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ABSTRACT

An experimental and analytical study of hydrogen liquid and slush
tank gauging methods is described. The objective was continuous in-
ventory of hydrogen slush during ground storage. Two approaches were
taken, the first based on vapor-liquid and liquid-slush interface location,
the second based on direct total mass sensing. Three interface. location
methods and three total mass methods were tried. Cérbon film point
sensors, previously used for vapor-liquid discrimination, were also
succeséful for discrimination between triple-point liquid and settled
slush. Time domain'reﬂectpmetry was very succes sful for liquid level
location and can probably be developed for settled slush level detection,
Resonant cavity and capacitance methods were developed and demonstrated
for accurate determination of total mass of liquid or slush without refer-

ence to liquid or settled slush levels.

Key Words: Hydrogen Liquid; Hydrogen Slush; Instrumentation;
Liquid Level Sensing; Mass Gauging; Slush Level

Sensing; Storage.
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INSTRUMENTATION FOR HYDROGEN SLUSH
STORAGE CONTAINERS™

D. H. Weitzel, R. S. Collier, D A. Ellerbruch
J. E. Cruz, and L. 'T. Lowe

1. Introduction

An investigation of methods and instrumentation for continuous
inventory of hydrogen slush during ground storage has been completed.
This work was performed during 1970 under NASA/SNPO-C sponsorship
at the Cryogenics Divisioﬁ of the National Bureau of Standards. The vessel
used for most of the experimental work was a vacuum-insulated cylin-
drical steel dewar 76 cm in diameter by 243 cm deep. Actual volume

was 1. 102 m®; maximum working volume was about 0. 75 m?

When such a vessel contains slush hydrogen, the solids will
normally settle to the bottom as soon as the fluid is quiescent. Freshly
prepared slush has a settled solid fraction of 0.'35 to 0, 45. The solid
fraction in the settled portion increases as the slush ages. Figure 1
shows change in solid mass fraction and density for settled slush in a
vessel with heat leak on the order of 6, 7 x 108 W cm™3, Thié is a very

low heat influx, resulting in a solids loss of only 0. 3 percent per day.

If there is more heat flow to the slush, and consequently more
melting of the solids, the density of the remaining solid fraction increases
at a faster rate than shown in figure 1. Thus, the slush in abx’ressel
having approximately 20 times as much heat) influx as the above example
reached a solid fraction of 0, 6 in 17 hours, instead of in 50 hours. For
the 1 m® vacuum-insulated steel dewar used in most of the present work,

i)

a settled solid fraction of 0. 6 was reached in about 8 hours

* This work was carried out at the National Bureau of Sfandards under
NASA (SNPO-C) Contract R-45 and NASA-MSFC Contract H-2159A,
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The settled solids in a slush storage tank will form an interface
which represents a sharp density discontinuity similar to the vapor-liquid
interface, although of much srri_aller magnitude. Eifective slush tank gaug-
ing will result from accurate 1Q.cétion of both the vapor-liquid and the
liquid-slush interfaces, along Wifch knowledge of tank geometry and density
gradients in both the liquid and tﬁe settled slush portions. Alternately,
gauging methods-‘whic:h respond. to total mass without referencé to density
may be used. Both approaches were included in the present investigation,
with the total mass methods proving more reliable than methods depending
on interface location.

2. Experimental Program

The various forms of tank gauging instrumentation which were
studied are schematically represented in figures 2 and 3. The trans-
ducers are shown in their approx1mate1y true positions in the hydrogen
slush storage and upgrading vessel In figure 2 are shown two capac:ltors
of different geometry and a time domain reflectometry transmission line.
The capacitors are total mass sensors, as will be shown, and the TDR
transmission line is d‘esigﬁ'e,d to detect and locate a dielectric discon-
tinuity such as occurs at a vapor—licjuid or 1iquid~slush interface.

In figure 3 are shown four more transducer systems, making a
total of seven for which data were obtained.. Represented at the left are a
pair of microwave horns with faces 90 cm apart which give average density
of the fluid between them by means of a time-delay-induced frequency dif-
ference. Another pair of microwave horns located just below the top plate
of the dewar are for location of interfaces by means of a microwave reflec-
tion method. A third microwave system uses a pair of loop antennae in the
ullage space near the top of the dewai" and measures total mass by means
of a resonant cavity technique. Finally on the right side of the di'agram are
shown six carbon film sensors which give‘te'mperature (and hence density)
distribution and also can discriminate between friple-point liquid and

settled slush,
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Each of the seven instrumentation systems will be discussed in
some detail, and experimental results will be given. In a final section

we will compare the various methods and evaluate their potentiai.
3. Interface Location Methods

The methods best suited for vapor-liquid and/or liquid-slush
interface location are time domain reflectometry, microwave frequency
domain reflectometry, and carbon film sensors. These fhre_e will be

covered in the present section.
3.1 Time Domain Reflectometry
3.1.1 Brief History

Time Doma.in Reflectometry (TDR) techniques for mea"suring
transmission line discontinuities separated by one inch or less have been
developed[z-ﬂ in the last eight years. The pulse-eche _method has been
used for many years for location of faults in wide band trar_mmission
systems such as coaxial cables. The pulse-echo reflectometry as a
laboratory tool has had to await thf developfnent of fast rise time pulse

generators and sampling oscilloscopes.

In TDR systems a fast rise time (<120 picoseconds) step generator
launches a voltage step down the transmission line under investigation.
The incident and reflected waves at some particular point on'the trans-
mission line are _movnitored with a sampling escilloscope as shown in

figure 4,

N

The system immediately displays the characteristic impedance of
the line under test. Analysis of the display shows the nature of each dis-

continuity, which can be resistive, capacitive, or inductive.
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If the losses of the transmission line are negligible, the charac-

teristic impedance of the line is

Z = 7—1_6.— f (cross-sectional dimensions) (3-1)

where
¢ = dielectric constant of the medium between the
conductors, '
Equation (3-1) shows that the characteristic impedance of the
transmission line will change with either dielectric constant or cross-
sectional dimension. It is the change in impedance as a function of

dielectric constant 'that was used in the work to be described below,
3.1.2 TDR Experiments

Detection of the liquid-vapor interface of cryogenic liquids was
readily demonstrated. The ché,nge in dielectric constant of equation
(3-1) gives a change in characteristic impedance of the transmission

line such that

1 .
Z_ = —=——f (cross-sectional dimensions) (3-2)
L feL
1 . . .
Z__ = ————{ (cross-sectional dimensions) (3-3)
A% Jeo,.
v
and
y4
v

= (3-4)
L

Equation (3-4) is defined as the voltage standing wave ratio
(VSWR) of the two characteristic impedances of the liquid and gas as a

function of the dielectric constant., A similar impedance ratio



2y
ZS

(3-5)

exists at the liquid-slush interface.

If €, (Hy triple-point liquid) is 1. 252 and €g (0. 5 solid fraction
slush) is 1. 268, then a numerical calculation of VSWR shows that

ZL 1,268

——

Zs 1. 25

= 1,006, - (3-6)

™~

This impedance ratio is well within the sensitivity of the TDR

system and should be readily detectable. For the liquid-vapor interface

the VSWR is
Z.. .
v o [L252
. V1000 ~ 1119 (3-7)

This larger ratio has' been :used for liquid. level sensing.

A rectangular cross-section parallel-plane transmission line, as

represented in figure 5, was constructed. The dimension were

D = 10,16 cm
b = 2.54cm
w = 2.54cm
t = 0.152 cm,

These dimensions[S] give a characteristic impedance of approximately
61 ohms with gas d1e1ectr1c between the transmts sion line conductors.
The length of the line was 203 cm. ThlS hne was mstalled in the one-m?

vessel as shown in figure 2,
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Figure 6 shows three readily detectable levels of characteristic
impedance. These levels are calibrated in reflection coefficient units.
Zero reflection COieffiCielfl‘t is the reference level of 52 ohms in the trans-

mission line,

Reflection coefficient is related to the characteristic impedance

by the equation

1+T
M
Z = —— Z (3-8)
M 1 - FM R
where
ZM = measured characteristic impedance
I"M = measured reflection coefficient
ZR = reference impedance of 52 ohms,
Using equatio;i (3—8), the impedance level of the vapor dielectric
(Z’:V»), normal boiling point dielectric (ZNBP)’ and triple point dielectéric
(ZTP) were found to be
1+T
B v o 1+0.08 _
ZV =TT ZR = 1-008 (52) = 61 ohms,
V -
1+T : R
NBP 14+0.022 .. - "_
z = ——— Z_ = —————— (52) = 54. 3 ohms,
"NBP 1- FNBP ‘R 1 - 0,022 - : .
1+T
B TP _ 1+40.017 _
ZTP =TT T ZR = 1-0017 0. 017 (52) = 53. 7 ohms.
TP .
Using the relationship
“NBp [ °TP
Zrp *NBP

11



‘us80IpAl UT SIUBIDIIIO0D) UOTFOSISY UTRWIO( DWI],

wd ‘HLONIT ANIT NOISSINSNVU.L

*g 9and1g

ol 001 05

aIndIT INIOd 11dRdl

GINDI 3NITI0E TVINHON y

40dYA

LNIIIIA430D
NOLLDT 144
INI'T
NOISSINSNVY.L

12



and substituting the values of ZNBP and ZTP’ it is found that

NBP 54. 3
( Z > (53 7. = 1.02.

This ratio is correct for the dielectric constants of hormal—boiling—
point and triple-point hydrogen. The experiment shows that LHE(TP) is

readily discernible from LH with the TDR system.

2(NBP)
‘Triple-point LLHy; and 0. 5 solid fraction slush hydrogen have a

‘dielectric constant ratio of about 1. 01. The TDR was consequently tried

for possible detection of fhe liquid-slush hydrogen interface. However,

a liquid-slush intérface was not readily detected. Reasons for not detect-

ing the liquid-slush interface could be that the slush melted between the

transmission line conducf;ors, or ’the slush did not readily pack between

the inner and outer conductors.

Another transmission line is now being constructed. This line
will be made of stainless steel and will have different cross-section con-
figuration. Another attempt to detectthe liquid-slush interface with this
new TDR line will be made. | . In the meantime we are using a perforated
coaxial stainless steel TDR line to obtain reference flow rates from the

one-m? test vessel.

The standing wave voltage can be displayed as the vertical part
of an oscilloscope trace, where the voltage is proportional to the charac-
teristic impedance defined by equation (3-1). The horizontal displacement
of the oscilloscope trace will be proportional to the signal transmission
time, which in turn will be proportional to the effective length of the
transmisstion line. The vertical output can be used to start and stop a

counter in the period mode. In particular, the counter can be triggered

13



by the vertical voltage step which is reflected from the vapor-liquid
interface. The counter will then measure the period of signal trans-
mission through the vapor-filled part of the TDR line. As the liquid

‘level goes down, this period increases.

Figure 7 shows a typical liquid level vs. time plot which was
obtained during outflow from the one-m® test vessel. These curves are
generated by computer direct from data recorded on magnetic tape
during flow tests. The TDR »trechniqu-e is proving to be a very useful

tool in this work,
3.2 Frequency Domain Reflectometry

A second signal reflection method which can be used for interface
location is illustrated in figure 8. This method uses microwave signals
and does not require a transmission line. It therefore has the advantage
of simpler installation and better sampling of the total dewar contents,
but the possible disadvantage of spurious reflections or distortions from

surfaces or objects inside the dewar.
3.2.1 Theory of the FDR Method

With reference to figure 8, the microwave signal generator is
swept in frequency over its spectrum. The sweep generator output has
a sawtooth or ramp waveform so that a linear frequency versus time

output is produced by the microwave signal generator.

The microwave signal travels from the generator to the mixer by
two paths., If the electrical lengths of the two paths were identical, the
reference and test signals going into the mixer would arrive at the same
time, t,, and their instantaneous frequencies would coincide at all times.
But the test signal will arrive at a later time because this signal goeé

into the cryostat and a portion is reflected from the vapor-liquid interface,

14
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while another portion is reflected from the liquid-slush interface. Thus,
the signal reflected from the vapor-liquid interface will arrive at the
mixer at time t,. The signal reflected from the liquid-slush interface

will arrive even later, at time tg.

Because all input's to the mixer arrive at diffefenftimes, the
instantaneous frequencies‘( differ, as shown by the frecjuency vs. time
relationship on the figure. The mixer is essentially a prc‘aduct,aemodu-
lator, i.e., a device having an output signal which is thev product of sums
and differences, but all except the differences (f, - f5) and (vf1 - fy) are
filtered out. These are displayed on a spectrum analyzer and are
functions of the distances from the plane of the horns to the liquid and
slush planes. The relationship between distances and frequency is

Afi

L= CF

where ¢ is the average dielectric constant of the medium between the
horns aﬁd the interfaces, Afi is the meAasured‘ frequency difference, C

:th

is a constant, and {'i is the distance from the horns to the i'' interface.

3. 2.2 FDR Experiments

A pair of microwave horns were located above the liquid near the
top of the one-m® test dewar as shown in figure 3. Figure 9 shows the
relation obtained between frequency shift and liquid level for both
nitrogen and hydrogen. The uncertainty in visual liquid level (ab'scis sa)

is one or two cm, which contributes significantly to the scatter of the data.

Slush level data are shown in figures 10 and 11, which are oscillo-
scope pictures of the spectrum analyzer trace. The horizontal scale is

actually frequency, but the corresponding fluid depth scale is shown,

17
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with the bottom of the dewar (0 cm) at the right end of the traces. All of
these pictures wer.’e taken with 180 cm of liquid in the dewar; the liquid-
vapor interface is shown by the large amplitude spike at the left side of

the pictures.

The top picture of figure 10 was obtained with the cryostat full of
normal-boiling liquid hydrogen. Responses from the vapor-liquid inter-
face and from the dewar bottom are clearly shown. The small spikes

between these two extremes are probably reflections from bubbles.

The bottom picture in figure 10 was obtained with 40 cm of settled
slush in the dewar. Three separate density regions can be distinguished.
From zero to 40 cm the fluid is settled slush. From 40 to 90 cm we have
homogeneous triple-point liquid, giving a very low reflected signal. This
region of uniform density corresponds accurately to the presence of a
heavy copper shield which contacts the lower 100 cm of the dewar wall.
Above the 100 cm level, the liquid is stratified by convection currents.
These are caused By heat leaks and the warmer normal-boiling liquid at
the surface. Several significant liquid-liquid interfaces apparently were

present between 90 and 180 cm at the instant the picture was taken.

Figure 11 shows pictures taken 10 minutes and 25 minutes after the
lower picture of figure 10, After 10 minutes (top picture) the density dis-
tributions are still changing. The liquid-slush interface is still apparent
at 40 cm, but below this interface the slush is more homogeneous (lower
signal) than before. The lower picture of figure 11 shows contvinue_d strati-
fication, with a well-defined liquid-liquid interface at 120 cm, the liquid-
slush interface still present, and indication of stratified layers present

also in the settled slush.

This method of locating regions of changing density in cryogenic
fluids appears to have high potential for liquid level indication, and also

is fairly good for discrimination of a settled slush level. The readout
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instrumentation was not developed beyond the feasibility stage because

of time and funding limitations,
3.3 Carbon Film Sensors

Sophisticated point sensors based on change in electrical resis-
tance have been developed by deposition of thin carbon films on substrates
of glass or sapphire. A power pulse followed by interrogation of the
decay transient yields temperature and fluid phase information. " Princi-
pal advantages over prior technology of this type are high signal level

and fast response time.

The method has been extensively tested for liquid-vapor interface
location in hydrogen and nitrogen. Tests performed under the present
program have shown that the sensors can also distinguish between triple-

point liquid and slush for both nitrogen and hydrogen,

Two carbon film sensors were tested in the density reference
system. There was a significant difference in sensor response between
the triple point liquid nitrogen or hydrogen and the settled slush, thus
indicating that these sensors have good potential as settled slush level
indicators. The response to a constant current pulse for both Pyrex and
sapphire substrates in hydrogen is shown in figure 12, The initial tran-
sient is similar in both triple point liquid and settled slush, indicating
that there is a liquid boundary layer surrounding the sensor in the slush,
The sensor then attains a higher temperature in the slush, as indicated

by the lower voltage across the sensor,

There appears to be an oscillation in the temperature of the sensor.
This oscillation occurs at about eight cycles per second, independent of
the substrate or power input between 0. 05 watts and 0. 5 watts. These
effects in slush were not completely understood and further tests were
designed to clarify the heat transfer which occurs between the sensor and

the slush.
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Figures 13 and 14 show temperature responses obtained for six
unmatched carbon film sensors which were located in the one-cubic-meter
dewar, as shown in figure 3. The temperatures were obtained by main-
taining the liquid hydrogen in equilibrium with its vapor at various pres-
sures. The temperature response curves are useful for analysis of the
slush-discriminating transients. These curves also make possible a
quick and convenient check of liquid hydrogen temperature, and therefore
density, in the vicinity of each sensor before reaching triple-point.

After the hydrogen is pumped to triple-point and solids are formed,
stratification of temperature and density develops quickly in the liquid
above the settled slush; the resistance-temperature curves have proven

useful in following this action.

The sensors were all able to discriminate between triple-point
liquid and settled slush by virtue of change in transient characteristics,
but the regular 8 Hz oscillatory transients previously observed for the
two sensors tested in the Density Reference System were not reproduced.
The sensor mounting was changed so that the sensors were at least three
inches from any supporting brackets and the oscillations reappeared
although they were not as pronounced and regular as those observed in

the density reference system,

Work on the carbon film sensors and the heat transfer mechanism

causing the oscillations is being continued under a contract extension.
4, Total Mass Gauging

The resonant cavity method is uniquely well-suited for total mass
gauging in a tank of simple geometry which contains a minimum of inter-
fering penetrations or irregularities. Capacitance probes respond to the

total mass of fluid between the electrodes, and hence will give total tank
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content after multiplication by the proper tank-geometry factor or
series of factors. The microwave propagation method of dielectric
constant measure is approximately equivalent to the capacitance methods,

with the advantage of easier representative sampling of the tank contents,
These three methods will be discussed in the present section,
4.1 Resonant Cavity Experiments

Experlments utilizing the resonant cavity method of mass gaugmg
were performed in smaller cylindrical and spherical vessels as Well as
in the one-m?3 upgrading vessel. The method of the expemments is
illustrated in figure 15. The TE,, ; mode was excited and detected by a
pair of 0. 5-inch rectangular ''loop'' antennae. If the quantity of dielectric
material in the container changes, the resonant frequency of the cavity
changes. The obJectlve is to measure the resonant frequency to determine

the quantity of fluid ‘present,

The resonant frequency was first measured with the container
empty. The rﬁe-asure’ment starts with the switch in the 'test' position.
The signal frequency was adjusted until maximum amplittide was shown
on the spectrum analyzer. Then the signal source was switched to the
frequency meter and the frequency read as accurately as possible. This
procedure was repeated as increments of liquid were added or removed
from the container, For the smaller containers, the reference mass
was determined either by placing the vessel on a platform balance during
the experimenf or by making an independent measurement of the liquid
level.

Figure 16 shows results obtained with liquid nitrogen in a 0. 05 m®
cylindrical container having a diameter of 33 cm, The periodic nature of

the response is caused by interference with waves reflected from the
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vapor-liquid interface. The effect of the reflected signal can be calcu-

lated; a number of calculated points are shown on figure 16.

Sensitivity of the system was limited by the frequency-measuring
ability of the equipment used. This was approximately 100 kHz. Since
empty-to-full resulted in a frequency change of about 110 MHz, the
sensitivity was on the order of 0. 1 percent of the total mass on the

steeper portions of the curve and less on the flat portions.

Sloshing of the liquid in the partially-filled container had a
negligible effect on the resonant frequency. Agitation of the liquid surface
changed the amplitude of the signal, but large variations in amplitude
are tolerable in this arrangement because the mass is measured in terms

of frequency.

A second experiment, using a spherical container, is illustrated in
figure 17. The cavity was a copper sphere having a diameter of 48 cm.
A single straight wire about 1 cm long was used as an antenna to simul-
taneously excite the cavity and detect the resenant frequency. The sphere
was insulated with a hollowed-out block of rigid foam, and the ''dewar”

placed on a platform balance to obtain the reference mass.

Results are shown in figure 18. Sensitivity was similar to that
obtained with the cylindrical cavity, primarily because the same fre-
quency meter was used. Repeatability of the measurement was limited
by inaccuracy of the balance weight setting and by accumulation of
liquid air in the foam insulation. The largest spread in frequency data
during three empty-to-full runs was 0. 3 percent, The '"'full' condition

was about 45 kg (100 1b) of liquid nitrogen.

The third experiment with the resonant cavity method was carried

out in the one-m?® liquid and slush hydrogen lipgrading vessel, A pair of
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small loop antennae were located under the top plate of the dewar, as

shown in figure 3, " The experiment was designed to:

1) Determine if a large vessel containing various penetrations
and obstructions can be resonated;

2) Observe how the resonant cavity technique responds to

changes in density of the fluid in the vessel.

Results obtained for near normal-boiling and near triple-point
liquid are shown in figure 19. It is apparent that resonance was achieved
in spite of the unfavorable conditions noted above, and a curve similar to
those previously repoi‘fed for liquid nitrogen in uncluttered cylindrical
and spherical containers was obtained. The expected curve would not.be
as regular as that shown 1n figure 16 because of the many interfering sur-
faces inside the cavity. Marginal resolution of the frequency meter ac-
counts for much of the data scatter. A difference was obtained 'betweeh
the two liquid densities, i.e., lower resonant frequency for higher density

at a given liquid level, but scatter prevented any more quantitative evaluation.
4.2 Resonant Cavity Analysis

A considerable amount of mathematical analysis of the resonant
cavity method of mass gauging was done during the contract period.
Many of the mathematical details will be found in Appendix A, The
present section outlines the calculations and discusses the conclusions

which were reached.
The following properties have been established:

1) In a loss-free cavity uniformly filled with a fluid with dielectric

constant, ¢, the resonant frequency is given by

£ _ np (4-1)
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where a is the radius of the cavity and unp are eigenvalues which depend
only on the mode of vibration, If the magnetic permeability, u, is known
then the frequency of each mode is related to ¢ and ¢ is related to the

density, p, by the Clausius-Mossotti relation,

e - 1
e+ 2

= PP (4-2)

The volume, V = %naa, is known; it follows that the resonant frequency

of each mode determines the total mass by

-fz aze o

N
CV(U.B - 2f9 a e

) (4-3)

2) For the uniform cavity, the field configurations for each
mode have Eeen calculated in closed form and the corresponding eigen-
values unp have been tabulated for ten of the lowest frequency modes.
The resulting calculated values for fnp (for the three lowest TM modes
and the lowest TE mode) have been verified experimentally to within
one percent, using an air-filled 48 cm diameter copper cavity at room
temperature, The modes in spherical geometry are highly degenerate,
resulting in widely spaced frequencies among distinctly different lower
order modes. This makes it easy to monitor several of the lowest order
modes simultaneously as the cavity is being filled without the bothersome

effect of '"mode crossing'' which is prevalent in other geometries.

3) Under normal gravity and two-phase fill conditions, the
frequency vs, mass for liquid nitrogen has been obtained on the 48 cm
diameter spherical dewar (figureés 17 and 18) for the second lowest

[91

foot diameter "nearly spherical'' dewar for the lowest three TM modes,

TM mode, This data has also been obtained by Lockheed on their 5-

35



as shown in figures 4-7 of thei¥ report. ‘The data scale. qualita-
tively rather well from the 48 cm cavity to the 5-foot cavity, Small
quantitative differences are probably due to the geometry of the 5-foot

cavity being a short cylinder with spherical caps.

4) In order to anticipate scaling effects, the Q of the cavity was
calculated as a function of cavity radius in the limit Q >> 1, For the TM

modes

anp = | /f-gﬁoa [ﬁ; - Elé—z—t—)l—é)-/z (4-4)
. Unp

and for the TE modes

- B -
anp = J:noaunp (4-5)

so that Q increases with increasing radius. This is borne out experi-
mentally by the fact that the resonant line widths for the Lockheed 5-foot
cavity (figure 4-6 of the Lockheed report) appear at least as narrow as the
line widths for the 48 cm. cavity. If there are detrimental scaling effects,
they must be found in either the coupling to the cavity or the external

circuitry.

5) For zero gravity (spherical symmetry) and two-phase (vapor-
liquid) conditions, the frequency vs. mass has been calculated in closed
form for constant density in the liquid phase, A compﬁter program has
been written which plots the zero-g frequency vs, mass for the TM modes.
It is assumed that liquid will be next to the walls of the sphere, with vapor
in the center. Plots have been obtained for both liquid nitrogen and liquid
hydrogen under various densities for theé first four TM modes (see figs. Al
through A5).  Although the '"completely full' frequencies differ between
hydrogen and nitrogen according to equation (4-1), the normalized curves

differ very little.
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Qualitative comparison between these curves and the normal g ex-
perimental data gives a rough idea of the effect 6f changing the geometry of
the liquid (see fig. A5). The discrepancy between these two geometries, for
the most mass values, goes down for the higher modes. This is due to the
tendency of the high field regions in the higher modes to be partitioned
more uniformly throughout the cavity, However, except for the lowest
mode, the curves for these two geometries cross, causing the discrepency
at some particular mass values to be smaller for lower modes than for
higher modes. These conclusions are in qualitative agreement with the

zero-g simulations performed by Lockheed for cylindrical cavities.

6) A small silver cylindrical cavity was partially filled with
liquid nitrogen and shaken vigorously. This resulted in only a small
jiggle in the resonant frequency. This is in qualitative agreement with
Lockheed's data which show that sloshing gives a relatively small dis-

crepancy as compared to more gross geometry changes.
4,2, 1 Conclusions

1) If the fluid geometry is known and either the volume or density
is known, then the total mass can be determined unambiguously from the
resonant frequency of any mode provided that a proper calibration curve

is given,

2) If the fluid geometry is known and both density and volume
are unknown, there is an intrinsic uncertainty in the resonant frequency
vs. mass relation which is on the order of 20 percent of the uncertainty
in the density. If more than one mode is measured simultaneously, it is
sometimes possible to completely eliminate this uncertainty (see Appen-

dix A).
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3) If the geometry is not known, then for a given frequency in a
given mode there is an intrinsic uncertainty in the‘total mass, This un-
certainty appears to be different for different modes. For each mode,
there will be two ﬂ-uidﬂgeometries which wifi give the upper and lower
limits of uncertainty. These geometries are not' known, but it is
certain that they will be hard to simulate in practice, especially for the
higher modes, and therefore these limiting geometries will be highly
improbable fluid geometries. Hence, there will be practical limits to the
uncertainty in mass which will be obtained by excluding certain highly

improbable fluid geometries. This practical uncertainty will be smaller

than the theoretical uncertainty.

If the uncertainty is intolerable then some effort must be made to
determine the geometry, at least approximately. Three methods have

been suggested:

(1) Multiple coupling points, For example, suppose three coupling
antennae were located in three orthogonal directions at the surface of the
sphere, If all three points induced the same resonant frequency, then
spherical symmetry would be assured. If the three coupling antennae
induced different frequencies then it seems reasonable that certain
asymmetries could be deduced which would decrease the uncertainty in

total mass.

(2) Multiple Modes. Since each mode has a different field
geometry it seems reasonable that geometry effects can be deduced by
comparing the resonant frequencies of two or more modes, This is already
apparent in discriminating between normal-g and zero-g geometries. The
mode degeneracies of spherical geometry make this approach more
feasible for spherical cavities than for other geometries. It should be
emphasized that this procedure is not the "'mode counting'' technique used

by Bendix[l O.].
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(3) Point sensors such as carbon film phase discriminators
could be placed at points in the cavity where the field is e:?pected to be
significantly higher or lower than the average field. These would help
determine the geometry as well as provide a weight function for the

determination of frequency vs, mass,

Specific methods for synthesizing two or more information inputs,
as required in all of these geometry-determining procedures, have not
been worked out in detail. The methods are given as suggestions for

further work on the resonant-cavity mass-gauging techniques,
4, 3 Capacitance Methods

This section is a study of mass gauging by capacitance methods.
The first part will be theoretical analysis of two simpie capacitance
configurations. The second part will be a discussion of the capacitors

used and results obtained for mass gauging in the one-m?® test vessel.
4.3, 1 Mass Gauging by Capacitance Measurement

Modern capacitance-measuring bridges and development of the
guarded three-terminal capacitor design have made it possible to mea-
sure capacitances with an accuracy of +0. 01 percent in the presence of
1000 times as much lead capacitance., These advances make it possible
to obtain the capacitance between two or more widely separated electrodes
in a storage vessel. The effective dielectric constant obtained by these
measurements will depend mainly on the total mass of dielectric within
the container, but also, to a lesser degree, on the geometrical config-

uration of the dielectric with respect to the geometry of the electrodes.
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4.3.1.1 Dewar Gauging Experiment

A simple test was conducted to investigate the feasibility of deter-
mining total storage vessel content by means of capacitor electrodes
fastened to the inner walls. A 33 cm diameter by 61 cm deep cylindrical
stainless steel dewar was placed on a platform balance. Insulating paper
and aluminum foil electrodes were taped to the inside. Each electrode
was 34, 5 cm wide by 40, 6 cm long. Air capacitance was measured and
found to be 1. 219 pf. When the vessel was filled with liquid nitrogen, the
capacitance was 1. 790 pf. The liquid level sensitivity was found to be
0. 012 pf per cm, and a change of 0. 002 pf could be measured. Thus, a
liquid level change of 1. 7 mm could be detected, representing 0. 51 per-

cent of the volume (and mass) of the liquid ‘bracketed by the capacitor,

A plot of mass vs. capacitance was obtained; this is shown in
figure 20, Except for a slight fringing effect near the top and bottom of

the capacitor, the plot is linear within the accuracy of the experiment,

One reason for performing the above experiment was to explore
the effect of the non-uniform electric field by moving a styrofoam ball
(simulating a vapor pocket such as might form at low gravity) around in
the liquid between the electrodes. Results were interesting and led us
to initiate some calculations of various geometrical configurations of
the dielectric for several geometries of the electrodes. These calcu-
lations are given below and should lead to a better understanding of the

problem of mass gauging by capacitance methods.
4.3. 1. 2 Geometrical Effects

As previously stated, the geometrical configuration of the dielec-
tric with respect to the geometry of the electrodes represents an uncer-

‘tainty between the capacitance and the total mass., We will discuss two
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methods by which this uncertainty can be minimized: 1) by placing the
electrodes so that the electric field in the absence of this dielectric is

as uniform as possible over the container volume; and 2) by placing point
phase sensors in the regions of the container where the field is signifi-

cantly higher or lower than the average field.

It is shown in Appendix B that upper and lower bounds on the

capacitance between two electrodes are given by
NCRZRES { |ve,|2av
s® ° c v °

< C < (4-6)

Lo 12
SVK |ve, |2av o Sscpchpo-dS

where C0 is the empty space capacitance, P, is the empty space potential,
V is the open space not occupied by the electrodes, S is the surface
bounded by electrodes, and K is the dielectric constant which may vary

~ throughout V; Ve, is the empty space electric fieid. Several qualitative

conclusions may be obtained from these inequalities:

1) The upper and lower bounds given by (4-6) are the ''best
possible'' when the geometry of the dielectric is completely unknown; i. e.,
there are electrode geometries such that for any given dielectric volume
the upper and/or lower bounds may actually be attained depending on the

geometry of the dielectric,

2) For a given volume of dielectric the difference between upper
and lower bounds is minimized when the electric field, cho, is uniform

throughout V.,

3) When V is partially filled with dielectric and the field is not
uniform, both the upper and lower bounds are the highest when the dielec-

tric is in the low field region. This conclusion makes it possible to
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decrease the uncertainty in capacitance vs. mass when any information

at all is given concerning the dielectric geometry.

4) For a given geometry, the difference between upper and
lower bounds decreases and approaches zero as the dielectric suscepti-
bility, ¥, gets small (K =1 + y). This minimizes the uncertainty for

dielectrics such as liquid hydrogen where ¥ = 0. 23.

These conclusions will be demonstrated for two simple geometries,
the parallel plate capacitor and the concentric sphere capacitor, and are

expected to hold for more complicated electrode geometries.

Parallel Plate Capacitor

Suppose the surface area of each plate is A and the distance be-
tween plates is d, where d is small enough that edge effects may be
neglected. The volume V is equal to Ad. Let a dielectric with uniform
dielectric constant K fill a volume V', Let f be the fraction of the total
space occupied by the dielectric (f =V '/V>. VCpo is calculated by let-
ting ®, = 0 on one plate and P, = V¥ on the other plate. It follows that
cho = {/d uniformly throughout V. (Here, because edge effects are
neglected, it is assumed that vepo = 0 outside of V,) The integrals in

(4-6) are easily evaluated:

S K|ve_ |2V (\lx/d)’a[KV' + (V- V')]
v

|3 '

( 2
§ogv0yas = Hha = ey, (4-7)
S

43



The inequality (4-6) becomes

K
f+ (1 -f)K C
o

< < < Kf + (1 - f).

Expressed in terms of the susceptibility, x,

1ty &
1+(1-f)xSC < fx.

(4-8)

(4-9)

These bounds are plotted in figure 21 for values of ¥ corresponding to

LH, and LN, showing that the uncertainty in C is small if y is small.

The upper and lower bounds are assumed when the geometry of the

dielectric is as in figure 21(a) and 21(b), respectively.

For example, in

figure 21(b), since { = Ichpdx' and KV is continuous at the dielectric

interface, it follows that

1
£+ (1 - HK

1]

Ve
K

T+ (1 - DK

and
; K,V@fz v
v d

2
SVIchOI dv

£
C
o

- ] [g de+g szx]

V[f + - K

I : SR
T T+ (1- DK
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Similarly, the upper bound is obtained directly from figure 21 (a) by

noting that for this case, v = Ve = y/d uniformly throughout V.

Concentric Sphere Capacitor

Suppose the center ball has radius a and the outer shell has radius
b. The total volume inside is V = 4/3 7w (b3 - a®). Let r be the radial
distance from the center and 9, = V at r = a and ®, = 0 at r = Db, then
Ve, = k/r® where k = Yab/(b-a). Suppose the capacitor is partially filled
with dielectric of volume V' and dielectric constant K. When the dielec-
tric is in the high field region, near the center ball, the dielectric forms
a hollbw sphere of inside radius, a, and outside radius ro = [:(b3 - ad)f

1 . )
+ a8 ]3, where f= V'/V. The integrals in (4-6) become

r
o]

2 b 2
\ Klvg |24V = 4n § KSzdr+4n( Sar
v “a Cr

1

\ = . 3 _ 2 (b -a)
Sscpovn:po ds = yop-4ma® = 4nke 2R
and the bounds for C become
b-a _1.. ._1._ <_1._ l\
K ab < C < K(a ) ro) +\ %o - b./
l L ._1._. l C -2 ’
<a‘r>+K<r —b> © ab

o o

or in terms of the susceptibility, ¥,

r -a

1 +% C b o )

b-r SC Sl—l-'xr <b-a
a o o o

1+Xr (b-a>

o

46



Similarly, when the dielectric is in the low field region near the
outer shell, the dielectric forms a hollow sphere of outside radius b

_1_ .
and inside radius r, = [bf’ - f(h2- aa)]s. The bound's for C become

b-a et *4_1;}' -5
K% | .. C _Na T TR(TI %
LIy, L.y °¢ b-a ’
K<a T or. + (r, " b/ © ab
i i
or in’_cerms of X
b-r
1 +X v C i( i)
r., -a SC Sl_*_Xr, b -a :
N G, B i
Xri b-a

These bounds are plotted in figure 22 for a/b= 5 and y = 0. 23, The’jt
high and low field graphs represent the extr.emes"-in éapacitance as a
function of volume fraction f. It turns out that the éapgcitance can be
calculated in closed form in both the high and low:field cases and th’éﬂ:

in each case the lower bound gives the exact value of the capacitance.

To illustrate the facility of the inequalities in (4-6) where it is
difficult to obtain the capacitance explicitly, it is interesting to obtain
the bounds for the case where the dielectric fills a spherical chord (see
figure 22(b). This situation applies when the sphere is in a gra{rit'atio-nal
field and is being filled with a dielectric liquid. In this case, the integrals
in (4-6) become

. b o' o .
241 k :
S Klvcp | dv = ZTTS g K—5 sin6dor
o) . o r
v “p Yo
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where 6/ = cos~™* d/r and p =max {a,d} where d is the distance from

the center to the chord surface,

- b A | |
S K|ve, |?av = znkﬂg dr‘[%(l - %)ac;%(l +‘%>], etc. -
\' : , p '

These integrals are easily evaluated and the bounds on C for this case

are also plotted in figure 22 as a function of volume fraction of liquid.

Two Phase Dielectric in a Uniform Field (Total Mass Gauging)

Suppose a parallel plate capacitor of volume V (neglecting end
effects) is partially filled with a two phase dielectric with dielectric
constants K, and K, which are assumed to follow the Clausius-Mossotti

relation

K-1
K+2

:kp

where p is the density and k is a constant. It follows that

k. . 2kpy +1 __ 4ko,
1T 1 -2kpy ¥ T 1 - 2kp,

k. . 2kpgp +1 __4kpg (4-10)
2 T 1 _2kp, % T T 2kp,

where p; and pp are the densities of the two phases. Let V, and V, be
the volumes of the two phases and suppose fordefiniteness that Py = Pa2j

let m, and m, be the total mass of each phase.
-The upper and lower bounds for C become

1 L S _ KWy +Kavg L V- (Vi +V3)
Yy Kg V- (Vy+Ve) C, v v v :

K,V K,V A\

49



Since Vy = m,/p, it follows that

1 C p.CE %] . Xa2mp
m - <S-— <1+ .
1 - [Jamy  Xagme 7 C PV peV

Kyps V. KapoV

Since p; = p,,the following ineq'ualiti_es hold using equation (4-10):

X1, Xa
P Pz

Ko X .
Kip,y Kzpz

So that in terms of the total mass M = m; + m, it follows that

1 C X1 M

- < — < 1 4+=L.—

1__Xl.__. M Co pp v
Kipy V

These bounds on C are the same as those plotted in figure 21 where ¥ is
replaced by %, and f is replaced by m/P,V. In this case the upper and
lower bounds can be assumed only if the entire dielectric is in the high

density phase.
4.3.2 Capacitdrs in Cubic Meter Test Dewar

Capacitors which were installed and tested in the upgrading dewar
are shown in figure 2. | One was a parallel plate design, which was made
to share one plate with a TDR transmission line. This capacitor reached
almost to the bottom of the dewar and always extended above the liquid
surface. The ''empty-space'' capacitance was 193 pf. Spacing between
the plates was 1, 27 cm; previous experience in the Density Reference
System has shown that this spacing allows relatively free passage of

moving solids.
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A similar spacing was maintained between the electrodes of the
"rod-to-blade' capacitor. This unit was designed with one curved and
one round electrode, as shown in figure 2. Both capacitors were positioned
to be paralvlél to the movement of ﬂuid in the vessel during mixing.

"Empty space'’ capacitance of the rod-to-blade was 68. 949 pf.

Capacitance values for both capacitors are shown in figure 23
for triple-point and normal-boiling liquid hydrogen, and for 0. 5 solid-

fraction slush,

The top of the rod-to-blade was 162 cm above the dewar bottom,
so the dielectric was all liquid or slush at levels higher than this. When

totally submerged in triple-point liquid, the capacitance is
C = Ae = A (1.2516),

The measured value was 86.296 pf, so A = 68.949 pf. This is the
""empty space' capacitance at the triple-point temperature of 13. 8 K,
and makes possible the calculation of dielectric constant from capacitance

measurement of any unknown slush mixture.

Conversion from meagured capacitance to density is by way of the

Clausius-Mossotti funiction

which can be written

_ l+2pp _(1-Pp)+3Pp _ ,  _3Pp

1-Pp 1-Pp T YTy TP

The polarizability P- increases about 0. 1 percent between triple-point

liquid hydrogen a,rid 0. 5 solid fraction sluSh[g]. The variation in ¢ is

given by
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‘ a-Lh e _ 3pdP + 3Pdp
de = aP>dP+<ap>dp N (1 - Pp)®

Triple point 1icjuid‘ density is 77.017 kg/m?; 0.5 solid fraction slush density
is 81. 526 kg/m®. The corresponding polarizability values are 1. 0046 and
1. 0056 cma/g. Using the average of these values for p and P, and the
difference between the extremes for dP and dp, we have

3 % 0.07927 x 0. 0010 + 3 x 1. 0051 x 0. 00451
(1 - 1.0051 x 0. 07927)2

de =

2.81 x10-% +1.61 x 10-2,

This is the change in ¢ which results when hydrogen changes from
triple-point to 0. 5 solid fraction slush. The first term is due to the chanée
in polarizability; the second term is due to the change in density. If we
start from the triple-point liquid value of ¢ = 1, 25158, the polarizability
‘term accounts for a change in ¢ of 0, 02 percent, while the density térm

accounts for a 1. 3 percent change.

The above analysis applies when all of the dielectric between the
capacitor electrodes is either liquid or slush, i. e, when the rod-to-blade
capacitor . is totally submerged, and when the density distribution is uni-
form. As soon as the liquid level drops below the top of the capacitor,
the capacitance depends on volume between the electrodes, i.e., on liquid
level, as well as on €, In our rod-to-blade capacitor, a change of one cm
in triple-point liquid level changes the capacitance by 0. 10 pf. The up-
grader cross section is 4560 cm®, so 0. 10 pf represents a triple-point
liquid volume outflow of 4560 c:rrrls or 351 g. The capacifance is easily
read to the nearest 0. 01 pf, which represents a mass change of 35 g, or

about 0, 06 percent of the full'vessel,
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Principal uncertainties in the mass measurement by this method
result if the density between the capacitor electrodes is not known exactly.
We have made an analysis of the uncertainty which results from an unknown
density distribution; this uncertainty is shown to be small, indicating that
the capacitor tends to integrate over mass rather than volume. The re-
sults are given in Appendix C.

4.4 Microwave Method for Dielectric Measurement

The capacitance measurements described above result in mass
determination because the dielectric constant of the fluid between the
capacitor electrodes can be derived from the capacitance. The mass
then follows, with the uncertainties discussed in Appendix C, by use of

the Clausius-Mossotti relation.

An alternative method for measurement of dielectric constant is
based on time delay in propagation of a microwave signal. The density
then follows from the C-M relation, and the total mass of fluid in the
sample coiumn can be calculated in a manner analogous to that described
for the capacitance method. Two advantages of the microwave method
are:

1) The sample is an unrestricted column of fluid between two
microwave horns which can be sbaced any desired distance apart.

2) ‘The output signal is a frequency, which can be easily trans-
mitted to a data center or, alternately, can be converted to a proportional

voltage signal.
4. 4.1 System Theory

The method is illustrated in figure 24. The microwave signal
generator, shown in figure 24, is swept in frequency over its spectrum.,
The signal travels from the generator to the mixer by two paths, the
reference and the test channels. It is assumed that both paths are dis-

persionless.
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The instantaneous frequencies of the two signals fed into the
mixer are designated f and £f’, and both of them vary linearly at the
same time rate. But their frequencies differ because the cryogenic

fluid delays the signal going through it.

The test signal undergoes a total phase shift given by

_de _ 2 )
-dw-ce, (4-11)

where t is the group delay time, 2 is the distance between horn faces,

and c is the free space velocity of propagation.

A finite change in the dielectric constant of the fluid produces a

finite change in the group delay time,
(4-12)

The frequency of the signal generator is swept over the bandwidth,
(f5 - f1) in time ts. The average rate of change of frequency is
Af (g - fy)
T : . (4-13)
s
The difference between the instantaneous reference and test
frequencies is then

_(fg - f1)d
A = 353;;7§r— Ae (4-14)

from which

thsfé-

R S
A - )2 2

£, (4-15)
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The mixer, then, is essentially a product demodulator. Its

outpuf spectrum contains f and f’ frequency sums and differences, but

all except the difference, Af, are filtered out.

An analysis of the variation in equation (4-15) can be made to

estimate the accuracy with which the change in dielectric constant (Ae)

can be measured. Typical values and associated uncertainties are as

follows:

Af

(fp - £1)

i

If

10-® seconds; dt_ = +10-5seconds, the sweep period
of the signal generator.

3 x10*cm/s; dc = #1 cm/s, the free space velocity
of electromagnetic radiation.

1.25158, /e = 1.119; d/e¢ = #1072, the dielectric
constant of triple-point liquid hydrogen.

50 hz; d(Af) = #0. 1 hz, a typical frequency shift and
the uncertainty of the counter used.

3 x 10° hz; d(f, - £f,) = £107, the frequency sweep
of the generatbr‘

90 cm; 44 = +0. 2 cm, the distance between horn

faces,

The root mean square error is

d(Ae)

Ae

rms

[Go=) +C J + G + (G35
10-3 3y 1010 1,119 50
107 >2 2 x 10 =1~ ]
3 ¢ 10° )

1
(107% + 10~ + 8 x 107 + 4 x 10~ +10-® + 5 x 107%)%

1.1 x 102 = 1,1 percent,
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Most of this error in the A¢ measurement results from uncertainty in
the sweep period of the signal generator. Conversion from Ae to Ap,
i.e., from change in dielectric constant to change in density, is again
by way of the Clausius-Mossotti function, as explained in section 4. 3. 2

and Appendix C.
4. 4. 2 Experimental Results

Figure 25 shows data obtained in the one-m® upgrader for various
levels of settled slush. The microwave horn faces were 90 cm apart;
th>e lower horn face was 20 cm above the dewar bottom. The settled
slush depths shown in figure 25 refer to distances above the lower horn
face. The balance of the sample column, reaching to the upper horn, is
assumed to be triple-point liquid. The effective dielectric constant thus

becomes a direct function of the settled slush level.

The system is normalized, i.e., Af is set equal to zero, with
triple-point liquid between the horns. When slush is introduced, a fre-
quency shift proportional to the change in effective dielectric constant is
observed, as showﬁ in figure 25. The mean or effective density then
derives from the Clausius-Mossotti function; the deviation from linearity
of ¢ vs. p in the C-M function is about 0. 8 percent over the density

range from triple point liquid to freshly settled slush,

An independent estimate of density can be made by assuming a
density for settled slush based on previous experience. A reasonable
estimate for fresh settled slush is 81. 1 kg/m®, i.e., a solid mass frac-
tion of 0, 45. The average density of the column then becomes the weighted
averages of the triple point liquid and settled slush depths. A density
scale based on this assumption is shown on the right side of figure 25.

This is simply another way of expressing the settled slush depth, and the

two vertical scales are proportional to one another., A test of the method
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is to plot the frequency shift against either vertical scale and observe

the scatter of the data points and the deviation from linearity. The data
indicate that the method can be used to locate a settled slush level to
within about five centimeters if the above assumptions regarding liquid
and settled slush densities are made. Con\}erseiy, if an unknown

density distribution is assumed, the mean density can be determined

with a sensitivity of a few tenths of a kg/m?®. It appears, at this point,
that some refinement of readout instrumentation is all that would be
required to make this method as simple and reliable as the more common

capacitance measurement method.

5. Summary

The contract objectives were:
1) Explore methods for detection of settled h‘ydrogen slush

levels, and

2) Provide a method or methods for continuous inventory of

hydrogen slush during storage,

Several approaches were examined for each objective, and it was

experimentally verified that both objectives could be ac-complish/ed.
5.1 Settled Slush Level Detection

Carbon film sensors and a microwave method known as frequency
domain reflectometry were both able to discriminate between triple-
point liquid hydrogen and settled slush in a storage vessel. Accuracy of
the interface location depends strongly on age and quiescence of the slush,
i. e., on the sharpness of the density gradient. In well settled slush,

carbon film sensors can locate the interface to +0. 5 cm or less.

We did not go beyond feasibility demonstration for the microwave
FDR method. Oscilloscope patterns indicated a liquid-slush interface

uncertainty of about 5 cm.
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The time domain reflectometry method was unsuccessful for slush
level detection within the contract perio&. T(his method is being plifsued,
however, with lower thermal conductivity materials and a modified coaxial
design. indications are that a successful instrument of.this kind willVlbe
developed. | |

5.2 Total Mass Gauging

The resonant cavity method of total mass sensing has many attrac-
tive features, particularly for containers with simple interior geémefry.
It was eXperimentally shown that the contents of a 48 cm diameter spherical
vessel could be determined with an uncertainty of less than 0. 5 percent
of the full mass during several empty-to-full tests with liquid nitrogen.
Encouraging results were also obtained in two cylindrical vessels, and

extensive theoretical analyses were performed.

Experimental and theoretical studies of total mass gauging by
capacitance methods show these to be the simplest and most accurate
methods which are immediately available. Total mass of slush or liquid
hydrogen between the capacitor electrodes can be determined with an un-
cert.ainty of about 0. 3 percent. Total mass in the storage tank then
follows with similar accuracy if the sample between the electrodes is
representative, and if the tank geometry is well defined. A capacitor
which reaches from top to bottom of the tank is suggested, and an elec-
trode configuration which allows free passage of the slush is essential,

Such a capacitor was developed and is now in regular use at NBS.
5.3 Technology Transfer

A specific result of this contract work has been transfer of tech-
nology from NBS to a large hydrogen slush generation, storage, and flow
facility which is under construction at the NASA-George C. Marshall

Space Flight Center. This facility requires instrumentation for liquid
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and sldsh density determination, liquid and settled slush levels, and
temperature distribution profiles, These tank gauging systems will be
installed in a 11, 4 m® (3000 gallon) combination weigh tank and generator
and in a 87 m?® (23,_000 gallbn) combination slush storage and upgrading

vessel.

The NBS Cryogenics Division will provide design drawings and
consultation for installation of the rod-to-blade vertical capacitors in
both vessels, carbon film ladders in both vessels, and a time domain

reflectometry line in the 87 m® storage and upgrading vessel.
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Appendix A,
Total Mass Gauging in a Spherical Resonant Cavity

Introduction

When a closed metai containei' is excited by an RF antenna probe
iﬁserted through a hole in the container, theoretically there are an infinite
number of excitation frequencies for which the container is strongly
coupled to the antenna; this means that energy can flow more freely
between the antenna and the container at these resonant frequencies.
The resonant frequencies correspond to standing wave patterns in the
cavity which are called resonant modes. The wave pattern of the mode
which occurs at the lowest possible resonant frequency is calied the
fundamental mode. This mode and the modes of the next few higher fre-

quencies are called lower order modes.

When the cavity is uniformly filled with a fluid, the resonant fre-
quency changes because the velocity of propagation of the resonant
standing wave, ¢ = 1//{i¢, depends on the dielectric constant, ¢, and the
magnetic permeability, p, of the fluid. For example, in a s'pherica.l
resonant cavity uniformly filled, the resonant frequencies, fnp’ are given
by

£ (A-1)

where b is the radius of the sphere, and n apd p are subscripts which label
the different modes (these will be expiained in detail). The ‘unp are
eigenvalues of the modes and are obtained in the process of finding solutions
to Maxwells equations. The resonant frequencies can then be related to

total mass by using the Clausius-Mossotti relation

Pp = = (A-2)
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‘where P is the polarizability of the fluid which is a slowly varying func-

tion of the fluid density, .

If the cavity is uijiformly filled with a liquid,the eigenvalues, unp’
are just numbers independent of the fluid within the cavity and there is
therefore a simple relationship between resonant fi‘equency and total mass,
However, if the container is only partially filled with liquid, the rest of
the cavity being a vacuum or a gas, then the values of unp will depend on
u and ¢ of the liquid, the by and € of the gas, and the geometry which
the liquid takes within the cavity; the resonant frequency, then, is no
longer an unambiguous function of mass but depends on the liquid geometry
as well. This is because the sfanding wave patterns are distorted because
of the boundary conditions at the liquid-gas interface. However, the
resonant frequency of each partially filled mode does lie between the com-
‘pletely empty and completely full values

u u

. np _ -
2nb /pe = fnp = Zﬂb‘/u'oeo ’ (A-3)

and varies continuously between these values as the cavity is filled. This
suggests that the resonant frequency at least approximately indicates total

mass independent of geometry.

The purpose of this note is to investigate the geometry effects for
a spherical cavity with spherical symmetry of the liquid gas interface,
This geometry is similar to a ''zero-g' formation with the liquid clinging
to the walls and a gas bubble in the middle of the cavity, The reason for
choosing this geometry is that it is one of the few examples of a partially
filled cavity for which the Maxwell Equations can be solved in closed form.

Even though this gometry is particularly simple, it does give a reasonable
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indication of the uncertainty which may be involved when the geometry is
not known. Numerical examples are calculated for cases in which the

liquid is hydrogen or nitrogen. -

From a practical point of view, the spherical cavity is an ideal
container geometry for this method of mass gauging. The reason for this
is that the spherical symmetry of the cavity wall creates a degeneracy
in the modes. That is, there are a number of standing We.ve patterns
which have the same resonant frequency. This results in the fact that
the distinct resonant frequencies of the lower order modes are widely
separated and minimizes the effect of mode cros sing in a partially filled
cavity. Mode crossing occurs when, for a particular liquid geometry,
the resonant frequency of a higher mode falls below that of a lower mode.
For example, if the liquid is nitrogen, mode crossing between the first
. two modes is impossible and for the next few higher modes is quite
unlikely; this is established from the table of eigenvalues, Table 1 on

page 74, and the inequalities expressed in (A-3).

The relative independence of the lower order modes suggests that
they can each be monitored independently. Since each mode has its own
geometry in the standing wave pattei‘n, it seems reasonable that the
modes themselves may be used to at least partially determine the fluid
geometry. (Mathematically the problem reduces to this: Given some of
the eigenvalues of a boundary value problem, how closely can the eigen-
functions be approximated.) In fact, it will be shown that for the spherical
symmetry considered in this analysis, that for a liquid of unknown density,
both the location of the quuid-gas interface and the density (hence the
total mass) can be determined uniquely if and only if five modes are
-monitored simultaneously. The reason for this is that each mode deter-

mines exactly one independent relation between the resonant frequency
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- of that mode and the five unknown parameters e, y, eo, u.o, and a,
where r = a is the liquid-gas interface. For most applications it is suf-
ficient to assume that 8~ b R~ l,leaving anly two unknowns, namely

¢ and a. In this case, two modes will uniquely determine the total mass.

Solutions for Maxwells Equations in Spherical Coordinates

When the cavity is resonating at an angular frequency, w, the
time phase of the electromagnetic field is the same at all points within
the cavity, Hence, for a loss free cavity the electric and magnetic fields

ot ‘
wt and _Helw, respectively, where

can be written as the real parts of Ee'
E and H are vectors which depend only on the spacial coordinates. The

source free Maxwell Equafions can then be written

curl E = - iwpH

curl H = iweE

div eE = 0

div yH = 0. (A-4)

It should be emphasized at this point that only two assumptions have

been made, the cavity is loss free and it is source free; in practice
these are usually very good assumptions for calculating resonant fre-
quencies. A third assumption which we will now make, may have to be
justified more carefully in any given situation: we assume that there

are two regions within the cavity, each of which have uniform density.

The technical advantage of this assumption is that derivatives of p and

¢ are not involved; the equation (A-4) can be solved in each region where
p and e are constant and the boundary conditions are then modified to

include the liquid-—gas interface., The boundary conditions can be written

I4

{eE-n, uH-n, Exn and Hxn continuous at each boundary point} (A-5)

where n is the unit normal vector to the surface at that point. Since
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div E = 0 and div H = 0, both E and H can be expressed in terms of

vector potentials G and F,~

E
H

curl F
curl G (A-6)

where the Maxwell Equations impose consistency conditions between

G and F. Two independent solutions may be obtained by choosing a
coordinate direction, say ¥, the unit vector in the radial direction and
finding fields which are perpendicular to . If E is perpendicular to

* we say we have a TE (transverse electric) mode. This situation may

be assured if F is chosen to be
F = f£ (A-7)

where f is a scalar function of the spacial coordinates. In this case we

have from (A-4)and (A-7)

E = curl f#
H = - *‘1—- curl curl f£. (A-8)

If H is perpendicular to r we say we have a TM (transverse magnetic)

mode, This situation may be assured if G is chosen to be

where g is a scalar function of the spacial coordinates. In this case

we have from (A-4) and (A-9)

E

curl curl gt

H

iwe
H = curl gf. (A-10)

The general solution for E and H may be obtained by a superposition

of (A-8) and (A-10)
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E = curl ff + _lwi_ curl curl g#

o

H = curl g? - ,1 curl curl 7 . (A-11)
iwp

To find equations which f and g satisfy, we consider the TE and TM modes

separately. For the TM mode (A-10) and (A-4) imply that

curl E = - iwp curl gff

or
curl (E + iwpg?) = 0. (A-12)

This last relation is satisfied only if
E +iwpgh = grad o (A-13)

for some scalar function ¢. Substituting (A-13) into the second of equa-

tion (A-4) we have
curl curl g¥ = w'ép.e gt +iwe gradep. (A-14)
Using the vector equation

curl curl g = vRgf - grad (v-gf) (A-15)
and
2

w?pe = k®

we find that g satisfies the following equations

1

(v® + k®) gt 0

- iwew. (A-16)

v-gf
A similar argument for the TE mode shows that f satisfies the following
equation
(V2 +k®)ff = 0O

o £ iw wv . (A-17)

H
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Equations (A-16) and (A-17) are the scalar Helmholtz equations for- g
. sk T
and f with standard solutions given by

m
B_ (kr) L " (8, 9) , (A-18)

where the an(e, ) are spherical harmonics and the Bn'(kr) satisfy the

differential equation
- az
dr®

r k2 -P—(—-nr—l‘i)] B_(kr) = 0. (A-19)

The general solution of equation (A-19) can be givén as a linear combin- :
ation of jn(ki') and yn(kr) which are the Spherical Bessel Functions of

. i sk
order n of the first and second kind respectively.

Bn(kr) = anrJn(kr) + anryn(kr) (A-20)

where Cn and Dn are constants. The general solutions for f and g may

be written as an infinite series

©

_ ’ . ’ \ m
£ = Z<Cnmkr_]n(kr) + D! kry_(kr) )L_" (6, 0)
n, m
_ {’o‘ . : “ m
g = L(Cnmkrjn(kr) + Dnmkryn(krD L (e, ). (A-21)
n, m

The constants C _ , D , and D’ may be evaluated by substituting
nm’ n ~ Tnm

Cl
m’ nm ,
(A-21) into (A-11) and applying the boundary conditions (A-5). Equation

(A-21) can be viewed as an infinite superposition of modes.

See R. F. Harrington, Time Harmonic Electromagnetic Fields, McGraw
CHill (1961).

“See M. ‘Abrahamowitz and L A. Stegun, NBS Handbook of Mathematical
Functions, p. 437.

g
b
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TM Modes Under Spherical Symmetry

The TM modes are obtained by setting f = 0. If the liquid has
spherical symmetry the boundary conditions may.be satisfied by using
only one value each for n and m in equation (A-21) and thus the series

for g contains at most two non«vanishing terms:
. : ' m
g = (c__krj_(kr) + Dnmkryn(kr)> L ™6, ¢ (A-22)

Using equations (A-11) and (A-16) along with (A-22),the components of

the electric and magnetic fields may be written as follows:

Y - 2> . _a(+])
B 7 Toe are K)e = - iwer?
2
E = -1 2

6 = iwer oros °

_ -1 3®
E == : g
® iwersin® 3rde

H =0

S -

] rsin g dp
_ 1l s
Hcp = < e (A-25)

The boundary cdnditions are applied by letting the container walls
exist at r = b and the liquid-gas interface at r = a <b (if a = 0 the
container is full and if a = b the container is empty.). The conditions
pH-n and Hxn continuous at r = a and r = b imply continuity of He and
H and hence that g is continuous at r = a and r =b. This is com-
pzﬁ:ible with the continuity of ¢E.-n. The condition Exn continuous implies

that Ee and Ecp is continuous and hence that-lg o g is continuous at

or
r=a and r = b, In summary the boundary conditions are completely

specified by
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g continuous at'r = a and r = b. (A-26)

le_a_r g continuous at r = a and r = b. (A-27)
Since the an(e, ¢) are independent both of radial position and fluid prop-

erties the condition (A-26) is equivalent to
.koaJn(koa) = Cvnmka_]n(ka) + Dnmkayn(ka) (A-28)
and

g(b) = C__kbj (kb) + D__kby_(kb) (A-29)

where the coefficient of yn(koé.) in equation (A-22) is zero because g must
be finite at r = 0. (Here, ko = w\/eop,é applies to the region in the gas and
k = w/ep applies to the region in the liquid. ) Likewise condition (A-27)

is equivalent to

1 3

13T, .. 13 . _
;o [koaJn(koa)] - T2 [DnmkaJn(ka) + Dnmkayn(ka):] (A-30)
ana
- l—a—-[c kbj (kb) + D__ kby (kb) (A-31)
T e bl nm " * Pam Vs :l o

Equations (A-28), (A-30), and (A-31) are three independent relations in

the eight variables, C , D , &, w, € W € , and p .  The inhomo-
nm nm o (6}

geneous equations (A-28) and (A-30) can be solved uniquely for Cnm and

Dnm and these values are substituted in equation (A—31) which then be-

comes a homogeneous relation in six variables a, w, €, p, eo, and “’o'

We will denote this relation by

F'n(w, a, € W e, p.o) =0 (A-32)

or sometimes more simply by Fn(w, etc.) = 0. For a given set of
values for a, e, y, e(‘), and by {which is determined by conditions in the

container), it can be shown that Fn plotted as a function of w is oscillatory
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and hence there are an infinite number of solutions to equation (A-32),
The solution for the pth zero of equation (A-32) is called wnp and the
field pattern obtained by substituting wnp and the values for Cnm and

D into equations (A-22) and (A-25) is called the TM mode where
nm _ mnp

n=1 2,3,
p =12 3,
m= 0, 1, 2, ., . . tn,

(The range on m comes from the properties of the spherical harmonics. )
Since wnp is independent of m, we see that there are a np.rnber of modes
corresponding to‘the same wnp_' This number is called the degene;‘acy
‘of wnp. For example, the fundamental frequency w,, corresponds to
three modes, TMg,;, TM_,,,, and TM,,, and hence has degeneracy 3.

Sometimes the first subscript is dropped and the three modes are collec-

tively referred to as the TM,, mode (which is an abuse of the term ''mode"’).

We now discuss the conditions under which the resonant frequencies
wnp can determine the total mass. The total mass M is a function of
three of the above variables, a, eo, and ¢, If the resonant frequencies,
wnp, of the modes are known, ther} we have the following relations in the

five variables a, €y Mgr & and p

0 = Fy(wy,, etc.) = Fi(wq, etc.)

Folwys, etc.) = Fylwg, etc.)

F (w__, etc.) (A-33)
n  np

where each of the Fn(wnp’ etc, ) is a relation determihed by measuring

the resonant frequency of a Tanp mode. Since there are five variables,
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it is clear that at least five different modes are necessary to completely
determine the total miass. VFror‘n’ the properties of the épherical Bessel
Functions it can be shown that each of the ébove. relations is also inde-
pendent; therefore five modes are also sufficient to determine the total
mass. If furthexl assumptions are made, fewer modes may be sufficient,
For example, for most liquids y = b, w 1 reduces the number of neces-~
sary modes to 3; if it is further assumed that €, 1, then the number of
necessary modes is two; finally if in addition e is,known,v then only one

resonant frequency is necessary to determine the total mass.

Alternately, it may be thaf the interface, r = a, is known and ¢
(hence th)e density') is unknown; if €y & By = b 1, then the density and
hence the total mass may be determined by a single resonant frequency.
As a limiting caseofthis situation, the case a = 0 indicates a completely
full cavijcy and the resonant frequencies are given by : - -

u
wnp = —P——b = (A-34)

where unp is the pth zero of equation (A-32) considered as a function
of the quantity kb. (The quantities unp are also known as eigen;\ralues /

of the TM__ ''mode''.) The measured frequency f  is given by f =
np np np

®
Z—?TP' The calculated values for unp in the case a = 0 are listed in Table

1 in increasing order for the lowest ten mode‘sb. (Table 1 also includes
results of a similar analysis for the TE modes. ) The resonant frequencies
fnp also plotted in Table 1 are for the specific case of a 48-cm diameter

empty container,

We see from Table 1 that the resonant frequencies of the lower
order modes are widely spaced. This is primarily due to the degeneracy
and makes it feasible to simultaneously monitor several of the lower

order modes.
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Table 1.

Modes Eigenvalues Degeneracy (48 cilrzci]:ﬁ:nscpiere)
'I‘M1 1 Uy = 2,744 3 f“ = 0. 543 GHz_
TM_21 Uy = 3.870 5. f21 = 0,766
TE,, u’; = 4.493 3 £, = 0.889
TM31 Ugp = 4,973 7 f31 = 0,984
']i‘E21 u'21 = 5,763 5 fél = 1., 140
TM41 Uy = 6. 062 9 f41 = 1,200
TM12 U, = 6.117 3 flz = 1,210
TE31 ugl = 6.998 7 fél = 1,384
TM51 ugy = 7.140 11 f51 = 1,413
TM22 u,y | = T.443 5 _f22 = 1,472

Examples Using Hydrogen. and Nitrogen

Equation (A-32) was solved for the four lowest order modes using
%
the FORTRAN program listed in Table 2. For given values of a, ¢, u,
€, and By the program finds the zeros of Fn(w, etc.) plotted as a func-

tion of kb where

kb = w/pe b.
The pth zero is
a = w_ _Jpe b,
np np

The computer plots the quantity dunp vs. p which is essentially resonant

frequency, fnp’ vs. total mass M. Here,

%
Written by A. E. Hiester.
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Table 2.
PROGRAM PLOT3
DIMENSION IFILM(lB);ITITLE(lB)sX(lOO)oY(lOO),AL(B)'RHO(B)
DATA (IFILM=24HART HIESTER, X3474 )
A(NsUsFsAL)=(1e/AL¥PI(NyAL*FX¥U)#YPP (NsF*U)=AL*¥%2%PPJ [Ny ALXF*Y) *YP ¢
INsF#U) ) /7 {PJINsF#U)*¥YPP (NsF*U)=PPJ(N»F*U)*YP(NyF*U))
BINsUsFsAL) = (AL¥¥2¥PU(NoyF*) XPPI(NyALKF*U) =14 /AL*PPJ(N,F*U)*PJ(N¢A
IL*F*U) )/ (PI(NSF*U)*YPP (NsF*U)=PPJ(NsF*U)¥YP(NyF*U) )
FUN(NsUsFsAL)I=AINsUsFoAL)#PJINsUI+BINsUsFsAL) *#YP(NsU)
FORMAT (3F1040)
FORMAT (%U%»1295H )
FORMAT (1H1s10X92A8//9Xs11HALPHA * UNP;lOXu*RHOBAR*//)
FORMAT(9X3F9e5510XsF10e7)
FORMAT (*0U NOT FOUND IN 100 ITERATIONS*//lX;éEZZ 8)
FORMAT(5H$1¥ UsI2s1H )
P=1e
ITITLE(1)=8H RESONAN
ITITLE(2)=8HT FREQUE
ITITLE(3)=8HNCY VS M
ITITLE(4)=8HASS — H2
ITITLE(7)=8HRS$SSHOBAR
ITITLE(10)=8H $1
ITITLE(11)=8HAS9LPHA
ITITLE(S)=ITITLE(6)=ITITLE(8)=ITITLE(9)=ITITLE(13)=8H
READ 1s(AL{I)sI=143) . |
READ 1s(RHO(I)sI=193) ‘
CALL GRAPH(1s133sIFILMs0s6)
DO 60 N=1+4
I1D=P
ID=ID+10%N
ENCODE (8925 IFILM) ID
ENCODE (86> ITITLE(12))ID
DO 55 I=1s3
GO TO (T7+8399) 1
7 LTYP=8HTP SOLID
GO TO 95
8 LTYP=8HTP LIQ
GO TO 95
9 LTYP=8HNBP LIQ
95 PRINT 3.IFILM(1)sLTYP
LINE=0
DO 50 J=1»99
RHOBAR=J
RHOBAR=RHOBAR/100 ¢ ¥RHO( 1)
F=(1e—RHOBAR/RHO(I))**(14/34)
UB=T7e5
U5=205
FUS=FUNINsUSsFsAL(I))
FUB=FUN(NsUBsFsAL(I))
IT=0
10 UM=(UB=-US)/2e+US
IT=1T+1
IF(ITeLE«100)GO TO 15
PRINT 5sUSsFUSsUMsFUMsUBSFUB
STOP

AWM Pp VN -

B TR L Y T I L (LI L B DR Y S T B N LU B U B O I R T A T BRI
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Table 2. (Continued)

So4 4w e 4 R % N0 U Ns TN A tn a6 VoW Ay SO D 74 S 24 1% 24 27 A2 30 AL A2 B3 34 35 Ja 30 3009 40 4142 4D 44 4% 38 27 4B 43 50 %1 52 S} A4 55 56 57 SE 50 40 41.62 63 o4 55 66 67 63 &9 70 M F2 I3

15 FUM=FUN(NsUMsFoAL{(I))
IF(ABS(FUM)sLTee00001)1GO TO 45
IF(FUM.GT.OQQANDOFUSOGTQOOQORoFUMyLTOQOQANDOFUSOLTQOG)GO TO 20
UB=UM '
FUB=FUM
GO 7O 10

20 US=uUM
FUS=FUM
GO TO 10

45 X(J)=RHOBAR
Y{J)=AL(TI)¥*UM
LINE=LINE+1
IF(LINE«NE«51)1GO TO 50
LINE=0
PRINT 3sIFILM{1)sLTYP

50 PRINT 4sY(J)sX(J)

IF(IeNE«1)GO TO 53

CALL LGRAPH(XsY 99 ITITLESIFILM)
CALL CPGRAPHI{X(99)sY(99)9s1lsssI+4)
GO TO 55

53 CALL CLGRAPH{X»Y+99)

CALL CPGRAPH({X(99)sY{(99)slsssI+4)

55 CONTINUE
IFILM(1)=8H%9,s $1TP
IFILM(2)=8H SOLIDtY/
IFILM(3)=8HS1+ TP L
IFILM(4)=8HIQUID' /%
IFILM(5)=8H1% NBP L
IFILM(6)=8HIQUID
CALL COMGRAPH(Q759.75’6QIFILM)
CALL SKIPFRM

60 CONTINUE
STOP
END

FUNCTION SY{NsZ)
Y1(Z)=-COS(2)/2
Y2(Z)==-COS(Z)/Z%%2=SIN(Z)/Z
Y3(Z)=(=3¢/2%%3+14/2)%COS(Z)=3¢/2%%2%SIN(Z)
GO TO (109209309409¢50)N+1

10 SY=Y1(2) :
RETURN

20 SY=Y2(Z)
RETURN

30 SY=Y3(2)
RETURN

40 SY=5e/Z%Y3(Z)=-Y2(Z)
RETURN ,

50 SY=Te/Z¥(5e/Z%Y3(2)~Y2(Z))1=Y3(Z)
RETURN :
END

FUNCTION SJ(N»sZ)
J1(2)=SIN(Z)/2Z
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Table 2, (Continued)

Pootaoan T8 7 qw 19 20 210 32 2% 24 25 26 M 2829 30 31 2 33 34 35 5 37 38 39 40 A1 4T 43 4e 4% 2% 47 4R S WD %1 52 N3 54 53 58 97 SH SY a0 &1 62 o} o4 05 &6 T a8 o5 W0 1 12 2%

J2(Z)=SIN(Z}/Z2#%2=C0S(Z2)/2
J3(Z2)=( 34/ 2%¥3=1 o /Z )V #SIN(Z2) =3¢/ 2%%2%CQS(Z)
GO TO (10920930+40950)N+1

10 SJ=J1(2)
RETURN

20 SJ=J21(2)
RETURN

30 SJ=J3(2)
RETURN

40 SJ=5472%J3(L)-d2(2) .
RETURN

50 SJI=Te/Z¥(54/2%J3(Z2)~J2(Z2))—J3(2).
RETURN
END

FUNCTION PJ(N»sZ)

FN=N

PJ=Z%SJ(N- 1’Z$“FN*SJ(N’Z)
RETURN

END

FUNCTION YP(NsZ)

FN=N

YP=Z%SY{N=1sZ)~ FN*SY(N:Z)
RETURN

END

FUNCTION PPJ(NsZ).
FN=N
PPI=(FN*(FN+1e) ) /7Z¥SJI(Ny2Z)
RETURN

END

FUNCTION YPP{NyZ) -

FN=N
YPP—(FN*(FN+1.J)/Z*SY(N;Z)
RETURN ‘

END
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au
np 2nb/ €.Mo !
and
M = pV
where V is the volume of the tank in cm®. The results may then be

applied to spheres of any size and to any dielectric fluid.

We have assumed that p = by = ‘eo = 1 and plotted the results
for three different densities corresponding to solid hydrogen, triple
point liquid, -and normal boiling point liquid; this corresponds to about
22 percent range in densit’y. The results for the first four modes are
shown in figures Al, A2, A3, and A4. It is seen that the uncertainty in
total mass is smaller for higher modes. Qualitatively this is because
the field patterns are spread more uniformly throughout the cavity for
the higher modes. For example, the uncertainty in mass vs. eu,, (or f,,)
is less than 5 percent over most of the range. This is to be compared
with a density change of 22 percent indicating that the resonant mode has

a tendency to integrate over the mass of the liquid rather than the volume.

In order to obtain an estimate of the effects of liquid geometry,
the volume fill curve is plotted in figure A5 for normal boiling point
nitrogen in ''zero gravity' (spherical symmetry). This is compared with
data points taken from an experiment™ filling a 48 cm diameter copper
sphere in "'normal gravity'. This shows how much the changes in fluid
geometry affect the resonant frequency of a single mode and makes it
clear that if the geometry is completely unknown it may be necessary to

use more than one mode in order to obtain the desired accuracy.

E3
See section 4. 1 of this report.
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Appendix B.

Upper and Lower Bounds for Capacitance
in Terms of the Free Space Field
It is well known that for a two-electrode system the capacitance
is given by

C K|vcp|2dV (B-1)

g

where V is the open space not occupied by the electrodes, €, is the
permittivity of empty space, K is the dielectric constant which may vary

throughout V, and ¢ is the electrostatic potential satisfying the equations

v-»(Kv ®)

= 0in V
¢, on S,y
o - B
Pz Oon S, (B-2)

where S, is the boundary of V at the first electrode and S, is the boundary
of V at the other electrode; v is the electric field. The integral in (B-1)
is a minimum with repsect to certain variations in . ‘These variational
principles will be obtained directly in terms of the free space potential,

P, satisfying

v.vqpo = 0in'V
{CPi on S,
cpo - tpy Oon S, . (B-3)

@, dépends only on the electrode geometry and not on the geometry of the

dielectric. The free space capacitance, K= 1, becomes

€
(o)

ot me—— 2 V. B-
“o = o1 - 92)® Svlvc"ol d (B-4)
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Using the identity ve, = Vo + (Vo - Vo), the following identity
Ve = VO @,

is useful:

S K|ve |2V g Klvm}adv+zg Kve-v(o - ©)dV
v o Jy ol v ,<o /

+ SVKWQpO - cp>|2dv. (B-5)

In the vector identity

v-<K<cpo -,cp)ch) = Kch.V(cpo - cp>+<cpo - °P>V‘K,VCP (B-6)

the second term on the right vanishes because of equation (B-2). There-

fore using the divergence theorem (assuming sufficiently regular surfaces)
( kve.v(p, - p)av = ;7 ZS (o, - ®)Kve.ds, (B-17)

where So is a large spherical surface of radius R surrounding the
electrodes and dielectric materials, S, and S, are the electrode surfaces
‘and Si’ i> 2, are the surfaces which contain the interface regions between
two different dielectric materials, The sum in (B-7) vanishes because:

1) on So the integral goes as 'ﬁl—s, 2) P, =@ on'S, and S,, and 3) (cpo - o)
chp.dSi is continuous for i > 2 and cancels (cpo - p)Kvpe. de for some j >
2 where Sj coincides with Si (dSi and de are oppositely directed out-

ward normal vectors). With the vanishing of (B-?), equation (B-5) becomes

S K|vy_ |2dV = g K|ch!2dv+g K|v(y_ - p)2av. (B-8)
v v v

Since each term in (B-8) is non-negative it follows that

{ K|vo|2av sg K|vep |2av (B-9)
s v

and the capacitance is maximized combining equations (B-1) and (B-9).
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To minimize the capacitance in terms of K and ®, the Swartz

inequality is applied twice in succession:

)

The first integral in (B-10) can be simplified using the divergence theorem

- |ve |Pav -1

€ 4
K a4

\
o

V. Ve dV < & |vellve |aV = U K|vep|®av (B-10)
' '

v

and the identity

Ve (vacoo) = VoUy + 9oV, (B-11)

where the last term in (B-11) vanishes in V because of equation (B-5),
S Yoy dV = T zg ® Vo +dS, (B-12)
o} R-w o i
A\ i Si

where Si are defined as before. When the limit is taken in (B-12), .the
only remaining surface integrals are those bounded by the electrodes.
Letting S denote the surface bounded by the electrodes and noting that

P = cpo on S equation (A-12) becomes

S Vv dV = Scp Ve +dS. (B-13)
V_ o 5 [0} [o)

Combining (B-l3) and B-10) it follows that

[Sscpo v cpo.dS T

v |2
S —2 _ av
.

< S K|vep|2av (B-14)
'

K

and the capacitance is minimized by combining (B-1) and (B-14), In
terms of the empty space capacitance, Co’ the upper and lower bounds

can be expressed as
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S K|ve |2dV
A\ (o]

2
[Geoesss]

v |2 c 2
2 av g 7o, |?av ° S |ve, |*av
v v ° v

Again using the divergence theorem it follows that

o .
Sv [ve_|2av = gscpovwoods

and
Q © vy dS S K|ve [2aV
Jg © ©° C v °
1 ... ¢ *
SVR-Ichol dv o Sscpovcpo.ds
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Appendix C.
Total Mass Gauging in a Cylindrica.l Tank
by Capacﬁitance‘Methods

If the density distribution of a fluid in a storage tank is unknown,
there is an inherent uncertainty in the capacitance vs. total mass relation
which is due to bothgeometric effects and thé nonlinearity of the Clausius-
Mossotti relation. It is then possible only to calculate upper and lower
bounds for capacitance vs, total mass. However, it will be shown that
for certain geometries and with knowledge on the limits of the fluid

densi_ty, the difference between the upper and lower bounds can be small.

It will be assumed that gravity is along the axis of the cylinder
and that if any density stratification takes place it will be normal to the

cylinder axis. In this case the total mass, M, is given by
1,
M = AS p(4) dt (C-1)
o

where p(L) is the density as a function of distance along the axis, A is
the chinder cross section and L is the length of the cylinder, Assume
also that the capacitor is composed of two electrodes with surfaces that
are parallel with the cylinder axis, i. e., any line parallel to the cylinder
axis will not intersect the electrode surface at any angle other than zero.
Because of the assumption on density stratification it follows that the
capacitance, C, is given by

C

L
c =2 SO e(4) dt (C-2)

where e(l) is the dielectric constant of the fluid as a function of distance
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along the axis, C_is the einpty spaéé capacitance and, for the moment,
end effects are neglected so the capacitor length L is assumed to be
equal to the cylinder length.

The Clausius-Mossotti relation is given by

-1

Pp =

where P is the polarizability which is a slowly varying function of the

density, p. Solving for ¢ gives
1+ 2PP
¢ = T pp (C-4)
and dividing through the first term it follows that

3Pp
1-Pp° (C-3)

e = 1+

Substituting (C-5) into (C-2) it follows that

3C L :
o Pp
C = C_+-T ol_Pp. (C-6)

O

There remains only' to find upper and lower bounds to this integral in

terms of the relation (C-1). It is assumed that the limits of density and

polarizability are known, i. e., that
P <P« P and

<p SE, (C-7)

o

where the upper and lower bars refer to the upper and lower limits of

| S . .
the quantities. If Pp <1 then the quantity 1 - pp 18 an increasing

function of PP and it follows that

1 1 1
1-Pp ~1-Pp " 1-Pp" (C-8)

89



It follows, using (C-8) and (C-1), that

L L ' -

P M __ D T Ppde _ P M
1-PpA 1-PP'S Pt = . 1- PP S1--Ppg pdt = 1 - Pp 2 (C-9)
and, substituting (C-9)M into (Cq‘_é,),

3¢ _P
©-C < a-pp aL ™
3C P
o~ M
C - Co < (T~ Pp) AL (C-IO)
After combining the relations in (C-10), it follows that
- - Bp S .C ) (1 - PP
(C-CQU-PA , (€-S)0-B 1)
3CoP AL 3C01_3_ : o

If the difference between the upper and lower bounds is small, then the
total mass is approximately proportional to C - Co' The expression

for this difference, A, is
A‘-—‘———C-COC'}' P -—l"+'—> or
T3¢ \P -"F P>

"o /P-P - |
b 5e (G55 + G- 0. (C-12)

Another way of writing (C-11) is

VERCE C)O-Pp) RCEDIGEINS

AL 3C P 3C P -A

or

1,4
IEE 2 (C-13)
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Example -- A Liquid Hydrogen‘ Tank with Solid Part’icleé, i. e., Hydrogen
Slush:

If gas and liquid are present, the density in the gas phase is
negligible so that the integrand in (C-6) is essentially zero over the gas
range. The ﬁpper and lower bounds for P and p can then be restricted
to the liquid and solid phases. If it is known that the liquid is at triple
point temperature and that the concenfration of solid particles is less
than 50 percent then, P and p are the corresponding values for 50 per-
cent solid fraction and P and p are the values for triple point hydrogen.

Substituting these values gives

0. 081526 gm/cm?
0.077017 gm/cm?®
1. 0056 cm®/gm
1, 0046 cm®/gm

%(ﬁp‘.PP + (p - "D»

—

g gl o ol
it £t

1]

—é— (0. 00099 + 0. 0045) gm/cm?

i

0. 0027 gm/cm?,
The total mass M is then obtained from equation (C-13)

M ©-¢, |
AL © T3 (0. 9156 + 0. 0027) gm/cm?.

It is seen that although the uncertainty" in density is almost 5 percent,
the uncertainfy" in total mass is about 0. 3 perceﬁt, showing that the

capacitor tends to integrate over mass rather than volume.

91



10.

References
C. F. Sindt, Cryogenics, 10, 5 (1970).

R. "_,Carlson,»: S. Krakaver, R. Monnier, V. Van Duzer, and R.
Woodbury, ''Sampling Oscillography, " Hewlett Packard Applications
Note 52 (Nov. 1959).

"Transmission Line Testing Using the Sampling Oscilloscope, "

Hewlett Packard Applications Note 53 (1959).

""Timme Domain Reflectometry, "' Hewlett Packard Applications Note
62 (1964). |

""Pulse Reflection Measurement of Transmission Line Impedance

and Discontinuities, "' in-house publication, Tektronix (1962).

W. L. Willis and J, F. Taylor, '""Time Domain Reflectometry for
Liquid Hydrogen Level Detection, ' Los Alamos Report LA-3474-
MS, University of California Report Library (1966).

W. L. Willis, "Disturbance of Capacitance Liquid Level Gauges by
Nuclear Radiation, ' Advances in Cryogenic Engineering, Vol. 12,

Plenum Press, N. Y. (1967).

R. H. T. Bates, '"The Charcteristic Impedance of the Shielded
Slab Line'' PG MIT Transactions (Jan, 1956).

Lockheed Missiles and Space Co., "RF Liquid Level Sensing Tech-
nigues, " LMSC-A785006, Contract NAS8-11476 (1966),

R. E. Post and R. G. Brown, ''Method and Apparatus for Measuring
Liquid Volume in a Tank, '" U, S. Patent 3, 540, 275 assigned to the
Bendix Corp. (1970).

92

USCOMM - ERL



