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MIDCOURSE AND APPROACH GUIDANCE REQUIREMENTS 

FOR SIMPLIFIED ONBOARD CONTROL OF 

MOON-TO-EARTH TRAJECTOMES 

By Harold A. Hamer and Katherine G. Johnson 
Langley  Research  Center 

SUMMARY 

Simplified  methods  have  been  developed for  midcourse  and  approach  guidance of 
moon-to-earth  trajectories.  The  methods  utilize  precalculated  data  to a great extent and 
require only simple  onboard  calculations  based on optical  angular  measurements.  These 
methods  lead  to  guidance  predictions  sufficiently  accurate for  emergency  control of entry 
angle.  The  approach  guidance  procedure  can  be  adapted  also  to  control  the  trajectory 
from  earth-based  line-of-sight  measurements. 

An error  analysis,  for which a 10-second-of-arc  measurement  error and a 
0.2-m/sec  maneuvering error  were  assumed,  has shown that  an  entry  corridor of *lo 
can be generally  attained by use of approach  guidance,  with or  without  onboard  midcourse 
guidance.  Including  the  midcourse  guidance  correction  insures  higher  accuracy at entry. 
The  effects of measurement-star  location and approximation e r r o r s  on the  guidance 
accuracy  are  discussed  also. 

INTRODUCTION 

In lunar missions  navigation and  guidance is normally  accomplished by automatic 
procedures, which employ  earth-based  radar  measurements.  The  inclusion of backup 
procedures which utilize  onboard  measurements is a desirable  feature  for  emergency 
conditions  which  could  occur  during  manned  flights,  such as failure  in  the  radar  system 
or loss of communications. 

In previous  years  various  onboard  guidance  procedures  have  been  developed  for 
controlling  moon-to-earth  trajectories.  (For  example,  see  refs. 1 and 2.) Erro r  
analyses  have shown these  procedures  to  be  sufficiently  accurate;  however,  they  generally 
require  repeated  optical  measurements  and a number of guidance  maneuvers.  The  proce- 
dures  presented  herein  differ  in  that  the  guidance  correction is determined  from a single 
onboard  position f i x  made at a preselected  time. When used  in  conjunction  with  certain 



approximations  derived  from two-body theory, this position f i x  is adequate  for  either 
midcourse  or  approach  guidance  and  uses a single  guidance  maneuver  in  each  case. 

The  guidance  procedures  presented  herein  represent a continuation of the  work 
published  in  reference 3, wherein  simplified  guidance  procedures  were  applied  to  earth- 
to-moon trajectories.  For  the  most  part,  this  paper  incorporates  the  terminal  guidance 
method of reference 3 to  control  entry  angle of moon-to-earth  trajectories.  The  method 
is employed as an approach  guidance  procedure  either  to  refine  the  effects of transearth 
midcourse  errors  or to correct  dispersions  caused by transearth  injection  errors  at 
the moon. In the  latter  case, no midcourse  correction is made  prior  to  the  approach 
guidance  correction.  Similar  measurements and guidance  calculations are  required  for 
both cases, but there  are  differences  in  the  accuracy  characteristics and in  the  optimum 
measurement-star  directions. A midcourse  procedure  which  employs a fixed-time-of- 
arrival guidance  law is also  discussed, and some  preliminary  results  are  included. 

The  accuracy  characteristics of the  methods  were  determined by use of a Monte 
Carlo  procedure.  Spherically  distributed  injection  errors  at  the moon were  assumed  in 
both the  position and the  velocity of the  spacecraft. At midcourse,  the  error  distribution 
was  based on work  done  with  translunar  onboard  midcourse  guidance  (ref. 4.). The 
standard  Jet  Propulsion  Laboratory n-body trajectory  program  (ref. 5) was  used  to 
generate all trajectories  required  for  the  analysis. 

SYMBOLS 

A, B,C matrices in midcourse-guidance  equations (appendix A) 

D  position  deviation  from  nominal  trajectory 

DI,DII,DIn position  deviation  in  direction of s t a r  I, 11, and 111, respectively 
(appendix A) 

6D change  in  magnitude of D  from  Tt = 9.5 hours  to  Tt = 10 hours 

AD incremental  value of position  deviation 

E = re cos y e 

K,K1,K2,K3 constants 

m , n  direction  cosine of line of sight  to star with respect  to X-, Y-, and  Z-axis, 
respectively 
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R 

r 

re  

A r  

S 

Te 

TP 

TPf 

Tt 

T1 

At 

U 

V 

6V 

AV 

earth  radius 

range  to  earth  center 

nominal  entry  range 

range  to moon center 

incremental  range to earth, rm - rn 

difference  from  nominal  range  to moon (table 11) 

position  deviation  from  nominal  trajectory, (Ax 2 + Ay 2 + Az2) 1 /2 

time  to  nominal  atmospheric  entry  time 

time  to  nominal  perilune  time  (table 111) 

time of first  midcourse  position fix  (appendix B) 

time  from  transearth  injection  (perilune) 

time of first  midcourse guidance  maneuver (appendix B) 

difference  from  nominal  entry  time  (table 11) 

velocity  deviation  from  nominal  trajectory, (& 2 + Ajr 2 + Ai2)  1/2 

spacecraft  geocentric  velocity 

spacecraft  selenocentric  velocity 

difference  from  nominal  geocentric  velocity  (table 11) 

difference  from  nominal  selenocentric  velocity  (table 11) 

guidance  velocity  correction 
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rectangular  right-hand axis system  in which X-axis is in  direction of 
Aries, XY-plane is parallel to earth  equatorial  plane, and Z-axis is in 
direction of celestial  north  pole 

X,Y ,Z position  coordinates  in X,Y,Z system 

&,AY ,AZ off-nominal  position  component  in  direction of X-, Y-,  and Z-axis, 
respectively - for example, Ax = - xn 

notation {&} represents  the  vector 

A,$$ velocity  coordinates  in X,Y,Z system 

Ak,A$,Ak off -nominal  velocity  component  in  direction of X-, Y-, and Z-axis, 
respectively - for  example, AH = ira - Kn 

X r , Y r , Z r  position  coordinates  in  rotating  Cartesian axis system  in which Xr-axis 
lies along  earth-moon  line,  XrYr-plane is in  earth-moon  plane, and 
Zr-axis is in  northerly  direction 

Y 

Ye 

'ye 

6 

e 

x 

semisubtended  angle 

flight-path  angle at   t ime of approach  guidance 

flight-path  angle a t  nominal  entry  altitude of 121.92 km (400 000 ft) 

incremental  flight-path  angle  at  nominal  entry  altitude, ye,, - ye,n 

angle  formed  at  vehicle  between  line of sight  to star and its  projection in 
selenocentric  orbital  plane 

angle  formed  at  vehicle by line of sight  to s t a r  and  line of sight  to  celestial- 
body center  (referred  to as star-to-body  angle) 

angle  between  approach-guidance  velocity  vector  and  spacecraft  velocity 
vector 

product of universal  gravitational  constant  and  mass of earth 



U standard  deviation or root-mean-square  value of e r ro r  

US standard  deviation or root-mean-square  value of s 

uU 
standard  deviation or root-mean-square  value of u 

r+ J, r+J , r+J, r+J submatrices  in  state-transition  matrices (appendix B) 
L - I L - l L 1 L - I  

Subscripts: 

a actual  value 

D position  deviation 

F first  midcourse  correction (appendix A) 

inj  transearth  injection 

m  measured  value 

meas due to measurement  error 

n  nominal  value 

R earth ractius 

r range  to  earth  center 

S second  midcourse  correction (appendix A) 

T, Pf at  time of first  midcourse  position f i x  (appendixes A and B) 

T, 1 at  time of first  midcourse  guidance  maneuver (appendix B) 

AV guidance  velocity 

a, semisubtended  angle of earth 

Y ,e  flight-path angle a t  nominal  entry  altitude 
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e 

1 to 6 

star-to-body  angle 

specified  directions 

A bar  over a symbol  indicates a vector. 

BASIC METHOD 

Two guidance  techniques are considered  in  the  present  analysis: An approach 
guidance procedure is discussed  fully,  and a fixed-time-of-arrival  midcourse  guidance 
procedure is given in  appendix A. Each  method  yields a guidance  correction  from a 
single  position f ix ,  which is determined  from  deviations  in  preselected  directions  from a 
nominal  trajectory. For the  midcourse  guidance  correction,  three  deviations  in  the 
direction of each of three stars are  required,  inasmuch as the  spacecraft is guided to a 
fixed point. The  approach  guidance  correction  requires  the  determination of only  one 
deviation. 

The  geometry for  the  approach  guidance method is shown in  figure 1. The  same 
variables  are involved f o r  the  midcourse  guidance.  The  deviation  D of the  actual 
trajectory  from  the  nominal is normally  determined by two onboard  optical  measurements: 
a star-to-body  angle 8, and a range  measurement  rm. Range can  be  determined 
optically by measuring  the  angle  subtended by the  earth or  by other  measurements. (See 
ref. 4.) The  corresponding  nominal  values would be known. 

The  nominal  trajectory  chosen  for  this  paper is depicted  in  figure 2. The  perilune 
is considered as the  transearth  injection point  and has a radius of 3358 km.  The  seleno- 
centric  velocity is 1.992 km/sec;  the  time  to  earth  atmospheric  entry is 3.22 days.  The 
nominal  entry  altitude  selected  was 121.92 km (400 000 ft) .  

From an  equation  derived  in  reference 3 for  control of periapsis  radius, a guidance 
velocity  correction is developed  from a closed-form  expression  relating  entry  and 
upstream  conditions.  These  conditions a r e  then related  to  deviations  from a nominal 
trajectory, and a technique is developed to  control  the  entry  angle ye. Although not 
specifically  designed  to  control  the  along-track  and  cross-track  position  errors at entry, 
the  method  adequately  compensates  for  these e r ro r s .  

For  earth-approach  trajectories,  the  substitution of the  expression E = re cos ye 
in  the  aforementioned  equation  results  in  the  following  expression  for  correcting  entry 
angle : 
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VLr2 COS COS (y + X) - En2 COS X] 

En2 - r2 COS' (y + X) 
AV = 

En (r2 - En2)V2 sin2 X + [r2 COS' (y + X) - EnZ]($ - %))lI2 

En2 - r2 COS' (7 + X) 
f 

The  alternate  signs of the  second  term  correspond to correcting for either  side of the 
earth.  The  sign  which  results  in  the  lesser  value of AV would ordinarily  be  chosen. 

In equation (l), the  flight-path  angle y has  the  major  influence on the  magnitude 
of AV for a given  guidance  pointing  angle X and guidance-maneuver  time. It will  be 
shown in  subsequent  figures  that  the  value of y is highly correlated with  the  deviation 
from  the  nominal  trajectory  in  certain  directions.  Furthermore,  it will be shown that a 
measurement  star  in one of these  preselected  directions  can  be  used to  obtain  the 
deviation D, and hence  the  required  value of AV. 

APPROACH GUIDANC E PROCEDURE 

Application of the  approach  guidance  procedure  in two different  ways was studied. 
First,  the  approach  guidance  correction is applied  after a transearth  midcourse  correc- 
tion  has  been  applied;  second,  the  approach  guidance  correction is applied without pr ior  
midcourse  correction. In essence,  the first method corrects  the  approach  trajectory  for 
errors  incurred  at   midcourse,   the  second  corrects  for  errors  incurred  at  the moon. 

With Midcourse  Guidance 

It was  assumed  that a transearth first midcourse  maneuver,  employing  the  onboard 
1 
2 method of reference 4, was  performed about 20- hours  from  perilune. (See fig. 2.) By 

using  results  obtained  with  this  method  for  translunar  trajectories,  it  was  established  that 
the  midcourse  guidance e r r o r  is due  mainly  to e r r o r s  in  the  onboard  measurements, 
rather  than  in  maneuver  execution,  and  that  the  dominant  measurement e r r o r s  and  the 
position-determination errors  are  generally  in the  direction of the  spacecraft  velocity 
vector.  Thus,  the  midcourse  guidance  error is essentially  an  error  in  the  magnitude 
of AV rather  than  in  its  direction.  The  resulting  error  distrubution  yields  an  elongated 
ellipsoid  with a 10 e r r o r  of about 1 m/sec in the  midcourse  velocity  correction.  The 
lo in-plane  and  out-of-plane e r r o r s  in the  direction of AV are 1.80' and 0.69', respec- 
tively,  where  the  reference  plane is the  nominal  orbital  plane of the  spacecraft.  For 
translunar  trajectories,  an  error of 1 m/sec in midcourse AV resulted  from a range- 
measurement  error of about 20 km. (See ref. 4.) From  the  equations  presented  in 
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appendix B, it was  determined  that  for  transearth  trajectories,  an  error of 1 m/sec 
in AV was  induced  by  an  error of 40 to 50 km  in  determining  range. 

By use of a Monte Carlo  procedure,  simulated  midcourse  errors  were  applied  to  the 
nominal  trajectory  to  produce a number of perturbed  trajectories.  This method  elimi- 
nates  the  calculation  and  application of both a first and a second  midcourse  correction. 
A  second  midcourse  maneuver is inherent in fixed-time-of-arrival  guidance,  since  it  must 
correct  the  velocity  error induced at the  aim point by the  derivation of the first midcourse 
velocity  correction.  Under  actual  operations,  the  approach-guidance  measurements  can 
be  made  only  after a second  midcourse  correction  has  been  applied. 

Star selection.-  The  deviation D was  determined by use of the  relationship 

D = 2(xa - X.) + m(ya - y.> + n(za - "4 
where 2, m, and  n, the  direction  cosines of the  line of sight  to  the  measurement star, 
a r e  known. The  measurement star is selected  to  yield  the  most  effective  direction  for  the 
deviation.  Some of the  directions  for D which were  investigated  are  illustrated  in 
figure 3. Angles  indicated  represent  attainable  accuracies.  The  directions  were  chosen 
in two planes:  the  nominal  orbital  plane and the  nominal  instantaneous  earth-moon- 
vehicle  plane. At Te = 9  hours,  the  angle  between  these  planes is about 55'. Also, the 
spacecraft  velocity  vector V is about 13' out of the  earth-moon-vehicle  plane.  As 
indicated, AV is generally  preset 90° from  the  nominal  velocity  vector.  The  major 
axis of the  position e r r o r  ellipsoid,  also  indicated  in  the  figure,  lies  within 1' of the 
orbital  plane  and  was  derived  from  errors  incurred at first  midcourse  guidance.  The 
deviation  directions  were  chosen  to  essentially  cover  the  entire  spectrum of possible 
angles, as shown in  figure 303). (The deviation D6 is referenced  to  an  earlier  time 

- 
- 

Te = 9.4 hours.) 

The  variation of deviation D with  flight-path  angle is shown in  figures 4 to 7 for  
several  directions of D and for  several  measurement  times.  Each  data point repre- 
sents the  condition at the  indicated  time  on a perturbed  trajectory  resulting  from  errors 
at first midcourse  guidance.  Small  differences  in  values of flight-path  angle at  the  time 
of the  measurement a r e  magnified  considerably  at  entry if not corrected:  Large 
y values  yield  high  g  trajectories,  whereas  small  values  lead  to  trajectories  which 
could  skip  out of or even miss  the  atmosphere. 

The  data  in  figures 4 to 7 show that  with  midcourse  guidance  included,  the  devia- 
tion D is a good prediction of y .  This  relationship  suggests  that D can be  used 
empirically  to  determine  the  guidance  velocity  correction  because  the AV required  to 
change  entry  angle is dependent on the  value of y .  (See  eq. ( l ) . )  It  will  be shown that 
this  dependence is not as great for  trajectories  in which  midcourse  guidance is not 
included. 
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The  scatter of the  data  in  figures  4  to 7 produces  error  in  the  guidance  procedure. 
It is important  that  the  amount of scatter  be  minimized by selecting  the  most  effective 
direction  for D. The  similarity of scatter  characteristics in figures  4  to 7 suggests  that 
for  the case  in which a midcourse  guidance  correction  has  been  previously  applied,  the 
direction of the  deviation (star) and the  time of measurement  are not critical so far as 
approximation e r ro r  is concerned.  This  contrasts  with  lunar-approach  guidance  where 
the  direction of the  star  must be  within 2' or 3' of a given  plane. (See ref. 3.) For earth 
return,  the  trajectory  position  errors  are  concentrated  along  the  major axis of the  error  
ellipsoid (fig. 3); for  example, at Te = 9 hours,  the  length (lo) of the  major axis is 
236 km  compared  with  9.4  km  and  2 km for  the  other  axes.  Similarly,  the  velocity  errors 
are  almost  entirely  along  the  major axis of the  velocity  error  ellipsoid, which is in the 
approximate  direction of the  earth. 

It should  be  pointed out, however,  that  the  deviation  direction  affects  the  measure- 
ment  sensitivity  which  in  turn  affects  the  guidance  accuracy  attributable  to  measurement 
error.  Comparison  may  be  made  between  figures 4(b) and 7(a) where  the  deviations  Dl 
and D3 a r e  both perpendicular  to  the  range  vector but in a different  plane.  Choosing 
the  deviation  in  the  earth-moon-vehicle  plane (fig. 7(a))  reduces  the  deviation  (measure- 
ment)  sensitivity  considerably,  and  the  reduced  sensitivity  increases  the  effect of 
measurement  error. 

The  results  in  figures 5 and 6 show deviation  directions which  yield maximum 
sensitivity.  Figure  6  gives  the  variation of flight-path  angle  with Ar, the  difference 
between  the  nominal and measured  range.  The Ar values  essentially  indicate  devia- 
tions  measured  directly  toward (or away from)  the  center of the  earth. 

The  deviation  directions in figure 5 would lead  to  large  measurement-error  effects 
on guidance  accuracy  since 8, # 90°, and  even larger  effects  in  figure 6 where On = Oo. 
To  minimize  measurement  error,  the  most  suitable  deviation  direction is perpendicular 
to  the  nominal  range  vector, as shown in  figures 4 and 7(a). These  results  are  discussed 
in  the  section  "Approach-Guidance  Accuracy  Characteristics.''  Figures 7(b) and  7(c) are 
included  to  give  broader  coverage of the  entire  spectrum of directions  considered  in the 
earth-moon-vehicle  plane. (See also  fig. 3(b).) 

The  foregoing  results  for  approach guidance  have  been  applied  to  the case  in which 
midcourse  guidance  velocity errors   are   general ly  along  the  direction of the  spacecraft 
velocity  vector,  the  direction  normally  expected  for  onboard  midcourse  velocity  errors. 
It is of interest to  examine  the  effect  on  approach  guidance of midcourse errors in  other 
directions which  might result  from  other  midcourse  procedures.  Accordingly,  midcourse 
velocity e r r o r s  of the  same  magnitude  and  angular  displacement  previously  used  were 
applied  normal  to  the  spacecraft  velocity  vector in the  orbital  plane.  The  resulting  data 
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are  presented  in  figure 8. (Note the  staggered  vertical  scale, which is read  in  such a 
manner  that  at D = 0, y = -73.954O.) Although a strong  correlation between  flight-path 
angle and certain  directions of deviation D is shown, the  range of effective  directions 
was  restricted.  For  example,  the  scatter  for D5 is considered  unacceptable  in  that  the 
maximum e r ro r   i n  y is >O.0lo. The  deviations D2,  D3, and D4, and Ar also 
exhibited excessive  scatter, as well as low sensitivity,  and a r e  not shown. It is apparent 
that  should  the  midcourse  velocity e r r o r s  be perpendicular  to  the  spacecraft  velocity 
vector,  satisfactory  deviations  can  be  takm only in a limited  range of directions. (See 
fig. 3(a).) 

Guidance velocity ~ ~ ~" requirements.- . . .  Characteristics of the  approach  guidance  velocity 
a r e  shown in  figures 9 to 13.  Figure 9 is an  example of the  variation of the  velocity 
correction with  the  deviation D3. The  positive and negative  values of AV indicate 
h = *goo. The circular  symbols  represent  various  trajectories  perturbed  at first mid- 
course  guidance  and  were  computed  from  the  curve  presented  in  figure 7(a) for 
Te = 9 hours.  Some  data a re   a l so  shown for two other  times  to  indicate  the  general 
trend of the  data.  The  offset  in AV at D3 = 0 (for  each  curve) is the  results of two- 
body approximation  (eq. (1)) and  must  be  corrected by shifting  the  curves  vertically  to 
zero  offset.  After  obtaining  the  value of the  deviation,  the  astronaut  uses a curve  such as 
that shown in  figure 9 to  determine  the  required AV magnitude. 

. .  

The  calculations  for AV are  performed  before  flight and, as shown by equation (l), 
require  the  perturbed  values of y, r, and V at the  measurement  time, as well as the 
nominal  value of E = re cos ye. The AV values  in  figure 9 represent  application of the 
thrust  in  the  nominal  orbital  plane,  perpendicular  to  the  nominal  velocity  vector,  the 
optimum  direction  for  most  times  along  the  approach  trajectory. (See fig. 10.) 

Given in  figure  10 a r e  the  magnitudes of AV required  for  correcting one particular 
perturbed  trajectory; any other  trajectory would have similar  requirements  percentage- 
wise.  The  astronaut  uses  this  type of data  to  choose  the  time  for  the  guidance  maneuver. 
The  data show that  the AV requirement  increases as the  guidance  maneuver is delayed 
to  times  closer  to  the  earth.  The  value of the  guidance  pointing  angle h = 90° represents 
application of the AV vector  perpendicular  to  the  nominal  velocity  vector;  the  value 
h = Oo represents  application of the AV vector  along  the  nominal  velocity  vector.  The 
AV vector is always  applied  in  the  nominal  orbital  plane. It is evident  that h = 90' is 
essentially  optimum  for all times  from  entry.  For  Te = 4, the optimum  value is about 
70°, but  the use of X = 90° results  in a negligible  increase  in  the AV requirements. 

The  results  in  figures 11 to  13  define  the  approach  guidance  velocity  requirements. 
The  symbols  in  figures 11 and  12,  which correspond  to  the  data of figure 9, have  been 
shifted  for  zero  offset. Note in  figure 11 that only three of the 50 perturbed  trajectories 
exceed  the Aye value of *lo, and these by only a small  amount.  Thus  with  midcourse 
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guidance  included,  approach  guidance  becomes less  important  except when the  midcourse 
e r r o r  is not  along  the  spacecraft  velocity  vector. In figure 8, where  the  error is essen- 
tially  normal  to  the  velocity  vector,  the  magnitude of  Aye exceeds -+lo two-thirds of the 
time. As will  be  discussed  subsequently,  data  in  the  form shown in  figure 11 a r e  used  to 
determine  the  effect of scatter (approximation) e r r o r  and  guidance  velocity-cutoff e r r o r  
on entry-angle  accuracy.  Equivalent  data a r e  shown in  figure 12.  The AV values a r e  
shown as a function of re cos ye because  this  relationship  can  be  calculated  analytically 
from  the  derivative of equation (1). (See  appendix C.) The  calculated  results and  those 
obtained from  the  slopes of the  curves  in  figure 12 coincide  with  the  curve shown in 
figure 13. The  curve  shows  the  substantial  increase  in  the  guidance  velocity  requirement 
as the  guidance  maneuver is delayed to  times  closer  to  the  earth. Obviously,  the  velocity- 
requirement  ratio A(AV)/A(re cos ye) can  be  readily  converted  to  the  more  usable 
form A v I . ~ ~  for  error  analysis. 

Sensitivity of entry  angle  to  guidance  measurement.-  Examples of the  variation of 
deviation  with  incremental  entry  angle a r e  shown in  figure 14. This  information is 
required  for  determining  the  effect of measurement  error on the  control of entry  angle. 
The  data  are shown  with respect  to  the  deviation Dl  rather than D3 since  the  effect 
of measurement  error  for  the Dl direction is smaller  because of the  increased  sensi- 
tivity of D. 

. "" 
~ ~~ 

Without Midcourse  Guidance 

The  approach  guidance  method  discussed  in  this  section  corrects  perturbed  trajec- 
tories due  to  trajectory  errors  incurred at the moon  and is the  only  guidance  applied to 
the  return  trajectory. For the  analysis,  the Monte Carlo  procedure was used  to  produce 
a number of perturbed  trajectories  emanating  from  perilune.  The  errors  were  essen- 
tially  distributed  spherically  with 10- values of about 2 km for  position  deviation s and 
about 2 m/sec  for  velocity  deviation  u.  These e r r o r s  could represent  errors  in  the 
transearth  injection  for  return  to  the  earth. 

Star  selection.- Shown in  figure  15  are  examples of the  variation of y with D 
a t  Te = 9.4 hours  for two star  directions. (Note the  staggered  scale,  which is read  in 
such a manner  that  at  D = 0, y = -74.11O.) Ekcept for  the  ranges  covered,  the  data are 
similar  to  those shown in  figures  4  to 7, where  midcourse  guidance  was  included. It is 
apparent  that  under  certain  conditions,  the  deviation D essentially  predicts y .  
However, as shown by figures 15  and  16,  the  deviation  direction  which  gives  the  best  cor- 
relation  for y is not the  best  for  predicting  the  required  approach  correction AV. 

The  variation of  AV with  deviation is shown in  figure 16 for  the  perturbed  trajec- 
tories.  This  figure is s imilar  to figure 9, except that certain  perturbed  trajectories  do 
not enter  the  atmosphere if no AV correction is applied.  The AV values  in  figure 16 

11 



were  calculated  from  the  actual y values of figure 15. The r m s  value of  AV shown 
for each set of data  in  figure  16 is the la value of the  scatter  in  the  data  about  the line. 
This value is used  in  the  subsequent  error  analysis as a measure of the amount of scatter 
(approximation) error. As indicated  in  figure 16, the  measurement-star  direction is, of 
great  importance  in  case of no  midcourse  guidance. In regard to scatter,  the optimum 
direction of D at Te = 9.4 hours  corresponds  to a s ta r  lying  in  the  nominal  orbital 
plane  in a direction 77O from Fn. (Note in  fig.  3(a)  that  this  direction is to  the  left of the 
earth.) 

The  variation of  AV with D for  the  perturbed  trajectories is shown in  figure 17, 
for  two values of On at Te = 17.4 hours.  Here  again,  the la values  correspond  to  the 
scatter about  the  lines. (Note the  staggered  vertical  scale, which is read  in  such a 
manner  that  at  D = 0, AV = -0.6 m/sec.  The  curves  should  be  shifted  vertically  to 
correct  for  this  zero offset.) For Te = 17.4 hours, it  is apparent  from  the  scatter  that 
the  optimum  direction of D corresponds to On = 800. Data are shown for  On = 90° 
because  no  range  measurement is required.  Elimination of the  range  measurement is 
important  from  an  operational  standpoint, as well as for  the  fact  that  range-determination 
e r r o r  is a dominant  factor  affecting  the  guidance  measurement  accuracy.  The  effect of 
the  increase  in  scatter  incurred by omitting  the  range  measurement is discussed  in  the 
subsequent error  analysis.  

With regard  to  scatter  error,  the optimum direction of D at Te  = 4.4 hours is 
about 71'. It is of interest  to  note  that  since  the  true  anomaly of the  trajectory  changes 
approximately 150 from Te = 17.4 hours  to  Te = 4.4 hours,  the  corresponding  change  in 
the optimum  direction of the  measurement  star is 6 O  away  from  the  earth.  It  should  be 
noted  also  that  for  acceptable  scatter,  the  nominal  value  selected  for  the  star-to-body 
angle  may  lie  within a region of several  degrees  in  either  the  in-plane or out-of-plane 
direction. 

Guidance  velocity - . . requirements. - . - "" - The  guidance  velocity  requirements,  with  respect 
to  the  deviation D, were  discussed  in  the  previous  section  in  connection  with  selecting  the 
optimum  measurement star. In figure 18, AV is shown as a function of  Aye for 
Te = 9.4 hours,  where  the  quantity Aye is the  difference  between  the  nominal and actual 
values of entry  angle (at an  altitude of 121.92 (400 000 feet))  for  the  various  perturbed 
trajectories.  The AV values  are  those given  in  figure 16 and a r e  calculated  values 
required  to  correct  the Aye to  zero.  There  are  perturbed  trajectories beyond the  point 
Aye = 4O, but these  do not enter  the  atmosphere.  The  sensitivity of  AV with Aye 
a t  Aye = 0 is utilized  in  the  error  analysis. 

and 18 were  cross  plottedto  obtain  figure 19,  which  shows  the  variation of  D6 with Aye. 
The  value of the  slope of this  curve  at Aye. = 0 is essential  in  determining  the  effect of 

- 

Sensitivity of ". entry  angle . - . . to - - guidance - measurement.-  The  values  in  figures 16(b) 
. .  
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measurement  error on guidance  accuracy. Only the  slope at Aye = 0,  that is at  nom- 
inal ye, is required  because all perturbed  trajectories  are  corrected  to  the  vicinity 
of  Aye = 0. It is of interest  to  note  that  the  slope  in  figure 19 is about  twice  that f o r  
data  where  the  trajectories  were  perturbed at first  midcourse  guidance (fig. 14). Absence 
of scatter  in  the  data shown in  figure 19 can  also  be  used as a good indication for  the  opti- 
mum  direction of D. 

APPROACH-GUIDANCE ACCURACY CHARACTERISTICS 

In  this  section,  the  more  important  errors  associated with  the  approach  guidance 
procedure  are defined  and  analyzed.  The  analysis  spans  the  region  for  performing  the 
guidance from  Te = 18 hours  to Te = 4 hours. At Te = 18 hours  the  spacecraft is 
about  midway  between the  earth  and moon. (See  fig. 2.) Both procedures,  that is, with 
and without midcourse  guidance, a r e  analyzed. 

The  approach  guidance  procedure is designed  to  control only the  entry  flight-path 
angle;  however,  the error  analysis  has shown that  the  along-track  and  cross-track  posi- 
tions are  also  controlled  to a reasonable  accuracy. For example,  in  the  case  with a 
midcourse  guidance  correction  included,  the  approach  guidance  procedure  reduced  the 
la position error  at   entry  from 122 km to 17 km,  these  errors being almost  entirely  in 
the  along-track  direction.  Similar  results  were  obtained  for  the  case without a midcourse 
guidance  correction,  except  the  uncorrected  position  errors  at  the  earth  were  considerably 
higher. 

Effect of Measurement E r ro r  

Er ror  in  the  onboard  optical  measurements  affects  the  approach-guidance  accuracy. 
Error equations  for  such  measurements  were  developed  in  reference 6.  The  equation 
used  in  this  report is 

1 1/2 

which corresponds  to  uncorrelated  errors in the  measurement of range r 
body angle 8 .  It is assumed  that  range is measured by a, the  half-angle 

and star-to- 
subtended by 

the  earth  at  the  spacecraft.  The  error 0 6  is constant a t  all values of time;  whereas Uy 

varies  with  time (or range)  according  to  the  relation  given  in  reference 6, 

L 
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where OR is the  uncertainty in defining  the  earth's  radius  and a, is constant.  The 
variations of the  nominal  range  and CY with t ime  a re  shown in  figure 20. 

In equation (2) nominal  values  for r and 8 a r e  used. For values of  8, = 90°, 
it is seen  that 

In  this  case,  the  range-measurement  error is insignificant;  hence,  the  nominal  range 
value  can  replace  the  measured  range  in  the  equation  given  for D in  figure 1. Because 
no  range  measurement is required,  the  approach  method  could  be  adapted  to  control  the 
trajectory  from  earth-based  line-of-sight  measurements. If, for  instance, a failure  in 
the  radar  system  prevented  range  and  range-rate  measurements,  earth-based  angular 
measurements could  be substituted  for  star-to-body  measurements.  Even though rela- 
tively  inaccurate,  the  angular  measurements  could  be  averaged  over a period of time. 

For  8, # 90°, the  effect of range-measurement  error  becomes  important, as 
shown by equation (2). Figure 2 1  shows  the  variation  with  time of ur, the lo e r r o r  in 
determining  range  from  the a measurement.  The  data  are shown  both  with  and with- 
out  consideration of the  earth-radius  uncertainty OR. The  effect of excluding this 
uncertainty  in  the  ensuing error  analysis would be  negligible. As shown by the  other 
curve  in  the  figure,  it  may be more  accurate to use  the  nominal  value  instead of measuring 
the  range  at  certain  distances  from  the  earth.  This  condition would, of course, depend 
upon the  injection-error  statistics  at  the moon. The  curve was determined  from  normal- 
ized  values  obtained  from  the  perturbed  trajectories.  The  value of the  injection-position 
e r ro r  us is given  in  the  figure  although its effect on O r  is minor. 

The  effect of measurement  error on the  guidance  accuracy is presented  in  figure 22 
for  approach  guidance  with  and  without a previous  midcourse  correction.  The  upper  plot 
shows  the  variation of error  in  determining  the  deviation D with  time  from  entry. 
These  data  were obtained by the  use of equation (2) and  the  solid  curve  in  figure 21. The 
sensitivity  ratios shown in  the  middle  plot of figure 22 a r e  used  to  convert  the OD data 
to the r m s  ye values  shown  in  the  lbwest  plot.  Sensitivities  were  obtained  from  data 
such as those shown in  figures 14 and 19. For the data with  midcourse  guidance,  the  sen- 
sitivity  ratio is nearly  constant with time  since  the  overall  magnitude of D does not 
change  appreciably.  (See  figs. 16 and 17.) 

The  effect of e r rors   in  the range  measurement is shown in  the two curves  in  the 
upper  plot of figure 22. The  upper  curve was calculated  for  the  values of O n  which 
correspond  to  minimum  scatter.  (For  example,  see  figs. 16(b)  and 17.) Since star direc- 
tion is not critical  for  scatter  in  the  case with midcourse  guidance  included,  the  lower 
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curve  was  calculated  for 8, = 90°, which is optimum  with  regard  to  measurement  error. 
The  deviation e r r o r  is highly  dependent  on  the  value  selected for  8,. For instance, 
for  D2, which corresponds  to 8, 126.3O, oD at Te = 9 hours would be  about 55 km. 
If A r  were  used as the  guidance  measurement, 8, = Oo, (fig.  6), the  value of oD would 
equal  that of Or ,  which is about 90 km  at  that  time. In these  cases,  however,  the  values 
of would not increase  in  the  same  proportion  because  the  sensitivity  ratio Ay  AD 
would be  about three  times  smaller  in  the  case with  midcourse  guidance. 

e/ 

Effect of Approximation Error  

The  upper  plot  in  figure 23 shows  the  effect of scatter (approximation) error on the 
accuracy of controlling  entry angle. These  curves  were  determined  from 

where  the  value  for OAV w a s  obtained from  data  such as those shown in  fig- 
ures  16 and 17. The  ratio Aye/AV is the  reciprocal of the velocity-requirement  ratio, 
which can be  determined  from  figure  13 by use of the  equation 

( )scatter 

AV A(AV) (65 083 OOO] (o~oool) 
" 

Aye A( re  COS ye) (0.051) 

where 65 083 000 meters  is the  nominal  entry  range  and 0.051O is the  change  in ye from 
its nominal  value of -6.281' due  to a change of 0.0001 in  the  cosine  function. 

The  value of (Oy,dscatter was  also  checked  at  several  times along  the trajectory 
by simulated  guidance  corrections. For example,  the  perturbed  trajectories  in  figure 9 
were  corrected by using  the  faired  values of AV at T, = 9 hours.  Each  trajectory w a s  
then  propagated  to  the  nominal  entry  altitude.  The rms  value of the  entry-angle error   was 
determined and was  found to compare  closely  with  that  calculated by equation (4). 

Effect of Maneuvering Error  

The  velocity-requirement  ratio is also employed to  determine  the  effect of guidance 
maneuvering e r ro r .  Velocity-cutoff error   comprises  the  major  portion of this   error .  
(See ref. 6.) 

The r m s  entry-angle e r r o r  due to velocity-cutoff e r r o r  is shown in  figure 23 for a 
typical lo value of 0.2 m/sec.  This  curve  was  determined by multiplying  the  reciprocal 
of the  velocity-requirement  ratio by 0.2 and corresponds to  the  case in which  the  guidance 
pointing  angle X is 90°, which is optimum for AV magnitude. It should be pointed  out 
that by sacrificing  the  requirement  for  the AV magnitude, which is small - especially 
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in  the  case  where  midcourse  guidance  has  been  previously  applied - and  applying  the 
AV vector at h = Oo, the  effect of the  maneuvering e r ror   can  be  reduced by about  two- 
thirds.  This  same  effect  could  be  achieved by delaying  the  guidance  maneuver.  To 
obtain  the  two-thirds  reduction,  however, would require  considerable  delay (fig. lo), 
which may not be  operationally  feasible. 

Combined  Effect of Guidance Errors 

The  lowest  plot  in  figure 23 shows  the  combined  effect on entry-angle e r r o r  due  to 
measurement  error,   scatter  error,  and  velocity-cutoff error  according to  the  equation 

With midcourse  guidance.-  Statistically  speaking,  the  effect of measurement  error 
has only a minor  role  in  the  overall  guidance  accuracy  when a midcourse  correction  has 
been  included;  the  velocity-cutoff error  has  the  major  effect.  These  facts  are  apparent 
when  the curve  for  total (T is compared  with  the  curves  for  these two effects shown 
in  figures 22 and 23. It is significant  to  note  that  even if the  instrument  measurement 
error   were doubled to 20 seconds of arc ,  the  overall (T would be little  affected. If 
the  velocity-cutoff error   were reduced  in  the  manner  previously  described,  the  total 
CT would be negligible. 

Y ,e 

y7e 

-Y,e 
The  data shown in figures 22 and 23 pertain  to  midcourse  velocity  errors,  generally 

in  the  direction of the  spacecraft  velocity  vector. An error  analysis  was  performed  for 
the  situation  where  these errors  were  approximately  normal  to  the  velocity  vector (fig. 8), 
and  the results  were found comparable  with  those shown for total (T in  figure 23, 
providing O n  = 90'. The  main  difference is that Aye  AD more  than  doubles, and there- 
fore  the  effect of measurement  error  increases. 

I 
Y ,e 

Without midcourse  guidance.- For the  method  without  midcourse  guidance  compar- 
ison of the  curve showing  total  effects and curves showing the  three  separate  effects  indi- 
cates  that  error  in  entry  angle  for  this method is due  chiefly  to  measurement e r ro r .  
If 8, = 90' at  Te = 17.4 hours,  the  total CT would be  due  mostly  to  scatter (fig. 17) 
and would be  about  the  same as that shown in  figure 23 where 8, = 80'. If the  curve  in 
figure 21  representing  no  range  measurement (ra A rn) could  be  applied,  the e r ror   in  
entry  angle  could  be  reduced  for  times  earlier  than  Te = 1 2  hours. 

~" . . 

Y ,e  

Maneuver  time.-  In  regard  to  the  total  accuracy  characteristics shown in  figure 23 
and for  an  entry  corridor of &lo, it is apparent  that  with  midcourse  guidance,  the  approach 
guidance can  be  selected  at any time  along  the  trajectory  because  the 30 value is always 
below lo. For approach  guidance  without  midcourse  guidance,  it  appears  from  the e r r o r s  
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shown that  an  approach  maneuver  at about Te = 8 hours or  la te r  would result  in 
3a values of  ye error below lo. At Te = 8 hours  the  average AV requirement is 
about 5 m/sec  for  the  method  without  midcourse  guidance  and  only  about 0.5 m/sec  for 
the  method  with midcourse  guidance.  The  latter  procedure,  however,  requires  an  addi- 
tional  average AV of about 3 m/sec  for  the  midcourse  maneuver  under  normal 
conditions. 

CONCLUDING REMARKS 

Results  were  obtained  for  simple onboard  guidance of moon-to-earth  trajectories 
which can  be  applied  either  with or without a midcourse  correction.  Normally one, but a t  
most two, onboard  angular  measurements  are  required,  from which a simple  calculation 
yields  the  magnitude of the  guidance  velocity  required  to  correct  the  trajectory.  It  was 
shown that  the  method  which  included  the  onboard  midcourse  correction is far superior. 
This method has much  higher  accuracy in controlling  the  entry  angle and has  more  flex- 
ibility in the star  selection.  The method  without midcourse  guidance  could  be  resorted  to 
under  the  extreme  condition  that a midcourse  correction  were not available on the  return 
trajectory. 

Under certain  conditions, a range  measurement is not required;  hence,  the  method 
could  be  applied  to a procedure  whereby  the  approach  trajectory is controlled by earth- 
based  line-of-sight  measurements. 

An error  analysis showed  that errors  in  the onboard  guidance  measurements  do not 
primarily  affect  the  overall  approach-guidance  accuracy if midcourse  guidance  has  been 
included.  Furthermore,  the  effect of guidance  maneuvering error   can be  reduced by as 
much as two-thirds by changing  the  direction of the  thrust  vector or  by delaying  the 
guidance  maneuver. 

Langley  Research  Center, 
National  Aeronautics and Space  Administration, 

Hampton,  Va., June 8, 1971. 
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APPENDIX A 

SOME NOTES ON FIXED-TIME-OF-ARRIVAL ONBOARD  MIDCOURSE 

GUIDANCE FOR TRANSEARTH TRAJECTORIES 

One objective of the  approach  guidance  procedure  given  in  the  main  text of the 
report is to refine  the  effects of midcourse  guidance  error. Hence,  the use of some  type 
of midcourse  guidance  procedure  was  required as a prerequisite  for  the  analysis of the 
approach  procedure.  The  onboard  method of reference 4 was employed for  this  analysis. 
In this  reference,  the  procedure  for  calculating  the  midcourse  maneuver  velocity  correc- 
tion  was  developed from  standard  guidance  equations,  which  make  use of transition-matrix 
theory.  The  well-known  fixed-time-of-arrival  guidance,  which  guides  the  spacecraft  to a 
given  aim  point on the  nominal  trajectory, was employed. Two basic  equations  which 
concern  the  navigator are 

"F = EA] + [d [ ~ ? , ~ ~ T , p f  
KIDI - 

T ,Pf 

- 
Avs = [+I (KID1l K2DII 

The  second  midcourse  correction zS corrects  the  velocity  error induced a t  the  aim 
point by the  derivation of the  first  midcourse  velocity.  The  quantities A, B, and  C 
a r e  3-by-3 matrices which a r e  precomputed  from  nominal  state-transition  matrices  and 
the  direction  cosines of three  stars  used  for  the  measurements.  The  deviations D a r e  
the  three  position  components as measured by the  deviations of the  perturbed  trajectory 
from  the  nominal  trajectory  in  the  directions of the three stars. The  constants K a r e  
predetermined  from  the  variations shown in  figure 24. The  relation is 

K = l + -  6D 
D 

The  values  in  figure 24 were obtained from a sample of trajectories  randomly  perturbed 
at transearth  injection. (See table I.) Figure 25 shows  the  geometry  for  the  angles and 
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APPENDIX A - Continued 

directions  referred  to  in  figure 24. The time  Tt = 9.5 hours  corresponds  to  the  time of 
the  position  fix,  and  the  time  Tt = 10 hours is the  time of the  midcourse  guidance 
maneuver. 

Accuracy  Characteristics 

In reference 4 the  method was thoroughly  studied  and  found to  be  sufficiently 
accurate  for  midcourse  control of translunar  trajectories. Some results  are  presented 
herein which indicate  that  the  method would apply as well, or  better,  to  transearth 
trajectories. 

Effect of star selection.- One important  characteristic of the method is the  selection 
of the  three  measurement stars in  directions  such  that 6D can  be  accurately  predicted 
from D calculated  for  the  time of the  position  fix.  This  procedure  eliminates  the  need 
for a second  position f i x  and,  hence,  eliminates  much of the  effect of measurement  error. 
For  translunar  trajectories,  the  region of acceptable stars for  measurement is about 40°, 
as shown  in sketch (a). 

 major a x i s  o f  e r r o r   e l l i p s o i d  

S u i t a b l e  
stars 

S u i t a b l e  
Stars 

Sketch (a) 

Figure 24 shows  that  for  transearth  trajectories, good prediction of 6D may be  obtained 
for  an  even  larger  region of s tars .  The only unacceptable  direction is the  bottom curve, 
characterized by large  scatter  and  small  sensitivity  in D. Figure 25 and the  upper  five 
curves  in  figure 24 show that  the  acceptable  region  covers  an  angle  greater  than 90' in 
the  selenocentric  orbital  plane as well as large  out-of-plane  angles.  The  region  diago- 
nally  opposite  this  region would also  be  acceptable as may be  seen  in  the  sketch of the 
trajectory  geometry  (sketch  (b)).  (Values of 6 near 90° provide no information on 
change  in  the  orbital  plane and  should  be  avoided.) 
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APPENDIX A - Continued 

To ea r th  

- 
VZ 

S u i t  ab 1 

J 

Sketch (b) 

Effect of transition-matrix - theory.-  The  midcourse  guidance method employs 
transition-matrix  theory;  therefore,  another  important  characteristic of the  method is the 
effect  caused by the  linear  approximation  made  in  using  this  theory.  The  state-transition 
matrix is strictly  applicable only when the  equations of vehicle  motion are  l inear.  
Because of the  actual  nonlinearity of these  equations,  the  midcourse  guidance method is 
limited  to  perturbed  trajectories  that  are  reasonably  close  to  the  nominal  trajectory. 
The  data  in  table 11 show the  results of correcting a sample of 33 perturbed  transearth 
trajectories with  the  onboard  midcourse  method. No e r r o r s  due  to  measurement  error 
or   in  executing  the  guidance  maneuver a r e  included;  the e r r o r s  at the  earth  are due  only 
to  the  effects of the  linear  approximation  made  in  using  the  transition-matrix  theory. As 
indicated by the  large  errors  at   the moon (at  nominal  perilune  time), which  could cor re-  
spond to the  transearth  injection  errors, the  perturbed  trajectories  are widely dispersed 
about  the  nominal.  The large  dispersions  are  even  more  apparent at first  midcourse 
guidance, which is about 20.5 hours beyond perilune  time. Such large  perturbations  for 
injection out of lunar  orbit a r e  extremely  improbable;  however,  these  perturbations could 
possibly  apply  under  emergency  conditions when a translunar  free-return  trajectory is 
altered on approach  to  the moon to  insure a 100-percent  probability of miss. 

The  last two columns  in  table 11 indicate  that  widely  dispersed  trajectories  can  be 
reasonably  controlled by guidance  employing  transition-matrix  theory. It is interesting 
to  note  that  the errors   a t   the  nominal  entry  altitude a re   smal le r  than  those at the  aim 
point. It is also seen  that without  the  addition of the  second  midcourse  velocity  correc- 
tion,  the errors  in  spacecraft  velocity and  flight-path  angle a re   smal l   a t  the  nominal 
entry  altitude.  These  errors would not be  reduced by including  the  second  midcourse 
correction. 
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APPENDIX A - Concluded 

Velocity  Requirements 

A comparison of midcourse-guidance  velocity  requirements of the  onboard  method 
for  translunar and transearth  trajectories is shown in  table III. To  establish  the 
perturbed  trajectories,  injection  errors of the  same  magnitude  were  applied  at  the  earth 
and at the moon. These  errors   were applied by randomly  changing  components of the 
position by 10 km and  components of the  velocity by 10 m/sec. (See table I.) The  velocity 
requirements  pertain  to a guidance  maneuver  time 10 hours  from  translunar or transearth 
injection.  It  can  be noted in  table 111 that  the  translunar  requirements  are 3 to 4 times 
higher  than  the  transearth  requirements. A s  expected,  in both cases,  the  first  midcourse 
velocity  requirement is fairly  insensitive  to  time  selected  for  the  aim point.  However, 
the  second  midcourse  velocity  requirement  does  depend on the  aim-point  time,  with  the 
translunar  (transearth)  values  decreasing  (increasing) as the  aim point is moved closer 
to the  target body. The large  transearth  value for the  aim  point  at  nominal  entry  time is 
attributed  to  the  relatively  large  magnitude of the  spacecraft  velocity  at  this point. 
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APPENDIX B 

ESTIMATION OF ONBOARD MIDCOURSE VELOCITY ERROR 

The  magnitude of the  guidance  velocity error for  onboard  midcourse  procedures  can 
be  estimated  to a good degree of accuracy.  The  general  form of the equation  for  onboard 
midcourse  guidance,  developed  from  reference 4, is 

Since is essentially a unit matrix,  then  the  following  approximation  can  be  made: 

As shown in  reference 4, error   in   the 
error in G. Also shown is the  fact - 

range  measurement  has  the  dominant  effect on the 
that  for  trajectories  perturbed  because of injection 

e r ror ,  the  position  deviations A x  
range  vector.  These  conditions  permit  the A V  magnitude e r r o r  to  be  determined by 
inserting  appropriate  errors  for  the  position  deviations  in  equation (Bl). To accomplish 
this. a standard-deviation  value of the  range-measurement  error  can  be  determined for  

T,Pf and xT,l are  essentially  in  the  direction of the 

- 
the  time  T  based on instrument  inaccuracies, and  then  substituted for  as 
the error  vector (in the  range  direction).  The error  vector  AX^,^, which is somewhat 
larger  in  magnitude,  can  be  determined  from any perturbed  trajectory by the  percentage 
change  in A r  from  the  times  T  to T1. 

Pf ' T,Pf - 

Pf 

22 



APPENDIX C 

VELOCITY  REQUIREMENT FOR APPROACH GUIDANCE 

An analytical  expression  for  the  variation of approach  guidance  velocity AV with 
the  entry  condition re cos ye is presented  in  this appendix.  The  velocity-requirement 
ratio A AV A re cos ye) is useful for  error  analysis.  The  equation which  follows is 
the  exact  expression  for  this  ratio (at small  values of AV) and was  determined by 
differentiating  equation (1) with respect  to r e   c o s  ye. Except for  distances  very  close  to 
the  earth, only  the  middle term of the equation is significant.  For  example,  at 
Te = 9 hours (r E 110000 km)  the first and last terms  contribute only about 1 percent  to 
the  total  value. 

( ,/< 

2r2VE cos (y + X)  [cos y + cos X cos  (y + A d  w= -__-. ~ - - . . 

a(E) 2 
[r2 cos2 (y + X) - E2] 

[r2 cos2 (y + X) + ~~~ E2]{ (r2 - E2)V2 . "  sin2 ~ X " + [r2 cos2 (y + X) - E2](% r e  - r 

[r2 cos2 (y + X) - E q 2  

T . -  

r e  
. . - . - . .. -. . - ~- - 

[r2 cos2 (y + X )  - E2] {(r2 - E2) V2 sin2 X + [r2 cos2 (y + X) - E2](g - $]'" 

where 

E = re cos ye 
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TABLE  1.- TRANSLUNAR AND TRANSEARTH  PERTURBATIONS  USED 

TO DETERMINE MIDCOURSE GUIDANCE  CHARACTERISTICS 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

T Injection-position 
perturbation,  km 

Ax 

-10 

-10 

10 

10 

AY 

- 10 

- 10 
10 

- 10 
10 

10 

Az 
~~ 

~~ 

10 

- 10 
10 

- 10 
10 

10 

10 

Injection-velocity 
perturbation, m/sec 

Ai 

10 

-10 

10 

10 

-10 

10 

-10 

10 

10 

-10 
~ 

A? 

10 

10 

- 10 

10 

A i  

10 

- 10 
10 
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TABLE 11.- THE 10 RESULTS  FOR  WIDELY  DISPERSED 

TRANSEARTH TRAJECTORIES BEFORE AND AFTER 

"PERFECT" MIDCOURSE  GUIDANCE  CORRECTION 

r 
Quantity 

s, km . . . . . . . . . .  
u, m/sec . . . . . . . .  
Arl,  km . . . . . . . .  
A r ,  km . . . . . . . . .  
6V2, m/sec . . . . . . .  
6V, m/sec . . . . . . .  
Aye, deg . . . . . . . .  
At, sec . . . . . . . . .  

a AVS included. 
b A V ~  not included. 

Before  correction 

At nominal 
perilune  time 

(transearth 
injection) 

896 

208 

125 

27.7 

At first 
midcourse 
guidance 

332 3 

41.8 

1558 

17.1 

r After correction 1 
At aim point 

(nominal 
entry  time) 

284 

"243 

36.4 

a39.8 

At nominal 
entry  altitude I 

65.3 1 

b1.33 

b0.29 

I 28.8 i 



TABLE 1II.- VELOCITY REQUIREMENTS FOR 

FIXED-TIME-OF-ARRIVAL GUIDANCE 

pF at 10 hours  from  injection 1 
Location of aim point 

Average  values 
I 

Translunar  trajectories 
~~ 

Lunar  sphere of influence  Tp 14.6 hr) ( 55 

0.08 54 Nominal  perilune  time 

0.13 

Transearth  trajectories 

Te = 17 h r  

T, = 9 h r  

Te = 1 h r  

Nominal  entry  time 

15.7 

15.2 

14.7 

14.7 

0.17 

0.16 

0.27 

3.98 



r----- Pos i t ion   i n   nomina l  
, , o r b i t a l   p l a n e  

star 

I) = r, cos  8, - rn cos  8, 

Figure 1.- Sketch  showing  approach  guidance  geometry. 
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28 32 36 40 X 

Figure 2.-  Nominal trajectory. (Tt is hours from perilune; Te i s  hours to  entry.) 
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(a) Nominal orbital  plane. 

To moon 

Earth 

".- - m D w L h  

(b) Nominal  instantaneous  earth-moon-vehicle  plane. 

Figure 3. -  Illustration showing direction of deviations  studied for Te = 9 hours 
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Figure 4.- Flight-path  angle  correlation  with  deviation.  Deviation  Dl is in 
nominal  orbital  plane  with On = 90°. 
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Figure 4. - Continued. 
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Figure 5.- Flight-path  angle  correlation  with  deviation at Te = 9 hours. 
Deviation D2 is in nominal  orbital  plane with 8, = 126.3085'. 
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Figure 6.- Flight-path  angle  correlation with incremental  range at T, = 9 hours  and rn = 110 310 km. 



-74.00 I 
-73.98 

M 
al 
a -73.96 
; 

4 
M 

5 -73.94 L 
c, 

5 -73.92 I-- 
I 

r 
-73.88 I I I I I I I I I 

I 

- 100 - 80 -60 -40  -20 0 20 40 60 80 100 120 

D3, km 

(a) Deviation  perpendicular  to  nominal  geocentric  range  vector. 

Figure 7.- Flight-path  angle  correlation with deviations  taken  in  instantaneous 
earth-moon-vehicle  plane at Te = 9 hours. 
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Figure 7.- Continued. 
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Figure 8.- Flight-path angle correlation with deviations taken  at  Te = 9 hours. 
Midcourse  guidance velocity errors  .are approximately normal to  spacecraft 
velocity  vector. (Note staggered scale.) 
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Figure 9.- Correlation of approach  guidance  velocity with deviation D3. 
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Figure 10.- Example of approach  guidance velocity required  for  a  typical  perturbed trajectory. 
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Figure 11.- Approach  guidance  velocity  requirement as a function of incremental 
entry  angle at nominal  entry  altitude. X = *goo. 
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Figure 12.- Approach  guidance  velocity requirement .as a function of product of 
nominal  entry  range and cosine of entry angle. X = *goo. 
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Figure 13.- Guidance-velocity-requirement  ratio as a function of time  to  entry. X = &goo. 
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Figure 14. - Sensitivity of entry  angle at nominal  entry  altitude  with  deviation Dl .  
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Figure 15.- Correlation of flight-path  angle with deviation at Te = 9.4 hours. 
Deviation  D is in  nominal  orbital  plane. (Note staggered  vertical  scale.) 
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Figure 16.- Correlation of approach  guidance  velocity with deviation at Te = 9.4 hours. 
h = *goo; D is in  nominal  orbital  plane. 
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Figure 17.- Correlation of approach  guidance  velocity with deviation at Te = 17.4 hours. 
h = *goo; D is in  nominal  orbital  plane. (Note staggered  vertical  scale.) 
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Figure 18.- Approach  guidance  velocity  requirement as a function of incremental 
entry  angle at nominal  entry  altitude. X = &goo; Te = 9.4 hours. 
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Figure 19.- Sensitivity of entry  angle at nominal  altitude  with  deviation Dg 
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Figure 20. - Characteristics of nominal  trajectory. 
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Figure 21.- Range-determination  error.  Measurement  error 0, = 10 seconds of arc. 
Dashed  line  includes  effect of 2-km  uncertainty  in  earth  radius. 
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Figure 22.- Effect of measurement error on approach-guidance accuracy. 
OR = 0; measurement error 00 = 10 seconds of arc. 
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of scatter  error  and  maneuvering  error included.  The l o  value of 
velocity-cutoff e r r o r  is 0.2 m/sec. 
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Figure 24.- Change  in  deviation from Tt = 9.5 hours  to Tt = 10 hours for various 
perturbed  transearth  trajectories. D and 6D agree  in  sign  except for points 
below  the zero line. 
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TO e a r t h  

Figure 25.- Geometry  in  vehicle  selenocentric  orbital  plane 
at  9.5 hours from  transearth  injection.  Positive 6 is 
in  northerly  direction  from  plane; 8 is not necessarily 
in  plane. 
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