0.921
1250	0.862	0.962
1500	0.907	0.987
1750	0.940	1.006
2000	0.960	1.018
2250	0.978	1.027
2500	0.997	1.035

PROPERTY DATA SOURCES AVCOAT 5026-39-HC/G

1

, ů	0 W	2	0.2 2	100°F to 1900°F	ĝ	Char in range 1950°K to 2400°K	One value at 2950 ⁰
لا	Virgin to 8000 ⁰ F	Virgin: -300°F to 1000°F. Chars: 100°F to 1100°F. for various pre-char temperatures up to 2000°F	Virgin: 100°F to about 400°F Chars: 1000°F to 400°F for various inferred pre-char temperatures	Virgin and char from about 100°F to 500°F, char values at 1930 ⁶ F related to pre-char temperature	Flight cores from 1350 ⁰ F to 2150 ⁰ F, not explic- itly related to pre-char temperatures	0 <mark>2</mark>	ÖN
h or C _p	Both to 800 ⁰ F	C _P from -2000 ^o F to 1000 ^o F for virgin and various pre-char temperature chars	Single drop calorimeter value, direct measurement $(200^{\circ}r t \circ 930^{\circ}r)$ of specific heat	Virgin and char to about 800 ^c F but not directly associated with pre- char temperatures, vir- gin and oven char to 800 ^c F	Virgin and oven chars various pre-char tem- peratures (to $40^{0}F$) from $0^{0}F$ to $400^{0}F$; flight cores to $800^{0}F$	N N N N N N N N N N N N N N N N N N N	NO
Δħf	Ň	Heat of com- bustion	Ň	Heat of com- bustion	Heat of com- bustion	Ň	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Pyrolysis Kinetics	No	N N	0 N	Unreduced TGA data	Reduced TGA data	Ŋ	NO
ູ້		Various	Various	Various	Various	N	
ď	33.1 lb/ft ³	Various	Various	Various	Various	No	33 lb/ft ³
Material Description	Virgin only	Virgin and oven pre-chars	Virgin, arc core samples, flight core samples	Flight 501 (Spacecraft 017) cores, and virgin samples plus oven chars to 4500°F	Flight 502, 205, 503 cores, virgin samples and oven chars to 4000F	Arc char	Arc char
Ref. No.2-	н	21	22	23	5	15	9178 17
Reference Identification	Wilson, R. Gale,	Thnat, M. E. (9/66)	Ithat, M. E. (8/67)	Alexander, J.G., et al. (1/68)	Alexander, J.G., et al (9/69)	Pope, R. Po	Wilson, R.Gale, Spitzer, C.R.

14

THERMAL CONDUCTIVITY SOURCES AVCOAT 5026-39-HC/G

Estimated Accuracy	± 108		ය 20T +	96 30%		ං 00 11 +1		30% +	+1 10%	
Reported Accuracy on Cp	Not given		Not given	Not given		Not given	* .	Not given	± 6% on enthalpy	
Experimental Method	Bunsen ice calorim- eter, enthalpy mea- surement, sample	1/2" D × 1" (Melpar)	Water calorimeter (ASTM)	Perkin-Elmer dif- ferential.scanning calorimeter (elec-	trically heated calorimeter); one virgin sample - water calorimeter measurement	Perkin-Elmer dif- erential scanning calorimeter		Perkin-Elmer dif- ferential scanning calorimeter	Adiabatic water calorimeter built from modified Parr bomb calorimeter	
Temperature Range of Measurements	-22 ⁰ F to 733 ⁰ F		-320 ⁰ F to 1010 ⁰ F	100 ⁰ F to 932 ⁰ F		corgs: $200^{\circ}F$ to $800^{\circ}F$ to chars: $200^{\circ}F$ to $800^{\circ}F$ to		70 ⁰ F to 930 ⁰ F	1000 ⁰ F to 3500 ⁰ F	
Material State & Preparation	Virgin only P = 33.1 lb/ft ³		Virgin and oven pre- pared chars at 1000F & 1750 ^{GF} , 37"D x 1"	Virgin specimen & flight cores; virgin and char zone sam-	ples of about 30 mg size	Flight cores: virgin & char zone samples of about 30 mg size; oven chars produced at 2000 ^F , 2500 ^F ,	3500 ⁰ F, 4000 ⁰ F,4500 ⁰ F	Flight cores - small specimens covering char, pyrolysis, & virgin zones	Oven specimens, same as used in Ref. 18; 3/4"D x 1"	
Material Description	Laboratory Sample		Laboratory Sample $\rho_p = 29.1 \text{ to } 31.4$ $1b/ft^3$	Cores from space- crafts 009 and 011, one virgin	specimen	Flight 501 (Space- craft 017) cores, laboratory sam- ples		Flight 502, 205, 503 cores; and laboratory sam- ples		
Ref. No.2-	-		21	23		23		24		
Reference Identification	Wilson, R. Gale		Ihnat, M.E. (9/66)	Ihnat, M.E. (8/67)		Alexander, J.G. et al. (7/68)		Alexander, J.G. et al. (9/69)		

THERMAL CONDUCTIVITY, AVCOAT 5026-39-HC/G - VIRGIN MATERIALS AND LOW TEMPERATURE CHARS

1

$^{\circ}\mathrm{R}$
Ļ Т
'sec
Btu/
ŝ
10
Units:

													www.ibost.com	***	n ta an an	1964-1970-1970-1970-1970-1970-1970-1970-1970				
2-23	Upper					2.222			2.222				-							
2-23	Lower					0.694			0.694											
2-22	Upper					3.333			3.333							-				
2-22	Lower					2.500			2.500							-				
2-22	Virgin/ Vacuum					1.247	1.175	1.097	1°000						2					
2-22	Virgin					2.086	2.147	1.883	1.406	1.389										
2-21	2210		1.389	L.750	2.089	2.397	2.606	2.792	2.950	3.067	3.117	3.158	3.189	3.214	3.222	3.225	3.222	3.219	3.214	c c
2-21	1960						2.703	2.836	2.953	3.022	3.047	3.064	3.080	3,083						c c c
2-21	1660		0.925	1.133	1.322	1.478	1.564	1.630	1.667	1,672	1.672	L.669	T.667	1.667	T.667	T . 661	L.647	L.614	1.564	F V F
2-21	1460		0.611	0.775	0.906	1.000	L.053	1.100	1.128	1.142	1.136	1,130	1.119	1.114	1.100	1.080 1.080	L.072	L.050	L.028	
2-4	Virgin	<u></u>	0.925	l.133	1.322	1.478	1.564	L.630	1.667	1.672	1.672	1.669	27							
2-1	Virgin		0.817	0.953	1.092	1.242	1.353	1.467	L.589	1.675	1.700	1.683	1.630	1.567	L.480	2°342	φατοποιοφά αφολοχούντους			
Reference	lar Temp (R)	'emp (°R)	260	350	450	560	650	750	860	950	1000	1050	1100	1150	1 200	1260	1300 1	1350	T400	1460
بئىر 	Pre Ch	L								- <u>-</u>										

AMD ONE 2460°R OVEN CHAR Units: 10 ⁻¹ Btu/sec ft ⁰ R 21 2-22 2-23 2-23 2-23 2-24 2-24 2-24 2n a b b a b b c c 2n 2-23 2-23 2-23 2-24 2-24 2-24 2-24 2n a b b a b b c c c 2n b b b b b b b c c c 2n 0.917 19 1:333 1.096 1.333 1.333 2.0383 1.3333 2.333 2.333 2.333 2.333 2.333 2.363 2.364 2.44 2.24																			
Units: 10^{-4} Btu/sec ft °R 21 2-22 2-23 2-23 2-23 2-24 2-24 2-24 2-24 20°R a b b a b b a b c ac a b b a b b a b c ac b b b a b b a b c ac b b b a b b a b c c ac 0.269 0.917 0.139 1.333 1.333 1.333 c c c c 42 0.269 0.917 ψ ψ c c c c 11 ψ ψ ψ ψ c c c c 142 0.269 0.917 ψ ψ c c c c 52 0.139 1.333 1.333 1.333 1.333 1.003 c c <t< td=""><td>1.908</td><td>1.642</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Upper</td><td>U</td><td>2-24</td><td></td></t<>	1.908	1.642							•							Upper	U	2-24	
Units: 10^{-4} Btu/sec ft °R 21 $2-22$ $2-23$ $2-23$ $2-23$ $2-23$ $2-24$	л. 020 Т.	т. 031 Т							- 1252 - 			- - -				Lower	c	2-24	e An T
Units: 10^{-4} Btu/sec ft $^{\circ}R$ 21 2-22 2-23 2-23 2-23 2-24 2-24 a b b a b a b arr Upper Lower Upper Lower Upper Lower 0.269 0.917 0.139 1.333 Lower Upper Lower Low	т. 38 Т	1.283	1.217	1.175	1.167											Upper	д	2-24	
Units: 10 Btu/sec ft °R 21 $2-22$ $2-23$ $2-23$ $2-23$ $2-24$ $2-24$ ar a b b a a a arr Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 0.269 0.917 0.139 1.333 1.333 Lower Upper Lower Upper 11 0.269 0.917 0.139 1.333 1.033 1.033 Lower Upper 42 0.269 0.917 0.139 1.333 0.333 Lower Upper Lower Upper 42 0.269 0.917 0.133 1.333 Lower Upper Lower Upper 58 0.263 0.133 1.333 Lower L	0.806	0.800	0.778	0.703	0.647				e de la companya de la							Lower	Q	2-24	
21 $2-22$ $2-22$ $2-22$ $2-23$ $2-23$ $2-23$ $2-23$ $2-24$ a a b b b a a a a a a a a a a a a a a b b a a a a b b a a a a b b a a a b b a a a a a b b a a a a b b a a b b a a b b a a b b a a b a a b b a a b b a a b b a b b a b a b a b a b a b a b b a b a b a b a b a b a a <td< td=""><td>3.022</td><td>2.969</td><td>2.919</td><td>2.872</td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 1</td><td></td><td></td><td></td><td></td><td>Upper</td><td>ŋ</td><td>2-24</td><td>ĸ</td></td<>	3.022	2.969	2.919	2.872							. 1					Upper	ŋ	2-24	ĸ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.256	1.167	00T.L	1.047	I.003						- - - - -					Lower	б	2-24)
21 2-22 2-23 2-23 2-23 2-23 2-23 ar a b ar Lower Upper Lower Upper Lower 0.269 0.917 0.139 1.333 0.383 0.269 0.917 ↓ ↓ 0.139 3.333 14 11 12 14 22 58 58 58 58 58 58 58 58 58 58 58 58 58	2.306	2.075	1.931	1.842	-											Upper	â	2-23	
21 2-22 2-23 2-23 21 2-22 2-23 2-23 ar a a a ar Lower Upper Lower Upper 0.269 0.917 0.139 1.333 11 0.269 0.917 42 0.269 0.917 14 0.269 0.917 12 36 0.269 0.917 78 0.269 0.917 36 22 22 33 33 37 36 33	0.972	0.861	0.769	0.681	0.603	0.522	0.453	0.383				i ud				Lower	q	2-23	
21 2-22 2-23 2-23 a a 0°R Lower Upper Lower Lower 10.269 0.917 4 114 0.139 0.269 0.917 4 0.139 114 258 78 78 78 78 78 78 78 78 78 78 78 78 78					• • •				t in set set set set s			L.333		1.333		Upper	đ	2-23	
21 2-22 2-22 ar 2-22 2-22 2-22 2-22 2-22 2					 					یں اند بر اند اند بر اند اند		0.139		0.139		Lower	р	2-23	
21 2-22 ar Lower 11 0.269 0.269 0.269 0.269 0.269 0.269 0.269 14 12 12 12 12 22 22 33 22 22 33													0.917	0.917		Upper		2-22	
21 21 11 11 11 22 22 22 22 22 22 22 22 2													0.269	0.269		Lower		2-22	
246 246 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.733	0.722	0.697	0.678	0.658	0.636	0.614	0.567	0.542	0.511	-				2460°R Char		2	
Reference Temp (°R) 620 620 620 620 1120 1120 1120 1320 1320 1420 1320 1520 1620 1620 1820 1620 1820 1920 2020 2020 2220	2220	2120	2020	1920	1820	1720	1620	1520	1320	1220	1120	1020	840	620	Temp (°R)		uur 1. m inii	Reference	

SPECIFIC HEAT SOURCES AVCOAT 5026-39-HC/G

Estimated Accuracy	% 10 +	+ 10%	% 0 E +1	% 10 +1	30 30 71	00 00 01 1
Reported Accuracy on Cp	Not given	Not given	Not given	Not given	Not given	± 6% on enthalpy
Experimental Method	Bunsen ice calorim- eter, enthalpy mea- surement, sample 1/2" D x 1" (Melpar)	Water calorimeter (ASTM)	Perkin-Elmer dif- ferential scanning calorimeter (elec- trically heated calorimeter); one virgin sample - water calorimeter	measurement Perkin-Elmer dif- erential scanning calorimeter	Perkin-Elmer dif- ferential scanning calorimeter	Adiabatic water calorimeter built from modified Parr bomb calorimeter
Temperature Range of Measurements	-22 ⁰ F to 733 ⁰ F	-320 ⁰ F to 1010 ⁰ F	100 ⁰ F to 932 ⁰ F	cores: 200 ⁰ F to 800 ⁶ F chars: 200 ⁰ F to 800 ⁶ F	70 ⁰ F to 930 ⁰ F	1000 ⁰ F to 3500 ⁰ F
Material State & Preparation	Virgin only P _p = 33.1 lb/ft ³	Virgin and oven pre- pared chars at 1000 ⁵ F & 1750 ^F , 37"D x 1"	Virgin specimen & flight cores; virgin and char zone sam- ples of about 30 mg size	Flight cores: virgin $\&$ char zone samples of about 30 mg size; oven chars produced at $2000^{\rm F}$, $2500^{\rm F}$, $3500^{\rm OF}$, $4500^{\rm OF}$	Flight cores - small specimens covering char, pyrolysis, & virgin zones	Oven specimens, same as used in Ref. 18; 3/4"D x 1"
Material Description	Laboratory Sample	Laboratory Sample $\rho_p = 29.1 \text{ to } 31.4 \text{ lb}/\text{ft}^3$	Cores from space- crafts 009 and 011, one virgin specimen	Flight 501 (Space- craft 017) cores, laboratory sam- ples	Flight 502, 205, 503 cores; and laboratory sam- ples	
Ref. No.2-		21	7 7	53	24	
Keference Jentification	Wilson, R. Gale	Ihnat, M.E. (9/66)	Ihnat, M.E. (8/67)	Alexander, J.G. et al. (7/68)	Alexander, J.G. et al. (9/69)	

SPECIFIC HEAT VS TEMPERATURE, AVCOAT 5026-39-HC/G

							Units:	Btu/1b ⁰ R					
Ref.	2-1	2-22	2-22	2-23	2-23	2-24	2-24	2-24	2-24	2-24	2-24	2-24	2-24
-		Virgin	Virgin	Char	Char	1460°R Oven	2460°R	3460°R Oven	3960°R Oven	4460°R Oven	Char	Char	Finvelone
		Lower	Upper	Lower	Upper	Char	Char	Char	Char	Char	Lover	Upper	
Temp												on-more than the second provide second se	
(² R)				-				-	-				
210					• .		· 						0.370
260	0.192												
360	0.277												
460	0.345					0.175	0.209	0.176	0.169	0.140			
560	0.395	-	-			0.206	0.216	0.185	0.181	0.159			
660	0.429	0.270	0.400	0.110	0.330	0.237	0.225	0.195	0.195	0.180	0.110	0.260	
110	0.439	*********				0.253	0.227	0.200	0.201	0.190			
860	0.461		-	· .		0.300	0.238	0.215	0.220	0.283	1		
960	0.469	0.270	0.400			0.332	0.246	0.225	0.234	0.243		· .	
1060	0.475					0.339	0.257	0.231	0.246	0.263			- I .
1160	0.476			~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.347	0.268	0.246	0.257	0.285	>-		
1260				0.110	0.330	0.354	0.278	0.257	0.270	0.306	0.110	0.260	
1360			-			0.362	0.290	0.243	0.287	0.328			
1460						0.369	0.300	0.278	0.295	0.350			0.370
1600					- - -		0.316	0.291	0.307	0.373			0.375
1800							0.335	0.307	0.325	0.407			0.383
1960							0.350	0.319	0.339	0.435			0.389
2000				(Marine Marine Andreas)			0.355	0.322	0.342	0.439			0.391
2200							0.378	0.329	0.353	0.459			0.398
2460							0.410	0.350	0.369	0.485			0.410
2600								0.357	0.375	0.485			0.407
3000								0.377	0.390	0.485			0 . 399
3500								0.388	0.400	0.485			0.390
4000									0.400	0.485			0.400

EMISSIVITY (EMITTANCE) SOURCES AVCOAT 5026-39-HC/C

	Estimated Accuracy	+ جى +	Accept Report	ማ ጥ +1
	Reported Accuracy	Not given	<pre>10% plus unknown bias due to grey body assumption, gas radia- tion, etc., Grey body assumption may cause data to be 5% to 10% low.</pre>	00 CJ +1
	Experimental Method	Not described	Simultaneous mea- surements with total pyrometer & monochromatic py- rometer plus grey body assumption allows determina- tion of & normal & surface tempera- ture. Lambert law assumed.	Arc-image reflec- tance measurement at various wave- lengths; measures arc intensity, samples intensity with arc on (mea- suring emission + reflection); sample intensity with arc off (giving emis- sion for subtrac- tion)
39-HC/G	Temperature Range of Measurements	100 ⁰ F to 600 ⁰ F for virgin Ma- terial, 250 ⁰ F to 1900 ⁰ F for chars	1900 ⁰ F to 2400 ⁰ K	2950 ^O K(5320 ^O R) in range 0.25 to 2.5µm
AVCUAT 5026-	Material State & Preparation	Virgin material charred during emit- tance test, & 2000 ⁰ F oven chars	Char produced in arc-heated stream	Arc jet produced char in nitrogen at 120 Btu/ft ² sec for 60 seconds
	Materíal Description	Laboratory Samples	Laboratory samples	ρ _p = 33 lb/ft ³
	Ref. No.2-	53	1.5	16 177 181
	Reference Identification	Alexander, J.G., et al. (7/68)	Pope, R.B.	Wilson, R.Gale & Spitzer, C.R.

EMITTANCE VS TEMPERATURE

AVCOAT 5026-39-HC/G

			1		
	Reference	2-15	2-16	2-23	2-23
				Charred During	2460°R
		And all heads and a second		Test	Char
	Temp		n an Anna gu chran Anna Anna Anna Anna Anna Anna Anna		
	650				0,828
	700			0.960	0.822
	750			0.943	0.814
	1000		a a star a s	0.863	0.778
	1075			0.841	0.767
and the second	1250				0.743
فيرجا فالمتعمر بالكل	1500				0.708
terre in the second	1750				0.673
	2000	na se anna an A Anna an Anna an Anna an Anna an			0.638
	2250				0.603
	2450				0.574
	3400	0.630			
	3750				
	4000				
	4300	0.630			
	5400		0.720		

PROPERTY DATA SOURCES FILLED SILICONE ELASTOMER

w	02	0 N	02	0 F	2	0X	1750 ⁰ % to 2200°%	Q N	No No	0 N		C N	
*	-250 ⁰ F to 750 ⁰ F (Melpar & SoRI)	-200 ⁰ F to 700 ⁰ F (Melpar)	100 ⁰ F to 420 ⁰ F	ON N	Q	100 ⁰ F to 500 ⁰ F	O _N	No	Q	NO		Scattered values	
н ок С _Р	-200°F to 800°F (SoRI)*	-200 ⁰ F to 800 ⁰ F (Melpar)	ON	h from -250 ⁰ F to 35 ⁰ F	h from -240°r to 350°r	C _P from -200 ^O F to 400 ^O F	02 N	No	No	NO NO NO NO NO NO NO NO		C M	
δh _c	ů ž	o z	No	0 N	o N	NO	N Constant	ON NO	ON	No		-	0 22
Pyrolysis Kinetics	ê	0 N	No	°N N	Single unreduced TGA curve	No, but see NASA 602 above	ę	single component reduced 16A data	Three component reduced TGA data	Unreduced TGA curves in helium to 1472 F			Unreduced TGA Curve
ð	Ŷ.	° 2	NO	No	0 Z	°æ	o z	of p _p	415 of pp	N		9.88 to 38.0 15/ft3	C
ρ	40 lb/££ ³	41.8 lb/ft ³	36.9 and 37.1 lb/ft ³	39.4 lb/ft ³ less phenolic glass honey- comb	36.4 to 39.5 1b/ft ³ less phenolic glass honeycomb	39.5 lb/ft ³	o N	OZ	NO	42.4 lb/ft ³	42.6 lb/fc ³	37.0 1b/ft ³ to 37.4 1b/ft ³	53 18//143 55 18//163 39 18//663 26 18//163 26 18//163
Materíal Description	70% Dow Corning Syl- 9 ard 192 resin 7% Sylgard 182 cata- 1yst 138 Emerson & Cum- ings silica sphere silica 9% phenolic bal- loons (UC)	Same material, im- bedded in phenolic- glass licxcel 1/4" hopeycomb of 3.5 lb/ ft ³ density	Not given	75% Dow Corning Syl- 9ard 182 resin 15% silica spheres 10% phenolic balloons	75% LTV 602 dimethyl silicone resin (GE) 15% silica spheres 10% phenolic balloons	Same as NASA.602, but with phenolic glass honeycomb cut apart at each cell face	As Ref. 1, use of honeycomb not men- tioned	GE RTV-602 with GE SRC-04 catalyst	Union Carbide BJO- 0930	GE RVT-615 (di- methyl) GE RVT-655	Dow. Corning XR-6- Dow Corning XR-6- Jow Corning XR-6- 3492 Corning 093-050 Dow Corning Silastic 440 Corning Silastic 093	Not given	ESM-1000 series in Nexcel HRP-1/4-OF- 12-5.5 honeycomb
Material Identification	MASA Langley filled silicone resin	NASA Langley filled silicone resin in honey- comb	NASA Langley Purple Blend	NASA 182	NASA 602	H∕c-S H∕c-S	NASA Langley modified pur- ple blend silicone elas- tomer	Silicone; di- methyl poly- siloxane	Phenolic bal- loons	Methyl sili- cone Phenyl-methyl	#1.0000 # # Phenolic bal- Loos	Charred elasto- maric models	n to me rit Mission Mi
Ref. No.2-	н 		21	25			15	Ħ		36		23	05 M
Reference Identification	Wilson, R. Gale		Ihnat, M.E.	Dolan, C.M.			Pcpe, R.B.	Nelson, J.B.		Thomas, H.K.		Schwartzkcpf	Edenaral Electric

Conf = Southern Research Institute

THERMAL CONDUCTIVITY SOURCES FILLED SILICONE ELASTOMER

particular and a second					· .	• •
Estimated Accuracy	± 10% ± 10%	+i +i	с С 1 +1	4 58	Accept Report	meater.
Reported Accuracy	Not given Not given	Not given Not given	Not given	Not given	44 60	Rot give a second secon
Exparimental Method	Radial outflow, 1" OD x 1" specimens (Helpar) Guarded hot plate 3"D specimen (SoRI)*	Radial outflow, 1" OD x 1" specimens (Melpar)		ASTM Guarded hot plate, 4.62° D specimens	Dynatech Comparative Thermal Conductivity Instrument $T-1000$, $2.51 \times 2.57 \times 1/4^{*}$ specimen sandwiched between "heat meter" slabs	Not described
Temperature Range of Measurements	a1970 ⁰ F to 693 ⁰ F b253 ⁰ F to 728 ⁰ F	-177 ⁰ F to 669 ⁰ F -173 ⁰ F to 682 ⁰ F	-188 ⁰ F to 692 ⁰ F	105 ⁰ .o_420 ⁰ F	100°F tq 500°F	
Vacuum Conditions	Not described			Not described	Not described	Not described
Material State & Preparation	Virgin, no honeycomb, p= 40 lb/ft ³	Not described		Virgin, $\rho_{\rm P}$ = 36.9 1b/ft ³ and 37.1 1b/ft ³	Virgin, p _p = 39.5 lb/ft ³	Virgin a. $p = 26 \text{ lb/ft}^3$ b. $p = 39 \text{ lb/ft}^3$ c. $p = 45 \text{ lb/ft}^3$
Material Description	<pre>70% Dow Corning Syl- 9rd 182 resin 7% Sylgard 182 reta- 1yst 14% Emerson & Cumming silica spheres 9% phonolic balloons (UC)*</pre>	c. Virgin in honeycomb, one primary cross cell direction aligned with heat flow, $p = 41.8$ $1b/ft^3$ d. Virgin in honeycomb,	cther primary cross cell direction aligned with heat flow e. Virgin in honeycomb, heat flow through cells	Not given	75% Dow Corning Sy- gard 182 resin 15% silica spheres 10% phenolic balloons in phenolic glass honeycomb cut apart at each cell face	ESM-1000 series in Hexcel HRP-1/4-GF- 12-5.5 honeycomb
Material Identification	NASA Langley filled silicone resin	NASA Langley filled silicone resin in honey- comb		NASA Langley Purple Blend	MASA 602-G- H/C-S	Elastomeric
Ref. No.2-		: .		51	22	8
Reference Identification	lson, R. Gale			hnat, M.E.	clan, C.X. Area of the second se	lectric

THERMAL CONDUCTIVITY - FILLED SILICONE ELASTOMERS - VIRGIN STATE

Units: 10⁻⁵Btu/sec ft² °R

			F110	- ro: TO	pru/sec						
ence	2-1	2-1	2-1	2-1	2-1	2-21	2-21	2-25	2-28	2-28	2-28
t t ³	40	40	41.8	41.8	41.8	36.9	37.1	39°5	26	30	45
comb	NO	NO	Across Cells	Across Cells	With Cells	<u>ر</u> .	<u>^.</u>	Yes	Yes	Yes	Yes
(°R)			And the second sec								
0(l.250	L.167								-	
0	1.417	1.392	1.156	1.236	1. 408					n - und digt have	
00	l.556	1.611	1.333	1.428	1. 592					is need an open was	********************
20	1.689	1.828	1.475	1.578	1.730					-	
00	1.778	1.836	1.586	1.694	1.842						
20	L.833	l.742	1.667	1.778	L.919						
0	1. 856	1.619	1.719	1.817	1.967						
0	L.875	1.544	1.747	1.850	2.003	1.894		2.047		1.728	2.616
00	L.889	1,530	1.753	1.861	2.017	1.922	2.111		1.511		
0	1.933	1,536	L.769	1.872	2.028	2.008	2.119			1.633	
ы	1.950	1.550	L.772	1.878	2.028	2.030	2.122				2.661
0	2.011	l.653	1.778	1.883	2.017	2 .150	2.156				
0	2.061	1,811	1.786	l.883	2.006	2.167	2.183			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
0	2.050	1.889	1.786	L.875	1.992	2.167	2.217				
0	2.000	L. 833	L . 775	1.861	1.972		No. baad			dillo tol (, more	1. J. M.
0	L.936	L.703	L.758	1,842	L 953			2.047		de - la condice enconer -	
9	L.853	L.547	L 730	L * 822	1.933						
0	I.767	L.447	1.689	1,789	1.883					an una construction (c. 6	
0	T • 669	I.483	L.633	I.750	Т.869			g (eh.			. 2000au - 94 .
	-220 E	ÓGS. T	7%2°1	1.694	1,806				arti orreaction		
0	L.464	L.642	619°T	1.622	1.697				- 14 9950-0460.02980 		
· · · · · · · · · · · · · · · · · · ·	a contract of the second	and the second sec	And the second sec	And the state of t	representation of the construction of the second se	And a second sec	Summer success success successions	allow a surveyor of the second s	and the second s	Share a second se	1. 1. 1. and a substant of the state of the

FILLED SILICONE ELASTOMER

Estimated Accuracy	8 JO8	± 10%	± 10%	Accept report
Reported Accuracy	Not given	Not given	Not given	± 2%, 500°F to 400°F ± 5%, 200°F to 600°F
Experimental Method	Bunsen ice calo- rimeter, enthalpy measurement, sam- ple 1/2"D x 1" (Melpar)	Зате	Dry drop calo- rimeter, enthalpy measurement, 3/4" cubes (SGRI)	Dynatech Automatic Continuous Specific Heat Instrument (SHC Series), dif- ferential calorim- eter
Temperature Range of Measurements	-203 ⁰ F to 754 ⁰ F	-202°F to 763°F	-313 ⁰ F to 760 ⁰ F	-200 ⁰ F to 400 ⁰ F
Material State & Preparation	a. virgin, p _p = 40 lb/ft ³ p = 40	b. Virgin in pheno- lic glass, Hexcel 1/4" honeycomb of 3.5 lb/ft ³ dansity, $\rho_{p} = 41.8 lb/ft^{3}$	Virgin, p _p = 40 lb/ft ³	Virgin, p = 39.5 lb/ft ³ p
Material Description	<pre>70% Dow Corning Syl- 7% Sylgard 18 resin 1% Sylgard 18 resin 14% Enerson & Cummings silica phenem 9% phenolic balloons (UC)</pre>	Same	Саще С	<pre>75% Dow Corning Syl- gard 182 resin 15% silica spheres 10% phenolic balloons honeycomb cut apart at each cell face</pre>
Material Identification	NASA/Langley filled silicone resin	NASA/Langley filled silicone resin in honey- comb	NASA/Langley filled silicone resin	NASA 602-G-11/c- S
Ref. No.2-	-1			S2 52
Reference Identification	Wilson, R. Gale			Dolan, C.M.

SPECIFIC HEAT VS TEMPERATURE - FILLED SILICONE ELASTOMERS

 ρ = 40 lb/ft³, Nominal Composition

10% Phenolic Balloons 15% Silica Spheres 75% Silicone Resin

Reference	2-1	2-1	2-1	2-25
Temp (°R)	N 	······		la e e ante
260	0.283	0.283	0.201	0.105
300	0.294	0.294	0.241	0.212
350	0.309	0.309	0.282	0.333
400	0.323	0.323	0.311	0.436
410	0.326	0.326	0.316	0.455
420	0.329	0.329	0.321	0.600
430	0.331	0.331	0.326	0.765
435	0.333	0.333	0,328	0.861
440	0.334	0.334	0.330	0.540
445	0.335	0.335	0.332	0.300
450	0.336	0.336	0.334	0.320
460	0.338	0.338	0.337	0.334
500	0.349	0.349	0.350	0.391
550	0.360	0.360	0,363	0.398
600	0.372	0.372	0.372	0.402
700	0.388	0.388	0.382	0.406
800	0.401	0.401	0.384	0.409
860	0.409	0.409		0.410
900	0.413	0.413		
1000	0.423	0.423		
1100	0.432	0.432		
1200	0.437	0.437		
1220	0.437	0.437	0.384	

Units: Btu/lb^oR

LOW DENSITY NYLON PHENOLIC CHARZED MATERIAL N. TEMPERATURE THERMAL CONDUCTIVITY 2-2 FIGURE

2

TEMPERATURE

FIGURE 2-3 SPECIFIC HEAT VS. TEMPERATURE LOW DENSITY NYLON PHENOLIC VIRGIN MATERIAL

FIGURE 2-4 SPECIFIC HEAT VS. TEMPERATURE LOW DENSITY NYLON PHENOLIC CHAR

ander en de la constante de la Recipio de la constante de la c Recipio de la constante de la c

VIRGIN MATERIALS, OVEN CHARS, AND FLIGHT CORES

.

FIGURE 2-13 SPECIFIC HEAT IS TEMPERATURE FILLED SILICON ELASTOMERS

SECTION 3

ABLATION TEST DATA COMPILATION

3.1 DATA PRESENTATION

Ablation test data have been compiled from available literature for the 3 heat shield materials: low density phenolic nylon, low density silicone elastomer, and Apollo heat shield material (Avcoat 5026-39HC/G). The data fall in the following range of test conditions:

- stagnation pressure < 1.0 atm.
- stagnation point heating rate = 10 to 600 Btu/ft^2sec .
- test stream total enthalpy = 2,000 to 20,000 Btu/lbm.
- stream oxygen mass fraction = 0 to 0.23

Tables 3-1 through 3-3 present the test data for nylon phenolic, silicone elastomer and Avcoat 5026-39-HC/G, respectively. The tabulations include: the test facility, report referenced, material composition, model geometry, total enthalpy, stagnation point heat flux, stagnation pressure, oxygen mass fraction, run time, surface recession, final char thickness and char density (if given). In addition the test measurement techniques are outlined, indicating the type of enthalpy measurement used, the calorimeter used, the pyrometer or radiometer employed and the number of published temperature points. Relative to temperature measurement, Tables 3-4 through 3-6 present the histories of internal and surface temperatures for the tests on nylon phenolic, silicone elastomer, and Apollo heat shield material, respectively.

Space did not permit listing the type of stagnation pressure transducers that were employed for each test calibration. However, good accuracy is the rule in pressure measurements by pitot probe or strain guage transducer, so the specific method used is of minor importance.

Figures 3-1,3-2 & 3-3 present plots of the tabulated test conditions in terms of cold wall heat flux and stagnation pressure, with enthalpy listed. Unfortunately test results were not available that match the space shuttle environment, namely, heating rates of 50 Btu/ft²sec and less at an enthalpy of 10,000 to 15,000 Btu/lbm with a total pressure of 0.1 atmosphere. However the shuttle condition is reasonably well bounded by available data so that conclusions on the applicability of CHAP to shuttle analysis should be possible.
The specified limitations on material composition and on test environment conditions were strictly maintained. It was desirable, but not made an absolute requirement, that internal and surface temperature measurements were included in the published data. In cases where internal temperatures were not published, the data are included in Tables 3-1, 3-2 & 3-3 if the test condition provides information in the test environment matrix not covered by instrumented models. In some cases, data without temperatures is included where the test condition is the same as for instrumented models but the run time is shorter, thus reducing the computer cost. As an added benefit in such cases a cross check on recession data is obtained.

The longest run times recorded (up to 10 minutes) appeared in Reference 3-7 for a series of duct flow tests on Apollo heat shield material performed by Boeing (Table 3-3). The long runs make computer simulation prohibitively expensive and this data probably will not be used in the CHAP evaluation. In addition, uncertainties in heat flux levels were large in those tests because of the time-varying model surface shape. The recession and char thickness information data is incomplete in that the locations of the post test material thickness measurements is not defined in Reference 3-7.

3.2 MEASUREMENT UNCERTAINTIES

Although thermocouple data contribute significantly to test results, uncertainties in the measurement of temperature are inherent but difficult to assess. Heat leak errors are the primary concern in internal and backface temperature measurements. Frequently backface temperatures are employed in testing to evaluate relative response times of various heat shield candidates. The measurement is made with an instrumented copper plate bonded to the backface of the model. The resulting measurement will differ from the true backface temperature by a magnitude that depends on the temperature level, the type of bonding, the relative thermal masses of the instrumented plate and the model, and potential heat leak paths away from the plate. The documented data are usually not complete enough to evaluate the error. Therefore the planned approach in the analytical studies will be to assume the "backface" and indepth temperatures are accurate. Then, if discrepancies develop between analysis and test data as the study proceeds, an assessment of temperature uncertainties will be considered.

The data from sources such as the round-robin ablation series (Reference 3-1) in which more than one technique was used to measure enthalpy and heat flux, points out some of the problems of obtaining accurate calibration measurements. Bulk average enthalpy measurements by energy balance or sonic flow calculations were generally in good agreement. However, the derivation of enthalpy from the cold wall heat flux and model stagnation pressure using the Fay-Riddell equation resulted in a value that tended to be significantly greater than the bulk value. The explanation is primarily that the centerline enthalpy, in the region of the model, was higher than the average enthalpy. Non-uniformities are more pronounced in some facilities than others as shown in Reference 3-l with plotted surveys of heat flux and stagnation pressure versus radial position. Heat flux enthalpy, if available, is probably preferable to average enthalpy for ablation analysis with CHAP.

Since stagnation point heat flux is a function of the shape and diameter of the calorimeter, the primary calorimeter data, where multiple measurements were made, is from a calorimeter of the same shape as the test model. The second calorimeter measurement, if listed, is for a different shape, either hemispherical or flat face with a different diameter, which has been corrected to the actual model shape. In Reference 3-1, a comparison of the results of the SRI 1.25 inch diameter flat face calorimeter in each facility with the facility calorimeter adjusted to a 1.25 inch diameter flat face indicated a standard deviation of 13%. The plots of Figures 3-1, 3-2, and 3-3, presenting the test environment points, employ the averaged heat transfer and enthalpy values from the tabulated data.

3.3 REJECTED DATA

Flight data is not included in the collected test tabulation for a number of reasons. A complete description of the local free stream environment (heat flux, pressure and enthalpy) was usually not published. The environment was complicated by the fact that it was time dependent. Some of the Apollo heat shield flight data is classified confidential placing restrictions on the duplicated data that would not be warranted in this document.

Of the literature surveyed on nylon phenolic, silicone elastomer, and Avocat 5026-39-HC/G, a significant number of reports had to be rejected as not appropriate. The attached reference list includes those references that were discarded and the reason for rejection. Incomplete data from some of the rejected list, such as References 3-15 and 3-18, is available but it does not provide a unique contribution to the matrix of test conditions and was consequently not included. Reference 3-1 of the applicable list contains numerous test points that have not been listed only because temperature data was missing. In all other respects, the unused data of Reference 3-1 is more complete than any of the points in the above-mentioned references from the rejected list.

SECTION 3 REFERENCES

I. ABLATION TEST SOURCES

- 3-1. Heister, Nevin K. and Clark, Carroll F., "Comparative Evaluation of Ablating Materials in Arc Plasma Jets," NASA CR-1207, December 1968.
- 3-2. Tompkins, Stephen S., "Simulation in Ground-Test Facilities of Ablation Performance of Charring Ablators During Atmospheric Entry," NASA TN-5769, April 1970.
- 3-3. McLain, Allen G., Sutton, Kenneth, and Walberg, Gerald D., "Experimental and Theoretical Investigation of the Ablative Performance of Five Phenolic-Nylon-Based Materials," NASA TN D-4374, April 1968.
- 3-4. Chapman, Andrew J., "Effect of Weight, Density and Heat Load on Thermal-Shielding Performance of Phenolic Nylon," NASA TN D-2196, June 1964.
- 3-5. Clark, Ronald K., "Effect of Environmental Parameters on the Performance of Low-Density Silicone-Resin and Phenolic-Nylon Ablation Material," NASA TN D-2543, January 1965.
- 3-6. Vojvodich, Nick S. and Winkler, Ernest L., "The Influence of Heating Rate and Test Stream Oxygen Content on the Insulation Efficiency of Charring Material," NASA TN D-1889, July 1963.
- 3-7. Gaudette, R. S., Del Casal, E. P., Crowder, P. A., "Charring Ablation Performance in Turbulent Flow," Boeing Company Report No. D2-114031-1 Prepared under NASA Contract No. NAS9-6288, September 1967.
- 3-8. Schaefer, John W., Flood, Donald T., Reese, John J. Jr., and Clark, Kimble J., "Experimental and Analytical Evaluation of the Apollo Thermal Protection System Under Simulated Reentry Conditions," Aerotherm Final Report No. 67-16, Prepared under NASA Contract No. NAS9-5430, July 1967.
- 3-9. Diaconis, N. S., Metzger, J. W., Florence, D., Kohr, J., Weber, H. E., Pater, K., and Warren, W. R., "Experimental and Analytical Study of the Behavior of Thermal Protection Systems in Convective Heating, Radiative Heating and Shear Stress Environments," General Electric Co. Report Prepared under NASA Contract No. NAS9-4771, February 1967.

II. NONAPPLICABLE SOURCES (Reason for rejection is given for each)

- 3-10. Moss, James, N. and Howell, William E., "A Study of the Performance of Low-Density Phenolic-Nylon Ablators," NASA TN D-5257, June 1969. Reason: Densities too low (10-20 lb/ft³)
- 3-11. Chapman, Andrew J., "Evaluation of Several Silicone, Phenolic, and Epoxy Base Heat-Shield Materials at Various Heat-Transfer Rates and Dynamic Pressures," NASA TN D-3619, June 1964. <u>Reason: Various: Virgin Mate-</u> rial reduced to zero thickness; or pt₂ > 1.4 atm; or temperature histories incomplete.

sata sata 1.11. 3-4

- 3-12. Swann, Robert T., Dow, Marvin D., and Tompkins, Stephen S., "Analysis of the Effects of Environmental Conditions on the Performance of Charring Ablators," J. Spacecraft & Rockets, Vol. 3, No. 1, January 1966. <u>Reason</u>: High density phenolic nylon, density and composition of silicone elastomer not specified.
- 3-13. Lundell, John H., Dickey, Robert R., and Jones, Jerold W., "Performance of Charring Ablative Materials in the Diffusion Controlled Surface Combustion Regime," AIAA Paper No. 67-328, April, 1967. <u>Reason</u>: Test data tabulation not presented, no internal measurements.
- 3-14. Wakefield, Roy M., Lundell, John W., and Dickey, Robert R., "The Effects of Oxygen Depletion in Gas-Phase Chemical Reactions on the Surface Recession of Charring Ablators, AIAA Paper No. 68-302, April 1968." <u>Reason</u>: Refers to AIAA Paper 67-328 above for most of data, balance of data not given in detail, no temperature measurements.
- 3-15. Swann, Robert T., Brewer, William D., and Clark, Ronald K., "Effect of Composition, Density and Environment on the Ablative Performance of Phenolic Nylon." NASA TND-3908, April 1967. <u>Reason</u>: For the appropriate stagnation pressures, Pt₂=1.0 atm, data contained either time to 300°F rise or char thickness but not both; surface recession not given.
- 3-16. Dow, Marvin B. and Brewer, William D., "Performance of Several Ablation Materials Exposed to Low Convective Heating Rates in an Arc-Jet Stream." NASA TN D-2577, January 1965. <u>Reason</u>: Heating rates very low (2 and 6 Btu/hr-ft²).
- 3-17. Graves, Randolph A. and Witte, Wm. G., "Flight-Test Analysis of Apollo Heat-Shield Material Using the Pacemaker Vehicle System." NASA TN D-4713 August 1968. <u>Reason</u>: Peak pressure reached 8 atmospheres at stagnation point. No internal temperature data was obtained.
- 3-18. Peters, Roger W. and Wodlin, Kenneth L., "The Effect of Resin Composition and Fillers on the Performance of a Molded Charring Ablator." NASA TN D-2024, December 1963. <u>Reason</u>: No temperature data published for Microballoon-filled material.
- 3-19. Bonasi, J. J., Moodie, D. M., Gluck, R., and Zeh, W., "Low Density Shear Resistant Ablators for Lifting Reentry Vehicles." Proceedings of AIAA/ ASME Eighth Structures, Structural Dynamics and Materials Conference, March, 1967. <u>Reason</u>: Reference material tested may be Avcoat 5026-39 "HC/G but it is not specifically defined as such, p₊₂>1.4 atm.
- 3-20. Strauss, Eric L., "Superlight Ablative Systems for Mars Lander Thermal Protection." Proceedings of AIAA/ASME Eighth Structures, Structural Dynamics and Material Conference, March, 1967. <u>Reason</u>: No recession or char thickness data given, techniques for measuring heat flux or enthalpy not given.
- 3-21. Crouch, Roger K. and Walberg, Gerald D., "An Investigation of Ablation Behavior of Avcoat 5026/39M Over a Wide Range of Thermal Environments." NASA TM X-1778, April 1969. <u>Reason</u>: Material tested is molded without honeycomb structure. Thermophysical properties are presumably different than Avcoat 5026-39-HG/G.

3-5

- 3-22. Curry, Donald M. and Stephens, Emily W., "Apollo Ablator Thermal Performance at Superorbital Entry Velocities." NASA TN D-5969, September 1970. Reason: Incomplete data on heat flux, pressure and enthalpy at locations instrumented with thermocouples. Heat flux data, if available, would be variable, introducing a complexity that is not desirable in CHAP study.
- 3-23. Low, George M., "Apollo 6 Mission Report," NASA Report No. MSC-PA-R-68-9, June 1968. Reason: Same as for Reference 3-22 above.
- 3-24. Lundell, John H., Wakefield, Roy M. and Jones, Jerold W., "Experimental Investigation of a Charring Ablative Material Exposed to Combined Convective and Radiative Heating," AIAA Journal Vol. 3, No. 11, November 1965. <u>Reason</u>: Material tested was high density phenolic nylon (ρ=75 lb/ft³).
- 3-25. Dow, Marvin B. and Swann Robert T., "Determination of Effects of Oxidation on Performance of Charring Ablators." NASA TR-R-196, June 1964. <u>Reason</u>: Material tested was high density phenolic nylon (ρ =75 lb/ft³).
- 3-26. Tompkins, Stephen S., "A Study of the Simulation of the Flight Performance of Charring Ablators in Ground Facilities." NASA TM X-61509, June 1968. Reason: Data is contained in Reference 3-2.
- 3-27. Walberg, Gerald D. and Crouch, Roger K., "Exploratory Investigation of the Effect of Nylon Grain Size on Ablation of Phenolic Nylon," NASA TN D-3465, August 1966. <u>Reason:</u> Stagnation pressures on order of 6 atmos.
- 3-28. Peters, Roger W. and Wilson, R. Gale, "Experimental Investigation of the Effect of Convective and Radiative Heat Loads on the Performance of Subliming and Charring Ablators," NASA TN D-1355, July 1962. <u>Reason:</u> The phenolic-nylon tested was 50% phenolic and 50% nylon,density 74.5 lb/ft³.
- 3-29. Chapman, Andrew J., "An Experimental Evaluation of Three Types of Thermal Protection Materials at Moderate Heating Rates and High Total Heating Loads, "NASA TN D-1814, July 1963. <u>Reason</u>: No recession data or char thickness data.
- 3-30: Moss, James N. and Howell, William E., "Recent Developments in Low-Density Ablation Material: Proceedings of the 12th National Symposium of SAMPE," October 1967. <u>Reason</u>: For the appropriate density phenolic nylon, data is lacking on recession and char thickness. Also only the 300°F temperature point at backface is given. For the appropriate elastomer, no temperature data is given.
- 3-31: Brooks, William A. Jr., Tompkins, Stephen S. and Swann, Robert T., "Flight and Ground Tests of Apollo Heat-Shield Material,(C) Conference on Langley Research Related to Apollo Mission, "June 1965. <u>Reason</u>: 1. Classified. 2) pt2>1.0 atm (up to 3 atm) over much of the flight test.
- 3-32. Raper, James L., "Results of a Flight Test of the Apollo-Heat Shield Material at 28,000 Feet Per Second," (C) February 1966. <u>Reason</u>: Same test as discussed in Reference 3-22.
- 3-33. Dow, M. B., Bush, H. G., and Tompkins, S. S., "Analysis of the Supercircular Reentry Performance of a Low-Density Phenolic-Nylon Ablator," NASA TMX-1577, May 1968. <u>Reason</u>: Flight data; document classified.

ABLATION TEST DATA, LOW DENSITY NYLON PHENOLIC

Ec 1

												ļ										F
	Test (!) Pacility	Jaf.	Material Density (ibm/ft3)	Material (3) Composition (3) (%)	Node.	L Initial Nodel Geometry	Averag Enth h _T (Bti	a Total alpy 1 [im]	Heat Tran Q _{CV} (Btu/£ I	It 2 Rate S	Kodel tugnation Pressura 1 Pro(atr)	Oxygen Kass Fraction fo	Tine Tine (sec)	Total Surface Recession, S (in)	Char Thick- noss (in)	Char Density (1b/ft ³)	No of Int. 7/C'= w/ Elstory 1 Pub.	Surface Terp. History Pub.	Enthalpy Koasurceont Technique (3)	Calorizotor Types	edi; shtrosks	
-	KASA Annes CUB		s.8C	PR=25 PH=25 H=50	PLL54	Flat face 1.25 in total dis. 0.625 in dis.	10,430 10,430	10,170 10,170 10,670	77 77 85	67.6 67.6 68.5	0.0106 0.0106 0.0109	R	19.3 38.6 75.4	0.023 0.058 0.107	0.065 0.093 0.122	14.5 14.3 16.3	114	1 I L	I. E.B. II. S.7.	<pre>I. Flat face slig same diren. as moiol (SAI built) II. Howlschere/cvl.</pre>		
	· · · .			PR-51 PM-23 M-40	PLL60 PLL61 PLL61 PLL69	thick core	15,360 15,360 10,322	16,590	178 78 78 85	141.9 68.1 67.1	0.0182 0.0182 0.0106 0.0111		11.2 28.2 38.4	0.019 0.052 0.115	0.074 0.122 0.697 0.132	14.1 15.0 15.0	1114	1115	•	slug, corr. to flat face		
		•			PLAZ4 PLAZ0	, ,	15,870	16,620	166 1	163.1	0.0185		1.1	0.011	0.067	11.2	11	11				· •****
	EUGH Asses A202		35.5	PR=25 PH=25 N=50	PLL70		6,736	12,664	1 1.11	8.601	0.00572		24.6	0.008	0.054 0.079	14.5	; }-	ų	I. B.B. II H.F.		* 	•
	<u>.</u>			PR=37 PH=23 H=40	PLK65		12,162	19,094	223.9	190.0	0.00787	•	1211	0.004	0.004	1.21	111			 - -	111	
	EASA Langley AGD		35.5	PR=25 PM=25 M=50 PR=37 PM=23 M=40	eshiq Esliq		4,900	11	256.	• 11	0.284 0.284		88	0.137	0.099	4.64		:1	H.7.	Flat face slug same diren as model (SAI built)	11 11	
	Asrothers Corp.		35.5	PR-25 PH-25 B-50	1671a	• 	4,748	5, 583	60.1	92.1	0.0204		60.5	0.096	0.126	14.5	• 	Yes.	I. E.B. II. H.F.	I. SPI-type II.Gardon flat face corr. to 1.25 in dia face.	Thermodat pyro 0.8 I 0.015	
	diannini Beientific	•		PH-37 24-40	DEPTA DEFTA		10.200	11	145	11	0.0199		34.7	0.073	0.159	16.7	~~	*** XX	а́	Giannini steady-state henisphere water cooled calibrated w/0.25 dia. flat fuce slug.	Thermodot 24F0 1.6-2.7µ	
	Martin Company		35.5	PR=25 PM=25 N=50 PR=37 PX=23 H=40	16374 16774		5,140	, ti	43.2	: 11	0.0070		120	0.107	0.178 0.171	16.7	**	уе ж Уев		Gardon flat face 1.25 in dia.	Inst. dev. lab opt. pyroceter	
	Space General . Corp.		35.5	PR=25 PJ=25 K=50 PR=37 PJ=23 K=40	16114 16114		14,855	14,990 14,990	101 88		11500.0		5 S S	0.054	0.124	15.4	Ma	Yes Yes	I. 8.8. II. 6.7.	Asymptotic steady state 1.25 in dia fist foce.	LLN optical pyro. 0.653:	7
-	MASA Langier 238		x —	07-# EZ-WA LE-W4	111	Bint Hemi, 4.7" R. note on 2.5 OD cyl, 1.25" thick	3,500 13,000	m	164 175 164	111	0.04	-058 -23 -058	120 120	0.19 0.29 0.28	0.23		1	111	۶.۶.	Thin skin calorizoter same shape as model	:::	
	RASA Langley AND	1	\$	22-25 214-25 28-25 214-25	1 1	2.0 in. dia. disk w/3.14* rad. nov9. 0.5 max thickness	* 800	ų́m	a	11111	0.066	s	,52888,	0.00 2000 2000 2000 2000 2000 2000 2000	0.07 0.08 0.115 0.120	11111	нннн	31331	х. В. Т.	Thin vall S.S. slug caloriseter sate shape as model	Langley photo. pyrometer	
	MASA Langley 2500 KM Arc	÷	£	Pa-15 B-10	1 1111	All models fit face J dis. b thekness - 925 476 - 450 - 450 - 450 - 417 - 934 - 935 - 935	00		11 % 12 12 12 12 12 12 12 12 12 12 12 12 12		۲. ۲.	ą	25 212 212 212 212 212 212 212 212 212 2	0.729 0.729 0.2111 0.210 0.210 0.210 0.210 0.210	0.1148 0.1148 0.1148 0.1148 1487 1487 1487 1487 1487 1487 1487	1 11 11 11	H H H H H H H H H H H H H H H H H H H	Emm	ů,	3/9 in dia. 5.5. watar cooled calorizator corr. to flat face. :	1 11 11 11 1	
	MASA Langlay 2500 XH Arc		9	PR=23 PH=25 BIM=5 H=47	ha	Flat face 3" dia x 1" thk.	3,650	: 1	206 198		77	 	101 292	0.45	0.03	11	1	:	5.8.		:	T
	KASA Ares CDB	1	\$	PR=25 Pr=35 R=50	(1 1)	Half Gylinder, 0.8° long x.17 xad. x 0.10° thick, on stel body of hesis- phate cylinder 7 lat face 0.78°	5* 5,800 K- 6,200	11', 1	86 12	11 1	0.01	₽—	6 C C	Do data	no data	1	н <i>а</i> ,	ve 9 2 1 1	ng	slug calorimeter same shape as model	Ridianoter	
		-			- 0 - 0	dia # 0.10"this	ck 5,500	ł	36	1		-	19	-			4 ~	1	••••		; ;	

ABLATION TEST DATA, LOW DENSITY SILICONE ELASTOMER

1

								• • •
	yran udda Ar	List. Dev. Lbb.	Hone;weil 0.3-3.9,		Thermodol Tyro. 6.8 ± 0.015.	Sherrodot Pyrc. 1.6-2.7µ	Inst. Pev. Lub. Opt. Pyto.	168 0pt 741.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Calorinater Types	 Plat face dig sad Neuropees and correct to flat face 	I. Fint face slug same dinon. as rodel II. Nemisphere slug corr. to flat face	That face flug, each diran, as model (531, type)	I. SRI type, II. Gardow flat face corr. to 1225 in. dia. face	Gianinai S.S. Seaf weer cooled, splib.v/ 0.255 flat face slug	Gardon flat face, 1.25 in. dia.	Asymptotic stocky state 1.35 in. dia. flat flace
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Enthalpy Noasurerant Technigue (1)	н н н н	I. E.B. II. H.P.	A	I. E.B. II. H.F	м м	n	А
Multity billing Multity bi	Surface Terp History Pub.	۱۱ ا ا	Yes	1 1 1	Yes		Ket I	Kes 1
Multicity (1) Multicit	No. of Int. T/C's u/ History Pub.	• 1 1	4	N 1 1	4	n	- 1 1	a i 1
Marting Marting <t< td=""><td>Char Density (lb/ft³)</td><td>13.1 11.6</td><td>16.7</td><td>16.0 14.2 18.1</td><td>15.8 -</td><td>19.1 13.2 16.4</td><td>15.7 15.4 11.6</td><td>14.2 16.8 16.1</td></t<>	Char Density (lb/ft ³)	13.1 11.6	16.7	16.0 14.2 18.1	15.8 -	19.1 13.2 16.4	15.7 15.4 11.6	14.2 16.8 16.1
Market	Char Thick- ness (in)	0.205 0.155 0.116	0.121	0.117 0.049 0.022	0.217	0.127 0.109 0.056	0.200 0.063 0.032	0.167 0.077 0.077
With Martin Martin <td>Total Surface sccession, \$ (in)</td> <td>+ 0.052 0.065 0.019</td> <td>0.004</td> <td>0.070 0.082 0.412</td> <td>+ 0.025</td> <td>0.004 + 0.036 0.070</td> <td>+ 0.048 6.053 0.190</td> <td>+ 0.052 220.0</td>	Total Surface sccession, \$ (in)	+ 0.052 0.065 0.019	0.004	0.070 0.082 0.412	+ 0.025	0.004 + 0.036 0.070	+ 0.048 6.053 0.190	+ 0.052 220.0
Rest No. Monetifia	Run Tire (sec) _B	75.5 38.4 20.1	-25.0	.06. .11. .30.	100	35.7 32.7 10.7	120. 13.4 17.	50.3 14. 16.1
Martin Martin<	Oxygen Mass Fraction fo							
Water (1) Set. Mater [A] Mat	lfodel Stagnation Pressure Pt2 (atm)	0.0109 0.0105 0.0165	0.00847	0.284 0.293 0.293	0.020	0.0199 0.0041 0.095	0.0070 0.0341 0.139	0.0051 0.093 0.092
There District District <thdistrict< th=""> District <th< td=""><td>at Transfer ate, gew tu/ft^{see})</td><td>7 62.9 3 70 2 159.8</td><td>1 185.9</td><td></td><td>7.7 83.2</td><td> </td><td>1 7 99 </td><td></td></th<></thdistrict<>	at Transfer ate, gew tu/ft ^{see})	7 62.9 3 70 2 159.8	1 185.9		7.7 83.2		1 7 99	
The first is a start of the start is a start of the start is a start of the start is a	Total He Y, h _T R Ca) 2 (B II 1	10,670 8 10,170 7 16,480 17	19,721 22	1 1 1	5,469 7			14,990 10 5,015 15 5,020 15
The fill be filled a set of the filled a set o	Average Enthalpy (Btu/li I	10,678 10,134 15,970	12,561	4,900 9,700 9,700	4,566	10,200 10,100 15,400	5,180 18,642 10,647	14,925 5,127 5,093
There Material	Initial Hodel Geometry	Tat face 1.25 in tot dia. core, 0.75 in thick core						
Vane (1) Nof Haterial Material Material Material Cooperation (1) Nof Haterial Cooperation (1) Nof Haterial Cooperation (1) Nof Haterial (1) (1) Nof Haterial (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Kodel No.	61996 61926 61926	684S	SP29	7972	06 E 4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5291 5712 578	5294 5P27 5P28
Vana coa 1 13.5 Vana coa 1 31.5 Vana coa 1 31.5 Vana coa 1 31.5 Vana coa 1 1 31.5 Vana coa 1 1 15.5 Vana coa 1 15.5	Material Comp.(1) (8)	SR 15 84 10 10						
V Name (1) Bof. ittity Bof. V Name (23 1 1 V Name (23 1 V Na	Haterial Density (lbm/ft ¹)	33.5						
The (1) The	Ref. No.	·	·					
	Test ⁽¹⁾ Facility	ASA Ases CDB	ASA ARES NPDB	MSD Langley MSD	Aerothers Corp.	Scientific	Hartin Co.	Corp.
		н		un vo m	8	6 9 11		11

	Ryconser Deea	10. The second se	toto I	12.7. 2VF3	r dev land pyro cyr pyro			6 I 0.015.	· · · · · · · · · · · · · · · · · · ·	
	rizter Used		tyge, II-Gardon Ine: lace cor 1.25' dia 40.4	ini SS hard, M-O The Lealy/J.25" Ein Gli Face slug	totic flat face 115 čia. čiat face 115	cotted asymptotic 14	aste cols, distr.	etions polished The sace dimen. as 60.	visco bases	Carlor area phage carlored area phage area area phage area area carlored area a
	19Y Cairt Caio La(3)	201120 100000000	-HC I-SAL flat f	Giann: Cooled	A8702- 1.25"	0 ² 3 S	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	conva slug	1976 1976 1976 1976 1976 1976 1976 1976	2011 2011 2011 2011 2011 2011 2011 2011
-	Enthal Measure: Technig		II 83-I	ед		23		25-		2 <u></u> 2 222
	Surface Terry, Hiat Published	\$1\$1.	yea	Yes	Yes	yee		Yos.		
	No. of Int. 7/C's with History . Publishod	m444	4		<u>а</u> а	10	******	3	n	v 4 v v
υ	Char Density (Lb/ft ³)	19.6 18.0 16.3 17.3	17.3	19.3	17.8 17.7	;		1	(ummun	minaniummunum
9-HC/0	Char Thickness (in)	0.167 0.143 0.125 0.061	171.0	0.144	0.236 0.168	er o		0.09	0.000000000000000000000000000000000000	498969-91984-989896986699666666666666666666666666
5026-3	Total Surface Recession S (in)	0.101 0.059 0.045 0.177	0,251	0,072	0.060	5 03	20000000000000000000000000000000000000	0.070	0.052 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.062 0.062 0.062 0.062 0.062	
OAT	Run Timo (sec)	20.2 20.2 20.8	8.66	34.7	120		530 530 530 530 530 530 530 530 530 530	20.1	11298888888888888 11299888888888888888 112998888888888	
AVC	oxygén fass, Fract fo	s				,		.		
DATA	Madel Stagnation Pressure ?	0.0108 0.00562 0.00562 0.00947	0.0152	0.0199	0,0070	11500.0	0,038,0 0,033 0,033 0,055 0,052 0,052 0,052 0,054 0,054	0.112	0.033	0.0012 0.0012 0.0013 0.0013 0.00200 0.002000 0.0020000000000
TEST	at Jate 6 er Jate 6 /ft ² sec)	62.4 105.3 202.8	86.2	I.	ľ	:		0 (5)	153 156 156 150 150 150 150 215 215 215 215 215 215 215 215 215 215	
VULION	Transf dcy(Btu	89 105.3 215.2	76.5	144	43.2	101	122383589755 2238559595 25595959595	157 (5)	2114	25.6 25.6
ABL	Total h _T (Etu/Lba	10,750	5,644	1	1	15,000		: :		
	Averaçe Enthalpy.	1 10,449 6,973 12,320 4,900	4,783	10,200	s, 140	14,955	• 3,130 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,45	060'5	, 2,000 3,220 3,220 5,10	× 1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
	1 Model etry	e 1.25" a. 0.625" e 0.75"		.*	•		19 x 10, 4" Wid 19 x 2" 1 duct flow tion	ca. 1.25		valisphere/ valisphere/ valisburght valis
	Initia Geon	Flat fac total di dia. cor thick co					Flat pl x 6° lo thick i orientai	Plat (a	4 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	Blunt P 101
	Hodel No.	A93 A84 A85 A90	854	¥94	A95	A97	0040180011	14	46,FF/1.25 45/FF/1.25 55/FF/1.25 55/FF/1.25 55/FF/1.25 55/FF/1.25 55/FF/1.25 40/FF/1.25 63/FF/1.25 63/FF/1.25 63/FF/1.25 63/FF/1.22 63/FF/1.22 63/FF/1.22 63/FF/1.22 63/FF/1.22 63/FF/1.22 63/FF/1.22 63/FF/1.22 50/FF/1.22	94/2012 95/2012 91/200
	erial ignation	0AT 6-19-BC/0		· .						
	Raf. Des	3-1 AVC						- ;	۳ <u></u>	-
	facility ⁽¹⁾	• CD3 • K2D3 • K2D3 • F2D3	Corp.	Scientific	Auedao	nersl.Corp.	Kiniaro B		sa Entry Simulator	1 200
	Test 1	NASA-Aze KASA-Aze KASA-Aze KASA-Aze	Aarother	Giannink	Martin C	Space Ge	Bosing		KASA Ar Beating	
	123			• •	~		*333333355	12	8 33232256868368	x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	Zyooster Used	60:00 E	2442
	Calorinster Used	alve eil, blurt hest/ 2- dia ryl corrected to addi frage ar radal vol isse ar radal vol ass trig fasts ar etopattion palities ar	col area there aread. W coper there aread a stantar interes other interesting point 4 2 other interesting
	Enthalpy Measurerant Technique (3)	29	H30 ccoled Giorinatar
	Surfaco Terp. Nist. Published	<u>ي</u> ــــــــــــــــــــــــــــــــــــ	11\$111\$\$115
	No. of Int. T/C's with History Zublished	n u na ananana-nannannanna	N99N9999
	Char Density (Lb/ft ³)		
	Char Thickness (in)	8288 H PH HR19019448446449494949494949494949494949494949	0.101 0.101 0.001 0.001 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021
	Total Surface Recession S (in)		0.121 0.121 0.120 0.120 0.075 0.0000000000
	Run Time (sec)	800 5 00 00 00 00 00 00 00 00 00 00 00 00	100. 100. 100. 100. 100. 100. 100. 100.
	Oxygen Hass, Zraot. fo:	d	
	Stessation Pressure Pt2 (ata) Pt2 (ata)		0.0045 0.50 0.50 0.50 0.50
	at Sate /ft Sate II	\mathbf{m}) is a maximum maxim maximum m	1 1 1 1 1
	Transf Cov(atu	1912 1913 1913 1913 1913 1913 1913 1913	
	Total h ₅ (Btu/Lbs) II		
	Average Enthalpy, I	15,097 15,007 15,007	13,400 5,420 13,400 13,400 13,400
	Initial Model Geosetry		0.75 dia. 0/157 0.75 dia. 0/157 0.75 dia. 0.625 dia. 0.625 dia.
	Hodel. Ho.	111/14/40 14/14/10 14/14/10 14/14/14/14/14/14/14/14/14/14/14/14/14/1	245 245 255 255 255 255 255 255 255 255
	interial esignation	1000-100 	
	21 . 386.	z	
	Test Facility	Akrotism Coty.	Gageral Fleckfig
•	Tab Ko.	656 9 77 777777777888888888888888 9 6 77 7777777778888888888888888 9 6 77 7777777777878888888888888 9 6 77777777777777777777777777777777777	68688888888888888888888888888888888888

TABLE 3-3 (CONCLUDED)

Notes for Tables 3-1, 3-2, and 3-3

1. Facility Designations

- NASA-Ames Gas Dynamics Branch (GDB) Planetary Entry Ablation Facility
- NASA-Ames Magneto Plasma Dynamics Branch (MPDB) Low Density Constricted-Arc Supersonic Jet
- NASA-Langley Applied Materials and Physics Division (AMPD) 20 inch Hypersonic Arc Heated Tunnel
- Aerotherm Corporation 1 MW Arc Plasma Facility
- Giannini Scientific Corporation 1 MW Hyperthermal Test Facility
- Martin Company Plasma Arc Laboratory, Facility B
- Space General Corporation Electro-Thermal Facility
- NASA-Langley Entry Structures Branch (ESB) 5 MW Arc Powered Tunnel and 1 MW Arc Powered Tunnel
- NASA-Langley 2500 KW Arc-Powered Jet, Subsonic Flow
- Boeing Miniarc E Arc-heated Plasma Facility
- General Electric Space Sciences Laboratory (SSL) Hypersonic Arc Tunnel
- 2. Material Composition Code

	Phenolic	Nylon	PR	-	phenolic	resin
			РМ	=	phenolic	microspheres
			N	=	nylon	
			SIM	=	silica mi	crospheres
۲	Silicone	Elastomer	SR	=	silicone	resin
			SM	=	silicone	microspheres
			PM	=	phenolic	microspheres

3. Enthalpy Measurement Techniques

EB = Energy balance on arc generator

- SF = Frozen sonic flow technique (or mass balance)
- HF = Heat flux at stagnation point using Fay-Riddell equation
- SP = Spectrographic method to determine static temperature; enthalpy
 read from Mollier diagram

4. In Boeing tests, pressure listed is test section entrance static pressure.
5. In NASA-Ames Entry Heating Simulator tests, convection heat flux (Column I) and radiation heat flux (Column II) were applied simultaneously. Radiation source was a carbon arc lamp.

MODEL INTERNAL AND SURFACE TEMPERATURE DATA, LOW DENSITY NYLON PHENOLIC (Except where specified, all initial temperature = 530°R)

Reference - 3-1

Facility - NASA Ames GDB

Model - PLL96

Time	Temper	ature (°R) from In	at Locati itial Surf	ons Indicat ace	ted (in)
(sec)	0.094	0.226	0.328	0.426	Front Surface (ε=1.0)
5 10 15 20 25 30 40 50 60 70	610 780 1170 1700 2110	580 730 930 1150 1670	590 630 640 700	540 580	2860 3050 3150 3230 3300 3450 3500 3480 3480
90				620	

Reference - 3-1

Facility - NASA Ames GDB

Model PLH98

Time	Temper	ature (°R) from In	at Locati itial Surf	ons Indicat ace	ed (in)
(sec)	0.115	0.212	0.314	0.431	Front Surface (ɛ=1.0)
5 10 15 20 25 30 40 50 60 70 75	560 650 820 1060 1410 1890 2600	640 770 990 1380 2070 2270	570 600 640 730	540 560 5'80	$\begin{array}{c} 2900\\ 3110\\ 3200\\ 3260\\ 3300\\ 3340\\ 3440\\ 3440\\ 3500\\ 3520\\ \end{array}$

Reference - 3-1 Facility - NASA Ames MPDB Model - PLL87

	Time	Temperatu Indicated Fr	re (°R) at (in) from ont Surfac	Locations Initial P
	(sec)	0.095	0.220	0.310
-	5 10 15 20 25 30 40 50	540 580 700 900 1160	540 580 610 660 780	535 540 570 610 620

Reference - 3-1

Facility - NASA Langley AMPD

Model - PLL93

Time	Temperatu (in)	ıre (°R) at from Initi	Locations al Front S	Indicated urface
(sec)	0.114	0.198	0.314	Front Surface (c=1.0)
4 6 8 10 12 15 20 22 24 25	600 640 810 1250 1960	600	560 600 610	4400

Reference - 3-1

Facility - NASA Langley AMPD Model - PLH93

Time	Temperatu (in)	re (°R) at from Initi	Locations al Front Su	Indicated irface
(sec)	0.114	0.216	0.309	Front Surface (ε=1.0)
4 6 8 10 12 15	550 610 740 1110 1790	535 570		4400
20 25 30		680 1190	540 555 630	

Reference - 3-1 Facility - Aerotherm Corporation Model - PLL97

Time	Temper	ature (°R) from In	at Locatio	on Indicat t Surface	ed (in)
(sec)	0.095	0.220	0.310	0.399	Front Surface (ɛ=1.0)
5 10	580 780	550			3210
15 20	1180 1710	600	570	570	3340
25	2130	650		,	3360
40		780	600	600	3420
50		1040			3510
60			680	640	3590
80			1030	700	
1.00			2130	1350	

Reference - 3-1 Facility - Giannini Scientific Model - PLL90

Time	Temperatu Indicate S	re (°R) at L d (in) from urface	ocations Initial
 (sec)	0.119	0.220	Front Surface (ε=1.0)
5 10 15 20 25 30 35	540 710 1480 1980	545 600 660 890 1490	3560 3910 3880 4040 4070 4130 4120

Reference - 3-1 Facility - Giannini Scientific

Model - PLH90

	Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface					
	(sec)	0.111	0.204	Front Surface (ɛ=1.0)			
and the second	5 10 15 20 25 30 35	540 640 890 1400 1930	540 570 620 690 790	2760 3210 3410 3590 3660 3760 , 3830			

Reference - 3-1

Facility - Martin Company

Model - PLL91

Time	Tempera	Temperature (°R) at Locations Indicated (in) from Initial Front Surface					
(sec)	0.111	0.221	0.314	0.415	Front Surface (ε=1.0)		
5 10 15 20 30 40 60 80 100	550 600 660 710 820 1680	570 670 830 1090 1540	550 580 620 690 910	560 610	2660 2780 2920 3020 3100 3160		
120				700			

Reference - 3-1

Facility - Martin Company

Model - PLH91

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface						
(sec)	0.115	0.211	0.313	0.405	Front Surface (ε=1.0)		
1.0	620				2620		
15 20 25	680 780 910	560	540		2710		
30 40	1040 1420	670	550	540	2840		
50 60 80	ΤΟΤΟ	830 1120	600 660 770	ُ 570	2940 3020 3100		
120				760			

Reference - 3-1 Facility - Space General Model - PLL94

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface					
(sec)	0.104	0.211	0.284	Front Surface (ɛ=1.0)		
5 10 15 20 25 30	580 700 990 1330 1700	550 600	560	3260 3320 3360 3380 3400		
40 50		740 980	580 610	3420 3470		

Reference - 3-1 Facility - Space General Model - PLH94

	Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface					
	(sec)	0.111	0.211	Front Surface (c=1.0)			
-	10 15 20 25 30 40 50	640 800 1050 1380 1810	570 660 770 970	3210 3300 3360 3400 3420 3420 3430			

Reference - 3-2

Facility - NASA Langley ESB

Models - LD-7, LD-8

	Temperatures (°R) at Lo fron Initial				cations I Front Sur	ndicated (face	(in)	
Time		Model	LD-7			Model	LD-8	
(sec)	0.126	0.249	0.378	0.505	0.126	0.250	0.379	0.500
0 5 10 20 25 30 35 40 55 60 55 60 55 60 55 60 55 60 55 90 95 100 105 110 115 120	530 575 770 1435 2005	530 545 565 600 690 850 1090 1500 2140 2465 2665	530 540 550 560 595 630 660 730 850 1100 1445 1950 2280 2560	530 540 545 550 565 577 605 630 665 720 795 937 1130 1460 1880	560 600 770 1435 2150	560 565 580 630 700 820 1000 1320 1910 2305 2500	560 565 585 625 675 710 795 940 1165 1580 2080 2415 2680	560 565 570 580 605 623 653 653 680 737 800 937 1100 1350 1640

Reference - 3-3

Facility - NASA Langley AMPD

Models - PN-2 Material at Various Exposure Times

and the second se	Time	Temperature (°R) at Back Face, 0.5 in. from Initial Front Face					
and the second se	(sec)	30 sec Exposure	60 sec Exposure	90 sec Exposure	120 sec Exposure	150 sec Exposure	
	20	530	530	530	530	530	
	30 40 60 80	531	539	532.5 541 559.3	532.5 540.8 560	560.2	
	90 100 120 140 150			573	599 673	595 646.3 720 771	

Time	Temperature	(°R) at From	nt Surface
(sec)	30 sec Exposure	90 sec Exposure	120 sec Exposure
0 5 10 20 30 40	3280 3440 3490 3460 3595	3110 3540 3390 3410	3560 3610 3690 3835 3850 3690
45 50 60 70 80 90 100		3530 3620 3650 3625 3710	3830 3885 3860 3865 3930 3880 3950

Reference - 3-4

Facility - NASA Langley 2500 KW Arc Models - 8 Models of Low Density Phenolic Nylon

Model	Run	Temperature History at Back Face, T _{init} = 530 R			
Thickness (in)	(sec)	Time to Reach 580°R (sec)	Time to Reach 830°R (sec)	Temp at End of Run (°R)	
0.925	257	158	257	830	
0.927	258	140	256	870	
0.476	119	85	115	1025	
0.450	.125	92	120	989	
0.930	210	112		745	
0.934	130	130		580	
0.933	129	123		589	
0.417	93	89		594	

Reference - 3-5

Facility - NASA Langley 2500 KW Arc

Models - 2, 13

Time (sec)	Temperature (R) at Back Face, Initially 1.0 in from Front Surface				
	Model 2	Model 13			
0 75 80 85 90 95 100 125 150 175 200 225 250 275 290 294	530 531 536 539 541 554 830	530 532 534 535 536 537 538 546 560 580 600 614 629 672 730 828			

TABLE 3-4 (concluded)

Reference - 3-6

Facility - NASA Ames GDB

Models - Various Phenolic Nylon Models

				Temperat	ure (R)		
	Time	Back Face,	0.1 in from Initial Front Surface			Front Surface	
	(sec)	19 sec Exposure	20 sec Exposure	39 sec Exposure	80 sec Exposure	39 sec Exposure	80 sec Exposure
-	0 5 10 15 20 30 40 50 60 70 80	530 530 601 711 864	530 536 600 702 850	530 534 559 603 650 756 869	530 530 542 567 595 660 704 755 794 835 872	530 1435 1720 1910 2010 2120 2180 2220 2250	530 935 1100 1165 1185 1255 1305 1315 1325

Temperature (°R)

MODEL INTERNAL AND SURFACE TEMPERATURE DATA, LOW DENSITY SILICONE ELASTOMER (All initial temperatures = 530°R)

Reference 3-1

Facility - NASA Ames GDB

1

Model - SP96

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface						
(sec)	0.095	0.220	0.337	0.405	Front Surface $(\varepsilon=1.0)$		
5 10 15 20	580 700 840				3000 3000 3000 2970		
30	1370	630 680	550	540	2930 2890		
50	1810	730	590	550	2860 2820		
70 75		880 930	630	580	2800		

Reference 3-1

Facility - NASA Ames MPDB

Model - SP89

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				ed (in)
(sec)	0.120	0.241	0.311	0.421	Front Surface (c=1.0)
5	590 740	535	532	532	3070 3310
15	1050	555	534	534	3340 3350
20 25	2210	605	536	536	3350

Reference 3-1

Facility - NASA Langley AMPD

Model[®]- SP93

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface			
(sec)	0.085	0.189	Front Surface (ε =1.0)	
2 4 6 8 10 12 15 20 25	550 640 810 1110 1530 2040	550 600 700 940	4060	

Reference 3-1

Facility - Aerotherm Corporation

Model - SP97

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
(sec)	0.101	0.208	0.303	0.409	Front Surface (c=1.0)
5 10 15	630 880 1130	550		,	2600 2740
20	TT20	580 630	550	550	2750 2730
40	. 24	730	590	580 ′	2720 2710
60 80 100		950	670 780 860	630 670 740	2700

Reference 3-1 Facility - Giannini Scientific Model - SP90

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface			
(sec)	0.099	0.216	Front Surface (ε=1.0)	
5 10 15	550 730 1030		3060 3260 3310	
20 25	1530 1930	560	3460	
30		630	3460	

Reference 3-1

Facility - Martin Company

Model - SP91

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
(sec)	0.097	0.198	0.314	0.411	Front Surface (ε =1.0)
10	600 750 870	570			2690 2750
40 50	1000 1080	690	550	540	2780
60 80 120	1140	850 1010	650 790	580 650	2840

TABLE 3-5 (concluded)

Reference 3-1

Facility - Space General

Mode'l - SP94

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface			
(sec)	0.097	0.189	Front Surface (ɛ=1.0)	
5	610		3180	
10	740		3260	
15	980		3300	
20	1300	580	3330	
25	1600		3360	
30	1830	670	3380	
35	1990		3400	
40		780	3410	
50		900	3420	

TABLE 3-6*

MODEL INTERNAL AND SURFACE TEMPERATURE DATA, AVCOAT 5026-39 HC/G (Except where specified, all initial temperatures = 530° R)

Reference - 3-1

Facility - NASA Ames GDB

Model - A93

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
(sec)	0.113	0.226	0.330	Front Surface $(\varepsilon=1.0)$	
5 10 25 30 40 50 60 70 75	610 900 1320 1810 2210 2460 2940	580 620 700 830 980 1080	590 610 650	3120 3220 3250 3290 3310 3340 3360 3390 3360 3390 3360 3390	

Reference - 3-1

Facility - NASA Ames MPDB

Model - A84

1	Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
	(sec)	0.104	0.222	0.305	0.410	
	5 10 15	560 700	550	540	535	
	20 25	1660 2120	605	550		
	- 30		810 1160	580 650	· 5 50	
	50		1640	770	585	

*Note: Due to the large quantity of AVCOAT material data, temperature histories are presented here for only a representative sampling of test runs in Table 3-1.

Reference - 3-1

Facility - NASA Ames MPDB

Model - A85

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
(sec)	0.103	0.211	0.321	0.424	Front Surface (ɛ=1.0)
	550				3160
5		540	540	535	9
8	800				3470
10	1000	545	545	540	2610
12	1220	500	550	550	3610
15	01.00	580	550	550	2600
70	2120	670	650	550	3740
25	2000	070	660	555	5740

Reference - 3-1

Facility - NASA Langley AMPD

Model - A90

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
(sec)	0.107	0.209	0.311	0.420	Front Surface (ε=1.0)
4 55 6 8 10 12 14 15 20	560 600 680 850 1320 1950	570 600 670 800 1110	535 570 600 730	535 , 580	4380

Réference - 3-1

Facility - Aerotherm Corporation

Model - A98

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
	0.113	0.215	0.313	0.424	Front Surface (ɛ=1.0)
5 10 15	630 1010 1490	570			3160 3270
20 25	1960 2350	660	550	540	3320
30		890		·	3370
40		1340	660	560	3410
50		1930			3460
60			1060	640	3630
80			1840	830	3630
100				1350	

Reference - 3-1

Facility - Giannini Scientific

Model - A94

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface				
(sec)	0.101	0.213	Front Surface $(\varepsilon=1.0)$		
2 5 8 10 13 15 18 20 25 30 35	535 560 720 890 1340 1740 2190	540 650 820 1130 1620	2910 3260 3410 3560 3620 3670 3820		

Reference - 3-1 Facility - Martin Company Model - A95

Time	Temperature (°R) at Locations Indicated (in) from Initial Front Surface							
(sec)	0.103	0.216	0.314	0.415	Front Surface $(\varepsilon=1.0)$			
5 10 15	560 730 940				2830			
20 25 30	1190 1440 1730	590 700	540		2960			
40 50		860 1050	590	540	3060			
60 80		.∦∄ 1260 ™∆	730 920	620	3080 3060 3080			
120			1100	900	3080			

Reference - 3-1

Facility - Space General

Model - A97

Time	Temperature (°R) at Locations Indicated (in from Initial Front Surface							
(sec)	0.110	0.203	Front Surface (ε=1.0)					
5 10	600 820	600	3410					
20 25	1780	670 790	3460					
30		980 1200	· 3510					
40 45		1470 1730	3530					

Reference - 3-8

Facility - NASA Ames Entry Heating Simulator Model-50/FF/1.25

Time	Temperature (^O R) at Locations Indicated (in) from Initial Front Surface							
(sec)	0.131	0.288	0.422	Front Surface $(\varepsilon=.75)$				
0.5 1 3 6 8 10	530 570 650 1220 2070	530 530	530 530	4250 4400 4510 4540 4570 4580				

a de la della

Reference - 3-8

Facility - NASA Ames Entry Heating Simulator Model - 63/FF/1.25

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface							
(sec)	0.126	0.288	0.434	Front Surface (ε=.75)				
1 2 4 6 8	520 560 630	520	520	3230 3700 3820 3880				
12 13 17 21 25	950 1760 2360 2870	• 530 550	540	3940 4050 4130 4210				

Reference - 3-8

Facility - Aerotherm

Model - 95/BH/2.0

Time		Temperature (^O R) at Location Indicated (in) from Initial Front Surface							
(sec)	0.136	0.279	0.460	0.669	0.842	Front Surface $(\varepsilon=.75)$			
10 20 21	578. 865	539 534	543	545	543	2548 2680			
30 40 45	1195 1744	552 599 639	539	542	541	2711 2700			
60 80	2116 2352	795 1061	543	532	536	2686 2678			
90 100	2415 2470	1194 1327	606	537	532	2678			
121	2555	1618	749	550	533	2678			

Reference - 3-8

Facility - Aerotherm

Model - 88/BH/2.0

Time		Temperature (^O R) at Location Indicated (in) from Initial Front Surface						
(sec)	0.131	0.272	0.456	0.675	0.842	Front Surface (ε =.75)		
10	678	534	534	540	537	2713		
30	1831	586	530			2847		
40	2054	816	548			2850		
60 69	2517 2724	973 1164	588	r		2850		
80 90		1391 1605	628 677	539				
100		1793	748		533	2841		
122		2077	908	539	539	2841		

Reference - 3-8

Facility - Aerotherm Model - 108/BH/2.0

Time		Temperature (^O R) at Location Indicated (in) from Initial Front Surface						
(sec)	0.132	0.284	0.446	0.664	0.837	Front Surface $(\varepsilon=.75)$		
10 15	681 1043	539	533	541	542	3355		
20 25	1595 2112	552	534	539		3480		
30 40 50		608 789 1202	544 551 561	537	541	3533 3548 3566		
60		1900	596	539	533	3577		

Reference - 3-8 Facility - Aerotherm Model - 74/BH/2.0

Time		Temperature (^O R) at Location Indicated (in) from Initial Front Surface					
(sec)	0.148	0.282	0.480	0.673	0.846	Front Surface (ε=.75)	
8.8 12.8 16.8 20.8 25.8 30.8 40.8 50.8 52.8 60.8	601 818 1150 1780	530 534 543 556 599 685 961 1772 2327	530 530 534 539 557 592	530 538 541 544 , 549	530 535 538 543 547	3475 3427 3427 3506 3485 3544 3552	

Reference - 3-8 Facility - Aerotherm Model - 83/BH/2.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface							
(sec)	0.152	0.277	0.460	0.678	0.842	Front Surface $(\varepsilon=.75)$		
0.8 10.8 14.8	534 858 1753	534 556	543 530	552 549	546 543	3056 4043		
20.8 25.8		616 754	534	544	541	4120		
30.8 40.8		1009 1940	539 574	539 536	536 532	4241 4300		
50.8 61.0			680 914	531 538	531 536	4318 4300		

Reference - 3-8

Facility - Aerotherm Model - 101/BH/2.0

Time		Temperature (^O R) at Location Indicated (in) from Initial Front Surface					
(sec)	0.136	0.287	0.455	0.673	0.846	Front Surface (ɛ=.75)	
5 8 9	642 928 1542					4399	
10		551 611	530	532	534	4454	
20		658	546	533 '	530	4537	
30		1350 1818	558	543	538	4600	
40			586	552	547	4624	
45 46			637	556	549		

Reference - 3-8 Facility - Aerotherm Model - 116/BH/4.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface					
(sec)	0.132	0.455	0.668	0.852	Front Surface (ε=.75)	
10 20 32 40	608 922 1480 1828	530 530 539	544 543 539	545 545 543	2429 2705 2826	
53 60.5	2146 2259	552	533	541	2829	

Reference - 3-8 Facility - Aerotherm Model - 122/BH/4.0

Time		Temperature (^O R) at Location Indicated (in) from Initial Front Surface				
(sec)	0.132	0.279	0.460	0.661	0.847	Front Surface $(\varepsilon=.75)$
10	823	•		551		
13	1257	534				3830
15	1703		542			3840
17	2011	551			551	3840
20	2340	586		541		
<u>,</u> 30		878	542	531	545	3792
40		1546		535,	538	
45 1			567			3781
50		2194	595	539	531	a fa se
60		2600	699	542	535	3894

Reference - 3-8

Facility - Aerotherm

Model - 33/H/2.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface					
(sec)	0.223	0.406	0.599	0.762	Front Surface (ε =.75)	
10.5 20.5 30.5 40.5 50.5 60.5 68.6	697 1326 2160 2488 2812 2935 3057	534 543 579 689 867 1137	539 534 539 543 552 566	542 543 553 562 567	3381 3445 3455 3470 3485 3548	
70.5		1518	593 638	581 590	3585 3615	

Reference - 3-8

Facility - Aerotherm

Model - 17/FF/2.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Frton Surface						
(sec)	0.158	0.287	0.460	0.673	0.832		
10.3 20.3 30.3 40.3 50.3 60.3 61.1 70.3 80.3 89.3	562 1346 2645	539 552 606 872 1740 2440	553 539 544 548 557 580 679 895 1502	551 548 548 , 560	543 558 567		

Reference - 3-8

Facility - Aerotherm

Model - 164/BH/2.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface						
(sec)	0.129	0.287	0.446	0.669	0.849	Front Surface $(\varepsilon=.75)$	
6 8 10 12 20 30 31	599 763 1108 1602	538 530 560 581 801	530 557 561	541 548	540 534 546	$\begin{array}{r} 4258\\ 4336\\ 4406\\ 4458\\ 4545\\ 4587\end{array}$	

Reference - 3-8

Facility - Aerotherm

Model - 22/FF/2.0

Time	Temperature (^O R) at nocation Indicated (in) from Initial Front Surface					
(sec)	0.144	0.284	0.460	0.673	0.832	Front Surface $(\varepsilon=.75)$
10.5 20.5 30.5 40.5	677 1463 2265 2753	547 565 621 782	534 539 548 561	535	530 540	3566 3599 3670
50.5		1040 1542	565 588	541		3726 3749
70.5 80.5	-	2075 2456	623 690	564	569	3774 3785
90.5		2810	809	568,	583	3821

Reference - 3-8 Facility - Aerotherm Model - 18/FF/2.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface					
(sec)	0.140	0.294	0.462	0.678	0.842	Front Surface (ε=.75)
10 12 15 20 30 40	962 1446 2280	552 565 612 974 2013	534 556 561 578	530	530 534	4154 4211 4269 4300 4252

Reference - 3-8

Facility - Aerotherm

Model - 97/BH/2.0

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface						
(sec)	0.134	0.282	0.450	0.673	0.846	Front Surface (ε =.75)	
6	658 ,906	543				4294 4342	
10 20	1320	720	539 552	541 535	538	4537	
30		1343	556	541	534	4640	
TABLE 3-6 (concluded)

Reference - 3-8

Facility - Aerotherm

Model - 112/BH/1.0

	Time	Te	Temperature (^O R) at Location Indicated (in) from Initial Front Surface				
	(sec)	0.146	0.298	0.458	0.667	Front Surface $(\varepsilon=.75)$	
	5.6 8.6 10.6	663 1802 2636	586	534	537	4721 4750 4770	
A DESCRIPTION OF THE OWNER OF THE	20.6		985 2422	575	534		
	30.6 32.6		6766	584	562		

Reference - 3-8 Facility - Aerotherm Model - 138/BH/1.0

ſ

Time	Temperature (^O R) at Location Indicated (in) from Initial Front Surface					
(sec)	0.129	0.294	0.458	0.662	Front Surface (ε=.75)	
5	1559	[•] 603	580	558		
12 15	2144	680 1515	592 600	567	4731	

Figure 3.2 Ablation test data, low denisity Suicone elastomer

SECTION 4

QUALIFYING CALCULATIONS

Using CHAP I, qualifying calculations were performed to demonstrate an ability to operate the program successfully prior to initiating Task II of the study. One test condition was chosen for each of the three materials. Calculations were performed with CHAP and the results (total surface recession, final char thickness, and temperature histories) were compared with the test data. The results were reviewed with the technical monitor, and where the data match needed improvement, revisions were made in the input and the code rerun. In the process the program, which was originally running on the CDC 6600 computer, was successfully transferred to the Univac 1108 in order to accelerate turn-around time. The machine-time cost differential, which is approximately 10 percent in favor of the 6600, is outweighed by the operating efficiency achieved by faster turn-arounds on the 1108. In addition, with the program operating on both machines, calculations can continue when one computer is down.

The following sections describe the qualifying calculations on each ablating material and the criteria for determining satisfactory agreement between calculated and experimental data.

4.1 CRITERIA FOR AGREEMENT BETWEEN CALCULATIONS AND MEASUREMENT

4.1.1 General Remarks

Successful operation of an ablation code such as CHAP allows surface temperatures, surface recessions, char thicknesses, and thermocouple responses to be predicted with a fair degree of accuracy. This demonstration task required the definition of "satisfactory" agreement between predictions and experimental data. The definition of "satisfactory" shall apply to both Task I, reported here, and to the subsequent, more extensive Task II calculations. All in all, the agreement criteria will have the following uses

Task	<u>Use of Criteria</u>
I.3	Evaluate ability to operate the CHAP
	code and obtain satisfactory predictions
II.1	Obtain good properties data for iterative
	calculations
II.3	Final calculations, evaluation of range
	of applicability of CHAP

4-1

The criteria will be applied rather strictly in Task II.1 in order to arrive at the best possible set of properties data before beginning the more wide scale calculations of Task II.3. In the evaluation phase of Task II.3, the criteria will be used to define the range of applicability of CHAP. The exact nature of this range definition activity remains to be established during Task II.3. Since it is unlikely in a battery of calculations covering a wide range of conditions that <u>all</u> the criteria will be met in any one case, some caution will be necessary in the final assessment of the applicability range. Too rigid adherence to pre-established criteria may artificially restrict the indicated range of applicability.

Somewhat similarly, the criteria need not be applied too literally in Task I.3, where considerations of economy discourage an extensive search for close agreement in all respects between prediction and data. Here, predictions satisfactory in most criteria, plus an adequate explanation of any important discrepancies, suffice to indicate successful operation of the CHAP code.

The subsections of Section 4.1.2 discuss individual agreement criteria.

4.1.2 Agreement Criteria

4.1.2.1 Surface Temperature

Surface temperatures are measured by pyrometric (radiative) means, for which the expected random error of the basic instruments is often about \pm 1 percent of the full scale. Usually, random errors of data recording and reduction add at least another \pm 1 percent to this figure. In addition, many other errors of calibration and instrument handling (placement and focusing) can take on a random character of a magnitude of some \pm 3 percent. All in all, surface temperature measurements of this type have a random uncertainty of \pm 5 percent or \pm 150°R to \pm 300°R for the temperature range of most interest here.

Systematic errors can also be important. These can stem from uncorrected window and mirror losses, gas cap radiation interference, non-normal viewing angle effects, and emittance assumptions. The importance of these must be judged according to the particular test set-up in each case studied.

The surface temperature criterion is set at ± 200°R, with a cautionary note about potentially important systematic errors.

4.1.2.2 Surface Recession

Due to surface roughness effects, surface recession can seldom be measured accurately to within ± 0.010 inches. Various other uncertainties in

4 - 2

such quantities as recovery enthalpy, convective transfer coefficient, and char density, make it difficult to predict recession amounts to within \pm 20 percent of the observed recession.

Therefore the recession prediction will be considered satisfactory if the predicted recession matches the observed recessions to within ± $\eta_{\rm g}$, where $\eta_{\rm g}$ is the maximum of:

1. 20 percent of the observed recession

2. 0.010 inches

For char thicknesses comparable to the surface recession, char swelling or shrinkage may be an important factor. The actual amounts of shrinkage or swelling can sometimes be discovered from inert environment tests. If the char dimensional stability can be quantified, it should be considered in the comparisons of predictions with data.

4.1.2.3 Pyrolysis Penetration Depth

The basic uncertainty on pyrolysis penetration depth measurements is approximately 0.010 inches. Char shrinkage or swelling may amount to 20 percent of the char thickness. Otherwise, penetration depth should be predictable to within ± 10 percent.

Therefore the pyrolysis penetration depth prediction will be considered satisfactory if the predicted depth matches the observed depth to within $\pm n_{t'}$, where n_{t} is the maximum of:

1. 10 percent of the observed pyrolysis penetration depth

2. 0.010 inches

In the specified (input) surface temperature and recession runs during Task II, this criterion can apply strictly. In other runs, note must be taken of the influence of faulty predictions of surface temperature and surface recession on predicted pyrolysis penetration depth.

4.1.2.4 Thermocouple Criteria

For runs made with specified (input) surface temperature and recession, thermocouple matching ought to be relatively good, provided of course that the input surface temperature and recession histories are adequately characterized. During times of "low" temperature rise rates thermocouple predictions should be within 10 percent of the current absolute temperature. Experience shows that it is not possible to maintain this accuracy during periods of rapid temperature rise. A smooth blend with the first criterion cited above would be (for the temperature rises and rise rates of interest in this program)

$$(T_{calc} - T_m) \stackrel{\leq}{=} 4 \text{ sec } \frac{dT_m}{d\theta} + 0.1 T_m$$

This criterion in effect specifies a permissible 4 to 5 second time lead for a thermocouple response prediction during rapid temperature rise periods. The criterion is therefore biased in favor of over-prediction since thermocouples generally lag the material response due to thermocouple capacitance and thermal contact effects.

4.2 GENERAL ASSUMPTIONS AND REMARKS

The experimental runs for nylon phenolic, silicone elastomer, and Avcoat 5026-39-HC/G were all chosen from Reference 3-1. The test model shape was a flat faced disk, 1.25 in. diameter, with a 0.625 in. diameter instrumented core plug, 0.75 in. thick. The model was bonded on the back-side to a steel base plate with the cavity behind the core filled with RTV silicone rubber. The CHAP runs were modeled with no heat sink (conduction or radiation) at the back face, an assumption that introduced no error because the model thickness prevented any temperature rise at the back face for the conditions run. The virgin material was divided into J = 10 stations in all cases. Initially, the char layer was divided into I = 4 stations, but, for later runs, broken into I = 8 stations. The effect on the results of the finer division was negligible, The relatively large spacing between stations in the virgin material caused problems when the program interpolated thermocouple temperatures in regions of rapidly changing temperature gradient. The interpolation scheme was a 2nd order curve fit and as a result, the thermocouple temperature plots exhibited an apparent oscillatory behavior. The plotted temperature data in this report will present both the thermocouple results as computed by CHAP and "corrected" results as deduced from an inspection of the in-depth temperature profile determined from the nodal temperatures. To eliminate thermocouple error, future CHAP cases will incorporate smaller nodes and a linear thermocouple interpolation technique.

All runs were made with the oxidation option of the CHAP code. (In the case of silicone elastomer, the oxidation mechanism was supplemented by simulated melting by modifying the sublimation mechanism as discussed in Section 4.4.) All cases used the second degree approximation for aerodynamic blockage (blowing reduction) of convective energy to the surface.

4.3 LOW DENSITY PHENOLIC NYLON

The test condition simulated was tabulation no. 23 of Table 3-1 (Space General Corp. Model No. PLL94) taken from Reference 3-1. The conditions were as follows:

Enthalpy, h = 14,922 Btu/lb Heat Transfer Rate, \dot{q}_{CW} = 103 Btu/ft²sec Stagnation Pressure, p_{t_2} = 0.00511 atm Run Time = 50 seconds

Two runs were made with CHAP on this material. The first run employed thermophysical properties listed in Table B-1 with heat of combustion listed in Table B-4. The second run used "faster" oxidation kinetics in an effort to increase the recession rate and the surface temperature. The results are compared with the test data in Table 4-1. Plots of internal and surface temperatures appear in Figures 4-1 through 4-3. The thermocouple at 0.284 inches from the initial front surface rose 80 degrees in the test and increased about 45 degrees in both calculation runs.

Run 1 showed a surface recession that was too small and a surface temperature that was low by $600^{\circ}R$ at the end of the run (for char $\varepsilon = 0.8$). The internal temperatures were also lower in the calculation. The experimental recession rate was substantiated by two other tests at the same conditions reported in Reference 3-1. An alternate surface temperature measurement in the test using an SRI-supplied radiometer read $400^{\circ}R$ lower (only the maximum reading was published). Therefore the calculated results were lower than the average measurement by about $400^{\circ}R$.

Run 2 employed oxidation reaction rate constants that are listed in Table B-2 of Appendix B for silicone elastomer and are termed "Scala's fast kinetics." The results showed an increased recession rate, but the surface temperature decreased another 100 degrees. Hand calculations have indicated that, in Run 2, the char mass removal rate reached the "plateau" asymptote as governed by the oxygen concentration very early in the run. Therefore still faster kinetics will not alter the results to any significant degree.

The predicted results and the measured results do not compare especially well for this case, and except for thermocouple response generally do not meet the agreement criteria of Section 4.1. The predicted surface temperature is reasonably close (200°R) to the lower of the two reported pyrometer measurements, but the surface recession misses the measured value badly. It seems likely that the reported test data are erroneous in some respect: the reported enthalpy and cold wall heat flux yield an oxygen diffusion-limited recession rate which, with no blowing reduction, can account for only 60 mils (compared

4-5

with the reported value of 54 mils) of recession. Blowing reduction effects should reduce this value by some 20 percent; departures from the diffusionlimited plateau value of m at early times will acount for another 10 percent reduction, having an expected recession of 42 mils, much closer to the predicted value of 27 mils. Char shrinkage may account for the 12 mil discrepancy between expected and observed recession (this would imply a 10 percent shrinkage); the remaining 15 mil discrepancy between observed and predicted results may in large part be measurement error.

Predicted char thicknesses are somewhat in general harmony with the low recession predictions. Essentially the same rationalizations apply in both cases.

There are no apparent flaws in the reported test conditions. Calculation of enthalpy from p_{t_2} and \dot{q}_{cw} verify that the stream was quite uniform.

4.4 LOW DENSITY SILICONE ELASTOMER

The test condition calculated was tabulation no. 9 of Table 3-2 (Giannini Scientific Corp., Model SP90) from Reference 3-1. The conditions were:

Enthalpy, h	=	10,200 Btu/1b
Heat transfer rate, \dot{q}_{cw}		145 Btu/ft ² sec
Stagnation pressure, pt,	=	0.0199 atm
Run time	=	35 seconds

The results of two CHAP runs are presented in Table 4-2 and the plots of surface temperature and the temperature indicated by the thermocouple nearest the surface are shown in Figures 4-4 and 4-5 respectively. The temperature indicated by a second thermocouple, located 0.216 inch from the original surface but not shown, increased 100 degrees by the end of the test and rose 140 degrees in both computation runs.

Run 1 employed thermophysical properties presented in Table B-2 for silicone elastomer. Since the predicted surface temperature of Run 1 exceeded the melt temperature cited in the Work Statement (3800°R), a second run was made with melting simulated with the exponential sublimation feature of CHAP.* Sublimation constants ABEXP = 1.5×10^{35} and BBEXP = 331,632 simulated melting or failing in a narrow $\pm 200^{\circ}$ R band centered at 3800° R.

Overall, the agreement between predictions and data is excellent. The Run 1 predicted surface temperature appears somewhat high (by about 400°R). The measured surface temperature was substantiated by the SRI radiometer used

For this purpose, pressure effects in the sublimation computations were deleted with appropriate Fortran changes.

in the test. However both the Thermodot pyrometers and the radiometer viewed the model through a chamberport, evidently with no correction factor considered in the results. A third temperature surface measurement with an L&N optical pyrometer peaked at 4020°R ($\epsilon = 0.8$), but information on the location of the instrument is not given.

Reported surface temperatures may therefore be somewhat low, perhaps by 100°R. The 0.8 emittance assumption is higher than the data reported by Pope (Ref. 2-15) of 0.71; this accounts for another 100°R and brings the adjusted experimental data up to an acceptably close match to both Run 1 and Run 2 predictions.

The predicted Run 1 recession matches the test data quite well in that both are negligible; Run 2 experienced melting which raised the recession to 29 mils. A preference between Run 1 and Run 2 would depend on the quantification of char swell, which for the 127 mil char might easily amount to 20 mils.

The char thickness prediction is excellent for Run 1, and about 20 percent low for Run 2. Again, a study of a char swell is necessary to allow a rational choice between the two predictions.

The thermocouple match is quantitatively good, although the shapes of the predicted and measured responses do not correspond particularly well. Study of this possible problem would have to involve other cases.

4.5 APOLLO HEAT SHIELD MATERIAL, AVCOAT 5026-39HC/G

Ъ.a.

The test condition simulated was tabulation no. 4 of Table 3-3 (NASA Langley AMPD, Model A90) from Reference 3-1. The conditions were as follows:

Enthalpy, h	ш	4900 Btu/1b
Heat transfer rate, $\dot{q}_{_{ extsf{CW}}}$		280 Btu/ft ² sec
Stagnation pressure, pt,	=	0.284 atm
Run time	=	20 seconds

CHAP was run twice on the Apollo material. The first run employed the material thermophysical properties of Table B-3, Appendix B, as given in the contract work statement. The results appear in Table 4-3; thermocouple histories are shown in Figures 4-6 and 4-7. Reference 3-1 presented only the final surface temperature. The surface temperature and recession predictions matched the data very well; char thickness was a factor of two too high and the deep thermocouple response was overpredicted. (The shallower of the two thermcouples was inadvertently not called out in this run.)

A second run aimed to reduce these two discrepancies with reduced values of the char conductivity at high temperatures (above $2260^{\circ}R$). The char thermal

conductivity used in Run 2 (see Table 4-4) was taken from Reference 4-1. In that study revised conductivity values (above 2260° R) were derived from the existing Avco data in an effort to match in-depth thermal response on Apollo flights AS-501 and AS-502. The second run satisfactorily reduced the char thickness to match very well with the test results. However, the temperature gradient became too large. It is noted in Figures 4-6 and 4-7 that the thermo-couple nearest the surface (and in the char after ~ 6 seconds) was high in the calculation and the thermocouple 0.10 in. deeper was calculated lower than the test value. Undoubtedly, further computer runs could fit the test temperature response data with a refined char thermal conductivity featuring somewhat lower $k_{\rm C}$ values at high temperature and higher values at low temperatures. Some study of the pyrolysis gas enthalpy might also be in order. However the effort is more appropriate for Task II of the study, particularly since the agreement is already fairly good and meets the suggested criterion of Section 4.1 above.

REFERENCE

4-1

Bartlett, E.P., Abbett, M.J., Nicolet, W.E., and Moyer, C.B., "Improved Heat-Shield Design Procedures for Manned Entry Systems, Part II, Application to Apollo", Aerotherm Corporation, Mountain View, California, Aerotherm Report No. 70-15, June 22, 1970.

COMPARISON OF RESULTS FOR LOW DENSITY PHENOLIC NYLON Tab. No. 23, Table 3-1

· · · · · ·	Test Results	CHAP Re	sults
		Run l	Run 2
Total surface recession (in.)	0.054	0.0015	0.027
Final char thickness (in)	0.124	0.177	0.156
Final surface temperature (°R)	3670 (ε=0.8)	3059	2967

위험

COMPARISON OF RESULTS FOR LOW DENSITY SILICONE ELASTOMER Tab. no. 9, Table 3-2

	Test Results	CHAP Result	ts
		Run 1	Run 2
Total surface recession (in)	0.004	0.005	0.029
Final char thickness (in)	0.127	0.125	0.103
Final surface temperature (°R)	3660	4058	3804

COMPARISON OF RESULTS FOR AVCOAT 5026-39HC/GTab. No. 4, Table 3-3

	Test Results	CHAP Run 1	Results Run 2
Total surface recession (in)	0.177	0.167	0.172
Final char thickness (in)	0.061	0.126	0.059
Final surface temperature (R)			
Langley photo pyrometer	4230 (ε=0.75)	4268	4301
SRI radiometer	3985* (ε=0.75)		

Uncorrected for losses in tunnel window and a mirror

CHAR THERMAL CONDUCTIVITY

(From Reference 4-1)

Т	k
°R	Btu/ft sec°R
460	1.33×10^{-5}
860	2.00×10^{-5}
1,060	1.86×10^{-5}
1,360	1.94×10^{-5}
1,460	2.03×10^{-5}
1,710	2.89×10^{-5}
1,860	4.03×10^{-5}
2,060	6.81×10^{-5}
2,260	1.00×10^{-4}
2,460	1.16 x 10- ⁴
2,660	1.38×10^{-4}
2,860	1.27×10^{-4}
3,060	1.11×10^{-4}
3,260	9.00×10^{-5}
3,460	1.93×10^{-5}
3,660	2.08×10^{-5}
3,860	2.18×10^{-5}
4,060	2.22×10^{-5}
4,260	2.20×10^{-5}
4,460	2.08×10^{-5}
4,660	1.94×10^{-5}
4,860	1.82×10^{-5}
5,060	8.5×10^{-6}
5,260	7.4×10^{-6}
5,660	4.0×10^{-6}
5,860	2.1×10^{-6}
6,060	1.5×10^{-6}
6,460	7.0×10^{-7}

FIGURE 4-1 PHENOLIC NYLON, TAB NO. 23 TABLE 3-1, SURFACE TEMPERATURE HISTORY

> 海教学会社 - 2012年3月 1993年1月1日 - 1993年

FIGURE 4-2 PHENOLIC NYLON, TAB NO. 23 TABLE 3-1, TEMPERATURE LISTORY FOR T/C INITIALLY 0.104 N FROM GURFACE

FIGURE 4.3 PHENOLIC NYLON, TAB NO. 23 TABLE 3-1, TEMPERATURE HISTORY FOR T/C INITIALLY 0.211 & FROM SURFACE

FIGURE 4-4 SILICONE ELASTOMER TAB NO.9 TABLE 3-2 SURFACE TEMPERATURE UISTORY

-54

APPENDIX A

CONVERSION OF PYROLYSIS KINETICS DATA TO REACTION PLANE KINETIC CONSTANTS

A.1 BASIC EQUATIONS

Thermogravimetric (TGA) data for charring materials are usually reduced and reported as "kinetic constants" in a pyrolysis equation:

$$\frac{\partial \rho}{\partial \theta} = f(\rho, \rho_{c}, T)$$
 (A-1)

Often the most exact fits to the TGA curves require that the pyrolysis be modeled with more than one component

$$\rho = \sum \rho_i \tag{A-2}$$

$$\frac{\partial \rho_{i}}{\partial \theta} = f_{i}(\rho_{i}, \rho_{r_{i}}, T) \qquad (A-3)$$

Usually Equation (A-3) is assumed to be of the form

$$\frac{\partial \rho_{i}}{\partial \theta} = - \rho_{o_{i}} k_{o_{i}} e^{-E_{i}/RT} \left[\frac{\rho_{i} - \rho_{r_{i}}}{\rho_{o_{i}}} \right]^{n_{i}}$$
(A-4)

Use of this equation, or any equation of the form (A-3), in an in-depth thermal response calculation would produce a predicted density profile with depth which varies smoothly between the virgin density and the char density

The CHAP code is based upon a different model which simplifies in-depth calculations. Densities in-depth are either char density or virgin density; pyrolysis occurs at a "reaction plane". The density profile therefore looks like

The rate of pyrolysis \dot{m}_p is related to the temperature at the pyrolysis plane location by the assumed relation:

$$\dot{m}_{p} = Ae^{-B/T} l \qquad (A-5)$$

It is not obvious how values for A and B can be obtained from pyrolysis kinetics numbers reported in the literature. Stroud in Reference A-1 has performed a number of computational experiments with a specially written code to explore this question. From his computed results for a variety of charring problems, Stroud extracted "empirical" relationships between the pyrolysis law constants in an equation of the form (A-3) and the reaction plane constants A and B. Stroud assumed a pyrolysis law

$$\frac{\partial \rho}{\partial \theta} = - \rho_{0i} \left(\frac{\rho_{i}}{\rho_{0i}} \right)^{n_{i}} A_{0i} e^{-E/RT}$$
(A-6)

Stroud's correlations for single component pyrolysis are for the pre-exponential factor

$$A = (\rho_{o} - \rho_{c}) \left(\frac{k_{p} A_{o}}{\rho_{o} C_{p}} \right)^{\frac{1}{2}} e^{-\frac{0.7 + 2.2 \overline{\Delta H}}{1.91}} \qquad n = 1/2 \qquad (A-7)$$

$$A = (\rho_{o} - \rho_{c}) \left(\frac{k_{p} A_{o}}{\rho_{o} c_{p}} \right)^{\frac{1}{2}} e^{-\frac{1.5+3.6\overline{\Delta H}}{1.91}} \qquad n = 1$$
 (A-8)

A-2

1.11

$$A = (\rho_{o} - \rho_{c}) \left(\frac{k_{p}A_{o}}{\rho_{o}C_{p}} \right)^{\frac{1}{2}} e^{-\frac{1.7 + 1.8\overline{\Delta H}}{1.89}} \qquad n = 2 \qquad (A-9)$$

and for the activation energy

$$B = \frac{E}{1.91R}$$
 $n = 1/2$ and 1 (A-10)

$$B = \frac{E}{1.89R} \qquad n = 2 \qquad (A-11)$$

If decomposition takes place in more than one reaction it is sufficient to use constants from the dominating reaction in Equations (A-7) through (A-11).

It should be noted that the pyrolysis law (A-6) used by Stroud differs from the commonly used expression (A-4) in that the density driving potential is ρ_i/ρ_{0_i} and not $(\rho_i - \rho_{r_i})/\rho_{0_i}$. This discrepancy will require an adjustment to the pre-exponential factor k_0 to convert it to an effective A_0 . (The equivalence is of course not exact since the two pyrolysis laws are fundamentally different.) If we choose to match the two expressions at the half-pyrolyzed point $\rho = (\rho_0 + \rho_r)/2$, then we can derive that

$$A_{o_{i}} = k_{o_{i}} \left(\frac{\rho_{o_{i}} + \rho_{r_{i}}}{\rho_{o_{i}} - \rho_{r_{i}}} \right)^{n_{i}}$$
(A-12)

Equations (A-7) through (A-11) and (A-12) allow, therefore, most of the pyrolysis data in the literature to be converted to the "reaction plane" constants required as input to the CHAP code.

REFERENCE

A-1

1 Stroud, C. W., "A Study of the Reaction Plane Approximation in Ablation Analyses", NASA TN D-4817, October 1968.

APPENDIX B

PROPERTY VALUES USED IN QUALIFYING CALCULATIONS
Table B-1 - Nominal Thermo-chemical Properties for Low Density Phenolic Nylon
Table B-2 - Nominal Thermo-chemical Properties for Low Density Silicon Elastomer
Table B-3 - Normal Thermo-chemical Properties for the Apollo Heat Shield Material

Table B-4 - Heat of Combustion (Btu/lb_m) for Carbon

Table B-1 - Nominal Thermo-chemical Properties for Low Density Phenolic Nylon

٠

Undegraded material

density, lbm/ft ³
specific hcat, Btu/lbm R, at temperature of-
560 R
660 R
760 R
860 R
950 R
1060 R
thermal conductivity, Btu/ft-s-R, at temperature of-
540R
700R
900R
1100R
1280R
activation temperature, R
reaction-rate constant, lbm/ft^2s 1.586 x 10^6
effective heat of pyrolysis, Btu/lbm
effective specific heat of pyrolysis gages. Btu/lbm R.
at temperatures of-
500 R
1000 R
1500 R
1800 R
2000 R

B-1

Table B-1 - (concluded)

. •

	2100 R	2.80
	2500 R	3.25
	2800 R	2.80
	3000 R	1.80
	3300 R	1.24
	3500 R	1.05
	4000 R	1.2
	5000 R	2.2
	6000 R	4.78
Deg	graded material	
٠	density, lbm/ft ³ ,	12
	activation temperature, R] 1 st order	76500
	reaction rate constant, lbm/ft ² satm oxidation	1 X 10 ¹⁰
	mass of char removed per mass of oxygen	.75
	surface emittance	.8
	specific heat, Btu/1bm R	.54
	thermal conductivity, Btu/ft-s-R, at temperature of-	
	500 R	5 x 10 ⁻⁵
	1500 R	5 x 10 ⁻⁵
	2000 R	x 10 ⁻⁵
	2500 R	x 10 ⁻⁵
	3000 R	x 10 ⁻⁵
	3500 R	5 x 10 ⁻⁵
	4000 R	x 10 ⁻⁵
	4500 R	2 X 10 ⁻⁵
	5000 R	x 10 ⁻⁵
	5500 R	X 10 ⁻⁵
	heat of combustion, Btu/lbm	0

Table B-2 - Nominal Thermo-chemical Properties

for Filled Silicone Resin in Honeycomb

Undegraded material	
density, lbm/ft ³	40
specific heat, Btu/lbm R, at temperature of-	
510 R	.354
560 R	.365
ò60 R	.382
760 R	. 396
860 R	.410
960 R	.419
1060 R	. 427 .
thermal conductivity, Btu/ftsR	1.98 x 10 ⁻⁵
activation temperature, R,	20000
reaction rate constant, lbm/ft ² s	2700
effective heat of pyrolysis, Btu/lbm	250
effective specific heat of phrolysis gases, Btu/lbm R	1
Degraded material	
density, lbm/ft ³ ,	20
specific heat, Btu/lbm R	.43
thermal conductivity, Btu/ft s R, at temperature of	·
500 R 1.9x10 ⁻⁵	
1000 R 2.4x10 ⁻⁵	
1500 R 2.9x10 ⁻⁵	
2000 R 3.3x10 ⁻⁵	
2500 R 3.7x10 ⁻⁵	
3000 R 4.0x10 ⁻⁵	
3500 R 4.2x10 ⁻⁵	•
4,000 R 4,4x10-5	

B-3

Table B-2 - (concluded

surface emittance	• • •	• • •		•••	• • •	• • • •	.8
temperature of fussion, R	• • •	•••	• • •	• • •	• • •	• • • •	3800
heat of fussion, Btu/lbm		• • •	•·•	• • •	• • •		60
activation temperature, R, .	• • •	• • •	• • •	• • •	•••	• • • •	39872
reaction rate constant, lbm/ft	² s atm	1/2	• • •	•••	•••	• • • •	6.73 x 10 ⁸
order of oxidation	• • •	•••	• • •	• • • •	• • •		• 5
mass of char removed per mass (of oxy	gen .		• • • •	• • •		.1

Table B-3 - Normal Thermo-chemical Properties for the Apollo Heat Shield Material

Undegraded material

	o o a constante en ververen. Notes en secondario
density, lbm/it ^o ,	o o o o Shi .
specific heat, Btu/lbm R at temperature of-	
560 R	
660 R	
760 R	• • • • • 397
860 R	• • • • • .406
960 R	
1060 R	
1160 R	
thermal conductivity, Btu/ftsR, at temperature of-	
500 R	. 1.4 X 10 ⁻⁵
600 R	. 1.4 x 10 ⁻⁵
723 R	. 1.46 x 10 ⁻⁵
973 R	. 1.68 X 10 ⁻⁵
1070 R	. 1.71 X 10 ⁻⁵
1135 R	. 1.59 X 10 ⁻⁵
1244 R	. 1.42 X 10 ⁻⁵
1250 R	. 1.31 X 10 ⁻⁵
1400 R	. 1.31 X 10 ⁻⁵
activation temperature, K,	. 19600
reaction rate constant, lbm/ft ² s	. 128000
effective heat of pyrolysis, Btu/lbm	. 250
effective specific heat of pyrolysis gases, Btu/lbm R	. 1.0

Table B-3 - (concluded)

.

Degraded Material

density, lbm/ft ³	20
specific heat, Btu/1bm R, at temperature of-	
720 R	.25
1080 R	•3
1440 R	•348
1800 R	•397
2160 R	• • 445
2520 R	.494
2574 R	•5
5000 R	•5
thermal conductivity, Btu/ft s R, at temperature of- 540 R	10 ⁻⁵ 10-5 10-5 10-5 10-5
3060 R 16.7x	10 ²
3460 R 19.5x 5460 R 20 x10 emittance	10 ⁻⁵ 5-5 75.
mass of char removed per mass of oxygen	1.5
activation temperature, R	76500
reaction rate constant, lbm/ft ² s-atm	1 X 10 ¹⁰
order of oxidation	1.0
hear of combustion, Btu/lbm	2500

₿-6

Table B-4 Heat of Combustion (Btu/lb_m) for Carbon

Temperature (°R) 1.0 100.0 0.1 10.0

Pressure (atm)