
NASA SP-164 

THERMAL 
RADIATION 

HEAT 
TRANSFER 

Volume Ill 

Radiation Transfer With Absorbing, 

Emitting, and Scattering Media 

N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M I N I S T R A T I O N  





NASA SP-164 

THERMAL 

H EAT 
TRANSFER 

Volume III 

Radiation Transfer With Absorbing, 
Emitting, and Scattering Media 

Robert Siegel and John R. Howell 

Lewis Research Center 

Cleveland, Ohio 

Scientific and Technical I?~formation Office 1971 
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 



For sale by the Superintendent of Documents, 
U.S. Government Printing Office, Washington, D.C. 20402 
Price $1.75 
Library of Congress Catalog Card Number 67-62877 



P R E F A C E  
This is the third and final volume of the series "Thermal Radiation 

Heat Transfer" that is being published as the NASA Special Publication 
SP-164. The first and second volumes appeared in 1968 and 1969, 
respectively. As stated in the Preface to volume I ,  this publication is 
an outgrowth of a course in thermal radiation that has been given as 
part of an internal advanced study program at the NASA Lewis Research 
Center. 

This volume contains nine chapters. The first discusses some of the 
fundamentals of absorption of radiation along a path in amedium, and 
emission by the medium. The important property of the radiation 
intensity is developed showing that along a path in a nonattenuating 
nonemitting medium the intensity is invariant with position. Thus the 
magnitudes of any attenuation or emission can be expressed in terms 
of the changes produced in the intensity with distance. 

In chapter 2 the absorption, scattering, and emission effects along a 
path are combined to develop the equation of transfer. The solution 
of this equation gives the intensity within the medium. The intensity 
can then be used to obtain energy fluxes. These are related to the local 
temperature within the medium by means of the energy conservation 
equation. This provides the necessary relations to obtain energy transfers 
and temperature distributions in the medium. 

Some methods for solving these equations are given in chapter 3. These 
methods include various approximate techniques, a very important one 
being the diffusion approximation. The boundary conditions and 
application of the diffusion method are considered in detail. 

Before any radiation solution can be applied, the radiative properties 
must be known. Gas radiation properties vary eonsiderably with wave- 
length. In chapter 4 some of the fundamentals of the radiative properties 
are discussed. These include line broadening mechanisms and band 
absorption correlations. 

Chapter 5 considers the important situation of radiation from a gas 
that is well mixed so that it is isothermal. The method of analyzing heat 
transfer in a gas filled enclosure is developed by extending the net 
radiation method presented in volume I1 for enclosures containing a 
nonabsorbing medium. The very useful concept of radiative mean beam 
length is derived for use in gas energy exchange. 

iii 
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Chapters 6, 7, and 8 provide further development by discussing the 
Monte Carlo method, radiation combined with conduction and convec- 
tion, and scattering. Finally, chapter 9 treats a number of specialized 
topics such as radiation in media with nonunity refractive index, and 
radiation from flames. 
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Chapter 1. Fundamentals of Radiation in Absorbing, 
Emitting, and Scattering Media 

1.1 INTRODUCTION 

The study of energy transfer through media that can absorb, emit, 
and scatter radiation has received increased attention in the past several 
years. This interest stems from the complicated and interesting phe- 
nomena associated with nuclear explosions, hypersonic shock layers, 
rocket propulsion, plasma generators for nuclear fusion, and ablating 
systems. 

Although some of these applications are quite recent, the study of 
gas radiation has been of continuing interest for over 100 years. One 
of the early considerations was the absorption of radiation in the Earth's 
atmosphere. This has always plagued astronomers when observing on 
Earth the light from the Sun and more distant stars. Figure 1-1 shows 
the observed form of the solar spectrum recorded by Samuel Langley 
over a period of years beginning in 1880. The dashed curve shows the 
estimated solar emission curve (assumed to be a blackbody spectrum 
at 5600 K) and the solid curve shows the spectrum after atmospheric 
attenuation (ref. 1). The absorption occurs in specific wavelength regions, 
illustrating that gas radiation properties vary considerably with wave- 
length. The atmospheric absorption of solar radiation is chiefly by water 
vapor and carbon dioxide. Extensive discussions of absorption in the 
atmosphere are given by Goody (ref. 2) and Kondratyev (ref. 3). 

Gas radiation has also been of interest to astrophysicists with regard 

I 

1.1 1.4 1.8 2.6 4.4 
Wavelength, A, pin 

2. 

E' - 
C W 

FIGURE 1-1. -Attelluatio~l of solar spectrum by Earth's atmosphere as measured by Langley 
(ref. I). 

Solar spectrum measured o n  Ear th ---- Solar emission spectrum 
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to the study of stellar structure. Models of stellar atmospheres, such 
as for the Sun, and the energy transfer processes within them have been 
constructed; then the emitted energy spectra calculated on the basis 
of the models are compared with observed stellar spectra. 

In industry the importance of gas radiation was recognized in the 1920's 
in connection with heat transfer inside furnaces. The carbon dioxide 
and water vapor formed as products of combustion were found to be 
significant emitters and absorbers of radiant energy. Radiation can also 
be appreciable in engine combustion chambers where peak temperatures 
reach a few thousand degrees. The energy emitted from flames depends 
not only on the gaseous emission but also arises from the heated carbon 
(soot) particles that are formed within the flame. 

Another interesting example of radiation within an absorbing-emitting 
medium is in a glass melting furnace. As described in reference 4, 
the temperature distribution measured within a deep tank of molten 
glass was found to be more uniform than that expected from heat 
conduction alone. It was thought that convection might account for the 
discrepancy, but experimental investigations did not indicate that this 
was the contributing heat transfer mode. In the late 1940's it became 
evident that radiative transfer by absorption and reemission within 
the glass provided a significant means of energy transport. 

Two difficulties are encountered in studying radiation within absorbing, 
emitting, and scattering media that make these studies, to say the least, 
challenging. First, absorption and emission of energy are occurring not 
only at system boundaries, but at every local point within the medium. 
Scattering is also a local transfer process within the medium. A complete 
solution of the energy exchange problem therefore requires knowledge 
of the temperature and physical properties of the medium at every point 
within the system. The mathematics describing such a situation is in- 
herently complex. A second difficulty is that spectral effects are often 
much more pronounced in gases than for solid surfaces. As a result a 
detailed spectrally dependent analysis may be required. When approxi- 
mations are used based on spectrally averaged properties, special care 
must be taken. Most of the simplifications introduced in gas radiation 
problems are aimed at dealing with one or both of these two complexities. 

A brief comment on the approach to radiation in gases used herein is 
in order. The astrophysical approach (i.e., the equation of transfer) is 
used for determining the local values of the radiation intensity within the 
medium. As will be defined in detail in section 1.4, the intensity is con- 
cerned with energy transport along a path in a single direction. By study- 
ing the variation of intensity along a path, a good understanding is 
obtained of how the individual processes of absorption, emission, and 
scattering enter into the radiative transfer. It is the most useful method 
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in problems dealing with atmospheric absorption, stellar structure, and 
others where the spectral intensity at some position is often a quantity 
of interest. Two excellent texts (refs. 5 and 6) deal in detail with this 
formulation as used in astrophysics. 

The astrophysical approach however must be adapted for more con- 
venient use by the engineer. The engineer is chiefly interested in energy 
fluxes and temperatures rather than radiation intensities. Also the astro- 
physical notation and nomenclature is foreign to most engineers and is 
often inconsistent within itself. For these reasons, although fundamental 
ideas are developed here on the basis of the intensity of the radiation, 
the change to terms of local energy flux and temperature is often made. 
This change aids in developing useful engineering solution methods and 
will also show how the engineering methods can be derived in a logical 
manner from the astrophysical relations. 

1.2 SYMBOLS 

area 
absorption coefficient 
concentration of gas in mixture 
second constant in Planck's spectral energy distribution, 

hcolk 
speed of light in medium other than vacuum 
speed of light in vacuum 
energy 
ionization potential 

e emissive power 
Fo-kT fraction of blackbody emissive power in spectral region 

0-AT 
h, Planck's constant 
i radiation intensity 
K extinction coefficient, a + (TS 
k Boltzmann constant 
1 1 1 ,  extinction mean free path 
n simple refractive index 
P pressure 

P partial pressure of gas in mixture 

Q energy per unit time 
4 energy flux, energy per unit area and time 
R radius of sphere 
S coordinate along path of radiation 
T absolute temperature 
V volume 
CY absorptance 
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cone angle, angle from normal of area 
emittance 
wave number 
optical thickness (eq. (1-17)) 
wavelength in medium 
frequency 
density 
Stefan-Boltzmann constant 
scattering coefficient 
transmittance 
solid angle 

Subscripts: 

a absorbed 
b blackbody 
e emitted 

g gas 
i component i 
m mass coefficient; mean value 

P projected 
s source or scatter 

"I wave number dependent 
h wavelength dependent 
I/ frequency dependent 

Superscripts: 
I directional quantity 
+ true value, not modified by addition of induced emission 
* dummy variable of integration 

1.3 PHYSICAL MECHANISMS OF ABSORPTION AND EMISSION 

Although this volume will be concerned with radiation in absorbing, 
emitting, and scattering media in general, it will almost always be gases 
that are used as  examples. If the radiation properties of gases and opaque 
solids are compared, a difference in spectral behavior is quite evident. 
As shown by the plots of radiation properties in chapter 5 of reference 7 
(which will be referred to from this point as vol. I), the property variations 
with wavelength for opaque solids are fairly smooth although in some 
instances the variation is somewhat irregular. Gas properties however 
exhibit very irregular wavelength dependencies. As a result the absorp- 
tion or emission by gases is significant only in certain wavelength regions, 
especially at temperature levels below a few thousand degrees Kelvin. 
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Band 
designation, 

A. 

Wavelength, A, p m  

Wave number,  7, c m - I  

FIGURE 1-2.-Low-resolution spectrum of absorption bands for COz gas at 830 K, 10 atm, 
and for path length through gas of 38.8 c n ~ .  

The absorptance of a gas layer as a function of wavelength typically 
looks as shown for carbon dioxide (COz) in figure 1-2. 

The radiation emitted from a solid actually originates within the solid 
so the solid can be considered an absorbing and emitting medium like 
a gas; the physics of the radiation thus has a common basis for all media. 
The differences in spectra are caused by the various types of energy 
transitions that occur within the media. A gas has different types of 
transitions, a fact which leads to a less continuous spectrum than for a 
solid. The energy transitions that account for radiation emission and 
absorption will now be discussed. 

A radiating gas can be composed of molecules, atoms, ions, and free 
electrons. These particles can have various energy levels associated 
with them. In a molecule, for example, the atoms form a dynamic system 
that has certain vibrational and rotational modes. These modes have 
specific energy levels associated with them. A schematic diagram of 
the energy levels for an atom, ion, or electron is shown in figure 1-3. 
(The levels for a molecule are diagramed in fig. 4-5.) The zero energy 
level is assigned to the ground state (lowest energy bound state) with 
the higher bound states being at positive energy levels. The energy EI  
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(a), Bound-bound absorption 
(b), Bound-bound emission 
(c), Bound-free absorption 
(d), Free-bound emission 
(e), Free-free absorption 
(f), Free-free emission 

Free 
states 

Bound 
states 

FIGURE 1-3. -Schematic diagram of energy states and transitions for atom, ion, or electron. 

in figure 1-3 is the ionization potential, that is, the energy required to 
produce ionization from the ground state. Energies above El denote that 
ionization has taken place and free electrons have been produced. 

It will be convenient to discuss the radiation process by utilizing a 
photon or quantum point of view. The photon is the basic unit of radiative 
energy. Radiative emission will consist of the release of photons of 
energy, and absorption will be the capture of photons by a particle. 
When a photon is emitted or absorbed, the energy of the emitting 
or absorbing particle will be correspondingly decreased or increased. 
Figure 1-3 is a diagram of the three types of transitions that can occur. 
These are bound-bound, bound-free, and free-free; they will be discussed 
a little further on in more detail. In addition to emission and absorption 
processes, it is possible for a photon to transfer part of its energy in 
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certain inelastic scattering processes. These are of minor importance in 
engineering radiative transfer. 

The magnitude of the energy transition is related to the frequency of 
the emitted or absorbed radiation. The energy of a photon is hv where 
h is Planck's constant and v is the frequency of the photon energy. 
For an energy transition, say from bound state E3 down to bound state E2 

in figure 1-3, a photon is emitted with energy E3  - EB = hv. The frequency 
of the emitted energy is then v =  (E3 - E2) /h  so that a fixed frequency 
is associated with the transition from a specific energy level to another. 
Thus in the absence of any other effects, the radiation emitted will be 
in the form of a spectral line. Conversely in a transition between two 
bound states when a particle absorbs energy, the quantum nature of 
the process dictates that the absorption is such that the particle can 
only go to one of the discrete higher energy levels. Consequently, the 
frequency of the photon energy must have certain discrete values in 
order for the photon to be absorbed. For example, a particle in the ground 
state in figure 1-3 may absorb photons with frequencies (EZ-E,)/h, 
(E3 - EJh, or (E4 - El)/h and undergo a transition to a higher bound 
energy level. Photons with other frequencies in the range 0 < v < E,/h 
cannot be absorbed. 

When a photon is absorbed or emitted by an atom or molecule and 
there is no ionization or recombination of ions and electrons, the process 
is termed a bound-bound absorption or emission (see processes (a) 
and (b) in fig. 1-3). The atom or molecule moves from one quantized 
bound energy state to another. These states can be rotational, vibra- 
tional, or electronic in molecules, and electronic in atoms. Since the 
bound-bound energy changes are associated with specific energy levels, 
the absorption and emission coefficients will be sharply peaked functions 
of frequency in the form of a series of spectral lines. These lines do have 
a finite width from various broadening effects that will be discussed in 
section 4.6.1. 

The vibrational energy modes are always coupled with rotational 
modes. The -rotational spectral lines superimposed on the vibrational 
line give a band of closely spaced spectral lines. If these are averaged 
together into one continuous region, it becomes a vibration-rotation 
band (see section 4.6.4). Rotational transitions within a given vibrational 
state are associated with energies at long wavelengths, - 8 to 1000 pm 
(see fig. 1-2 of vol. I). Vibration-rotation transitions are at infrared ener- 
gies of about 1.5 to 20 pm. Electronic transitions are at short wavelengths 
in the visible region, 0.4 to 0.7 pm, and at portions of the ultraviolet and 
infrared near the visible region. At industrial temperatures the radiation 
is principally from vibrational and rotational transitions; at high tempera- 
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2.4.1 of vol I). It is as if the radiation traveling through an area within 
the medium originated at that area. The intensity is then deJ;ned (see 
fig. 1-4(a)) as the radiation energy passing through the area per unit 
time, per unit of the projected area andper unit solid angle. The projected 
area is formed by taking the area that the energy is passing through and 
projecting it normal to the direction of travel. The unit elemental solid 
angle is centered about the direction of travel and has its origin at dA. 
The spectral intensity is the intensity per unit small wavelength interval 
around a wavelength A. 

As stated previously, the emitted intensity from a blackbody is 
invariant with emission angle. Now a second invariant property of 
intensity will be examined. Consider radiation from a source d A ,  travel- 
ing in an ideal medium that is nonabsorbing, nonemitting, and non- 
scattering and has constant properties. Suppose that an imaginary area 
element ~ A I  is considered at distance S 1  from dA, and that dAl is normal 
to S1 as shown in figure 1-4(b). From the definition of spectral intensity 
i i , l  as the rate of energy passing through dAl  per unit projected area 
of d A l  per unit solid angle and per unit wavelength interval, the energy 
from dA,  passing through dA1 in the direction of SI is 

where the third derivative notation d3 emphasizes that there are three 
differential quantities on the right side of the equation. The solid angle 
d w ~  is equal to dA,/S: so 

Suppose that d A l  is now placed a distance Sn from the source along the 
same direction a s  for the original position. The rate of energy passing 
through dAl in the new position is 

Dividing equation (1-lb) by equation (1-2) gives 

Now consider a differential source emitting energy equally in all 
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Radiation f rom 
Project ion of dA in to  p lane 
~ e r ~ e n d i c u l a r  to intensi tv .  . . 

d i rect ion p and  
w i t h i n  solid angl  
dw tha t  passes 
t h r o u g h  dA 

Direct ion of 
t ravel  o f  i n tens i t y  

(a) Geometry for definition of intensity in medium. 

(b) Intensity from source to area element. 

( c )  Variation of energy flux with (d) Intensity of emitted uadiat ion.  
distance from source. 

FIGURE 1-4.-Derivations of intensity relations. 



FUNDAMENTALS IN ABSORBING MEDIA 11 

directions and draw two concentric spheres around it as in figure 1-4(c). 
If CPQA,~ is the entire spectral energy leaving the source, then the energy 
flux crossing the inner sphere is d 2 Q h , , y / 4 ~ S :  and that crossing the 

outer sphere is d2Qh, , /4~S$ .  The ratio of the energies passing through 
the two elements dAl is 

Substituting equation (1-4) for the left side of equation (1-3) gives the 
following important result: 

Thus, the intensity i n  a given direction i n  a nonattenuating and non- 
emitting medium with constant properties is independent of position 
along that direction. Note that these intensities are based on the solid 
angles subtended by the source as viewed from dA1 as in figure 1-4(b). 
As S is increased, the decrease in solid angle by which d A l  views the 
source dA,  is accompanied by a comparable decrease in energy flux 
arriving at dl .  Thus the flux per unit solid angle, used in forming the 
intensity, remains constant. 

The radiant energy passing through dAl  can also be written in terms 
of the intensity leaving the source. Using figure 1-4(d) results in 

Equating this with the energy rate passing through dAl as  given by 
equation (1-lb) results in 

I 

i); , l  = " , s  (1-7) 

This relation again shows the invaliance of intensity with position in a 
nonattenuating and nonemitting medium. 

The invariance of intensity when no attenuation or emission is present 
provides a convenient way of specifying the magnitudes of any attenua- 
tion or emission as these effects are given directly by the change of 
intensity with distance. By use of the foregoing intensity properties, the 
attenuation and emission of radiation within a medium can now be 
considered. 
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1.5 THE ATTENUATION OF ENERGY 

Consider spectral radiation of intensity i i  impinging normally on a 
layer of material of thickness dS as in figure 1-5. The medium in the 
layer absorbs and scatters radiation. For the present it will be assumed 
that the layer is at low temperature so that its emitted energy is negligible. 
As the radiation passes through the layer, its intensity is reduced by 
absorption and scattering. The change in intensity has been found 
experimentally to depend on the magnitude of the local intensity. If a 
coefficient of proportionality I<A which depends on the local properties 
of the medium is introduced, then the decrease is given by 

This equation contains the assumption that no intensity is scattered 
from the radiation field into the direction of S. 

The quantity I(A is called the extinction coeficient of the material in 
the layer. The extinction coefficient is a physical property of the material 
and has the units of reciprocal length. It is in general a function of the 
temperature T, pressure P,  composition of the material (specified here 
in terms of the concentration Ci of the i components), and the wavelength 
of the incident radiation so that 

Kh= Ki(X, T ,  P ,  Ci) (1-9) 

As will be shown later (see eq. (1-16)), the KA is inversely related to the 
mean penetration distance of radiation in an absorbing and scattering 
medium. 

Integrating equation (1-8) over a path of length S gives the relation 

FIGURE 1-5. -Intensity incident normally on absorbillg and scattering layer of thickness dS. 
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where i i ( 0 )  is the intensity entering the layer and S" is a dummy vari- 
able of integration. Integrating equation (1-10) yields 

K A  ( S * )  dS* 

i i ( S )  = i i ( 0 )  exp [- IOs K A ( s * ) ~ s * ]  (1-12) 

Equation (1-12) is known as Bouguer's law '; it shows that, as  a conse- 
quence of the proportionality in equation (1-8), the intensity of mono- 
chromatic radiation along a path is attenuated exponentially while 
passing through an absorbing-scattering medium. The exponent is equal 
to the integral of the local extinction coefficient over the path length 
traversed by the radiation. 

1.5.1 The Extinction Coefficient 

The extinction coefficient for thermal radiation I<A is composed of 
two parts, an absorption coe f i i en t  aA(X, T, P )  and a scattering coe&ient 
r S A ( X ,  T, P) .  For simplicity the notation has been dropped showing de- 
pendence upon the relative concentration of the constituents of the gas. 
The coefficients are related by 

As noted previously, these coefficients have units of reciprocal length 
and are therefore called linear coef i ients .  Some researchers prefer 
to work with mass coefficients given by 

KA ah ~ S A  
KA, ,I,= ah, n t + r d ,  m=-=- +- 

P P P  

where p is the local density of the absorbing-scattering species. The 
mass coefficients have units of area per unit mass and are directly related 
to the concept of a cross section in molecular physics (see section 8.3.1 
for a discussion of scattering cross sections). Since the extinction 
coefficient K A  increases as the density of the absorbing or scattering 

' Named after Pierre Bouguer (1698 to 1758)lwho first showed on a quantitative basis haw light intensities could b e  
compared. Equation (1-12) is sometimes called Lambert's law, the Bouguer-Lambert law, or Beer's law. Beer's law is 
more properly a restricted form of equation (1-9) stating that the absorption of radiation depends only on the concen- 
tration of the  absorbing species along the path. l o  avoid confusion rvith Lambert's cosine law, equation (1-12) will be  re- 

ferred to herein as Bauguer's law. 
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species is increased, the use of Kx,,,,=KA/p has the advantage that it 
tends to remain more constant than KA. However, the I<* which will be 
used in this volume also has an advantage in that, when I < A  is constant, 
it can be interpreted as the reciprocal of the radiation mean penetration 
distance. This will now be shown. 

1.5.2 Radiation Mean Penetration Distance 

From equation (1-12) the fraction of the original radiation that travels 
through the path length S is 

-- ii(S) - exp [- loS K,,(s*)~s*] 
ii(0) 

The fraction absorbed in the layer from S to S + dS is 

The mean penetration distance of the radiation is obtained by multi- 
plying the fraction absorbed at S by the distance S and then integrating 
over all path lengths from S = 0 to S = m; that is, 

When KA is constant, carrying out the integral gives 

1 
11. = KA 1' S exp (- KAS) d s  = - I ~ A  (1-16) 

demonstrating that the average penetration distance before absorption 
or scattering is the reciprocal of KA when I<A does not vary along the 
path. Equation (1-16) provides a simple way of gaining some insight as 
to whether or not an absorbing-scattering medium is very opaque with 
regard to radiation traveling through it. This will now be further dis- 
cussed in connection with the definition of optical thickness. 

1.5.3 Optical Thickness 

The exponential factor in equation (1-12) is often written in an alternate 
form by defining 
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so that equation (1-12) becomes 

i ; (S)  = i i ( 0 )  exp [- K A ( S )  1 (1-18) 

The quantity K A ( S )  is the optical thickness or opacity of the gas layer 
of thickness S and is a function of all the values of KA that lie between 
0 and S. Because KA is a function of the local parameters P, T, and Ci, 
the optical thickness becomes a function of all these conditions along 
the path between 0 and S.2 

The optical thickness is a measure of the ability of a given path 
length of gas to attenuate radiation of a given wavelength. A large 
optical thickness means large attenuation. The quantity K A  is a con- 
venient dimensionless parameter that will occur in the solutions of 
radiative transfer problems. 

For a gas that is of uniform composition and is at uniform temperature 
and pressure (a un$orm gas) or for a gas with KA independent of T, P, 
and Ci, equation (1-17) becomes 

K A  ( S )  = I(k.5 (1-19) 

The optical thickness then depends directly on the extinction coefficient 
and the thickness of the absorbing-scattering layer. 

1.5.4 The Absorption Coefficient 

If scattering can be neglected (i.e., aSx = 0), then I<A= aA and equation 
(1-12) becomes 

i ; ( S )  = i;(O) exp [- [ ~ * ( s * ) B * ]  (1-20) 

If, in addition, ax is not a function of position as is the case in a gas of 
uniform temperature, pressure, and composition, then 

i i ( S )  = iL(0) exp (- U A S )  (1-21) 

'The notation for the optical thickness ti* should not he confused with the extinction coefficient for electromagnetic 

radiation ti used in equations (1-22) and (1-23) that follow. It is regrettable but true that the notation possibilities of the 

English and Greek alphabets reach saturation when such interdisciplinary fields as gas radiation are discussed. 
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In the electromagnetic theory of the propagation of radiant energy 
(see discussion following eq. (4-26) in vol. I), it is shown that the inten- 
sity of radiation is attenuated in conducting media according to the 
relation 

where K is the extinction coefficient from electromagnetic theory and is 
related to the magnetic permeability, electrical resistivity, and electrical 
permittivity of the medium (eq. (4-23b) in vol. I). Thus, ah is related to 

K by 

Such a relation provides some theoretical basis for Bouguer's law, which 
was originally based on experimental observations. 

The absorption coefficient a ~ ( h ,  T, P) usually has strong variations 
with wavelength and often varies substantially with temperature and 
pressure. Considerable analytical and experimental effort has been ex- 
pended in the determination of a , ~  for individual gases. 

Analytical determinations of ah require detailed quantum mechanical 
calculations beyond the scope of this volume, although some of the 
concepts of these calculations are outlined in chapter 4. Except for the 
simplest gases such as atomic hydrogen, the calculations are very tedious 
and require many simplifying assumptions. For the methods used in 
calculation of C I A ,  references 8 to 10 give detailed discussions. 

The complexity of the calculations is presaged by examination of some 
measured solid and gas spectral absorption coefficients. In figure 1--6, 
ah is shown for pure diamond. Strong absorption peaks due to crystal 
lattice vibrations at certain wavelengths are evident. Figure 1-7 shows 
the calculated emission spectrum of hydrogen gas at 40 atm and 11 300 K 
for a path length through the gas of 50 cm. The variations in emission 
are closely related to variations in the absorption coefficient. The 
presence of "spikes" or strong emission lines is the result of transitions 
between bound energy states. The continuous part of the emission 
spectrum is due to various photodissociations, photoionization, and free 
electron-atom-photon interactions of other types. The lines and the 
continuous regions are common features of both emission and absorption 
spectra. Figure 1-8 shows the absorption coefficient of air at 1 atm and 
12 000 K. In this case, there is a merging of the contributions from the 
many closely spaced lines produced by vibrational and rotational 
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FIGURE 1-6.-Spectral absorption coefficient of diamond (from ref. 15). 

1111 Contributions from 
discrete transitions 

-- Blackbody emission 

\ 
\ 
\ 
\ 

Wave number, v, cm- I  

FIGURE 1-7.-Normalized emission spectrum of hydrogen at 11 300 K, 40 atnl, and for 
path length of 50 cm (from ref. 16). 



THERMAL RADIATION HEAT TRANSFER 

Frequency, v, sec'' 

FIGURE 1-8.-Absorption coefficient of air at 12 000 K and 1 atm (from ref. 17). 

transitions between energy states, and the absorption coefficient has 
the appearance of being continuous. Even when this merging is not 
complete, the resolution of experimental measurements causes the 
measured spectrum to appear continuous over these closely spaced 
lines. 

It  is noted that figures 1 4 , l - 7 ,  and 1-8 each have a different abscissa 
(i.e., wavelength, wave number, and frequency), emphasizing the lack 
of an accepted standard variable. When radiative properties of opaque 
surfaces were discussed in volume I of this series, it was found that 
the wavelength was generally used. In radiation from gases, however, 
the frequency is more common. It has the advantage that the frequency 
does not change when radiation passes from one medium into another 
with a different refractive index. The wavelength does change because 
of the change in propagation velocity. 

Dealing with spectral line emission and absorption is one of the 
computational difficulties encountered in analyses of radiant energy 
transfer through gases. Incident radiation at wavelengths near the line 
center will be strongly absorbed, while radiation of only a slightly 
different wavelength may experience almost no attenuation. Integrating 
line absorption coefficients with respect to wavelength to obtain band 
or total absorption coefficients is generally tedious. These averaged 
coefficients are used in certain calculation methods of radiative transfer. 
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1.5.5 True Absorption Coefficient 

Bouguer's law in the form of equation (1-20) gives the attenuation of a 
beam of radiation upon passing through a volume of nonemitting non- 
scattering gas along a path of length S as would be observed by detectors 
of incident and emerging radiation. Such observed information could be 
used in determining a h .  Actually, as radiative energy passes through a 
gas, not only is it absorbed but there is an additional phenomenon in that 
its presence stimulates some of the gas atoms or molecules to emit 
energy. This is not the ordinary or spontaneous emission that will be 
discussed in section 1.6. The spontaneous emission is the result of the 
excited state of the gas being unstable and decaying spontaneously to a 
state of lower energy. The emission resulting from the presence of the 
radiation field is termed stimulated or induced emission and is in a sense 
a negative absorption. 

Physically, the induced emission process can be pictured as  follows: 
A photon of a certain frequency from the radiation field encounters a 
gas atom or molecule in an excited state, that is, an energy state above 
the ground state. There exists a certain probability that the incident 
photon will trigger a return of the gas particle to a lower energy state. 
If this occurs, the particle will emit a photon at the same frequency and 
in the same direction as  the incident photon. Thus, the incident photon 
is not absorbed but is joined by a second identical photon. This process 
is often viewed as a negative absorption and is so treated in the equations 
of energy balance to be derived in chapter 2. More discussion of the 
induced emission process is given in section 4.4. 

The induced emission constitutes a portion of the intensity that is 
observed in the beam emerging from the gas volume. Consequently, 
the amount of energy that was actually absorbed by the gas is greater 
than that found by taking the difference between the entering and leaving 
intensities. This is because the observed emerging intensity is the result 
of the actual absorption modified by the addition of induced emission 
along the path of the beam. The actual absorbed energy should be 
calculated using a true absorption coefficient ax+(A, T, P )  which will be 
larger than the absorption coefficient ux(h, T, P )  calculated by using 
observed attenuation data and Bouguer's law. The "true" law for 
absorption of energy along path S is then written as 

Statistical mechanical considerations give the relation between 
cr~(X, T, P) and ax+ (A, T, P )  for a gas with refractive index 17 = 1 as 
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.,(A, T ,  P )  = [1- exp (-$$)I a t  (A .  T ,  P )  

= [1 - exp (-s)] o$ (A, T, P )  (1-25) 

Examination of equation (1-25) shows that, because of the negative 
exponential term, a? will always be larger than ax (hence the use of the 
superscript +). 

Because the induced emission depends on the incident radiation field, 
it is usually grouped together with the true absorption thereby yielding 
the absorption coefficient ax. The emission term in the equation of 
radiative transfer then includes only the spontaneous emission and 
consequently depends only on the local conditions of the gas. As will 
be shown in chapter 2, the grouping of induced emission into the ahsorp- 
tion term simplifies the equations of radiative transfer. 

The exponential term in equation (1-25) is small except at large values 
of AT. Thus ah and ahf are nearly equal except at large values of AT (long 
wavelengths and/or high temperatures). The values are within 1 percent 
for XT less than 3120 (pm)(K) and within 5 percent for AT less than 4800 

(pm)(K). 
When properties from the literature are used in calculations of radia- 

tive transfer in absorbing-emitting media, care must sometimes be 
exercised to determine whether the reported absorption coefficients 
include the effects of induced emission; usually it is ax that is given. 

1.5.6 The Scattering of Energy 

Scattering is taken here to be any encounter between a photon and 
one or more other particles during which the photon does not lose its 
entire energy. It  may undergo a change in direction, and a partial loss or 
a gain of energy. In any of these cases, the photon is said to have been 
scattered. 

The scattering coeficient a s k  is the inverse of the mean free path that 
a photon of wavelength A will travel before undergoing scattering. (This 
is strictly true only when a s h  does not vary along the path.) The scatter- 
ing can be characterized by four types of events: elastic scattering in 
which the energy (and, therefore, frequency and wavelength) of the 
photon is unchanged by the scattering, inela,stic scattering in which the 
energy is changed, isotropic scattering in which scattering into any direc- 
tion is equally likely, and anisotropic scattering in which there is a dis- 
tribution of scattering directions. Elastic-isotropic scattering is most 
amenable to analysis without resorting to sophisticated analytical or 
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numerical techniques. Most scattering events of importance in engineer- 
ing are elastic, or very nearly so. 

For an elastic scattering process, there is no exchange of energy be- 
tween the radiation field and the medium. Therefore, the local thermo- 
dynamic conditions of the gas are not affected by the radiation field, 
although the radiation field is affected by the gas conditions. Scattering 
calculations in this case become more tractable than for analogous 
absorption-emission effects where the internal energy of the gas and 
radiation field can interact strongly. Radiative transfer when scattering 
is present is treated in chapter 8. Until that point, attention will be re- 
stricted to cases involving only absorption and emission of radiation. 

1.6 THE EMISSION OF ENERGY 

Having considered the various definitions connected with attenuation 
within a medium, the emission of energy within the medium will now be 
discussed. 

Consider an elemental volume dV of gas as shown in figure 1-9. The 
true absorption coefficient within dV is ax+(A, T ,  P) and is considered 
constant over dV. Let dV be placed at the center of a Large black hollow 
sphere of radius R at uniform temperature T. The space between dV 
and the sphere walls is filled with a nonparticipating material. The 
spectral intensity incident at the dA, location on dV from an element 
dA on the surface of the enclosure is, by use of equation (1-7), 

FIGURE 1-9.- Geometry for derivation of emission from volume of gas. 
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The intensity from this entering radiation that emerges from dV after 
passing through the path dS is given by Bouguer's law as 

i ; ( d S )  = i;(O) exp (- ah+&) (1-27) 

Since the true absorption coefficient has been used, the i i ( d S )  from 
equation (1-27) does not include any energy triggered by induced 
emission. 

The change of the intensity as a result of true absorption in dV is the 
difference between equations (1-26) and (1-27); that is, 

dii;=ii(dS)-ii(O)=--i;(O)[l-exp (-crxfdS)] 

=- iib(A, T )  [ l  - exp (- ax+dS)] ( 1-28) 

This does not include induced emission. For very small values of ahfdS, 
note that 

d i -  zib(A, T )  [ l  - exp (- a i d s ) ]  - - i ib (A ,  T ) u i d S  (1-29) 

which will apply since dS is a differential quantity. Equation (1-29) is 
also immediately evident from the differential form (eq. (1-8)). The energy 
absorbed by the volume dSdA, from this incident radiation is 

where dw = dA/R2  and dA, is a projected area normal to i i ( 0 ) .  Substitut- 
ing equation (1-29) in equation (1-30) results in 

The energy emitted by dA and absorbed by all of dV is found by integra- 
tion over dV;  that is, 

d3Qi, ,  = Id1 d4Qi,,  = i ib  ( A ,  T )  a i d h d o  dA,dS 
projected c~re f i  I 
of d l .  aor~~cct l  
to p~it11Jro111 dA 

=atiLb (A ,  T)dAdwdV (1-32) 

where dw is the solid angle subtended by dA when viewed from dV. 
To account for all energy incident upon dV from the entire spherical 
enclosure, integration is carried out over all such solid andes  to give 
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~ ' Q A , . =  Jw d 3 ~ ; , , =  a $ i [ b ( ~ .  T)ilVdA 

= 4.wa$iLb (A ,  T)dVdA 

= 4a$e~b(A,  T) dVdA (1-33) 

where exb is the blackbody spectral emissive power (eq. (2-12) in vol. I). 
To maintain equilibrium in the enclosure, dV must emit an amount of 

energy equal to that absorbed. Hence, the energy emitted by an iso- 
thermal volume element in  equilibrium with its surroundings is 

This result includes both spontaneous emission and emission induced 
by the incident equilibrium radiation field. For only spontaneous emis- 
sion, the coefficient ah would be used. The shape of the element dV is 
arbitrary; however, its size must he small enough to justify the approxi- 
mation of equation (1-29) and also small enough so that energy emitted 
within dV escapes before reabsorption within dV. Further, the gas must 
be in thermodynamic equilibrium with respect to its internal energy, a 
restriction discussed more fully in section 1.8. 

At this point an emission coefficient could be defined in a similar 
manner to the absorption coefficient. However, the radiation literature 
has other definitions of the emission coefficient which do not follow an 
analogy to the absorption coefficient definition, and there is no need to 
add confusion by defining a new coefficient here. Rather, equation (1-34) 
will be used directly as the relation for the emission of energy from an 
infinitesimal volume element of gas. 

When the spontaneously emitted intensity is the same for all directions 
(isotropic spontaneous emission of energy), which is the condition for 
all cases discussed in this volume, the radiation intensity emitted 
spontaneously by a volume element into any direction is 

"n the astrophysical literature (refs. 5 and 6), the emission coefficient is usually given the synlbol j~ defined by 

having units, therefore, of energy rate per unit volume per unit wavelength interval. 
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where dAp is the projected area of dV normal to the direction of emission 
and dS is the mean thickness of dV parallel to the direction of emission 
(i.e., ci.5 = dV/dA,) .  

1.7 DEFiNlTlONS USED FOR ENGINEERING GAS PROPEETIES 

It is desirable to make use of the extensive techniques in the engineer- 
ing literature dealing with radiative interchange computations between 
surfaces (see ref. 11 (which will be referred to from this point as  vol. 11)) 
without intervening absorbing media. With this objective, analogous 
concepts and terminology will now be developed for problems involving 
participating gases. This is done through the concept of the emittance 
and absorptance of a gas volume. These gas property definitions are 
analogous to the emissivity and absorptivity of opaque bodies. Because 
the energies emitted or absorbed by a volume of gas depend on the size 
and shape of the volume in addition to its physical properties and 
temperature, the absorptance and emittance are extensive properties. 
The nomenclature used here will follow that of volume I1 of this series, 
where the "ance" suffix applies for extensive properties. 

1.7.1 Absorptance 

To be a reasonably simple engineering parameter, the absorptance 
should depend at most on the geometry, size, temperature, and physical 
properties of the volume for which it is evaluated. It is, therefore, defined 
for a volume with uniform conditions, so that no gradients in the physical 
conditions need be considered. 

Consider energy of intensity i i ( 0 )  incident in the S direction on a uni- 
form medium of projected area d A ,  normal to S. The radiation passes 
through a thickness S as shown in figure 1-10. The amount of energy in 
solid angle dw absorbed by the medium is 

d3Q):, = [i): (0) - i): ( S )  ] dApdwdX (1-36) 

LVolume of 
medium 

FI(;URE 1-10.-Geometry for absorptance along path length S .  
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By substituting equation (1-21) for the attenuation of intensity by a 
uniform medium, this becomes 

d"L,(! = i i ( 0 )  [l  - exp (- ahS) jdAl,dwdA (1-37) 

The energy incident upon dV in solid angle dw is 

If the absorptance for path length S in the volume is defined as the frac- 
tion of the incident energy in solid angle dw that is absorbed while travers- 
ing S in the volume, then dividing equation (1-37) by equation (1-38) gives 

Spectral absorptance for path length S i n  a un.$orm gas volunze 

d"' 
= a i ( A ,  T ,  P ,  S )  = 1'" = 1 - exp (-CLAS) (1-39) 

d 3 Q ~ , i  

By substituting equation (1-39) into equation (1-21) the relation between 
intensities is obtained as 

The a i ( S )  is a directional spectral absorptance. The values of absorp- 
tance averaged over wavelength are also of use in engineering analyses. 
Integrating equations (1-37) and (1-38) over all wavelengths and then 
taking the ratio provides the relation 

Total absorptance for path length S i n  a uniform gas volunze 

dlQ 1 IT i ; (0)  [ I -  exp (- U A S ) ]  d~ 
(1 - 0 = a l ( T ,  P ,  S )  =:- 

d2Q,' r i i ( 0 ) d A  

1.7.2 Emittance 

The directional emittance of a uniform gas volume is the ratio of the 
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energy emitted by the volume in a direction to that emitted by a black- 
body at the same temperature. Because Kirchhoff's law holds without 
restriction for directional spectral absorptance values, as discussed in 
table 3-11 of volume I, it immediately follows by use of equation (1-39) 
that 

Directional spectral emittance for path length S i n  a uniform gas volume 

- 
= €;(A,  T ,  P ,  S )  = 1 - exp (- axS) (1-42) 

The emittance is the ratio of emitted energy to that emitted by a black- 
body. Consequently, the energy in wavelength interval d h  arriving at 
dA, at location S as a result of emission by the medium in solid angle dw 
as shown in figure 1-10 is iLb[ l  - exp ( - a ~ S ) ] d A , d o d A .  It follows by 
analogy to equation (1-41) that for total quantities 

Directional total emittance for path length S i n  a uniform gas volume 

L x i i u ( h ,  T )  [ l  - exp (- ahS)]dh  - E' ( T ,  P ,  S )  = lox i;a(h, ~ ) d h  

where by using crTqor the total blackbody emission it is assumed that 
the index of refraction of the medium is n = 1. 

In figure 1-11, the directional total emittance of carbon dioxide is 
shown as a function of temperature, partial pressure of the COz, and path 
length. This is an example of the extensive tabulations of such properties 
that are available for gases at conditions of importance in industrial 
design. The methods of using these properties in radiative exchange 
computations are developed in chapter 5, where more detailed charts 
of the radiative properties will be given. 

Comparing equations (1-41) and (1-43) shows that Kirchhoffs law for 
directional total properties, which is 
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FIGURE 1-11.-Emittance of carbon dioxide in mixture with nonabsorbing gas at total 
pressure of 1 atm (ref. 18). 

or' ( T ,  P ,  S )  = e r  (T ,  P ,  S )  (1-44) 

holds only under the conditions that the incident spectral radiation for 
absorption is proportional to a blackbody spectrum at the gas tempera- 
ture T ,  or the gas is gray, that is, ai = €1 are independent of wavelength. 
The same restrictions apply for opaque bodies as discussed in volume I. 

EXAMPLE 1-1: As a rough approximation, idealize the absorptance of 
COz at T,= 1500" R (830 K )  and 10 atm as in figure 1-2 so that it consists 
of four bands having vertical boundaries at the values 1.8 and 2.2, 2.6 
and 2.8, 4.0 and 4.6, and 9 and 19 pm. What is the total emittance of a 
very thick layer of gas at this temperature? 

For a very thick layer of gas, equation (1-42) indicates that EL will go 
to unity in the absorbing regions. Hence, the gas will emit like a black- 
body in the four spectral absorption bands. In the nonabsorbing regions 
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between the bands, E L  will be zero. From equation (1-43) the total 
emittance becomes 

E L  ( A .  T,. P .  S) e*u,,dA a~solri i i ! i  enn.udA 
- - 6niids 

E' (TfI, P ,  S) = 
I - 

The emittance is thus the fractional emission of a blackbody over the 
wavelength intervals of the absorbing bands which can be obtained from 
the FO-AT!~ factors in table V in the appendix of volume I. The required 
values are as follows: 

Then the emittance is 

Using the numerical values gives 

EXAMPLE 1-2: What fraction of incident solar radiation will be 
absorbed by a very thick layer of COz at 10 atm and 1500" R (830 K)? 
Use the approximate absorption bands of example 1-1. 
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The effective radiating temperature of the Sun is about T,$= 10 000" R 
(5600 K). The desired result is the fraction of the solar spectrum that lies 
within the four COz bands as this is the only portion of the incident 
radiation that will be absorbed. Using the FO-us factors as in example 
1-1, but using the solar temperature, gives the following values (using 
table V in the appendix of vol. I): 

The fraction absorbed is then 

Even though the gas layer is very thick, only 4.4 percent of the incident 
energy is absorbed since the gas is essentially transparent in the region 
between the absorption bands. 

1.7.3 Transmittance 

The transmittance of a gas volume is the fraction of the incident energy 
that passes through the gas volume. If it is assumed that no reflection or 
scattering of the incident radiation occurs, then the energy transmitted 
along a path is the incident energy minus the energy absorbed along the 
path: that is, 

Rearranging gives the transmittance as 
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Substituting equation (1-39) gives 

Spectral transmittance for path length S in a uniform gas volume 

- 1 -a; (A, T, Pi S )  = exp (- akS) (1-47) -7; (X,T,P,S)=-- 
d3Qi, i 

From equation (1-40) the intensities (as shown in fig. 1-10) can then be 
related as 

i: (S) = i: (0) r i  (S) (1-48) 

By analogous arguments, the directional total transmittance is given 
by (it is again assumed the reflectance of the gas volume is negligible) 
the following: 

Directional total transmittance for path length S in a ungorm gas 
volume = r '  (T, P, S) =1-a)'(T, P ,  S)  

J i; (0) exp (- UAS ) dX 
0 - - 

EXAMPLE 1-3: Some types of nuclear explosions produce, at their 
peak, an emissive power spectrum like that of a blackbody at 6000 K. 
The Sun also emits very close to this spectrum. Consequently, the 
transmissivity of the atmosphere for solar radiation can be used to 
determine the attenuation of energy from a nuclear explosion. 

When the Sun is directly overhead, the total transmittance of the 
atmosphere for solar radiation averages 35 percent throughout the fall 
and winter in the Great Lakes region. Assume that a 20-megaton weapon 
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is detonated at a height of 10 km and dissipates its energy uniformly over 
a period of 4 sec. Assume further that the fireball during this period is 
1000 m in diameter and that 50 percent of the total energy is dissipated 
as thermal radiation. Calculate the radiant energy flux directly below 
the burst at ground level. 

The total energy expended by the fireball per unit time is (1 megaton = 
lo1" cal) 

20 megatons c a1 
= 5 X 1015 - 

Q= 4 s e c  sec 

For 50 percent of the energy going into thermal radiation, the emissive 
power of the fireball is 

The intensity of radiation leaving the blackbody fireball is 

and from equation (1-48) the intensity arriving at ground level is 

To compute the energy arriving at the ground, the fireball is treated 
approxiinately as a differential area with projected area dAp=~R$reb, l l  
seen from the ground. Then the energy reaching the ground directly 
below the fireball per unit time is 

The energy flux at ground level directly below the fireball is 

dQ' 0.175Q -0.175 X 5 X 1015- 69.5 cal 
- -- - q=~z- 4n;s2 471. x 1012 (cm2)(sec) 

Note that the result is independent of Rfirebarl. 
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- 
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cloud cover 

Detonation 

FIGURE 1-12.-Areas receiving 15 cal/(cm2)(sec) or more of radiative flux as function of 
~veathel. conditions during four large-yield high-altitude weapon detonations (ref. 12). 

The rather grim result is that this flux applied over a few seconds is 
more than four times that required to ignite newspapers. A more com- 
plete approach to problems of this type is given in reference 12, where 
the slant angle to the ground is included. Higher altitude detonations 
than those of example 1-3 were studied. Figure 1-12 shows some results 
of reference 12 not recommended for the imaginative reader. 

1.8 THE CONCEPT OF LOCAL THERMODYNAMIC EQUILIBRIUM 

It was tacitly assumed in volume I of this series that opaque solids 
emit energy based solely on the temperature and physical properties of 
the body. The spectrum of emitted energy was assumed unaffected by the 
characteristics of any incident radiation. This is generally true because 
all the absorbed part of the energy incident on an opaque solid is quickly 
redistributed into internal energy states in an equilibrium distribution at 
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the temperature of the solid. 
In a gas, the redistribution of absorbed energy occurs by various types 

of collisions between the atoms, molecules, electrons, and ions that com- 
prise the gas. Under most engineering conditions, this redistribution 
occurs quite rapidly, and the energy states of the gas will be populated 
in equilibrium distributions at any given locality. When this is true, the 
Planck spectral distribution correctly describes the emission from a 
blackbody, and equation (1-34) correctly describes the emission from 
a gas volume element. 

The assumption, that a gas will emit according to equation (1-34) 
regardless of the spectral distribution of intensity passing through and 
being absorbed by dV,  is a consequence of the assumption of "local 
thermodynamic equilibrium" or LTE. When the condition of LTE is 
not present, the calculation of radiant transfer becomes much more 
complex. 

Cases where the LTE assumptio~l breaks down are occasionally en- 
countered. Examples are in very rarefied gases, where the rate and/or 
effectiveness of interparticle collisions in redistributing absorbed radiant 
energy is low; when rapid transients exist so that the populations of 
energy states of the particles cannot adjust to new conditions during the 
transient; where very sharp gradients occur so that local conditions de- 
pend on particles that arrive from adjacent localities at widely different 
conditions and may emit before reaching equilibrium; andwhereextremely 
large radiative fluxes exist, so that absorption of energy and therefore 
population of higher energy states occur so strongly that collisional 
processes cannot repopulate the lower states to an equilibrium density. 
Under any of these conditions, the spectral distribution of emitted 
radiation is not given by equation (1-34). Then the populations must 
be determined by detailed examination of the relation between the 
collisional and radiation processes and their effect on the distribution 
of energy among the various possible states- a most formidable under- 
taking. It is, however, necessary in examination of shock phenomena 
(sharp gradients), stellar atmospheres (extreme energy flux and low 
density), nuclear explosions (transients, sharp gradients, and extreme 
fluxes), and high altitude and interplanetary gas dynamics (very low 
densities). 

A gas with small optical thickness can have transmitted within it 
radiation from regions at widely different conditions. For this reason, a 
nearly transparent or "clear" gas is more likely to depart from LTE 
than is an optically thick gas of the same density. 

A very prominent no1rLTE effect is found in the laser. In this device, 
a material with a met:stable energy state is excited by some external 
means. Because the excited state is metastable and is also chosen so that 
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no competing process is trying to depopulate it, its population can reach a 
value well above the equilibrium value. This condition is called apopula- 
tion inversion. The material is then exposed to radiation containing 
photons with the same frequency as the transition frequency from the 
excited to a lower state in the material. This radiation induces or stimu- 
lates the transition to the lower state. Consequently, a large number of 
photons with the transition frequency are emitted, thus amplifying the 
intensity of the incident radiation. This process leads to the acronym 
light anlplification by the stimulated emission of radiation, or laser. 

Such non-LTE problems are beyond the scope of this work. It  will be 
assumed here that LTE always exists and that although the flux arriving 
at a volume element dV may come from localities at widely different tem- 
peratures, the emission from dV will be governed by equation (1-34). 

1.9 CONCLUDING REMARKS 

In this chapter, some basic concepts and definitions in the theory 
and physics of gas radiation have been introduced. h succeeding chap- 
ters, application of these concepts will be made to the problem of radiant 
energy transfer in gases. The idea of induced emission has been intro- 
duced, and the method of accounting for this effect in the equation of 
transfer will be shown in chapter 2. 
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Chapter 2. The Equations of Transfer for an 
Absorbing-Emitting Gas 

2.1 INTRODUCTION 

In chapter 1 some of the basic concepts and definitions were presented 
for intensity, emission, and absorption within a medium. The radiation 
traveling along a path within a medium is attenuated by absorption and 
scattering, and is enhanced by both spontaneous and induced emission 
and also by radiation scattered in from other directions. The fundamental 
processes of absorption and emission as discussed in chapter 1 will be 
employed to develop a differential equation governing the radiation 
intensity along a path through the absorbing and emitting medium. 
This equation is called the equation of transfer. The effects of scattering 
will be neglected in this chapter and in chapters 3 to 7; scattering will 
be considered in chapter 8. 

When obtaining a solution to the equation of transfer, a constant of 
integration will be introduced; the evaluation of this constant introduces 
the intensity at the origin of the radiation path being considered. Because 
the origin is usually at the boundary of the radiating medium, the radia- 
tion at the boundaries is thereby coupled into the radiation distribution 
within the medium. 

The intensity gives the radiation that is traveling in a single direction, 
per unit solid angle, and that is crossing a unit area normal to the direc- 
tion of travel. To obtain the net energy crossing an area, an integration 
must be made that includes the contributions of the intensities crossing 
in all directions. This results in an equation for radiative flux which will 
be used in the formation of heat balances within the medium. 

2.2 SYMBOLS 

area 
absorption coefficient 
speed of light in a medium 
spacing between parallel plates or diameter ratio 
exponential integral function, eq. (2-45) 
emissive power 
photon distribution function 
Planck's constant 
radiation intensity 
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i, j, k unit vectors in x, y, z coordinate directions 

n unit normal vector 
P 'pressure 
Q energy per unit time 
9 energy flux, energy per unit area and time 

r position vector 
S coordinate along path of radiation 

s unit vector in S direction 
absolute temperature 
radiant energy density 
volume 
coordinates in Cartesian system 
cone angle, angle from normal of area 
circumferential angle 
optical thickness 
optical thickness for path of length D 
wavelength 
frequency 
Stefan-Boltzmann constant 
solid angle 

Subscripts: 

a sbsorbed 
b blackbody 
e emitted 
i incident mean value, eq. (2-21) 
P Planck mean value, eq. (2-20) 
1 ,  v spectrally dependent 
f along directions having positive cos p 
- along directions having negative cos /3 
1 , 2  surface 1 or 2 

Superscripts: 
I directional quantity 
+ true value, not modified by addition of induced emission 
* dummy variable of integration 
- averaged over all incident solid angles 

2.3 THE EQUATION OF TRANSFER 

The equation of transfer in a nonscattering medium will now be 
derived. As stated in section 2.1, this will describe the intensity of 
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radiation at any position along its path through an absorbing-emitting 
medium. 

2.3.1 Derivation 

Bouguer's law, equation (1-12), in a nonscattering medium accounts 
only for attenuation by absorption. The equation of transfer is an exten- 
sion of Bouguer's law to include the contribution to the radiation in- 
tensity of energy emission along the path. 

Consider radiation of intensity i i;(S) within a region of absorbing- 
emitting medium as shown in figure 2-1. Attention will now be directed 
to the change of intensity as the radiation passes through a distance dS. 
Not including the gas emission for a moment, the intensity at S +  dS 
for a nonscattering gas is equal to the intensity at S plus the change 
caused by absorption in dS; that is, 

Using equation (1-8) with KA= ah ,in this case gives 

Note that ah has been used in equation (2-1) rather than the "true" 
absorption coefficient ac. Thus the intensity i ; (S+dS)  is the result 

Absorbing- 
emitting medium 

FIGURE 2-1. -Geometry for derivation of equation of transfer. 

387-309 0 - 71 - 4 
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not only of true absorption, but also includes the contribution of induced 
emission as discussed in section 1.5.5. 

Assuming the radiation along the path is in local thermodynamic 
equilibrium, the spontaneous emission contribution by the gas along the 
path length dS to the intensity in the S direction is given by equation 
(1-35) as 

Adding equations (2-1) and (2-2) gives the intensity of the radiation 
i{ (S+ d S )  as 

i i ( S +  d S )  = iL (S )  + cli;, .+ di;, , 
= i; ( S )  [ l  - ah ( S )  d S ]  + ax ( S )  i{ ,  ( S )  dS (2-3) 

where i;(S + d S )  now includes all emission from the gas as well as the 
contribution of the attenuated incident intensity. The change in intensity 
di; of the incident radiation as a result of passing through dS is then 

A form of equation (2-4) in astrophysical texts and which is often 
more convenient to work with is obtained by combining ahdS into a 
single quantity, that is, 

which takes into account the absorption coefficient and the differential 
path through which the radiation is traveling. The d ~ h  is called the 
optical differential thickness. By integrating equation (2-5) as in equa- 
tion (1-17) the optical thickness or optical depth is obtained for a layer 
of thickness S or a path of length S 

S 
K A  ( S )  =/ ah ( S * )  dS* (2-6) 

Using the optical differential thickness results in equation (2-4) taking 
the form 
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Equation (2-7) is the equation of transfer for an absorbing-emitting gas. 
There is a basic advantage for including the induced emission in the 

absorption coefficient. The induced emission as discussed in section 
1.5.5 is in the same direction as the transmitted radiation. The spon- 
taneous emission, however, is uniform over all directions. Thus by 
combining the induced emission with the "true" absorption to form ax 
(and KA), the quantities depending on the direction of the incident radia- 
tion have been brought together. The resulting emission term in the 
equation of transfer contains only spontaneous emission and hence does 
not depend on direction. 

2.3.2 Integration by Use of Integrating Factor 

Equation (2-7) is a first-order linear differential equation and a general 
solution can be obtained by use of an integrating factor. Multiplying 
through by the factor exp ( K ~ )  gives 

- - -- [~ ; (KA)  exp (KA) I = iib(Ki) exp (KA) (2- 8) 
d~ A 

Integrating over an optical thickness from K A = O  to KA(S) gives 

K1 

;;(.A) exp (KA) - i:(O) = lo iib(K:) exp (K:)~K: 

i; (KA) = i i  (0) exp (- KA) -k iLb (K:) eXp [- (KA - K:)]~K: 1: 
where KT is a dummy variable of integration. 

Equation (2-10) is interpreted physically as the intensity at opt ical  
depth KA being composed of two terms. The first is the at tenuated 
incident radiation arriving at KA (including, however, the contributioll 
of induced emission along the path), and the second is the intensity 
resulting from spontaneous emission in the S direction by all thickness 
elements along the path and reduced by exponential attenuation be tween 
the point of emission K: and the location KA. Equation (2-10) is t h e  
integrated form of the equation of transfer. As derived, this equat ion  
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applies to the spectral intensity traveling in the positive KA direction. 
Although equation (2-10) is a general solution to the equation of 

transfer, the intensity cannot be obtained directly from it unless the 
temperature distribution is known. The temperature will determine 
the blackbody emission term iAb(KA) in the integral on the right side. 

Also the temperature distribution is needed to determine the absorption 
coefficient ah(S) so that the local optical depth K ~ ( S )  can be com- 
puted from equation (2-6) and the physical coordinate S thereby related 
to the optical coordinate KA.  The temperature distribution depends on 
conservation of energy within the medium which in turn depends on the 
total absorbed radiation in each volume element along the path. This 
total energy quantity will be obtained in the next section by utilizing 
the intensity passing through a location and integrating over all incident 
solid angles and all wavelengths. The energy equation and equation 
(2-10) yield the necessary relations from which compatible temperature 
and radiation intensity distributions can be found. 

EXAMPLE 2-1: A black surface element dA is 10 cm from an element 
of gas dV (fig. 2-2). The gas element is a part of a gas volume V that is 
isothermal and at the same temperature T as dA. If the gas has an absorp- 
tion coefficient a h  of 0.1 cm-' at wavelength 1 pm,  what is the spectral 
intensity at A =  1 p m  that arrives at dV along the path S from dA to dV? 

Because element dA is black and at temperature T, the intensity 

at S= 0 is i,( (0) = iib (T). Since the gas is isothermal, the emitted 

blackbody intensity in the gas is i,& (KA) = i 6  (T). Substituting into the 

integrated equation of transfer (eq. (2-10)) gives 

i,( (KA)  = iLb (T) exp ( - KA) f i,&, (T) exp ( - KA) exp (KT) dKT I A 

FIGURE 2-2. -Geometry for example 2-1. 



EQUATIONS OF TRANSFER 

After carrying out the integral, this. reduces to 

The iLl,(T) is given by equation (2-lla) of volume I for a gas with 
refractive index n = 1. The intensity arriving at dV along an isothermal 
path from a black surface element at the same temperature as  the gas 
is thus equal to the blackbody intensity emitted by the wall and does 
not depend on ax or S. The attenuation by the gas of the intensity emitted 
by the wall was exactly compensated by emission from the gas along 
the path from dA to dV. 

2.4 ENERGY CONSERVATION WITHIN THE MEDIUM 

Equation (2-10) is concerned with the energy at only a single wave- 
length traveling in only a single direction within the medium. The tem- 
perature distribution within the medium is governed by conservation of 
energy which depends on the energy arriving at a volume element in 
all wavelength regions and from all incident directions. Since equation 
(2-10) depends on iib which is a function of local temperature, the in- 
tensity equation is coupled to the energy conservation equation to obtain 
the radiation intensity and temperature distributions. 

To derive the energy conservation equation consider the energy 
absorbed by a volume element dV within a medium as shown in figure 
2-3. The energy absorbed from the incident intensity ii ( A ,  w ,  KA) that 

Medium boundary 

FIGURE 2-3. -Geometry for derivation of energy conservation relation. 
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arrives within the incremental solid angle do is, by analogy with equation 
(1-32) 

The incident intensity ii (A, w, KA) is given by the equation of transfer 

(eq. (2-10)) as 

;;(A, w. KA)=~ ; (A ,  w, 0) exp (-KA) 

where i;(A, w, 0)  is the spectral intensity directed toward dV from 
the system boundary in the direction of dw. 

The energy absorbed ("true" absorption reduced by induced emission) 
by dV from all incident directions is found by integrating equation (2-11) 
with respect to w 

For convenience in writing the equations a little more compactly a mean 
incident intensity i x ,  i(A) can be defined by 

47r 

4 ,  ( A )  i;(A, w. K A ) C ~  (2-14) 

Then equation (2-13) becomes 

By integrating equation (2-15) over all wavelengths, the total energy 
absorbed by dV from the radiation field is obtained as 

The total energy emitted spontaneously from dV is obtained by using 
ax in equation (1-34) and integrating over all wavelengths; the result is 
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This equation contains the assumption that clV is so small that all the 
energy emitted by dV escapes before any can be reabsorbed within dV. 

2.4.1 Radiative Equilibrium 

For situations when all energy exchange mechanisms such as con- 
duction and convection are negligible compared with radiation and no 
transients in local temperature are occurring, the total emitted energy 
from clV is equal to the total absorbed energy. This is termed radiative 
equilibrium and is simply a statement of steady-state energy conserva- 
tion in absence of any other exchange mechanism but radiation. Using 
equations (2-16) and (2-17) radiative equilibrium gives 

2.4.2 Some Mean Absorption Coefficients 

As a result of the emission integral on the left of equation (2-18) it is 
convenient to define the Planck mean absorption coeficient a p ( T ,  P )  as 

The arl is the mean of the spectral coefficient when weighted by the 
blackbody emission spectrum. It  will prove useful when considering 
emission from a volume, and in certain limiting cases of radiative transfer. 

Substituting equation (2-19) into equation (2-18) results in energy 
conservation in the form 

Thus, if i*, i ( A )  is known at a position within the gas, equation (2-20) can 



46 THERMAL RADIATION HEAT TRANSFER 

be solved for T at that location. The Planck mean (111 is convenient since 
it depends only on the properties at dV. It can be tabulated readily and 
is especially useful where the pressure is constant over the geometry 
of the system. 

As a result of the absorption integral on the right side of equation 
(2-20), another type of mean absorption coefficient can be defined. This 
is the incident mean (or modiJied Planck mean) absorption coefficient 
ai (T ,  P )  given by 

1; o*(A, T ,  p ) i ~ .  i ( h )dA  
ni ( T ,  P )  = (2-21) 1; Z A ,  i (A)dA 

However, such a definition for general use has little value. A tabulation 
of ai would have to be carried out for all combinations of incident spectral 
distributions and spectral variations of local absorption coefficients. 
Except in certain very limited special cases, the work involved in such 
a tabulation would not be warranted. Further discussion of the physical 
interpretation of various mean absorption coefficients is given in section 
3.5.1. 

2.5 EQUATION OF TRANSFER FOR PLANE LAYER 

In order to evaluate the influence of some of the many variables in 
gas radiation problems, it is sometimes convenient to consider a simple 
geometry. A plane layer is often used and there is a considerable litera- 
ture for this geometry in both engineering and astrophysical publications. 
The astrophysical interest (refs. 1 and 2) stems from the fact that the 
atmosphere of the Earth and the outer radiating layers of the Sun can be 
approximated as a plane layer. 

The plane layer is illustrated in figure 2-4. The temperature and 

FIGURE 2-4.-Plane layer geometry. 
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properties of the gas vary only along the x coordinate. An arbitrary path 
S within the gas is at angle p to the x direction. The optical depth ~ ( x )  
is now defined along the x coordinate as 

The relation between optical positions along the S and x directions is 
given by 

xlcos 13 
K ( S ) = / ~ ' ~ ~ S * = / ~  a d ( r ' ~ ) = ~ / ~ a d x * = X ( Z )  cos p cos ,@ cos p (2-23) 

The equation of transfer (eq. (2-7)) is written along any path S and 
thus the K in equation (2-7) are K(S). By use of equation (2-23), the trans- 
fer equation is written in terms of K(X) as 

dih, 
COS P --- + ~)( [KA(x)  PI = i;b [KA(X)] 

~ K A ( X )  

A partial derivative is used to emphasize that ih, depends on KA(X) 
and p. The equation of transfer in integrated form, equation (2-lo), 
becomes 

where all the K in equation (2-25) are ~ ( x ) .  A convenient substitution 
that is often used is to let p=cos  0. Then equation (2-25) becomes 

~ ; ( K A ,  p )  = i;(O) exp 

2.6 THE GRAY GAS 

A gas having an absorption coefficient that is independent of wave- 
length is called a gray gas. From the discussion of gas property spectral 
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variations such as in connection with figure 1-2, it is evident that gases 
are usually far from being gray. However, there are some instances when 
gases may be considered gray over a portion of the spectrum. In other 
cases such as when particles of soot or other material are present or 
are injected into a gas to enhance its absorption or emission of radiation, 
the absorption coefficient of the gas-particle mixture may act as if the 
mixture were nearly a gray gas. In addition, examination of the radiative 
behavior of a gray gas provides an understanding of many of the features 
of a real gas without some of the complicating features that real gas 
effects introduce. The gray gas is thus of some practical and theoretical 
interest and has consequently received a great deal of attention in the 
literature. The equation for local intensity and temperature will now be 
written for a gray gas. 

2.6.1 Transfer Equations 

For a gray gas, K A  is independent of wavelength and will be called K for 
simplicity. Then the local total intensity in the gas can be found by 
integrating equation (2-10) over all wavelengths to give 

Using the definition of total intensity, which is 

results in equation (2-27) becoming 

For a gray gas ax is independent of A and equation (2-19) gives np= a h .  

The condition for radiative equilibrium as given by equation (2-20) 
reduces to the following equality at ally optical depth within the medium: 

As was defined in equation (2-14), the relation between ii in equation 
(2-29) and i r  in equation (2-28) is an integration over all incident solid 
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angles, 

so equation (2-29) becomes 

Equations (2-28) and (2-31) give a set of relations coupling i f  ( K )  and 
T ( K )  that may be used to determine the temperature distribution within 
the gas when boundary conditions are prescribed. The boundary condi- 
tions are needed to supply if(0) in equation (2-28) for each path. In the 
following section the relations given here will be applied to a plane layer 
of gray gas between infinite parallel black plates. 

2.6.2 Plane Layer Between Black Plates 

Consider two black infinite parallel plates that are separated by a 
gray gas with absorption coefficient a ( T ,  P). The gas is in radiative 
equilibrium. As shown in figure 2-5, the lower plate is at temperature 

FIGURE 2-5.-Geometry for finding distribution of temperature in gray gas. 
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TI, and the upper plate is at Tz. The plates are separated by a distance 
D. It is desired to obtain expressions for the temperature distribution 
in the gas and the energy transfer between the plates. 

Since the geometry is a plane layer, all the K in what follows are K ( X )  
as defined in equation (2-22). The temperature distribution is found 
from equation (2-31). The integration of i' over w is conveniently ex- 
pressed in two parts for intensities i$  approaching d V  from directions 
with positive cos p (from plate 1 in this case, 0 < p < 90") and i'ap- 
proaching from negative cos P directions (from plate 2 in this case, 
90" < p < 180"). These intensities are shown in figure 2-5 and it is noted 
that p is measured from the positive x direction. Then equation (2-31) 
can be written as 

where the notation dw denotes integration over all solid angles in the b 
hemisphere in directions from surface 1 and dw denotes integration 

over the hemisphere in directions from surface 2. 
The intensities in equation (2-32) are obtained from equation (2-25). 

This gives for radiation traveling from wall 1 at angle P and in the 
direction of positive cos /3 

(,--:,) + 1" i i ( ~ * )  exp 
- ( K - K * )  dK* 

i : (~ )= i : (O)  exp - [ 0 s  p I cos p (2-33) 

The i :(O) is the total intensity leaving wall 1 ;  and since wall 1 is black, 

The total intensity under the integral is related to the local gas tempera- 
ture by 

Substituting this into equation (2-33) gives 

- ( K - K * )  
i : ( ~ )  =I 7~ { c r ~ f  exp (x) i - ~  IK T 4 ( ~ * )  exp [ ] d K * }  cos p cos p 0 cos p 
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where 0 =S P < 90". By a similar analysis, the intensity at angle P 
(90°< p < 180") reaching optical depth K from the direction of plate 2 
is  (note that cos p is negative in this range) 

K D - K  K*-K 
'Ti- cos p 

D 
where x D = l  a(x)dx. 

The intensities in equations (2-34) and (2-35) are substituted into 
equation (2-32) to yield the following integral equation for T4(~): 

T ~ ( K )  =. ir ,8 [ T ~  exp (-K cos p ) 
+' I' T 4 ( ~ * )  exp 

cos p 0 
] d ~ *  + T$ exp [- ( K D  K, ] 

cos p 

+' J:" T 4 ( ~ * )  exp 
cos p [ ( K * - K ) ] d ~ * } d p  cos ,L3 (2-36) 

where the substitution dw = 2 7 ~  sin B dp  has also been made. Solutions 
giving the temperature distribution will be discussed later. 

The radiative energy flux in the positive x direction crossing the 
plane at x in figure 2-5 is found in two parts, one from the i: and one 
from the i'. Since intensity represents energy crossing an area normal 
to the direction of i f ,  the projection of the area dA must be considered 
normal to either iC or i'. The flux in the positive x direction from the 
iL is 

r lz 
P+(K) =L=O i : (~ )  cos P 211 sin 0 dp  (2-37a) 

The flux in the negative x direction from the i' is 

i ) ( ~ )  cos (T-/3)2'~i- sin ('~i--P)d('~i--/3) 

g - ( ~ )  =-27~ IT ~ L ( K )  cos p sin P dp  (2-3713) 
p=s12 

The net flux in the positive x direction is 

9 ( ~ )  = 9+(K) -9-(K) 
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Substituting equations (2-37) into equation (2-38) gives 

q(K) = 2 n  [I:: i : ( ~ )  cos p sin p rip+ i i ( ~ )  cos p sin P IT;2 I 
The intensities from equations (2-34) and (2-35) are substituted into 
equation (2-39) and the integrals combined to yield 

q ( ~ )  = 2 sin p cos P crT4 exp - I L;;) 
- (K-K*) + T K )  e x  [ ] d ~ * -  crTi exp 

cos p 0 cos p 

- (K* - K)  
- " / y ~ ~ ( ~ * ) e x p [  cos B cos p I d K * } @  

For energy transfer only by radiation (radiative equilibrium) in the geom- 
etry being considered here, q ( ~ )  must be independent of K because 
there are no energy sources or sinks in the gas. Evaluating q at the con- 
venient location K = O  then gives the heat flux flowing from wall 1 to 
wall 2, 

KI) 

T'(K*) exp (*) cos p d ~ * ]  dp  

+L 1 "" T'(K*) exp (s) d ~ * ]  dp (2-41) 
cos p 0 cos p 

This can be evaluated after T 4 ( ~ )  is found from equation (2-36). 
For the limiting case as  the absorption of the medium between the 

plates becomes very small KI) -+ 0, equation (2-41) reduces to 

which is the correct solution for black infinite parallel plates separated 
by a transparent medium. In addition for this limit equation (2-36) yields 



EQUATIONS OF TRANSFER 

so that a nearly transparent gray medium approaches a temperature to 
the fourth power equal to the average of fourth powers of the boundary 
temperatures. 

Solutions for the temperature distribution in a gray gas with tempera- 
ture-independent properties contained between infinite parallel plates 
have been obtained by many researchers. Some of the solution methods 
will be discussed in succeeding chapters. Heaslet and Warming (ref. 3) 
have presented solutions accurate to four significant figures for the 
quantities [T4 (K)  - Ti]/ (T: - T:) and q/ [o(T:  - T:) 1. Their results 
for the black boundary case are shown in figure 2-6. 

The temperature distributions of figure 2-6(a) show that a discon- 
tinuity exists between the wall temperature and the gas temperature at 
the wall. This phenomenon is called the temperature "slip" or "jump." 
If the slip were not present, the curves would all go to 1 at K / K D = O  
and 0 at K/KD = 1. The slip disappears when heat conduction is included 
in the analysis. To determine the magnitude of the slip, the gas temper- 
ature is evaluated at K =  0. This gives by using equation (2-36) 

- KI) T ~ ( K = o )  =- ' IT'' sin [T:+T; exp (--) 
2 0 cos p 

1 - K *  
-k - 1"" T ~ ( K  *) exp (=) dK *] dp  

cos P 0 

which can be written as 

Again it is seen that as K g  approaches zero, equation (2-42) reduces 
to 
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Optical thickness, 

KD 

Relative optical depth, K/KD 

Optical thickness, KD 

(a) Temperature distribution. 

(b) Energy flux. 

FIGURE 2-6.-Temperature distribution and energy flux in gray gas contained between 
infinite black parallel plates (ref. 3). 
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I I I I I I I I  
0 .5  1.0 1.5 2.0 2.5 3.0 

Optical thickness, KD 

FIGURE 2-7.-Disconti~~uity at wall between gray gas and black wall temperatures (ref. 3). 

The magnitude of the slip for a gray gas with constant absorption coef- 
ficient is shown in figure 2-7 as a function of the optical thickness of the 
layer. (Note that from symmetry T: - T"(K= 0) = T"K= K D )  - T i . )  

2.6.3 Use of Exponential Integral Functions 

There are some mathematical substitutions that are useful in deal- 
ing with the results derived from the equation of transfer for plane layers. 
By letting p= cos p, equations (2-36) and (2-41) become 

T* ( K )  =; 1' { Tj exp (?) 
I' T * ( K * )  exp ] d ~ * +  T: exp [ - ( K D - K )  

P  0 P  I 
+l lKKD T*(K *) exp [-'"I-"'] d K * } d p  

P  

The exponential integral function can now be introduced. This func- 
tion is defined as 
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E,,([) = 1 pn-2 exp (T ) dp 
'Then equation (2-43) can be written as 

and equation (2-44) becomes 

The exponential integral functions are discussed in detail by Kourganoff 
(ref. 1) and Chandrasekhar (ref. 2). For convenient use by the reader 
some of the important relations are given in the appendix. 

2.7 ENERGY RELATIONS BY USE OF PHOTON MODEL 

The radiation field and transfer of radiation in a medium can also 
be expressed in terms of a photon model. This is sometimes helpful 
in providing a physical picture of the transport and is also useful in 
Monte Carlo methods as will be considered in chapter 6. Since photon 
energy is related to the frequency of the radiation, frequency will be 
used in this section rather than wavelength. 

When considering the radiation as a collection of photons the condi- 
tions at any location in the medium are given by the photon distribution 
function$ Let 

f (v, 7, S)dvdVdw (2-48) 

be the number of photons traveling in direction S in frequency interval 
dv centered about v, in volume dV at position 7, and within solid angle 
dw about the direction S (see fig. 2-8(a)). Each photon has energy hv. 
The energy per unit volume per unit frequency interval is then hvfdw 
integrated over all solid angles. This is called the spectral radiant energy 
density 
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To obtain the intensity, the energy flux in the S direction is needed 
across the area dA in figure 2-8(a) which is normal to the S direction. 
The photons have velocity c, and the particle density traveling in the 
normal direction across dA is fdvdo. The number of particles crossing 
dA per unit time is then cfdvdwdA. The energy carried by these particles 
is I~vcfrlvdwclA. The spectral intensity is the energy per unit time, unit 
frequency interval, and unit solid angle crossing a unit area normal to 
the direction of the intensity. This gives the intensity at location ; and 
in direction S as 

i:= hvcf ( v ,  7, S )  (2-50) 

(a) Quantities in intensity derivation. (b) Quantities in flux derivation. 

(c) Spherical coordinate system for radiative flux vector. 

FIGURE 2-8. -Geometries used in derivations of radiative energy quantities. 
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The energy density; and the intensity can then be related by using 
equation (2-50) to eliminate f from equation (2-49), that is, 

This integral was encountered in equation (2-31). 
Now consider the energy flux crossing an area within a medium. As 

shown in figure 2-8(b) let dA be an arbitrary element whose unit normal 
vector is ii,. Energy passes through d A  from all directions; a typical direc- 
tion is the S direction at angle p to ii. This energy is given by hvcfdvdwdA 
cos p. To obtain the net energy flux crossing dA integrate over all in- 
cident solid angles. The energy per unit of dA moving across dA in the 
direction of increasing 6 is then (note that cos /3 becomes negative for 
p > n/2 so that the sign of the portion of the energy flux traveling in the 
direction opposite to the positive Ji direction is automatically included) 

f cos /3 dw = dv i: cos /3 dw (2-52) 

The latter form of equation (2-52) was obtained by use of equation (2-50). 
Let S be a unit vector in the directions of the photons. Then cos P=s'.ri 

and equation (2-52) can be written as  

Thus dq, is the component in the 7z direction of a flux vector given b y  

that is, dq,= ii . dq',. 

To further reveal the vector nature of dij,,, consider a spherical 
coordinate system as shown in figure 2-8(c). The unit vector 3 can then 
be written as  

s'=? cos 0 sin P + j  sin 0 sin p + cos /? (2-55) 

Substituting s and dw = sin P dpd0 into equation (2-54) gives the vector 
dij, in terms of its three components, 
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i: ( p ,  0 )  cos I9 sin2P dodo 

+i 1'- i l  (P ,  19) sin I9 sin2P rlprlI9 
s=o p=o 

2.8 CONCLUDING REMARKS 

The equation of transfer has been derived which gives the variation 
of intensity for radiation traveling in a fixed direction through an 
absorbing-emitting medium. The equation expresses how the intensity 
is attenuated by absorption and strengthened by emission; scattering 
has been neglected. The equation of transfer was integrated so that the 
intensity can be found along a path if an initial intensity is known; the 
initial intensity would usually be that leaving a boundary. Since the 
intensity involves the emission along a path, and the emission depends on 
temperature, the temperature distribution in the gas is required to eval- 
uate the intensity solution. 

The gas temperature distribution is found from the energy conser- 
vation equation. The energy terms are obtained from the total radia- 
tion fluxes which are found by integrating the energy carried by spectral 
intensities over wavelength and direction. Thus the solution of the equa- 
tion of transfer is coupled to the energy equation and it was found that 
the temperature distribution is governed by an integral equation. 

Chapter 3 will consider in detail various approximate solutions that 
have been obtained by use of the equation of transfer. 
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Chapter 3, Approximate Solutions of the Equation of 

Transfer 

3.1 INTRODUCTION 

Exact solutions to the radiative transfer equations to yield tempera- 
ture distributions and heat flows in an absorbing-emitting medium require 
considerable effort in most practical cases. Two approaches can be 
taken to circumvent this complexity. In the first, the equation of transfer 
may be simplified either by neglecting one or more terms when justified 
or by transforming it into a diffusion equation. In the second, the com- 
plete equation of transfer is used but approximate solutions are obtained 
to it. 

The equation of transfer was derived and integrated in chapter 2 to 
give the variation of intensity along a direction of propagation in an 
absorbing-emitting medium. The assumptions used in chapter 2, that 
will also be retained here, are that there is no scattering, no heat con- 
duction or convection, and that the gas is in local thermodynamic 
equilibrium. The expression for the spectral intensity was given by 
equation (2-10). This showed that the intensity along a path depends 
on the intensity at the origin of the path, for example at a boundary, and 
on the temperature distribution along the path. 

There are three approximate solution methods that involve neglecting 
terms in the transfer equation: the transparent, emission, and cold 
medium approximations. They are summarized in table 3-1 and will be 
treated in section 3.3 of this chapter. 

The last approximation in table 3-1 is the diffusion approximation. 
This is not obtained by neglecting a term in the equation of transfer, 
but rather is derived by transforming the integral equations for the 
radiative energy balance into a diffusion equation. The details of the 
derivation, the approximations that are involved, and the solution of 
the resulting diffusion equation form the second main portion of the 
chapter, section 3.4. 

The remainder of the chapter will deal with approximate solutions 
of the complete equation of transfer. These are methods such as the 
Milne-Eddington approximation and the differential approximation. 
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I Approximation I Form of equation of transfer I Conditions I 
Strong 

transparent 
i i  ( S )  = i l ( 0 )  The medium has such a low 

absorption coefficient that 
an intensity does not 
change by absorption or 
emission while traveling 
within the medium. 

Emission 

Cold medium i : (S)  = i i ( 0 )  e rp  [- o * ( ~ * ) d ~ * ]  

No energy is incident from 
the boundaries, and the gas 
is relatively transparent 

I so that emitted'energy 

I from the gas passes 
within the system without 
significant attenuation. 

I 
Emitted radiation from 

medium is negligible 
compared to that incident 
from boundaries or 
external sources. 

Diffusion The optical depth of the 
gas is sufficiently large, 
and the temperature 
gradients sufficiently small 
so that the local intensity 
results only from local 
emission. 

3.2 SYMBOLS 

area 
coefficients in eq. (3-105) 
absorption coeficient 
constants in Planck's spectral energy distribution 
spacing between parallel planes, or diameter 
ratio, (1 - E ) / E  

emissive power 
volumetric energy generation rate 
length over which temperature changes significantly 
mean absorption value defined by eq. (3-50) 
radiation intensity 
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Subscripts: 

direction cosines 
absorption mean free path, llax 
pressure 
spherical harmonics, eq. (3-107) 
energy per unit time 
energy flux, energy per unit area and time 
sphere radius 
radial coordinate 
position vector 
coordinate along path of radiation 
unit vector in S direction 
absolute temperature 
volume 

distances measured along Cartesian coordinates 

functions of angle in eq. (3-105) 
cone angle, angle from normal of area 
Gamma function 
Kronecker delta 
hemispherical emissivity 
circumferential angle in fig. 3-3(b) 
optical depth 
optical thickness for path length D 
wavelength 
Stefan-Boltzmann constant 
temperature ratio, tables 3-11 and 3-111 
dimensionless heat flux, tables 3-11 and 3-111 
function defined by eq. (3-34) 
solid angle 

blackbody 
mean absorption coefficient in eq. (3-49) 
emitted 
evaluated at interface between gas regions 1 and 2 
incident 
Planck mean value 
Rosseland mean value in eq. (3-39) 
net value in r direction 
sphere 
evaluated on the wall 
net value in the z direction 
propagating in positive or negative z direction, respectively 
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A spectrally dependent 
Ah value integrated over wavelength interval Ah 
0 evaluated at point of origin, initial value 
1, 2 boundary 1 or 2, respectively, or region 1 or 2, respectively 
+, - propagating in positive or negative direction 

Superscripts: 
I directional quantity 
* ** 

7 dummy variable of integration 
- average over all incident solid angles 
( 0  ( 1  2 zeroth-, first-, or second-order term or moment 

3.3 APPROXIMATE SOLUTIONS BY NEGLECTING TERMS IN THE EQUATION 
OF TRANSFER 

In chapter 2 the equation of transfer was integrated to give the in- 
tensity variation along the optical path K (eq. (2-10)). For use in the 
present discussion this equation is repeated here in terms of the actual 
distance S along the path 

i;(S) =i;(O) exp [-los a i ( ~ * ) & * ]  

+ los ~ A ( S  *)i;, (S *) exp [-I:' aA(s**)&**] ds* (3- 1) 

The intensity i;(S) as given by equation (3-1) depends on the intensity 
i; (0) leaving the boundary at S=O, and on the temperature distribu- 

tion since the local temperature governs the variation of ii, and a A .  

As given by equation (2-20), the energy conservation equation needed to 
obtain the temperature distribution involves an integration of incident 
intensities from all solid angles. This results in a coupling of the energy 
conservation and transfer equations which can become quite complex. 
It is often possible to use some approximations that provide consider- 
able simplification. Three of these approximations as summarized by 
the first three entries in table 3-1 will now be discussed. 

3.3.1 The Transparent Gas Approximation 

When the optical depth along a path in the gas is small, the inte- 
grated form of the equation of transfer can be simplified as the two 
exponential attenuation terms in equation (3-1) each approach unity. 
The intensity equation (3-1) then reduces to 
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There is no attenuation along the path of either the energy emitted in 
the gas or the energy that enters at S=O. In sonle instances, an even 
stronger assumption can be made. If the absorption coefficient is suf- 
ficiently small and the i i (0 )  is finite, the emission from the gas as 

given by the integral in equation (3-2) becomes negligible compared 
with the intensity at S = 0 and equation (3-2) reduces simply to 

i; (S) = i; (0) (3-3) 

This is the strong transparent approxin~ation listed in table 3-1. An 
incident intensity is thus essentially unchanged as it travels through 
the gas. The local energy balances based on this simple intensity re- 
lation are obviously much easier to carry out than those involving the 
complete equation of transfer. The use of the strong transparent approxi- 
mation will now be demonstrated. 

EXAMPLE 3-1: Two infinite parallel black plates at temperatures TI 
and T S  as in figure 2-5 are separated by a small distance D, and the space 
between them filled with a gas of absorption coefficient ah. Assuming that 
the strong transparent approximation holds, derive an expression for 
the gas temperature as a function of position between the plates. It  is 
assumed the gas is in local thermodynamic equilibrium although this 
assumption can sometimes break down in a thin gas as  mentioned in 
section 1.8. 

Equation (2-20) is the general expression for local radiative equilib- 
rium in the gas. For the present case, it gives 

As in equation (2-32) and from the definition (eq. (2-30)), t i ,  i is given 
by the contributions approaching a volume element from above and 
below, that is, 

4nih, i ( ~ )  =lT i; ( A ,  o ) d o = j Q  i;, (A,  o)do+/ i;- (A, o ) d o  (3-5) 
u 

Since the walls are black, the strong transparent approximation gives 
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and 

Then since the black intensity is independent of angle, equation (3-5) 
gives 

7r/e 
47rih, i ( A )  =2niL6(A, T I )  /7r '2  sin p dp+ 2ri;,,(A, T 2 )  sin P c@ 

Substituting equation (3-6) into equation (3-4) gives at any x position 
between the plates 

(rT4 ( x )  =- " l r n a ~ ( h ,  x)[ ikb(A,  T I )  + iL6(h, T i ) ldA (3-7) 
~ u / J ( x )  0 

Equation (3-7) can be solved iteratively for T ( x ) .  The necessity for an 
iterative solution arises because ah depends on local temperature. 

If a i  does not depend on gas temperature, then using equation (2-19) 
results in 

and 

Then equation (3-7) reduces to 

T4 ( x )  = [ a ~ ~ ( T ~ ) T ~ + o , ~ ( T ~ ) T ~ ]  
2 a ~ [ T ( x )  I 

The local temperature solution, although still requiring an iterative solu- 
tion on T ( x )  and a p [ T ( x ) ] ,  is relatively easily found by use of tabulated 
values of ap(T).  Note funher that for a gray gas with temperature- 
independent properties, up is a constant and equation (3-8) reduces still 
further to 
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Hence, the entire gas approaches a fourth-power temperature that is the 
average of the fourth powers of the boundary temperatures. This limit 
was also found in section 2.6.2 following equation (2-41). 

3.3.2 The Emission Approximation 

In the strong transparent approximation, the gas was optically thin and 
the local intensity was dominated by the intensity incident at the gas 
boundary. In the emission approximation tlie gas is again optically thin 
but there is also negligible incoming energy at the gas boundary from 
external sources. For these conditions, in equation (3-1) the exponential 
attenuation terms both become unity as ah is small, and iL(0)  is zero. 
This gives 

i ; ( S )  = ax(S*) i ib (S*)dSX P (3-10) 

Thus the only important term is the emission which is of order axi,&. 
Reabsorption of emitted energy along a path is of order ax(c~xi{~,)  and is 
negligible because ax is very small. The intensity i ; ( S )  in equation 
(3-10) is consequently the integrated contribution of all the emission 
along a path as  the emitted energy travels through the gas without 
attenuation. 

Equation (3-10) can be integrated over all wavelengths to give tlie 
total intensity 

i t  ( S )  = 1" i ; ( ~ ) o ' h = %  [l' o h ( ~ * ) i ; b ( ~ * ) d ~ ]  ds* 

The definition of a ~ .  (eq. (2-19)) is now applied to give 

The fact that equation (3-11) contains the Planck mean absorption 
coefficient and was derived for optically thin conditions has sometimes 
led to the statement that the Planck mean absorption coefficient is appli- 
cable only in optically thin situations. However, the Planck mean was 
defined in general for the emission from a volume element in connection 
with equation (2-18), and hence can be applied for the emission term in 
a gas of any optical thickness. 
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(a) Slab geometry for example 3-2. (b) Emission from spherical gas- 
filled satellite with 
transparent skin. 

FIGURE 3-1. -Examples for emission approximation. 

EXAMPLE 3-2: Find the flux emerging from an isothermal slab of gas 
with Planck mean absorption coefficient 0.010 cm-' and thickness 
D = l  cm if the slab is bounded by transparent nonradiating walls 
(fig. 3-l(a)). 

If i t @ )  is the emerging total intensity in direction p ,  the emerging 
flux is 

Since the slab is isothermal with constant up, equation (3-11) can be 
integrated over any path Dlcos p through the slab to yield 

aT4 D 
i l ( P ) = a p  -- 

n. cos p 
Then 

apc+T4D sin p dp= 2apaT4D 

Substituting the numerical values gives 

It  should be realized that equation (3-12) is really not a precise result 
even though the slab is optically thin in the sense that the optical thick- 
ness based on D is apD=O.Ol % 1. This is because some of the radia- 
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tion reaching the slab boundary has passed through the thickness 
Dlcos p. Because for large p directions this path length becomes in$nite, 
the emission approximation cannot hold. A more accurate solution of 
the equation of transfer including the proper path lengths gives 

which is 10 percent less than equation (3-12). 

EXAMPLE 3-3: An inflated spherical balloon satellite of radius R is 
in orbit in the Earth's shadow. The satellite has a perfectly transparent 
wall and is filled with a gray gas of constant absorption coefficient a,  such 
that aR 4 1. Neglecting radiant exchange with the Earth, derive a rela- 
tion for the initial rate of energy loss from the satellite if the initial 
temperature of the gas in the balloon is TO. 

From the emission approximation equation (3-11), figure 3-l(b) shows 
that the following can be written for the intensity at the surface: 

since a and To are constants. From the geometry 

S=2R cos f i  

Then q, the flux leaving the surface, is 

npr 
= I ~ T ~ R  IO cos2 p sin p 

To obtain the energy loss Q per unit time from the entire sphere, 
multiply through by the surface area of the sphere 

where V,  is the volume of the sphere. This is what is expected-it was 
found that any isothermal gas volume radiates according to this formula 
(see section 1.6) so long as there is no internal absorption; the emission 
approximation gives a compatible solution. 
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3.3.3 The Cold Medium Approximation 

The final approximate form of the equation of transfer to be discussed 
in this section is found when the local blackbody emission within the 
medium is very small. Such a situation might arise in considering radia- 
tive transfer within a cold medium such as an absorbing cryogenic fluid. 
The integrated equation of transfer (3-1) reduces to 

i; ( S )  = i;(O) exp [- 1: a, (s*) ds* ] 
The local intensity thus consists only of the attenuated incident intensity. 

EXAMPLE 3-4: 100 watts of radiant energy leave a spherical light bulb 
enclosed in a fixture having a flat glass plate as shown in figure 3-2. If 
the glass is 2 cm thick and has a gray absorption coefficient of 0.05 cm-I, 
find the intensity leaving the fixture at an angle of 60" to the bulb axis. 
(Assume the bulb diameter is 10 cm.) 

An integration of equation (3-15) over A and S results in the total 
intensity 

it  ( P )  = it  ( 0 )  exp (- U S )  

To obtain i l (0) ,  consider the light bulb a diffuse sphere. The energy 
flux (emissive power) at the surface of the sphere is 100 watts (W) 
divided by the sphere area. The intensity is this diffuse emissive power 
divided by T. Then 

FIGURE 3-2.-Intensity of beam from light fixture (example 3-4'). 
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Then 

i t  ( P )  = 0.101 exp (- 0.05 X 
W 

(cm2) <sr> 

Note that this problem has involved only a simple attenuated trans- 
mission solution. The cold-material approximation is just that, a neglect 
of emission along the path' of transmission. In this problem it was 
assumed that emission from the glass pIate is small, so that only the 
intensity originating at the source needed to be considered. 

3.4 DIFFUSION METHODS IN RADIATIVE TRANSFER 

When a medium is optically dense, the radiation within it can travel 
only a short distance before being absorbed. Consider the situation where 
this radiation penetration distance is small compared with the distance 
over which significant temperature changes occur. Then a local intensity 
will be the result of radiation coming only from nearby locations where 
the temperature is close to that of the location under consideration. 
Radiation emitted by locations where the temperature is appreciably 
different will be greatly attenuated before reaching the location being 
considered. 

For these conditions it will be shown that it is possible to transform 
the integral-type equations that result from the radiative energy balance 
into a diffusion equation. The diffusion equation is like a heat conduction 
equation. The energy transfer depends only on the conditions in the 
immediate vicinity of the position being considered and can be described 
in terms of the gradient of the conditions at that position. The use of the 
diffusion approximation leads to a very great simplification in treating 
many problems of radiative transfer. Standard techniques, including 
well-developed finite difference schemes, can be used for solving the 
resulting diffusion differential equations. Such methods for differential 
equations are developed to a much higher degree and are more familiar 
to most engineers, for example in the solution of heat conduction prob- 
lems, than are the methods of solution for the corresponding integral 
equations. 

As will be shown in the derivations that follow, the diffusion approxi- 
mation requires that the intensity within the medium be nearly isotropic. 
This can occur well within an optically thick medium with small tempera- 
ture gradients but cannot be valid near certain types of boundaries. For 
example, at a boundary adjacent to a vacuum at absolute zero tempera- 
ture radiation will leave the medium but there will be none incident 
from the vacuum. As a result of this large nonisotropy, the diffusion 
approximation will not be valid near this type of boundary. The ability 
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to apply diffusion methods at the interfaces between regions has been 
improved recently by the introduction of so-called "radiation slip" or 
"jump" boundary conditions. 

For real gases there are wavelength regions that are essentially trans- 
parent. The diffusion approach can only be applied at specific wave- 
lengths or in wavelength bands for which the optical thickness of the 
medium is greater than about two; the fact that some mean optical thick- 
ness meets this criterion is not sufficient. Wavelength band-type applica- 
tions of the diffusion method can be made in the optically thick regions. 

3.4.1 Simplified Derivation of the Diffusion Equation 

First, a simplified derivation of radiation diffusion in a one-dimensional 
layer will be carried out to give the spirit of the diffusion approximation. 
The diffusion assumption is made that the medium in question has an 
absorption coefficient sufficiently large so that the absorption mean free 
penetration distance l l n h  is small compared with the distances over 
which significant temperature changes occur. 

Consider the layer of gas shown in figure 3-3(a). The equation of 
transfer from equation (2-7) is 

dsJ I Medium wi th  

i absorption 
coefficient ah(x)  

(a) One-dimensional plane gas layer. (b) General three-dimensional region. 

FIGURE 3-3. -Geon~etry for derivation of diffusion equations. 
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By using the relation dS= dxlcos P, the equation of transfer giving the 
change of iL with x for a fixed P is written as 

where the blackbody intensity does not depend on angle. Let H be a 
length over which the temperature changes by a significant amount. 
Then nondimensionalize equation (3-17) using H and let l / a i =  la1 from 
equation (1-16) 

-- k cos fi M= i ~ ( y ,  fi) - iLb (wx) 

a(;) 

We now proceed to obtain a solution to equation (3-18) in the form of a 
series. The diffusion approximation states that the penetration distance 
is small compared to the length over which the temperature changes 
appreciably. Hence L,,,/H 6 1 and the intensity can be written as  a series 
of functions iL(I1) multiplied by powers of L,,,/H 

Substituting into equation (3-18) gives (up to terms in first power of l,,,/H) 

Equating the zeroth-order terms gives 

Equating the terms in l,,,/H and then using equation (3-21) to eliminate 
i;(") gives 

diLb ii(l)=- cos p- (3-22) 
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Equations (3-21) and (3-22) are substituted into the series solution 
equation (3-19) to yield (up to terms in / , , , /H) 

., cos /3 di$ 
i;= z h b -  

a h  d x  

This result reveals the important feature that i n  the di fus ion solution 
the local in temity  depends on.ly on  the magn.itude and gradient of the 
local blackbody intensity. 

The local spectral energy flux at x flowing in the x direction is found 
by multiplying ii by cos P dA and integrating over all solid angles as in 
equation (2-39) 

i; ( x ,  0 )  cos /? sin P dp 
dA 

= 27r 1 i ; ( x ,  cos p) cos /3 d(cos p)  (3-24) 
cos8= - 1  

Using equation (3-23) in equation (3-24) gives, after noting that i i b  
does not depend on P, 

Equation (3-25) is an important result known as the Rosseland diffusion 
equation. This equation relates the local energy flux to local conditions 
only; it does not involve integrals of contributions from other regions 
and thus provides a considerable simplification over the exact formulation 
of the equation of transfer. 

3.4.2 The General Radiation Diffusion Equation 

In the previous section the diffusion equation was derived for a simpli- 
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fied case. Only first-order terms were retained in the series of equation 
(3-19) and an unbounded region of gas was considered. The genera1 
equations used in radiation diffusion will now be derived including the 
second-order terms. Boundary conditions will be introduced into the 
theory so that the diffusion equations can be applied to finite regions. As 
shown by the solution in section 3.4.3.1, the boundary conditions must 
account for a jump in emissive power between the wall and the gas at the 
wall for a situation where there is radiative transfer only. The derivation 
follows the general outline of that of Deissler (ref. 1). The intermediate 
equations in the following derivation become somewhat complex be- 
cause of their general form. The final equations however are relatively 
simple and are very useful. 

3.4.2.1 The Rosseland equation for local radiativefiux. - Consider the 
geometry in figure 3-3(b). There is a volume element dV0 at xo, yo, zo 
having cross-sectional area dAo in the x ,  y plane. The energy flux cross- 
ing dAo originates from all surrounding volume elements such as dV. If 
the emission from dV produces an intensity i i ( S ) ,  then the intensity 
reaching dVo is given by equation (1-21) as 

i i ( 0 )  = i i ( S )  exp [ - a ~ ( h ) S ]  (3-26) 

This accounts for attenuation along S but does not include emission 
along S which will be accounted for later by integrating the contributions 
of equation (3-26) from all elements of the volume. Note that a spatially 
constant ax has been used. This is not restrictive here as in the diffusion 
approximation the gas temperature does not change significantly over the 
region contributing significant radiation to a location. The solid angle 
subtended by dV when viewed from dAo is dA/S2 where dA is the pro- 
jected area of dV normal to S. The energy per unit time incident on dAo 
as a result of the intensity in equation (3-26) is then 

dA d'Qh,i(O) = i i ( S )  exp [- a ~ ( h ) S ]  -s;- dAo cos P dh (3-27) 

From equation (1-35), the spectral energy emitted spontaneously by 
dV per unit time is 

Substituting equation (3-28) into equation (3-27) gives 

dA 
~ ' Q A ,  i ( O ) = a ~ ( h ) i ; ~ ( h ,  T)dS exp [ - - a ~ ( h ) S ]  dAo cos /3 dA (3-29) 
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If as a result of the gas being optically dense, the radiation field at 
dVo originates only from locations close to clVo, then iib ( A ,  T )  in equation 
(3-29) can be expanded in a three-dimensional Taylor series about the 
origin S=O in the hope that truncation of the series after a few terms 
will give an adequate representation of the iLb distribution near dVo. 
The general Taylor series in three dimensions can be written as 

This general series will be carried for the next several steps and will then 
be truncated to a few terms. By applying the binomial theorem twice to 
expand the factor in square brackets, equation (3-30) becomes 

This relation is substituted into equation (3-29), which is then integrated 
over the half space encompassing positive z values. This gives all energy 
traveling in the negative z direction that is incident on dAo as 

X (S sin 0 sin p)  p-S  (S sin /3 cos O ) S  cos P sin p 
X exp [-- ak(A)S] dSdpd0 (3-32) 

where the integral and summation signs have been interchanged and 
spherical coordinates of the following form have been introduced: 

x-xo=S sin p cos 0 

y-yo=Ss inPs in  0 

2-zo=S COS p 

The solid angle dA/S%as also been replaced by sin /3 d p  dB. Note that the 
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following assumptions have been used in the integration over the entire 
half space in equation (3-32): (1) the ax is constant within the region 
that contributes significantly to the energy flux at dAo, and (2) there are 
no bounding surfaces that contribute significant radiation energy at 
d o .  Otherwise, the ax would have to be retained as a variable in the 
integration, and the integration would have to be over a finite region with 
a specified intensity along the boundaries. 

Carrying out the integration of equation (3-32) gives 

where 

(3-34) 
and r is the gamma function. 

A similar derivation for the energy incident on dAo from below, that 
is, energy traveling in the positive z direction, gives 

The net energy flux passing through dAo in the positive z direction 
is then 

Similar relations can be derived for the x and y directions. 

In the diffusion approximation a region is being considered where 
temperature changes slowly with optical depth. Hence derivatives such 
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as ( l / a ! ) ( a l i i ~ , / a ~ ~ l )  become small as n is increased and the series in 
equation (3--36) can be truncated. Retaining only terms th,rouglz the 
second derivative causes the formidable looking equation (3-36) to 
reduce to 

This is the general relation for local energy flux in terms of the emis- 
sive power gradient and is in agreement with equation (3-25); it is the 
Rosseland di fus ion equation for radiative energy transfer. Retaining 
only first-order derivatives, as in the derivation of equation (3-25),  
also gives this same equation because the second-order terms have been 
found to cancel. Note that equation (3-37) has the same form as the 
Fourier law of heat conduction. This allows solution of some radiation 
problems by analogy with heat conduction methods. 

To obtain the energy flux in a wavelength range, integrate equation 
(3-37) over the wavelength band Ah (the parentheses and 0 subscript 
will be dropped for simplicity) 

This defines the mean absorption coefficient aR,AA as 

By multiplying the numerator and denominator by az/aeb, this can be 
written as 

The aK is called the Rosseland mean absorption coeficient after S .  
Rosseland who first made use of the diffusion theory in studying radiation 
effects in astrophysics (ref. 2). The aeXb/aeb can be found by differentiating 



SOLUTIONS OF EQUATION OF TRANSFER 

Planck's law (eq. (2-llb), vol. I) after letting T =  (eb/a)'I4 

3.4.2.2 The emissive power jump as a boundary condition.. -Up to 
now the position considered in the gas was sufficiently far from any 
boundary so that the effect of the boundary did not enter the diffusion 
relations. Now the interaction of the radiating gas with a diffuse wall 
will be considered. Let the wall bounding the gas from above as shown 
in figure 3-4 have a hemispherical spectral emissivity EAluz. All quantities 
pertaining to the wall itself will have the subscript w to differentiate 
them from quantities in the gas at the wall which will have now subscript. 
Consider an area d A 2  in the gas parallel to the wall and immediately 
adjacent to the wall. The spectral energy passing through dAz in the 
negative z direction is 

where the terms on the right account for the emitted and reflected 
energy from wall 2, respectively. The net spectral flux across dA2 in 
the positive z direction is then 

This can be placed in the form 

Now equation (3-35) is substituted for (d2Qh,+,)z. The first term of 
equation (3-35) for n = 0 and dAo = d A z  is 
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FIGURE 3-4. -Geometry for derivation of energy jump condition at opaque boundary. 

Then equation (3-43) becomes at dAz in the gas adjacent to the wall 

Retaining only terms through second order and using equation (3-37) to 
remove the first derivatives in terms of the spectral energy flux result 
in the following relation for the jump in emissive power at dAz 
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All the quantities that do not have a w subscript are evaluated at dA2 
which is i n  the gas adjacent to the wall. The quantities with a w subscript 
are evaluated on wall 2 and d q ~ ,  is the net flux in the positive z direction. 

In a similar fashion, the jump in emissive power at dAl in figure 3-4 is 

where the quantities with a w subscript are on wall 1, and those without 
a w are i n  the gas adjacent to wall 1. 

Equations ( 3 4 5 )  and (3-46) are boundary conditions that relate the 
emissive power in the gas immediately adjacent to the wall eAb to the 
wall emissive power ehb,. It is evident that there is a jump in emissive 
power in passing from the gas to the wall at each boundary. Some 
applications to clarify the use of these relations will be given in sec- 
tion 3.4.3. The use of equation (3-35) in the derivation of these boundary 
relations assumes that the proportionality between local radiative fEux 
and emissive power gradient i n  the gas holds even at points i n  the gas 
very near to a bounding surface. Although this is not strictly true, the 
use of the jump boundary conditions corrects to a good approximation 
for the wall effects. 

To apply the diffusion equation (3-38) in a wavelength interval, the 
jump boundary conditions (eqs. (3-45) and (3-46)) must also be inte- 
grated over an increment of wavelength Ah. The wall emissivities are 
assigned average values in this range, and the integration is carried out 
as in reference 1 to yield 
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where qAA = lAX d q ~ .  

In these equations, two mean coefficients are given as originally 
derived in reference 1 

The IAA has units of length to the fourth power times inverse energy 
rate. 

3.4.2.3 The emissive power jump between two absorbing-emitting 
regions.-When internal sources or sinks for energy are present in 
absorbing-emitting media, it is possible in the absence of energy conduc- 
tion to have a discontinuity in emissive power at the interface of two 
such adjacent media. This is obtained by considering a volume element at 
the interface between two regions. The lower region has absorption 
coefficient ail and the upper axz. Then the net flux passing through the 
element per unit area nornlal to z is by use of equations (3-33) and (3-35) 
in media 2 and 1, respectively, 
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Neglecting terms of order higher than two gives the emissive power 
jump as 

The integrated form of equation (3-52) for a wavelength interval is given 
in reference 3. 

As will be shown in section 3.4.3.2, the value of the jump ex@. - eAbl from 
this equation will be nonzero under certain conditions. 

3.4.2.4 Summary. -The general radiation diffusion equation, given at 
a single wavelength by equation (3-36) or (3-37) and for a wavelength 
band by equation (3-38), has now been derived. The general boundary 
conditions at solid boundaries with normals into the gas in the negative 
and positive coordinate directions are given at a single wavelength by 
equations (3-45) and (3-46), respectively, and for a wavelength band by 
equations (3-47) and (3-48). Finally, a boundary condition for use at 
the interface between two absorbing-emitting media in the absence of 
heat conduction is given by equation (3-52). 

3.4.3 Use of the Diffusion Solution 

When the diffusion equation is utilized, it is assumed to apply through- 
out the entire medium including the region adjacent to a boundary. The 
effect of the boundary is imposed on the solution by utilizing a jump 
boundary condition. 

If a real gas is considered, three coefficients must be evaluated as 
given by equations (3-39), (3-49), and (3-50). However, each of these 
depends only on local conditions so that they can be tabulated. 

3.4.3.1 Gray stagnant gas between parallel plates. -Most gases have 
strong variations of properties with wavelength and it is necessary to 
solve the diffusion equation in a number of wavelength regions. For 
illustrative purposes here it is not feasible to consider an involved 
spectral solution. There are some limited situations such as soot filled 
flames and high temperature uranium gas where a gray gas approximation 
can be made. The equations presented in section 3.4.2 reduce con- 
siderably in this case. Let us examine then, for illustrative purposes, 
the case of a gray gas contained between infinite parallel plates at 
different temperatures (fig. 3-5). For simplicity let both plates have the 
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FIGURE 3-5. -Radiant interchange between infinite parallel plates enclosing gray medium. 

same emissivity so that E,[,I = Elon = E,,. 

For a gray gas the absorption coefficient ah is independent of wave- 
length. Then the wavelength range for integration of equations (3-39), 
(3-49), and (3-50) can be 0 -+ w. Letting CLA = a ,  which can be taken out of 
the integrals, gives 

and 

Equation (3-38) reduces to 

This can be integrated directly because, with no sources or sinks in the 
gas, q, is a constant in this geometry. Then, with the additional assump- 
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tion that a does not depend on temperature and is therefore independent 
of z ,  the result is 

Evaluating equation (3-54) at z= D yields 

The e b l  and eb2 are in the gas at the walls. To connect these quantities 
with the wall conditions, the jump boundary conditions are applied. 
Differentiating equation (3-54) twice with respect to z shows that the 
second derivative terms are zero in the boundary condition equations 
(3-47) and (3-48). Equations (3-47) and (3-48) then become 

and 

To eliminate the unknown gas emissive powers ebl and em, add equa- 
tions (3-56) and (3-57) to obtain 

Then substitute eb.2 - e b l  from equation (3-55) to give 

or taking the reciprocal 

Equation (3-59) gives the radiative energy transfer through a gray gas 
layer as a function of the gas absorption coefficient, plate spacing, and 
plate emissivity. It is ratioed to the difference in the black emissive 
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FIGIJRE 3--6. -Validity of diffusion solution for energy transfer through gray gas between 
parallel plates. 

powers of the plates, which is the maximum possible energy transfer 
between black plates with no intervening gas. A comparison of this 
diffusion solution with the exact analytical solution of the same gray gas 
problem by solution of the integral equations (ref. 4) is shown in figure 
3-6. Agreement is seen to be excellent for all optical thicknesses in 
this geometry. 

3 . 4 . 3 . 2  The discontinuity in emissive power between two gas regions. - 
Consider now two semi-infinite regions adjacent to one another (fig. 
3-7). Let us determine the discontinuity in emissive power, if any, that 
might occur at the interface between the regions iq the absence of 
heat conduction. First, consider the media in the two regions to have no 
internal heat sources or sinks. Both media are gray and stagnant; the 
lower region has a constant absorption coefficient a,,  and the upper has 
a*. The emissive power jump at the interface between the two media is 
found by integrating equation (3-52) over all wavelengths. Noting that 
axl = al and ahz=az and that derivatives with respect to x and y are 
zero for the one-dimensional layer being considered gives 

Second derivatives with z have been taken to be zero by noting that in 
either region equation (3-38) gives 
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FIGURE 3-7. - Ceornetry for derivation of interface emissive power discontinuity. 

The q, must be constant since no heat sources or sinks are present. 
Therefore, in either region, 

Also, q, must be the same i n  either region because the radiative flux 
will be continuous across the interface. Therefore, equation (3-61) 
can be substituted for the first derivatives in equation (3-60) to give 

(3-63) 
This reduces to 

so that no discon.tinuity in  emissive power exists i n  this case. 
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Consider now the presence of uniform volumetric energy sources of 
magnitude GI and 6 2  in regions 1 and 2, respectively. Now the flux 
gradient in the z direction is given in either region by 

In this case, then, the second derivatives of the eo with z are obviously 
not zero. Equation (3-52) then becomes 

Again, equation (3-61) must hold in either region. At the interface 
between the two media, since the flux is continuous, 

Substituting equations (3-65) and (3-67) into equation (3-66) to 
eliminate the first and second derivatives of e b  gives 

which reduces to 

The discontinuity in emissive power is seen to exist whenever there is 
energy generation in either region unless the ratios GJal and Gz/az 
are equal. 

For this situation, formulation in terms of integral equations (ref. 5) 
gives 
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The diffusion solution, although giving the correct functional dependence 
of the emissive power discontinuity in terms of the a and G values, 
does differ from the exact solution by a factor of 312. 

3.4.3.3 Other diffusion solutions for gray gases. -In table 3-11, ~ 0 1 ~ -  
tions for the temperature distributions and energy transfer in simple 

TABLE 3-11, -DIFFUSION THEORY PREDICTIONS OF ENERGY TRANSFER AND  TEMPER^*"^^ 
DISTRIBUTIONS FOR A 

Geometry 

In f in i te  parallel plates 

In f in i te ly  long concentric cylinders 

Concentric spheres 

Q 1  

a ~ e f i n i t i o n  EN = 1 - v , N , , N ,  I = 

GRAY GAS BETWEEN GRAY SURFACES - 
~ e i a t i o n s ~  

1 t El 

' = ~ t E ~ t E ~ t l  4 

q(z) = C1' 2 (D - z) t E2 t 1 
l t E l [ 4  2 

1 t El 
I = 

l + E 1  
b =  - 

D l -  1 - -  

; a ~ ~ f  -:)+ 2 2 t tlti)+ + i) 

p ! = L  (2) l + E l  is[ - Z a ~ ~ - l - l  (;, 7 t-1. ):;I t ( 2  E +- $3) 

Q / , , , ~ A ~ ( ~  - ) ]  , H i )  = [At) - ~41($11=- 
- 
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geometries involving gray gases contained between gray walls are 
gathered. These equations are derived from the diffusion equations, 
and caution is advised in their application since real gases are usually not 
gray nor optically thick in all wavelength regions. Agreement with exact 
solutions is sometimes not as good for cylindrical or spherical geometries 
as for the infinite parallel plate case. Agreement has been found to be 
excellent in cylindrical and spherical geometries for all parametric varia- 
tions so long as the optical thickness is greater than about seven, with 
better agreement as wall emissivity becomes lower and diameter ratios 
(Di,lrler/Doltter) become larger. A comparison for the cylindrical geometry 
will be discussed later in connection with figure 3-11. 

3.4.4 Final Remarks 

The diffusion solution, because of its usefulness in treating difficult 
problems by standard analytical techniques, is a powerful method and is 
recommended for use whenever the assumptions used in the derivation 
are justified. 

The most stringent assumption is that of "optically thick conditions," 
which usually is the assumption limiting application of the method. 
Because most gases have line spectra, they are optically thick within the 
wavelengths encompassed by the lines. Here the radiation absorption 
mean free path is quite small, and the assumption that only local condi- 
tions affect the spectral radiant flux is quite good. At other wavelengths 
the gas can often be considered transparent and diffusion methods are 
then not justified. Care must be taken, then, in applying the diffusion 
equation only in geometrical and spectral regions where the assumption 
of an optically thick gas is valid. 

The Rosseland mean absorption coefficient should not be used as  the 
criterion for optical thickness. It  may have a large value itself, but the 
spectral absorption coefficient used in calculating a~ may be very small 
in certain spectral regions. Use of the Rosseland mean in such cases 
may lead to large errors. The remedy is to use wavelength bands in which 
the spectral absorption coefficient is everywhere large and evaluate a 
Rosseland mean for each of these regions. 

Howell and Perlmutter (ref. 6) have applied the diffusion solution to 
a real gas situation and have compared the results to those from an 
exact formulation by the Monte Carlo method. The agreement was 
generally not as good as for gray gases. 

EXAMPLE 3-5: The space between two diffuse-gray spheres (fig. 3-8) 
is filled with an optically dense stagnant medium having constant absorp- 



SOLUTIONS O F  EQUATION O F  TRANSFER 

FIGURE 3-8.-Radiation across gap between concentric spheres with intervening ~ilediur~i 
of constant absorption coefficient. 

tion coefficient a. Compute the heat flow Q1 across the gap from sphere 
1 to sphere 2 and the temperature distribution T ( r )  in the gas using the 
diffusion method with jump boundary conditions. 

For a gray medium with constant a,  equation (3-37) gives the heat 
flux in the positive r direction 

4 deb 
q v = - G d ,  

The q,. varies with r according to q,.= Ql/4rr2.  Substitute into equation 
(3-70) and integrate from R1 to R2 to obtain 

The ebl and ewz are in  the gas at the boundaries and the jump boundary 
conditions are needed to express these quantities in terms of wall 
values. The jump boundary conditions are given by equations (3-47) 
and (3-48) and involve second derivatives which will now be found. By 
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integrating equation (3-71) from R, to r, there is obtained 

Substitute r =  (x2+ y2+z') and differentiate twice with respect to 
x to obtain 

Similarly for the y and z directions. 
In the boundary condition (eq. (3-47)) the point 2 can be conveniently 

taken on figure 3-8 at x = y = 0 and z = RZ. This gives 

Also ( q , )  2 = Q114rR;. Substituting into equation (3-47) gives 

Similarly at the inner sphere boundary from equation (3-48) 

Adding equation (3-75) and (3-76) gives 

After substituting this into the right side of equation (3-72), the result 
is solved for QI to give the Ji in the last entry in table 3-11. 

To obtain the temperature distribution, integrate equation (3-71) 
from Re to r to give 
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Add equation (3-75) to eliminate e M  

This gives the last expression for cp in table 3-11. 

3.5 APPROXIMATIONS BY USING MEAN ABSORPTION COEFFICIENTS 

Before continuing to discuss solution methods in radiative transfer, 
some comments are warranted on the use of mean absorption coeffi- 
cients that have been formed by an integration over all wavelengths. 
Using a mean absorption coefficient avoids the need to carry out a spec- 
tral analysis and then integrate over all wavelengths to obtain total 
energy quantities. The question is whether it is possible to decide in 
advance what mean absorption coefficient will yield an accurate solution 
for a particular problem. Let us now examine in detail the mean coeffi- 
cients that have been defined thus far and the relations between these 
coefficients. 

3.5.1 Some Mean Absorption Coefficients 

To this point, three general types of mean absorption coefficient 
have been defined. In equations (2-19) and (2-21) were defined the 
Planck mean 

and the incident mean 

IOs an(h, T ,  P)ir ,  i(h)dh 
ai (T, P )  = (3-79) 1; i n ,  t(A)dA 

In connection with the diffusion solution, the Rosseland mean absorp- 
tion coefficient was defined in equation (3-39); thus, 
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It is instructive to examine these various mean absorption coefficients 
and their relations to each other. 

The incident mean absorption coefficient can be conveniently utilized 
only uncles certain restrictive conditions when the incident intensity 
has a spectral form that remains fixed so that the a,  can be evaluated 
and tabulated. For example, the situation of the incident energy being 
a solar spectrum occurs sufficiently often that the a, could be tabulated 
for this case. The a, is useful for the transparent gas approximation when 
the spectral intensity leaving the boundaries is known, as this spectrum 
will remain unchanged while traveling through the gas. If the mean 
spectral intensity Ex,, is proportional to a blackbody spectrum at the 
temperature of the position for which ax(A, T, P )  is evaluated, that 
is, i x ,  , a iLb(A, T) then the incident mean becomes 

1; ak(h,  T, P)i&,(A, T)dh 
ai ( T ,  P )  = =ap(T,  P) (3-81) 

In this special case only, ai becomes equal to up. 
At first glance, the Rosseland mean as  defined by equation (3-80) 

appears to be entirely different in character from ap and ai which are 
weighted by spectral distributions of energy or intensity. However, let u s  
take equation (3-37) and write, for a-one-dimensional diffusion case, 

But dA/dz is zero since A and z are independent variables so that, for 
the difusdon case only, 

Substituting equation (3-83) into equation (3-80) gives 

aH ( T ,  P )  = 
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The Rosseland mean is thus seen to be an average value of ax weighted 
by the local spectral energy flux dqx,,  through the assumption that the 
local flux depends only on the local gradient of emissive power and the 
local ah. 

For a gray gas the absorption coefficient is independent of wavelength, 
ax(X, T ,  F') = cr(T, P ) ,  and equations (3-78) to (3-80) reduce to 

as would be expected. 
Determination of any of the mean coefficients from spectral absorp- 

tion coefficients usually requires tedious detailed numerical integrations. 
Even so, if appropriate mean values can be successfully applied to 
yield reasonably accurate solutions, the time involved in solution of 
many radiation problems can be considerably decreased. 

3.5.2 Approximate Solutions of the Transfer Equations Using Mean 
Absorption Coefficients 

In this section are reviewed some of the references where mean absorp- 
tion coefficients have been used in radiative transfer calculations. Solving 
the transfer equations is considerably simplified when a mean absorptioil 
coefficient is present or assumed because the integrations over wave- 
length are not needed. This is contrasted with exact solutions for real 
gases which require that these integrations be performed during each 
solution. It would be inlpossible to perform all the required integrations in 
advance so that they would not be needed during each calculation. For 
example, the incident energy absorbed at each location depends on the 
incident mean absorption coefficient a; which is weighted according to the 
incident spectrum. Since this spectrum can have an infinite variety of 
forms, the ai cannot be conveniently tabulated in advance. Also the 
ah present in the expone~~tial attenuation terms in equation (3-1) for 
example cannot be conveniently averaged over wavelength. 

To avoid having to carry out spectral calculations and then integrating 
over wavelength, certain approximations are often made. The simplifying 
assumption most often used is that the gray gas equation of transfer 
(2-28) can be used for a real gas by substituting an appropriate mean 
absorption coefficient in place of the a for the gray gas. In section 2.4.2 it 
was already shown that, although the Planck mean may indeed be used in 
part of the energy balance equation (i.e., the term dealing with local emis- 
sion), the use of the same mean coefficient in the absorption and attenua- 
tion terms is invalid except in special cases. Patch (refs. 7 and 8) has 
shown, by examination of 40 cases, that simple substitution of the Planck 
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mean in the gray gas equations leads to errors in total intensities that 
varied from -43 to 881 percent from the solutions using spectral prop- 
erties in the equation of transfer and then integrating the spectral solu- 
tion. Reductions in error were found by dividing the intensity into two or 
more spectral bands and using a Planck mean for each individual band. 

In an effort to improve this situation, a number of other mean absorp- 
tion coefficients have been introduced. Sampson (ref. 9) synthesizes a 
coefficient that varies from the Planck mean to the Rosseland mean as 
the optical depth increases along a given path. He finds agreement within 
a factor of two to exact solutions for various example problems. Abu- 
Romia and Tien (ref. 10) apply a weighted Rosseland mean over optically 
thick portions of the spectrum, and a Planck mean over optically thin 
regions and obtain relations for energy transfer between bounding sur- 
faces. Planck and Rosseland mean absorption coefficients for carbon 
dioxide, carbon monoxide, and water vapor are also given as an aid to 
such computations. 

Patch (refs. 7 and 8) defines an effective mean absorption coefficient as 

[ o x a A ( ~ ,  T , P ) ~ ; ~ ( A ,  T )  exp [ - - a ~ ( h ,  T , P ) S ] d A  
a,@, T ,  P) = 1; &(A. T )  exp [--ah(A, T , P ) S l d h  

The values of a,(S, T ,  P )  can be tabulated as a function of temperature 
and pressure as for the other mean absorption coefficients. In addition 
a, depends on the path length S and must be tabulated as a function of 
this additional variable. For S small, a, approaches a,.. For very large 
S, the exponential term in the integrals causes a, to approach the mini- 
mum value of ax in the spectrum considered. In the radiative transfer 
calculations the approximation is made that the real gas with T ,  P 
variable along S is replaced along any path by an effective uniform gas 
with absorption coefficient a,. The computations are then performed 
using a, in the gray gas equation of transfer. The a, value used is found 
by equating a,S at the T ,  P of the point to which S is measured, to the 
optical depth of that point in the real gas. For 40 cases Patch {refs. 7 
and 8) shows agreement within -25 to 28 percent of the integrated 
spectral solutions, as compared with the - 43 to 881 percent agreement 
using up as discussed previously in this section. This method has value 
in computer-oriented solutions where the tabulated values of a,(S, T ,  P )  
can be effectively manipulated. 

Other methods of using mean coefficients are given in references 11 
to 15. 
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3.6 APPROXIMATE SOLUTION OF THE COMPLETE EQUATION OF 
TRANSFER 

In section 3.3, it was found that in certain situations it is possible 
to neglect one or more terms in the equation of transfer. Solutions 
using the resulting simplified equation are of course much easier than 
solving the entire equation. 

In this section some analytical methods are presented that account 
for a,ll terms in the equation of transfer. However, only approximate 
solutions of the complete equation will be sought so that, while some 
accuracy may be lost in obtaining the solution, the ability will be gained 
to obtain closed-form analytical solutions in many cases. This makes 
it possible to gain insight into the important governing factors of the 
radiative transfer, in addition to obtaining answers that are often of 
acceptable accuracy. 

3.6.1 The Astrophysical Approximations 

As mentioned in the first chapter of this volume, much work has 
been done in the study of stellar structure by analysis of the observed 
radiation. Quite early in the twentieth century, astrophysicists consid- 
ered the mathematical properties of the equation of transfer and applied 
some approximations which remain useful today. However, these ap- 
proximations were developed for one-dimensional layers of an atmos- 
phere which is the case most useful in astrophysics, and the extensions 
to multidimensional problems is not always obvious or possible. In 
this section, two of these approximations will be examined briefly. 
For more detailed treatments, see references 16 and 17. 

3.6.1.1 The Schuster-Schwarzschild approximation. - The  sim- 
plest approximation is to assume that, in the one-dimensional equation 
of transfer, the intensity in the positive direction is isotropic and that 
in the negative direction has a different value but is also isotropic. 
This is illustrated in figure 3-9. 

The equation of transfer is written for the intensity in each hemi- 
sphere as 

cos ,!3 d i ; , -  ( p ,  X) -- =i;,-(/3,  X I  - iLb(x) 
ah ax 

These equations are now integrated over their respective hemispheres 
to give 
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P =  0 

P 

P=n 

FIGURE 3-9.-Approximation of intensities being isotropic in positive and 
directions. 

negative 

d 2  --- ~ / r  I i;,+ (p, x) cos p sin P dp=Io i;,, (p, x) sin p dp ax dx 

- i;, (x) sin P dp (3-87a) 

Now assume that i:,, and i;,- are each independent of P ;  the i t  are 
then taken out of the integrals and the integrations are carried out to 
yield 
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Equations (3-88) with appropriate boundary conditions can be solved 
by use of an integrating factor as was done in section 2.3.2 for the equa- 
tion of transfer. For the geometry of figure 3-5, if i ; ,  +(0) and i ; ,  -(D) are 
the spectral intensities at the walls for a gas layer between planes, 
the i i . + ( x )  and i [ , -  ( x )  are (letting K X = U A X )  

i:. + ( K A )  = i)(, + ( 0 )  exp ( - KA)  + iLb ( K : )  exp ( K T  - K A ) ~ K ~  (3-89a) 

From equation (2-39), the net spectral heat flux in the positive x 
direction is (with the assumption that i ; ,  + and i ; ,  - are isotropic) 

~ L , + ( K )  1: cos P sin P dp+ i; ,-  I 

For the simplified case of a gray gas between parallel plates with 
no internal heat sources, the q is a constant and i & , ( K ) = u T 4 ( K ) / v .  
Then d q / d ~ =  0 giving 

Substituting equations (3-89) yields 

K~ . i K D  p - + I A ( K * )  exp ( K - K * )  d ~ * - i ; ( ~ )  
K 
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r i6  (K) = 0-T4(~)  mi: (0) exp ( - K )  

+ 0-T4 (K *) exp (K - K *) d~ * ] 

This is an integral equation for the temperature distribution in the gas 
layer and is analogous to the exact formulation in equation (2-46). 

Chandrasekhar (ref. 17) has extended this method as originally 
developed by Schuster (ref. 18) and Schwarzschild (ref. 19) by divid- 
ing the intensity into mean portions from discrete directions, terming 
this the "discrete ordinate" method. The discrete ordinate method 
has been shown to be equivalent to the differential approximation o r  
moment method which will be described in section 3.6.2 (ref. 20). 

3.6.1.2 The Milne-Eddington approximation. -With respect to the  
intensity, the approximation made independently by Eddington (ref. 21) 
and Milne (ref. 22) is the same as that of Schuster and Schwarzschild. 
It is that all the intensity traveling along all paths crossing a unit a rea  
oriented normal to the x direction with positive components in x has 
a constant value with angle, and all intensity with a negative x compo- 
nent has a different constant value; that is, the radiation in each direction 
can be considered isotropic (fig. 3-9). However, the approximation i s  
made one step later in the heat flux equation than in the Schuster- 
Schwarzschild method. 

Start with the one-dimensional equation of transfer (2-24). Then 
multiply by dw and by cos P d w  to obtain the two equations 

cos2 p di; 
dw= cos p(i;-  i;,) dw 

ax ax 

The reason for doing this is that i; cos /3 is related to the heat flux, 
and equations (3-92) will thus yield a pair of equations involving qh. If 
equations (3-92) are integated over all solid angles, the result is 
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The assumption is now introduced that the i; is isotropic in each 
hemisphere. Then 

1 dqx --.-.= i;,+ 1: 2 n s i n p  dP+i;,- C2 277 sin p d p  - 4niLb (3-94a) 
ax dx 

1 di;,+ di; dx - Id2 " 2 n  cos2 p sin P d~ qh=-(lh [x ]on'2 2 n  cosz P sin P dP+- 

Integrating gives 

Eliminating i;,+ + i;,- between these two expressions gives 

For the situation of a gray gas layer with no internal heat sources, 
equation (3-97) is integrated over all wavelengths and d2q/d~"o 
giving 
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This is the same relation as for the diffusion approximation used to ob- 
tain equation (3-54). 

3.6.2 The Differential Approximation 

The differential approximation reduces the integral equations of 
radiative transfer in absorbing-emitting media to differential equations 
by approximating the equation of transfer with a finite set of moment 
equations. The moments are generated by multiplying the equation of 
transfer by powers of the cosine between the coordinate direction and 

.the direction of the intensity. This is a generalization of the method of 
Milne and Eddington as equations (3-92a) and (3-92b) have been multi- 
plied by (cos p)O and (cos O)l ,  respectively. As will be discussed, the  
first three moment equations have a definite physical significance s o  
that developing a solution method by this technique has some physical 
basis. The development will be given in a three-dimensional coor- 
dinate system so that general geometries can be treated. The treat- 
ment due to Cheng (refs. 23 and 24) will be followed here. Other per- 
tinent references are 20 and 25 to 29. 

A rectangular coordinate system with coordinates x l ,  xz,  xg is shown 
in figure 3-10(a). The variation in the intensity at position F along t h e  
S direction in the direction of the unit vector ? is given by the equation 
of transfer (2-4) 

di 
-= a ~ ( S ) f [ i ; ,  ( S )  - i: ( S )  ] 
dS 

Let ah be assumed constant and integrate over all wavelengths to obtain 

di' 
-=a[ ib (S )  dS - i l ( S ) ]  

It should be emphasized that, although the simplified notation i '  (S) 
is used, the intensity is a function of position and angular direction 
vectors i l ( i - , ; )  as shown in figure 3-lO(a). In terms of a three-dimen- 
sional coordinate system xl ,  x2, x3, equation (3-99) can be written a s  

di' ai' ax ,  ai' ax2 ai' ax, 
note that-=--+- -+-- 

d~ ax,  as axz as ax3 as 
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where the lj's are the direction cosines (fig. 3-10(a)), lI = cos P ,  /~=COS 6, 
and 13= cos y. 

The moments of i' are generated by multiplying i t  by powers of the 
l i  and integrating over all solid angles. Some new notation is introduced 
to designate the moments 

Also 

The zeroth-order moment i'(O) has the physical significance t h a t  divid- 
ing it by the speed of light gives the radiation energy density as shown 
by equation (2-51). The first moment i j ( ' )  is the radiative energy  flux 
in the j coordinate direction as shown in equation (2-52). T h e  second 
nloment iJfi2) divided by the speed of light can be shown to b e  the radi- 
ation stress and pressure tensor. The higher moments have no specific 
physical significance associated with them and are generated b y  ana lou  
with the first three. 

The moment equations are obtained by nzultiplying equat ion (3-100) 
by powers of the l i  and integrating the result over all solid angles a. 
The zeroth-order moment equation is the integral of equat ion  (3-100) 
itself, or noting that ii is independent of angle and applying the defi- 
nitions of i f ( ( ) )  and it(') 
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Multiplying equation (3-100) by Lk and integrating give the first-order 
moment equation 

di' 9 14= L j s l j  d x , d o = ~  [ i ; / , , L k d ~ - - / , ~ l J ' d ~ ]  
I= 1 

which can be written as ( k = l ,  2, 3) 

This procedure is continued to generate for example the nth-order mo- 
ment equation of the form 

By continuing the process used to obtain equations (3-102) to (3-104), 
an infinite set of moment equations can be generated as n -+ m. 

'j A 
Imaginary plane 
in gas adjacent 

, - to wall-, 
\ 
\ 

*o- -  -- 1 'qj,t 'qj= q j , t - q j ,  - 

(a) Coordinate system showing intensity (b) Heat fluxes in boundary condition- 
a s  a function of position and angle for 
differential approximation. 

FIGURE 3-10.-Differential approximation. 
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The next step is to approximate the infinite set of moment equations 
by a finite set. When such a truncation is carried out, there will in general 
be n equations in n + l  unknowns. The additional equation needed 
to relate the moments and provide a determinate set is obtained by rep- 
resenting the unknown angular distribution of i' as a series of spheri- 
cal harmonics and then truncating this series after a finite number of 
terms. This whole procedure becomes quite complicated and will only 
be briefly treated. It is the final differential approximation obtained 
in equation (3-112) that is of most importance here. 

The series expansion used to represent i' is 

where A;" (7)  are coefficients to be determined and 

The  PI)^ (cos P) are associated Legendre spherical harmonics (ref. 30), 
defined by 

X sin [ ( l +  m+ 2k+ l )P]  (3-107) 

where I'(8) is the Gamma function, and the notation (a)k signifies 

Equations (3-106) and (3-107) are substituted into equation (3-105) 
and the resulting series is truncated by setting A/" (F) = O  for 1 2 2 .  
This gives an equation for i' (F, 3)  which is substituted into the first 
three moment equations to give 
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where 6 k j  is the Kroneclcer delta. The form of these equations has been 
considerably simplified by applying the orthogonality relations for 
spherical harmonics (ref. 31). Further, note that the first moment of 
i' is shown by equation (2-52) to be the energy flux, or for the j direction 

Eliminating A # ( ; )  by combining equations (3-108) and (3-109) gives 

Then take equation (3-111) and substitute equations (3-102), (3-103), 
and (3-110) to eliminate i 1 ( O ) ,  and i'('), respectively. This results 
after letting w T 4 = 4  in the jirst diferential approximation to the 
equation of transfer ( k  = 1, 2, 3 )  

As mentioned by Cheng (ref. 23), equation (3-111) is equivalent to the 
assumption that the radiation pressure is isotropic, which in turn is 
equivalent to assumingradiative equilibrium in the gas. 

The derivation briefly presented here by use of the moment equations 
can be developed in a more mathematically rigorous form by use of t he  
spherical harmonic method, as was done in reference 24. The spherical 
harmonic method requires considerably more algebraic manipulation 
and results in the same equations developed here. 

It is interesting that for a % 1, equation (3-112) reduces to the diffusion 
approximation as given by equation (3-37). For a 4 1,  equation (3-1 12) 
reduces to 

where C is a constant of integration. As pointed out by Cess (ref. 251, 
equation (3-113) is the correct optically thin limit only in certain cases. 

3.6.2.1 Boundary conditions. -Consider a gray boundary Aj which is 
perpendicular to the xj direction as shown in figure 3-10(b). The net rad ia-  
tive flux leaving A j  in the positive xj direction is 



SOLUTIONS OF EQUATION OF TRANSFER 107 

where go and q, are the outgoing and incoming radiation fluxes. The  (I,,, 
however is equal to the radiation flux in the gas traveling in the negative 
direction at the wall (fig. 3-10(b)) 

q. . = q.  (*. I , ,  J , -  J -+ 0 )  

The net flux in the gas in the positive x direction is qj = qj,+ - qj,- so 
that qi,j = - q j ( x j  -+ 0 )  + qj,+ ( x j  -+ 0 ) .  Now note that qj,+ ( x j  -+ 0 )  is 
equal to the outgoing flux from the wall q,, j so that 

Substituting into equation (3-114) gives the boundary condition 

The outgoing flux can also be written in terms of the intensity leaving 
Aj  as 

qo,j = l d j i ; d o  (3-1 16) 

where L j  is the cosine of the angle between i; and the xj direction. 

A general form for the intensity is now found by substituting equations 
(3-106) and (3-107) into equation (3-105) and truncating as before. The 
moment equations are used to determine the A;"(?) and after consider- 
able manipulation the equation for i t (? ,  s') is found to be 

1 
i t  ( 7 ,  2) =- [ i t ( 0 ) ( F ' )  + 39, sin 0 sin p 4.m 

+ 391 cos p + 342 cos 0 sin p]  (3-117) 

As a specific case, assume the boundary surface is normal to the xl 
direction. Then equation (3-117) is substituted into equation (3-116) to 
give 

-lT r2 & [ i t ( ' * ( i )  + 3q3 sin 0 sin P Qo, 1 - 

+ 391 cos p + 392 cos 0 sin P] .z,-o cos p sin p dpde 

which reduces to 
i1(O)(xl-+0) + q, (~1'0) 

q0,1= 4 2 
(3-1 18) 
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where y l  ( x l p O )  is the net heat flux in the xt direction in the gas adjacent 
to the wall. The i t(") can be eliminated by using equation (3-102) and then 
i t ( ' )  is eliminated by using equation (3-110). This gives 

Combining equations (3-119) and (3-1 15) written for j= 1 to eliminate 
go, 1 gives the boundary condition 

Equations (3-112) a.nd (3-120) comprise the governing equation and 
boundary condition for the differential approximation to radiative trans- 
fer. Stone and Caustad (ref. 26) give a formulation for nongray gases for 
the astrophysical boundary condition of zero incident flux at one 
boundary. 

3.6.2.2 Applications of the differential approximation. - Consider 
the case of infinite parallel gray plates (as in fig. 3-5) with emissivities 
elcl and ~ ~ t 2 ~  at temperatures T,,1 and T w z ,  separated by a distance D 
and having a gray gas between them. The heat flux traveling through the 
gas is independent of x and y and by conservation of energy is constant 
with z so all dqj/dxj= 0. Then the differential equation of transfer (3-112) 
reduces to 

The boundary condition at z= 0 becomes from equation (3-120) 

where the subscript g is used in Tf, to emphasize that this temperature 
is in the gas. At z= D, 

the negative sign in equation (3-123) arising because the normal direc- 
tion from the surface into the gas is in the negative z direction. These 
are precisely the equations found for the parallel plate case in section 
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TABLF 3-111. -DIFFERENTIAL APPROXIMATIONS FOR E N E R G Y  TRANSFER ANI) TEMPER<\-  
TLJRE DISTRIBUTION FOR A GRAY (;AS BETWEEN GRAY SI~RFACES 

Infinite parallel plates 

I infinitely long concentric cylinders / 1 

ye-" (2) l + t l  {8[ - 3 a D  In -  ($ + 4 2 +  3:$] (2 E t i) ;} 

I Concentric spheres I I 

3.4.3.1 by use of the diffusion approximation. Thus for infinite parallel 
plates the predicted temperature distributions and heat transfer by 
the differential approximation will be the same as for the diffusion 
approximation. In  table 3-111 are also shown the differential predictions 
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Solution 

- Exact (ref. 32) 
--- Diffusion approximation 
--- Differential approximation 

1.0 

s 
X- .8 
3 - ".. 
X 

P .6 
c m 

V) V) 

2 . 4  
.P 
V) 

C 

E . 2  .- 
n 

0 1 2 3 4 5 6 7 8 9 1 0  
Optical thickness, a(Douter - Dinner)/2 

FIGURE 3-11.-Con~parison of solutions for energy transfer between infinitely long con- 
centric black cylinders enclosing gray gas. 

for concentric cylinders and spheres. Comparison with table 3-11 for 
the diffusion approximation with second-order slip shows that for these 
geometries the results by the two methods differ only by constant 
factors that have little effect on the predictions in most cases. A com- 
parison with the exact numerical solution of reference 32 is shown in 
figure 3-11 for the case of black concentric cylinders. Note that agree- 
ment with the exact solution is better in some ranges for the diffusion 
approximation, and in others for the differential approximation. 

3.7 CONCLUDING REMARKS 

This chapter is an attempt to survey briefly the most important of 
the many approximation techniques that are used for solution of the 
equation of transfer. The transparent, emission, and cold material 
approximations are valuable in certain simplified cases; the diffusion 
solution with slip boundary conditions is easy to use and accurate when 
the limitations are satisfied. The astrophysical approximations for one- 
dimensional layers are of interest chiefly from a historical standpoint, 
although they are still sometimes useful. The equations resulting from 
the differential approximation are becoming widely used because of 
their simplicity and accuracy. The gray gas equation using mean absorp- 
tion coefficients is often applied, but can produce large errors in some 
cases. 
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Chapter 4. An l[~itroduction to the Microscopic Basis 
for ~ad i a t i o l l  in Gases and Gas Properties 

4.1 INTRODUCTION 

In earlier chapters, the treatment of thermal radiative transfer through 
absorbing, emitting, and scattering media has been chiefly from a macro- 
scopic viewpoint. The atomic and molecular processes that govern the 
macroscopic effects have been only briefly described in chapter 1. 
Since the physical phenomena are understood on atomic and molecular 
levels, much of the macroscopic material can be developed or at least 
interpreted on a fundamental basis. In this chapter, the nomenclature 
of some of the atomic and molecular processes is introduced and a quali- 
tative discussion is given to relate these processes to the macroscopic 
approach, Little is done to give methods of quantitative analysis; rather, 
it is intended that for further information the reader will consult more 
specialized literature, having gained some knowledge of the background 
material from this chapter. 

The analytical expressions are generally given in terms of an.gular 
frequency R = 27rv = 2.rrclA (radlsec) rather than wavelength A or fre- 
quency v. This is done because R is the most common cyclical quan- 
tity employed in the literature related to this chapter and it is advisable 
for the reader to become familiar with it. By use of R some of the equa- 
tions have a shorter form resulting from the elimination of 271. factors. 
In a few places the wave number q = l / A  is employed because certain 
correlations in the literature have been given in terms of this variable. 

4.2 . SYMBOLS 

area 
effective line or band width 
Einstein coefficient for spontaneous emission 
absorption coefficient 
Einstein coefficient for absorption or induced en~ission 
line shape parameter 
speed of light in a medium 
speed of light in a vacuum 
diameter of colliding particles 
energy 
electronic charge 
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oscillator strength, eq. (4-49) 
Planck's constant 
modified Planck's constant, h/27~ 
radiation intensity 
Boltzmann's constant 
separation constant in solution for JI 
mass of molecule or nucleus 
mass of electron 
separation constant in solution for 4 
mass of particle 
number density, particles per unit volume; separation constant 

in solution for $; an integer 
total pressure 
partial pressure; momentum of photon 
energy per unit time 
equilibrium distance between atoms 
Rydberg constant 
radial coordinate 
radius of electron orbit 
classical electron radius 
coordinate along path of radiation 
integrated line absorption 
absolute temperature 
reference temperature of 100 K in table 6111  
time 
potential energy; volume 
velocity 
mass path length, pS 
coordinates in Cartesian system 
pressure broadening parameter in table @I1 
"full" half-width of spectral line 
average spacing between lines of absorption band 
emittance 
wave number 
wavelength 
reduced mass 
frequency 
density of gas 
time-dependent portion of T 
time-dependent wave function 
time-independent wave function 
angular frequency 
solid angle 



MICROSCOPIC BASIS FOR GAS PROPERTIES 

Subscripts: 

n 

I-' 
v 
R 

absorbed 
blackbody 
for collisional broadening 
for Doppler broadening 
electron; equilibrium; emitted 
energy state i or j 
It'' band 
nitrogen 
allowable particle orbits; for natural broadening 
projected; plioton 
dependent upon frequency 
dependent upon angular frequency 

Superscripts: 
I directional quantity 

+ true value, not modified by addition of induced emission 
* complex conjugate 

4.3 SOME ELEMENTS OF QUANTUM THEORY 

4.3.1 Bohr Model of Hydrogen Atom 

Classical physics is unable to account for the line emission spectrum 
of gases. To account for the line emission, Bohr in 1913 introduced 
his theory of the atom, and in so doing departed radically from the 
classical picture. Bohr's atom is constructed in its most simple form by 
considering the hydrogen atom and making three basic postulates: 

(1) An electron moves in a circular orbit without decay of energy, 
and the orbit is subject to a balance of dynamic and electrostatic forces. 

(2) Only stable orbits exist such that the angular momentum of the 
electron is quantized; that is, the angular momentum of the electron 
takes on only discrete values. 

(3) The difference in energy for electrons present in different stable 
orbits is equal to the energy of a photon required to produce a change 
in orbit. 

To write these postulates in mathematical form, consider an electron 
of mass me and negative charge e in a circular orbit of radius re around a 
stationary hydrogen nucleus. The Coulomb force of attraction on the elec- 
tron exerted by the nucleus is e'/<, while the outward force from cen- 
tripetal acceleration is mere% where Re is the orbital angular frequency 
of the electron. This yields die force balance 



THERMAL RADIATION HEAT TRANSFER 

The energy of the electron consists of potential (see eq. (4-19)) and kinetic 
energy, giving 

e"m,2; 
E = - - + ------- 

re 2 
(4-2) 

By use of equation (4-1) this can be written as 

so that the electron energy has a reference level of zero as re beco~nes 
infinite. 

Since the electron is accelerating, classical electrodynamic theory 
would dictate that it should radiate energy and consequently slow down 
and spiral into the nucleus. To provide radiation in the form of spectral 
lines, however, Bohr considered that the radiative energy loss must 
occur in finite steps so that the energy given by equation (4-3) would 
consist of a series of discrete levels. It  was postulated that the allowable 
states would be those for which the electron angular momentum is a 
multiple of Planck's constant. Thus, 

Equation (4-1) written for the nth orbit is combined with equation (4-4) 
to eliminate Re,l l .  This gives the allowable radii of the electron orbi ts  as 

Equation (4-5) is used for the radius in equation (4-3) to yield the discrete  
energy states as 

e k e  E,, = - - 
2nX2 

Now consider the transition between two energy states. The difference 
in energy between the jTh and ith states is obtained from equation (4-6) as 
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The energy of the photon required to produce a transition of the electron 
between the two stable orbits i and j is equal to ha, where ft,, is the 
photon angular frequency. Then equation ( 6 7 )  can be written as  

where R y  is the Rydberg constant, 

and has units of energy. If the transition is considered between the lowest 
energy orbit (ground state, i = 1) and the highest energy orbit (j = m ) ,  

it is seen that 
Em-E ,=Ry  (4-1 0) 

This is the energy required to remove the electron from the atom, and 
Ry is considered to be the ionization potential for the hydrogen atom. 
Equation (4-8) is found to predict exactly the frequencies of the spectral 
line series of atomic hydrogen. However, for other atoms the prediction 
of line frequencies is not accurate, and in many cases fails completely. 
For atoms with a single electron in the outer shell, the theory can be 
patched up to yield adequate results. 

4.3.2 Sehrodinger Wave Equation 

Because the Bohr theory is a rather curious mixture of classical and 
quantum ideas, and because the predictions of the theory are not 
adequate, a better formulation is required. This formulation is given 
by modern quantum theory. The price we pay for the more adequate 
predictions is a loss of the clear physical picture presented by the 
Bohr atom. 

In 1924, Louis deBroglie suggested that matter could have wave 
properties associated with it in much the same way that a photon can 
be assigned a mass. The momentum of a photon is given by 

Then by analogy, for a particle of mass m,, and velocity v, an associated 
wavelength can be found by letting m,,v= h/X giving the wavelength 
associated with the particle as 
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The idea that a particle of matter can have an associated wavelength 
seemed to be useless - however, experimental confirmation came in 
the form of diffraction patterns produced by the scattering of electrons 
frorn crystals. The patterns which are wave phenomena were pre- 
dictable if the electrons (assumed to be particles of matter) were given 
the wavelength predicted by equation (4-12). 

If matter indeed has the properties of waves, then some form of 
equation should predict the behavior of these waves. Where the waves 
interfere constructively, we expect to find a particle and we expect 
this interference to occur over relatively small regions of space. The 
equgtion that is found to provide this behavior for the waves was de- 
rived by Scliriidinger in 1926 and is known as the Schrodinger wave 
equation. In the time-deperrclent form it is for a particle 

where V is the time-dependent potential energy of the particle in the 
coordinates of V2 and i is the imaginary root i= V'?i. Equation (4-13) 
cannot be derived from a physical model as can the classical wave 
equation in chapter 4 of volume I. Rather, the justification for this form 
is that it predicts observable effects. We are left with constructing 
physical models to fit the mathematical equation if we desire them, 
rather than the usual process of fitting an equation to the physical 
model. 

Schriidinger showed that the wave function 1V has certain boundary 
conditions that are physically meaningful; it is single valued, finite, 
continuous, and vanishes at infinity. When these constraints on * are 
observed, it is found that the solutions to equation ( 4 1 3 )  are eigen- 
value-eigenfunction solutions. It is this fact that imposes quantization 
on a system through the mathematics: quantization is not assumed, 
but is a result of the boundary conditions on the Schriidinger equation. 

The function W' has no direct physical interpretation. It  corresponds 
in some ways to the amplitude in the classical wave equation. A more 
useful interpretation is to consider T as a probability density. However, 
since 'P is in general a complex function, it is more convenient to treat 
the real quantity FP*= /'P~%s the probability density where W'* is 
the complex conjugate of W'. The square of the magnitude of the wave 
function / ' P I 2  then gives the probability density at any instant of finding 
a particle of matter in a given location. 

To satisfy the boundary conditions, it is possible to obtain a solution 
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to the time-dependent Schrodi~lger equation by separation of variables 
if the potential energy V does not depend on time. The separated product 
has the form 

V ( x ,  Y ,  2,  t )  =+b, y,  ~ ) 7 ( t )  (4-14) 

Inserting this into equation (4-13) gives the two equations 

and 

where E is the separation constant. 
Equation (4-16) has the solution (within an arbitrary multiplying 

constant) 

T = e x  (- i ) = 0 s  ( ) + i sin ( ) (4-17) 

and therefore by substituting into equation (4-14) 

q = +  (I, y, z )  exp (- i t )  

(Note that the i in equations (4-17) and (4-18) is tlie imaginary number, 
not the i t h  energy state.) We now need to find $, the solution to the 
time-independent form of Schrodinger's wave equation (eq. (4-15)) to 
determine the complete wave function 4. 

The wave equation will be considered here specifically for determining 
energy of an electron around tlie nucleus of the hydrogen atom. The 
potential energy of the electron is (based on zero potential energy at 
r - +  m) 

where F is the Coulomb force between the electron and the nucleus. 
Using V from equation (4-19) results in the time-independent Schrodinger 
equation (P-15) becomillg (the subscript of re is dropped for simplicity) 

where the particle mass has been replaced by kc, the reduced mass of 
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the nucleus-electron system, 

where M is the mass of the nucleus. The use of p accounts in the dy- 
namics of the electron nucleus system for the slight motion of the nucleus 
around the center of mass, an effect that was neglected in equation (4-1). 

In spherical coordinates, equation (4-20) is 

A separation of variables can be applied to obtain JI as a function of r, 
0, and (o, where 8 is the cone angle, 

Substituting into equation (4-21) results in the three separated equations 

mf 
=1(1+1) - -  

O sin 8 d8 sln- 8 

where m, and I are separation constants which are specified as ml= 0 ,  
- + I ,  r t 2 ,  . . ., 51; L=0, 1 ,  2 ,  . . ., n - 1 ;  and n = 1 ,  2 ,  . . ., a. 
The solution to equation (4-23) that is used is 

@ = A  exp (imlP) (4-26) 

Equation (4-24) has solutior~s for R in terms of Laguerre polynomials 
that involve the arbitrary constant n ,  arrd equation ( 6 2 5 )  has solutions 
for O in terms of Legendre polynomials. The solution for $ thus depends 
on the three constants, n ,  I ,  and ml, each of which has discrete values. 
These constants are called the quantum numbers, and they define the 
possible discrete forrns of $. 
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If the radii are found for which the wave function has a large expecta- 
tion value, these should correspond to the positions at which electrons 
are found with a high probability. These radii are found by the usual 
spatial averaging techniques 

where the denominator is unity by virtue of $ being normalized as a 
probability density function. When this integration is carried out, the 
radii for various integer values of n are found to be exactly those predicted 
by Bohr (eq. 4-5). It is again emphasized that the discrete values of r 
are imposed by the mathenlatics of the Schriidinger equation, and not 
by assun~ption as in the Bohr theory. 

Each of the linearly independent solutions for $ specifies a quantum 
stote of the electron. The energy of the electron in the hydrogen atom is 
found to he independent of the cluantunl nrlnlbers 1 and 171,. Thus there 
are a large number of quantum states corresponding to the various 
l and nzl that have the same energy. Such states are called degenerate. 
By summing the number of such states that are present for a given 
energy, it is found that there are 271' degenerate states per energy level 
El, .  (Actually, the treatment given here predicts 71' degenerate states: 
the inclusion of electron spin provides the factor of 2.) 

In statistical mechanics, it is assumed that every quantum state 
in the atom is equally likely. Because there are 2n2 quantum states in a 
given energy level El,, the factor 2n2 is called the statistical weight or 
multiplicity of energy level n in the hydrogen atom. Other atoms will 
have other statistical weights. Knowing the statistical weight allows 
us to treat the total number of transitions per unit time occurring be- 
tween two energy levels in terms of an average transition rate for all the 
states in that level times the statistical weight. Detailed examination of 
each degenerate state is unnecessary. 

4.4 INDUCED EMISSION AND THE PLANCK DISTRIBUTION 

The concept of induced emission was introduced in section 1.5.5. 
It was noted there that measuring the attenuation of a radiant beam 
traveling through a medium gives no distinct information about induced 
emission. This is because physically the induced emission combines 
with the true absorption to produce an effective absorption smaller than 
the true absorption. As far as radiation attenuation measurements are 
concerned, the true absorption and induced emission effects cannot be 
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separated. Einstein (refs. 1 and 2) showed, however, that induced 
emission must exist. Einstein's relatively simple arguments will now 
be given, employing induced emission in the course of a derivation of 
Planck's blackbody spectral distribution. Without induced emission 
certain rules that are now available in statistical mechanics are also 
violated, although statistical mechanics will not be discussed here. 

Consider bound-bound transitions in an absorbing medium exposed 
to incident radiation having spectral intensity i;). For simplicity let the 

system be a collection of noninteracting atoms. Since blackbody radia- 
tion is desired, let the medium be in a black isothermal enclosure at 
uniform temperature-this is the condition for blackbody equilibrium 
(section 2.3.2 of vol. I). 4 n  atom in the medium can absorb incident 
energy and thereby undergo a transition from energy state i to energy 
state j. State j will consequently have a larger energy than i ,  or in other 
words j is an "excited" state relative to i. The rate at which the transitions 
from i to j occur will depend on the intensity of the incident radiation 
field and the population of state i. Let ni be the number of atoms per unit 
volume in state i .  The Einstein coefficient Bij is now introduced. This is 
defined as the probability per unit time and volume of a transition occur- 
ring from state i to state j as a result of the incident energy flux per unit 
solid angle and is a function only of the particular atomic system being 
considered.-hen the number of transitions per unit time, considering 
the effect of incident energy from all directions, is 

Since the Einstein coefficient depends only on the states i and j for the 
particular atomic system, it is taken out of the integral over solid angle. 

The rate at which transitions will occur from the excited state j to 
the initial state i depends on two factors. These factors are spon,ta,neous 
emission which depends on the population nj in the excited state, and 
induced emission which depends on the population nj  and on the radia- 
tion field intensity. Thus introduce Ajj as the probability for a transition 
by spontaneous emission into a unit solid angle, and let Bji be the transi- 
tion probability for induced emission. Then the rate of transitions from 
j to i is 

Otllrr texts inaludr or exclude various factors of 2 and .rr in t l ~ c  d~finitions.  S<,n~rtirnrs tltr transitict~l rate is xrritten 

as pro~tortional to the spectral energy density (11~) do rather than the intensity. 
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Since on the average for a collection of randomly oriented emitting atoms 
in equilibrium the spontaneous emission is isotropic, 477Aji is the prob- 
ability of transition from j to i by spontaneous emission into all directions. 

For a system in equilibrium, the principle of detuiled buluncing must 
hold (ref. 3). This principle states that the transition rates upward and 
downward between any two energy states must be equal when all transi- 
tion processes are included. Using this principle, the dnldt from equa- 
tions (4-28) and (4-29) are equated giving 

where at equilibrium in the assumed isothermal black enclosure the 
intensity becomes the blackbody intensity iA6. For blackbody equilib- 

rium conditions the incident intensity is also isotropic so that 

Then solving equation (4-30) for ihb ,' 0-ives 

At thermal equilibrium the populations of the energy states are re- 
lated according to the Boltzmann distribution (ref. 3). If Ei and E j  are 
the energies of the states, then the Boltzmann distribution gives 

n i -- - exp [ - (E'i&) ] 
nj 

where k is the Boltzmann constant. As discussed in section 1.3 and in 
connection with equation (4-8), the energy difference Ej  - Ei is equal 
to the energy of the photon either absorbed to produce the transition 
from Ei to Ej  or emitted when there is a transition froill Ej  to Ei. Then, 
in terms of angular frequency 

so that equation (4-32) becomes 
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When equation (4-34) is applied to a system, the statistical weights 
discussed at the end of section 4.3.2 must also be included in order to 
account for all the degenerate states in each energy level. 

When equation (4-34) is substituted into equation (4-31), the result is 

The Planck blackbody spectral intensity is given by equation (2-llb) 
of volume I as 

evb 2Cl u" 
i ~ : U = ~ = c : ( e c 2 r ~ / ~ o T -  1)  

which becomes the following after using Cg = hcz, Ce = hco/h-, h= 27rh, 
and u= flij/27r: 

Equation (4-35) has the same basic form as equation (4-36), and equating 
these two expressions for i&,  gives the following relations between 
the Einstein coefficients (in absence of degenerate states): 

Bij= Bji 
and 

Although at the time of the derivation induced emission had not been 
discerned by experiment, the analysis outlined in equations (4-28) to 
(4-38) gave strong evidence that it existed. If the induced emission 
term of equation (4-29) is not included and the analysis is then carried 
through, the resulting equation by the Einstein approach is 

To make equation (4-39) conform to Planck's distribution, the ratio of 
the Einstein coefficients must be, by comparison with equation (4-36) 
and by use of equation (4-34), 
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This relation would make Aji dependent on the populations ni and nj 
of the i and j states. Because the transition probabilities Aji and Bij 
for a particular atomic system should depend only on the particular 
states i and j and not the populations of these states, equation (4-40) 
cannot be valid. 

Suppose the properly specified Einstein coefficients given by equations 
(4-37) and (4-38) are substituted in equation (4-39) in which induced 
emission has been omitted. This will show what deviation should be 
expected from Planck's distribution as a result of not accounting for 
induced emission. Making this substitution gives 

But (see eq. (2-13) in vol. I) this .is Wien's distribution! A comparison of 
Planck's and Wien's spectral distribution in terms of wavelength is 
shown in figure 2-7 of volume I ,  and this comparison is thus a measure 
of the effect of induced emission on the spectral energy distribution. 
Wien's curve is slightly below the Planck curve as a result of omitting 
induced emission. It is evident that neglecting induced emission would 
introduce only a small error in most cases of engineering interest. 

Note that this, and indeed any, derivation of the Planck blackbody 
distribution depends on the assumption of thermodynamic equilibrium. 
Also, it is seen that Planck's distribution will not be obtained by the 
foregoing arguments unless the existence of induced emission is 
postulated. 

4.5 THE EQUATION OF TRANSFER 

The equation of transfer was derived in section 2.3. It will now be 
considered from a microscopic view by using the concepts of the previ- 
ous section. Consider a beam of radiation of intensity iil traveling 
through, a gas along a path S. Let the gas atoms (or molecules) be in one 
of the two energy states i and j ,  with j being an excited state relative to 
state i,  that is Ej > Ei. Let the volume concentration of atoms in these 
states be ni and nj, respectively. Along a path distance dS ,  the change in 
the intensity of the beam will be governed by the energy added or lost ill 
the clS interval. Neglecting scattering, the gains or losses are due to 
spontaneous emission, induced emission, and absorption. By use of the 
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photon model discussed in section 2.7, and considering only transitions 
between two energy states, the intensity added to the beam by spon- 
taneous emission is 

number of 
rate of transitions ( p a r t i c e s  ( energy ) 

particle- solid angle volume transition 
elilissioll 

Similar relations are derived for induced emission and absorption. The 
equation of transfer becomes 

This can be arranged into 

B.. . &=B. .n .~ni j  a " 1  !$3+ i t  
[Bij ni (Bijni ) " I  

Although the system here is not in blackbody equilibrium, the Einstein 
coefficients can be used as previously obtained as they depend only on 
the energy states and particular atomic system being considered. From 
equation (4-35) (noting that Bij = Bji from eq. (4-37)) 

Aji- -- ihb(e*". . /*T- 1 )  
lJ 

Bij 

Substituting this and equations (4-34) and (4-37) into equation (4-44) 
gives 

which simplifies to 

Noting that hR/kT=hc,/kAT, the quantity multiplying the i;l on the 
right side of equation (445)  is compared with equation (1-25). The true 
absorption coefficient is thus found to be 
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and the absorption coefficient including induced emission is 

Equation (445) becomes 

This is the form given for the equation of transfer by the macroscopic 
derivation (eq. (2-4)). 

Thus the equation of transfer and, earlier, the form of Planck's 
distribution have been derived from consideration of microscopic 
processes. The true absorption coeffcient a;t is shown by equation 
(4-46) to be directly related to the Einstein coefficient Bij. Rather than 
using the Einstein coefficient, it is customary to give the transition rate 
between bound electronic energy states in terms of a parameter called 
the oscillator strength or f-number. This is related to Bij by 

f.. = hntecofljj 
U r e 2  

Bij 

where me is the mass of the electron and e  is the electronic charge. 
Substituting equation (449)  into equation (646)  gives ah in terms of 
the osciIlator strength as 

where r, is the classical electron radius (see table I in the appendix). 
Froin equation (4-50), it is seen that the true absorption coefficient is 

directly proportional to two factors. These are ni, the population of the 
initial state of the absorbing species, andfj, which through its connection 
with Bij, is related to the probability per unit time for transitions to occur 
from state i to j. Calculation of the population ni, at least in the case of 
local thermodynamic equilibrium, is a problem in statistical mechanics. 
It is possible to derive f-numbers for many electronic transitions by 
quantum mechanics and thus derive ah from first principles. 

The determination of the spectral absorption coefficient by means of 
statistical and quantum mechanics requires a knowledge of the transition 
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processes that can occur. In complicated atoms and molecules so many 
transitions are possible that calculations must either be restricted to 
only the important transitions, or else statistical or simplified models 
must be tried. Some discussion of the form of the spectral absorption 
coefficients for various types of trarlsitiorls is given in the ncxt section. 

4.6 THE ABSORPTION PROPERTIES OF GASES 

A gas can absorb energy by a variety of nlicroscopic mechanisms. 
Each of these mechanisms involves adding the energy of the absorbed 
photon to the internal energy of a gas atom or molecule. A preliminary 
discussion of the types of absorption processes was given in section 1.3. 

4.6.1 Spectral Line Broadening 

If the gas is not dissociated or ionized, then the internal energy (not 
including translational energy) of the gas is contained in discrete vibra- 
tional, rotational, and electronic energy states of its atoms or molecules. 
The absorption of a photon can cause a transition of some state of the 
atom or molecule to a state of higher energy. Because only discrete 
energy states are involved in these transitions, photons of only certain 
energies can be absorbed. If the energies of the upper and lower discrete 
states are E j  and Ei, respectively, then only photons of energy E,,=Ej-Ei 
can cause a transition. As discussed in sections 1.3 and 4.3.1, the energy 
of a photon is related to its frequency through the relation 

Consequently the discrete transitions result in the absorption of photons 
of only very definite frequencies causing the appearance of dark lines in 
the absorption spectrum. Hence this process is termed line absorption. 
Because both the initial and final states of the atom or molecule are dis- 
crete bound states, these energy changes between states are called 
bound-bound transitions. The rates at which these transitions occur are 
available in tabular form for some lnolecules and atoms (refs. 4 and 5). 
The relations for the transition rates are often given by the semi-classical 
results describing radiating atoms multiplied by a modifying factor, 
called the Gaunt factor, that provides the correction for quantum 
nlechanical effects. 

Equation (4-51) would predict that very little energy could be absorbed 
from the entire incident spectrum by any given absorption line, because 
only those photons having a single frequency could be absorbed. Other 
effects, however, cause the line to be broadened and consequently have a 
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finite frequency span around the transition frequency R, of equation 
(4-51). The frequency span of the broadened spectral range, and the 
variation within it of the absorption ability, depends on the physical 
lnechanism causing the broadening of the spectral line. Some of the im- 
portant line broadening mechanisms are called natural broadening, 
Doppler broadening, collision broadening, and Stark broadening. For 
most engineering conditions involving infrared radiation, collision broad- 
ening is the nlost important. 

The variation within the broadened spectral line of the absorption 
coefficient with frequency is called the shape of the spectral line. These 
shapes are important as they are related to the basic trends of the gas 
absorption with temperature, pressure, and path length through the gas. 
The shape of a typical spectral line is illustrated by figure 4-l(a). The 
~ n , , ~ ( f l )  is the variation of absorption coefficient within the line broad- 
ened about the frequency R,, which is the tramition frequency obtained 
from equation (4-51). The integrated absorption coeficient S ,  for a single 
line is found as the integral under the entire a n , , ( R )  curve 

The cln, i j (R) will be essentially zero except for fl close to Rij. The 
regions away from Rij, where a n ,  i j  becomes small, are called the "wings" 
of the line. The magnitude of Sij will depend on the nunher  of nlolecules 
in energy level i and hence will depend on the gas density. 

The line shape parameter is defined as 

so that the Si j  is used as a normaliziilg factor. If equation (4-53) is inte- 
grated over the range 0 s Cl s w, then substitution of equation (4-52) 
shows that b i i ( R )  is nornlalized such that 

By dividing bij(Rij)  the line shape parameter can be given as  a function 
extending from 0 to 1 as in figure 4-l(b). Note that from the definitions 
there is the simple equality 

bi j (R)  an, i j (R)  -= 
bij ( f i t j )  an,  ij (Rij) 
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V 

Angular frequency, R 

Angular frequency, R 

(a) Absorption coefficient. 

(b) Normalized line shape paratneter. 

FIGURE 4-1.-Broadened spectral line for transition between energy levels i and j. 

The form of the spectral line depends on the governing line broadening 
phenomenon. One characteristic of the line shape is often expressed 
in terms of a parameter A called the "jiuLL" half-zuidth of the line. The 
A is the width of the line (in units of angular frequency for the present 
discussion) evaluated at half the maximum line height as shown in figure 
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4-1.' This provides a definite width dimension to help describe the line. 
Since an,,, goes to zero asymptotically as )Q - R,I increases, it is not 
possible to define a line width in terms of frequencies at which an,, 
becomes zero. 

Four phenomena that cause line broadening will now be discussed 
along with the resulting line shapes. 

4.6.1.1 Natural broadening.-A perfectly stationary emitter unper- 
turbed by all external effects is observed to emit energy over a finite 
spectral interval about a single transition freqnency. This n a t ~ ~ r a l  line 
broadening results from the uncertainty in the exact levels E, and E, 
of the transition energy states, which is related to the Heisenberg uncer- 
tainty principle. Tl-te natural line broadening produces a line shape 
parameter of the form 

A,, 

where A,, is the "full" half-width of the line for natural broadening. 
This form of bij is callkd a resonance or Lorentz profile. In units of 
frequency, it provides a profile that is sy~llmetric about Rij and that 
depends on A,, and the transition frequency Rij. Equation (4-55) con- 
forms with the various definitions imposed on it. When R = Rij, the 
maximum bij is bij(Rij) =2/rA,, so that (112) bij(Rij) is ~ / v A , , .  This is 
the bij obtained when R - Rij is set equal to A,,/2, as expected from the 
definition of A,,. The integral 

A,, 

dfl= I 

in conformity wit11 equation (4-54). 
For engineering applications the half-width produced by natural broad- 

ening is usually quite small compared with that caused by other line 
broadening mechanisms. Natural line broadening is therefore usually 
neglected. 

4.6.1.2 Doppler broadening.-The atoms or molecules of an absorb- 
ing or emitting gas are not stationary, but have a distribution of velocities 

'Sometimes a q ~ ~ a n t i t y  cq~ta l  t o  A12 is usrd trlrirh ~o111d c a l l ~ d  lwre if "Italf' I~alf-~)i<Itll. T l i ~  I ~ B ~ P I  1111191 llr var r f i~ l  

to I,? sure \ v l ~ i r l ~  li~ic wilftli is l),xin: usrd as thtl trrtninol<,py viirie~ in thr litrraturr. 
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associated with their thermal energy. If an atom or molecule is emitting 
at the frequency Rij and at the same time is  moving at velocity v toward 
an observer, the waves will arrive at the observer at an increased fre- 
quency R given by 

If the emitter is moving away from the observer, the v will be negative 
and the observed frequency will be less than atj. An example of such a 
frequency decrease is the "red shift" of the radiation detected from 
galaxies in the universe. This provides evidence that the galaxies are 
moving away from Earth thereby indicating that the universe is 
expanding. 

In thermal equilibrium the gas molecules will have a Maxwell- 
Boltzmann distribution of velocities. If an observer is  detecting radiation 
along one coordinate direction, then the velocities of interest are those 
along the single direction either toward or away from the observer. The 
fraction of molecules moving in that direction within a velocity range 
between v and v + dv is 

-- 
Mu' dv 

"= n JM 2n-kT exp (-%) 
where M is the mass of a molecule of the radiating gas and k is the Boltz- 
mann constant. Using equation (4-56) in equation (4-57) to eliminate v 
gives the fractional number of molecules providing radiation in each 
differential frequency interval as a result of Doppler broadening. The 
result is a spectral line shape having a Gaussian distribution; that is, 

2vIK-2 
bij(0) =-- exp [-4(0-flij)'(:)] (4-58) 

VnA" 

where AD is the "full" half-width of the line for Doppler broadening. The 
line shape parameter bij(0) depends only on AD and the transition fre- 
quency Oij. The Doppler "full" half-width, however, is given by 

thus depending on fitj, T, and M .  The dependency of AD on T1I2 shows 
that Doppler broadening is important at high temperatures. 

4.6.1.3 Collision broadening.-As the pressure of a gas is increased, 
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the collision rate experienced by any given atom or molecule of the gas 
is also increased. The collisions can perturb the energy states of the 
atoms or molecules resulting in collision broadening of the spectral 
lines. For noncharged particles, the line takes on a Lorentz profile 
(ref. 4); that is, 

which is the same shape as for natural broadening. 
The collision "full" half-width A, is determined by the collision rate 

and an approximate value can be found from kinetic theory. The A, is 
given by 

s ..... a - .- 
iii 

FIGITRE 4-2.- Line shape parameter for Doppler and Lorentz broadened spertral lines 
(areas under two curves are equal). 
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where D is the diameter of the atoms or molecules and P is the gas 
pressure for the single component gas. Equation (4-61) shows that 
collision broadening becomes important at high pressures and low 
temperatures. 

Collision broadening is often the chief contributor to line broadening 
for engineering infrared conditions, and the other line broadening 
mechanisms can usually be neglected. The shapes of the Doppler and 
Lorentz broadened lines are compared in figure 4-2 for the same half- 
width and area under the curves. The Lorentz profile is lower at the 
line center, but remains of appreciable size further out in the wings of 
the line than the Doppler profile. Even when Doppler broadening is 
dominant near the line center, collision broadening is often the important 
mechanism far from the center. 

4.6.1.4 Stark broadening. -When strong electrical fields are present, 
the energy levels of the radiating gas particles can be greatly perturbed. 
This is the Stark effect and can result in very large line broadening. It 
is often observed in ionized gases where radiating particle interactions 
with the electrons and protons give large Stark broadening effects. Calcu- 
lation of the line shapes must be approached through quantum mechanics 
and the resulting line shapes are quite unsymmetrical and complicated. 

Stark and collision broadening are often lumped under the general 
heading of "pressure broadening." Both effects depend on the pressure of 
the broadening component of the gas. When two or more broadening 
effects simultaneously contribute to the line broadening, calculation of 
the resulting line shape becomes more difficult. References 4, 6, 7, 
and 8 can be consulted for additional information. 

Broadening has been discussed here under the assun~ption that only 
one atomic or nlolecular species is present in the gas. If the gas consists 
of more than one component, then collision broadening in the radiation 
absorbing gas is caused by collisions with like molecules (self-broadening) 
and by collisions with other species. Both collision processes must be 
included in calculating line shapes. 

4.6.2 Absorption or Emission by a Spectral Line 

By integrating equation (1-37) over the entire spectrum, the total 
energy absorbed along a path S per unit solid angle and projected area 
can be found within a uniform gas. As shown in figure 1-10, this is the 
energy absorbed when radiation with an incident intensity ii(0) travels 
through the shaded solid angle and reaches dA, 

= ( 0  1 e x p  ( a d )  ]dR 
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where i&(O) is the incident spectral intensity at the origin of path S .  
Similary, from the analogous forms of equations (1-41) and (1-43), the 
energy can be found that is emitted to dA,, by a uniform gas in the region 
of solid angle dm and length S of figure 1-10. Per unit solid angle and 
per unit of the projected area, this is 

- ibu [1 - exp ( a d )  ] d R  lo 
The integrals in equations (4-62) can be evaluated for an variations 
corresponding to a broadened spectral line, but first some simplifications 
can be made. Consider a spectral line having the transition frequency 
flu. The line absorption coefficient an, i j (R )  will be essentially zero 
except in a narrow frequency range surrounding Rij. Hence unless S is 
large the integrands in equations (4-62) will be of appreciable magnitude 
only within this narrow frequency region and the integration need be 
performed only over this narrow range. Within this range the iA(0)  or iA, 
can be approximated as being constant, and since the largest absorption 
is at R i j ,  the i h (0 )  and i;lb are ordinarily taken at that frequency. Then 
equations (4-62) become for the spectral line 

d2Q' = iA(0,Rij)  (1- exp [- ~ n , i j ( R ) S ] } d R  (4-63a) 
dA,& 

The absorbed and emitted energies for the line thus both involve the 
same integral. This integral will be called the effective line width Kij 

so that 

(1 - exp [-an, i j (R)SI}df i  (4-64) 

The Aj is a function of path length S ,  and has units of the spectral 
variable which is R in this instance. By considering a spectral line within 
~vhich the gas is perfectly absorbing (an ,  i j+ m), and having no absorp- 
tion outside this line, it is found from equation (4-64) that can be 
interpreted as the width of a black line centered about R i j  that produces 
the same emission as the actual line. 

The evaluation of Aj will now be considered for two important limiting 
cases. First consider the situation where the optical path length a n ,  i j ( R ) S  
is small (an ,  i j ( R ) S  < 1 ) .  The exponential term in equation (4-64) can 
be expanded in a series yielding 
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(an· ·SF 
1- exp (- an , ijS) = an, IjS - 2'1 + .. 

and then only the first term retained. By using equation (4-64), the Aij 
beco mes 

Aij(S) = S L" an , ijdD 

By use of equation (4-52) thi s yields 

Aij(S) = SSij (4- 65) 

where Sij i the integrated absorption coefficient and should not be 
confu sed with S which is the path length. The effective lin e width is 
thus linear with path length S in the limit when an, ij(D)S ~ 1 regardless 
of the line shape . A line with this lin ear behavior is called a weak line. 

Next to be considered is the situ ation where the optical path an, u(D)S 
is large. Thi s will be done for the Lorentz line shape equation (4-60) 
for colli sion broade ning, as thi s is the mos t important type of broade nin g 
for engin eering applications in the infrared region . From equation (4-53) 
the line absorption coeffi cient as a function of frequency D is 

where bij (D ) is the line s hape parameter. Using the Lorentz line sha pe 
eq uation (4-60) for bij gives 

(4-66) 

ow sub titute this into equation (4-64) to ob tain Aij for the spectral 
line as 

- f "" { [ ':::.!l... D. c
S II Aij(S)= 1-exp -2 D. 2 dD 

7T" ~+ (D-D .. )2 
o 4 'J 

(4- 67) 

For a Jine that is very trongly absorbing at its center, the collision "full " 
half-width D. c is small and can be neglected co mpared with I D - D ij I 
except in the small region where D is very close to D ij. In the region 
where D i clo e to Dij, th e ex ponential term in the integrand i mall and 
hence its accuracy is not important. As a result for a s trong line, equation 
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(4-67) can be approxim ated as 

(4-68) 

Since it is a single lin e that is being co nside red in equati on (4-68), the 
integrand becomes very s mall as In - n ij I beco me large. For a Lorentz 
profil e the line shape is symm etric about nij so that the integral can be 
writte n as 

(4-69) 

To carry out th e integral, le t the variable y be defined as 

The n equation (4-69) can be writte n as 

- _ (Sijfl cS)I /2 f "" 1-exp (-y) 
A ij(S) - 2 3 / 2 dy 

'7T 0 Y 
(4-70) 

This can be integrated to give 

(4- 71 ) 

Equation (4- 71) s how that, for a strong Lorentz line, the absorptance 
varies as the square root of the path length. This i in contras t to the 
res ult for an y weak line, equa tion (4-65), where the ab orptance varies 
linearly with path length. Experimental res ult bear out these fun cti onal 
de pendencies. 

4.6.3 Continuum Absorption 

Certain ene rgy transition processes can res ult 111 the ab orption of 
photon hav ing a wide range of energie a opposed to the relati vely s mall 
range of energies that line absorption can encompass . The continuum 
absorption proce ses can be divided into two categories, boundj ree 
processes and free jree processes. These processe were previou ly di s· 
cussed in secti on 1.3 and are briefl y reviewed here. Continuum ab orp· 
tion can also re ult from solid parti cles upended in the ga which will 
be di scussed in chapter 9. 

4.6.3. 1 Boundjree processes . - Co nsider when a molecule ab orbs 
a photon of sufficient energy to cause dissociation or ionization. A pho­
ton of any energy greater than the minimum nece ary for these proc-
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esses can be absorbed, giving rise to a continuous absorption spectrum. 
To produce ionization, ejection of an electron from a bound to afiee state 
occurs upon absorption of a photon. 

4.6.3.2 Free-free processes.-A photon can be absorbed by a free 
electron as a result of an interaction of the electron with the electric 
field that exists in the vicinity of a positive ion. The energy of the ab- 
sorbed photon is added to the kinetic energy of the absorbing electron, 
which remains in the free state. Since the initial and final states are not 
quantized, a continuous absorption spectrum results. 

4.6.4 Band Absorption Correlations 

The gases that are commonly encountered in engineering calculations 
are diatomic or polyatomic, and therefore possess vibrational and rota- 
tional energy states that are absent in monatomic gases. The transitions 
between the vibrational and rotational states usually provide the main 
contribution to the absorption coefficie~lt in the important thermal radia- 
tion regions of the spectrum at moderate temperatures. As the tempera- 
ture is raised, dissociation, electron transitions, and ionization become 
more probable, and the contributions of these additional processes to 
the absorption coefficient must be included. 

When the absorption coefficient of a gas is determined experimen- 
tally, the contributions of all the line and continuum processes are super- 
imposed. In conlputing such coefficients, each absorption process 
must be analyzed and then the conlplete coefficient obtained by com- 
bining the contributions from the various processes. In figure 4-3, the 
contributions to the spectral absorption coefficient as given by reference 
9 are shown for air at a pressure of 1 atm and a range of temperatures. 
The ordinate is the fractional contribution of any of the transitions to 
the entire absorption process; hence, the ordinates of all curves sum 
to unity at each temperature. At low temperatures the entire absorption 
results from transitions of the oxygen between molecular states. As the 
temperature is increased, there is some formation of NO which provides 
additional bound-bound transitions. At high temperatures the continuous 
absorption processes discussed in sections 4.6.3 and 1.3 are dominating. 
These are bound-free (photodissociation) and free-free transitions. 

The vibration-rotation bands are usually the most important absorbing 
and emitting spectral regions in engineering radiation calculations. 
The structure of such a band will now be examined in more detail and 
this will reveal the difficulty of computing band absorption coefficients 
from basic principles. Some of the simplified models of a band will then 
be discussed by means of which some band absorption features can be 
analyzed. The correlation of experimental band absorptance data will 
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FIGURE 4-3. -Contributions of energy transitions in bands of various species to absorption 
coefficient of air at 1 at111 (ref. 9). 

then be considered to show how gas properties can be presented in a 
manner that is useful for engineering applications where band radiation 
c~uantities are required. Often in engineering heat-transfer problems, a 
reasonable approximation to the total radiation will suffice. It is then not 
necessary to go into the details of the radiation from the individual bands. 
For total radiation calculations, charts of gas total emittance have been 
developed from total radiation measurements. These charts will be dis- 
cussed in chapter 5. Many of the functional dependencies of these charts 
had been developed empirically before the details of the radiation from 
the individual bands had been found. The information in the following 
sections will aid in understanding from a microscopic viewpoint how 
the physical variables influence gas radiation but is not intended to 
yield analytical predictions of the properties. 
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FIGURE 4-4.-A portion of hiph-resolution spectrum of carbon dioxide (ref. 10) 

Let us now examine in more detail the vibration-rotation transitions 
governing the absorption coefficient of most polyatomic gases up to a 
temperature of about 3000 K. These transitions are strong functions of 
frequency, and consequently the absorption coeficient is also strongly 
spectrally dependent. The spectral absorption in a vibration-rotation 
band consists of groups of very closely spaced spectral lines resulting 
from transitions between vibrational and rotational energy states. An 
example is shown in figure 4-4 for a portion of the carbon dioxide spec- 
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t r u n ~ . ~  The absorption lines are so closely spaced in certain spectral 
regions that the individual lines are not resolved in most instances by 
experimental measurements. The lines appear to, or actually do, over- 
lap as a consequence of broadening, and merge to form absorption bands. 
An example of absorption bands observed with low resolution are those 
for carbon dioxide that were shown in figure 1-2. 

The large number of possible energy transitions that can produce 
an array of spectral lines as in figure 4-4 is illustrated by the many 
energy levels and transition arrows in figure 4-5. This figure shows 
the potential energy for a diatomic molecule as a function of the sepa- 
ration distance between its two atoms. The two curves are each for a 
different electronic energy state where the electron may be shared by 
the two atoms. The distance R e  is the mean interatomic distance cor- 
responding to each of the electronic states. The long-dashed horizontal 
lines denote vibrational energy levels, while the short-dashed lines 
are rotational states superimposed on the vibrational states. Transitions 
between rotational levels of the same vibrational state involve small 
values of Ej-Ei .  Hence from equation (4-33) these transitions give 
lines in band structures located at low frequencies; that is, in the far 
infrared. Transitions between rotational levels in different vibrational 
states give vibration-rotation bands at frequencies in the near infrared. 
If transitions occur from a rotational level of an electronic and vibrational 
state to a rotational level in a different electronic and vibrational state, 
then large Ej-Ei  are involved and a band system can be formed in 
the high frequency visible and ultraviolet regions of the spectrum. 

In a detailed radiation exchange calculation the absorbed and emitted 
energy will be needed in each band region, for example in the four main 
COz bands of figure 1-2. These spectral bands are separated by spec- 
tral regions that are nearly transparent. A possible approach to corre- 
lating gas properties is to examine the absorption of each band separately 
and develop empirical correlations describing the behavior of each band. 
If the absorptance of the individual bands can be correlated in terms of 
the pressure, temperature, and path length through the gas, then energy 
interchange methods can be applied on a band-by-band basis to compute 
the total energy transfer through a real gas. 

Ecluatiolls (4-62) for absorbed and ernitted energy both involve the 
same type of integral, the only difference being that the integral for 
energy absorbed contains the incident intensity, while that for the emitted 
energy contains the blackbody intensity. Since the absorption bands 

''l'lrr notntioil (01'0). e.1~. in figure 4-4 ih a drsignatioo used to shoxv the quantum state of a Ilarmonic oscillator. In 
tlie ~r,nrral wtsr it~~trj~,.i!, I I I P  I , ,  a r ~  the vil~rational quaaturn ~lurnb~rs  and I is the quantunl number for angular monwrltum. 
'l'ransitions brtat.en Iwn Fnergy states, soclr as t l~osr  denoted by (00°0)--t (01'0) give rise to absorption lines. Certain 
rc~lwf in~i  rult,s gclvern the nllo~rnble transitions. A gorrd intradt~rtory trratnlent is given in cl~nptrr 3 of Goodp (ref. 10). 
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FIGURE 4-5. -Potential energy diagram and transitions for a diatomic molecule. 

usually occupy a rather narrow spectral region, an average value of the 
i ; t ( O )  or i;lb can be taken out of the integral for each band. Consider- 
ing for example the total emitted energy, equation (4-62b) becomes 

where the subscript 1 denotes a band, the integral is over each band, 
and the summation is over all the bands. 

In similar fashion to the effective line width in equation (4-64) the 
integral in equation (4-72) is defined as the effective band zoidth or 

2, ( S )  = 1 (1- exp [- an (R)Sl I d f i  
nbsorptio~t 

(4-73) 
b n ~ t d  toidtli 
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The 2, will have units of the spectral variable, which is R in the case 
of equation (4-73). More often in the literature k, is tabulated in terms 
of wave number so that it has units of cm-l. The span of the absorption 
band that provides the upper and lower limits of the integral in equation 
(4-73) does not have a specific value that applies for all conditions. It 
can be defined as the spectral interval beyond which there is only a 
given small fractional contribution to 2,. The width of this interval will 
increase slowly with path length as a result of proportionately more 
absorption taking place in the wings of the band. 

By comparing equations (4-73) and (4-64) it is found that the A /  for 
the band is the sum of the Alj for all the spectral lines that occupy the 
band if all the 2,. act independently of each other. Generally, the spec- 
tral lines do overlap and as a consequence each line does not absorb as 
much energy as if it acted independently of adjacent lines. 

As was observed in figure 4-4 an absorption band is typically com- 
posed of many broadened absorption lines. Hence the a n ( R )  in equa- 
tion (4-73) is a complicated irregular function of frequency, and the 
integration for 4 is difficult mathematically. The integration would also 
require that the detailed shape of all the broadened lines be known. It 
is  evident that a simplified model for the form of an (a)  must be devised 
if integration over the lines to obtain band radiation properties is to be a 
fruitful analytical approach. Two common models are used which rep- 
resent the extremes in specifying the individual line spacings and 
magnitudes. 

Elsasser (ref. 11) has modeled the lines as all having the same Lorentz 
shape, equation (4-66), and being of equal heights and equal spacings. 
This gives an as a periodic function of R as shown in figure 4-6(a). The 
periodic function depends on the parameters governing the shape of 
the Lorentz line as well as on the spacing 6 between them. The absorption 
coefficient at a particular frequency is found by sunlming the con- 
tributions from all the adjacent lines. The distance of the line centers 
from a position R are 10- 01, JR -  61, IR-261, and so forth. Then 
summing all the contributions by use of the Lorentz shape in equation 
(4-66) gives (each line has integrated absorption coefficient S,) 

This periodic function is inserted into equation (4-73) and after a sim- 
plifying transformation, the integral can be carried out numerically. 
Some of the results are given in reference 10. Analytical relations can 
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(a) Equally spaced Lorentz lines. 

(b) Statistical model. 

FIGURE 4-6. -RIodels of absorption lines forming an absorption band. 

be obtained at the weak and strong absorption limits. These results 
have been used as a guide for experimental correlations and are discussed 
by Plass (ref. 12). Presenting the specific analytical results is more 
detailed than the treatment intended here so the reader is referred to 
references 10, 12, or 13 for further results. 

Another band model is a statistical array of lines as  shown in figure 
4-6(b) and presented by Goody (ref. 10). There can be either a random 
spacing of identical lines or more generally the lines can also differ from 
each other. A spacing that is essentially random is typical of bands of 
polyatomic n~olecules such as COz and water vapor. To apply the model, 
probability distributions of line strengths and positions must be assumed. 
These statistical assumptions remove the necessity of calculating the 
exact properties of the individual lines in the band. 

Many other band models have been proposed, some of them of more 
utility in certain cases than the Elsasser or Goody models. Several of 
these band models are discussed by Goody (ref. 10) and Edwards and 
Menard (ref. 14). Modifications to the Elsasser model have been made 
recently by Kyle (ref. 15) and Golden (refs. 16 and 17) who treated evenly 
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spaced lines with a Doppler profile, and Golden (ref. 18) who treated 
the same case with a Voigt profile. The Voigt profile is a coinbination of 
the Doppler and Lorentz profiles, thus accounting for the presence in 
the gas of the both Doppler and collision broadening. 

Once the line structure is specified that constitutes the band, the effec- 
tive band width Al can be calculated from equation (4-73). It is evident 
that the A; will depend on the line spacing, the line half-width and the 
line integrated absorption, as well as other quantities when the random 
statistical model is used. To utilize these analytical results for radiative 
calculations involving a real gas mixture, it is necessary to know how 
all these factors are influenced by conditions such as the gas temperature, 
partial pressure of the absorbing gas, and the total pressure of the gas 
mixture. If the relations between these quantities are specified, then 
the correlation of experimental data based on the theoretically indicated 
dependencies of the band integration can be attempted. The background 
for these calculations is well charted by Goody (ref. 10). A few of the 
major functional relations indicated by the theory are examined in the 
remainder of this chapter. Edwards and coworkers (refs. 19 to 27) have 
assembled a large body of data on the common gases and have obtained 
correlations for many of the important band structures. References to 
these and other data are summarized in table &I and some of the results 
will be given later. 

The radiative behavior of the absorption bands can be conveniently 
presented by correlating the effective band width Al for the various 
bands as a function of the path length, pressure, temperature, and so 
forth. As will be shown in section 5.7 the A/ can be used in equation 
(5-74) to obtain the band absorptance for use in detailed spectral ex- 
change calculations in enclosures. By using equation (1-43) the Ar 
can also be used to calculate the total emittance of a uniform gas as 

lom rib6 [1 - exp ( - anS) ] do 
E' ( T ,  P ,  S )  = - 

aT4  

'Ti- =* 7 iib,,L [ l - e x p ( - - a n ~ ) l d o  

'Ti- - 
=- i h b , l  A1 aT4 I 

The E' can be used, as described in section 5.6.1, for engineering cal- 
culations of radiation from an isothermal gas to an enclosure boundary. 



146 'THERMAL RADIATION HEAT TRANSFER 

 ABLE -!-~~.-~.\~AII.ABI,E BAND ABSORPTANCE CORREI.ATIOYS FOR ISO'THERMAL (;ASES 

Type of correlatio Bands 1 ~ e t e r m c ~  / Ceili~lienti 

coy Equivalent band 
widtlr 

Exponential wide 
band 

9.4 and 10.4pni a22, 29 300 < T < 1400 K, 1 1  0.1 < X s 23 000 g/r/m2 

Exponential wide 
band 

Equivalent hand 
width 

All important 31 to 34 T - 300 K I I 
Exponential wide 

band 

2.7 and 6.3 p n ~  1 26 1 300 G T < 1100 K,  
1 s X c 21 000 g/ll12 

Equivalent line 

All important 31  to 34 T - 300 K I I Equivalent band 
~vidtli 

Exponential wide 
band 

Exponential wide 
band 

Not correlated - pre- 
sented in terms of 
spectral emittance 

Not correlated- pre- 
sented in terms of 
spectral and total 
emittatlee 

Discussion of literature 
up to 1960 

Air 

.'Ct,rrclations g i w o  in table. 4-11 and 6111 .  
" N2, 01,  C 0 2 .  O , ,  H 2 0 .  CH., and nitrogen oxidrs. 

All important 
contributing 
hands 

4 
(Ta l~ le  

11-2) 

References to literature 
up to 1965 for needed 
data to calculate band 
absorptance 
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Let us nour exan~ine the behavior of A, for the limiting cases of weak 
and strong absorption which will provide some liillits on which to base 
band correlations. For a single spectral line, it was found in equation 
(4-65) for a weak line and in equation (4-71) for a strong Lorentz line 
that the effective line width varied respectively as a linear and as a 
square root function of the product of path length S and integrated 
absorption coefficient Sfj. If it is assumed as a first approxi~nation that 
within a band the effect of line overlap is small, then these trends would 
also apply to the effective band width and can be used as a basis for a 
first approximation in the correlation of experimental data. It  follows 
that bands composed entirely of either weak lines or strong lines must 
be each correlated with a different path-length dependence. For weak 
lines, the use of equation (4-65) indicates that the correlation of the 
effective band width is expected to be for the 1"' band, 

For a strong collision broadened band, equation (4-71) indicates that 

A/ (S) (SlAcS) '1' 

Considering a single gas, the integrated band absorption coefficient S1 
depends on the number of molecules or atoms undergoing transitions 
and hence as  a rough approximation is taken as proportional to the gas 
density. The collision "full" half-width A, is given by equation (4-61) 
and because of the direct dependence on pressure the A,. is taken as 
being proportional to the density of the absorbing species. (The T-lI2 
in A,. would also have some influence.) Inserting these dependencies 
into equations (4-75) gives the weak and strong band approximations in 
terms of density and path length as 

Al (s) a pS (weak band) 

(s) a pSl/2 (strong band) 

when the lines in the bands are all acting independently. 
For a very strong band absorption, that is, for very long paths and 

many strong overlapping lines, the proportionality of equation (4-76b) 
does not hold. It is evident that with increasing S, the A, in equation 
(4-76b) would exceed its upper limit which from equation (4-73) would 
be the actual width of the absorption band. For very strong absorption 
there is some justification for taking the dependence of on ,a and S 
to be of the form 
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2, (S) OC In pS (4- 7 7) 

as discussed by Edwards and Menard (ref. 14). 
A difficulty in the use of equations (4-75) and (4-76) is to know when 

the correlation for a given band will go from the linear to the square-root 
behavior. For intermediate absorption strengths these two limiting 
regimes do not join smoothly and an abrupt transition is not physically 
meaningful. An improvement was made by Edwards and Menard (ref. 
14) who introduced a simplified correlation that transitions smoothly 
between the regions of differing dependency on p and S. The method has 
been used to successfully correlate experimental data (refs. 21 to 24). 
The basis of this correlation is the assumpti011 that the rotation lines 
in the band are equally spaced and can be reordered in frequency so 
that they form an array with exponentially decreasing line intensities 
from the band center. For this reason, the model is called the exponential 
wide band model. Tien and Lowder (ref. 28) have presented band correla- 
tions with a single continuous correlation equation for all mass path 
lengths. The correlation is based on the construction of a function that 
meets all the mathematical requirements of the absorptance as a function 
of mass path length. 

The exponential wide band model has been used to obtain corre- 
lation constants, and these have been gathered together by Edwards 

" C , ,  C,. C,. 6, and rr are ill tablr 5-111. S ia  mass pall, length, pS, g/rn2. P,= [(F+ bpy,)/P,]" where P,=1 atm, 11 is 

ljartial pressure of absor1,ing gas, and pv, is partial pressure of !VL broadening gas in  atmosl~hercs. 

TABLE 4-11.- EFFECTIVE BAND WIDTH CORRELATION EQUATIONS FOR ISOTHERMAL GAS " 

Pressure 
broadening 
parameter, 

C?P, p=-- 
4C I C:, 

p s 1  

P > l  

Lower limit 
of AT 
? > 

CIII-l 

0 

PC, 

Cz(2-PI 

0 

Cn 

Upper limit 
of d 

9 

cm-' 

PC3 

c:1(2-P) 

co 

C:3 

n 

Effective band width, 
AT 
?> 

cnl-I 

A= C ,S  

A= C,  (XP , )  'Iz - pC:j 

qxf',, 
A=Cn(ln --+Z 4G.i -P) 

A= C,S 
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e t  al. (ref. 29) from the references listed in table 4-1. The resulting effec- 
tive band widths and upper and lower limits of the A, can be obtained 
from the relations in table 4-11. These results are given in units of wave 
number which is cm-'. The quantities b, n, C1, Ce, and C:$ needed to 
evaluate these relations are given in table 4-111 for COe, CH4, HnO, and 
CO in a mixture with nitrogen. The method of using these band correla- 
tions will be shown by two example problems. 

Band, 
Gas p m  

1600 , I 41.2 " 
3750 23.3 
5350 3.0poll (7') 6.0Ct5 
7250 2.5plol ( T )  8.0C:" 

23(T/T,,)"." 
,55 ( TIT,,)".' 

52 (TIT,,)"." 
65 ( 7'/7;,)"." 
46(T/T,,)"." 
46 (TIT,,)"-" 

"For lirnits on 7' and X, see table 4-1 
'"j- ' .  , ,, 1s aken as I00 K for all rasrs.  

For CO1,  

"For HrO, 

' For CO, 
q.= [l.5.l5+0.22 (E)'"] [ I - ? ~ ~ ( - ~ ) ]  
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EXAMPLE 4-1: Find the effective band width 2 of the 9.4-pm band of 
pure COz at 1 atm and 500 K for a path length S of 0.364 m. 

To obtain 2 from the relations in table 4-11, the constant C1 must be 
evaluated. From table 4-111 at the 9.4-pm COz band 

C1=0.76+01(7') 

where 

Substitute the values v l  = 1351 cm-', 77, = 667 cm-l, 773 = 2396 em-', 
h=6.625X (erg) (sec), kz1 .380X 10-l6 erg/K, c=2.998X 10'' 
cmlsec, and T=500 K. This gives (pl=0.0196 so that C1=0.0149 
m"(cm)(g). Table 4-11 gives the quantity /3 as /3=CgP,/4CICz. For the 
9.4-pm COz band, table 4-111 gives the Cz and C3 as 

and 

so that 

From table 4-11, P,  for pure COP at 1 atm is 

Then, since To = 100 K 

Also 
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Because p s 1, the correlation equations for the specified conditions 
are the first set in table 4-11. The mass path length is given by 

The gas density is 

g 
P= liter (a) g-mole ( looO m3 liter ) (%)= 103 - m3 

22.42 --- 
g-mole 

so that the mass path length is 

The choice of correlation equation depends on the limits into which X 
causes A to fall. The first equation in table 4-11 gives 

but this falls well outside the prescribed upper limit of the band given by 

for the p < 1 part of the correlation. For intermediate X, the second 
line of table 4-11 gives 

A= C2 (XP,) - PC3 
or 

and this lies within the range 

for this part of the correlation. The result for A compares reasonably well 
with an experimental value of 5.9 cm-' from reference 20 for similar 
conditions. 
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EXAMPLE 4-2: Determine the energy per unit area and solid angle 
of the 9.4-,urn band emitted from the end of a thin column of CO2 gas 
at 1 atm pressure and 500 K if the column is 0.364 m long. 

Using equation (4-6213) and integrating only over the 9.4-t~m band 
result in 

where equation (4-73) has been substituted and nbn~tdce , l fer  is the wave 
number of the band center. For this band table 4-111 gives 

Using equation (2-llc) of volume I for iLb a n d l  from example 4-1 gives 
the result 

The preceding discussion has been for single component gases. If 
two gases are present and both absorb energy, then the b a n d  absorp- 
tance of each may overlap in some spectral regions. In this c a s e ,  Hottel 
and Sarofim (ref. 30) show that, for two gases, a and b, in an overlapping 
band of width A n ,  the following relation is valid: 

Thus the simple sum of the two 2 is reduced by the quantity A @ A r ) .  
Restriction is to wave number intervals over which both A a d  A b  are 
applicable average values, and in which there is no correlatiom between 
the positions of the individual lines of gases a and 6. 

Many additional complexities are introduced when a gas m i x t u r e  is 



MICROSCOPIC BASIS FOR GAS PROPERTIES 153 

considered. For example, the partial pressure p of absorbing gas in a 
multicomponent system varies with T and P, the populations of the 
energy states vary with T, and the overlapping of spectral lines changes 
with P. It is thus very conlplex to analytically fornlulate the dependence 
of on T, p, and P for a real gas mixture. Useful results must depend 
heavily on experiment while using theory as a guide. 

Hottel and Sarofim (ref. 30) discuss in detail total absorptance curves 
of the type shown in figure 1-11. Such curves are available for a number 
of gases, and their accuracy has been confirmed by many recent meas- 
urements. The use of total absorptances and effective band widths for 
various engineering problems will be discussed in chapter 5. 

4.7 CONCLUDING REMARKS 

In this chapter, some consideration was given to microscopic absorp- 
tion phenomena in gases. Derivations based on the microscopic ideas 
were related to some concepts already developed on the macroscopic 
basis-Planck's spectral distribution, induced emission, the equation 
of transfer, and the absorption coefficient. In addition, some framework 
was constructed concerning the radiative band absorption properties 
of polyatomic gases and their dependence on path length and density. 
The material on gas properties will be used in chapter 5 in conjunction 
with some engineering approaches for calculating radiative transfer 
in common gases. 
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Chapter 5. The Engineering Treatment of Gas Radiation 
in Enclosures 

5.1 INTRODUCTION 

A11 extensive body of engineering literature exists dealing with radia- 
tion exchange between solid surfaces when no absorbing medium is 
present between them. The methods for treating such problen~s are 
highly developed, and have been examined at length in volumes I and 
I1 of this publication (refs. 1 and 2). The additional complication of 
having an intervening absorbing-emitting gas present in problems of 
energy exchange between surfaces can be accounted for by building 
upon the foundation established for the simpler problems. In this 
chapter, the relations developed in chapters 1 to 4 are used in the 
derivation of engineering methods for solving gas-radiation problems. 
These methods are a direct extension of the surface-surface energy 
exchange methods developed for enclosures in volume 11. The engineer 
familiar with surface exchange'analyses will then find that much of the 
nomenclature, and the physical intuition that he possesses, can be carried 
over to gas radiation problems. 

Most of the material in this chapter will be concerned with an 
absorbing-emitting gas that is isothermal. As compared with the develop- 
ment in chapter 3, this provides the simplification that the gas tem- 
perature distribution need not be computed to obtain the radiative 
behavior of the gas. In section 5.8 some of the methods developed for the 
isothermal gas will be carried over to nonisothermal gas computations. 

5.2 SYMBOLS 

A area 
AFG geometrical absorption factor 
AF? geometrical transmission factor 
2 effective band width 
a absorption coefficient 

a,  b, c dimensions in system of two rectangles 
C ratio Le/Le, , 

2; 1 pressure correction coefficients 

Cr band coefficient in equation (5-76) 
D spacing between parallel plates; diameter 

E,Y (1 - E N )  /E,V 
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a ( S )  
5 (S) 
A a ,  A€ 
P 
ak j  

E 

E(S) 
"I 
K 

h 

P 
0- 

T(S) 
+(S) 
W 

exponential integral 
emissive power 
geometric configuration factor 
exchange factor 
gas-gas direct exchange area 
gas-surface direct exchange area 
height of cylinder 
radiation intensity 
mean beam length of gas volume 
mean beam length for limiting case of small absorption 
total number of surfaces in enclosure 
total pressure of gas or gas mixture 
partial pressure 
energy per unit time 
energy flux; energy per unit area and time 
radius of hemisphere, semicylinder, cylinder, or sphere 
coordinate along path of radiation 
geometric mean beam length 
surface-gas direct exchange area 
surface-surface direct exchange area 
absolute temperature 
volume 
width of plate 
mass path length, pS; shortest dimension of rectangular 

parallelepiped 
absorptance 
geometric mean absorptance 
correction for spectral overlap 
cone angle, angle from normal of area 
Kronecker delta 
emissivity of surface 
emittance of medium 
wave number 
optical depth 
wavelength 
reflectivity; density 
Stefan-Boltzmann constant 
transmittance 
geometric mean transmittance 
solid angle 

Subscripts: 

b blackbody 



GAS RADIATION IN ENCLOSURES 

C 0, carbon dioxide 

g gas 
Hz0 water vapor 
i incident, incoming 

j ,  k surfaces j or k 
j-k from surface j to surface k 
1 absorption band 1 
o outgoing 
u uniform 
w wall 
A spectrally (wavelength) dependent 

rl wave number dependent 

Superscripts: 

directional quantity 
+ quantities defined after equation (5-67) 
* ** 

7 dummy variable of integration 

5.3 NET RADIATION METHOD FOR ENCLOSURE FILLED WITH 
ISOTHERMAL GAS - SPECTRAL RELATIONS 

In section 5.3 of volume I1 the radiation exchange equations were 
developed for an enclosure that did not contain an absorbing-emitting 
medium, and that had surfaces with spectrally dependent properties. 
Since the absorption properties of gases and other absorbing media 
are almost always strongly wavelength dependent, the present develop- 
ment will be carried out at a single wavelength. Then in a later section 
integrations will be performed over all wavelengths to obtain the total 
radiative behavior. As in most of the development of volume I1 it will 
be assumed that surface directional property effects are sufficiently 
unimportant that the surfaces can be treated as diffuse emitters and 
reflectors. 

Often in a gas filIed enclosure such as in an engine combustion 
chamber or industrial furnace, there is sufficient mixing so that the 
entire gas is essentially isothermal. In this instance the analysis is 
simplified by the fact that it is unnecessary to compute the gas tempera- 
ture distribution. Eve11 with this sin~plification, however, a detailed 
radiation exchange computation between the gas arid bounding surfaces 
is quite involved. 

Consider an enclosure composed of N surfaces, each at a uniform 
temperature as shown in figure 5-1. Typical surfaces are designated 
by k and j. The enclosure is filled with an absorbing emitting medium 
at uniform temperature T,. The quantity Q, is the amount of heat that 
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FIGURE 5-1.-Enclosure cornposed of N discrete surface areas and filled with uniform 
gas g (enclosure shown in cross section for simplicity). 

it is necessary to supply by means other than radiation to the entire 
absorbing medium in order to maintain this temperature. A common 
source of the Q, would be by combustion. If in the solutioil of a problem, 
Q, comes out to be a negative number, the medium is gaining a net 
amount of radiative energy from the enclosure walls and the energy 
must be removed from the gas to maintain it at its steady temperature 
T,. The Q, is analogous to the Q/< in volume I1 which is the energy 
supplied by some external means to area A k .  

The enclosure theory will yield equations relating the Qk and Tk for 
each surface and the Q, and T, of the gas or other absorbing isothermal 
medium filling the enclosure. Considering all the surfaces and the gas, if 
half of the Q's and T's are specified, then the radiative heat balance 
equations can be solved for the remaining unknown Q or T values. If the 
heat input to the gas from external sources Q, is given, the analysis will 
yield the steady gas temperature T,,. Conversely, if Tf, is given, the anal- 
ysis will yield the energy that must be supplied to maintain this gas 
temperature. 

The net radiation method as developed in chapters 3 and 5 of volume 
I1 will now be extended to include gas radiation terms. At the kth surface 
of an enclosure as shown in figure 5-2 a heat balance gives 
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FIGURE 5-2.-Spectral energy c~uantities incident upon and leaving typical surface area of 
enclosure. 

The dqx,, and d q ~ i ,  r, are respectively the outgoing and the incoming 
energy fluxes in a wavelength interval dA. The c~QA,  k is the energy 
supplied to the surface in the wavelength region dh. Note that as dis- 
cussed in connection with equation (5-4) of volume 11, the external 
energy supplied to A,,. is 

1:;. d ~ A %  

The outgoing spectral flux is composed of emitted and reflected energy 

The functional notation will usually be omitted in order to shorten the 
form of the equations that follow. The eAb, kdX is the blackbody spectral 
emission at Tk in the wavelength region dh  about the wavelength A. 

The dqhi, k in equation (5-1) is the incoming spectral flux to Ak. It is 
equal to the sum of the contributions from all the surfaces that reach 
the kt" surface after allowing for absorption by passing through the 
intervening gas, plus the contribution by emission from the gas. The 
equation of transfer allows for both attenuation and emission as radiation 
passes along a path through the gas. A typical path from Aj to Ak within 
an incident solid angle dok is shown in figure 5-1. If all such paths and 
solid angles are accounted for by which radiation can pass from all the 
surfaces (including Ak if it is concave) to Ak, the solid angles dwk will 
encompass all of the gas region that can radiate to Ak. Thus, if the 
equation of transfer which includes the gas emission term is used to 
compute the energy transported along all paths between surfaces, the 
gas emis'sion will automatically be included. The radiation passing from 
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one surface to another, including emission and absorption by the inter- 
vening gas, will now be considered. 

A typical pair of surfaces is shown in figure 5-3. In the enclosure 
theory dqho is assumed uniform over each surface. Since the surfaces 
are assumed here to be diffuse, the spectral intensity leaving dAj is 
ii,,j= d q ~ ~ , j / ( ~ d X ) .  By use of the equation of transfer (eq. (2-lo)), the 
intensity arriving at dAk after traversing the path S is 

iLi, j-k=i;o,j eXP ( - K A )  + /:Ai;b,,(K:) exp [- ( K A - K : ) ] ~ K :  (5-3) 

where 

is the optical depth along the path S .  The gas is assumed to be at uniform 
temperature and to have a constant spectral absorption coefficient. 
Equation (5-3) then reduces to 

i;i,j.k = i;,, exp (- UAS)  + a ~ i ; ~ ,  , JOs exP [- (I,A ( S  -S  *) ]We  

which can be further integrated to give 

iLi, j.k= il;,, exp (- UAS)  + - exp (- I (5-4) 

Now for convenience introduce the definitions that T A ( S )  = exp (- axS) 
is the spectral transmittance of the gas of path length S ,  and a x ( S )  
1 - exp (- AS) is the spectral absorptance along the path. Then equation 
(5-4) is written as 

This intensity arriving at dAk in the solid angle dwk provides an arriving 
energy equal to i);i,j-kdAk cos PkdwkdX But dwk=dAj cos Pj/S2 SO that 
the arriving spectral energy is 

COS Pk COS pj 
d 3 Q ~ j ,  j-li= iLi, j-kdAkdAj 

S 
dX 

dAkdAj cos PI; cos pj 
= rib, jrA(S) + i;b,{g(TY)a~(S)l S 2  

dX (5-6) 

For a diffuse surface dqx,, j= ~ i ; , ,  jdX, and also e ~ b ,  Y= Ti);*, y. SO that 
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FIGURE 5-3.-Radiation between two surfaces with isothermal gas between them. 

equation (5-6) can be written as 

Equation (5-7) is now integrated over all of AI, and Aj to give the 
spectral energy along all paths from Aj that is incident upon An, 

The first term of the double integral is the spectral energy leaving Aj 
that is transmitted to Ah.. The second term is the spectral energy received 
at AI, as a result of emission by the constant temperature gas in the 
envelope between Aj and An. This envelope is the volume occupied 
by all straight paths between any part of Aj and An. 
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5.3.1 Definitions of Spectral Transmission and Absorption Factors 

The double integration in equation (5-8) has some similarity to the 
double integral in equation (2-22) of volume I1 for the configuration 
factor between two surfaces without an intervening gas. By analogy 
define the factor 7~~j-1 , .  such that 

where Fj-k is the geometric configuration factor with no absorbing 
medium as used in volume 11. With no absorbing medium present, 
TA(S) = 1 and the right side of equation (5-9) becomes Fj-k .  Hence, in 
this instance yj-k=l. The YA, j-~,. is called the geometric mean trans- 
mittance from Aj to Ak. Similarly from the second quantity in the bracket 
of equation (5-8), a geometric mean absorptance % A ,  j-k is defined as  

For a nonabsorbing medium (Y~.j-k=o, while for perfect absorption 
a ~ , ~ - k =  1. From the definitions of T A  and a x ,  and equations ( 5 9 )  and 
(510 ) ,  the 7~ and are related by 

An alternate terminology is also used wherein the entire quantity 
AjFj-k7h,j-k is called the geometrical transmission factor, and the 
quantity AjFj-k(YA,j-k is called the geometrical absorption factor. 
Equation (5-8) can now be written as 

When computing the heat exchange in an enclosure, it will be neces- 
sary to determine the ?A and 6 x .  This usually involves some difficult 
double integrations. In the present discussion the enclosure theory formu- 
lation will first be completed. Then the evaluation of ?A and alA will be con- 
sidered. It is only necessary to perform one double integration to obtain 
bcith the ?A and (YA because of the relation in equation (5-11). 

5.3.2 Matrix of Enclosure Theory Equations 

For an enclosure with   surfaces bounding an isothermal gas at To, 
the incident spectral energy on any surface Ak will equal that arriving 
from the directions of all surrounding surfaces, which gives 
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From reciprocity (eq. (2-25) of vol. 11) AjFj-k=AkFk-j SO that the Ak can 
be eliminated to give 

Equatioils (5-l), (5-2), and (5-14) form a set of three equations in 
three unknowils dqAo, dqAi,  and dqh for each of the surfaces in the 
enclosure. The dqhi is eliminated by combining equations (5-1) and 
(5-2) and also by substituting equation (5-14) into equation (5-1). This 
yields the set of two equations for each surface 

Equation (5-15) is the same as for an enclosure without an absorbing 
gas (see eq. (5-8) of vol. I1 for example). Equations (5-15) and (5-16) 
are analogous to equations (3-6) and (3-7) of volume I1 for the simpler 
case of a gray enclosure without an absorbing gas. From the symmetry 
of the integrals in equations (5-9) and (5-10) and the reciprocity relation 
AjFj-I; = AkFk-j, it is found that 

- 
?A, j-x.= 7h .  k-j (5-17) 

and 
- 
ah, j-k= ( Y A ,  k-j (5-18) 

Then equation (5-16) can also be written as 

As in section 3.3.1.1 of volume 11, the set of equations (5-15) and 
(5-19) can be further reduced by solving equation (5-15) for dqh, and 
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inserting it into equation (5-19). This results in the relation 

The Kronecker delta 6kj  has the values: 6kj = 1 when /i = j, and 8kj= 0 
when k # j. This equation is analogous to equation (3-19) of volume 11. 
If equation (5-20) is written for each k from 1 to N, a set of N equations 
is obtained relating the 2N quantities d q ~  and e A b  for the surfaces, 
since the gas temperature and hence ebb,, is assumed known. One-half 
of the dqh and exb values have to be specified and the equations can 
then be solved for the remaining unknowns. To determine the total 
energy quantities, this set of equations would have to be solved in a 
number of wavelength intervals and the integration of each quantity 
performed over wavelength. 

5.3.3 Heat Balance on Gas 

Before discussing the solution of the enclosure equations in more 
detail, there is an additional heat balance that is of interest. This is a 
heat balance on the gas, which will provide the energy required to main- 
tain the gas at the specified temperature. From an energy balance on the 
entire enclosure, the energy that must be supplied to the gas by com- 
bustion, for example, is equal to the net quantity escaping from the 
boundaries. The total energy escaping from the enclosure at surface k is 

Then the energy added to the gas is found by summing over all surfaces; 
that is, 

This can be evaluated after the dqh are found for each surface in a suf- 
ficient number of wavelength intervals from the matrix of equation 
(5-20). 

EXAMPLE 5-1: As an example of the net radiation method consider 
the heat transfer in a system of two infinite parallel plates at temperatures 
TI and TI? (TI > T;L) separated by a gas at uniform temperature Tg. 

Equation (5-20) applied to a two surface enclosure gives (note that 
F1-l=FP-2=O) for k=1:  
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- F1 - 2 7 ~ .  l - z e ~ b ,  p d h  - F 1 - 2 6 ~ ,  - ~ e ~ b ,  gdA (5-22a) 
and for k= 2: 

For the infinite parallel plate geometry, F1-2=F2-1=1, and from 
equations (5-17) and (5-18) ?A, 2 -1  = ?A, and 6 ~ ,  2 - t  = 6 ~ ,  l - 2 .  For 
simplicity the numerical subscripts on the ? and 6 will be omitted. Then 
equations (5-22a) arid (5-22b) become 

1 I - E A , ~  - 
- d q h ,  1  ---- r ~ d q ~ ,  z = ( e ~ b ,  I - ?Aehb, 2  - G A ~ A ~ ,  g)dA (5-23a) 
€ A ,  t  EX,  2  

Equations (5-23a) and (5-2323) are solved simultaneously for d q ~ ,  1 and 
d q ~ ,  2.  After rearrangement and using the relation (EA= 1 - ? A ,  this yields 

The total energy fluxes added to surfaces 1 and 2 are, respectively, 

41 = rrn A = O  &A, 1  and q, = jz d q A ,  
A=O 

The total energy added to the gas in order to maintain its specified 
temperature is equal to the net energy removed from the plates. Hence, 
per unit area of the parallel plates 

When the medium between the plates does not absorb or emit radiation, 
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then ?x= 1 and ec~uations (5-24a) and (5-2413) reduce to equation (5-10) 
of volume 11. With an absorbing-radiating gas present the numerical 
integration of equations (5-24a) and (5-24b) over all wavelengths to 
obtain the ql and 9.2 is difficult because of the very irregular variations 
of the gas absorptiol: coefficient with wavelength. The integration will 
be further discussed in section 5.7 by dividing the wavelength range 
into bands of finite width that are either absorbing or nonabsorbing. 

5.4 EVALUATION OF SPECTRAL GEOMETRIC MEAN TRANSMITTANCE 
AND ABSORPTANCE FACTORS 

To compute values from the exclzailge equations, the quantities 
? and 5 or (AFT) and (AFc) must be evaluated. By use of the definitioils 
given in equations (5-9) and (5-10) 

[ I -  exp (- clxs); cos P k  COS Pj 
~ j ~ j - k ~ i ,  j - k = l q k  llj 71-s " dAjclAk 

It is evident that it is the double integral in equation (5-27) that must be 
carried out for various geometrical orientations of the surfaces Aj  and 
At. The evaluation for some specific geometries will now be considered. 

5.4.1 Hemisphere to Differential Area at Center of I ts  Base 

As shown in figure 5-4, let Aj  be the surface of a henlisphere of radius 
R ,  and dAk be a differential area at the center of the hemisphere base. 

FIGURE 5-4.- Hemisphere filled with isothermal gas. 
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Then equation (5-27) becomes, since S = R  and ,B j=O (path R is normal 
to hemisphere surface), 

The convenient dAj is a ring element dAj=2rrR2 sin PkdPh., and the 
factors involving R can be taken out of the integral as R is constant for 
the hemisphere geometry. This ,j ves 

= dAk exp (- ahR) 

By using AjdFj-dk=dAkFdk-j and noting that Fdk-j= 1, this reduces to 

?h,j-d,,.= exp (- OAR)  (5-29) 

This especially simple relation will be used later in conjunction with the 
concept of mean beam length. This is an approximate technique wherein 
the radiation from an actual gas volume is replaced by that from an 
effective hemisphere of gas. 

5.4.2 Top of Right Circular Cylinder to Center of I ts Base 

This geometry is shown in figure 5-5. Since Pj= P k  = P ,  the integral 
in equation (5-27) becomes for the top of the cylinder Aj radiating to the 
element at the center of its base dAk 

A convenient change in the integral is made by noting that dAj cos PIS2 
is the solid angle by which the ring dAj is viewed from dAk. By considering 
the intersection of this solid angle with the surface of a unit hemisphere, 
it is found that this solid angle is also equal to 2rr sin P dp. Making this 
substitution results in the integral in equation (5-30) being transformed 
so that 

AjdFj--dE;K, j-d,,.= dAk [exp ( - a ~ S ) ] 2  cos P sin P d p  (5-31) I ,  
Now let ( IAS=KA.  Then from figure >5 cos P= ~ / S = ~ C L A / K A ,  and 
sin p dp=- d(cos p )  = ( k a ~ / ~ f ) d ~ ~ .  As P goes from 0 to p,,, the limits on 
the variable K A  are K A  = N A / I  to ( lA w. Then equation (5-31) becomes 
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FIGURE 5-5. -Geometry for exchange from top of gas-filled cylinder to center of its base. 

This can be integrated by parts two times to yield 

a , i . h \ m  

A j d F j - d k ? ~ ,  j - d k =  (aih ) ' d A k  ( K,, 
n ~ h  

The last integral is a tabulated exponential integral function so the 
result can be evaluated without difficulty for various values of the 
parameters Rlh and a k h .  

The integral in equation (5-32) can also be found directly in terms of 
the exponential integral function defined in equation (2-45) by writing 
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By letting K A =  ( C ~ A - ) / ~  and axhlp, respectively, in the two 
integrals, they become 

The integral in equation (5-32) can then be written in terms of the 
exponential integral function as 

5.4.3 Side of Cylinder to Center of Its Base 

Let dAj be a ring around the wall of a cylinder as shown in figure 
5-6, and note that dAj cos pj/S2 is the solid angle by which dAj is viewed 

FIGURE 5-6. -Geometry for exchange from side of gas-filled cylinder to center of its base. 
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from dAk. This solid angle is also equal to 27-r sin P s  dP,,. Then equatioll 
(5-27) can be written for the side of the cylinder to dAk as 

Aj~iFj-clk?A,j-rlk = 2dAk [exp ( - a ~ s ) ]  cos P k  sin PI,. (@I; 6-35) I, 
This is of the same form as equation (5-31). Let a k S  = K A ;  then sin P k =  

R / S  = R U A / K A  and cos f i k  dPk = d(sin P k )  =- ( R c ~ A / K :  ) ~ K A .  Making these 
substitutions and integrating by parts as for equation (5-33) yield 

n i h  d ( R I h ) ' + l  (5-36a) 
nil8 ( H l h )  

Alternatively by use of equation (5-34) 

A s  for equation (5-33) (or (5-34)), this result can be readily evaluated for 
various values of the parameters Rllz and ahh. 

5.4.4 Entire Sphere to Any Element on Its Surface or to Its Entire Surface 

From figure 5-7 since pk = p j  let them both be simply P.  Then S = 2 R  
cos p ,  and using the form in equation (5-31) gives 

A ~ ~ F ~ - , ~ ; A ,  j-d,,.=z$ 2R exp ( - ~ A s ) s ~ s  
4R s = o  
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"Ak 

FIGURE 5-7.- Geometry for exchange of surface of gas-filled sphere to itself. 

Integrating gives 

- 
2d4k [ I -  (2aiR + 1)  exp (-ZCLAR)] (5-37) AjdFj-dk'Ti, j-dk=---- 

( 2 0 i R ) ~  

which is in terms of only the single parameter 2aiR. 

- 
Equation (5-37) can be integrated over any finite area At  to give the 

7~ from the entire sphere to Ak as 

- 
AjFj-k~i ,  j-k = 

2Ak 
(2a iR)  

[1 - ( 2 a ~ R  + 1)  exp ( - ~ u A R ) ]  

Since Fj-k=Ah./Aj (from eq. (3-65) of vol. I I ) ,  

- 
' T i ,  j-I<= 

2 
(20 iR)  

[l- (2nhR+ 1 )  exp ( -2a iR)]  (5-38) 

which also holds for the entire sphere to its entire surface. 

5.4.5 Infinite Plate to Area on Parallel Plate 

If there is considered on one plate an element dAk (fig. 5-8) and on 
the other plate a concentric ring element dAj centered about the normal 
to dAk, the geometry is like that in figure 5-5 for a ring on the top of a 
cylinder to the center of its base. Then from equation (5-32) 
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FIGURE 5-8. -1sother1nal gas layer between infinite parallel plates. 

where D is the spacing between the plates. By use of the procedure 
leading to equation (5-34), the integral is transformed to E3(ahD) /(ahD)2. 
Then integrating over any finite area Ax. as shown in figure 5-8 gives 

By using AjFj-k=AkFk-j and noting that Fk-j= 1, this reduces to 

5.4.6 Rectangle to a Directly Opposed Parallel Rectangle 

Consider as  in figure 5-9 the exchange from a rectangle to an area 
element on a directly opposed parallel rectangle. The upper rectangle 
has been divided into a circular region and a series of partiaI rings of 
small width. The contribution from the circle of radius R to 
AjdFj-dli?~, j - d ~ .  can be found from equation (5-33) which is for t he  top 
of a cylinder to the center of its base. For the nth partial ring, let f l l  be 
the fraction it occupies of a full circular ring. Then by use of equation 
(5-31), the contribution of all the partial rings to AjdFj-dk'^;h,j-cl~ is 
approximated by 

dAk fll exp (-ahS1,) 2 cos PI ,  sin PI ,  A/31, 
I1 

This evaluation of AjdFj-dkSh,j-dk is carried out for several area 
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nth ring 
/ ' 

. ' '\ / 'Aj 

FIGURE 5-9.-Geometry for exchange between two directly opposed parallel rectangles 
with intervening gas. 

patches on Ak. This is usually sufficient so that the integration over Ak 
can be performed as indicated by equation (5-9) to yield 

5.5 THE MEAN BEAM LENGTH FOR RADIATION FROM AN ENTIRE GAS 
VOLUME TO ALL OR PART OF ITS BOUNDARY 

In some practical situations it is desired to determine the radiant 
energy from a mass of isothermal gas to all or part of its boundaries, 
without considering emission and reflection from the boundaries. An 
example would be radiation from hot furnace gases to walls that are cool 
so  that emission is small, and that are rough and contaminated with soot 
s o  that they are essentially nonreflecting. In equation (5-13) the dqt,o,j, 
which is the spectral outgoing heat flux from a typical surface A j ,  would 
then be zero. The spectral incoming energy at surface Ah. is then 

If the geometry consists of a hemisphere of gas radiating to an area 
element dAk at the center of its base as shown in figure 5-4, equation 
(5-40) has an especially simple form. Since the hemispherical boundary 
is the only surface in view of dAk, and dAk is a differential element, 
equation (5-40) reduces to 
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From equation (5-29), 

o ( ~ , ~ - ~ ~ =  1 - 7 ~ ~  j - d k =  1- exp ( - a d )  

Note also that for radiation between the surface of a hemisphere and the 
center of its base, Fdk-j= 1 so that froill reciprocity dFj-dk=dAk/Aj. By 
combining these results, equation (5-41) reduces to the following sirllple 
expression giving the incident heat flux from a hemisphere of gas to 
the center of the hemisphere base, 

& x i ,  k= [I - exp ( - a h R ) ] e ~ h ,  ,dA (5-42) 

From equation (5-42), 1 - exp (- aAR) is the spectral emittance of the 
gas E X (  A, T ,  P ,  R )  for path length R.7 Then equation (5-42) becomes 

Thus a very simple forin is obtained for the energy incident upon clAk 
from the hemisphere of gas of radius R surrounding c/Ak. The incident 
energy depends on the optical radius of the hemisphere axR. 

It would be most convenient if a relation having the simple form of 
equation (5-43) could be used to determine the value of dq~i,k on At  
for any geometry of gas volume radiating to all or part of its boundary, 
rather than only for a hemisphere radiating to the center of its base. 
Because the geometry of the gas enters equation (5-43) only through 
EA(CLAR) ,  it is possible to define a fictitious value of R ,  say L,, that would 
give a value of ~x(axL,) such that equation (5-43) would give the correct 
dqii for another geometry. This fictitious le~lgth L, is called the mean 
beam length. Then for an arbitrary geometry of gas let 

The mean beam length is thus the required radius of a gas hemisphere 
such that it radiates a flux to the center of its base equal to the average 
flux radiated to the area of interest by the actual volunle of gas. 

'For simplicity the prime notation used for a directional quantity will be omitted; in this instance the E L  is indrgendent of 

direction. 
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5.5.1 Mean Beam Length for Gas Between Parallel Plates 

Radiating to Area on Plate 

Consider for example the geometry of two black infinite parallel plates 
at zero absolute temperature separated by a distance D. The plates en- 
close a uniform gas at temperature T,, with absorption coefficient ([A. 

The rate at which spectral energy is incident upon A k  on one plate 
(fig. 5-8) is from equations (5-40) and (5-39) 

Since the plates are infinite, F k - j =  1 .  Then by reciprocity (eq. (2-25) 
of vol. 11), F j - k =  Ak /A j  and equation (5-45) reduces to 

Comparing equations (5-46) and (5-44) reveals the mean beam length to 
be  

o r  in terms of the optical thickness UAD 

5.5.2 Mean Beam Length for Sphere of Gas Radiating to Any Area on 
Boundary 

Consider gas in a nonreflecting sphere of radius R where the sphere 
boundary Aj is at Tj = 0. By use of equations (5-40) and (5-37) the radia- 
tion incident on an element dA,; is 

X [ l  - ( 2 a ~ R  + 1 )  exp (- 2 a ~ R ) ]  1 
For a sphere dFj-dk= dAk/Aj (by use of eq. (3-64) of vol. 11). Then 
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X [ l -  (2ahR + 1 )  exp ( - 2 a ~ R ) ]  I 
Equate this to d q ~  from equation (5-44) to obtain 

1 - exp (- aAL,) = 1 - 
2 

( 2 a ~ R ) '  
[ l  - ( 2 a ~ R  + 1 )  exp (- 2 a ~ R ) ]  

which gives 

Le -- I In 
2 

2RA-2a*R { (2aAR)' [ l  - ( 2 a ~ R  + 1 )  exp ( - 2 a ~ R ) ]  I (5-48) 

In view of the general applicability of equation (5-38), equation (5-48) 
gives the correct mean beam length for the entire sphere radiating to 
any portion of its boundary. 

5.5.3 Radiation from Entire Gas Volume to Its Entire Boundary in Limit 
When Gas Is  Optically Thin 

Because of the integrations involved, the mean beam length will 
usually be difficult to evaluate. It is fortunate that some practical approxi- 
mations for the mean beam length can be found quite simply by looking 
at the limit when the gas is optically thin. In the optically thin limit, by 
expanding the exponential term in a series for small aAS, the transmit- 
tance ~ ~ = e x p  (- AS) becomes 

( a  AS)' 
lim T A =  lim 1-axS+-------- . . . ] = I  

a h +  o arS+ o 2 !  

Any differential volume of the uniform temperature gas emits the spec- 
tral energy 4~hehb ,~dhdV .  Since r ~ =  1, there is no attenuation of the 
emitted radiation and all of it reaches the enclosure boundary. For the 
entire radiating volume the energy reaching the boundary is 4 a ~ e ~ b ,  gdAY 
so that the average spectral flux received at the boundary of entire area 
A is 

By use of the mean beam length the average flux reaching the boundary 
is from equation (5-44), 
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For the special case of emall absorption let L ,  be designated b y  L,,,.  
Then expand the exponential term in equation (5-50) in a series to obtain 
for small UAL,,, 

Equating this to the dqii in equation (5-49) gives the desired result for 
the mean beam length of an optically thin gas radiating to its entire 
boundary, 

To give a few examples, for a sphere of diameter D 

For an infinitely long cylinder of diameter D 

For gas between infinite parallel plates spaced D apart 

5.5.4 Correction for Mean Beam Length When Gas Is Not Optically Thin 

For an optically thick gas it would be very convenient if L,  could be 
obtained by applying a simple correction factor to the L,,, computed 
from equation (5-51). It  has been found that a useful technique is to 
introduce a correction coefficient C so that 

Then the incoming heat flux in equation (5-50) can be obtained as 
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The coefficient C will now be examined by considering the example 
of a radiating gas between infinite parallel plates spaced D  apart. Using 
equation (5-54) in equation (5-56) gives 

d q ~ i =  [ I -  exp ( - U A C ~ D ) ] ~ A ~ , ~ ~ A  

From equation (5-46) the actual flux received is 

To see how well these fluxes compare, the ratio 

1 - ~ E ~ ( c L ~ D )  
1 - exp ( - 2 c a ~ D )  

is plotted in figure 5-10 using a value of C =  0.9 for a range of optical 
thicknesses aAD. This value of C was found by trial to yield a ratio close 
to unity for all aAD and hence serves as a useful correction coefficient. 

In table 5-1 the mean beam length L,, . is given for a number of 
geometries along with a value L,  that provides reasonably good radiative 
fluxes for nonzero optical thicknesses. The values of C are found to be 
in a range near 0.9 (refs. 3 to 5). Hence, it is recommended that for a 
geometry where L, values have not already been calculated, the approxi- 
mation can be used 

4v 
Le=0.9Le, 0-0.9 - 

A 
(5-57) 

FIGURE 5-10.-Ratio of emission by gas layer to that calculated using a mean beam 
length I.,.= 1.80. 
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TABLE S-I.-MEAN BEAM LENGTHS FOR RADIATION FROM ENTIRE GAS VOLUME 

Hemisphere radiating I 

Geometry of gas volume 

to element at center I 

Characterizing 
dimension 

of base 
Sphere radiating to its 

surface 
Circular cylinder of 

height equal to diam- 
eter radiating to I 
element at center of 
base 

Circular cylinder of 
infinite height radi- 
ating to convex 
bounding surface 

Circular cylinder of 
semi-infinite height 
radiating to element 
at center of base 

Circular cylitider of 
semi-infinite I lr i?~l~t 
~aciiatil~g to tantilt. 
ba5e 

Circular cylinder of 
height equal to diam- 
eter radiating to en- 
tire surface 

Cylinder of infinite 
height and semi- 
circular cross sec- I 
tion radiating to 
element at center of 
plane rectangular 
face 

Infinite slab of gas 
radiating to element I 
on one face I 

Radius R 

Diameter D 

Diameter D 

Diameter D 

Diameter D 

Diamrtc~r D 

Diameter D 

Radius R 

Slab 
thickness D 

Mean beam 
length 

corrected 
for finite 
optical 

thickness," 
Le 

" Cc,rrrctions are those suggested hr Hottel rt sl. (refs. 3 and 4) or Erkert (ref. 5) .  Correclions wrrr  chosm to provide 

rnaxinmnl I,, whrrr these referrnces disagree.. 
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" Corrections are those suggested by Hottel et al. (refs. 3 and 4) or Eckert (ref. 5). Corrections were chosen to provide 
maximum L,  where these references disagree. 

VOI,UME- 

C=l.,~/L,,,, ,  

0.90 

0.90 

0.91 

.83 

.91 

0.88 
.85 

.85 

RADIATION FROM 
concluded 

Mean beam 
length for 

optical 
thickness. 
arL,+ 0 ,  

Id<,,O 

2 0  

%x 

0.90X 

.86X 

.89X 

1.18X 

1.24X 

1.18X 

1.20X 

3 .4(S-D)  
4.45(S-D) 

4.1(S- D)  

LENGTHS FOR 

Characterizing 
dimension 

Slab 
thickness D 

Edge X 

Shortest edge 

X 

V 

Tube 
diameter 

D, 
and 

spacing 
between tube 

centers S 

TABLE 5-1. -MEAN BEAM 

-- 

(;eometry of ~ a s  volume 

Infinite slab of gas 
radiating to both 
bounding planes 

Cube radiating to a 
face 

Rectangular parallele- 
pipeds: 

ENTIRE GAS 

\lean beam 
length 

corrected 
forfinite 
optical 

thirLnc.ss," 
I,,, 

1.80 

0.6X 

0.82X 

.71X 

.81X 

.................................... 

.................................... 

.................................... 

.................................... 

3.0(S- D)  
3 .8(S-  D)  

3 .5(S-D)  

l X I X 4 <  

radiating 
to 1 x 4  
face 

radiating 
t o l X 1  
face 

radiating 
to all'faces 

radiating 
to 2 x 6  
face 

radiating 
to 1 x 6  
face 

radiating 
to 1 x 2  
face 

radiating 
to all 

, faces 

Gas volume surround- 
ing an infinite tube 
bundle and radiating 
to a single tube: 

Equilateral tri- 
angular array: 

S=2D 
S=3D 

Square array: 
S=2D 



GAS RADIATION I N  ENCLOSURES 183 

5.6 TOTAL RADIATION EXCHANGE IN BLACK ENCLOSURE BETWEEN 
ENTIRE GAS VOLUME AND ENCLOSURE BOUNDARY 

BY USE OF MEAN BEAM LENGTH 

In furnaces the walls are usually rough and soot covered so they act 
practically as black surfaces. An important industrial problem is the 
radiant exchange between the furnace gas and the walls. In this section 
the simplified case of a black enclosure will be considered. The total 
radiation excliange will be considered between the entire gas volun~e 
and the enclosure boundary. This development will be carried out by 
application of the mean beam length. 

5.6.1 Radiation from Gas to All or Portion of Boundary 

The mean beam length was found to be approximately independent 
of ax as evidenced by equation (5-57). This ineans that L ,  can be used 
as a characteristic dinlension of the gas volulile and regarded as a con- 
stant while integrating over wavelength. The total heat flux from the 
gas incident on a surface is found by integrating equation (5-44) over A 

where L ,  is independent of A. Now define a gas total emittance E ,  such 
that 

qi = ~ , a T i  (5-59) 

Equating the last two relations results in 

The E ,  is a convenient quantity which can be presellted in graphical 
form for each gas in terms of the variables Le and T,. Then for a particu- 
lar geometry and gas condition the E ,  can be found and applied by use 
of equation (5-59). 

The 6, charts that will be presented here have been developed by 
Hottel (ref. 3) from many experimental measurements. The gas pressure 
will enter as a parameter because of the dependence of ax on the gas 
density. If the gas is in a mixture, both the pressure of the mixture and 
the partial pressure of the radiating constituent under consideration 
will be parameters. A chart of eg was given for carbon dioxide (COz)  in 
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figure 1-11. Charts are presented here in more detail for COz and water 
vapor (figs. 5-11 and 5-13). Additional charts for sulfur dioxide, ammonia, 
carbon monoxide, methane, and a few other gases can be found in 
reference 4. The discussion here will be limited to radiation of COz and 
water vapor. 

When computing an average radiation to area A (a part or all of the 
bounding surface) by the relation from equation (5-59) 

the mean beam length for the gas geometry is first obtained from table 
5-1 or equation (5-57). Then, by knowing the partial pressure of the 
gas and its temperature, the gas emittance is found by using figures 
5-11 to 5-15. Figure 5-11 gives the total emittance of COz obtained 
experimentally using a mixture with air or other gases so that the total 
pressure of the mixture was at 1 atm while the partial pressure of the 
COr was varied. The dotted lines are regions unsupported by experi- 
mental data. For a mixture total pressure other than 1 atm, there is a 

Gas temperature, Tg, O R  

FIGURE 5-11.-Total emittance of carbon dioxide in a mixture having a total pressure of 
1 atm (ref. 3). 
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.05 . 0 8 . 1  . 2  . 3  . 5  .8 1 
Total pressure of  gas mixture, P, a tm 

FIGURE 5-12.-Pressure correction for COr total entittance for values of P other than 
1 atrn (ref. 3). 

Gas temperature, Tg, O R  

FIGURE 5-13. -Total emittance of water vapor in limit of zero partial pressure in a mixture 
having a total pressure of 1 atm (ref. 3). 



186 THERMAL RADIATION HEAT TRANSFER 

pressure broadening correction that is to be applied (ref. 3). This is 
given as a multiplying coefficient, Ccoz, in figure 5-12. In the case of 
water vapor the emittance is influenced in a slightly more complex man- 
ner by both the partial pressure of the water vapor and the total pressure 
of the gas mixture. For correlation purposes, the values in figure 5-13 are 
emit tance~ that were "reduced," by using a factor depending on pH20 
and ~ r ) ~ . , ~ L e ,  to limiting values as the partial pressure approaches zero 
in a mixture having a total pressure P= 1 atm. A multiplying correction 

Average pressure, (P + pH 0)/2, atm 
2 

FIGURE 5-14.-Pressure correction for water vapor total enlittance for values of / ) ~ ~ r ,  

and P other than 0 and 1 atm, respectively (ref. 3). 

(a) Gas temperature (b) Gas temperature (c) Gas temperature 
T,= 720" R. T,= 1460° R. T,  3 2160" R. 

FIGURE 5-15.-Correction on total emittance for band overlap when both COz and water 
vapor are present (ref. 3). 
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coefficieilt CHeo is given in figure 5-14 to account for the actual partial 
and total pressures involved. If CO2 and water vapor are both present in 
the gas mixture. an additional quantity A6 must be included to accou~lt 
for an emittance reduction resulting froni spectral overlap ofthe COe and 
H 2 0  absorption bands. This correction is found from figure 5-15. For a 
inixture of COz and water vapor in a nonabsorbing carrier gas the emit- 
tance is then given by 

5.6.2 Exchange Between Entire Gas Volume and Boundary 

Hottel (ref. 3) has provided a simple approximate procedure appli- 
cable when the cooled enclosure boundary is black and is at a temperature 
where it will emit appreciable radiation. The total energy removed at 
the wall must equal the energy being supplied by some external means 
such as combustion to the gas. Taking a heat balance on the gas then 
shows that the net nverc1g.e heat flux being I-enloved at the wall is the gas 
emission minus the emission from the wall that is absorbed by the gas, 
that is, 

The a,(T,,) is the absorptance of the gas for radiation emitted from the 
wall at temperature T,. The a,(T,,) depends on Tw as this determines 
the spectral distribution of the radiation received by the gas. According 
to reference 3, the a, can be found from 

where 

The E,+,,~ and egZo are respectively cco2 and E H ~ O  obtained from figures 

5-11 and 5-13 evaluated at the abscissa TI, and at the respective 
parameters pco,L,(T,,/T,) and pHzoL,(T,,/T,). For further information 
the reader is referred to references 3 and 4. 
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EXAMPLE: 5-2:  A cooled right cylindrical tank 4 ft in diameter and 4 ft 
long is filled with hot gas at a total pressure of 1 atm. The interior surface 
of the tank is black. The gas is composed of two constituents; a trans- 
parent gas at a partial pressure of 0.75 atm, and the remainder carbon 
dioxide. The gas is uniformly mixed at a temperature of 2000" R. Com- 
pute how much energy must be removed from either end of the tank 
to keep it cool if the tank walls are all sufficiently cooled so that only 
radiation from the gas is significant. 

The geometry is a finite circular cylinder of gas and the radiation to 
its base will be computed. Emission from the cooled walls is neglected. 
Using table 5-1, the corrected mean beam length for this geometry is 
Le=0.60D=2.4 ft. The partial pressure of the C 0 2  is 0.25 atm, so that 

From figure 5-11, E ~ ~ , ( ~ ~ ~ , L , ,  Tg)=0.13 and Ccoz from figure 5-12 
is 1.0 since the mixture total pressure is unity. Assuming the base of 
the tank to be sufficiently cool so that its emitted energy is negligible, 
the energy to be removed is from equation (5-61) 

Btu 
Q i =  E ~ ~ ~ ( T T $ ~  =0.13 X 0.173 X 10-X(2000)44~=45  200 - 11 r 

5.7 TOTAL RADIATION EXCHANGE IN ENCLOSURE BY INTEGRATION 
OF SPECTRAL EQUATIONS 

The mean beam length approach in the previous section was concerned 
with the radiation from a gas volume to all or a portion of a black en- 
closure boundary, or the average exchange between the gas and a black 
isothermal enclosure. For a more general analysis of radiation in an 
enclosure, the exchanges of total radiation must be considered between 
the various pairs of bounding surfaces having different temperatures. 
This involves integrating the exchange relations involving TA and SA over 
all wavelengths. An example requiring such an integration was outlined 
in example 5-1 which considered a parallel plate geometry. 

A form of the spectral equations was given by equation (5-20) that 
relates the gas blackbody emissive power and the spectral fluxes d q ~  
supplied in a differential wavelength interval to each surface. In the 
solution accounting for spectral effects as described in section 5.3 of 
volume I1 for enclosures filled with nonabsorbing media, the set of en- 
closure equations is solved at each wavelength for the d q ~  (assume that 
the surface temperatures are specified) and the results then integrated 
over all wavelengths. For a gas radiation problem the gas properties 
vary so irregularly with wavelength that the detailed integration over A 
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would he a practical impossibility. This leads to a consideration of using 
finite wavelength bands. 

5.7.1 Band Equations 

An approach that can be used to integrate over wavelength is devel- 
oped by dividing the spectrurll into absorbing and nonabsorbing bands. 
For a typical band of width AX, the integration of equation (5-20) gives 

Now it is assumed that the bands are sufficiently narrow that 
- - 

d q ~ ,  j, EA, j ,  TA, k-j, a h ,  /,.-j, e A b ,  j, and e A b , ,  can be regarded as  constants 
over the band width, being characteristic of some mean wavelength 
within the band or in the case of 7 and E being averaged over the band 
as  will be described in section 5.7.2. Then equation (5-68) can be written 
for band 1 as 

In  a spectral region where the gas is essentially nonabsorbing, ?I= 1 
and &I= 0 so that equation (5-69) reduces to 

which is of the form of equation (3-19) in volume 11. 

5.7.2 Transmission and Absorption Factors 

The 5, k - j  in equation (5-69) is found from equation (5-27) by taking 
an integrated average over the band, that is, 
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Similarly the is obtained as 

(5- 72) 
For each small band width 

and to evaluate al and ; i l  only the single integral is needed 

where 

From equation (4-73) the cul can be expressed if desired in terms of the 
effective band width as 

To obtain 7 and 5 for use in equation (5-69), the integral in equation 
(5-75) must be evaluated between pairs of finite surfaces in t he  various 
wavelength bands involved. It is evident that, when there are more than 
a few bands that absorb appreciably, the solution involves considerable 
computational effort. A simplification has been developed by  Dunkle 
(ref. 6) that saves considerable labor and yields good accuracy. Dunkle 
assumes that the integrated band absorption is a linear function of path 
length. This has some physical basis as it holds exactly for a weak band 
as shown in equation (4-76a). Also it is the form of some of the effective 
band widths in table 4-11. As shown in reference 6 by means of a few 
examples, reasonable values of the energy exchange are obtained by 
use of this approximation. Hence let a1 in equation (5-73) have the 
linear form 

ar ( S )  = ClS (5-76) 

Now define a mean value of the path length S, called the geonzetric 
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me an  b e c ~ m  length Sk-,. This mean length is such that c x l  evaluated from 
ec~uation (5-76) by using S = S k - j  will yield 6r ,k - j  as found from the 
integral in equation (5-73). Substituting 6 1 , k - j = C I S ~ - j  and al=ClS 

- 

into equation (5-73) gives 

- 

Hence the relation to obtain the geo~lletric mean beam length Sk-j  is 

which is only dependent on geometry. Dunkle (ref. 6) has computed and 
tabulated values of 3 k - j  for the geometries of parallel equal rectangles, 
rectangles at right angles, and between a differential sphere and a rec- 
tangle. Results for equal opposed parallel rectangles are sl~own in figure 
5-16. Tabular values for parallel rectangles, and rectangles at right 
angles given in tables 5-11 and 5-111. Other Sk-i values are referenced 
by Hottel and Sarofim (ref. 4). 

For a given gas at uniform conditions, the effective band width correla- 

Length of rectangle , 
Distance between rectangles c 

Width of rectangle b 
Distance between rectangles' c 

FIGURE 5-16.- Geometric mean beam lengths for equal parallel rectangles (ref. 6).  
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tions discussed in chapter 4 can be used to obtain A / .  Using the AX as 
described in the next paragraph fixes a/  from equation (5-74) and by 
fitting with a linear path length dependence determines C I  from equation 
(5-76). Corresponding to the geometric mean beam length between 
surfaces j and k, the 6 can then be found as C I S  and the ;i as 1 - 6. Then 
ecluations (5-69) and (5-70) can be solved for each wavelength band I .  
The total energies at each surface X. are found from 

The values of AX, the wavelength span of each band, must be specified 
in order to carry out the solution. As discussed after equation (4-73), 
this span can increase with path length. Edwards and Nelson (refs. 7 and 
8) give recommended spans for COz and H z 0  vapor; these values are 
reproduced in table 5-IV for the parallel plate geometry. Note that these 
values are given in terms of wave number rather than wavelength. For 
other geometries, Edwards and Nelson give methods for choosing, 
approximate spans for COz and H z 0  bands. Briefly, the method is to 
use approximate band spans based on the longest important mass path 
length in the geometry being studied. With this in mind, the limits of 
table 5-IV are probably adequate for problems involving COz and H z 0  
vapor. 

TABLE ~-IV.-APPROXIMATE BAND LIMITS FOR PARALLEL PLATE GEOMETRY 

[From refs. 7, 8, and 111 

Band, 
center, 71, 

cn1-' 
Gas 

co, 

H, 0 

Band limits, 7, cm-I I Band, A ,  
ELnl 

15 
10.4 
9.4 
4.3 
2.7 

6.3 
2.7 
1.87 
1.38 

Lower 

"/I arr found for various hands from tables 4-11 and 4-111. Terms such as /i,r/1.78 arr /i/2(1 -r , , )  In,m eq. (17) and 

tallles 1 and 2 of ref. 7. 
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If all surface tenlperatures are given in the problem at hand, the results 
found from equation (5-78) conlplete the solution. If qk is given for n 
surfaces and Tk for the remaining N-n surfaces, then the unknown 
surface temperatures are guessed and the calculated qk are compared 
to the given values. If they do not agree, then new values of Tk for the 
11 surfaces are assunled and the calculation is repeated. This procedure 
is continued until there is agreement between given and calculated 
q ,  for all k. For the given T!,, equation (5-21) expressed as a sum over 
the wavelength bands gives the required energy input to the gas. 

Two example problems will now be presented for an isothermal gas 
in an enclosure. Then the discussioll will continue to consider removing 
the restriction of uniform conditions in the gas. 

EXAMPLE 5-3: Two black parallel plates are separated by a dis- 
tance of D =  1 m. The plates are of width W =  1 m and of effectively 
infinite ledgth (fig. 5-17). The space between the plates is  filled with 
carbon dioxide gas at a pressure of 1 atm and a temperature of 1000 K. 
If plate 1 is maintained at 2000 K and plate 2 is maintained at 500 K, 
find the energy flux that must be supplied to plate 2 to maintain its 
temperature. 

As shown by figure 5-17 the geometry is a four boundary enclosure 
formed by the two plates and the two open bounding The open 

D 

Boundary 3 

FIGURE 5-17.-Isothermal carbon dioxide contained between black plates (see example 
5-3). 



198 THERMAL RADIATION HEAT TRANSFER 

bounding planes are perfectly absorbing (i.e., nonreflecting) and radiate 
no significant energy for the present case as the temperature of the sur- 
rounding environment is assumed low. The energy flux added to surface 
2 will be found by using the enclosure equation (5-20) where k =  2 and 
N = 4. Since all surfaces are black, E A , ~  = 1 and equation (5-20) reduces 
to 

The self-view factor F2-2 = 0 in this case, and e ~ t , , ~ =  e~b,4=0,  so the 
summations can be written out as 

To simplify the example, it will be carried out by considering the entire 
wavelength region as a single band. Then to obtain the total energy 
supplied to plate 2, integrate over all wavelengths to give 

Using the definitions of total transmission and absorption factors which 
are 

i?-lo~;=I' ?A, z - le~a ,  1dA 

and so forth, the q2 becomes 

To determine the ;i and 6 ,  the concept of geometric mean beam length 
will be used. For opposing rectangles, from figure 5-16 a t  an abscissa 
of 1.0 and on the curve for length to spacing ratio of a, the Sp-llD= 1.34 
or 1.34 m. To determine 82-1 which determines the emission of 
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the gas, use the emittance chart in figure 5-11 at a pressure of 1 atm, a 
beam length of 1.34 m (4.40 ft), and T,= 1000 K (1800" R). This gives 
62-1=0.22. When obtaining 72-1, note from equation (5-79) that the 
radiation in the r2-1 term is exb, 1 and is coming from wall 1. Therefore, 
it has a spectral distribution different from that of the gas radiation. To 
account for this nongray effect, equation (5-65) will be used with E +  

evaluated at pco ,S2 -1 (~1 /~ , )  = 1.34 (2000/1000) = 2.78 (atm) (m)= 9.11 
(atm) (ft) and TI= 2000 K (3600" R). Then using figure 5-11 (extrapolated) 
and equation (5-65) results in 

From section 2.5.3.1 of volume 11, the configuration factor FZp1 is 
given by 

Then Fp-3=Fp-4=$(l-0.414) =0.293. 

The (Y2-3= (Y2-4 remain to be found. For adjoint planes as in the geom- 
etry for table 5-111, the following expression from equation (12) of 
reference 6 can be used, obtained for the present case where b-+ m, 

a= 1, and c= 1: 

Using figure 5-11 at pS= 0.752 (atm)(m) = 2.46 (atm)(ft) and T,=1800° R 
gives ( Y z - ~  = (X2-4 = 0.19. Then 

The solution is now complete. Note that the largest contribution to qz 
is by energy leaving surface 1 and being absorbed by surface 2. Emission 
from the gas to surface 2 and emission from surface 2 are negligible. 

EXAMPLE 5-4: Parallel nongray plates are 1 in. apart and are at tem- 
peratures of TI = 2000" R and Tz= 1000" R. Pure COz gas at 10-atm pres- 
sure and T,= 1000" R is between the plates. The plate hemispherical 
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spectral emissivity as a function of wave number is approximated by 
the following table: 

Assume that only the 15-, 10.4-, 9.4-, 4.3-, and 2.7-pm Con bands 
cause significant attenuation in the gas. Compute the total heat flux being 
added to plate 2. 

In example 5-1 the spectral exchange was found for radiation between 
infinite paralleI plates with a gas between them. The total energy added to 
plate 2 is found by integrating equation (5-24b) over all wave numbers 

In this example = ~ 0 , ~  and TI,= T2 so the 9.1 simplifies to 

The integration can be expressed in finite difference form as a sum over 
wave number bands. For the Ith band let = € 1 ,  T s =  71, and so forth. 
Then 

~ ; ~ l [ e b ( ~ l )  - e b ( T z ) ]  I A ~ I  
9'=-C l - ( l - E l ) 2 ? T  

I 

From equation (5-74) the 71 can be written as 

where the is the integrated band width which includes the integrated 
path length variation for a parallel plate geometry. The 9.1 now becomes 
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The needed quantities and results for this problem are shown in the 
table. Values of 4 were computed from the exponential wide band 
correlation data of tables 4-11 and 4-111 using the mean beam length 
from table 5-1 as the effective path length. The wave number spans 
Aq1 were computed from the data of table 5-IV, and values of 

for the nonabsorbing regions were con~puted using the F O - X T  factors 
from table V of the appendix to volume I. When the band correlations 
give A1 > Aqr, then A I / A ~ ~ =  1.0 is used since physically A! cannot 
exceed AT!. 

Band, q ,  cm-' 

0 to 556 
556 to 778 (15 pm) 
778 to 849 
849 to 1013 (10.4 pm)  
1013 to 1141 (9.4 pm)  
1141 to 2221 
2221 to 2430 (4.3 pm) 
2430 to 3573 
3573 to 3750 (2.7 pm) 
3750 to m 

[el,(TI) - e b ( T z ) l ~ A ~ l ,  
Btu 

(hr)(ft 

The result for qz compares with a value of -9371 Btu/(hr)(ft2) found for 
the same problem by Edwards and Nelson (ref. 7).8 They use the network 
method of Oppenheim (ref. -9) in deriving the energy transfer equation, 
which, of course, gives the same result as that used here. Partial emit- 
tances were used in place of the band correlations for computing gas 
properties, and these led to slightly different wave number spans for 
the bands used in reference 7. 

5.8 RADIATION THROUGH NONISOTHERMAL GASES 

Edwards and coworkers (refs. 10 to 12) have further extended the 
band and geometric mean beam length approaches to account for non- 
isothermal gases. Removing the isothermal gas restriction introduces 
considerable additional complication. In a nonisothermal case, the band 

The reslllts of rrf. 7 l ~ a v r  an rrror in q,,, for the 2430- I<,  3590.cm-' range. Thr cornparisc,n dr,srribed here is aftpr 

correction nf that rrror. 
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absorption may vary strongly with position in the gas. Then, a linear ab- 
sorption law may be valid in one portion of a gas, but a power law might 
be necessary in another portion. The Curtis-Godson technique that will 
be discussed in section 5.8.1 is the basis for one engineering treatment of 
nonisothermal gases (refs. 10 and 13 to 16). Another treatment, due chiefly 
to Hottel and coworkers (refs. 3, 4, and 17), is the zoning method dis- 
cussed in section 5.8.2. The methods of chapter 3 can be used in simple 
geometries to treat radiation in nonisothermal gases. In connection with 
this, the exchange factor approximation is given in section 5.8.3. The 
methods in this chapter and the Monte Carlo techniques of chapter 6 are 
powerful enough to treat multidimensional problems. 

5.8.1 The Curtis-Godson Approximation 

An accurate and useful method for solving thermal radiation problems 
in nonuniform gases is the Curtis-Godson approximation (refs. 10 and 13 
to 16). In this method, the transmittance of a given path through a non- 
isothermal gas is related to the transmittance through an equivalent 
isothermal gas. Then the solution can be obtained by using isothermal 
gas methods. The relation between the nonisothermal and the isothermal 
gas is carried out by assigning an equivalent amount of isothermal absorb- 
ing material to act in place of the nonisothermal gas. The amount is 
based on a scaling temperature and a mean density or pressure that is 
obtained in the analysis. These mean quantities are found by specifying 
that the transmittance of the uniform gas be equal to the transmittance 
of the nonuniform gas in the weak and strong absorption limits. 

Goody (ref. 15), Krakow et al. (ref. 13), and Sinlmons (ref. 16) have 
discussed the Curtis-Godson ~llethod for the case of attenuation in a 
narrow vibration-rotation band. Excellent comparisons with exact 
numerical results were obtained. Weiner and Edwards (ref. 12) have 
applied the method for engineering environments, that is, for steep 
temperature gradients in gases with overlapping band structures. Com- 
parison of the analysis with experimental data was again excellent. In 
the following development of the use of the method, spectral variations 
will be expressed in terms of wave number -q= 1 / X  since the absorption 
band correlations are often expressed in terms of this variable. The 
Curtis-Godson technique is most useful when the temperature distribu- 
tion in the gas is specified. If the gas temperature distribution is not 
known, an iterative procedure would have to be developed for its deter- 
mination. This is not considered here as the method is not too practical 
for that type of calculation. 

For a nonuniform gas the absorption coefficient U Q  is  variable along 
the path. An effective band width &(s) is defined in this instance 
analogous to equation (4-73) but using an integrated absorption coefficient 
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Al(S)  = Inbsoliltioll hnl~d  width (1 - exp [-I: an(q ,  s * ) ~ s * ] ]  dr) 

=A?,-L {exp [-I," an(?, s * ) ~ s * ] ]  h (5-81 ) 

Similarly for a path length extending from S* to S ,  the effective band 
width is 

The equation of transfer will now be placed in a form utilizing&(s) and 
A ( s - s * ) .  

The integrated form of the equation of transfer for intensity at S as a 
result of radiation traveling along a path from 0 to S is given from equation 

(3-1) by 

i ; (q i  S )  = i ; (q ,  0 )  exp [ loS  an(7 ,  s * ) ~ s * ]  

* *  dS** dS* (5-83) +%an(?, ~ * ) i ; h ( ~ ,  s*) exp [-[*an(q, S I 
Now note that 

a 
-- as* {I-.., [-I* a,(,, s * * ) d s * * ] ]  

Insert equation (5-84) into equation (5-83) to obtain 

Equation (5-85) is now integrated over the band width Aql of the lth band, 
and the order of integration is changed on the last term. It is assumed that 
i ; ( q ,  S )  , i;(r],  0 )  , and ikh(q,  S )  can be approximated by average values 
within the band. Then 
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~ ; ( s ) A v I =  i ; ( ~ ) l {  I exp [ - y n q c g ,  0 S * ) ( / S * ] } ~ ~  

a 
, { I  - exp [-[;*</,q(r), ~.")ds*"] J ( l ~ ~ l s *  (5-86) 

Ec~uations (5-81) and (5-82) are substituted into equation (5-86) to obtain 
the equation of transfer in terins of the 4 

An alternate forin can be found by integrating equation (5-87) by parts 
to give 

Equations (5-87) and (5-88) are nearly exact forins of the integrated 
equation of transfer in terms of the band properties. The only approxima- 
tion is that the intensity in each term does not vary significantly across 
the wave number span of the band. 

Note that, for a uniform gas, equation (5-88) gives, since di;, I,/dS=O, 

where the u subscript denotes a uniform gas. 
In order to compute ii (S) or i;,,,(S) from equation (5-87), (5-88), or 

(5-89), expressions are needed for the effective band width 21 for non- 
uniform and uniform gases. From equations (4-76a) and (4-76b), the 
limiting cases of 4 for weak or strong absorption in a uniform gas have 
the form 

At. ,,(S) =el, , P I S ' , ,  (weak) (5-90a) 

21, .(S) = Cz, lpUSY2 (strong) (5-90b) 

where the C,,l and C2,1 are coefIicieilts of proportionality for the ltll band. 
For the nonuniform gas the effective band width will depend on the 

variation of properties along the path. The effective band widths are 
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then obtained by applying equations (5-90a) and (5-90b) locally along 
the path. This gives for a weak band 

A ~ ( s ) = c ~ , ~ I ~ ~ ~ ( s * ) ~ s *  (weak) (5-91 a) 

where the p is a function of position S*  along the path. Similarly for the 
strong band by first squaring equation (5-90b) 

q ( s )  = c:,, ls p 2 ( ~ * ) d ~ *  

so that 

K,(s) = C2,r [I0' p2(s*)ds*]  ' I 2  (strong) (5-91 b) 

It has been assumed that the Cl,l and C2,, do not vary along the path. 
In the Curtis-Godson method the nonuniform gas is replaced by a n  

effective amount of uniform gas such that the correct intensity is obtained 
rrt the weak and  strong absorption limits. To have the uniform intensity 
equal the nonuniform intensity, equate the results from equations (5-89) 
and (5-88) to obtain 

i;(O) [ A ~ I - L ~ I , ~ , ( S ) I  -ti ; ,*,  uAl, ~(5') 

cli;, ,(S*) 
=i; (0) [A~~--X,(S)I + i ; , ,(o)Jl(s) + I S ~ I ( ~ - ~ * )  ds* d s  * 

which simplifies to 

To have equation (5-92) valid at the weak absorption limit, substitute 
4, ,, from equation (5-904 and from equation (5-91a) to obtain the 
following after canceling the Cl, 1:  

Similarly at the strong absorption limit, insert equations (5-90b) and 
(5-91b) into equation (5-92) to obtain 
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For a known distribution of temperature and density in a nonuniform 
gas, equations (5-93a) and (5-93b) can be solved simultaneously for 
p,, and St, which are the equivalent uniform gas density and path length 
for that particular band. The i;, h ,  ,,(Ti,) is not an additional unknown 
since the temperature Ti, corresponds to p,,. Then equation (5-89) can 
be used for any effective band width dependency on p,, and S,, (i.e., not 
at only the weak and strong limits) to solve for i;, ,,(S). This will exactly 
equal the intensity i; (S) in the nonuniform gas in the weak and strong 
li~llits and will usually be a good approximation for intermediate absorp- 
tion values. Once the intensities are found, the heat transfer can be 
obtained by using the relations for a uniform gas. All~lost illvariably the 
evaluation of equations (5-93a) and (5-93b) will require numerical 
integration. Because the Curtis-Godson method requires evaluation of 
at least two integrals for each band along each path, it may in nlany cases 
be equally feasible to evaluate the exact equation (5-87) or  (5-88). This 
is especially true if the problem is to be solved by electronic computer. 

As originally fornlulated (see, for example, the discussion in Goody 
(ref. 15)), the Curtis-Godson approximation was limited to application over 
a small frequency span in an absorption band. The limitation was due to 
considerations of line overlapping, and the change in the spectral 
position of important lines with temperature. It has been shown, however 
(see, for example, Wiener and Edwards (ref. 12) and Plass  (ref. 18)), 
that the method gives good results even when applied to situations with 
large temperature gradients while using fairly wide frequency spans. 
These references also account for overlapping absorption bands. 

The Curtis-Godson technique appears to have application even in 
nlultidimensional problems, even though it was originally applied to 
one-dimensional atmospheric problems. Although no one has explictly 
carried out such calculations, it should be possible to proceed as  follows. 
For a known field of temperature and density, the medium and the 
boundaries are subdivided into convenient nearly isothermal zones. 
Between each two zones, an equivalent uniform path length and density 
are found for each important band by the use of equations (5-93a) and 
(5-93b). Based on these parameters, the values of A, can b e  obtained from 
one of the correlations of gas properties. The uniform gas analysis of sec- 
tion 5.7 can then be carried through to obtain intensities a n d  heat flows. 
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5.8.2 The Zoning Method 

The zoning method consists of subdividing nonisothermal enclosures 
filled with nonisothermal gas into areas and volumes that can be con- 
sidered essentially isothermal. An energy balance is then written for 
each division of area and volume. This leads to a set of simultaneous 
equations for the unknown heat fluxes or temperatures in the same 
manner as the procedure discussed in section 5.3 for an isothermal gas. 
The method is not elegant in a formal mathematical sense but is practical 
and very powerful. Hottel and Sarofim (ref. 4) discuss the method at 
some length. Applications in multidimensional situations have been 
carried out by Hottel and Cohen (ref. 17) and Einstein (refs. 19 and 20). 
The discussion in this section is limited to cases when the energy 
exchange is only by radiation; extension to situations including conduc- 
tion and convection is found in chapter 7 and reference 4. 

The zoning method has an advantage over the Curtis-Godson method 
outlined in section 5.8.1 because unknown temperature distributions in 
the gas can be treated. The Curtis-Godson technique is most useful 
where the temperature distribution is known; if the distribution is not 
known, some method of iteration on the gas temperature must be 
developed. 

The basic concepts of the zoning method will now be developed for a 
gas with a constant absorption coefficient. Consider a volume Vy as in 
figure 5-18 and a surface Ak. From equation (1-33) the emissive power 
from a volunle element ~ V Y  is LE.rraxi;,dVvdA or per unit solid angle 
around dVy it is a ~ i i ~ d V Y d A .  The surface element dAk subtends the 
solid angle clAk cos /3k/S$-k when viewed from dVy. The fraction of 
radiation transmitted through the path length SY-k is 

Multiplying these factors together and integrating over VY and A,< gives 
the spectral energy arriving at surface Ak from a gas volume VY as 

x exp [ I s :  U A ( ~ * ) d ~ *  dAkdVy (5-94) I 
If aA(y)  is assumed uniform, then the exponential factor becomes 
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Path direc- 
t ion  S 

L Location Sc 

F I G ~ R E  5-18.-Radiation from gas volume VY to area A k .  

exp [- ax(S,< -SY)  I = ~ ~ ( S Y - P )  

The entire gas volume has been divided into finite subvolumes VY and 
the assumption is made that conditions are uniform over each VY. Equa- 
tion (5-94) then simplifies to 

cos p, 
&hi, Y - ~ P =  dAaxi;,(y) T ~ ( S Y - ~ )  d A ~ d V y  (5-95) 

If the gas in addition is gray, then ecruation (5-95) can be integrated 
over all wavelengths to obtain the total incident energy on Ax. as 

aT$ cos p ,  
qi ,y-*~k=a 7 lITYlAP 7 . i ( ~ y - * ) d ~ , d ~ v  (5-96) 

Y - P  

Now define the gas-surface direct exchange area as 
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Equation (5-96) then can be written as 

Thus the energy arriving at Ak, q;,y-jiAk is the blackbody emissive 
power of the gas in VY,  aT$ radiated from an effective area m. 

Let the entire gas volume be divided into r finite regions. The energy 
flux incident upon surface element Ak from all r of the gas volume 
regions is then 

Now consider the interchange between the bounding areas of the 
enclosure. The energy leaving surface area Aj and reaching Ak is, for a 
nonisothermal gas with uniform gray properties, 

where, as in the usual enclosure theory, q,, j  is uniform over Aj.  Now 
define the surface-surface direct exchange area as 

- cos P j  cos P k  dAjdAk 
Sjsk IAj ~ ( S j - k )  71s&~ (5-101) 

Equation (5-100) can then be written as 

qi, j-kAk=~jSk 90, j 

Thus the energy from Aj arriving at Ak, qi,j-kAk, is the energy flux 
leaving Aj times an effective area S F .  The energy flux incident upon 
area Ak as a result of the fluxes leaving all N surfaces of the enclosure 
is then 

Now the total energy flux incident upon surface Ak can be obtained as 

The usual net radiation equations (eqs. (3-1) and (3-2) of vol. 11) also 
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apply at surface A!,. 
qk=qo, k-qi,k (5-105) 

For problems where T y  is given for all gas volunle elements P7Y, equa- 
tions (5-104) to (5-106) are sufficient to solve for N unknown values of 
either Tk or qk, or some combination of Nvalues of Tk and qk. The other N 
values of Tk and qk must be provided as known boundary conditions. 
The methods of section 3.3 of volume I1 can be directly applied. Values of 
sjsk and g m .  have been tabulated for cubical isothermal volumes and 
square isothermal boundary elements by Hottel and Cohen (ref. 17). 
Hottel and Sarofim (ref. 4) present a reference table to factors for eleven 
other geometries, and also an extensive tabulation of the factors for the 
cylindrical geometry. 

When the T y  of the r gas elements are unknowns, then r additional 
equations must be found. These are obtained by taking an energy 
balance on each gas zone. In radiative equilibrium, for each gas element 
VY the emission and absorption of energy are equal. Then for a gray gas 
with uniform properties a heat balance on the volume region VY gives 

It is assumed that a is uniform throughout the enclosure, and that 
V y  and all the Vy* are each isothermal. As usual in the enclosure calcu- 
lation methods, q,, k is taken as constant across A k .  

Define the surface-gas direct exchange urea as 

Comparing equation (5-108) with equation (5-97) shows that there is 
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reciprocity between the surface-gas and gas-surface direct exchange 
areas 

- - 
S I ~ ~ Y  = ~ Y S I ~  (5-109) 

Now define the gas-gas direct exch.ange area as 

Substituting equations (5-108) to (5-110) into equation (5-107) gives 

The gy*gy have also been tabulated (ref. 17) so that equation (5-111) 
written for each VY provides the additional set of T equations required 
to o b t a i ~  the gas temperature distribution. 

The notation developed by Hottel and coworkers has been used in 
this section with only slight modification in developing the preceding 
equations. A comparison with the derivations of section 5.3 shows that, 
in terms of the notation used there (eq. (5-9)), the following identity 
exists: 

Fj-k?j-kAj = J k (5- 112) 

The gas-absorptance factor in equation (5-lo), Fj-kcj-kAj is gener- 
ally not related in a useful way to gvsk. The latter quantity is derived for 
an element of gas volume, while Fj-k&j-kAj is concerned with the entire 
gas volume. 

Hottel and coworkers (refs. 3 , 4 ,  and 17) have developed the approach 
outlined in this section even further. Allowance for spectral variations 
in gas properties, done in an approximate but easily carried out manner, 
is possible. Variations in properties with position in the enclosure are 
handled by defining a suitable mean absorption coefficient between each 
set of zones. Einstein (refs. 19 and 20) modified the @ and @- factors to 
give better accuracy when strong gradients are present. All of these ap- 
proximations become difficult to carry through if the absorption 
coefficient is a strong function of temperature. 

5.8.3 The Exchange Factor Approximation 

The specific situations discussed here are regions of nonisothermal 
gray gas between parallel plates, concentric cylinders, or concentric 
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spheres. These geometries have been considered in some detail in 
chapter 3. The purpose here is to reveal how the engineering concepts 
of exchange factors can be applied to extend the results for one of the 
previous solutions to more general cases. Specifically it will be shown 
how results for black bounding surfaces call be extended to the case 
where the surfaces are diffuse-gray. If the walls are diffuse-gray with 
henlispherical total emissivity E ( T ) ,  no great difficulty is involved in 
formulating the governing radiative integral equations as i11 chapter 3. 
The boundary condition for the solution of the equation of transfer is that 
the intensity leaving a diffuse wall is q, / r  where q, is the outgoing 
radiation flux previously discussed in regard to enclosure theory. How- 
ever, a better approach than solving the integral equations is that of 
Perlmutter and Howell (ref. 21) who have shown that, once the results 
are available for an analysis with black boundaries, the diffuse-say 
wall results can be obtained from simple algebraic relations. 

The theory follows the same general development as  the net radia- 
tion method (section 3.3.1 of vol. 11). A heat balance at surface A k  gives 

The energy flux leaving A k  is composed of emitted and reflected energy 

If q i ,  I; is eliminated froin ecluations (5-113) and (5-114), the result is 

The qi ,  I; in equation (5-114) call be found in terms of Hottel's exchange 
areas as in equation (5-104). However, here we choose to define a dif- 
ferent quantity called the exch,ange factor Fj-k. The exchange factor 
Fj-I; is defined as th,e fraction of the energy leauirzg surface j that is in,ci- 
dent 072 surface k when all boundaries are black an,d the interuening 
rrredium is i n  radiative equilibrium (that is, the heat transfer in the gas 
is only by radiation without any heat sources or sinks). When the gas is 

- 
transparent, Fj-,,. becomes identical to the configuration factor Fj-k 
(section 2.4.3 of vol. 11). Because the gas is in radiative equilibrium, 
energy conservation requires that energy leaving surface 1 niust finally 
reach other enclosure surfaces or return to surface 1. Any energy ab- 
sorbed in the gas must be reemitted by the gas to n~aintain equilibriuin 
and the Fj-,r,. includes all interactions with the gas by means of which 
energy leaving Aj arrives at AI;. 
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For a general enclosure of N surfaces surrounding a gas in radiative 
equilibrium, the incident energy on surface k can be written in terms of 
exchange factors as 

N 

Q i ,  k =  I= ~ o ,  j F j - k  (5- 116) 
j= 1 

Note that using exchange areas as in section 5.8.2 would require an 
additional term to account for energy emitted by the gas and reaching 
the wall. This term is included by definition within the F j - k .  

If consideration is restricted to an enclosure having only two surfaces, 
equation (5-114) can be written by using equation (5-116) to eliminate 
q i , k  as 

Because the medium is in radiative equilibrium, all energy leaving a 
given surface must finally reach an enclosure surface. It follows that 

and 

Note that there is no energy being supplied to the gas by any external 
means such as combustion. 

Because F j - / i  is defined as the fraction of energy leaving A j  that ar- 
rives at AI, for black boundaries enclosing a gas, it can be obtained from 
the black-walled solution, which it is assumed has already been found. 
Thus, 

p j k  ( )  A j v T ?  black = ( A k a T :  - Qk = j - ,  (5-119) 
slof(~ces sltrf(1ces 

where the notation + j - k ,  b is used to emphasize that this is a quantity ob- 
tained from the black solution. For a transparent gas F j - k  becomes equiv- 
alent to the usual geometric configuration factor F j - k  for interchange 
between two diffuse surfaces. The F factors are found from equation 
(5-119) and by using the relations in equation (5-118). Then equations 
(5-117) are solved simultaneously for the Qo's and these are used in 
equation (5-115) to find Q k .  Thus the solution for gray walls can be found 
quite simply from the solution with black walls. The procedure will now 
be outlined for the infinite parallel plate case. 

In the infinite parallel plate case and because the gas absorption 
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coefficient has been assumed constant. the fraction of energy leaving 
surface 1 that reaches surface 2 or FI-UIIUS~ be equal to the fraction - 
going from surface 2 to surface 1 or F2-]. This arises from the symmetry 
in radiation paths experienced by energy leaving either surface. In 
radiative equilibrium with no heat sources in the gas, the radiation ah- 
sorbed at a position must be reemitted at that position. The radiation 
leaving either plate will undergo the same absorption-emission history 
while traveling to the other plate. 

If F ~ - ~  is found from the black solution as 

then Fr-l=Fl-z and for simplicity call them $,). From equation (5-118) 
FI - 1  = F z - r  = 1 - $ b .  Equations (5-117) then become 

Solving simultaneously for q,, 1 and q,, 2 yields the symmetric relations, 

T + I ~ ~ ) $ u ~ T ~ + ~ ~ ( ~ - ~ ~ ) C ~ ~ ~  (5-120~) 
qo, 1 = 

I,bh(€1 + €2 - 2 ~ 1 ~ 2 )  + € 1 ~ 2  

The q,,] is substituted into equation (5-115) to ~ i e l d  after rearrangement 

Equation (5-121a) can be written in the alternate form 
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Evaluating equation (5-121b) for the black case, El = E2 = 0 shows that 

Equation (5-121b) gives the energy supplied to surface 1 and removed 
from surface 2. If the gas absorption coefficient is independent of tem- 
perature, then energy leaving a boundary and reaching a given point in 
the gas will be attenuated by the same amount regardless of the gas tem- 
perature distribution. Further, any portion of the energy absorbed along 
the path is balanced by isotropic emission at each point. Using these 
facts, a synthesis of black-wall .enclosure solutions and surface-gas 
element exchange factors can be used to find the temperature distribu- 
tion in the gas for gray walls. 

The energy emitted by a local volume element of gas of area A and 
thickness dx between the parallel plates (fig. 5-19) is given by 

Q ,  = 4acrT4 (x) Adx 

FIGURE 5-19.-Energy quantities for gas between infinite parallel gray plates. 
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For radiative equilibrium, this must equal the heat absorbed by the vol- 
ume element which can be written as 

T4 (x) - Ti - 1 ( q O , l q l - d ,  q0,2dFz-dr - 
'= Tj-Ti 4aa(Tj-Tj)  + dx 

Here dFj-dz is the fraction of energy leaving boundary surface Aj that 
is absorbed in volume element Adx when the boundaries are black. Again, 
the F factors include the energy absorption and reemission from the gas 
as the energy travels from the surface to the volume element. Because 
radiative equilibrium is the condition being studied here, no energy is 
lost during these processes since all absorbed energy at a location must 
be re-emitted. 

When the entire system is isothermal, equation (5-122) reduces to 

This relation is used to eliminate dF2-ds from equation (5-123) written . . 
for the black surfaces. The resulting equation is solved for d ~ 1  -dx gmng 

where from equation (5-123) 

Then by substituting equation (5-125) into equation (5-124) 

Substituting equations (5-125), (5-126), (5-120a), and (5-120b) to elimi- 
nate &l-dz ,  dFz-dZ, go, and from equation (5-123) results, after 
much manipulation, in the following gas temperature distribution: 
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Equations (5-121) and (5-127) relate the energy transfer and fourth- 
power temperature distribution for the case of a gray gas between gray 
walls to the case of a gray gas between black walls for the geometry of 
infinite parallel plates. Similar relations for the geometry of infinitely 
long concentric cylinders are given in references 21 and 22, and these 
plus the relations for concentric spheres (refs. 23 to 25) are given in 
table 5-V. 

EXAMPLE 5-5: A gray gas of absorption coefficient 0.5 cm-'  is con- 
tained between gray parallel plates spaced 2 em apart. Plate 1 has 
temperature TI= 1000 K, while plate 2 is at TZ = 840 K. The plates have 
emissivities of €1 = 0.1 and e2 = 0.2, respectively. What is the energy 
transfer between the plates and the temperature of the gas at a point 
0.5 cm from surface I ?  

If the walls were black, figure 2-6(b) gives, for aD = 0.5 x 2 = 1.0, 

so that from equation (S121c) 

$ 1 , ~  0.56 
From table 5-V, 

and, for this example, 

so that 
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Geometry 

Infinite parallel plates 

l*;2 ...... . . . . . - Y x  - 1 

(Cb and 9 b  are given i n  ref. 3 of chapter 2 
and figs. 2-6(a) and (bl) 

Infinitely long concentric cylinders 

Q1 

(db and p b  are given i n  refs. 21 and 22) 

Concentric spheres 

ldb and pb are given i n  refs. 23 to 25) 

a~ef in i t ions:  Ev( l  - E,,,~)/E,,,~, 1 = Q,/'~~A~IJ($~ - 

Relationsa 

I1 + El)$, ' = 1E2 + + 1 

PIX) = 'f'b(x) + E2db 
(E2+ El)$+ 1 

(1  + El)db 
d = 

( $ ~ ~ + f l ) ~ + l  

Pb(r) + E~ 5 % 
Hr) = 

D2 6 E2 + E$db + 1 

11 + El)db 
d =  [(;r ~2 + ~ l ] d b  + 1 

y r )  + E2@J rb 
9(r) = [($T ~2 + ~ l ] @ b  + 1 

G2)], (ab = Q ~ ~ / [ A ~ O ( $ , ~  - t2], 
9 1 0  = [+lo - ~ d / ( $ , ~  - $,J. 
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The temperature at the point x= 0.5 cm can be calculated from the 
result in table V-5 

From figure 2-6(a), at the abscissa K / K D  = an/aD = 0.25 and on the curve 
for ~ g = a D =  1 

so that 

Then 

T4(0.5)=Tj + 0.345(Tf - T:) = [0.5+0.345(1- 0.5)lX 10"=0.673 X 1012 

which gives 

Note that for gray walls a curve of p against ax/aD will only have an 
antisymmetrical shape about a.x/aD = 0.5 as in figure 2-6(a) when € 1  = €2. 
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Chapter 6. The Monte Carlo Technique 

6.1 INTRODUCTION 

The Monte Carlo technique is a method of statistical sampling of 
events to determine the average behavior of a system. In chapter 6 of 
volume 11, the method was applied to radiative transfer between surfaces 
without an intervening medium. The information given in that chapter 
is a necessary prerequisite to that presented here. Based on the model 
of radiative transfer in volume 11, extensions are made in this chapter 
to the cases of absorbing-emitting media. The model consists of follow- 
ing a finite number of energy bundles through their transport histories. 
The radiative behavior of the system is then determined from the average 
behavior of a number of these bundles. 

Monte Carlo has more obvious utility in solving problems of radiative 
transfer through absorbing-emitting media than for surface radiation 
interchange problems. This is because a complete definition of the local 
radiation balance in a gas or other absorbing-emitting media requires 
an integration of the incoming radiation, not only from the surrounding 
surfaces, but from all volume elements of the surrounding medium. 
Such problems are difficult to solve analytically. As described in other 
chapters of this volume, much effort has been expended in attempting 
to develop standard analytical solution methods. This is often done by 
making as many assumptions, reasonable if possible, as are necessary 
to obtain an answer and philosophically accepting the resulting loss of 
accuracy, if not validity. Surfaces that are black, gray, diffuse, or spec- 
ular, and gases that are optically dense, almost transparent, gray, or 
isothermal are typical assumptions that fall into this category. Few prob- 
lems in radiative transfer are solved analytically without explicitly or 
implicitly making one or more of these assumptions, which may or may 
not apply to the problem under consideration. 

By extending the Monte Carlo model of radiative energy exchange 
outlined for surface interaction problems in chapter 6 of volume 11, it 
is possible to account for a large variety of effects in gas radiation prob- 
lems. This can be done without resorting to the simplifying assumptions 
that are often necessary in the analytical approaches as  typified by 
references 1 to 4. 

6.2 SYMBOLS 

a absorption coefficient 
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separation distance between parallel plates 
emissive power 
fraction of total blackbody emission in spectral region 0-A 
volume increment index 
number of volume increments 
dimensionless path length, LID 
path length to absorption 
total number of Monte Carlo bundles per unit time 
bundle index 
probability density function 
increment index 
energy per unit time 
internal energy source rate per unit volume 
energy flux; energy per unit area per unit time 
randomly chosen number in range 0 to 1 
radial coordinate 
coordinate along path of radiation (will not have a subscript) 
number of events at some position per unit time (will always 

have a subscript to avoid confusion with path length 
coordinate) 

absolute temperature 
volume 
energy carried by sample Monte Carlo bundle 
dimensionless distance, x/D 
distance normal to surface 
cone angle (measured from normal of area) 
emissivity 
dimensionless temperature, TjITI 
circumferential angle 
optical thickness, aD 
wavelength 
Stefan-Boltzmann constant 

Subscripts: 

b 
e 
i 
j 
1 
m ax 
min 
0 

P 

blackbody 
emitted 
inner 
volume increment j 
path length 
maximum 
minimum 
original, or outer 
Planck mean value 
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dV elemental volume dV 
LU wall 
1 , 2  surface 1 or 2 

P for cone angle 
6 for circumferential angle 
h spectrally dependent 

Superscript: 
* dummy variable of integration 

6.3 DISCUSSION OF THE METHOD 

The additional factor introduced to the model previously discussed 
in volume I1 is the path length traveled by an individual energy bundle 
before it is absorbed or leaves the system. The required relations are 
given in table 6-1 as related to a random number (see also example 6-1). 
It is possible to allow for variations in gas properties along the bundle 
path; indeed, it is in principle possible to account for variations in the 
refractive index of the medium by causing the bundles to travel curved 
paths. 

TABLE 6-I.-USEFUL RELATIONS FOR MONTE CARLO SOLUTION OF GAS RADIATION 
PROBLEMS 

Phenomenon 

I Emission from a volume 
I element with absorption 

coefficient ah 

Absorption by gas with 
absorption coefficient ah 

Variable Relation 

Cone angle p cos p = l - 2 R B  

Circumferential 6 = 2.rrR s 
angle 0 

Wavelength A 
Gray gas: 

Nongray gas: 

Path length 1 
Uniform gas 

properties: 
Nonuniform I gas properties: 
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If a problem is solved in which radiative equilibrium can be assumed, 
then whenever a bundle is absorbed in the medium, a new bundle must 
be emitted from the same point in the medium to ensure no accumulation 
of energy. The functions required for determination of the angles and 
wavelengths of emission are shown in table 6-1. The new emitted bundle 
in the medium may be considered as merely the continuation of the 
history of the absorbed bundle, and the history is continued until the 
energy reaches a bounding surface. 

Under conditions of radiative equilibrium, the total energy Qe emitted 
by a volume element dV, is given by equation (1-34), integrated over all 
A and not including induced emission 

For equilibrium the energy contained in the bundles emitted by the 
volume must be equal to the energy contained in the bundles absorbed, 
or 

dQe= ~ S d * i  (6-2) 

where w is the energy per bundle and Sdr. is the number of bundles 
absorbed per unit time in dV. Then, if we note from equation (2-19) 
that 

r m 

where U P  is the Planck mean absorption coefficient, equation (6-3) can 
be substituted into equation (6-1) to eliminate the integral. Then  equating 
equations (6-1) and (6-2) gives 

This allows determination of the local temperature in the gas  from the 
gas properties and the Monte Carlo quantities found in the solution. If 
u p  depends on local temperature Tdf~ ,  an iteration is required. A tem- 
perature distribution is assumed for a first iteration to obtain the bundle 
histories. These Monte Carlo quantities are used in equation (6-4) to 
obtain a new temperature distribution which is then used for the second 
iteration. The process is repeated until the temperatures converge. 

There are so many variations possible on the Monte C a r l o  model, 
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many of which might lead to increased efficiency, that they cannot all 
be mentioned here. One of the most frequently suggested is the frac- 
tional absorption of energy when a bundle reaches a surface of known 
absorptivity. Using such a scheme, the bundle energy is reduced after 
each reflection. The bundle history is then followed until a sufficient 
number of reflections have occurred to reduce the bundle energy below 
some predetermined level. This level is chosen so that the effect of the 
bundle in succeeding reflections would be negligible. The history is 
then terminated. Such a procedure leads to better accuracy for many 
problems because a bundle history extends on the average through many 
more events, and a given number of bundles provides a larger number 
of events for compiling averages. Haji-Shiekh and Sparrow (ref. 5) have 
suggested some other shortcuts for reducing the programming difficulties 
of problems involving spectral and directional properties. The obvious 
rule of thumb is to use whatever shortcuts can be applied to the case in 
question and not be bound by cookbook rules. 

EXAMPLE 6-1: A gray gas with constant absorption coefficient a is 
contained between infinite parallel black plates. Plate 1 is at tempera- 
ture T I ,  and plate 2 is at temperature Tn=O. The plates are separated 
by a distance D. Construct a Monte Carlo flow chart for determining 
the energy transfer and the gas temperature distribution. 

The emission per unit time and area from surface 1 is 

If N energy bundles are to be emitted per unit time, then each one must 
carry an amount of energy w given by 

The bundles are emitted at cone angles /3 given by the first line of table 
6-1 of volume I1 as 

sin /3= V"& 
where R p  is a random number in the range 0 to 1. A typical bundle 
will travel a path length 1 after emission. The probability of traveling 
a given distance S before absorption in a medium of constant absorption 
coefficient a is 
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because of Bouguer's law, equation (1-12). Using equation (6-4) of 
chapter 6 in volume 11, this is put in the form of a cumulative distribution 
to obtain 

However, because Rr is uniformly distributed between 0 and 1,  this rela- 
tion may as well be written as 

where L = LID and KD = aD. 
The dimensionless distance normal to the plate X=.x/D that a bundle 

will travel when moving through a path length L is then 

- cos p 
X = L cos p = ------ In RI  

K D  

Divide the distance D between the plates into k equal increments  of 
dimensionless width AX=Ax/D, and number the increments wi th  an 
increment number j, where 
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Then the increment number at which absorption occurs is 

j = TRUNC (&) + I 
where TRUNC denotes the operation of truncating the value of X / B X  
to its integer. At each absorption, a tally is kept of the increment in which 
absorption occurs by increasing a counter Sj in the memory of the com- 
puter by one unit. This operation is denoted by 

If the bundle is absorbed in a gas element, it is immediately emitted 
from the same element to conserve energy in this steady-state problem. 
This is done by choosing an angle of emission P from the probability 
distribution for emission into all cone angles of a unit sphere surrounding 
dV 

sin p dp 
P(P> = 

[sin p  dp 

Using the cumulative distribution function 

1 - cos p ~ , = r  ~ ( p * ) d p * =  

gives the emission angle in terms of a random number as 

The distance from the wall to the next absorption point is then given by 

cos p X=X,-- In RI 
KI> 

where X, is the position of the previous absorption. 
The process of absorptions and emissions is continued until the energy 

bundle reaches a black boundary. This occurs when X 2 1 or X 0, 
and a counter S,1 or is then increased by one unit to record the 
absorption at the black surface. 

A new bundle is emitted, and the process is repeated until all N bundles 
have been emitted. The dimensionless net energy flux leaving surface 1 
is then found from the total bundles emitted minus those reabsorbed 
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5e&nite 
FIGURE 6-1.-Flow chart for Monte Carlo solution of radiant transfer between 

parallel black plates. 
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at surface 1; that is, 

The net energy flux arriving at surface 2 (-qz) is given by 

The temperature at each gas increment is found from equation (6-4) as 

and the formulation is complete. 
A flow chart is shown in figure 6-1. Note that, since S,l+S,;?=N, 

41 - SWl -- 1 - = - q 2  
cr T: N aT: 

and, as expected, ql =- 92; the only reason for printing out both quanti- 
ties is to check on the results. 

By noting the linearity with T%f this problem, it is possible to gain 
solutions for any combination of surface temperatures by use of this 
flow chart (ref. 6). Also, by use of the exchange factor relations of section 
5.8.3, solutions can be obtained for any combination of gray surface 
emissivities. 

Some results obtained by the Monte Carlo method will now be 
examined. 

6.4 RADIATION THROUGH GRAY GASES 

6.4.1 Infinite Parallel Planes 

Because of the wealth of solutions available in the literature for a 
gray gas between infinite parallel plates, almost every new method of 
solution is tried in this configuration and then compared with the results 
of one or more of the analytical approaches typified by references 1 
and 4. 

The Monte Carlo method is no exception, and in reference 6 the 
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local gas emissive power and the net energy transfer between diffuse- 
gray plates is calculated in a manner quite similar to example 6-1. 
Parameters are the plate emissivity E (taken equal for both plates) and 
various values of the gas layer optical thickness K D = O D  where a is 
constant. Two cases are examined, the first being a gas with no internal 
energy generation contained between plates at different temperatures. 
The second czse is a gas with uniformly distributed energy sources 
between plates at equal temperatures. Figure 6-2 indicates the accuracy 
that can be obtained by Monte Carlo solutions in such idealized situa- 
tions. The calculated energy transfer values have a 99.99 percent prob- 
ability of lying within 5 5  percent of the midpoints shown. 

In figure 6-3, the emissive power distribution within the gas is shown. 
Comparison with the exact solutions of references 1 and 4 is  quite good; 
however, some trends common to all straightforward Monte Carlo 
solutions in gas radiation problems are as follows: 

First, the calculated individual points in figure 6-3 reveal increasing 
error with decreasing optical thickness. This reflects the smaller fraction 
of energy bundles being absorbed in a given volume element as the optical 
thickness of the gas decreases. As the number of absorbed bundles 
decreases, the expected accuracy of the local emissive power becomes 
less, and more error naturally appears in the results. Conversely, as the 
optical thickness increases, error becomes less; and in figure 6-3, the 
curve of results for an optical thickness of ten is quite smooth. 

A second effect mentioned in reference 6 is not evident from figure 
6-3, and that is that the computing machine time required for solution 
of problems involving large optical thickness, say larger than ten, be- 
comes quite large. This is simply because the free path of an energy 
bundle 

becomes very short for large optical thickness; therefore, many ab- 
sorptions occur during a typical bundle history. 

Two limits are now obvious. For small optical thickness, accuracy 
becomes poor; for large optical thickness, computer running time be- 
comes excessive. From a practical viewpoint, these are not serious 
limitations, as the transparent and diffusion approximations to the exact 
analytical formulation become valid in just those regions where the 
straightforward Monte Carlo approach begins to fail. In addition, the 
range of optical thickness over which a Monte Carlo solution can be 
effectively utilized can be extended by a variety of techniques, includ- 
ing those with the graphic names of "splitting," "Russian roulette," 
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1.0 
Diffusion m lu t i on  (ref. 8) --- Exact solution of ref. 4 

.8 0 Monte Carlo solution (ref. 6) 
N = 10 000 

.6 

. 4  

.2 

0 1 2 3 4 5 6 7 8 9 1 0  
Optical thickness, KD 

FIGURE 6-2.-Heat transfer between infinite parallel gray plates separated by gray gas. 

Optical 
thickness, 

K~ 

0 
0 ' ] Monte Carlo solu- 
A .5 t ion  (ref. 6) 
v . I  

Analytical solution (refs. 1 and 4) 
-1 

Relative optical depth, ax/aD 

FIGURE 6-3. -Emissive power distribution in gray gas between infinite parallel black plates. 

and a large number of specialized schemes for specific solutions. Many 
of these involve biasing the path length to increase the number of bundles 
absorbed in otherwise weakly absorbing regions. 

6.4.2 Infinitely Long Concentric Cylinders 

A more difficult problem to treat analytically than infinite parallel 
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( r  - q) / ( ro  - ri) 

FIGURE 6-4.-Dimensionless emissive power distribution in gray gas in annulus between 
black concentric cylinders of radius ratio r i /r ,=O.l .  

plates is the determination of the emissive power distribution and local 
energy flux in a gray gas within the annulus between concentric cylinders. 
The energy equation for determining the emissive power at any radius 
involves an integral with the local radius appearing as one of the limits. 
When the energy equation is written for each incremental layer of gas, 
the resulting set of equations have integrals with limits that are differ- 
ent for every equation in the set. This set of integral equations must be 
solved simultaneously. The Monte Carlo approach, however, differs 
only slightly from that for parallel planes. The only additional compli- 
cation is the determination of the bundle position in terms of cylindrical 
coordinates. 

Some Monte Carlo results for an annular region are shown in figure 
6-4 as taken from reference 7. Because of the analytical difficulties of 
this case, no exact formulation using integral techniques is available 
in the literature. Comparison of the results is therefore made with a 
modified diffusion solution (ref. 8). Trends in accuracy similar to those 
noted for the infinite plate case are evident. 
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6.4.3 Radiation Between Adjacent Gray Regions 

A Monte Carlo formulation has also been applied to study the inter- 
action of radiative energy between two regions, each of which has in- 

Energy 
source 
ratio, 

sy1si' 

n 
0 
0 

Monte Carlo 

n -5 '.} r e s u s  ( r e .  9 )  
V -10 

Diffusion results (ref. 8) 

-8 I I 
0 . 2  . 4  .6 . 8  1.0 

Position i n  medium, r lro 

FIGURE 6-5.-Dimensionless emissive power distribution in coaxial gas regions with 
differing internal energy sources. Radius ratio ri/r,=0.5; optical thickness, 2 (in each 
region). 



234 THERMAL RADIATION HEAT TRANSFER 

dividual gray radiative properties and internal energy generation rates 
(ref. 9). This is of interest here because it gives another insight into 
sources of error due to geometrical effects. Figure 6-5 shows the emis- 
sive power distribution in two concentric cylindrical regions of the same 
optical thickness but different rates of energy generation. The dimension- 
less emissive power shown in figure 6-5 has been adjusted for the wall 
slip (section 2.6.2) so that the curves all go to zero at the outer wall. The 
emissive power was made dimensionless by dividing by the local internal 
energy generation rate times the radius of the inner cylinder. The ver- 
tical bars give the 95 percent confidence limits on the Monte Carlo 
results. 

The emissive power in the gas bears a direct proportionality to the 
number of energy bundles absorbed in a given volume element. The 
volume elements used in the calculation of the results shown in figure 
6-5 are of equal radius and, therefore, of differing volumes. The elements 
near the center (R + 0) have the smallest volume and, consequently, 
the smallest number of bundle absorptions. This is reflected in the in- 
creasing width of the 95 percent confidence limits at these points. 

Taniguchi (ref. 10) has applied Monte Carlo to radiative transfer in a 
gray gas contained in rectangular parallelepipeds. 

6.5 CONSIDERATION OF RADIATIVE PROPERTY VARIATIONS 

The greatest criticism leveled against many methods for treating radia- 
tive transfer in gases is the inability to accurately account for the strong 
spectral, temperature, and pressure dependence of the radiative absorp- 
tion coefficient. Such coefficients can sometimes be computed with 
reasonable accuracy by quantum-mechanical methods, but few analyses 
have been able to include the effect of all variables in the radiative 
transfer. Most treatments are limited to gray gases or use of various 
types of mean absorption coefficients. 

Monte Carlo is well suited to consideration of property variations 
with many variables. It involves very little extra effort to assign wave- 
lengths to individual energy bundles and to allow the paths of the bundles 
to depend on the local spectral absorption coefficient. The relations 
necessary to achieve this are given in table 6-1. 

If property variations with temperature are considered, an iterative 
solution is usually necessary because the temperature distribution 
within the medium is not generally known a priori. Determination of 
the path length to absorption becomes more difficult also, because the 
absorption coefficient varies with position. By applying the formalism 
outlined in section 6.3.2 of volume 11, the path length I is found to be 
given by 
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To evaluate this integral to determine 1 along a fixed line after choosing 
a random number R is time consuming but at least feasible. Howell and 
Perlmutter (ref. 11) used this approach, reducing the complexity some- 
what by considering temperature and wavelength dependent absorption 
coefficients for hydrogen in the simple geometry of the gas contained 
between infinite parallel plates. They considered energy transfer through 
the gas between plates at different temperatures, and also the case of 
internal energy generation with a parabolic distribution of source 
strength in the gas. To evaluate the path length, equation (6-5) was 
approximated by dividing the gas into plane increments of thickness 
Ax. The path length through a given increment was then 

Ax 
Al=- 

cos p 

10 

1 
.-t I 

E 
U 

X m 
* 
c w .- 
0 .- 
xz . 1  
w 
0 U 

c 0 .- 
5 :: n 
a 

.01 

.001 
10-5 10-4 

Wavelength, A, cm 

FIGURE 6-6.-Spectral absorption coefficient of hydrogen at 1000 atm (from ref. 11). 
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where p is the angle between the bundle path and the perpendicular 
to the plates. Equation (6-5) was then replaced by the computational 
form 

and the summation was carried out until a value of the integer p was 
reached that satisfied the inequality. This value of p would be related 
to the increment number in which absorption occurs. The values of 
a i , j  were assumed for the first iteration and then recalculated in suc- 
cessive iterations on the basis of the newly computed local temperatures. 
This procedure was continued until convergence was obtained. 

Figure 6-6 shows the property variations used, and figure 6-7 shows 
a set of emissive power distributions calculated as outlined. The accuracy 
becomes poorer, as evidenced by increased scatter, in the regions of 
low temperature because of the decrease with temperature of the ab- 
sorption coefficient and, therefore, number of absorptions in the low 
temperature regions. 

Taniguchi (ref. 12) used an incident mean absorption coefficient to 
account for property variations. 

Plate 
spacing, 

D, 
cm 

Monte Carlo w i th  gas 

0 . 2  . 4  . 6  .8  1.0 
Position between plates, xlD 

FIGURE 6-7. -Emissive power distribution in hydrogen between infinite parallel plates 
at temperatures T I  = 9500 K and T2 = 4500 K (from ref. 11). 
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6.6 COUPLING WITH OTHER HEAT TRANSFER MODES 

When radiative transfer in a gas is coupled with conductive or con- 
vective energy transfer, solution becomes even more difficult. Combined 
energy transfer is occurring by radiation, where fourth power tem- 
peratures are governing, and by conduction and/or convection, where 
derivatives or differences of temperature to about the first power are 
governing. The radiative terms in the energy equation for such prob- 
lems take the form of multiple integrals, while the conduction terms 
contain second derivatives. Further, the radiative surface properties 
which appear may be functions of wavelength, direction, and tempera- 
ture. When gases are involved, these variables plus pressure can strongly 
affect the local gas radiation physical properties. The complete energy 
balance on each element of the system then takes the form of a nonlinear 
integrodifferential equation. 

In the solution of coupled mode problems (refs. 13 to 16), the con- 
vective and conductive terms were treated as lumped energy sources 
or sinks, and Monte Carlo was used to evaluate the radiative terms on 
the basis of an assumed temperature distribution. With the radiative 
terms evaluated and substituted into the original equations, conventional 
numerical techniques were applied to the resulting differential equations 
and a local temperature distribution was generated. This was used as 
a basis for reevaluating the radiative integrals, and,the procedure was 
continued until convergence. 

An example of the power of the Monte Carlo approach in these prob- 
lems is given in reference 16. Here the local temperature distribution 
as a function of length and radius, and the axial heat flux distribution 
in a conical rocket nozzle were determined under conditions expected 
in a gas-core nuclear propulsion system. Variations in physical properties 
with local temperature, pressure, and wavelength were examined, albeit 
not simultaneously, and coupled radiation and convection were con- 
sidered. In qddition, the ability was demonstrated of a layer of optically 
thick gas injected along the nozzle wall to attenuate the extreme pre- 
dicted radiative fluxes to the wall. 

6.7 TRANSIENT RADIATION PROBLEMS 

The development of Monte Carlo techniques for radiative transfer 
under transient conditions has been done by Fleck (refs. 17 and 18) and 
Campbell (ref. 19). The model is essentially that outlined in previous 
sections, with the additional proviso that the flight times between events 
in the history of each bundle are computed, which adds considerable 
complexity to the problem. Energy bundles are followed along their paths, 
and their position at some time t is used to determine the distribution 
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of energy at that time. The bundles of course travel at the speed of 
light in the medium. 

The review article by Fleck (ref. 17) gives a comprehensive discussion 
of applications, including the effects of scattering under transient 
conditions. 

6.8 INCORPORATION OF SCATTERING PHENOMENA 

Scattering of radiation is easily treated by Monte Carlo for any given 
distribution of scattering angles. It is analyzed exactly as absorption 
and nonisotropic reemission in a gas volume. 

Collins and Wells (ref. 20) have used a modified Monte Carlo neutron 
diffusion code and other more specialized Monte Carlo codes to study 
the transmission of thermal radiation from a nuclear explosion. They 
examined the effects of Rayleigh scattering, and of Mie scattering (see 
chapter 8) from particles of a given size distribution. Multiple scattering 
within an atmosphere of arbitrarily described density distribution and 
effects due to ground and cloud reflections were included. Love et al. 
(ref. 21) and Stockham and Love (ref. 22) have studied problems with 
combined absorption and scattering by Monte Carlo. 

6.9 CONCLUDING REMARKS 

The Monte Carlo approach to radiation in attenuating media has been 
outlined. Perhaps a sufficient comment as to the power of the method is 
made by referring to example 6-1, or more specifically to figure 6-1. 
This figure gives a rather complete diagram of the logic required for 
programming the problem of energy transfer through a nonisothermal 
gray gas between infinite parallel black plates at different temperatures. 
A comparison of this diagram with the analyses of, say, references 1 to 
4 or chapter 3 will show the simplifications in both concept and formula- 
tion that may be present in the Monte Carlo method. 
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Chapter 7. Energy Transfer by Radiation Combined 
with Conduction and/or Convection 

7.1 INTRODUCTION 

When appreciable heat conduction and/or convection occur simul- 
taneously with radiation in an absorbing-emitting medium, there are 
additional mathematical complications to those already discussed for 
radiation alone. Unless it can be shown that both the conduction and 
convection have a negligible effect compared with the radiation or vice 
versa, a nonlinear integrodifferential equation will result for the energy 
equation of the general problem having combined modes of heat transfer. 
Fortunately the formulation can be simplified for some circumstances 
when all modes must be included. For example, when the gas is optically 
thick the diffusion approximation can be applied. The radiation integrals 
are replaced by differential terms and a nonlinear differential equation 
will then result. Other approximations such as the transparent gas 
approximation (section 3.3.1) can be applied under suitable conditions 
to simplify the radiative terms. 

Because the combined mode problems treated in this Ehapter are 
generally mathematically complex, it is not usually possible to obtain 
an analytical solution even for seemingly simple physical cases. Con- 
sequently, for each physical situation discussed here the analysis will 
be formulated and some of the intermediate steps in the solution out- 
lined; then the results of a numerical solution are given and discussed. 
The  situations considered will be a stationary conducting and radiating 
gas layer between two parallel planes, a boundary layer flow, and a 
channel flow of radiating and heat conducting gas. 

7.2 SYMBOLS 

area 
absorption coefficient 
heat capacity 
distance between parallel planes; tube diameter 
emissive power 
exchange factor 
function of 7 in Blasius boundary layer solution: gas-to-gas ex- 

change factor 
surface-to-gas exchange factor 

241 
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I dimensionless intensity, i/4aT4 
i radiation intensity 
K ,  function defined in eq. (7-27) 
k thermal conductivity 
1 length 

N j  conduction-radiation parameter based on temperature, Tj 

Pr Prandtl number 
energy per unit time 
energy flux, energy per unit area and time 
heat generation per unit volume and time 
radial coordinate 
position vector 
surface area 
absolute temperature 
velocities in x-, y-directions 
mean velocity 
volume 
rectangular coordinates 
thermal diffusivity 
cone angle, angle from normal of area 
boundary layer thickness 

E emissivity 
r )  Blasius similarity variable 
O dimensionless temperature, TITI 

optical depth 
wavelength 
cos p 
kinematic viscosity 
density of fluid 
Stefan-Boltzmann constant 
time 
dimensionless temperature group (T4 - T i ) /  (T:  - T;)  
slip coefficient defined by eq. (7-25); boundary layer stream 

function 
solid angle 

Subscripts: 

b blackbody 
c conduction 
D evaluated at x = D 
e emitted 
i incident; inlet 
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jth surface 
mean value 
outlet 
Planck mean value 
Rosseland mean value 
radiative 
surface 
volume 
evaluated at wall 
spectrally dependent 
free stream value 
surface 1 or 2 
in direction of positive cos p 
in direction of negative cos p 

Superscripts: 

I directional quantity 
* dummy variable of integration 

7.3 RADIATION AND CONDUCTION 
There are a number of important practical situations where heat is 

transported within a medium by only the two modes of radiation and con- 
duction. These usually involve solid or highly viscous media so that the 
movement of the medium and hence the convection is not important. In 
a liquid or gas, forced and/or free convection are usually of sufficient 
importance that they must be included. To develop the theory gradually, 
only the radiation and conduction terms are considered in this section; 
convection will be added later. The following are three practical situa- 
tions where combined radiation-conduction transport is important. 

One of the applications is in the glass industry. Although glass is 
often thought of as  transparent, it can absorb a significant amount of 
radiation in certain wavelength regions (see fig. 5-27, vol. I). The 
absorbed radiation is then re-emitted within the glass thereby provid- 
ing a radiative transport traveling layer by layer through the medium. 
The ordinary thermal conduction is thus augmented by a "radiative 
conduction." Radiative effects are quite important in influencing the 
temperature distribution within molten glass in a furnace. These ef- 
fects have been analyzed by Kellett (ref. l), Gardon (ref. 2), and Condon 
(ref. 3). 

A second application is concerned with glassy materials that are some- 
times used as an ablating coating to protect the interior of a body from 
high external temperatures by sacrificing the ablating surface. The 
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radiation-conduction process is important in regulating the temperature 
distribution within the ablating layer. The temperature distribution in- 
fluences how the ablating material will soften, melt, or vaporize. These 
processes determine how efliciently the material will protect the surface. 
The radiative analysis of an ablating material has been considered by 
Kadanoff (ref. 4). 

A third area of application that has arisen more recently is radiation 
within cryodeposits of solidified gas that form on a very cold surface. 
The cold surface may be on a space vehicle orbiting at the upper fringe 
of the atmosphere, or may be part of a cryopump which is a device used 
to produce a high vacuum by condensing the gas within a chamber. The 
cryodeposit coating changes the radiative properties of the cold surface 
and can thus significantly influence the radiative exchange with this 
surface. The radiative transfer in cryodeposits is considered in references 
5 and 6. 

In this section, some methods are examined for treating energy 
transfer by combined radiation and conduction. The conduction-radiation 
parameter will be introduced and the energy equation formulated. Then 
some approximations are considered, the most simple being the addition 
of separately computed radiation and conduction energy transfers to 
obtain the combined transfer. Any of the approximation methods to the 
equation of transfer presented in chapter 3 can be applied to simplify 
the radiation terms in these multimode problems, and the diffusion 
method will be applied here as an example. Also, the application in the 
literature of the Monte Carlo technique for combined mode problems 
has been mentioned in section 6.6. 

7.3.1 The Conduction-Radiation Parameter 

When conduction is present, a new dimensionless conduction-radiation 

L Medium with thermal conductivity k 
and absorption coefficient a 

FIGURE 7-1. -Conduction through and radiation from plane volume element. 
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parameter N is introduced. The definition of N can be developed by 
analyzing the one-dimensional layer of material shown in figure 7-1. 
The material has thermal conductivity k, absorption coefficient a ,  and 
is one radiation mean free path thick. If it is assumed that the tempera- 
ture profile within the slab is nearly linear, the conduction through the 
layer for area A is 

The total radiation emitted by the layer of area A can be written by using 
equation (1-34) as  (not including induced emission) 

by suitably defining a mean temperature T,,, and neglecting attenuation 
in the volume. The ratio of conducted to emitted flux is then 

Dividing through by Ti and letting O = TITI give 

The Nj is the conduction-radiation parameter based on the jth tempera- 
ture, defined by 

For the special case when Of, = 1 - 0 2 then QJQe = N 1 ,  and the 
parameter gives a measure of the relative energy amounts carried by 
conduction and emitted radiation for this layer of thickness lla. 
Generally, however, Nj does not directly give the relative values of 
conduction to emission because the ratio of these values depends also 
upon both the temperature difference and temperature level in addition 
to N j  as shown by equation (7-4). 
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7.3.2 Energy Balance 

To obtain an analytical solution for the combined conduction-radiation 
energy transfer in an absorbing-emitting medium, the general energy 
equation must be formulated. This is then solved subject to the boundary 
conditions to obtain the temperature distribution in the medium, and the 
heat flow can then be found. To fornlulate the energy equation, equation 
(2-16) is used for the total energy absorbed by a volume dV from the 
incident radiation intensity, and equation (2-17) gives the total energy 
emitted. In addition there will be a net energy gain per unit volume by 
heat conduction equal to kV2T for the case where k is a constant. 
Equating the net gain by conduction to the net loss by radiation gives 

If there is internal heat generation in the medium, the  heat thereby 
added per unit volume and time must be added to the left side of equation 
(7-5). The heat generation per unit time and volume will be designated 
as 9"' and can be a function of position and time in t he  medium. This 
generation can be produced for example by electrical, chemical, or 
nuclear means. 

For a transient problem some of the heat inflow to the volume element 
can be stored in the element. The energy storage per  unit time and 
volume is p c l , ( a T / a ~ ) .  Then for a transient situation with internal heat 
generation the energy equation becomes 

The transient case for pure radiation problems is treated in section 9.6. 

Since the radiation terms in equations (7-5) and (7-6) depend not 
only on the local temperature but on the entire surrounding radiation 
field, the energy equation is an integrodifferential equation for the tem- 
perature distribution in the medium. The conduction and heat storage 
terms depend on a different power of the temperature t h a n  the radiation 
terms and the energy equation is thus nonlinear. 

Numerical solutions of the energy equation have been  carried out by 
Gardon (see section 9.3.2), Viskanta and Grosh (refs. 7 a n d  8), and others. 
Most solutions have been for media in a plane-slab geometry, although 
some solutions have been carried out for other configurations (refs. 9 and 
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By inserting equations (7-9a) and (7-9b) into equation (7-8), the i' is 
eliminated and an energy equation for T(x) is obtained which can be 
solved numerically. However, some further simplifications in form are 
possible. 

Define the nondimensional quantities p = cos P ,  0 = TITl ,  0 2  = T ~ / T I ,  
N1 = ka/4aTf ,  K = a x ,  KII = aD, I' = ir/4aT?. Then by also using 
d o  = 2~ sin @dB = - 27rdp, equations (7-8) and (7-9) can be placed 
in the form 

d 2 0 ( ~ )  - 
NI  -7 - @*(K) - 271. I ;  (K ,  p ) d p  - 271. I: (K,  p )  d p  (7-10) dK I,' I,' 

where 

Note that the signs have been changed by changing variables so that p 
is positive throughout equations (7-10) and (7-11). Combining equations 
(7-10) and (7-11) to eliminate I' gives 

By using the exponential integral function defined in equation (2-4.5) 
and in the appendix, equation (7-12) can be written as 
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Equation (7-13) is the desired integrodifferential equation for the tem- 
perature distribution @ (K)  . It is a nonlinear equation since O is raised to 
the first power in the conduction term while it is raised to the fourth 
power in the radiation terms. The boundary conditions in dimensionless 
form are 

@=I at K = O  

@=@% ~ ~ K = K D  
(7-14) 

Examining equations (7-13) and (7-14) shows that the solution depends 
on the parameters N1, KD, and On. 

In addition to the temperature distribution, the heat transfer across 
the layer from plate 1 to plate 2 is usually of interest. Equation (2-41) gave 
the net heat flux expression for radiation alone across a gray gas between 
black plates. This radiative flux equation was obtained for convenience 
at x=O. In addition at the same location there is now a conduction flux 
-k(dT/dx) I x = o  so that the heat flux equation becomes (note that from 
energy conservation q will not depend on x for the situation being con- 
sidered here) 

q = - k d r l  dx + U T ! - ~ % ~  sin 

On the right, the first term is the conduction away from wall 1, the sec- 
ond is the radiation leaving wall 1,  the third is the radiation leaving wall 
2  hat is then attenuated by the medium and reaches wall 1 ,  and the 
last term is the radiation from the medium to wall 1. By using the expo- 
nential integral function and the previously defined dimensionless vari- 
ables, the heat flux can be written as 
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Conduct ion-  
radiation 

0 . 2  . 4  .6  .8 1.0 
Relative optical depth, K I K ~  

FIGURE 7-2. - Dilnensionless temperature distribution in gray gas between infinite parallel 
black plates with conduction and radiation. Plate temperature ratio O e = O . l ;  optical 
spacing KO= 1.0. (Data from ref. 7.) 

Since there are no heat sources in the medium, this q computed at the 
lower wall is the same at all locations within the medium. 

Viskanta and Grosh (refs. 7 and 8) obtained solutions of equation (7-13) 
by numerical integration and iteration. Some of their temperature 
distributions are shown in figure 7-2. For N1 -+ co conduction dominates 
and the solution reduces to the linear profile for conduction through a 
plane layer. When N1= 0, the conduction term drops out and the 
temperature profile has a discontinuity (temperature slip) a t  e ach  wall 
as discussed for the case of radiation alone in section 2.6.2. When 
conduction is present, there is no temperature slip. Some of the heat 
flux results from reference 8 as obtained from equation (7-16) a r e  shown 
in table 7-1. 

Timmons and Mingle (ref. 11) have carried out solutions for t h e  same 
problem with specular, rather than diffuse, boundaries. Resul ts  are 
within a few percent of those for diffuse boundaries. 



ENERGY TRANSFER BY COMBINED MODES 251 

7.3.4 Simple Addition of Radiation and Conduction Energy Transfers 

TABLE 7-1. -HEAT FLUX BETWEEN PARALLEL BLACK PLATES BY COMBINED RADIATION 
AND CONDUCTION THROUGH A GRAY MEDIUM 

A relatively simple idea to obtain the combined energy transfer by 
radiation and conduction is to assume that the interaction between the 
two transfer processes is so small that the processes can be considered 
to each act independently. Then the conduction and the radiation 
transfers are each formulated as if the other transfer mechanism were 
not present. Einsteinyref.  12) and Cess (ref. 13) have investigated this 
approximation for an absorbing-emitting gray medium between infinite 
parallel plates. When the plates were black, the results for the energy 
transfer were within 10 percent of the exact solution. Larger errors are 

Dimensionless 
energy flux, 

q/u'l'; 

0.859 
1.074 
2.880 

20.88 
200.88 

0.518 
.596 
.798 

2.600 
20.60 

0.556 
,658 
,991 

4.218 
36.60 

0.102 
.114 
,131 
,315 

2.114 

Optical 
thickness, 

K D  

0.1 

1.0 

1.0 

10 

Tltis is Thnmas H. Einstein. Albert made his appearance in  chapter 4 

[I'rrm 

Plate 
temperature 

ratio, Or 

0.5 

0.5 

0.1 

0.5 

ref 81 

Conduction- 
radiation 

parameter, N1 

0 
.01 
.1 

1 
10 

0 
.01 
.1 

1 
10 

I 

0 
.01 
.1 

1 
10 

0 
.01 
.1 

1 
10 
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possible if highly reflecting surfaces are present. Howell (ref. 14) shows 
that the additive solution is also fairly accurate for a gray gas between 
black concentric cylinders. 

An additive solution cannot be used to predict teillperature profiles. 
It is an effective and simple method of predicting energy transfer by 
combined modes, although the accuracy of the solutions so obtained 
becomes doubtful in some situations. The use of the additive method 
for problems where the accuracy has not been established by some 
comparisons with more exact solutions is not advisable. 

EXAMPLE 7-1: By using the additive approximation, obtain a relation 
for the energy transfer from a gray infinite plate at temperature TI and 
emissivity € 1 ,  to a parallel infinite gray plate at Tz with emissivity €2. 

The spacing between the plates is D, and the region between the plates 
is filled with a gray material with absorption coefficient a and thermal 
conductivity k. Use the diffusion approximation for the radiative transfer. 

Without radiation, the energy flux from surface 1 to 2 by pure conduc- 
tion to be used in the additive solution is 

The diffusion solution for pure radiation from plate 1 to 2 can be found 
from table 3-11 as 

Since the two modes are assumed completely independent, the additive 
solution gives 

4 = q c  + 9,. (7-1 9) 

After using the dimensionless variables defined in connection with 
equation (7-lo), the expression for q becomes 

Equation (7-20) must give correct results at N1 = 0 (pure radiation) 
within the accuracy of the diffusion solution and at N1 -+ (pure con- 
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duction) because it simply adds these two limiting cases. 

Comparison of q/o-7': from equation (7-20) with exact numerical 
solutions for E l  = €2 = 1 and = 0.5 from the work of Viskanta and 
Grosh (refs. 7 and 8) is shown in figure 7-3. For this geometry and 
black surfaces, the results of the additive solution are very accurate. 
The additive method appears even better here because of the fortuitous 
benefit that the diffusion solution gives a pure radiation heat transfer 
that is slightly above the exact pure radiation solution (fig. 3-6) while 
the pure conduction result is too low. This is because the conduction 
solution is based on the linear gradient of T at the boundaries while the 
actual gradients are larger whetl radiation is present (see fig. 7-7(a) for 
example). The errors in the two solutions tend to cancel, thus giving a 
quite accurate combitled solution for this geometry. 

100 
0 Exact numerical solution (refs. 7 and 8) 

Additive solution (eq. (7-20)) / 

Conduction-radiation parameter, N1 

FIGURE 7-3.  -Col~lparison of sinlple additive arid exact riumerical solutiolls of combined 
conduction-radiation energy transfer between black parallel plates. Plate temperature 
ratio 0,=0.5. 
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7.3.5 The Diffusion Method 

This ~netllod has the advantage over the additive method in that a 
solution is obtained to the coupled energy equation and this yields the 
temperature distribution in the medium. In section 3.4.2.1, it was 
shown that the diffusion heat flux for radiative transfer has the same 
form as the Fourier conduction law. By using the ~ o s s e l a n d  mean 
absorption coefficient defined in equation (3-39), the radiative flux vector 
can be written as 

where k, is the radiative conductivity defined by 

Consequently, by use of the diffusion approximation, the energy flux 
vector by combined radiation and conduction at any in the 
medium can be expressed as 

The local heat flux as given in equation (7-23) can be used  as in 
the derivation of the heat conduction equation, to obtain a n  energy 
balance on a differential volume element within the absorbing-emitting 
medium. For example, in two-dimensional rectangular coordinates and 
with no internal heat sources, the energy equation is 

The medium behaves like a conductor that has a thermal conductivity 
dependent on temperature. 

To obtaln the temperature distribution in the medium, a n  equation 
such as equation (7-24) must be integrated subject to t h e  imposed 
boundary conditions. These conditions would often be the tempera tures  
on the enclosure surfaces. However, near a boundary t h e  diffusion 
approximation is not valid; consequently, the solution is  incorrect 
near the wall and it cannot be matched directly to the wall boundary 
conditions. To overcome this difficulty, the boundary condit30n at the 
edge of the absorbing-emitting medium will be modified Sn such a 
way that the resulting solution to the diffusion equation will b e  correct 
in the region away from the boundaries where the diffusion aPproxi1nation 
is valid. 
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I n  the pure radiation case ,  a temperature slip was introduced to over- 
come the  difficulty of matclling the diffusion solution in t h e  medium to 
the wall temperature. For combined conduction-radiatioll problrms,  a 
similar slip concept was introduced hy Goldstein and  Howell (rrfs .  15 and 
16). Ey using the  method of matched asymptotic expansions. which in 
this case  was used to match the linearized solutions for intensity, 
flux, and temperature near the  wall with the  diffusion solution for 
these quantities far from the wall, an  effective slip condition was de- 
lived. As shown by figure 7-4, this slip gives the  boundary condit io~l 
T(n+O) that the diffusion solution must have if it i s  to extend all the  way 
to the  wall. The  slip is given in terms of the  slip coeficient $ which is a 
function only of the conduction-radiation parameter N. I11 terms of 
quantities at  wall 1, is given by 

where q ,  is the radiative energy flux at  the boundary as evaluated by 
the  diffusion approximation, TI is the wall temperature, and T ( x +  0) is 
the extrapolated temperature i11 the  medium at the  wall ( the  effective 
slip temperature to be  used in the diffusioil solution). The  $1 is com- 

?Exact solution for ternper- 
,/ ature profile i n  gas 

FIGURE 7-4. -Use of effective temperature slip as boundary condition for diffusion solution 
in combined conduction and radiation. 
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FIGURE 7-5. -Slip coefficient for combined conduction-radiation solutions by the diffusion 
approximation. 

puted from the relations of reference 15 as 

where I<, is the function 

A graph of $ as a function of N that can be used for any geometry is shown 
in figure 7-5. 

This type of solution should give accurate temperature distributions 
within the limits of the assumptions inherent in the diffusion approxima- 
tion. Results can be obtained for both the energy transfer and the tem- 
perature profiles as will be shown by an exainple problem. Other solu- 
tions of this general type have been presented in references 17 and 18. 

EXAMPLE 7-2: Using the diffusion method for combined conduction 
and radiation, find an equation for the temperature profile in a medium 
of constant absorption coefficient a and thermal conductivity k .  The 
medium is contained between infinite parallel black plates at temper- 
atures TI and TZ spaced D apart with the lower plate 1 located at x= 0. 
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Equation (7-23) in dimensionless form for this geometry becomes the 
following (note that an= a in this case): 

From energy conservation, since there are no internal heat sources 
the q is constant across the space between plates. Equation (7-28) can 
then be integrated from 0 to KD to yield 

where @ ( 0 )  and O ( K ~ )  are in th,e medium at the lower and upper bound- 
aries, respectively. These two temperatures must now be eliminated by 
using the slip boundary conditions to relate them to the specified wall 
temperatures T1 and Tz. 

Consider first the boundary condition at wall 1. For the particular N1 
of the problem, the $1 is found from figure 7-5 and set equal to 

From equation (7-23) the radiative flux at the wall qr,l can be written as  

Then $1 becomes 

u[T:  - T 4 ( 0 ) ]  
$1 = 

This is rearranged into 
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As shown in derivation of $ (ref. 15), the conditions where the diffusion 
solution is valid lead to the jump T1 - T(0) being small. For convenience 
a portion of equation (7-30) can then be linearized. With T1 - T(0)  = 6 
where 6 is small, then 

Then equation (7-30) becomes 

or in dimensionless form 

Similarly at wall 2 (note that the value of $2 corresponds to N =  N2 on 
fig. 7-5) 

Now add equations (7-29), (7-31), and (7-32) to eliminate the unknown 
temperatures in the medium 0 ( 0 )  and O ( K ~ ) .  This yields the nondi- 
mensional energy flux transferred across the layer as 

The energy flux results of equation (7-33) are plotted in figure 7-6 
and compared with the exact and additive solutions (the exchange factor 
approximation shown in the figure will be discussed in the next section). 
At K U = ~ ,  the results compare very well with the exact solution. For a 
small optical thickness K ~ ~ 0 . 1 ,  however, the diffusion-slip procedure 
breaks down for intermediate values of N1 and the simple additive solu- 
tion provides much better energy transfer values. 

An advantage of the diffusion solution is that it will yield the tem- 
perature distribution in the medium. Temperature profiles can be pre- 
dicted by integrating equation (7-28) from locations 0 t o  K and then 
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Solution Source 

0 Exact numerical 
A Exchange factor approximation Ref. 14 

Simple additive Eq. (7-20) ----- I- Linearized diffusion slip Ref. 15 . /,/ thickness, 

0. 1 

/ 
/ 

Conduction-radiation parameter, N1 

FIGURE 7-6. -Comparison of various methods for predicting energy transfer by conduction 
and radiation across a layer between parallel black plates. Plate temperature ratio 
T2/T1= Oe=0.5. 

using equations (7-31) and (7-33) to eliminate 0(0) and q. This yields 

Some temperature profiles are shown in figure 7-7. For K I I = ~ ,  figure 
7-7(a), the profiles are poor except for the largest N1 shown. Better re- 
sults are obtained for all N1 at larger KD because the assumptions in the 
diffusion solution become more valid. This is shown by figure 7-7(b), 
where results are compared for K g =  10. On the basis of the assumptions 
used in the diffusion slip analysis and the way in which the solutions 
compare with exact analytical solutions, good temperature distribution 
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- Exact numerical  solut ion 
- - - Dif fusion s l ip approximation 

0 
Relative optical depth, K / K ~  

(a) Optical thickness K D =  1. (b) Optical thickness Ku=lO; 
conduction-radiation param. 
eter Nl = 0.02916. 

FIGURE 7-7.-Comparison of temperature profile by exact solution (ref. 7) with diffusion 
slip approximation. 131ate temperature ratio Q2=0.5; plate ernissivities E I = E Z =  1.0. 

results are expected for K g  2. For N1+ 0 and N1-+ w, the diffusion slip 
method goes to the correct limiting solutions. 

Within their limits of applicability, diffusion methods provide a dif- 
ferent interpretation of the conduction-radiation parameter from that 
presented in section 7.3.1. The ratio of the molecular conductivity k to 
the radiative conductivity k, given by equation (7-22) is 

Therefore, in the diffusion limit, N is a direct measure of the ratio of 
molecular to radiative conductivity. In consequence, N is in this case also 
a direct measure of the ratio of the energy transferred by the two modes. 

7.3.6 The Exchange Factor Approximation 

In section 5.8.3 the use of the exchange factor approximation was 
introduced in the context of pure radiation problems. In this section, 
these exchange factors are applied to combined mode problems, and 
it is shown that their use gives a convenient method of treating these 
problems. As stated in section 5.8.3, the exchange factor F j - k  is defined 
as the fraction of the energy leaving surface j that is incident on surface 
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h- when all boundaries are black and the intervening medium is in radia- 
tive equilibrium (i.e., when radiation is the only means of energy ex- 
change). The F i - k  includes the effect of absorption and re-emission of 
energy by the medium while the energy is in transit from A, to Ak. A 
similar exchange factor between a surface area and volume element was 
also defined there. The reader may find it helpful to review section 5.8.3 
before proceeding with the present material. 

The total energy emitted by a volume element in the presence of heat 
conduction can be equated to three terms: (1) the energy that would be 
emitted in the absence of conduction, (2) the net energy supplied to the 
element by conduction (and thus must be radiated away), and (3) any 
additional energy dQ,,t,., added to the element by radiation over and 
above that given by the radiative equilibrium (zero conduction) case 
because of the change in temperature profile as a result of conduction 
being included. This can be written as 

The temperature TI? present in the radiative equilibrium case is con- 
veniently written in terms of exchange factors as in equation (5-122) as 

The Q,,  j is the energy leaving the jth surface of the enclosure surrounding 
the gas. The clFj-(lr. is the fraction of energy leaving the area Aj that is 
absorbed in clV for the case of radiative equilibrium in a black enclosure 
and includes the effects of gas absorption and emission while the energy 
is in transit from A j  to dV. Substituting this relation and assuming that 
dQ,,t,., is small reduce equation (7-36a) to 

Note that the exchange factors include the effect of gas-to-gas volume 
element radiant interchange based on the temperature profile for no 
conduction (radiative equilibrium). The approximation introduced 
in equation (7-36b) is that the gas-to-gas radiant exchange is not signifi- 
cantly affected by the new temperature profile that results because of 
the presence of gas conduction (i.e., dQeXt,.(, I- 0). The similar approxi- 
mation is also made that the Q , ,  j can be used from the solution without 
conduction. If radiation predominates, then this is a good assumption; 
if radiation is small, then it will not matter that the radiative terms are 
somewhat inaccurate. 



262 THERMAL RADIATION HEAT TRANSFER 

Equation (7-36b) is a nonlinear differential equation for T, the local 
gas temperature. Howell (ref. 14) has applied this approach to gray gases 
in annular enclosures and between infinite parallel plates. Accuracy is 
found to be comparable to the simple additive solution when computing 
the heat flux through the gas as shown in figure 7-6. The chief advantage 
of the method is that accurate temperature distributions can be obtained 
for combined-mode energy transfer problems with but little effort. The 
procedure will be demonstrated by the following example. 

EXAMPLE 7-3: Find an expression that will yield the temperature 
profile in a gray gas contained between infinite parallel plates a distance 
D apart if the gas has absorption coefficient a,  thermal conductivity k, 
and the plates are black at temperatures TI and T b  Use the exchange 
factor approximation. 

Using a layer dx thick as the volume element results in governing 
energy equation (7-36b) becoming, in this geometry, 

Exact numerical solution ----- Exchange factor approximation 

1.0 Conduction - 
radiation 

.8 

.6 

. 4  

. 2  

0 .2  .4  . 6  .8 1.0 
Relative optical depth, K / K ~  

FIGURE 7-8.-Co~nparison of temperature profiles by exact solution with exchange factor 
approximation. Optical thickness K n = l . O ;  plate temperature ratio @ e = O . l ;  plate 
emissivities e l  = ey = 1.0. 
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The exchange factors are given by equations (5-125) and (5-126) as 

and 

- 

d F l  -d, = 4(1dx PI, (x)  

- 
dFe-d.T=4ad~(l - p b )  

The cpb can be obtained to good accuracy for this geometry by the dif- 
fusion relations, table 3-11, as 

Substituting these relations into equation (7-37) and using the usual 
nondimensional quantities give 

which is to be solved subject to the boundary conditions 0 = 1  at K = O  
and O =  0 2  at K =  KD. This relation gives the correct limiting diffusion 
solution for N 1 +  O and the correct conduction solution for N l + w .  
Howell (ref. 14) has solved for [O (K)  - O2]/ (1 - 02) numerically, using 
exchange factors from the numerical solutions of the pure radiation 
problem which are more accurate than the diffusion exchange factors 
used in equation (7-38). Agreement with the numerical solution of the 
coupled conduction-radiation problem is shown in figure 7-8. 

The energy transfer by conduction was found by numerically evaluating 
d @ / d ~ I . = ~  and using this to evaluate the conduction flux at the boundary. 
The radiation flux was assumed to be unaffected by the conduction process 
in the spirit of the exchange factor approximation. The results obtained 
in this approximate way agree quite well with the numerical solution 
as shown in figure 7-6. Since d @ / d ~  varies with K, while the radiative 
flux without conduction is constant with K, evaluating d @ / d ~  a t  a location 
other than K = O  would give different results. For the most accurate 
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calculation of heat flux it was found (ref. 14) that the tenlperature gradi- 
ent should be evaluated at the boundary with the highest temperature. 
Using the gradient at the coldest wall leads to a heat flux prediction that 
is always too large. 

The exchange factor approximation is not limited to any range of 
geometry, surface emissivity, or optical thickness; it can be applied to 
any situation where the exchange factors have been previously obtained 
or where they can be obtained by some simplified pure radiation solution. 
The resulting nonlinear energy equation can usually be cast in the form 
of a matrix of nonlinear difference equations which are often easily 
solved by the numerical technique outlined by Ness (ref. 19). (See section 
7.3.2, in vol. TI.) 

In situations where the boundaries are not the chief contributors to 
the radiant energy flux in the gas, then the gas temperature profile 
becomes important to the radiative flux distribution. In such a case the 
exchange factor approximation may become inaccurate; however, 
reference 14 does give results that compare well with exact numerical 
solutions for both energy transfer and temperature profiles in the geome- 
tries of parallel plates and concentric cylinders. 

Lick (ref. 20) has also presented various approximations for solving 
conduction-radiation problems. He develops methods for treating gases 
with spectral and temperature-dependent properties. Goldstein and 
Howell (ref. 15) outline methods of treating temperature-dependent 
properties using the apparent slip technique. 

Although numerical methods are the only way to obtain exact solutions 
to combined mode problems, the approximate methods outlined in this 
chapter should provide acceptable accuracy for most engineering prob- 
lems. All the methods presented here can be applied to problems in 
two and three dimensions. 

7.4 CONVECTION, CONDUCTION, AND RADIATION 

The interaction of convection, conduction, and radiation in absorbing- 
emitting media occurs in many practical cases. Atmospheric phenomena, 
shock problems, rocket nozzles, industrial furnaces- all these and many 
more involve such interactions. As a consequence, a large amount of 
literature is available. Review articles and comprehensive books are 
given by references 13 and 21 to 25. In spite of this material, these prob- 
lems remain difficult to solve. In this section, some of the methods used 
for these problems are outlined. 
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7.4.1 Boundary Layer Problems 

A number of papers have appeared that deal with the effect of radia- 
tion on forced convection boundary layer heat transfer (refs. 26 to 30). 
Such boundary layer problems are approached by writing the usual con- 
tinuity and momentum equations: these do not contain any radiation 
terms and are not influenced by heat transfer since constant fluid prop- 
erties are assumed here. The energy equation is then written including an 
energy source term to account for the net thermal radiation gained by 
a volume element. 

For a two-dimensional boundary layer flowing over a flat plate (fig. 
7-9), assuming a gray fluid with constant properties, negligible viscous 
dissipation, and negligible radiative transport in the flow direction, 
the energy equation is 

where q, is the radiation flux in the positive y-direction shown in figure 
7-9. The problem becomes one of introducing into equation (7-39) 
one of the formulations for q, that have been developed, and then solving 
the resulting energy equation together with the momentum and continuity 
equations. In references 27 and 28, the diffusion solution is used for q, 
and the last two terms in equation (7-39) can then be combined as was 
done in equation (7-23). 

Various techniques can be used to solve the resulting energy equation. 
Novotny and Yang (ref. 26) used matched asymptotic expansions of the 
energy equation assuming a known flow field. A linearized energy equa- 
tion near the surface was matched to an asymptotic solution far from the 
surface. Viskanta and Grosh (ref. 27) had earlier applied the diffusion 
approach; they assumed that the diffusion solution was valid all the way 
to the boundary. 

Cess (ref. 28) and others have assumed the boundary layer to be 
optically thin, so that it emits but does not absorb radiation. By introduc- 
ing some other assumptions, Cess was able to treat nongray gas effects. 
Neglecting absorbed radiation can be a useful approximation when the 
boundary layer is heated by frictional dissipation while surface and sur- 
rounding gas are cool. 

Outer region 

-uo, To 

LTl (constant) 

FIGURE 7--O.-Bou11dary layer flow over flat plate. 
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Fritsch, Grosh, and Wildin (ref. 29) studied the shielding of a body 
by a radiant absorbing layer. The boundary layer was assumed to 
absorb, but not to emit radiation. The effects of transpiration and an 
external radiation field were included. Howe (ref. 30) had treated a similar 
problem under somewhat different conditions of the external radiation 
field. 

Novotny and Kelleher (ref. 31) and Cess (ref. 32) have examined the 
effect of radiation on the boundary layer development in free convection. 
An absorbing-emitting gas was treated and the radiation effects were 
linearized in both cases. Reference 31 treats the development of the 
boundary layer on a horizontal cylinder, while reference 32 examines the 
layer growth on a vertical plate. Gille and Goody (ref. 33) experimentally 
determined the onset of free convection in a gas exposed to thermal 
radiation. 

7.4.1.1 Optically thin thermal layer.-Let us now consider in more 
detail the analysis for laminar forced flow on a flat plate. An expression 
is needed for the radiative source term dq,./dy in equation (7-39). Within 
the boundary layer type of assumptions it will be assumed that the 
thermal conditions are changing so slowly in the x-direction, as com- 
pared with the changes in the y-direction, that the region contributing 
to q, at a specific x, say x+,  are all at that x+ and hence at temperatures 
T(xf ,  y) .  Then qr can be evaluated from the one-dimensional relations 
derived previously as for equation (7-13). In equation (7-13) which is 
written for a region between two black walls and no convection, the 
conduction term is equal to the following (using y as the transverse 
coordinate): 

d'T k -=4aaT"2aa T:E~(K) -I- T$P(KD- K) 
dy' 

The right side of equation (7-40) is thus the dq,/dy term when two walls 
are present. For one bounding wall, the Tp term is not present and the 
upper limit of the integral is extended to infinity. Also the T 4 ( ~ * )  is 
replaced by T q x ,  K*) to emphasize the approximation that, for the 
radiation term, the surroundings of position x are taken to be at T(x, y). 
Then the boundary layer equation (7-39) becomes for the temperature 
T(x, Y) 
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where K = ay. 
The temperature field can be considered as composed of two regions. 

Near the wall in the usual thermal boundary layer region of thickness 
6  that would be present in the absence of radiation, there are large 
temperature gradients and heat conduction is important. This region is 
usually of small thickness; hence, it can be assumed optically thin so 
that radiation will pass through it without attenuation. For larger y  than 
this region, the temperature gradients are small and heat conduction is 
neglected compared with radiation transfer. The approximate analysis 
can now proceed, for example, along the path developed in reference 13. 

In the outer region the velocity is the free stream value uo, and with 
the neglect of heat conduction the boundary layer equation reduces to 

To obtain an approximate solution by iteration, substitute the incoming 
free stream temperature To for the temperature on the right side as 
a first approximation and then carry out the integral to obtain a second 
approximation. This yields for the outer region to first-order terms 

where at x= 0, T= TO. 
At the edge of the thermal layer ~ = a y = a G  which is small so that 

E2 ( a6 )  = ES (0) = 1. Hence, at y= 6 equation (7-43) becomes 

Equation (7-44) is the edge boundary condition that the outer radiation 
layer imposes on the inner thermal layer. The outer temperature is 
increasing linearly with x. This is the result of the flowing gas ab- 
sorbing a net radiation from the plate in proportion to the difference 
T: - T.', and the absorption coefficient a. 

To solve the boundary layer equation in the inner thermal layer 
region, the last integral in equation (7-41) is divided into two parts, 
one from K = O  to a6 and the second from a6 to m. The first portion is 
neglected as the thermal layer is optically thin, and the second is evalu- 
ated by using the outer solution (eq. (7-43)). By retaining only first- 
order terms, the boundary layer equation reduces to 
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The boundary collditiolls are given by equation (7-44) at y= 8, and the 
specified wall temperature T= TI at y= 0. 

The solution becomes quite complex and will not be further developed 
here. The reader is referred to references 13 and 34 for additional 
information. 

7.4.1.2 Optically thick thermal layer. -At the opposite extreme from 
the previous section, if the thermal layer has become very thick or the 
medium is highly absorbing, then the boundary layer would be  optically 
thick. In this instance the analysis is considerably simplified as the 
diffusion approximation can be employed. Referring to equation (7-23) 
it is recalled that radiative diffusion adds a radiative conductivity to 
the ordinary thermal conductivity. Then the boundary layer energy 
equation (7-39) can be written as 

With the assumption of constant fluid properties, the boundary layer 
momentum equation and the continuity equation do not depend on tem- 
perature. Consequently, the flow is unchanged by the heat  transfer, 
and velocity distribution is given by the Blasius solution (ref. 
35). The Blasius solution is in terms of a similarity variable 

and the stream function and velocity comporients are given by 

These quantities are substituted into the energy equation wh ich  can then 
be placed in the form 
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The boundary conditions that have been used are 

To be more precise, a diffusion-slip condition should be used at the wall 
but this has not been formulated for the combined radiation, convection, 
and conduction situation. 

Let O = TITO and No= kafi/4aTo3; then equation (7-47) becomes 

Numerical solutions were carried out in reference 27, and some typical 
temperature profiles are shown in figure 7-10. For No=lO the profile 
was found to be within 2 percent of that for conduction and convection 
alone (i.e., for No-+ m). The effect of radiation is found to thicken the 
thermal boundary layer similar to the effect of decreasing the Prandtl 
number. This would be expected since Prandtl number is the ratio of 
viscous to thermal diffusion v /a .  The radiation has supplied an additional 
means for thermal diffusion thereby effectively increasing the a. 

FIGURE 7-10.-Boundary layer temperature profiles for larnii~ar How 011 Hat plate (ref. 27). 
Prandtl number Pr= 1.0; temperature ratio T I / T o = O . ~ .  
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7.4.2 Channel Flows 

Of engineering interest in some high temperature heat exchange 
devices is the flow of an absorbing-emitting gas in a channel with radiative 
and convective energy transfer. The energy equation (17-39) (with v = O  
for fully developed Aow) still applies at all points in the flow. References 
12 and 36 to 39 treat problems with varying degrees of approximation. 
Viskanta (ref. 36) gives approximate numerical solutions to the equations 
for laminar flow of a gray absorbing-emitting medium in a parallel plate 
channel. Temperature-independent properties are assumed. In addition 
to K D ,  N, and temperature ratios, a new parameter enters these problems. 
It is a Nusselt number which is defined in such a way as  to include a 
radiative contribution and thus differs from the usual definition. 

Einstein (refs. 12 and 37) has applied the gas-to-surface and gas-to-gas 
view factor methods of Hottel (section 5.8.2) to a solution of the energy 
equation in a parallel plate channel and in a circular tube. Both channels 
were of finite length, and internal heat generation in the gas was included. 
Conlparison was made with the work of Adrianov and Shorin (ref. 38), 
who had used the cold material approximatioil (section 3.3.3) so that 
absorption but not emission from the gas was included. Chen (ref. 39) 
included scattering in his analysis of flow between parallel plates, but 
assumed a slug flow velocity profile. 

All the previous analyses mentioned in this section have been for 
gray gases flowing in channels with gray or black walls. All have as- 
sumed temperature-independent properties. However, deSoto and 
Edwards (ref. 40) have presented a tube flow heat transfer analysis that 
accounts for nongray gases with temperature-dependent properties. An 
exponential band model (section 4.6.4) was employed to account for 
the spectral effects. Entrance region flows were included. 

Landram et al. (ref. 41) examined fully developed turbulent pipe 
flow of an optically thin gas, using Planck and incident mean absorption 
coefficients. The application of Monte Carlo methods to some channel 
flow problems was discussed in chapter 6. 

To examine a specific situation, consider the analysis of Einstein 
(ref. 37) for flow in a tube of diameter D as shown in figure 7-ll(a). 
Gas enters the tube at temperature Ti and leaves at To. The tube wall 
temperature is constant at T,. The surrounding environments at the 
inlet and exit ends of the tube are assumed to be at the inlet and exit 
gas temperatures, respectively. The governing energy equation at 
position -7 in the tube for laminar flow can be written as 
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The triple integral is the radiation absorbed at T: as a result of emis- 
sion from all the other gas in the tube. The f ('i "-7) is a gas-to-gas 
exchange factor from position 7 "  to position 7 .  The double integral 
is the radiation absorbed at' 7 as a result of emission from the bound- 
aries which include the tube wall and the end planes of the tube. The 

I I I I 
0 2 4 6 8 1 0  

Optical thickness, KD = aD 

(a) Tube geometry and boundary conditions. 

(b) Exit temperature for T i / T , , = 0 . 4 ,  l / D = 5 ,  and puc,,/uFh = 3 3 .  

FIGURE 7-11.-Combined radiation and convection for absorbing gas flowing in tube with 
constant wall temperature (ref. 37). 
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g.(T:* - T : )  is a surface-to gas exchange factor, and the f and g are given 
in reference 37. 

Some typical results of the numerical solution are given in figure 
7-ll(b) for a Poiseuille flow velocity profile. These results show how 
well the gas obtains energy from the wall since the ordinate is a measure 
of how close the exit gas approaches to the wall temperature. The results 
are given in terms of gas optical thickness based on tube diameter and 
a conduction-radiation parameter based on wall temperature. As the 
optical thickness is increased from zero, the amount of radiated energy 
from the wall that is absorbed by the gas increases to a maximum value. 
Then for a large KD the heat absorbed by the gas decreases. The decrease 
is caused by the self-shielding of the gas; for high K D  most of the direct 
radiation from the tube wall is absorbed in a thin gas layer near the wall. 
Since the gas emission is isotropic, about one-half of the energy reemitted 
by this thin layer goes back toward the wall. Thus the gas in the center 
of the tube is shielded from the direct radiation and the heat transfer 
efficiency decreases. 

7.4.3 Other Multimode Problems 

Radiation effects in rocket exhaust plumes have been examined by 
deSoto (ref. 42). Kadanoff (ref. 4) treated radiation effects in ablating 
bodies. A very large body of literature exists that deals with reentry of 
bodies into the atmosphere (ref. 43) and radiation within and from 
hypersonic shocks. A rigorous treatment of these problems is difficult 
because of the nonequilibrium chemical reactions that are coupled with 
the radiation effects. References 43 and 22 to 25 give a good introduction 
and discussion of shock problems. Radiation interactions with a layer of 
gas including transpiration is treated in reference 44. 

7.5 CONCLUDING REMARKS 

The treatment of multimode problems in absorbing-emitting media 
can be viewed as solving conduction or convection problems with a 
distributed energy source (or sink) term present. This source (or sink) 
term is the local net radiation gain (or loss) within the medium. The 
radiative source tern1 can be determined by either exact or whatever 
approximate methods can be applied in a given situation. Cases were 
mentioned in this chapter where exact, diffusion, additive, and optically 
thin formulations were used. As with almost all radiation problems, 
the basic equations describing the physical processes can usually be 
written. The difficulty is in solving these equations. It is  not possible to 
discuss in detail the wide variety of physical situations and solution 
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m e t h o d s  t h a t  can b e  f o u n d  in t h e  l i t e r a t u r e .  A number of references 
h a v e  been provided in t h i s  c h a p t e r  to help guide t h e  r e a d e r  to s o m e  of 
t h e  p e r t i n e n t  basic in fo rma t ion .  
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Chapter 8. Radiative Transfer in Scattering and 
Absorbing Media 
8.1 INTRODUCTION 

The extinction coefficient K for thermal radiation is composed of an 
absorption coefficient and a scattering coefficient as discussed in section 
1.5.1. The equation of transfer when only absorption is present was 
treated in chapter 2. In this chapter extension is made to treating radia- 
tive transfer for cases where the scattering phenomenon becomes im- 
portant. The elastic scattering processes are considered that are impor- 
tant insofar as radiative transfer calculations are concerned. Effects of 
polarization and the various inelastic scattering processes are only 
mentioned in passing. These processes along with other scattering effects 
are found in the more comprehensive treatments of scattering problems 
in references 1 to 6. The work of Van der Hulst (ref. 1) is especially 
valuable in giving a detailed discussion of elastic scattering from single 
particles. 

When radiation impinges upon any substance, a part of the energy 
is  removed by absorption, and another part is redirected by scattering. 
Scattering may occur from particles or objects of any size from elec- 
trons to planets, and scattering from particles or objects in each size 
range can be important in special situations. For elastic scattering the 
photon energy and therefore the frequency of the photon is unchanged 
by the scattering; for inelastic scattering the photon energy is changed. 

In theoretical developments scattering is usually considered for a 
single particle. When a cloud of many particles is dealt with, the scat- 
tering intensities from the individual particles are usually added, thereby 
assuming that each particle scatters independently. This is  a valid 
assumption if the particles are more than a few diameters apart. In  
most practical situations this assumption can be made as the particles 
are separated by much larger distances. 

There are various phenomena that may occur when incident radiation 
strikes a particle. Some of the incident radiation may be reflected 
from the particle surface. The remaining portion of the radiation will 
penetrate into the particle where part of the radiation can be absorbed. 
If the particle is not a strong internal absorber, some of this radiation will 
pass back out. This may occur after traveling only a single path through 
the particle or the radiation may undergo multiple internal reflections and 
travel about within the particle before escaping. When interacting with 
the particle boundary, the radiation will be refracted and will also have 
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its di~ection changed by subsequent intellla1 ~eflections. The rediiection 
by these processes of the energy penetlating into the particle and then 
escaping is termed scattering by refraction. Additional scattering is 
caused hy diffraction which produces, for exanlple, the inteiference 
patterns observed when light passes through an aperture in a screen. 
Diffraction is the result of slight bending of the radiation propagation 
paths when passing near the edges of an obstruction. 

The reflection, refraction, and diffraction depend on the optical 
properties (i.e., the complex refractive index f i=n - i ~ )  of the par- 
ticle, and of the size of the particle relative to the wavelength of the 
incident radiation. An additional conlplication is the particle geometry. 
It is usually assumed that the medium surrounding the particles has 
a unity simple refractive index n and a zero extinction coefficient K so 
that f i =  1 1 -  i0= 1. In this instance the surrounding medium does not 
enter into the optical behavior of the medium-particle system. 

In principle the scattering behavior can be obtained from the solution 
of the Maxwell electromagnetic equations that govern the radiation 
field for the medium-particle system. However, the solution provides 
very complicated relations for even simple particle geometries. Hence 
in many instances a number of simplifications are made as will now 
be outlined. 

One simplification is the geometric one of letting the scattering 
particles be spheres. This is not as restrictive an assumption as it might 
appear since, as discussed in reference 1, the results for spheres do have 
a wider geometric applicability. Consider an array of irregularly shaped 
particles, the surfaces of which are assumed composed of convex portions 
(no concave indentations). Because the particles are in a random orienta- 
tion, an equal portion of surface elements will face each angular direction, 
which is the same angular distribution of surface elements as for a spheri- 
cal particle. The net result is that the angular distribution of scattered 
radiation viewed at a distance from the actual particles will be the same 
as that scattered from spherical particles. 

A second simplification is to consider the limiting solutions for scatter- 
ing from large and from small spheres. A convenient parameter is 71-Dlh 
where D is the sphere diameter. For large spheres (mD/h greater than 
about 5) the scattering is chiefly a reflection process and hence can be 
calculated from relatively simple geometrical reflection relations. There 
is also diffraction of the radiation passing near the sphere, but this is 
accounted for separately as will be discussed in section 8.4.4. For small 
spheres (mDIX less than about 0.6), the approximation of Rayleigh scatter- 
ing can be used as will be discussed in section 8.4.5. For the intermediate 
range of mD/X, the general Mie scattering results apply, but the results 
of this general solution of Maxwell's equations are quite complicated. 
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A third type of simplification is to look at limiting cases of the optical 
constants of the particle. For metals the n and K are often large so the 
case can be considered where f i= n - i~ + m. For a dielectric ( K  = 0 )  a 
limiting case is where n = 1. In this instance the reflectivity of the 
surface will be small. 

Limiting types of surface conditions are also considered (i.e., specular 
and diffuse surfaces). The particle surface can only act diffuse, however, 
if its dimensions are large compared with the wavelength of the incident 
radiation. 

The theory and results will be discussed for several of the more useful 
scattering relations. 

8.2 SYMBOLS 
area 
absorption coefficient 
speed of light in medium 
speed of light in vacuum 
particle diameter 
emissive power; electron charge 
function of f i  in Rayleigh scattering relation, eq. (8-23) 
distance defined in connection with eq. (8-54) 
radiative source function, eq. (8-51) 
radiation intensity 
Bessel function of first kind of order one 
extinction coefficient, a + a, 
extinction mean free path 
mass of electron 
number density, particles per unit volume 
simple refractive index 
complex refractive index, n - i~ 
energy per unit time 
energy flux, energy per unit area and time 
radius 
classical electron radius 
coordinate along path of radiation 
scattering cross section 
absolute temperature 
volume 
parameter in eq. (8-21) 
coordinate direction normal to plane layer 
polarizability 
cone angle, angle from normal of area 
circumferential angle 
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Subscripts: 

b 
D 
i 
P 
S 

X 
+ 
- 
1,2  

Superscripts: 

optical depth; extinction coefficient in complex refrac- 
tive index 

wavelength 
cos p 
frequency 
reflectivity 
scattering coefficient 
phase function for single scattering 
scattering angle measured from forward direction to 

direction to observer 
spherical angle in fig. 8-4 
albedo for single scattering, eq. (8-48) 
solid angle 

black 
at position coordinate D 
incident 
particle; projected 
scattered or scattering 
spectrally dependent 
propagating in direction having positive cos P 
propagating in direction having negative cos P 
refers to surfaces 1 or 2 

directionally dependent quantity 
dummy variable of integration 
zeroth-, first-, or second-order term or moment 

8.3 SOME IMPORTANT QUANTITIES I N  THE DESCRIPTION OF 
SCATTERING 

8.3.1 The Scattering Cross Section 

The extent of scattering to be expected is often measured in terms of 
the scattering cross section s .  This is the apparent area that an object pre- 
sents to an incident beam insofar as the ability of the object to deflect 
radiation from the beam is concerned. It is usually given in square 
centimeters for thermal radiation properties. This apparent area may 
be quite different from the physical cross-sectional area of the scatterers 
as can be seen from some of the approximate cross sections in table 
&I. In addition to depending on the particle size, the scattering cross 
section may depend upon the shape and material of the scattering body, 
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and the wavelength, polarization, and coherence of the incident radiation. 
The scattering cross section can be determined experimentally 

by measuring the amount of radiation in a beam that is able to pene- 
trate through a cloud of scattering particles. One experimental diffi- 
culty is in separating the radiation that is scattered into the forward 
direction from the radiation that is transmitted without any particle 
interaction. This difficulty can be diminished by using an incident 
beam with a very small divergence angle. Then the forward direction 
of the transmitted radiation will encompass only a small solid angle 
which will include only a small portion of scattered radiation. The ratio 
of the scattered portion di;, , of the incident intensity to the intensity i; 
of the incident beam is equal to the ratio of the apparent pojected scat- 
tering area d A s ~  occupied by all scattering particles, to the cross-sec- 
tional area of the incident beam dA. This gives the following for a beam 
traveling a differential distance within a medium in which it encounters 
the scattering area dA,i: 

Note that the apparent projected scattering area of the particles can 
and usually will depend on wavelength. 

The apparent scattering area presented by a group of the  scattering 
particles is related to the average scattering areas of the  individual 
particles by 

where Ns is the number density of the particles, sA is the average scatter- 
ing cross section of the particles, and dV is a differential volume of the 
particle containing cloud as shown in figure 8-1. Inserting equation 
(8-2) into equation (8-1) gives the change dii of the intensity as a result 
of scattering from the incident beam 

There is also intensity scattered into the S direction which will contribute 
to di; but this will be incorporated later. 

By integrating equation (8-3) over a path from 0 to S ,  t h e  intensity is 
found at S as a result of attenuation by scattering from t h e  beam with 
original intensity i ; (O),  
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Incident 
intensity, 
iE, 

Scattered intensity for 
(cp, 0) direction 
d i i ,  s(p, 0) 

-- Forward 
direction 

attered radiation 

FIGURE 8-1.-Scattering of intensity into direction (p, 0) from incident radiation within 
solid angle dmi .  

i; (S) = i; (0) exp (- 1 S A N ~ ~ S  *) (8-4 a) 

The portion of the incident intensity that was scattered away along the 
path is thus 

i; (0) - i; (s) = i; (0) [ 1 - exp (- % SAN,~S*)] (8-4b) 

The scattering coefficient r s h  is now defined to be 

so that equation (8-4a) becomes 

i;(s) = i;(O) exp [- [ f lSA(s* )d~*]  (8-6) 

This is the pure scattering form of Bouguer's law (see section 1.5). 
If there is a distribution of particle sizes to be considered in detail, the 

preceding analysis can be generalized. Let Ns(R)dR be the 'number of 
particles per unit volume in the radius range from R to R +  dR and let 
sx(R) be the scattering cross section for a particle of radius R. Then by 
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integrating over all the particles, the scattering coefficient is 

As in the interpretation of the extinction coefficient (section 1.5.2), 
the scattering coefficient msk can be regarded as the reciprocal of the 
mean free path that the radiation will traverse before being scattered. 
The a s k  is thus a reciprocal length, and can be regarded as a scattering 
area per volume along the path, a,~=dA,k /dV from equations (8-5) 
and (8-2). Since sh is mSk/Ns, it is the effective scattering area per particle. 
The ratio of sh to the actual geometric projected area of the particle 
normal to the incident beam is termed the eficiency factor. 

At particle densities near or below the molecular density of air at 
1 atm (Ns= 2.7 X 1019 particles/cm3), it can be seen that for most of 
the processes listed in table 8-1 the scattering coefficient will be very 
small (and thus the scattering mean free path very long). This is especially 
true for photon-photon, Thomson, and Raman scattering, which may 
generally be ignored in engineering radiative transfer calculations. 

The previous relations have been concerned with what portion of 
the intensity in an incident beam is lost as a result of being scattered 
away along a path. The additional information that will be required to 
formulate radiative transfer relations for scattering media is the direc- 
tional distribution of the scattered radiation. This is given in terms of an 
angularly dependent phase function. 

8.3.2 The Phase Function 

Consider the radiation within solid angle dwi that is incident on area 
dA in figure 8-1. The entire portion of the incident intensity that is 
scattered away in the distance dS is given by equations (8-3) and (8-5) 
as 

dii,  ,= mshiidS (8-8) 

The dii ,  , is the spectral energy scattered within path dS per unit incident 
solid angle and area normal to the incident beam 

As shown by figure 8-1 the scattered energy produces an intensity dis- 
tribution as a function of angles 8 and cp measured relative t o  the forward 
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direction. A phase function cD(cp, '8) will be defined to describe the 
scattered angular distribution. 

The scattered intensity in any direction ( c p ,  8 )  is defined as the 
energy scattered in that direction per unit solid angle of the scattered 
direction and per unit area and solid angle of the incident radiation; 
that is, 

spectral energy scattered in direction ( c p ,  8 )  
diL, , (cp ,  8 )  = dwsdAdwidA 

The directional magnitude of di;,,(cp, 8 )  is related to the entire 
intensity di;, , scattered away from the incident radiation by the phase 
function, such that 

To better understand the phase function, note that the spectral energy 
per dA scattered into dws per unit dwi and unit dA is d i i ,  , ( c p ,  8)dws. Then 

the spectral energy per unit dwi7 unit dA and dA scattered into all dw, is 

j di:, , (9 ,  8)dws. However. the scattered energy per unit d o i ,  d A ,  
w, =.is 

and dX is di;, , so that 

Using equation (8-11) results in 

which gives the phase function as 

Thus, @(cp, 8 )  has the physical interpretation of being the scattered 
intensity in a direction divided by the intensity that would be scat- 
tered in that direction if the scattering were isotropic. For isotropic 
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scattering then, @= 1. By integrating equation (8-13) over all dws, it 
is evident that a(?, 0 )  is a normalized function such that 

The phase function can be a complicated function of cp and I3 as will 
be shown in subsequent sections. 

,8.4 SCATTERING FROM VARIOUS TYP'ES OF PARTICLES 

8.4.1 A Cloud of Large Specularly Reflecting Spheres 

One of the most simple scattering configurations is a cloud of large 
spherical particles (n-D/A > - 5) that have specularly reflecting sur- 
faces. Figure 8-1 shows a differential volume element of the cloud with 
cross section dA normal to the incident radiation and with thickness ' 
dS. The incident energy intercepted by the volume element is i idwidA.  
It is assumed that the particle density is low enough so that each particle 
scatters independently and there is negligible shadowing of the particles 
by each other. Let the projected area of a particle normal to the direction 
of ij, be A ,  so that the fraction of the incident energy on d A  that strikes 
the particle is A ,/dA. Part of this energy will be absorbed and the re- 
mainder will be scattered by being reflected specularly. 

The details of the reflection process are shown in figure 8-2. The 
energy intercepted by a band of cross section RdP on the surface of the 
sphere is equal to the energy intercepted by the particle multiplied by 
Abrrrj(t/A,,, where Abnr,,j is the band area projected normal to i;. This gives 

A,, Abnrrd Energy intercepted by band= iidwidAdA - --- 
dA A,, 

= i idwidh 277.R2, sin P cos /3 d p  

The amount of reflected energy is i;dwidA 2n-RGin P cos P d p  p; (P)  
where p; ( p )  is the directional specular reflectivity for incidence at angle 
p. The amount of energy reflected from the entire sphere is found by 
integrating over the sphere area, that is, 

Reflected energy =i,'dwidA n-R2 2p;(P)  sin P d ( s i n  P )  r 
From equations (3-43a) and (3-17a) of volume I the integral is the 
hemispherical reflectivity ph. Hence the energy scattered by reflection 
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ii, 

-Band on surfa 

FIGURE 8-2.-Reflection of incident radiation by surface of specular sphere. 

from the entire sphere is i;dwidA vR2 p i .  B y  using the scattering cross 
section S A  for the particle, the scattered energy is i;dwidA S A .  Hence 

and the particle scattering cross section is 

Thus s~ is equal to the projected area of the particle times the hemispheri- 
cal reflectivity. Inserting equation (8-15) into equation (8-7) gives the 
scattering coefficient as 

If all the spheres are the same size with radius R ,  it is not necessary to 
integrate over the particle size distribution and the scattering coefficient 
becomes 

ash= p l rR2Ns  (8-17) 

which is of the same form as equation (8-5). 
To obtain the phase function, figure 8-2 shows that the energy spec- 
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ularly reflected from the band of the sphere at angle j3 will be reflected 
into direction 2P and into a solid angle 

dw, = 2?r sin 2j3 d ( 2 P )  = 877 sin P cos j3 dj3 

The phase function is concerned only with the portion of the energy that 
is scattered. Since each particle is assumed to scatter independently, the 
scattered portion of the radiation emerging from a portion dV of the par- 
ticle cloud when observed at a distance large compared with the indi- 
vidual particle diameter will have the same phase function as for a single 
particle. The energy incident on a single particle is i;dwidXA,. Using the 
scattering cross section in equation (8-IS), all the energv scattered away 
by a particle is zidwidk ?rkL p ~ .  Then the incident intensity that is scat- 
tered is from equation (8-9) 

The energy scattered away by a particle into dw, is 

iLdwidA 2 r R 2  sin j3 cos j3 d p  p ; (P)  

The scattered intensity into direction 2j3 (where this intensity is defined 
in eq. (8-10)) is 

i idwidA 2?rR2 sin P cos j3 dj3 p i ( P )  ii;pi;(P) d i i ,  ,(2j3) = - dwiApdwsdA 4,n 

Inserting this into equation (8-11) gives 

The angle 2 6  is related to the angle cp in figure 8-2 by cp= r - 2 P  so that 
relative to the forward scattering direction 

For unpolarized incident radiation the reflectivity p; (P)  for a dielec- 
tric sphere can be found from equation (4-61) of volume I .  Also, the direc- 
tional-hemispherical reflectivity is equal to unity minus the emissivity 
values in figure 4-5 of volume I .  As shown by this figure, the p;(j3) for 
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FIGURE 8-3.-Scattering diagram for specular reflecting sphere that is large co~npared 
with wavelength of incident radiation. 

normal incidence is usually quite small compared with that at grazing 
angles (d-1 at P = 90'). Consequently, the forward scatter from the 
sphere (at cp=O) is unity, and the backward-scatter (at cp=7~) is small. By 
use of figure 4-5 of volume I, the quantity PA@ (p) can be plotted for vari- 
ous indices of refraction n as shown in figure 8-3. The PA for a dielectric 
can be found by use of figure 4-6 of volume I. 

8.4.2 Reflection from a Diffuse Sphere 

For the specularly reflecting sphere in figure 8-2 the energy scattered 
in each direction resulted from the reflection of energy at a single 
location on the sphere. If the sphere is diffuse, however, each surface 
element that intercepts incident radiation will reflect energy into the 
entire 2 7 ~  solid angle above that element. Thus the radiation scattered 
into a specified direction will arise from the entire region of the sphere 
that receives radiation and is also visible from the specified direction. This 
is illustrated by figure 8-4(a). The shaded portion of the sphere will not 
contribute radiation in the direction of the observer because it either 
does not receive radiation or is hidden from the direction of observation. 

Consider the sphere of radius R in figure 8-4(b). A typical surface 
area element dA is located at angles + and 6. The observer i s  at angle cp 
measured from the forward direction. The normal to dA is at  angles 
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,Not illuminated 

(a) To observer 

(b) observer 

(a) Illuminated region visible to observer. 

(b) Geometry on sphere. 

FIGURE 8-4.-Scattering by reflection fro111 diffuse sphere. 

p and a relative to the directions of incidence and observation. The inci- 
dent spectral energy flux within the incident solid angle dwi is i idwidh. 
The projected area of dA normal to the incident direction is dA cos P,  so the 
energy received by dA is iLdwidhdA cos P. The amount of this energy 
that is reflected is pLiLdwidXdA cos P ,  where p: is the diffuse directional- 
hemispherical spectral reflectivity. The p: is assumed independent of 
incidence angle and hence is equal to the hemispherical reflectivity pi. 
Using the cosine law dependence for diffuse reflection gives the re- 
flected energy per unit solid angle dw, in the direction of the observer 
as pAi;dwidXdA cos /3 cos a/r .  In order to integrate the reflected contri- 
butions that are recieved by the observer from all elements on the sphere 
surface, the dA,  cos P, and cos a are expressed in terms of the spherical 
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coordinates R ,  $, and 6 which gives dA = R2 sin 6 d0d$, cos P= sin 0 
cos $, and cos a = sin 6 cos ($ + n- - p) .  Then the energy scattered by 
reflection into the cp direction per unit solid angle dw, about that direc- 
tion is 

pAi;doid), R In r - i n l t )  

%- 
sin3 0 cos $ cos ($+ n- - cp)d$d0 

o=o $=-7112 

By integrating this becomes 

p~iidwidA R 2  2 
- (sin cp - cp cos cp) 

IT 3 

The energy per unit dA scattered in direction cp per unit dws and per 
unit area and solid angle of the incident radiation is obtained by dividing 
the scattered energy by nR2dwidA giving 

2 di' ( )=P- 
A , S ~  T 2 3  (sin cp - cp cos cp ) 

FIGURE 8-5. -Scattering phase function for diffuse reflecting sphere, large compared with 
wavelength of incident radiation and with constant reflectivity. 
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The entire amount of the incident intensity that is scattered is di;, s=pt,iL. 
Then from equation (8-ll), the directional magnitude of the scattered 
intensity is equal to the entire scattered intensity times the phase 
function 

so that the phase function for a diffuse sphere is 

8 
@ ( q )  =- (sin cp-q cos c p )  (8-20) 

37T 

The @ ( q )  from equation (8-20) is plotted in figure &5. The largest 
scattering is for cp= 180°, that is, toward an observer back in the same 
direction as the origin of the incident radiation. In this instance, the entire 
illuminated surface of the sphere is observed. 

8.4.3 Large Dielectric Sphere with Refractive index Close to Unity 

For a large dielectric ( K  = 0 )  sphere with refractive index n - 1 the 
reflectivity of the particle surface approaches zero. The incident radia- 
tion can thus pass with unchanged amplitude into the sphere and there is 
no scattering by reflection as in sections 8.4.1 and 8.4.2. With the ex- 
tinction coefficient zero, the radiation will pass back out of the sphere 
with unchanged amplitude. However, the velocity c=c,/n inside the 
sphere medium is slightly less than that outside, so that radiation 
passing through different portions of the sphere and hence through 
different thicknesses will have different phase lags. The resulting inter- 
ference of the waves passing out of the sphere yields a scattering cross 
section 

4 
sh = - CD2 [2-j$ sin w+--; ( 1  -cos W )  

4 W I 
where W= 2 (.rrD/h) ( n  - 1 ) .  Additional information for this situation is 
given in reference 1. 

8.4.4 Diffraction from a Large Sphere 

For large spheres there is diffraction of the radiation passing in the 
vicinity of the particle. The effects of the diffraction and reflection must 
be added to obtain the total scattering behavior. Fortunately the dif- 
fraction is predominantly in the forward scattering direction. This 
means that the diffraction can be included in the radiative transfer 
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I Screen 

Incident 1 Diffracted 

@ sin (D 
A 

(a) Diffraction of radiation by hole. 

(b) Phase function for diffraction from large sphere. 

FIGURE 8-6.-Diffraction by hole or large spherical particle. 
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as if it were part of the radiation transmitted past the particle without 
interacting with the particle. As a consequence, diffraction can often be 
neglected when considering the energy exchange within a scattering 
medium. 

The most familiar form of &!Traction is when light passes through 
a small hole or slit. As shown in figure 8-6(a) the result is a diffraction 
pattern of alternate illuminated and dark rings or strips. If a spherical 
particle is in the path of incident radiation, Babinet's principle states 
that the diffracted intensities are the same as for a hole. This is a con- 
sequence of fact that the hole and particle produce complementary 
disturbances in the amplitude of an incident electromagnetic wave. 
The energy diffracted by a spherical particle is thus the same as that 
diffracted by a hole of the same diameter. As a consequence, the entire 
projected area of the sphere takes part in the diffraction process, and 
the scattering cross section for diffraction is equal to the projected 
area ~ 0 ' 1 4 .  Since diffraction and reflection occur simultaneously, the 
total scattering cross section can approach 2(.rrD2/4) when the sphere is 
highly reflecting. 

The phase function for diffraction by a large sphere is given in terms 
of a Bessel function of the first kind of order one (ref. 1 ,  pp. 107 and 

-This function is plotted in figure 8-6(b). Since the abscissa is (.rrD/A) 
sin cp, for particles with large ~TD/A the diffracted radiation lies within a 
narrow angular region in the forward scattering direction. For small parti- 
cles where rD/A is of order unity, the theory leading to equation (8-22) is 
invalid and the general Mie scattering theory must be applied. The 
integration to show that equation (8-22) satisfies equation (8-14) is 
discussed in reference 7 (p. 398); it is only necessary to integrate over 
small cp which simplifies the integration considerably. 

8.4.5 Rayleigh Scattering 

For many common situations, the scattering particles are consid- 
erably smaller in diameter than the wavelength of the incident radiation 
(D -G A). Scattering from such particles is termed Rayleigh scattering 
after Lord Rayleigh, who examined this situation. Rayleigh scattering 
is important in the atmosphere where the gas molecules are the scattering 
particles. The cross section for Rayleigh scattering can be derived 
from quantum theory or electromagnetic theory. Originally, Rayleigh 
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derived the functional dependence by dimensional analysis and arrived 
at the following result: 

where V is the volume of a particle and (;(TI) is an unknown function of 
the complex refractive index of the scattering material. The important 
result is that for Rayleigh scattering, the scattered ene+gy i n  a n y  direction, 
is proportional to the inverse fourth power of the wavelength of the inci- 
dent radiation. 'The inverse dependence upon the fourth power of wave- 
length shows that the shorter wavelengths will be Rayleigh scattered 
with a strong preference when the incident radiation covers a wavelength 
spectrum. 

Rayleigh scattering by the molecules of the atmosphere accounts for 
the background of the sky being blue, and for the Sun becoming red in 
appearance at sunset. The blue portion of the incident sunlight is at the 
short wavelength end of the visible spectrum. Hence it undergoes strong 
Rayleigh scattering into all directions, giving the sky its overall blue back- 
ground. Without molecular scattering, the sky would appear black except 
for the direct view of the Sun. As the Sun is setting, the path length for 
direct radiation through the atmosphere becomes much longer than dur- 
ing the middle of the day. In traversing this longer path more of the short 
wavelength portion of the spectrum is scattered away from the direct 
path of the Sun's rays. As a result, at sunset the Sun takes on a red color 
as the longer wavelength red rays are able to penetrate the atmosphere 
with less attenuation than the rest of the visible spectrum. If many dust 
particles are present, a deep red sunset may be seen. 

If particles with a very limited range of sizes are present in the atmos- 
phere, unusual scattering effects may be observed. Following the erup- 
tion of Krakatoa in 1883, the occurrence of blue and green Suns and 
Moons was noted over a period of many years. This effect was attributed 
to particles in the atmosphere of such a size range as to scatter only the 
red portion of the visible spectrum. On September 26 of 1950, a blue Sun 
and Moon were observed in Europe, a phenomenon believed due to finely 
dispersed smoke particles of uniform size carried from forest fires burn- 
ing in Canada. 

8.4.5.1 Scattering cross sections for Rayleigh scattering.-Equation 
(8-23) gives only the functional dependence of the scattered radiation 
on wavelength and particle volume, so that additional information is 
needed for the particle scattering cross section and the angular dis- 
tribution of the scattered intensity. Consider first small nonabsorbing 
( K =  0) particles so that fi = n and D < - 0.2hln where A is the wave- 
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length in the particle material. The Rayleigh scattering cross section 
for unpolarized incident radiation is found from more advanced theory 
to be 

Often Rayleigh scattering cross sections are given in terms of the polar- 
izability ol, of the particles. This is a proportionality factor relating 
the forces induced in the molecules to the external electromagnetic 
field. Specifically it relates the dipole moment per unit volume (defined 
as the polarization) produced in the material to the external field. For 
the case under discussion here the polarizability is 

so that equation (8-24) can be written 

Scattering particles Restrictions Polarizability, 

ffp, 

length3 

Electrons (Thomson 
scattering) 

Energy of incident photon is small, 
hv 6 meci 

Small dielectric 
particle 

Medium containing 
small particles 
(Lorentz-Lorentz) 

Particle diameter is small compared 
with wavelength in medium 
and in particle. 

(s) (5)" 

Medium containing 
small particles 

Medium containing 
small particles 

Spacing be:~veen particles is small com- - 
pared with wavelength (<A). Particle di- 
ameter is very small (D G A) compared 
with A in both medium and particle. 

Spacing between particles > D. 

3 ti2 - 1 
47rN n 2 +  2 I 

Spacing between particles is large ( * A). 
Particle diameter is very small (D < A). 

* e A  -= 
nl,c; 

classical electron radius, 2.818 X 10-'3cm. 

In2-11 
47rN 

Spacing between particles is large ( B A). 
Particle diameter is very small ( D  6 A). 
The ii is close to 1. 

JA-11 
2nN 
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In this more general form, cross sections for various particles that 
follow the Rayleigh scattering relations can be introduced by substi- 
tuting the requisite form for a,, into equation (8-26). Table 8-11 gives 
some quantities for individual particles and particles in a nonpartici- 
pating medium. 

The actual scattering cross section for particles in a medium may 
vary with h in a manner somewhat different from a l / X 4  dependence. 
In air at standard temperature and pressure, for example, the restric- 
tions are satisfied such that Rayleigh scattering from the gas molecules 
should govern. However, the variation of refractive index with wave- 
length causes the variation of the scattering cross section to depart 
somewhat from the 1 / X 4  dependence. This is shown in figure 8-7 where 

10-28 
. 2  . 4  .6 . 8  1.0 

Wavelength, A, pm 

FIGURE 8-7. -Comparison of actual Rayleigh scattering cross section for air at standard 
temperature and pressure with l / A 4  variation (from ref. 6). 
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'[ fisimpl: of refraction, index 

3 

Extinction coefficient, K 

FIGURE 8-8.-Rayleigh scattering cross section as a function of simple index of refraction 
and extinction coefficient. 

the actual scattering dependence on wavelength is compared with 
1/h4. 

When the particles are of a conducting material with a complex index 
of refraction ii.= n -  i ~ ,  the scattering cross section has the following 
form which is more general than that of equation (8-24) 

Inserting i i=  n -  i~ and taking the square of the absolute value as indi- 
cated give 

For K = O  this reduces to equation (8-24). The quantity S A / ( ~ ~ + V ' / A ~ )  
from equation (8-28) is in figure 8-8 for various n and K values. 

8.4.5.2 Phase function for Rayleigh scattering. - For incident unpolar- 
ized radiation, electromagnetic theory gives for Ra~leigh scattering 
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---- Isotropic 
Rayleigh 

FIGURE 8-9. -Pltase functions for Rayleigh and isotropic scattering. 

This is independent of the circumferential angle 0. 
A plot of the phase function for Rayleigh and for isotropic scattering 

is given in figure 8-9. For Rayleigh scattering, the scattered energy is 
directed preferentially along the forward direction of the incident radia- 
tion, and also strongly back toward the source of the radiation. 

8.4.6 Mie Scattering Theory 

When the particles that cause scattering are not large as  treated in 
sections 8.4.1 to 8.4.3, and are not small enough to fall into the range that 
is adequately described by Rayleigh scattering relations, recourse must 
be taken to more complicated treatments. This is for the approximate 
range (0.21~~) < (DIX) < 1 where A is the wavelength inside the particle 
material. Gustav Mie (ref. 2) originally applied electromagnetic theory to 
derive the properties of the electromagnetic field that arises when a 
plane monochromatic wave is incident upon a spherical surface across 
which the optical properties n and K change abruptly. As a consequence, 
the energy absorption by the medium, the absorption by the scattering 
particles, or both can be accounted for. The results of this theory apply 
over the entire range of particle diameters. As might be expected, strong 
polarization effects can be present. In certain cases, the phase function 
becomes very complicated as illustrated by figure 8-10. 

Van der Hulst (ref. 1) gives an excellent detailed treatment of the Mie 
theory. The limiting cases of very small and very large particles are 
examined, and working formulae for all ranges of size are presented. The 
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Phase function 
- - - - - - - - - - - - Portion of phase function due  to 

perpendicularly polarized component 

(c) (d) 

(a) v D l A  + 0; metallic sphere; (b) TD/A = 9.15; metallic sphere; 
ii = 0.57 - 4.29 i. n = 0.57 - 4.29 i. 

(c) v D / h  = 10.3; lnetallic sphere; ( d )  &/A = 8; dielectric sphere; 
ii = 0.57 - 4.29 i. n = 1.25. 

FIGURE 8-10.-Phase functions for Rtie scattering from metallic and dielectric spheres 
(on arbitrary scales) from references 1 and 7. 

cross sections and phase functions are discussed for dielectric and 
metallic particles of various shapes including spheres a n d  cylinders. 
Some further work on absorbing particles, using detailed Mie  scattering 
theory, has been done by Plass (ref. 3). 

One of the simpler results from the Mie theory is for small spheres. 
The general Mie equations can be expanded into a power series  in terms 
of the parameter TDIA giving the scattering cross section as 
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The second term in the square bracket is the first correction to the 
Rayleigh scattering relation which was valid for very small particles. 
When nD/X is very small, this term drops out and the relation becomes 
equation (8-27). 

For small spheres the limit can also be considered where ii becomes 
very large. The scattering particles will then be very highly reflecting 
such as for a cloud of metallic particles. The result for this case cannot 
be obtained by letting ii in equation (8-30) approach infinity. As ii 
becomes large, the small part of the incident radiation that does pene- 
trate the particle becomes almost totally internally reflected. This 
creates standing waves within the particle which provide resonance 
peaks in the scattering. The expansion used to obtain equation (8-30) 
did not account for this behavior. In the limit for ii-+ the scattering 
cross section for small spheres is 

If, in addition to ii-+ m, the particles are so small that only the first 
term in the bracket of equation (8-31) is significant, then for unpolar- 
ized incident radiation the phase function is given by 

FIGURE 8-11.-Phase function for scattering of unpolarized incident radiation from small 
sphere with ii -+ a. 
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3 1 a(,) =,[(I -5 cos ,)?+ (cos p-;)2] 

A polar diagram of this function is given in figure 8-11. This shows 
that in contrast to Rayleigh scattering (fig. 8-9) the highly reflecting 
particles produce a very strong scattering back toward the source. 

8.5 RADIATIVE TRANSFER IN SCATTERING MEDIA 

Now that some of the fundamentals of scattering behavior have been 
examined, the methods of using this information in radiative transfer 
calculations can be treated. First, pure scattering problems are ex- 
amined, and then the complete absorbing, emitting, and scattering case 
is considered. 

8.5.1 The Equation of Transfer in a Pure Scattering ~tmosphere 

Let us consider first the situation of radiation transfer in a medium 
where there is scattering but no absorption or emission of radiation. 
The local intensity along a path will be attenuated by radiation scattered 
out into other directions, and will be enhanced by radiation scattered into 
the direction being considered. Figure 8-12 shows radiation with inten- 
sity i; passing through a volume element dAdS where dA i s  normal t~ the 
direction of i;. While passing through the distance dS,  a portion di;,, of 
the intensity will be scattered away. From equations (8-3) and (8-5) this 
is equal to 

di;, , = i; (S) a,,idS (8-33) 

-s \ 
FIGURE 8-12. -Scattering of energy into S direction. 
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TO compute the scattering from all directions into the direction of i : ,  
consider the radiation incident at angle ( p ,  6 )  as shown in figure 8-12. 
This radiation has intensity i ; (P,  O), and in the process of going through 
the volume element dV will pass through a path length dS/cos P. From 
equation (8-11) oriented with respect to the present coordinate system, 
the intensity scattered from i ; (P,  0 )  into the direction of ij( is 

However, from equation (8-10) i;,, is an intensity defined as energy in the 
scattered direction per unit dA, per unit scattered solid angle, per unit 
incident solid angle h i ,  and per unit area normal to the incident intensity. 
This is the area normal to i,'(P, 0 )  which is dA cos P .  Then the spectral 
energy scattered into the S direction as a result of i ; (P,  0 )  is by use of 
equation (8-34) 

= cSAi;  ( p ,  e )  d ~ d ~ i d A d A  cos P 
cos p 477- 

The contribution of this scattered energy to the spectral intensity in the 
S direction is then 

To account for the scattering contributions from incident intensities 
from all directions, integrate over all c l w i  to obtain 

- 
dS d4Qi;, -- 

USA I i ; (p ,@)@(p ,O)dw i  (8-36) 
dAdwdA 4rr wi=4,, 

The scattering particles have been assumed randomly oriented so that 
the scattering cross section USA is independent of the incidence direction. 

By combining equations (8-33) and (8-36) the change of intensity in 
direction S is 
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AS in equations (2-5) and (2+) a scattering optical thickness K S A  can be 
introduced such that 

~ K ~ A  -- csxdS 
and 

K ~ A  ( S )  = ~ S A  (S*) dS * I," 
Then equation (8-37) becomes 

This has the same functional form as the equation for absorbing-emitting 
media (eq. (2-7)). As in equation (2-7), the term on the  right side of 
equation (8-40) accounts for intensity added to the beam a t  each point 
along the path. 

Equation ( 8 4 0 )  can be integrated along a scattering optical path from 
0 to KSX in the same fashion as equation (2-10) was obtained. BY analogy 
with equation (2-10) this gives 

~ ; ( K , A )  = i i ( 0 )  exp (- K,A) + LKsA [k /w,-ir i ; (P ,  O)@(P1 0 )du i ]  
1 -  '6 

x exp [- ( K ~ A  - K $ ) ]  ~ K Z X  (8-41) 

where K.?A is a dummy integration variable, and the integral  in the first 
square bracket is evaluated at K&. For an ideal scattering p rocess  where 
there is no absorption of photon energy by the scattering particles, there 
will be no exchange of energy with the medium. In this i n s t a n c e ,  there is 
only a directional redistribution of energy by the scat ter ing.  Then if 
W S A  and @ are independent of temperature, equation ( 8 4 1 )  applies 
regardless of the temperature distribution of the medium. 

In situations such as a searchlight or laser beam, the only significant 
intensity source is that arising from the beam. Then the scattered 
from other sources into the direction of the beam will be negligible and 
equation (8-41) reduces to the simple exponential a t t enua t ion  relation 

~ ; ( K ~ A )  = i i ( 0 )  exp (- K ~ A )  (8-42) 

EXAMPLE 8-1: Derive the equations that describe the l oca l  intensity 
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and energy flux in a one-dimensional scattering layer. The layer is con- 
tained between infinite parallel black plates separated b) a distance D. 
The lower and upper plates are maintained at temperatures TI  and T2, 

respectively. The gas scatters isotropically, is nonconducting, and has 
an  absorption coefficient of zero. The gas properties are assumed 
independent of wavelength. 

Since the properties are assumed independent of wavelength, the 
A subscripts can be omitted in what follows. The same relations will 
apply, however, for radiation at a single wavelength if the spectral emis- 
sion from the walls is utilized. Note that for isotropic scattering the phase 
function is 1. 

This example is the scattering counterpart of the development in 
section 2.6.2 which was concerned with a nonscattering, absorbing- 
emitting medium. If x is the distance measured normal from plate 1, 
the scattering optical distance from a point on the plate to a point in the 
medium is ~ ~ / c o s  p where it should be noted that this K, is based on the 
coordinate x, not on the actual path length of the radiation. Then by 
analogy with equations (2-34) and (2-35) the intensities in the directions 
having positive and negative cos p are respectively (see fig. 2-5) 

- (K, - K:) IT 

Xexp  [ cos p ]dr: 0 ~ 8 ~ -  2 (8-43) 

uT2 
i l ( ~ , ,  p )  =- exp 

IT 

?r 

-- coip [i L*=.i'(~:, P*) sin p*dp*]  

K$ - K, IT 
Xexp (------)d~: (8-44) 

cos p 
These relations for isotropic scattering can be solved in a manner 
analogous to that for an absorbing-emitting medium. Note that the 
integral in the last term on the right in equations (8-43) and (8-44) in- 
volves integrating over all /3* directions and hence includes the contribu- 
tions from both i: and il. A P*  notation has been used to distinguish 

this integration variable over all directions from the /? which has a 
restricted range for each of the equations. 

The energy flux flowing from wall 1 to wall 2 can be found by analogy 
with equation (2-41) as 
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+ ~ j ~ ~ , ~ [ ~ / ~ * = ~ i t ( ~ f ,  c o s p  o @*I sin p*dpX I 
x exp (- ) dK?} d~ (8-45) 

cos p 

In this equation the a T f  is the energy flux leaving wall 1 by radiation. The 
second term is the flux incoming to wall 1 in two ways: (1)  along direct 
paths from wall 2 along which the emitted radiation UTzJ is  attenuated 
by scattering, and (2) by radiation scattered in at local between 
the plates and then attenuated before reaching wall 1. 

8.5.2 Scattering in Absorbing-Emitting Media 

If scattering, absorption, and emission are all of significance, then the 
equation of transfer as given by equation (2-4) is by including 

- 

the scattering terms of equation (8-37) to give 
di;= 
dS a ~ i ; ( ~ )  +aAi;,(s) - v s A i ; ( ~ )  +=pi($ 47~. w;=4% oi)@ (A ,  m, oi)dmi 

Loss by ab- Gain by Loss by Gain by s c a t t e r i n g  
sorption emission scatter- into S-direction 
(including (not in- ing 
the contri- cluding 
bution by induced 
induced emission) 
emission) 

The two terms representing losses by absorption and sca t t e r ing  can be 
combined. Then the equation of transfer for absorbing, emit t ing,  and 
scattering media (for the case of elastic anisotropic sca t te r ing)  is the 
following for the intensity in the solid angle o about the s -d i rec t ion :  

The sum aA+cr,~ is the extinction coefficient Kk d i s c u s s e d  in section 
1.5.1. 

The albedo for single scatter 0, is sometimes used w h i c h  is defined 
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as the ratio of the scattering coefficient to the extinction coefficient, or 

The optical depth or opacity when both scattering and absorption are 
present is given by (this has been defined previously in eq. (1-17)) 

where S* is a dummy variable of integration. Equation (8-47) now 
becomes 

Often, especially in the astrophysical literature, the final two terms in 
equation (8-50) are combined into the source function 1; ( K * ) ,  defined as 

This is the source of intensity along the optical path from both emission 
and incoming scattering. The equation of transfer then becomes 

The generalized equation of transfer including absorption, emission, and 
scatter is thus quite similar in form to the equation of transfer for pure 
absorption and emission that has been studied at length in chapters 2 and 
3.  Note that when f l o A - +  0 (no scattering), equation (8-52) does indeed 
reduce to the correct form for pure emission and absorption (eq. (2-7)). 
For f i o ~ - +  1 (pure scattering), equation (8-52) reduces to the pure scat- 
tering form (eq. (8-40)). 

Because equation (8-52) is similar in form to equation (2-7), many 
of the mathematical approaches to solutions of the equation of transfer 
given in chapter 3 also apply when scattering is included. The texts 
by Chandrasekhar and Kourganoff (refs. 4 and 5) and the work of Goody 
(ref. 6) that deals with atmospheric effects treat at length scattering 
problems with and without absorption and emission for one-dimensional 



308. THERMAL RADIATION HEAT TRANSFER 

atmospheres. A demonstration of the similarity with previous derivations 
given in chapter 3 will now be given by considering the diffusion 
approximation. 

EXAMPLE 8-2: Derive a first-order diffusion relation for radiative 
transfer in a one-dimensional layer of absorbing-emitting isotropic 
medium with isotropic scattering. 

Let x be the thickness coordinate normal to the layer boundaries. 
The equation of transfer for the general one-dimensional case including 
emission, absorption, and scattering is from equation (8-52) (as in eq. 
(3-17)) 

where p= cos p. For isotropic scattering the source function I: is inde- 
pendent of direction and is given from equation (8-51) by 

In the diffusion approximation, the medium is optically dense. Con- 
sequently the radiation arriving at any location comes only from the im- 
mediate surroundings, as any other radiation would b e  absorbed or 
scattered before arriving at that location. Also in the diffusion approxi- 
mation the radiant energy density changes slowly with position relative 
to distances for attenuation. This can be stated more rigorously by letting 
H be a path length over which the radiant energy density does 
change appreciably, and letting I,, be the extinction m e a n  free path, 
1111= 11 (ah + c S x ) .  Then for the diffusion approximation to apply LllllH+ 1. 
As in equation (3-19) the intensity is expanded in terms o f  powers of the 
small quantity 

Insert equation (8-54) into the equation of transfer to obta in  
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where I,,, ,= l / v s A .  In addition to the expansion parameter I , , , / H ,  there 
has appeared an additional quantity 1111/1,1,, , which gives the relation of 
the total extinction to that of scatter alone. For the diffusion approxi- 
mation including absorption and scattering, this parameter will have to 
be of order one-half. For small 1,, , /1, , , , ,  the problem would degenerate to 
one of diffusion by absorption alone; this could be the situation in a dense 
gas containing a few scattering particles. For l , l , / lnl,s approaching 1 so 

= I l a , s ,  there would be scattering alone as in a thin carrier gas with 
many scattering particles. Collect the terms in equation (8-55) of zeroth 
order in I, , /H to obtain 

4 

The terms iLb and i;(O)dwi on the right in equation (8-56) do not 
o i=4m I 

depend on the incidence angle dwi. Hence i;(O) on the left cannot depend 

on angle. By using this fact, equation (8-56) reduces to 

which further reduces to 

i;(o)= .' 
Z A ~  (8- 5 7 )  

Now collect terms from equation (8-55) of first order in II , , /H to obtain 

Substitute equation (8-57) for iL(O) to give 

To find i?),  multiplylby dwi = 271- sin P dp = - Prdp and integrate over 
all solid angles 
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The integral on the left is zero so 

Hence Lm i;(I)dwi= 0 and equation (8-58) reduces to 

Substitute equations (8-57) and (8-59) into equation (8-54) to obtain 

This is the same form as equation (3-23) for the nonscattering case, 
except that the extinction coefficient aA+aSA appears in  place of the 
absorptioil coefficient. Then by analogy with equation (3-25) the energy 
flux in the x direction is given by the diffusion equation 

The net flux depends only on the emissive power gradient and the ex- 
tinction coefficient when diffusion conditions apply. 

Bobco (ref. 8) used a modified diffusion solution to find the direc- 
tional emissivity for radiation from a semi-infinite slab of isothermal 
gray scattering-absorbing medium. The scattering was assumed iso- 
tropic. The directional emissivities of the slab were found to differ con- 
siderably from a diffuse distribution. Hsia and Love (ref. 9) treated 
energy transfer between parallel plates through an anisotropically scat- 
tering medium. Nonisothermal conditions in the medium were 
considered. SoIutions were obtained by approximating the  integral terms 
in the equation of transfer by a finite summation. The se t  of differential 



TRANSFER IN SCATTERING MEDIA 311 

equations that resulted were solved by a specialized matrix transfor- 
mation technique. 

Love et al. (ref. 10) studied plane and cylindrical boundaries with 
given reflectivities that enclose absorbing, emitting, and scattering gases. 
Both Monte Carlo and discrete ordinate methods were used for com- 
puting the energy transfer. Some experimentally determined values 
of the scattering phase functions for glass beads, and aluminum, carbon, 
iron, and silica particles were used for comparison of their effect in a 
variety of energy exchange cases. It is significant that little difference 
in energy transfer was found for the results using these experimental 
phase fullctiolls as compared with the results using either the Rayleigh 
or isotropic phase functions. It appears therefore that the assunzption 
of isotropic scattering is often justified i n  energy exchange calcuLations 
i n  enclosures. 

In figure 8-13, results from reference 10 are shown for the fraction 

Dimensionless radial position, rlR 

FIGURE 8-13.-Effect of scattering phase function on energy scattered back to base plane 
by cylinder of scattering medium. Optical diameter of cylinder, 2; height to diameter 
ratio, 5 (ref. 10). 
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of emitted energy from a black disk that is scattered back to the base 
plane from a cylinder of gas adjacent to the disk. The results for various 
scattering phase functions in the gas are in very good agreement The 
various phase functions gave energy transfer results that had less varia- 
tion in plane ~a ra l l e l  geometries than in the cylindrical geometry. It 
should be emphasized that in some cases the insensitivity of results 
to the scattering phase function is probably not a valid assumption. 
Specifically the phase functioil will be important for beam transmission 
or other situations where strong sources transmit directionally into a 
scattering atmosphere. 
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Chapter 9. Some Specialized Effects in Absorbing- 
Radiating Media 
9.1 INTRODUCTION 

This chapter deals with four special radiation topics each of which 
has important applications, but in restricted areas. For this reason, 
some of the features of these topics are only briefly presented. 

The first topic deals with media having a nonunity refractive index. 
This topic includes the radiation within, and penetrating into, materials 
such as glass and ice. When radiation from one material enters one of 
another refractive index, the bending and reflection of rays at the inter- 
face must be considered in the analysis. For closely spaced layers 
such as in cryogenic super insulation, there is an additional effect of 
radiation tunneling between layers. 

The second topic is flames, both nonluminous and those containing 
luminous particles, mainly soot. A nonluminous hydrocarbon flame 
contains carbon dioxide and water vapor as its chief radiating constitu- 
ents. Radiation by these gases is fairly well understood. When soot is 
present and the flame thereby becomes luminous, the radiation is 
dependent on the radiative properties of the soot and the soot concentra- 
tion within the flame. There is some information available on soot radia- 
tive properties, but the amount is insufficient. In addition to the un- 
certainties in the soot properties, a serious difficulty in flame radiation 
computations is determining the soot concentration. The concentration 
depends on the particular fuel, the flame geometry, and the complicated 
mixing phenomena within the flame. At present there is no way of com- 
puting soot concentration from the basic parameters, such a s  the burner 
geometry, fuel-air ratio, and the particular fuel. 

This chapter ends with brief discussions of two topics: lun~inescence 
and transient gas radiation problems. The recent. limited interest in 
the latter stems chiefly from nuclear weapons calculations. 

9.2 SYMBOLS 

A area 
a absorption coefficient 
C volume fraction of particles in medium 

C1, C2 constants in Planck's spectral energy distribution 

C3 constant in Wien's displacement law 
313 
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speed of light in medium 
heat capacity at constant volume 
ineail heat capacity 
half thickness of slab; particle diameter 
absorptio~l efficiency factor for single particle 
emissive power 
fuilctioll defined by eqs. (9-22) and (9-23) 
enthalpy 
radiation intensity 
constants in equations for soot absorption 
mean beam leilgth 
number of moles 
number of particles per unit volume 
simple refractive index (real part of 7i= rz - i ~ )  
partial pressure 
energy per unit time 
energy flux, energy per unit area and time 
coordinate along path of radiation 
absolute temperature 
time 
dimensionless time, (cruT;/pc,.)t 
volume 
rectangular coordinate 
exponent in eq. (9-18) 
cone angle, angle from ilorrnal of area 
angles giving total internal reflection 
maximum angle where refraction occurs 
emittance 
dimensio~lless temperature, TIT, 
circumferential angle 
optical thickness, ax; extinction coefficient in colllplex refrac- 

tive index 
wavelength 
density 
Stefan-Boltzmann constant 
scattering angle measured fro111 forward direction to direction 

of observer (see fig. 8-1) 
solid angle 

Subscripts: 

b blackbody 
D evaluated for length D 
e emitted 



prod 
r 

ref 
vac 
A 
1 ,233  

green 
input 
medium 
maximum value 
no self-absorption; initial value 
products 
red 
reference value 
in vacuum 
spectrally dependent 
medium or boundary 1, 2, or 3 

Superscript: 

directionally dependent quantity 

9.3 RADIATION PHENOMENA I N  MEDIA WITH NONUNITY REFRACTIVE 
INDEX 

Most of the discussion in this volume has been concerned with dielec- 
tric media that have a refractive index n of unity. This is not unduly 
restrictive, as the absorbing-emitting medium is usually a gas, and 
almost all gases have a refractive index that is very close to unity as 
shown by table 9-1 (ref. 1). However, there are certain situations where 
the refractive index can be significantly different from unity or can be 
variable over a given path for radiation as a result of spatial temperature 
variations. Table 9-1 lists some common materials that possess nonunity 
refractive indices. As discussed in section 2.4.12 of volume I, one effect 
of nonunity n is to increase the blackbody emission within the m,edium. 
by a factor of n2. In this section, consideration is given to some situations 
where the effect of refractive index must be considered. 

9.3.1 Media With Constant But Nonunity Refractive Index 

Consider the case of radiation with intensity i: in a dielectric medium 
of refractive index nl .  Let the radiation in solid angle dwl pass into a 
dielectric medium of refractive index n2 as pictured in figure 9-1. As 
a result of the differing indices of refraction, the rays will change direc- 
tion as they pass into medium 2. The radiation in solid angle dwl at 
incidence angle will pass into solid angle do2 at an angle of refraction 
Pz If it is assumed that there is no reflection or scattering at the interface, 
the energy of the radiation is conserved when crossing the interface. 
From the definition of intensity this conservation of energy is given by 
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I Material 

Chlorine 1.385 
Ethyl alcohol 1.36 to 1.34 (16" to 76' C) 

Oxygen 1.221 
Water 1.33 to 1.32 (14" to 100' C) 

Refractive index, n 
-- 

Gasrs 

I Solids I 

1 

Air 
Argon 
Carbon dioxide 
Cljlorine 
Hydrogen 
Methane 
Nitrogen 
Oxygen 
Water vapor 

Glass 

1.00029 
1.00028 
1.00045 
1.00077 
1.00014 
1.00044 
1.00030 
1.00027 
1.00026 

Crown 
Flint 

Ice 

Liquids 

Quartz 
Rock salt 

Medium 1 with refrac- 
tive index nl 

FIGURE 9-1.-Beam with initial intensity i; crossing interface between two d i  &lectric 
media wit11 unequal refractive indices. 



SPECIALIZED EFFECTS IN RADIATING MEDIA 317 

i: cos pl dAdwl = i; cos p 2  d A d ~ 2  (9-1) 

where dA is an area element in the plane of the interface. Using the rela- 
tion for solid angle 

dw = sin p dPdO (9-2) 

results in equation (9-1) becoming (noting that the increment of cir- 
cumferential angle dB is not changed in crossing the interface) 

i; sin j31 cos dP1= ii sin pz cos dpz (9-3) 

From equation (4-43) of volume I, Snell's law relates the indices of 
refraction to the angles of incidence and refraction by 

- sin P 2  n1 - - 
nz sin Dl 

Then by differentiation 

Substituting equations (9-4) and (9-5) into equation (9-3) gives 

Although equation (9-6) was derived for radiation crossing the interface 
of two media, the equation also holds for intensity at any point in a trans- 
parent lnediurn with variable refractive index so long as the local prop- 
erties of the medium are independent of direction, that is, are isotropic. 
This isotropy will be the case except in certain plasma physics applica- 
tions. Thus, in general in a transparent isotropic medium, for either the 
spectral intensity, or the total intensity in a medium with spectrally 
independent refractive index 

i '  
-= constant 2 (9-7) 

9.3.2 The Effect of Brewster's Angle 

Consider a volume element dV inside a semi-infinite region of refrac- 
tive index n z  as shown in figure 9-2. Suppose that diffuse radiation of 
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FIGURE 9-2.-Effect of refraction on radiation transport in media with nonunity refractive 
index. 

intensity ii is incident upon the boundary of this region from a region 
having refractive index n , ~  where nl < nn. Radiation incident at grazing 
angles to the interface ( P I  - 90') will be refracted into medium 2 a t  a 
maximum value of j32 given by 

n~ sin P 2 ,  ,,,clt=- sin 90°=lkl 
n2 n 2  

Hence the volume element in medium 2 will receive direct radiation 
from medium 1 only at angular directions within the range 

Now consider e ~ i s s i o n  from dV. The portion of this emission tha t  
enters region 1 will be along paths found by reversing the arrows on  the 
solid lines in figure 9-2. However, there is also radiation from dV a long 
paths such as those shown by the dashed lines in figure 9-2 that are 
incident on the interface at angles P,*, where 
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n 1 sin pz > - 
n2 

From equation (9-4), this means that such a ray would enter medium 1 
at an angle given by 

32.2121 sin pl =% sin /32 > --- (= 1) 
n~ n1n2 

But sin pl cannot be greater than unity for real values of pl. This result 
is interpreted to mean that any ray incident upon the interface from 
medium 2 at any angle greater than that given by 

cannot enter medium 1, and must be totally reflected at the interface. 
The angle. defined by equation (9-12) is called Brewster's angle. 

From section 2.4.12 of volume I, the blackbody emission inside a 
dielectric medium with refractive index that is constant but not unity, 
has an intensity given by 

Consequently, for an absorbing-emitting gray medium with absorption 
coefficient a ,  the total energy emitted by a volume element is 

If spectral variations of n are known to be important, then an integration 
over wavelength must be included, provided of course that the data for 
n as a function of wavelength is known. 

From equation (9-13) it might appear that because n > 1, the intensity 
radiated from a dielectric medium into air could be larger than the usual 
blackbody radiation i;. This is not the case as some of the energy emitted 
within the medium is reflected back into the emitting body at the medium- 
air interface. Consider a thick dielectric medium (K=O) at uniform tem- 
perature and with refractive index n. The maximum intensity received 
at an element dA on the interface from all directions within the medium is 
n2ii. Only the energy within a cone having a vertex angle P,,,, relative 
to the normal of dA will penetrate through the interface; for incidence 
angles larger than the energy will be reflected back into the medium. 
Hence, the energy received at dA that leaves the medium is 
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n2i6dA cos P 217 sin P dp  = 2.rrn2ikdA sinVP,l,ax 
2 

From equation (9-8) with n, = 1 and nz = 11 in this case, sin PJltaZ= lln 
so that the total hemispherical emissive power leaving the interface is 

Dividing by rrdA gives i6 as the maximum diffuse intensity leaving the 
interface which is the expected blackbody radiation. 

EXAMPLE 9-1: An elemental volume dV is located at x= 1 cm into 
a glass plate from the plate interface with air (as in fig. 9-2). Diffuse- 
gray radiation of intensity 10W/(cm2)(sr) in the air is entering the glass 
(note this intensity is entering the glass so the reflectivity of the interface 
has already been accounted for). If the absorption coefficient of the glass 
is 0.005 cm-I and its refractive index is n= 1.75, determine the tempera- 
ture at dV as a result of only this incident intensity. Assume the radiation 
absorbed from the surrounding glass is small, and neglect heat 
conduction. 

An energy balance on dV states that the emitted energy will equal 
the incident energy that is transmitted through the glass and absorbed 
by dV, that is, 

From equation (9-7) the intensity i61,ss (0, P) in the glass at the glass 
surface is related to the entering intensity in air ihir (0) by i~,,,, (0, p )  
=I n2ihi, (0). Since the path length from the glass surface to dV is x/cos P ,  
the intensity iGlaSs (x, p )  at dV is given by Bouguer's law as 

Substituting into the energy balance and solving for T4 gives 

Over part of the 417 solid angle surrounding dV there will be no energy 
incident on dV, so that the integration limits on P must be derived by 
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considering the restrictiorl of equation (9-8). This gives 

exp (-5) sin f i  dp 

Let p = c o s  f i  to obtain 

- 277-iLir ( 0 )  T -  I: exp (- 7 ) d p  
40- ros.~, , , , ,  

From equation (2-45) this becomes 

cos p.,or 
4 -  2"i:"r(o) [ E ~  ( a x )  -Io exp (-$) d p ]  T -  

4CT 

Now let y=p /cos  P,,ln.r to obtain 

T4 = 2ri:,ir(O) ax Ee (ax) - cos finlcrrE2 
4 c  

Substituting numerical values gives 

The Ep  values can be found from table I1 in the appendix to give 

In this example, the effect of the surface reflectivity in determining the 
intensity of the radiation that is able to cross the interface and enter 
the material was not explicitly treated. It can be introduced for optically 
smooth surfaces by using the electromagnetic theory relations for 
reflectivity from chapter 4 of volume I. 

Gardon (refs. 2 to 5) has treated problems of thermal radiation in glass, 
where effects of the refractive index are substantial. Reference 2 in- 
cludes some analysis of perpendicular and parallel polarization contri- 
butions; in references 3 and 4, a comprehensive analysis of the heat 
treatment of glass is given. This analysis of heat treatment includes the 
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effects of conduction within the glass and convection at the surface. In 
reference 5, a review of radiant heat transfer as studied by researchers 
in the glass industry is given, and a digest of m~lch  of the literature on 
the subject up to 1961 is presented. Condon (ref. 6) has given a more 
recent review of radiation problems in the glass industry from the view- 
point of the astrophysicist. 

As mentioned in section 7.3, McConnell (ref. 7) has studied the radia- 
tion effects on a space vehicle that has a layer of frost deposited on its 
surface. An external source of radiation (the Sun or a diffuse source) is 
assumed to radiate to the frost layer, and the resulting temperature 
profile in the frost is analyzed as modified by sublimation of the frost at 
its free surface. The refractive index of the frost must be accounted for 
because of the modification of the usual radiation equations as outlined 
in example 9-1. 

9.3.3 Radiative Transfer Between Dielectrics Spaced Closely Together 

A highly effective insulation can be constructed from many layers of 
radiation reflecting films separated by vacuum to provide a series of 
alternate radiation and conduction barriers. One construction is to 
deposit highly reflecting metallic films on both sides of thin sheets of 
plastic. The sheets are then spaced apart by placing between them a 
cloth net with large open area between the fibers. Typically a stacking 
of 50 radiation shields per inch of thickness can be obtained in this 
manner. An important use of multilayer insulation is in low temperature 
applications such as insulation of cryogenic storage tanks. 

The multilayer insulation can be quite effective. A conventional 
analysis of radiation between surfaces in vacuum shows that if two gray 
parallel plates with surface emissivity 6 are separated by one radiation 
shield also having emissivity 6 on both sides, the heat radiated between 
the plates will be reduced to one-half its value without the shield. The 
use of n shields all of emissivity e will reduce the heat flow to l / ( n  + 1 )  
of the uninsulated value. The additional effect to be discussed here arises 
because the reflecting layers are spaced very close to each other; the 
question is whether such small spacings can have any influence on the 
radiative transfer. 

The situation of transfer between closely spaced surfaces was ex- 
amined by Cravalho, Tien, and Caren (ref. 8) who considered the geome- 
try shown in figure 9-3. The geometry consists of two semi-infinite 
dielectric media having refractive indices nl and n3 ,  separated by a 
vacuum gap. In the usual analysis for radiative transfer between two 
surfaces (e.g., 1 and 3), as given by equation (5-11) of volume 11, the 
heat flux transferred across the gap is given by 
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I PI\ Vacuum 

FIGURE 9-3.-Reflection and transmission of electromagnetic wave in gap between two 
dielectrics: Tn < T I .  

and the spacing between the plates does not appear. When the spacing 
between the surfaces is very small, however, there are two effects that 
enter which are a function of spacing. The first effect is wave inter- 
ference, in which a wave reflecting back and forth in a gap between two 
dielectrics may undergo cancellation or reinforcement. 

The second effect is radiation tunneling. Figure 9-3 reveals that for 
ordinary behavior at an interface as discussed in section 9.3.2 some of 
the radiation in medium 1 traveling toward region 2 can undergo total 
internal reflection at the interface when nl > nz. For ordinary radiative 
behavior this would occur when the incidence angle P1 is  equal to 
or larger than Brewster's angle given by equation (9-12), that is, 
PI 2 sin-'(n~/nl). When region 2 in figure 9-3 is sufficiently thin, however, 
electromagnetic theory predicts that, even for an intensity incident at 
pl greater than Brewster's angle total internal reflection will not occur. 
Rather, part of the incident intensity will propagate across the thin 
region 2 and enter medium 3. This effect is radiation tunneling as viewed 
classically. 

As shown in reference 8, both tunneling and interference can become 
important only when the spacing between radiating bodies separated 
by vacuum is less than about A,,,,,, aac(T3) which is the wavelength in 
vacuum at maximum blackbody emissive power from a surface at the 
sink temperature T3. The A,,,,,, ,,,(T:l) is found from Wien's displacement 
law as C3/T:3 (eq. (2-17) of vol. I). The tunneling and interference effects 
also depend on temperature. Even for very small spacings on the order 



THERMAL RADIATION HEAT TRANSFER 

FIGURE 9-4.-Effects of wave interference and radiation tunneling on radiative transfer 
between two dielectric surfaces; n1 = na = 1.25; A,,,,,(T3) = 0.28978/n3T:i cm. (From 
ref. 8.)  

of Al l lnz , vc , c (7 '~ ) ,  the effects become very small at normal temperatures, 
and hence are only important in certain cryogenic applications where 
temperatures of a few degrees absolute are encountered. Figure 9-4 
shows some representative results under conditions giving maximum 
effects and illustrates the influence of temperature T I .  Note that All1,,(T3) 
in figure 9-4 is the wavelength in medium 3 and hence is given by 
C3/n3T3 from equation (2-33) of volume I .  The conventional solution 
referred to in the figure is obtained when wave interference and radiation 
tunneling are neglected in the analysis. 

9.4 FLAMES, LUMINOUS FWMES, AND PARTICLE RADIATION 

Under certain conditions, gases emit much more radiation in the visible 
region of the spectrum than would be expected from the absorption co- 
efficients of the gas species that are present in chemical equilibrium. 
For example, the typical almost transparent blue flame of a bunsen 
burner can be made into a smoky yellow-orange flame by changing only 
the fuel-air ratio. Such luminous emission is usually ascribed to hot 
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carbon (soot) particles that are formed because of incomplete combustion 
in hydrocarbon flames. There is room for argument even here. Echigo, 
Nishiwaki, and Hirata (ref. 9) and others have advanced the hypothesis, 
supported by some experimental facts, that the luminous emission from 
some flames is due to the emission from vibration-rotation bands of 
chemical species that appear during the combustion process prior to the 
formation of soot particles. Since the formation of soot is the most 
widely accepted view, the radiation from soot will be emphasized here 
when discussing luminous flames. 

Combustion in the general case is a very complicated chemical process 
often consisting of a system of chemical reactions occurring in series and 
parallel. The combustion process involves a variety of intermediate 
chemical species. The composition and concentration of these inter- 
mediate species cannot be predicted very well unless complete knowl- 
edge is available of the reaction kinetics of the flame, and this knowledge 
will not usually be at hand. Because the radiation properties of the flame 
depend on the distributions of species and the temperature variations 
within the flame, a detailed prediction of radiation from flames is not 
often possible by knowing only the original combustible constituents and 
the flame geometry. Because of these difficulties, it is usually necessary 
to resort to empirical methods for predicting radiation from systems 
involving combustion. 

In order to facilitate the present discussion, let us separately examine 
two facets of predicting radiation from flames: (1) The calculation of a 
theoretical flame temperature by considering the chemical energy re- 
lease and without accounting for heat loss by radiation, and (2) the more 
complex problem of radiation from a gas containing solid particles which 
will alter the theoretical flame temperature. 

9.4.1 Theoretical Flame Temperature 

To present empirical correlations of radiation from flames, a charac- 
teristic parameter is the average temperature of a well-mixed flame as a 
result of the addition of chemical energy. Fortunately, well-developed 
methods exist (refs. 10 to 12) for computing the theoretical flame tempera- 
ture of a given combustion system from available thermodynamic data. 
The effect of preheating either the fuel or oxidizer or both can be in- 
cluded. Such calculations assume complete combustion of the fuel and 
no heat losses. The process of flame temperature computation can be 
conveniently shown by an example. 

EXAMPLE 9-2: Using the mean heat capacity data of figure 9-5 
(adapted from ref. 10) and the heat of con~bustion from table 9-11, cal- 
culate the theoretical temperature of an ethane flame burning with 100 
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2.5 
400 800 1200 1600 MOO 2400 2800 

Temperature, T, K 

FIGURE 9-5.-Mean heat capacity of various gases averaged between T and 298 K. 

 TABLE^-11.- HEAT OF COMBUSTION AND FLAME TEMPERATURE FOR HYDROCARBON 
FUELS 

Fuel 

Carbon monoxide (CO) 
Hydrogen (HI) 
Methane (CHI) 
Ethane (C2H6) 
Propane (C3Hx) 
n-Butane (CIHlo) 
n-Pentane (C5HI2) 
Ethylene (C2H4) 
Propylene (C&) 
Butylene (CIH8) 
Amylene (C5H10) 2477 
Acetylene (C2HI) 2859 
Benzene (CsHa) 2484 
Toluene (C,;H5CH,) 4.09 2460 

Heat of 
combustion, 

J/kg 

4.83 X 10' 
12.0 
5.0 
4.74 
4.64 
4.56 
4.53 

Maximum flame temperature, K 
(combustion with dry air at 298 K) 

Experimental 

2158 
2173 
2203 
2178 

Theoretical 
(complete 

con~bustion) 

2615 
2490 
2285 
2338 
2629 
2357 
2360 

Theoretical 
(with dissocia- 

tion and 
ionization) 

.......................................... 

.......................................... 
2191 
2222 
2240 
2246 

...................................... 
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percent excess air (by volume). The ethane is supplied at room tempera- 
ture (25O C) and the air feed is preheated to 500' C. The flame is burning 
in an environment at a pressure of 1 atm. 

The theoretical flame temperature T is computed by using energy con- 
servation and assuming no heat losses. The energy in the combustion 
constituents plus the energy of combustion is equated to the energy of 
the combustion products. This gives 

(energy in feed air and) , (energy released) 

T - Tref = 
\ fuel above Tref )'\ by combustion ) 

[total mass of), [mean heat capacity) (9-15) 

\ products ) ^  \ of products ) 

For ethane, assuming complete combustion, the reaction is 

Let us assume that 2 kilogram-moles of ethane are burned. Then 7 moles 
of oxygen are consumed during combustion. Since there is 100 percent 
excess air, only one-half of the feed air contributes oxygen to the combus- 
tion process, so a total of 14 moles of oxygen are introduced in the feed 
air. Oxygen makes up 21 percent by volume of the feed air, and since 
mole fraction is equal to part by volume, the moles of air used are 

Thus, the total input to the combustion process consists of 2 moles of 
ethane fuel and 66.67 moles of air. The sensible heat in the feed com- 
ponents above a reference temperature is 

where C p  is the mean heat capacity between the reference temperature 
and the input temperature Ti. Using data from figure 9-5, which has a 
reference temperature of 298 K (25' C), gives 

H i = ' [ m c I ) ( T i - T r e f ) l e t ~ z n , , e +  [mc1) (Ti-- Tref)] a i r  

= O +  66.67 X 2.93 X 104(773 -298) = 9.28 X los joules (J) 

where the ethane contributes nothing as it is supplied at Tref. The heat 



328 THERMAL RADIATION HEAT TRANSFER 

released by combustion BH is found by using the heat of combustion 
from table 9-11 and the fact that the molecular weight of ethane is 30; 
that is, 

J kg X 4.74 x 107 -= 28.4 X loR J AH=2 moles x 3 0 -  
mole kg 

The numerator of equation (9-15) is then 

Nitrogen, which makes up about 79 percent by volume of air, remains 
from that portion of the feed air that supplied the oxygen for combustion. 
The amount of nitrogen in the combustion products is then 

33.3 X 0.79 = 26.3 moles 

The total quantity of products after co~nbustion is (in moles) 

Carbon dioxide (C02) . . . . . . . . . . . . . . . . . . . . . . . . .  4 
Water vapor (H20) . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Air 33.3 (half of feed air) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Nitrogen (Nz) 26.3 

To find the denominator of equation (9-15), the individual quantities 
are summed 

However, c, depends on the product temperature T, which is the flame 
temperature and is not yet known. We must estimate T to determine 
the cp, values and then substitute the quantities into equation (9-15). 
If the calculated flame temperature agrees with the assumed value, the 
solution is finished. Otherwise, a new tenlperature is estimated, H p r o d  

is recalculated and substituted into equation (9-15), and this procedure 
is continued until the assumed andicalculated flame temperatures agree. 
A table of calculations is as follows: 

Assumed 
flame 

tempera- 
ture, K 

Mean heat capacity, F,,, J/(kg)(mole)(K) 

C 0 1  Air 

Product 
entlialpy, 
H,,,,,,i, J 

Calcu- 
lated 

tempera- 
ture, K 

1825 
1845 
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Because 2 400 K change in the assumed flame temperature produced 
only about a 20 K change in the calculated flame temperature, a value 
of 1853 K is estimated as within a few degrees of the converged result. 

In this example, it was assumed that the combustion process is com- 
plete and that no dissociations of the combustion products occur. In 
addition, no consideration has been given to energy loss from the flame 
by radiation, which would lower the flame temperature. Methods for 
including these effects are discussed in reference 12. A list of theoretical 
flame temperatures (no radiation included) is shown in table 9-11 for 
various hydrocarbon flames. Results for complete combustion with dry 
air are shown, followed by calculated results modified to allow for dis- 
sociation and ionization of products. The latter are compared with experi- 
mental results. In addition, the heats of combustion of the substances 
are shown. All data are from references 12 and 13. Extensive tabulations 
of similar data for over 200 hydrocarbons are given in references 10 and 
13. 

Let us proceed to a consideration of the radiation emitted by a non- 
luminous flame now that its average temperature is known. 

9.4.2 Radiation From Nonluminous Flames 

The phenomena involved in radiation from the nonluminous portion 
of the combustion products are fairly well understood. The complexities 
of the chemical reaction are not too important here since it is the gaseous 
end products situated above the active burning region that are being 
considered. During combustion, chemical potential energy is released 
by the reaction of the fuel and oxidant atoms. This results in radiation 
in spectral lines and bands produced by the various types of transitions 
between energy states. In most instances a hydrocarbon combustion is 
being considered and the radiation is from the COP and H z 0  bands in 
the infrared. For flames a few or more feet thick as in commercial fur- 
naces, the emission leaving the flame within the COz and H z 0  vibration- 
rotation bands can be close to blackbody emission. 

The gaseous radiation properties and methods of chapter 5 can be 
used to compute the radiative heat transfer from the flame. The analysis 
is greatly simplified if the gas is well mixed so that it can be assumed 
isothermal. For a nonisothermal condition the gas can be divided into 
approximately isothermal zones, and the convection within the gas can 
also be included if the circulation pattern within the combustion chamber 
is known. A nonisothermal analysis with convection was carried out in 
reference 14 for cylindrical flames. 
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EXAMPLE 9-3: In example 9-2, the combustion products were 4 moles 
of Con, 6 moles of Hz0 vapor, 33.3 moles of air, and 26.3 moles of N2. 
Assume these gaseous products are in a cylindrical region 4 ft high and 
2 ft in diameter and are uniformly mixed at the theoretical flame tem- 
perature 1853 K. The pressure is 1 atm. Compute the radiation leaving 
the gaseous region using the methods in sections 5.5 and 5.6. 

The partial pressure of each constituent is equal to its mole fraction 
of the mixture. Then for the Con and HpO the partial pressures are 

PC,, = (A) (1 atm) = 0.0574 atm 

I ) H , ~ =  (A) (1 atm) = 0.0861 atrn 

The mean beam length of the gas for negligible self-absorption can be 
computed from equation (5-51) as 

To include self-absorption, a correction factor of 0.9 is applied so the 
mean beam length becomes 

Le= 0.9(1.6) = 1.44 ft 

Then 

Using the gas emittance charts (figs. 5-11 to 5-15) at the flame tem- 
perature (3340 OR) results in 

and 

eH20= 0.029 X 1.08=0.031 

The 1.08 factor in EHzo is a correction for the partial pressure of the water 
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vapor not being zero. In addition, there is a negative correction resulting 
from spectral overlap of the C 0 2  and H 2 0  radiation bands. This is 
obtained from figure 5-15 at the values of the parameters 

pcozL, + pHZ0Le= 0.0825 + 0.124 = 0.207 (atm)(ft) 

The correction is A€ = 0.002. Then the gas emittance is 

The radiation from the gas region is then computed as 

Btu 
Q =  e,JaT;= 0.068(10~)0.173 X 10-"3340)"= 0.46 X lo6 - 

hr 

9.4.3 Radiation From and Through Luminous Flames 

In the region of the flame that is actively burning, there are several 
factors that complicate the radiative transfer. The simultaneous pro- 
duction and loss of energy produces a temperature variation and thus 
a variation of properties and emission within the flame. The intermediate 
combustion products resulting from the complex reaction chemistry 
can significantly alter the radiation characteristics from those of the 
final products. Soot is the most important radiating product formed when 
burning hydrocarbons. The soot emits in a continuous spectrum in the 
visible and infrared regions, and as a result of the visible radiation the 
flame is called luminous. The soot is quite important as it can often 
double or triple the heat that would be radiated by the gaseous products 
alone. A method for increasing the flame emission if desired is to promote 
slow initial mixing of the oxygen with the fuel so that large amounts of 
soot will form at the base of the flame. 

Determining the effect soot has on the flame radiation resolves into 
two requirements. One of these is to somehow obtain the soot distribu- 
tion in the flame. This depends on the type of fuel, the mixing of fuel 
and oxidant, and the flame temperature. The soot distribution is too 
complicated to calculate from basic principles, so some experimental 
knowledge of a given combustion system is needed. The second re- 
quirement is to know the radiative properties of the soot. Then if the 
soot concentration and distribution are known, a radiation computation 
can be attempted. At present the radiant properties of soot are only 
known to a first approximation. 
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If the flames found in both the laboratory and in industry are inciuded, 
the individual soot particles produced in hydrocarbon flames genera!y 
range in size from a diameter of 50 angstroms (A) to greater than 3000 A. 
The soot can be in the form of spherical particles, agglomerated masses, 
or is sometimes in long filaments. The experimental determination of 
the physical form of the soot is most difficult, as any type of probe that 
is used to gather the soot for photomicrographic analysis may cause 
agglomeration of particles or otherwise alter the soot characteristics. 
The nucleation and growth of the soot particles is not well understood. 
Some of the soot can be nucleated in less than a millisecond after the 
fuel enters the flame, and the rate at which soot continues to form does 
not seem influenced much by the residence time of the fuel in the flame. 
It is an unknown precipitation n~echanisnl that must govern the soot 
production. 

Stull and Plass (ref. 15) and Siddall and McGrath (ref. 16)have computed 
the spectral emittance of luminous flames as a function of the volume 
fraction of soot particles present. This was done by the use of Mie theory 
(section 8.4.6), which is a direct application of electromagnetic theory, 
to obtain the radiation characteristics of the assumed spherical soot par- 
ticles (the Mie result will be given in equation (9-22)). The calculations 
were carried out using optical properties of a baked electrode carbon at 
2250 K as the assumed n and K for soot carbon. The results should be  
valid over a range of temperatures because Howarth, Foster, and Thring 
(ref. 17) have shown that the absorption coefficient for carbon particles is 
at most a weak function of temperature. 

For a beam of radiation passing through a gas containing suspended 
soot particles, it has been found experimentally that the attenuation 
obeys Bouguer's law, that is, 

ii ( S )  = ii (0) exp (-  AS) 

For small particles such that TDIA < 0.25 (where D is particle diameter), 
the Mie theory gives in equation (8-30) that the scattering cross section 
depends on ( ~ D l h ) ~ .  The Mie theory also shows that, for the same con- 
ditions, the absorption cross section depends on TDIA to the first power 
(see eq. (9-22)). Thus the scattering is negligible compared with absorp- 
tion, and ah in equation (9-16) is actually the absorption coefficient rather 
than the extinction coefficient of equation (1-13). Then as a consequence 
of equation (5-44), the spectral emittance of an isothermal luminous gas 
volume is written as 

€ A  = 1 - exp (- ahL,) (9-17) 
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where L, is the mean beam length for the volume. 

9.4.3.1 Experimental correlation of soot spectral absorption. - A  rela- 
tively simple empirical relation for ah that has been found experimentally 
in some instances has the form 

where C is the soot volume concentration (average volume of particles 
per unit volume of cloud) and k is a constant. The A will always be in 
microns for the numerical results given here. Hottel (ref. 18) recommends 
the use of 

Ckl 
a A = X 0 . " 5  

i n  the infrared region down to X=0.8 pnL. In some more recent experi- 
ments, Siddall and McGrath (ref. 16) also found the functional relation of 
equation (9-19) to hold approximately. They give in the range from A= 1 
to 7 ,urn the following mean values of a: 

Amy1 acetate 
Avtur kerosene 

Source of soot 

Benzene 
Candle 
Furnace samples 
Petrotherm 

Mean cu for 
A = l  t o 7 p m  

Propane 

Thus the 0.95 exponent recommended by Hottel appears reasonable. 
In reference 16 the data were also inspected in more detail to see if a 

had a functional variation with A that would provide a more accurate 
correlation than using a constant a. In some instances a took the form 

where a and b are positive constants. Examples are shown in figure 9-6. 
In other cases, as in figure 9-7, a more general polynomial was required 
to express a as a function of A. Thus, as a generalization of equation 
(9-19), for the infrared region 

Ckl 
a),=- Ad),) 
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0 Amyl  acetate soot (two 1 di f ferent  samples) 
0 Benzene soot 
A Petrotherm soot 

1 2 4 6 8 
Wavelength, h, p m  

FIGURE 9-6.-Experimental values of a plotted against A for cases where a varies ap- 
proximately linearly in 111 A (ref. 16). 

0 A v t u r  kerosene soot 
0 Benzene soot 

Wavelength, A, p m  

FIGURE 9-7. -Experiniental values of a as a function of A where oc does not vary linearly 
with In A (ref. 16). 

and letting a be a constant is only an approximation. 
In the visible range an inspection by Hottel (ref. 18) of experimental 

data led to the recommended form 

for the.wavelength region around A = 0.6 p m  (say A -- 0.3 to 0.8 pm). 
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9.4.3.2 Electromagnetic theory prediction of soot spectrul absorp- 
tion.-To try to understand the absorption coefficient of a soot cloud 
from a more fundamental basis, electromagnetic theory can be employed 
(refs. 15, 16, 19, and 20). The absorption coefficient is written as 

The product EAA is the spectral absorption cross section, defined in 
the same manner as the scattering cross section SA used in equation (8-5). 
The N is the number of particles per unit volume, and A is the pro- 
jected area of a particle ( A =  7rQ2/4, as particles are assumed spherical). 
The Ex by itself is the spectral absorption efficiency factor which is the 
ratio of the spectral absorption cross section to the actual physical cross 
section of the particle. For the limit of small particles the Mie equations 
give the EA for a small absorbing sphere as 

2 h D  n,K 
E), = --- 

A [(n2 - K2) + 2]2+ 4n2~2 

where n and K are the simple index of refraction and the extinction 
coefficient of the sphere material when the complex index of refraction 
is expressed in the form r i =  n - i ~ .  Since the optical quantities n and 
K are functions of A, equation (9-22) can be written as 

Then from equation (9-21) 

where C= N7rDR/6 is the volume of the particles per unit volume of the 
cloud. The ratio 

is then a function of wavelength and can be evaluated if the optical prop- 
erties of soot are known as a function of A. 

In reference 20 the optical properties n and K of propane soot were 
measured by collecting the soot and then compressing it on a brass plate. 
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The values obtained were as follows: 

Simple refrac- 
tive index, 

I1 

1.57 
1.56 
1.57 
1.56 
1.57 
2.04 
2.21 
2.38 
2.07 
2.62 
3.05 
3.26 
3.48 

Extinction 
coefficient, 

K 

By using these values the ai /C was evaluated from equation (9-25) yield- 
ing figure 9-8. Although the ah/C decreases with A as expected from the 
form of equation (9-18), it is evident that an approximate curve fit by 
straight lines (on the logarithmic plot) would yield exponents on A some-  
what different than those of equations (9-19) and (9-20). 

The predicted form by Mie theory of a(A) as used in equation (9-19a) 
can now be examined in more detail in the infrared region by e q u a t i n g  
the expressions in equations (9-19a) and (9-24). This gives 

Wavelength, X, pm 

FIGURE 9-8. -Spectral absorption coefficient divided by vo lu~ne  conce~ltration for p r o  P 
soot (ref. 20). 
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By evaluating this relation at A= 1,  the constant kl applicable to the infra- 
red region is found as 

kl= 36rF ( 1 )  (9-27) 
Then 

Taking the logarithm of both sides and solving for a ( A )  give 

The optical properties of the soot can then be used in F ( 1 )  and F ( 1 )  as 
defined in equation (9-25), and a ( A )  can be found. This was done in 
reference 16 using the properties of a baked electrode carbon a t  2250 K. 
The results are shown in figure 9-9. The trend is the same as t he  experi- 
mental curves of figure 9-6, but the a values are larger than t h e  experi- 
mental values. They are also larger than the average value recommended 

Wavelength, A, prn 

FIGURE 9-9. -Calculated variation of a with wavelength using properties of b a k e d  electrode 
carbon at 2250 K (ref. 16). 
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Similarly by using a green filter 

where the green wavelength A, is 0.555 pm. 
Now as a simple approximation, equation (9-20) is used for ax in the 

visible region. Then E A  from equation (9-17) is 

where S is the path length sighted through the flame. Substitute equation 
(9-35) into equations (9-33) and (9-34) to obtain 

These two equations are solved for Tf and Ckz thereby yielding the needed 
measure of the soot concentration as well as the flame temperature. 

AS an approximation, the Ckz is assumed independent of wavelength 
and is used in equations (9-17), (9-19), and (9-20) to yield f o r  a path 
length S 

.A = 1 - exp (-g) infrared, A > 0.8 p m  (9-39) 

Then with these spectral emittances the definition in equation (9-29) can 
be used to evaluate the total emittance of the flame as 

Some convenient graphs for use in this procedure are given in reference 
18. The hope is that the Ckz obtained in this way can be applied to "simi- 
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lar" flames. This is a very rough approximation; there are so many vari- 
ables affecting the flow and mixing in the flame that it is difficult to know 
when the flames will have a bimilar character. The detailed nature of 
flames is a continuing area of active research. 

9.4.4 Roldiatinn From Gases Containing Lurnineus Particles 

In addition to the work on hydrocarbon luminous flames in the field of 
combustion, other fields involve consideration of radiation from luminous 
gases. A common example is the luminosity in the exhaust plume of 
solid fueled and some liquid fueled rockets. For a solid fuel the luminosity 
may be caused by particles of metal that are added to promote combus- 
tion stability. The metal particles are heated to high temperatures and 
may undergo oxidation, thereby becoming luminous. 

The presence of particles in an otherwise weakly absorbing medium 
can cause the mixture to be strongly absorbing. "Seeding" of a gas with 
particles, such as finely divided carbon, has been proposed in order to 
increase the gas absorption (ref. 27), or as a means of shielding a surface 
from incident radiation (ref. 28). These techniques have possible applica- 
tion in connection with advanced propulsion systems. 

Another use for seeding is in the direct determination of flame tem- 
peratures for a nonluminous flame by the line reversal techn.iqne. In this 
method, a seeding material such as a sodium or cadmium salt is intro- 
duced into an otherwise transparent flame. These materials produce a 
strong line in the visible spectrum because of an electronic transition. 
The cadmium gives a red line and the sodium a bright yellow line. A con- 
tinuous source such as a tungsten lamp is placed so that it may be viewed 
through the seeded flame with a spectroscope. The intensity seen in the 
spectroscope at the line wavelength is, from the integrated equation of 
transfer, equation (2-lo), 

If the flame is assumed isothermal and of diameter D and no attenuation 
occurs along the remainder of the ~ a t h  between the continuous source 
and the spectroscope, equation (9-41) becomes 

where 
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In the wavelength region adjacent to the ansorbing and emitting spec- 
tral line, the flame is essentially transparent so the background radiation 
observed adjacent to the line is il\,co,1r.601crce. Hence, by subtractin:: 
ii,co,lt.so,o.ce from equation (9-42) the line intensity relative to the adjacent 
background is 

If the flame is at a higher temperature than the continuous source, equa- 
tion (9-43) shows that the line intensity in the spectroscope will b e  greater 
than the continuous background intensity. The line will then appear  as a 
bright line imposed upon aless bright continuous spectrum in t h e  spectro- 
scope. By increasing the temperature of the continuous source, t h e  source 
term will ovkrride. The line then appears as a dark line on a brighter con- 
tinuous spectrum. If the continuous source is a blackbody a n d  its tern- 
perature is made equal to the flame temperature, then 

and equation (9-43) reduces to ii = ii ,,,,, The line will then dis- 
appear into the continuum in the spectroscope. This is because  the 
absorption by the flame and the flame emission exactly compensate. If 
the continuous source is a tungsten lamp, the source temperature meas- 
urement is usually made with an optical pyrometer. 

It is noted that in the derivation of equation (9-43) it w a s  assumed 
that the flame is transparent except within the spectral line produced 
by the cadmium or sodium seeding. If soot isrin the flame, the soot 
particles absorb, emit, and scatter radiation in a continuous spectrum 
along the path of the incident beam. The line reversal technique  is of 
less ~ rac t i ca l  utility in this instance as it then depends on  the soot 
behavior. The effect of soot is analyzed in reference 29. 

Another instance of radiation attenuation by means of part icles  is 
found in the effect of dust or so-called "grains" that are be l i eved  to 
exist in the interstellar space and cause reductions in t h e  observed 
intensity of radiation from stars (refs. 30 and 31). 

9.5 LUMINESCENCE 

The phenomenon of luminescence in its various forms is a fairly 
common one. The name covers a broad range of mechanisms t h a t  result 
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in emission of radiant energy by the transition of electrons from an 
excited state to a lower energy state, where the original excitation took 
place by means other than thermal agitation. This is an example of a 
process that is not in local thermodynamic equilibrium (section 1.8). 
Because the electronic transitions are between discrete energy states, 
the span of wavelengths over which the emission occurs is quite small. 
Luminescence, therefore, does not add significant energy to the spectrum 
of emission in engineering situations and can almost invariably be 
neglected in engineering calculations. However, there are some situa- 
tions in which effects other than total energy transport are of interest. 
For that reason a very brief mention of luminescence is included here. 

Luminescence is categorized in various ways. A common classification 
is by duration of the effect. Luminescence that persists over a relatively. 
long lo period is called "phosphorescence," a word derived from the 
luminescence of white phosphorus.ll Luminescence that persists only 
during the influence of some external exciting agent such as an ultra- 
violet lamp is called "fluorescence," a name arising from the strong 
luminescence shown by fluorspar when so irradiated. 

Another categorization is by description of the excitation agent. Thus, 
luminescence arising from a chemical reaction such as the oxidation of 
white phosphorus is called "chemiluminescence"; luminescence caused 
by a beam of incident electrons as on a color TV screen is "cathodolu- 
minescence"; a biochemical reaction producing luminosity, as in fireflies 
and some marine animals, is called "bioluminescence"; luminous 
emission by the presence of an electric field as in certain commercial 
panel lamps is "electroluminescence"; and luminescence due to photon 
bombardment is often called "photoluminescence." The latter effect is 
caused by the same mechanism that causes the laser to function. Other 
mechanisms can cause luminescence in materials, but descriptive 
terms have not yet been coined. Examples are proton bombardment, 
which is believed to be responsible for the luminous red patches observed 
on the surface of the Moon, and nuclear reactions that cause luminous 
emission of radiation. 

Because luminescence is common to materials at room temperature, 
it obviously cannot be predicted by the usual laws that govern thermal 
radiation as these would predict no visible radiation a t  such temper- 
atures. This is the origin of the term cold light for fluorescent lamp emis- 
sion. Rather, the quantum mechanical properties of such luminescent 
materials must be examined to explain their behavior. Some detailed 
material on luminescence is contained in references 32 and 33. The 

"'hfeaning in comparison with relatively short, tu speak precisely. 
" Phosl~horus itself is named for the Greek word meaning "liglit carrying." 
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calculation of luminescence effects is outside the scope of this work and 
will not be treated further here. 

9.6 TRANSIENT RADIATION PROBLEMS 

The treatment of transient phenomena when radiation is present has 
been sparsely treated in the literature. Some problems dealing with the 
effects of nuclear weapons and some situations in astrophysics require 
inclusion of transient effects. 

The equation of transfer as derived in chapter 2 neglected changes in 
radiation intensity with time. The equation of transfer is written for a 
beam of radiation of intensity i; traveling in the S  direction. As the radia- 
tion travels through the differential length from S  to S  + dS, i ts  intensity 
is increased by emission and decreased by absorption. Also during the 
residence of the radiation within dS, the intensity can change with time. 
The residence time is dt= &/c where c is the speed of propagation in 
the medium. Hence, the change in i; can be written as 

By substituting for di;, the equation of transfer (2-4) becomes 

1 a iL( t , S )  d i ; ( t , S )  - + 
c at as = a ~ ( t ,  S )  [iLb(t,  S )  -i; ( t ,  S) ] (9-44) 

Since the conditions such as temperature within the medium a r e  chang- 
ing with time, the absorption coefficient is a function of t ime  a s  well as 
position. 

Because the speed of light is usually very large compared  with the 
other quantities in the transient term, the transient t e rm i s  usually 
very small, and the equation of transfer reverts to the s teady-state  form 
that has been given throughout this work. In some ana lyses  directed 
towards the study of nuclear weapons (refs. 17 and 18 of c h a p t e r  6), the 
transient term is included. To better understand the t r ans i en t  term, 
consider as a simple illustration what the radiative behavior wou ld  be if 
a thick uniform medium at temperature T1 instantaneousf-Y had its 
temperature increased to a higher uniform value T2. The m e d i u m  would 
then be at T2 but the intensity within the medium would h a v e  to change 
from i;, (T I )  to i;, ( T 2 ) .  During this process, the radiation w o u l d  not be 
in equilibrium. The equation of transfer reduces to ( a s s u m i n g  as an aP- 
proximation that ax can be used in the emission term, w h i c h  is an 
equilibrium assumption), 
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After integrating with the condition i,(=i,(,,(T,) at t = O ,  the result is 

The radiation relaxation time (time to change by a factor of e) for equilib- 
rium to he reestablished is thus l / cnx (T2 )  which is usually very short 
for reasonable values of ax in view of the large value of the propagation 
velocity c in the medium. 

In the preceding illustration, it was assumed that the medium tem- 
perature could be instantaneously raised so that at the beginning of the 
transient the radiation intensity was not in equilibrium at the black 
radiation value corresponding to T2. Generally the temperature change 
of a medium would be governed by the heat capacity of the medium, 
and consequently transient temperature changes would be much slower 
than the radiation relaxation time. Hence, when coupled with the tran- 
sient energy conservation equation, which contains a heat capacity 
term, the unsteady term in the equation of transfer would be negligible. 
This is why the steady form of the equation of transfer, as derived in 
chapter 2, can be instantaneously applied during almost all transient 
heat transfer processes. 

EXAMPLE 9-4: A gray medium is in a slab configuration originally 
at a uniform temperature To. The absorption coefficient is a, and the 
slab half thickness is D. The heat capacity of the medium at constant 
volume is c, and its density is p. At time t=O, the slab is placed in 
surroundings at zero temperature. Neglecting conduction and convec- 
tion, discuss the solutions for the temperature profiles for radiative 
cooling when a is very large and when a is very small. 

At the slab center which is located at x = 0, the condition of symmetry 
provides the relation for any time, 

At time t= 0 there is the condition 

T=T,; t=O,x  
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As discussed in section 2.6.2 for radiation only being included. there 
rvill be a temperature slip at the boundaries x=-+D, so that the 
perature at the boundaries will be finite rather than being equal to the 
zero outside temperature. If heat conduction were present, the 
perature slip would not exist. 

For a large a the diffusion approximation can be employed and 
equation (3-25) the heat flux in the x direction is 

By conservation of energy 

Combining these two equations to eliminate q gives the transient energy 
diffusion equation for the temperature distribution in the s l a b  

Defining dimensionless variables as follows: 

gives 

The initial condition and the boundary condition at .xs become, 

respectively, 

a@ 
7 (0, t * )  = O  
c) K 

At the boundary K =  ccD, a slip condition must be used. Usir+g equation 
(3-45), when the surroundings are empty space at zero t e m p e r a t u r e ,  the 
et,,0=0, and the e l c = l ,  SO that at the exposed boundary of medium 
for any time 
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Similar relations apply at x=- D. For these conditions solution by nu- 
merical techniques is probably necessary. 

For a small absorption coefficient, and since there are no enclosing 
radiating boundaries present, the emission approximation (section 
3.3.2) can be applied. For very small a the medium is optically so thin 
that it is at uniform temperature throughout its thickness at any instant. 
From the results of example 3-2, the heat flux emerging from each 
boundary of the layer is 

q= 4aaT4D 
then becomes 

dT 
pc, -=- 4aaT4 

d t  
or, in dinlensionless terms, 

Dimensionless 
time, 

t* 

0 . 2  . 4  . 6  .8  1.0 
Optical depth, K / K ( X  = D )  

FIGCJRE 9-12.-Dimensionless tenlperature profiles as  a function of time for radiative 
cooling of a pray slab; optical thickness K ( Z = D )  = 1.0. (Fro111 ref. 34.) 
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I n t e g r a t i n g  w i t h  t h e  c o n d i t i o n  t h a t  O = 1 a t  t"= 0, t h e  t r a n s i e n t  t e m p e r -  

a t u r e  t h r o u g h o u t  t h e  slab is t h e n  g i v e n  by 

V i s k a n t a  and B a t h l a  (ref. 34) h a v e  obtained numerical solu t io l l s  t o  the 
t r a n s i e n t  form of the complete e q u a t i o n  of t r a n s f e r ,  a l o n g  with t h e  

limiting s o l u t i o n s  derived here. Some of t h e i r  r e s u l t s  for intermediate 
o p t i c a l  thickness are shown in figure 9-12. Numerical s o l u t i o n s  f o r  

spherical g e o m e t r i e s  are found in references 35 and 36. S o l u t i o n s  to m o r e  

i n v o l v e d  t r a n s i e n t  problems by use of M o n t e  C a r l o  are mentioned in 
s e c t i o n  6.7. 
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Appendix 

RADIATION CONSTANTS 

For the convenience of the reader, some of the important constants 
used in radiative transfer theory are gathered here in table I. 

First Bohr electron radius 
Speed of light in vacuum 
Electron charge 
Planck's constant 

Boltzmann constant 
Electron mass 
Classical electron radius 
Atomic unit cross section 
Titomson cross section 
Electron volt 
Temperature associated with 1 eV 
Rest energy of electron 

Ionization potential of hydrogen atom 

a,= h"m,e" 0.5292 X c m  
c,=2.9979 X 10"' cmlsec 
e=4.803 X 10-I" esu 
h = 6.625 X lo-" (erg)(sec) 
h = h/27r= 1.054 X (erg)(sec) 
k= 1.3804 X lO-'%rg/K 

me= 9.108 X 

r ,=  e2/m,c; = 2.818 X 10-':I ern 
r ap=  0.880 X 10-1" cni2 

o.r= 87rri/3 = 6.652 X 10-2%cm" 

1 eV = 1.602 X 10-'"erg 
1 e i7 /k=11605K 

n ~ , c z  = 8.186 X lo-' erg 

e2/2a,= 2.rr'e4m,,/h2 = 13.60 cV 

EXPONENTIAL INTEGRAL RELATIONS 

A summary of some useful exponential integral relations is presented 
here. Additional relations are given in references 1 to 3. 

For positive real arguments, the nth exponential integral is defined as 

and only positive integral values of n will be considered here. An alter- 
nate form is 

By differentiating equation (Al )  under the integral sign, the recur- 
rence relation is obtained 

353 
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Another recurrence relation obtained by integration is 

nEll+l ( x )  = exp ( - x )  -xE, , (x)  n 2 1 (A41 

Also integration results in 

By use of equation (A4), all exponential integrals can be reduced to 
the first exponential integral given by 

El ( x )  = p-I exp id ( 5 l d p  

Alternate forms of El ( x )  are 

~ , ( x )  =Ix til exp ( - x t )d t=  1-1 exp ( - t ) d t  1: (A71 

For x=O the exponential integrals are equal to 

For large values of x there is the asymptotic expansion 

Series expansions are of the forill 
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where y=0.577216 is Euler's constant. The general series expansion 
given in reference.3 is 

where 

and 

Tabulations of E, , (x )  are given in references 2 and 3. An abridged 
listing given in table I1 is included here for convenience. 
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TABLE 11. -VALUES OF EXPONENTIAL INTEGRALS E,, (x) 

REFERENCES 

[From 

E,(X) 

1.0000 
.9497 
.9131 
,8817 
.8535 
.8278 
.8040 
.7818 
.7610 
.7412 
,7225 
,5742 
,4691 
.3894 
.3266 
.2762 
.2349 
,2009 
.1724 
.I485 
.lo35 
,0731 
.0522 
.0375 
.0272 
.0198 
.0145 
.0106 
.0078 
.0058 

1. CHANDRASEKHAR, SUBRAHMANYAN: Radiative Transfer. Dover Publications, Inc. ,  1960. 
2. KOURGANOFF, VLADIMIR: Basic Methods in Transfer Problems. Dover ~ u b l i c a t i o ~ ~ +  

Inc., 1963. 
3. ABRAMOWITZ, MILTON; AND STEGUN, IRENE A., EDS.: Handbook of ~ a t h e r n a f i ~ ~ l  

Functions with Formulas, Graphs, and Mathematical Tables. Appl. Math. Ser. 55$ 
Nat. Bur. Standards, 1964. 

ref. 21 

Es(x) 

0.5000 
.4903 
.4810 
.4720 
,4633 
.4549 
.4468 
.4388 
.4311 
.4236 
.4163 
,3519 
.3000 
.2573 
,2216 
.I916 
.I661 
.I443 
.I257 
,1097 
.0786 
.0567 
,0412 
.0301 
.0221 
'0163 
.0120 
.0089 
.0066 
.0049 



Index 

Absorptance, 24 
Absorption, 4 

band correlations, 138, 146 
band overlap, 152, 187 
bound-bound, 7, 128 
bound-free, 8, 137 
free-free, 8, 137, 138 
line, 7, 16, 128, 134 

Absorption coefficient, 
definition, 13, 15 
effective mean, 96 
incident mean, 46,93 
mass, 13 
Planck mean, 45, 66, 67, 93, 224 
Rosseland mean, 78,93 
true, 19 

Absorption factors, 
geometric mean, 164 
geometrical, 164 

Addition of radiation and conduction, 251 
Angular frequency, 113 
Attenuation, 12 

atmospheric, 1 
Bouguer's law, 13, 16 

Band absorptance, 138 
Band models, 

Elsasser, 143 
exponential wide, 148 
statistical, 144 

Band width, 
correlations, 138, 148 
effective, 142 
limits, 196 
tables, 146, 148, 149 

Bohr model of atom, 115 
Boltzmann distribution, 123, 132 
Bouguer, Pierre, 13 
Bouguer's law, 13, 16 
Boundary layer with radiation, 265 

optically thin layer, 266 
optically thick layer, 268 

Bremsstrablung, 8 
Brewster's angle, 317 

Broadening, line, 
collision, 129, 132 
Doppler, 129, 131 
natural, 129, 131 
Stark, 129, 134 

Carbon dioxide radiation, 2 
band, 5,149 
charts, 184, 185 
mixture with water vapor, 186 

Carbon monoxide band radiation, 149 
Channel flows with radiation, 270 
Closely spaced dielectrics, 322 
Coefficient, 

absorption, 13, 15, 19 
emission, 23 
extinction, 12 
scattering, 13, 20, 283 

Cold medium approximation, 62, 70 
Collision broadening, 129, 132 
Conduction-radiation parameter, 244 
Coupled problems, 241, 264 

additive solution, 251 
boundary layer, 265 
channel flows, 270 
diffusion method, 254 
Monte Carlo, 237 
radiation and conduction, 237, 241, 243, 

246,247,251 
radiation, conduction and convection, 

237,241,264 
Cross section, 

absorption, 335 
scatter, 280 

Curtis-Godson approximation, 202 
de  Broglie, Louis, 117 
Degenerate states, 121 
Detailed balancing, 123 
Differential approximation, 102 

boundary conditions, 106 
equation of transfer, 106 
solutions for simple geometries, table,  

109 
Diffraction from sphere, 292 
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Diffusion method, 62, 71,74, 254 
jump between two absorbing-emitting 

regions, 82, 86 
jump boundary condition, 79 
radiation and conduction, 254 
Rosseland diffusion equation, 74, 75, 78 
scattering, 308 

Diffusion solutions, 
concentric cylinders, 89 
concentric spheres, 89, 90 
parallel plates, 83 
table, 89 

Direct exchange area, 
gas-gas, 211 
gas-surface, 208 
surface-gas, 210 
surface-surface, 209 

Doppler broadening, 129, 131 
Effective line width, 135 
Effective band width, 142 
Efficiency factor, 284 
Einstein coefficients, 122 
Elsasser model, 143 
Emission, 4 ,21  

from volume, 23 
induced, 19,121,122 
line. 134 
medium with nonunity refractive index, 

315 
spontaneous, 19,122 

Emission approximation, 62,67 
Emission coefficient, 23 
Emittance of gases, 

carbon dioxide, 5,149,184 
definition, 25,145 
water vapor, 149,185 

Energy conservation, 43,166,246 
Energy density, 56 
Energy levels, 5,128 
Enclosure theory, 159 

band equations, 189 
matrix of equations, 164 

Equation of transfer, 37,38,125 
approximations to, table, 62 
differential form, 40 
integral form, 41 
plane layer, 46,49 
photon model, 56, 125 

Equilibrium 
local thermodynamic, 32 
radiative, 45 

Exchange factor approximation, 211, 218, 
260 

Exponential integrals, 
definition, 56 
in equation of transfer, 55, 248 
relations between, 353 
table of values, 356 

Exponential wide band model, 148, 149 
Extinction coefficient, 12 
Flames, 324 

luminous, 331 
nonluminous, 329 
theoretical temperature, 325 

Flux vector, 58 
Gaunt factor, 128 
Geometric mean beam length, 191, 192, 

194 
Gray gas, 83, 95,229 

definition, 47 
transfer equations, 48 

Half width of line, 130 
Induced emission, 19, 121 
Intensity, 8 

definition in medium, 9, 57 
invariance along path in vacuum, 11 

Ionization potential, 6, 117 
Jump boundary condition, 72, 79, 82, 86, 

88 
Kirchhoff's law, 26 
Krakatoa, 295 
Langley, Samuel P., 1 
Laser, 33 
Line, 

broadening, 128 
shape parameter, 129 
strong, 137 
weak, 136 
width, 130, 132, 133, 135 

Line reversal technique, 342 
Local thermodynamic equilibrium, 32 
Lorentz profile, 131 
Luminous flames, 331 
Luminous particles, 342 
Luminescence, 343 
Mean absorption coefficient, 

incident, 46, 93 
Planck, 45,66,67,93,224 
Rosseland, 78,93 

Mean beam length, 175 
gas not optically thin, 176, 179 
geomteric, 191, 192, 194 
optically thin limit, 178 
table of values, 181, 192 

Methane band radiation, 149 
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Mie scattering, 278, 299 
Milne-Eddington approximation, 100 
Monte Carlo, 221, 223 

adjacent gray regions, 233 
concentric cylinders, 231 
parallel plates, 225, 229 

Natural broadening, 129, 131 
Net radiation method, 159 
Nonluminous flames, 329 
Optical thickness, 15, 40, 47, 3W, 307 
Optically thin limit, 53,67,178 
Oscillator strength, 127 
Parallel plates, 166, 196, 199 

black with gray gas between, 49 
diffusion solution, 83 
Monte Carlo solution, 225,229, 231 
radiation and conduction, 247 

Particle radiation, 342 
Penetration distance, 14 
Phase function for scattering, 284 
Photon, 6, 56 

momentum, 117 
Planck distribution, 121 
Planck mean absorption coefficient, 45, 

66,67,93,224 
Polar i~abi l i t~ ,  

definition, 296 
table for types of scattering, 296 

Population inversion, 34 
Radiative equilibrium, 45 
Rayleigh scattering, 294 

cross section, 295 
phase function, 298 

Refractive index, 
nonunity, 315 

Rosseland diffusion equation, 74, 75, 78 
Rosseland mean absorption coefficient, 

78,93 
Rydberg constant, 117 
Scattering, 238, 277 

anisotropic, 20 
elastic, 20, 277 
equation of transfer, 302, 306 
inelastic, 7, 20, 277 
isotropic, 20 

Scattering coefficient, 13, 20, 283 
Scattering cross section, 280 

Scattering from particles, 
diffraction from sphere, 292 
large dielectric sphere with refractive 

index near unity, 292 
large diffuse sphere, 289 
large specular sphere, 286 
Mie scattering, 278, 299 
Rayleigh scattering, 294 

Scattering optical thickness, 304 
Schuster-Schwarzschild approximation, 97 
Schrodinger wave equation, 117 
Seeding with particles, 342 
Slip, 53, 72 

coefficient, 255 
Soot, 

absorption coefficient, 333 
concentration, 340 
electron~agnetic theory predictions, 335 
optical properties, 336 
total emittance, 338 

Source function, 307 
Spheres, 

concentric, 89, 109 
Spontaneous emission, 19,122 
Stark broadening, 129, 134 
Statistical weight, 121 
Stimulated emission, 19 
Strong line, 137 
Theoretical flame temperature, 325 
Thermodynamic equilibrium, local, 32 
Transfer equation, 38,40, 125, 302,306 
Transient problems, 237,246,345 
Transmittance, 29 
Transmittance factors, 

geometric mean, 164, 168 
geometrical, 164 

Transparent gas approximation, 62,64 
True absorption coefficient, 19,40,127 
Uniform gas, 15, 159,205 
Vibration-rotation band, 7 
Water vapor radiation, 

band radiation, 149 
charts, 185, 186 
mixture with CO?, 186 

Wave function, 118 
Weak line, 136 
Wien distribution, 125 
Zoning method, 207 
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