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FORMUMS FOR nth ORDER DERIVATIVES OF HYPERBOLIC 

AND TRIGONOMETRIC  FUNCTIONS 

by Edwin G. Wintucky 

Lewis Research  Center 

SUMMARY 

Formulas are derived  and  presented  in  the  form of finite series for  derivatives of 
any  order of the  hyperbolic  cotangent,  tangent,  cosecant,  and  secant.  The  coefficients 
have a simple  recursive  property which facilitates  their  computation.  A  representative 
derivation  and proof by mathematical  induction are given for  the  hyperbolic  cotangent. 
An application of the  formulas  to  the  evaluation of certain  Fourier  sine  and  cosine  inte- 
grals  is demonstrated. A method for  obtaining  formulas  for  the  derivatives of the  cor- 
responding  trigonometric  functions is also  presented. 

INTRODUCTION 

A  method for  evaluating  cubic  lattice  sums which arise in  the  theory of magnetism 
has  recently  been  developed (ref. 1). This  method  used  infinite  series  expansions which 
are partially  summed by means of the  Laplace  transform (ref. 2) and  result  in  certain 
Fourier  sine  and  cosine  integrals. 

These  integrals  and  several  other  Fourier  sine  and  cosine  integrals are presented 
in  standard tables of integrals  (refs. 3 to 5 and  references  therein)  in  terms of deriva- 
tives of hyperbolic  functions  such as ctnh and  tanh.  The  general  case  involves  the 
derivative of nth order.  Examples of these are (ref. 1) 



In  reference 6, the  transforms of these  integrals  are  l isted as functions of Riemann 
zeta  functions  in  the  form of infinite  series,  which are inconvenient  to  evaluate.  Formu- 
las for  the  higher  derivatives  in  equations (1) and (2)  do  not appear  in  any of the  standard 
references on mathematical tables and  formulas (refs. 7 to 11) or treatises on  applied 
mathematics (refs. 12 to 18).  Direct  computation of a higher  order  derivative  becomes 
inconvenient  in  the  absence of a general  formula.  Furthermore,  in the problem  men- 
tioned  previously,  the  integrals  in  equations (1) and (2) appear as the  nth terms  in  
infinite series.  These series are more  easily  handled  with  the  nth  term  expressed  in a 
more  analytical  form. 

In this report,  general  formulas  are  derived which  give  the  derivatives of the 
hyperbolic  cotangent  to  any  order  in  the  form of finite  series.  Numbers are defined for 
the  coefficients of the ser ies  which  have a simple  recursive  property  and  are  easily 
calculated;  thus,  the  formulas are particularly  suitable  for  numerical  evaluation by 
desk-top  computers  with  built-in  programs  for  hyperbolic  and  trigonometric  functions. 
Parallel  formulas are also  presented  for  the  hyperbolic  functions  tanh,  sech,  and  csch 
and  for  the  trigonometric  functions  ctn,  tan,  sec,  and  csc. A representative  induction 
proof fo r  the  formulas is given  in  the  appendix. 

DERIVATION OF FORMU l A S  

The  formula  for  the  derivative of arbitrary  order of the  hyperbolic  cotangent  (ctnh) 

Let A - ctnh  y = u'u-l,  where  u = sinh y and u' = cosh  y.  Then  ut? = u  and 
= 1 + u . For successively  higher  derivatives,  where An = (d/dy)An-l,  carefully 

rearranging  terms  in  the following way makes it possible  to  discern a recursive  pattern 
and  thus  write down the  general  term, which  will  subsequently be proved: 

is derived as follows. 

O2- 

A. = U'U -1 

A2 = (~!)u'u -3 
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A3 = - ( 3 ! ) ~ - ~  - (22)u-2 

A4 = ( ~ ! ) u ' u - ~  + (22)(2)!utu -3 

A5 = -(5!)u -6 - (22 + 42)(3!)u-4 - (22) 2 u -2 

= ( 6 ! ) U ~ u - ~  + (22 + 42)(4!)u'u-5 + 

A7 = - ( 7 ! ) ~ - ~  - (22 + 42 + 62)(5!)u-6 - [(22)2 + 4 2 2  (2 + 42)] ( 3 ! ) ~ - ~  - ( 2 q 3 c 2  

A8 = (8!)U'U-9 + [ 2 (21 I)! ( ~ ! ) u ' u - ~  
1 l=o 

22 +[A (2z2)2 x (2l1I2 (4!)u'u-5+ 
12'0 z1=0 1 

Let us define  numbers Wan, such that 

n 

k = >: (2m) W2m,k- l  
2 

m= 0 

=(2n) 2 W2n, k-1 + W2(n-l), k 

The series for k = 1 represented by WZn, is well known and has the sum 
2n(n + 1)(2n + 1)/3 (ref.  19).  The  derivatives of A. can  be  written  in  terms of the 

k and we have,  for  example, 

A8 = (8!)u'u -9 + W ( ~ ! ) u ' u - ~  + W4, 2(4!)u'u-5 + W2, 3(2!)u'u-3 
691 (5) 
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The  even  derivatives for arbitrary n  can  then be written 

A2, = (2n)!u'u -(2n+l) [2(n - l)]!u'u -(2n-1) 
+ W2(n-1), 1 

n-1 

= W2(n-k),k [2(n - k)]lu'U 
-2(n-k) -1 

k= 0 

The odd derivatives  can  be  similarly  written: 

= '2 w2(n-k+l),  k [2(n - k) + 1]!u *2n+ 1 
-2(n-k+l) 

k= 0 

In te rms  of hyperbolic  functions, 

n-1 

dyan k= 0 
d2n ctnh  y = ctnh y x  W2(,_k),k [2(n - k)]! (csch y) 2(n-k) 

(n L 1) 

d2 n+ 1 

dy2 n+ 1 k= 0 
ctnh  y = - 2 w2(n-k+l),  k [2(n - k) + 11 ! (csch y) 2(n-k+l) (9) 

(n L 0) 

Since 
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I t  

[2(n - k i  ! (csch y) 
2 

[2(n - k) + l] 1 (csch y) 2(n-k+l) 
2  W2(n-k+l),  k 

where p = aa.  These  integrals are thus  easily  and  conveniently  evaluated  for  any  n  to 
any  degree of accuracy.  Equations (11) and (12) have  been  checked  numerically  for 
n = 0 to 5 and a = 1 to 5. 

Formulas for the  higher  derivatives of tanh,  sech,  and  csch,  which  may  be  derived 
in a similar  way, are tabulated  in  the  next  section. A method is also  described  for  ob- 
taining  the  higher  derivatives of the corresponding  trigonometric  functions  from  the 
formulas  for  the  hyperbolic  functions. 

The  coefficients  in  the  derivatives of sech,  csch,  sec,  and  csc  consist of the  sums 
Of odd numbers, W ~ ~ + l , k ,  where 

w2n+l,  k = 2 (2m + ') W2m+l,  k-1 
2 

2 
= (2n '1 w2n+l,  k-1 + W2n-l,  k 

5 



A representative proof  by  mathematical  induction  for  the  formulas is given  in  the 

Tables  for  the  numbers W2n, and W2n+l, are most  conveniently  generated 
appendix. 

TABULATION OF HIGHER DERIVATIVES 

All  the  formulas  presented  in  this  section  may be derived  in  the  manner  outlined  for 
the  hyperbolic  cotangent  in  the  previous  section,  the  formula  for  which is repeated here 
for  the  sake of completeness. 

Hyperbolic Functions 

d2 2(n-k) - ctnh Y = ctnh Y [2(n - k)]!(csch y) 
dy2 

d2n+l 

dy2n+ 1 = -g Wz(n-k+l),  k [2(n - k) + l]!(csch y) 
2(n-k+l) 

d2n+l  n 
t a n h y =  (-1)n-kw2(n-k+l),  k [2(n - k) + 11 !(sech y) 2(n-k+1) 

dy2 n+ 1 k= 0 

d2 csch  y = f: Wz(n-k)+l,  k [2(n - k)]!(csch y)  2(n-k)+l 
dy2 k= 0 
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d2n+ 1 

dy2n+l k= 0 

n 
csch Y = - ctnh YE W2(n-k)+l,k [2(n - k) + 11 !(csch y) 2(n-k)+l (19) 

d2 

dy2 
sech  y = 8 (-1)n-kw2(n-k)+l, k [2(n - k)] !(sech y) 2(n-k)+l 

d2n+ 1 n 

dy2n+l  sech Y = - tan YE (-l)n-kw2(n-k)+l, [2(n - k) + l] !(sech  y)  2(n-k)+l (2 1) 
k= 0 

Trigonometric  Functions 

Analogous formulas  for  the  corresponding  circular  functions  can  be  simply  obtained 
by  making  the  following  substitutions: 

ctnh y = ictn iy 

tanh  y = - itan  iy 

csch  y = icsc iy 

sech  y = sec  iy 

dm  .m dm -e1 - 
dY d(iY)" 

Then,  for  example 

d2 
n-1 

dy2 k= 0 
ctn  y = ctn  y x (-'lkw2(n-k), k [2(n - k)] !(csc  y)  2(n-k) 

(n 2 1) 

7 
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CONCLUDING REMARKS 

Previous  untabulated  formulas  for  the  derivatives  to  any  order of certain  hyperbolic 
and  trigonometric  functions  have  been  derived  and  presented.  These  formulas are given 
in  the  form of finite series, the  coefficients of which  have a simple  recursive  property 
and  thus are easily  calculated. At least one use  for  these  formulas is in  the  evaluation 
of Fourier  sine  and  cosine  integrals  such as those  mentioned  in  the  report. 

As  n  increases,  the  coefficients  become  very  large. In actual  applications, how - 
ever,  there  may be multiplying factors which  may  somewhat  offset  this  trend. Such is 
the  case  for  the  problem  in the theory of magnetism  referred  to  in  the INTRODUCTION. 
For example,  factors  multiplying  the  integrals  in  equations (1) and (2) are of the form 

For general  reference  purposes, a complete  listing of the 16 formulas  for  the nth 
order  derivatives is not necessary.  The  four  formulas  in  equations (15),  (17),  (18), and 
(20),  together  with a definition of the  numbers Wm, k, are sufficient.  The  other  formu- 
las a r e  then easily gotten  by  either a single differentiation or simple  substitution  using 
equation (22). 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, May 4, 1971, 
129 -02. 
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APPENDIX - PROOF BY  MATHEMATICAL  INDUCTION OF FORMUIAS 

FOR DERIVATIVES OF HYPERBOLIC COTANGENT 

A  detailed proof  by mathematical  induction of the  formula  for  the odd derivatives of 
ctnh  y,  d  ctnh y/dy2n+1, is given  here  to  verify its validity  for all n. The  formula 
for  d2"ctnh y/dy2n is consequently also  verified.  Similar  proofs by  mathematical  induc- 
tion  can  be  constructed  for  the  tanh,  sech,  and  csch  formulas. 

2n+ 1 

The  derivatives of d  ctnh y/dy zn+l for  n = 0 , 1  are 2n+l 

3 ctnh  y = - (3I)csch  y - (2 )csch y 4 2 2 

dY 

= - (3I)U- - (2 )u 4 2 -2 

where  u = sinh  y.  These cases are  readily  verified by direct  calculation. 
Assume  the  formula  true  for  n = m - 1. Then 

d2m-1  m-1 
" 

dy2m-1  w2(m-k),k [2(m - k) - 1]!u-2(m-k) 

By direct  differentiation, 

d2 

dy2 

m-1 
" ctnh  y = [2(m - kq !u'u -2(m-k) -1 W2(m-k),  k 

9 



d2m+l 
.. - \  ctnh y = - W2(m-k),  k [2(m - k) + 1]!(1 + u )u 2 -2(m-k+l) 

dy2m+l 

w2(m-k), k b ( m  - k)]!u -2(m-k) 

m -1 

= - w2(m-k),  k [2(m - k) + l]!u 
-2 (m -k+ 1) 

k= 0 

m-1 

- w2(m-k), k {[2(m - k + l)]! - [2(m - k)]!)u 
-2(m -k) 

(A51 
k= 0 

Consider  the first sum. 

In the second  sum, 

[2(m - k) + l]! -[2(m - kj]! = [2(m - k)I2[2(m - k) - l]! 

The  second  sum is then 

10 



m-1 

[2(m - k)12W2(m-k),  k [2(m - k) - 11 !u 
-2 (m -k) 

k= 0 

m -2 

= x [2(m - k)]2W2(m-k),k [2(m - k) - 11 !u + (2 )W2,,-1~ -2 
-2(m-k) 2 

k= 0 

- - [2(, - + ''1 2W2(m-k+l),  k-1  [2(m - k) + 1]!u + w2, mu -2 (A8) 
-2(m-k+l) 

k= 

where  the  dummy  index  k is replaced by  k - 1 and W2, = (2 2 )W2, m-l by  definition. 
Recombining  the two series  gives 

d2m+l 

dy2m+ 1 
ctnh y = - warn, (2m + 1)!u -2(m+l) 

- {[2(m - k, + 1]2W2(m-k+l),k-1 + W2(m-k),k }[2(m - k) + l]!u 
-2(m-k+l) 

- w2, mu -2 (A9) 

By  the  definition of the  numbers W 
2n, k, 

and 
2 

[2(m - k, + '1 w2(m-k+l),  k-1 + w2(m-k),  k 

2 
(2z) W21,k-l 

- 
- W2(m-k+l),  k 



Then 

d2m+l 
(2m + l)!u -2(m+l) ct* Y = -W2(m+1), o dy2 m+ 1 

W2(m-kal),  k  [2(m - k) + 1]!u + w2, mu 
-2(m-k+1) -2 

k= 0 

m 

= w2(m-k+l),  k [2(m - k) + 
k= 0 

12 
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