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A  TIME-DEPENDENT METHOD FOR CALCULATING SUPERSONIC 

ANGLE-OF-ATTACK FLOW  ABOUT  AXISYMMETRIC 

BLUNT BODIES  WITH SHARP SHOULDERS AND 
SMOOTH  NONAXISYMMETRIC 

BLUNT BODIES 

By Richard W. Barnwell 
Langley  Research  Center 

SUMMARY 

A  time-dependent  numerical  method  for  calculating  supersonic flow about  blunt 
bodies at large  angles of attack is presented.  The  axisymmetric  bodies  with  sharp  shoul- 
de r s  which are treated  are  constructed with a generator  composed of segments of constant 
curvature.  The  nonaxisymmetric  bodies  have  continuous  slope  and  curvature.  All flow 
fields  are  inviscid and  adiabatic  and  have  one  plane of symmetry. 

A  modification  to  the  method of characteristics is introduced  for  use at the  shock 
wave. A  two-step  finite-difference  method of second-order  accuracy is used at the body 
surface  and  in  the  region  between  the  shock and body. A new finite-difference  technique 
is introduced  for  use at sharp  sonic  shoulders. 

Comparisons of the  results of the  present method  with  experiment  and  the results of 
other  methods a r e  made  for  the flow of equilibrium air past  the Apollo command  module 
at the  trim  angle of attack  and  for  perfect  gas flow past a spherical  cap  and a spherically 
blunted  cone at angle of attack. Both the  cap  and  the  blunted  cone are  terminated with 
sharp  shoulders.  Results are presented  also  for  perfect  gas flow past a prolate  spheroid 
with its major  axis  normal to the flow. 

INTRODUCTION 

Time-dependent  finite-difference  methods  provide a means of treating  the  problem 
of inviscid  supersonic flow past a blunt body as an  initial-value  problem  since  the  equa- 
tions  for  inviscid  transient flow are always  hyperbolic.  Results  for  steady  flow are 
obtained  from  the  asymptotic  solution  to  the  transient  problem. One of the  major  advan- 
tages of these  methods is that  there is no  conceptual difficulty in  extending  them  to treat 
such  three-dimensional  effects as angle of attack  and  nonaxisymmetric body geometry. 
In general, the chief  difficulty  encounteredin  making a three-dimensional,  rather  than a 



two-dimensional,  time-dependent  calculation is the  additional  time  required  to  perform 
the  computation. 

Time-dependent  methods  for  calculating  three-dimensional blunt-body  flow fields 
have  been  developed by Rusanov  (ref. l), Bohachevsky  and  Mates  (ref. 2), Moretti  and 
Bleich  (ref. 3), and  Xerikos  and  Anderson  (ref. 4). Only the  method of reference 1 can  be 
applied  to  anything but axisymmetric  bodies. All the  methods  except  that of Moretti  and 
Bleich  produce  results of first-order  accuracy  in  the  mesh  spacings;  the  method of ref- 
erence 3 produces  answers of second-order  accuracy.  The  method of Bohachevsky  and 
Mates requires a much larger  number of grid  points  than  the  other  methods  because  the 
bow shock  wave is treated as an  internal  feature of the flow rather  than as a boundary. 
As a result, a great  deal  more  computer  time is required  for  this  method  than  for  the 
others. 

Cohen, Foster,  and Dowty (ref. 5) have  employed  the  refined Godunov method of 
Masson,  Taylor,  and  Foster  (ref. 6) to  develop  an  approximate  time-dependent  method  for 
calculating  angle-of-attack flow. The flow is calculated  in  the  plane of symmetry,  and 
trigonometric  functions are used  to  approximate  the  cross-flow  derivatives. 

The  purpose of this  paper is to  present a time-dependent  method  for  calculating 
three-dimensional flow fields  about  two  fairly  general  classes of bodies.  The first class 
is that of axisymmetric  bodies and includes  bodies with discontinuous  surface  slope  and 
curvature.  The  second  class is that of nonaxisymmetric  bodies with one  plane of sym- 
metry  and with  continuous surface  slope  and  curvature. Both perfect  and  equilibrium  gas 
models  can  be  treated. A previous  version of this  method  for  calculating flow about axi- 
symmetric  bodies with sharp  shoulders at angle of attack was presented  in  reference 7. 
The  present  method is a refinement of a previous  method  presented  in  references 8 and 9 
and extends  the  applicability of that  method  to  three  dimensions. As was the  case  for  the 
method of references 8 and 9, the  present  method is closely  related  to  that of Moretti  and 
coauthors  (refs. 3 and 10). 

SYMBOLS 

D,E,E',F 
points in  figures 4 and 5 

i,B,C matrices defined by equations (B2) 

quantities  defined by equation (6) 
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a speed of sound 

a71; semimajor  and  semiminor  axes of prolate  spheroid 

" -  
Bi,Di,Ei  quantities  defined by equations (15) 

D 
- 

vector  defined by equations (B2) 

E 
% 

matrix defined by equation (B11) 

e internal  energy 

e eigenvalue of matrix E 
% 

u 

e quantity  defined by equation (B17) - 
+ 

eS unit  vector  normal  to  shock,  defined by equation (26) 

- 
P unit  vector  in  free-stream  direction, defined by equation (31) 
v, 

gx,gy,gq unit  vectors  in x-, y-,  and  cp-directions,  respectively 

F,Fc,Fo quantities  used  in  equation (18) 

FL 7 Fu  lower  and  upper  bounds  for  inequality (B20) 

- 
FU(x,E) quantity  defined by equation (B24) 

f quantity  defined by equation (B13) 

G quantity  defined by equation (25) 

6 matrix  defined by equation (B12) 

g" eigenvalue of matrix 5 

H total  enthalpy 



h  static  enthalpy 

direction  cosines of bicharacteristic  in t,x,y,cp space 

K 

m 

m - 

p1,p3 

P 

PO 

Pt 

Q 

R 

r 

rn 

curvature of reference  surface 

wavelength of e r ro r  solutions  in x-, y-,  and  cp-directions,  respectively 

Mach number 

quantity  defined by equations (B15) 

quantity  defined by equations (B22) 

quantities  defined by equations (B22) 

pressure 

reference  pressure, 1 atmosphere (101.3 kN/m2) 

exact  value of stagnation  pressure 

quantity  defined by equation (B23) 

quantity  equal  to  right  side of equation (33) or  (35) 

perpendicular  distance  from  coordinate axis 

nose  radius 

quantities  defined by equations (B8) 

distance  along  surface  from axis in  plane of constant cp 

time 

components of velocity  tangent  and  normal  to  shock,  respectively 
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components of U in  x-, y-,  and  q-directions,  respectively 

quantity  defined by equations (B15) 

components of velocity  in x-, y-,  and  cp-directions,  respectively 

velocity  components  shown in  figure 5 

magnitude of total  velocity 

quantity  defined by equation (B3) 

vector  defined by equations (B2) 

distance  along  generator of reference  surface  from axis 

normalized  coordinate  defined by equations (7) 

coordinate  along  normals  to  reference  surface 

coordinate  along axis 

angle of attack 

exponent  used in  equation (B6) 

quantities  defined by equations (30) 

quantities  defined by equations (24) 

ratio of specific  heats 

ratio of static enthalpy  to 

mesh  spacings  for  time 

internal  energy, h/e 

T and  coordinates X, Y, and 
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6 

E 

shock  layer  thickness,  function of T , X , @  

damping  coefficient 

r distance  from  corner, ~ ~ , ~ i ~  - x 

,v,t,* quantities  defined by equations (B7) 

e angle  between  normal  to  reference  surface  and axis 

x scale  factor  for  x-coordinate  defined by equation  (3) 

pl,p2,p3  quantities  defined by equations (B15) 

V exponent  employed in  equation (18) 

vl,  v2,  v3 quantities  defined by equations (B22) 

P density 

c angle  between  normal  to  shock  and  free-stream  direction 

7 time 

+,Cp azimuthal  angle 

X quantity which varies  from 0 to 1 

- 
w small  nonnegative  number 

Subscripts : 

b properties at body 

C properties at shoulder 

I initial solution 
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max  maximum  value 

min  minimum  value 

S properties at shock 

00 properties  in free s t ream 

900 properties  for q = goo 

Superscripts: 

W exponent  between 0 and 1 

* conditions when u = a and  v = 0 

differentiation  with  respect  to t o r  T of functions which do not depend 
on  Y 

differentiation  with  respect  to x or  X of functions which do not depend 
on Y 

differentiation  with  respect  to cp or + of functions  which do not  depend 
on  Y 

vector  quantity 

ANALYSIS 

The  present  method  for  calculating  numerical  solutions  for  time-dependent,  inviscid, 
three-dimensional flow past blunt  bodies  traveling at supersonic  speeds is described  in 
this section. A number of grid  points  are  located on  the bow shock  wave,  the body sur-  
face,  and  between  the  shock  and  surface.  The  region of computation  must  contain  the 
entire  zone of subsonic flow. An initial solution, which can  be  quite  general, is assumed; 
and the flow at each of the  grid  points is calculated  for a number of time  steps. At each 
cycle of the  computation  an  initial-value  problem is solved  to  determine  the  solution at 
the new time  step  from  the  solution at the  previous  time  step,  subject  to  the  appropriate 
boundary  conditions. Results  for  steady flow a r e  obtained  after  many  time  steps when 
the  time  derivatives of the flow properties are sufficiently  small. It should  be  noted  that 
the  locations of the  grid  points  adjust  with  time as the  location of the bow shock  adjusts. 
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A two-step  finite-difference  approximation  to  the  time-dependent  method of character- 
istics is used at the bow shock  wave,  whereas  the  two-step,  time-dependent, finite- 
difference  scheme of Brailovskaya (ref. 11) is used at the  surface  and  between  the  shock 
and  surface.  The  solution  for a given  time  step is determined first at the  points  on  the 
shock  wave,  then at those  between  the  shock  and  body,  and  finally at those  on  the body 
surface. 

Both the  present  method  and  the  method of references 8 and 9 can  be  used  to  calcu- 
late  axisymmetric flow about  blunt  bodies  with sharp  sonic  shoulders.  A  major  advantage 
of the  present  method is that it is not necessary  to  specify any of the flow properties at 
the  shoulder. With the  method of references 8 and 9, it is necessary  to  specify  that  the 
Mach number at the  shoulder is 1 when the flow upstream of the  shoulder is subsonic.  A 
second  advantage of the  present  method is that  the  computational  techniques which a r e  
used at the bow shock  wave  and body surface  are much more  efficient  than  the  conven- 
tional  time-dependent  method of characteristics which is used  in  references 8 and 9. 

Basic  Coordinate  System  and  Governing  Equations 

The  basic  coordinate  system which is used is similar  to  that  employed  in  refer- 
ences 8 and 9. An axisymmetric  reference  surface is established as shown in  figure 1. 
The  coordinates  are  the  azimuthal  angle cp and  the  distances x and  y, which are 
measured  along  the  reference  surface  and  normal  to it, respectively,  in  planes of con- 
stant cp. The  components of velocity in  the x-,  y-,  and  cp-directions are u,  v,  and w. 
The  angle  in a plane of constant cp between the  normal  to  the  reference  surface  and  the 
direction of the  coordinate axis is designated as 8 and  satisfies  the  differential  equation 

where K is the  local  curvature of the  reference  surface.  The  distance r from  the 
axis is given by the  equation 

As statea  previously,  the  bodies which the  present  method will t reat  have  one  plane 
of symmetry.  The  free-stream  velocity  vector is parallel  to  this  plane.  The  angle cp 
is measured  from  the  leeward  side of this  plane,  and  the  reference  surface is constructed 
of segments of constant  curvature.  The  reference  surface  shown  in  figure 1 is constructed 
of one  segment  and  hence is spherical. 

The  type of coordinate  system  to  be  used  with  an  axisymmetric body with a sharp 
shoulder is shown in  figure 2. The  reference  surface which is used  with the body in  the 
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figure  has  three  segments of constant  curvature.  The  coordinate  system is focused at 
the  corner  in  the  manner of references 8 and 9 so that  in  the  vicinity of the  shoulder 
(Xc,min = < x 5 x ~ , ~ ~ )  the  line of intersection of the  reference  surface  and a plane of con- 
stant cp is a circular  arc  centered at the  shoulder.  The  use of a coordinate  system 
which  focuses at sharp  shoulders is crucial to the  present method. 

The  coordinate  system  to  be  used  with  an  axisymmetric body without sharp shoul- 
ders  but  with a generator  composed of segments of constant  curvature is similar  to  that 
used  with  bodies  with sharp  shoulders  in  that  the  reference  surface is located at a con- 
stant  distance  yb  from  the body along  the  normals  to  these  surfaces. For nonaxisym- 
metric  bodies,  the  distance  yb is generally a function of x and cp. 

The  equations  for  the  conservation of mass  and  momentum,  written  in  dimensional 
form  in  terms of the  time t and  the  coordinates x, y,  and cp, a r e  

du 1 ap  K 
dt Xp ax X r 
- +" cos e w 2  +-uv- -  = o  

y-momentum: 

cp-momentum: 

where  p  and p are   the  pressure and  density of the  gas, X is the  scale  factor  for  the 
x-coordinate  and  satisfies  the  equation 

X =  1 + y K  (3) 

and  d/dt is the  total  derivative  with  respect  to  time  along a streamline  and  can  be 
written as 
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d a u a  a ~a 
dt a t  x ax ay r a q  
- = -  +" +v-+--  

In this paper,  the  energy  equation is used  in  the  forms 

"" de P dP = 0 
dt p2 dt 

and 

r 1 

where e and a are the  internal  energy  and  speed of sound of the  gas,  respectively. 

It should  be  noted that equations (2) and  (4a)  can  be  written  in  conservation  form as 

c1= pvh 

c 2  = puvx 

c 3  = (p + pv2)x 

c 4  = pvwx 

e 5  = pvm 

(i = 1,2,3,4,5) ( 5) 
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The  quantity H in  equations ( 6 )  is the  total  enthalpy  and is written as 

H = h + -(u2 1 -k v2 + w2) 
2 

where h is the  static  enthalpy of the  gas. 

Computational  Coordinates 

The  shock-wave  and  body-surface  locations are specified  by  the  equations 

and 

respectively,  and  the  distance  between the shock  and  surface  for  given  values of t ,  x, 
and cp is 6 = ys - Yb. The  function  yb  for  the body surface is known, and  the  func- 
tions ys and 6 must be determined as part of the  solution. 

In this paper,  calculations are made  in  terms of the  independent  variables 

r = t  x = x  9 = q  

It  should  be  noted  that  the  geometrical  variables X, Y, and 6, do not form  an  orthog- 
onal set. The  partial  derivatives  with  respect  to t, x,  y,  and cp are related  to  those 
with  respect to r ,  X, Y, and 6, as follows: 

a - a  y6 a 
a t  a 7  6 a y  
""" 

a a 1  
acp a+ 6 
""_ - ( ~ 6  + "$J 

where 6,  6 ' ,  and $ are the  derivatives of 6 with  respect  to r, X, and 9, 
respectively. 
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The  shock  layer  to  be  calculated is subdivided  with  the X-, Y-, and  @-coordinate 
surfaces as shown in figure 3. The  planes of constant @ are spaced  from 4, = Oo to 
@ = 180° with a uniform  mesh  spacing A@. Since  the flow fields which are treated  in 
this paper  have  one  plane of symmetry, only one  side  needs  to  be  calculated.  The  coor- 
dinate  Y  has  values of 0 and 1 at the body and  shock,  respectively. A uniform  mesh 
spacing AY separates  the  surfaces of constant  Y  which are located  between  the  sur- 
face  and  shock wave. The  coordinate X is measured  along  the  generator of the  axisym- 
metric  reference  surface.  As  stated  previously,  this  generator is constructed of seg- 
ments of constant  curvature (the generator  illustrated  in fig. 3 has two such  segments). 
The  surfaces of constant X are  spaced so that  the  distance  separating  them  along  the 
generator of the  reference  surface is a constant  spacing AX. It should  be  noted  that  the 
surfaces of constant X a r e  orthogonal  to  the  reference  surface. 

The flow properties  are  calculated at the  intersections of the  surfaces of constant 
X, Y,  and @. Since  the  Y-coordinate is normalized  with  respect  to  the  distance  between 
the  shock wave and  the body surface,  the  locations of the  grid  intersections  move as the 
shock wave adjusts  to its steady  position. 

Calculation of Flow  Within  Shock  Layer 

The  procedure  for  the  calculation of flow within  the  shock  layer is used at the  grid 
points  between  the  shock  and  surface.  A  related  approach is used at most of the  points 
on the  surface. 

General  procedure.-  The  equations which a r e  solved a r e  equations (5) in   t e rms  of 
the  independent  variables r ,  X, Y, and @ and are  written as 

(i = 1,2,3,4,5) (9) 

The  quantities  yb  and Gb a r e  the  derivatives of yb  with respect  to X and @, 
respectively. 

The  equations are  used  in this particular  conservation  form  because  the  conserved 
functions  have  continuous  derivatives  in  the  vicinity of sharp  sonic  shoulders  although 
some of the flow properties  have unbounded derivatives at these  shoulders.  The  advan- 
tages of using  this  form  to  obtain  solutions on streamlines  near  sharp  shoulders  were 
discussed  in  reference 9, and  the  advantages of using it on surface  streamlines  are dis- 
cussed  subsequently. 
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As  stated  in  reference 9, the  derivatives with respect  to Y in  equations (9) are 
well  behaved at points in  the flow  field  near  sharp  shoulders  because  the  quantities  which 
are differentiated are proportional  to Y at these  shoulders. This follows  because  the 
segment of the  generator of the  reference  surface  associated  with  the  shoulder is a cir- 
cular arc with its origin at the  shoulder as shown in  figure 2. Hence,  yb is constant at 
the  shoulder so  that 

yh = 0 

The scale factor X at points  near  the  shoulder satisfies the  equation 

Note  that  the  quantity  yb is always  negative  for a sharp  shoulder.  Since  the  quantities 
Ci are all proportional  to X, it follows  that  these  terms are proportional  to Y near 
the  shoulder.  In  view of these  considerations,  the  quantities  which are differentiated 
with respect  to Y in  equations (9) satisfy  the  following  relationship  near  sharp 
shoulders: 

A two-step,  time-dependent,  finite-difference  method of second-order  accuracy  in 
the  mesh  spacings AX, AY, and A@ and  first-order  accuracy  in AT is used  to  inte- 
grate the governing  equations.  This  method  was first used by Brailovskaya  (ref. 11). In 
the first step  the  time  derivative is approximated  with a forward-difference  expression, 
whereas  in  the  second  step  the  time  derivative is replaced with a backward-difference 
expression.  The  first-step  solution,  which is designated  with the subscript I, is deter- 
mined  with  the  equations 

(i = 1,2,3,4,5) (10) 

The  partial  derivatives aAi/aT in  equations (10) are determined by evaluating  the  right 
side of equations (9) at the point ( T  - AT,X,Y,@). Unless  otherwise  noted,  the  partial 
derivatives with respect  to X, Y,  and  in  equations (9) are approximated  with 
central-difference  formulas. For example,  the  partial  derivatives  aBi ax i n  equa- 
tions (9) are approximated  with  the  expressions 

l 
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The  second-step  solution is obtained  with  the  equations 

a 
a 7  Ai(T,X,Y,@) = Ai(T-AT,X,Y,@) + AT- Ai,I(T,X,Y,@) - E Ai(T-AT,X,Y,+) 

4 
+ (AY)4 a ,Ai(T-AT,X,Y,@) + (A@)4 Ai(T-AT,X,Y,+) 

a y 4  a@4 

(i = 1,2,3,4,5) (1 1) 

where  the  values of the  partial  derivatives  aAi,I/aT at the point  (T,X,Y,+) are deter- 
mined by evaluating  the  right  side of equations (9) at this point  with the  first-step  solu- 
tion. The  terms of fourth  order  in  equations (11) are nonphysical  damping  functions 
similar  to  that  used by Richtmyer  and  Morton (ref. 12)  which a r e  added  to  eliminate 
instabilities.  Values  for  these  derivatives  are  determined  with  five-point  formulas of 
the  form 

4 
(Ax)4  5 A~(T-AT,X,Y,@) = Ai(T-AT7X+2AX,Y,+) + Ai(T-AT,X-2AX,Y7+) 

ax4 

+ Ai(T-AT,X-AX,Y,+) 1 
+ 6Ai(T-AT,X7Y,+) 

a4Ai 
Five-point  formulas of this  type  cannot  be  used  to  evaluate  the  terms ( L ~ Y ) ~  7 on 

a y  
surfaces of constant Y adjacent  to  the  shock  wave  and body surface  because  points  with 
the  coordinates Y + 2 AY would be beyond the  shock  and  those  with  coordinates 
Y - 2 AY would be  inside  the body. On the  surfaces of constant Y next  to  the  shock 

wave  and body surface,  the  terms (AY) -- are replaced with te rms  of the  form 
4 a4Ai 

a y 4  
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a 3Ai 83Ai 
-(AY)3 - and (AY)3 - , respectively.  These  quantities  are  evaluated with  the 

following  four-point  formulas: 
ay3 ay3 

L 

The  density  and  the  velocity  components are determined 
A2, A3 , and A4 with  the  equations 

p = -  4 
x 

from  the  quantities  AI, 

A4 
A1 

w = -  

The  value of the  scale  factor h at time T, which is needed in  order  to  determine  the 
density, is calculated  with  the  following  equation  obtained by substituting the third of 
equations (7) into  equation  (3): 

Since it is necessary  to know the  shock  layer  thickness 6 at time T, the  solution at the 
shock is determined first at each  time  step.  The  internal  energy of the  gas is determined 
with  the  equation 

and  the  pressure is obtained  from  the  thermodynamic  relation 

where is the  ratio of static  enthalpy  h  to  internal  energy  e (7 = h/e)  with the  heat 
of formation of the  gas  adjusted so that  h = e = 0 at a temperature of absolute  zero. It 
should  be  noted  that  equation (12) is an  exact  relation  that  holds  for any gas  and is dis- 
cussed  in  reference 13. Also, it is shown in  that  reference  that  the  speed of sound for an 
equilibrium  gas is related  to  e  and T((p,e)  by the  equation 
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For a calorically  perfect  gas, 7 is equal  to  the  ratio of specific  heats, but these  quanti- 
ties differ for real gases.  A  curve fit for  the  thermodynamic  function 7 for  equilibrium 
air in   t e rms  of the  density p and  internal  energy e is given  in  reference 13 and is 
also  presented  in  appendix A. Expressions  for  the  partial  derivatives of 7 i n  equa- 
tion (13) are obtained by differentiating  the  expressions  for 7 given in  this appendix. 

The Von Neumann conditions  provide a means of estimating  the  permissible  values 
of AT and E which can  be  used at a given  time  step. It is shown in appendix  B  that  the 
damping  coefficient E must  satisfy  the  inequalities 

1 
24 

0 5 €  SEmax-- - 

and  that  the  time  step A?- must  satisfy  the  inequality 

iu(Z) min(X AX,6  AY,r A+) 
~~ ~ . "  .. 

at each  point,  where is the  magnitude of the  total  velocity, E = E emax, 
function which is derived  and  discussed  in  appendix B, and Q is given by the  equa- 
tion (B23). For each  time  cycle,  the  value of A?- is taken  to  be  the  smallest  value of 
the  right  side of inequality (14) which occurs at any  point in  the flow field  at  the  previous 
time  step. 

- 1  fU(c) is a 

Procedure at __ axis of . . coordinate ~ . . - ~ system.-  The  governing  partial  differential  equa- 
tions (9) contain  indeterminate  forms on the axis of symmetry,  and  the  velocity  compo- 
nents  u  and w a r e  multivalued  with  respect  to  the  angle + there.  In  this  paper,  the 
solution  for X = 0 and Q, = 0 is determined  with  finite-difference  equations,  and  the 
solution at the axis for + not zero is determined  algebraically.  Indeterminate  forms 
appear  in  the  governing  equations at the axis where X = 0. When these  terms are evalu- 
ated  with  1'Hospital's  rule,  equations (9) are  writ ten as 
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where 

(i = 1,3,5) 1 
- 
E5 = KpvH 

- 
D3 = PVW I 
- 
D5 = PwH I 

The  cross-flow  momentum  equation is not  needed  because it is known from  symmetry 
that  w = 0 in  the  plane ip = 0. 

The flow properties  for X = 0 and ip # 0 are determined  from  the  kinematic 
relations 

Procedure at downstream  boundary.-  The  region of computation  terminates at the 
downstream  boundary  X = X,= where  the flow must be supersonic.  The  procedure 
which is used at points  on this boundary is the  same as that  used at general  points  except 
that  the  derivatives  aBi/aX  in  equations (9) are evaluated  with  backward  differences of 
the  form 
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Procedure  where  curvature of reference  surface is discontinuous.-  A  special  pro- 
cedure is used  for  values of X  where  the  curvature of the  reference  surface  changes. 
As  shown in  figure 2, these are the  locations of the  junctions of the  segments of constant 
curvature  comprising  the  generator of the  reference  surface.  The  procedure  consists of 
extending the  grid  on  one  side of the  line of discontinuity or  the  other by one  mesh 
spacing, as shown in  figure 4, and  performing  the  calculation  in a mesh  block  with con- 
stant  reference-surface  curvature.  The  choice of which grid  to  extend is determined 
from  the  arc  lengths  along  the  line  Y = Constant  and CP = Constant  to  the  neighboring 
mesh  points;  the  grid  associated  with  the  shortest  arc is the  one which is used.  Thus, 
the  polar  grid is used  to  make  calculations  for  point  A  since  the  length of a r c  AB is 
less than  that of a r c  AC, and  the  alternate  grid is used at point D since  the  length of 
a r c  ED exceeds  that of a r c  DF. 

Calculations are made at points  A  and D with  the  appropriate  curvature K 
and  equations (9), (lo),  and (11) as in  the  general  case.  Consider point A. The  partial 
derivatives with respect  to Y and CI, are  formed  in  the  usual  manner.  The  partial 
derivatives with respect  to  X at A a r e  determined  from  the  differences  between  the 
function Bi at points  C'  and B. The  functions & at point  C' are  determined by 
interpolating  the  values at points  B  and C. The  interpolation  technique is illustrated 
in  figure 5. First, the  components of the  velocity  in  the  plane CP = Constant at points  B 
and  C are  expressed  in  terms of the  components iiB,?B and UC,Gc which are  paral-  

lel  to  the  components  uC,,vC,. The'n the  functions Bi at points  B  and  C are  deter-  
mined in   t e rms  of i,ii and  the  other flow properties.  Finally,  the  values of the func- 
tions at C' are  determined by interpolating  between  the  points  B  and C. It should 
be  noted  that  interpolating  linearly  between  points  A  and  C  leads  to  numerical 
instability. 

Calculation of Flow at Body Points With Continuous  Slope  and  Curvature 

The  procedure  which is used at body surface  points  where  the  slope  and  curvature 
a r e  continuous is similar  to  that  used at points in  the  shock  layer  in  that  calculations  are 
made with equations (9), (lo),  and (11). The  major  differences  are  that  the  derivatives 
with respect  to  Y  are  evaluated with  one-sided  second-order  finite-difference  expres- 
sions of the  form 

a4Ai 

a y  4 
and  that  the  damping  terms (AY)4 - in  equations (11) are replaced by te rms  of the 

form 
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2 
(AY)2 a Ai(T-AT,X,O,+) = Ai(T-AT7X,2AY,6) - 2Ai(T-AT,X,AY,+) 

ay2 

+ Ai(7-A~,X,0,+) 

where Y = 0 at the  surface. At points  adjacent  to  sharp  shoulders  and at points  adja- 
cent  to  curvature  discontinuities  where  the  derivatives of the  quantities Bi undergo 

large  changes,  the  damping  terms (AX) - 4 a4Ai 
in  equations (11) are  replaced with te rms  

of the  form 
ax4 

+ Ai(T-AT,X-AX,O,+) 1 
The  nature of flow at curvature  discontinuities is discussed  subsequently.  The  proce- 
dures which a r e  used at the axis of symmetry  and  the  downstream  boundary are   the  same 
as those  used  in  the  shock  layer. 

Special  considerations  must  be  given  to  the  calculation of flow at the  surface when 
there is a discontinuity in  either  the  surface  slope o r  the  surface  curvature.  These con- 
siderations  are  discussed  subsequently. 

Analysis of Flow at Sharp  Shoulder 

Consider  the flow past  an  axisymmetric body with a sharp  shoulder at angle of 
attack. At the  surface  there  are two nonzero  velocity  components,  u  and w, which a r e  
tangent  to  the  surface  and  in  the radial and  cross-flow  directions,  respectively. At the 
shoulder  the  u-component is normal  to  the  edge,  and  the  w-component is tangent  to it. 

Behavior of cross  flow at shoulder.-  Consider  an  misymmetric body with a sharp 
shoulder  such as that shown in  figure 2 o r  4. It can  be shown that  the  derivative aw/ax 
is bounded at a sharp  shoulder  for  steady flow.  The  steady  cross-flow  momentum  equa- 
tion is obtained  from  equation (2d) as 

~~ 

The  quantities w, l/p, and l/r are known to be finite at the  shoulder,  and  there is no 
reason  for  the  derivatives with respect  to cp to  be unbounded. It is shown  subsequently 
that  the u-component of velocity  must  be at least as large as the  sonic  velocity at the 
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shoulder so that  the  quantity  l/u is finite.  Therefore, it can  be  concluded  that  the 
derivative of w at the  shoulder is finite. In this paper it is assumed  that this charac- 
teristic  applies  to  unsteady as well as steady flow. 

Sonic  condition for  nonzero  cross flow.- It is well known that for axisymmetric  and 
plane flow the  surface  velocity  must  either  be  supersonic upon arr ival  at the  shoulder or  
become  sonic  there. It can  be shown  with  equations (2) and (4b) that  for  three-dimensional 
flow it is the  surface  component of velocity  u,  normal to the  edge,  rather  than  the  total 

surface  velocity vu2 + w2 which must  satisfy  one or  the  other of these  conditions. It 

can  be  seen  from figure 2 that  in  the  vicinity of the  shoulder xc,min S x 5 x ( c , m a )  the 
curvature of the  reference  surface K, the  scale  factor X, and  the  perpendicular  distance 
from  the axis r are  writ ten as 

r = rc + 7 sin e 

respectively,  where 7 = y - yb. By using  these  relations  and  equation (l), the  equations 
of motion  can  be  written as 

r 
- ap u a p + . a p +  W 1 aw 
a t  f a e  af rc + f s i n  e a e  a e  af rc + f s i n  e acp +" - 

+ u c o s   8 + v s i G w = o  
rc + 7 sin e 
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r 

+ 
rc + 7 sin e 

Let  the flow properties  in  the  vicinity of the  corner be represented by functions of the 
form 

where Fo is bounded for  all values of and  the  exponent v is greater than or equal 
to  zero. When these  functions  are  substituted  into  the  equations of motion,  the  resulting 
equations are multiplied by 7, and  the  limit is taken as j7 approaches  zero,  the  terms 
involving v and Fo are  eliminated, and  the following equations are obtained: 

..(? - ..) = 0 

awC uc-=o a e  

Equations  (19a), (19b),  (19c), and (19e) are the  Prandtl-Meyer  equations  where, by 
assumption,  pc,  pc,  uc,  vc,  and ac a r e  functions of t and as well as 8. 

From  these  equations, it can  be  shown  that  the  following  condition  must hold: 
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Thus,  the  u-component of velocity  either  must  be  sonic  for ~ ~ , ~ i ~  2 x 2 x ~ , ~ ~  or it 

must be supersonic so that  the  constant-density o r  wedge-flow solution  applies.  The 
solution to equations  (19a), (19b), (19c),  and (19e) for a perfect gas can  be found in  
appendix B of reference 9. In  order  to  use this solution  for  angle-of-attack flow fields, 
the  quantity M c  in  reference  9  should be interpreted as follows: 

a 
x=xc, min 

Equation (19d) simply  states  that  the  cross-flow  velocity  component is not a function of 6 
at the  shoulder. 

Differentials of pu, p + pu2,  and - puH.- Consider  isentropic,  isoenergetic flow on 
a surface  approaching a sharp  shoulder.  The  differential  energy  equation  can  be  written 
as 

d H = u d u + w d w + d h = O  

where 

1 & = - d p = -  P 
a2 dp 
P 

Thus,  the  differential du can  be  written as 

It follows  that  the  differentials of the  quantities B1, B2,  and B5 can  be  written as 

= ;(u 2 - a2)dp - p dw 
U 1 

d(p + pu2) = (u2 - a2)dp - 2pw  dw i 
d(puH) = z(u2 U - a2)dp - p 2% U dwJ 

At a sharp  sonic  shoulder  the quantity ("2 - a2)dp in  these  equations is an  indeterminate 
form and  can  be  evaluated by expanding  the  thermodynamic  properties  and  the  velocity 
components in   t e rms  of the  distance  from  the  corner { = Xc,min - x. It follows  from 
equation (17) that  the  cross-flow  velocity  component  w  varies  linearly  with {. The 
expressions  for  the  density p,  the  speed of sound a, and  the  velocity  component  u are 
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P = P * +  PICW 1 
a = a + al< * 

u = a* - u1cmJ 

where w is a number  between 0 and 1 and  the  coefficients p1, al ,  arid u1   a r e  posi- 
tive. It has  been  shown by Guderley (ref. 14) for  irrotational flow that w has a value 
of 2/5. Friedman (ref. 15) has shown that this value of w also  applies  for  rotational 
flow. It can  be  shown  with  equations (21) that  the  indeterminate  form  can  be  written  to 
lowest  order  in < as 

(." - a2)dp = -2wa*p 1( u 1 + a1 ) < 2w-1dI 

Thus,  the  indeterminate  form is, in  fact,  infinite at the  shoulder  since  the exponent 
2 0  - 1 has a value of -1/5. As a result,  the  differentials of B1,  B2, and B5 in  
equations (20) are  also  infinite at the  shoulder.  Terms of order 3w - 1 and  higher do 
not contribute  to  the  values of the  differentials at the  shoulder  since 3w - 1 has a value 
of +1/5. It can  be  seen  from  equations (21) that  the  differentials of the  thermodynamic 
properties  and  the  u-component of velocity  vary as Cwm1 = <-3/5 and,  hence,  have 
stronger  singularities  than  the  differentials of B1, B2, and B5. 

Methods of Calculation at Sharp  Shoulders 

Two computational  procedures a r e  used at sharp  shoulders. One procedure is 
employed when the flow at the  shoulder is supersonic  and  hence  nonsingular,  and  the 
other is used when the flow is sonic  and  hence  singular.  The  choice of procedure is 
made on the  basis of the  value of the  ratio  u/a at the  previous  time  step. 

Procedure  used at sharp  supersonic  shoulder.- If the  u-component of velocity at 
the  shoulder at the  previous  time  step is supersonic,  equations (9), ( lo) ,  and (11) a r e  
used as in  the  general  case  and  the  derivatives aB- ax in  equations (9) a r e  evaluated 
with  backward-difference  expressions.  The  value of the  curvature  used  in  equations (9) 
is that of the  segment of the  reference  line  located  upstream of the  shoulder.  Thus, only 
the body geometry  and  the  flow  upstream of the  shoulder  influence  the  solution at the 

shoulder, as should  be  the  case  for  supersonic flow. The  damping  terms (AX)4 - in 

equations (11) are replaced with  second-order  terms of the  form 

11 

a4Ai 

a x 4  
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(AX) 2 - a2 Ai(T-AT,X,O,+) = Ai(T-AT,X-2AX70,+) - 2Ai(T-AT,X-AX,O,+) 
ax2 

+ Ai(T-AT,X,O,@) (22) 

Procedure  used at sharp  sonic  shoulder.-  The  procedure  described  for  use at a 
sharp  supersonic  shoulder was tried  also at a sharp  sonic  shoulder.  As is shown in  the 
section  on  "Results  and  Discussion,"  the  solution  obtained at the  shoulder  in this manner 
is subsonic  and  does not exhibit  singular  behavior. It is apparent  that  special  considera- 
tion  must  be  given  to  the  calculation of flow at a sharp  sonic  shoulder. 

The difficulty  with  using  equations (9) for i = 1, 2,  and 5 at a sharp  sonic  shoulder 
may  be due to  the  fact  that  each of these  equations  has two derivatives which  become 
unbounded as a sharp  sonic  shoulder is approached  along  the  upstream  surface  in  such a 
manner  that  the  sum of the  derivatives is always finite. It has  already  been  shown  that 
the  derivatives  aBi/aX  for i = 1, 2,  and 5 become  infinite as a sharp  sonic  shoulder 
is approached  along  the  upstream  surface. It can  be  shown  that  the  same  behavior is 
exhibited by the  derivatives  aCi/aY  for i = 1, 2,  and 5 since  the  derivative av/aY 
at the  surface  becomes  infinite as a sonic  shoulder is approached  from  upstream  (see 
ref. 15 for  example)  and  since  the  scale  factor h does not vanish on the  upstream  sur- 
face.  Instead of using  equations (9) for i = 1, 2, and 5 at sharp  sonic  shoulders, a set 
of approximate  time-dependent  equations a r e  employed. 

A set  of exact  equations in   t e rms  of derivatives with respect  to  X  and + which 
is applicable at the body surface  for  steady flow can  be  obtained  with  equations  (20), (17), 
and (8). For example,  the first of this set  of equations is written as 

This equation is one form of the  steady  continuity  equation,  and  the  second  and  third 
equations  in  the  set  are  forms of the  steady  x-momentum  and  the  energy  equations, 
respectively.  Therefore,  the new equations  must  be  the  same as equations (9) for 
i = 1, 2, and 5 in  the  time-asymptotic  limit. 

Two basic  assumptions  are  made  in  order  to  obtain  the  approximate  time-dependent 
equations  which are  used at sonic  shoulders  in this paper. First, it is assumed  that  the 
new set  of equations is applicable  to  transient as well as steady flow  when the  appropriate 
time  derivatives a r e  added.  Second, it is assumed  that  the  terms  proportional  to  the 

quantity (u2 - a 2 ) g  can  be  neglected.  The  approximate  time-dependent  continuity, 
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x-momentum7  and ener.gy equations  which are used at sonic  shoulders are written as 

respectively.  The  value of the  reference-surface  curvature K which is used  in  the 
expression  for X is that  associated with  the body surface  upstream of the  shoulder. 
The  previous  version of this  method  presented  in  reference 7 differs from  the  present 
version  in  that  equation (17) is not used  to  replace  the  derivative aw/aX which other- 
wise  appears  in  equations (23). 

The  effect of neglecting  the  terms  proportional  to  the  indeterminate  form may be 
to change  the order of the  singularity. If the  thermodynamic  properties  and  the 
u-component of velocity  near a sonic  shoulder  vary as <1/2+Tj @ is a small non- 

negative  number) rather  than as p2/5 as is physically correct,  the  quantity (“2 - a”)% 

would vary as c2= rather  than as g-1/5 and  hence would vanish at the  shoulder. 

I 

The  numerical  procedure which is used at a sharp  sonic  shoulder  consists of inte- 
grating  equations (23) and  the  standard  cross-flow  momentum  equation (i = 4 in  eqs. (9)) 
with the  two-step  numerical  technique  given  in  equations (10) and (11). The  cross-flow 
momentum  equation is used  in its standard  form  since w is not singular at the  shoulder. 
No damping terms  are  used  in  the  integration of equations (23). 

Calculation of Flow at Curvature  Discontinuities 

Singular  behavior  can  also  occur at body points  where  the  curvature of the  surface 
is discontinuous but the  slope is continuous.  These are the  junctions  between  the  seg- 
ments of constant  curvature which compose  the  generator of the  surface. It should  be 
remembered  that  the only bodies  with  discontinuities  in  slope or  curvature which are 
treated with  the  present  method are axisymmetric  bodies. Two examples  are shown in 
figure 6. The  singular  behavior  consists of discontinuities  in  the  partial  derivatives of 
p, p, and  u  with  respect  to  X  and it can  occur  for both subsonic  and  supersonic flow. 
In  general, the streamwise  derivatives of the flow properties are discontinuous  where  the 
surface  curvature is discontinuous.  The  changes  in  the  derivatives  in  subsonic  regions 

25 

I 



where  the  surface  curvature  increases  abruptly  in  the  direction of flow tend  to  be  much 
smaller  than  the  changes  in  the  derivatives  in  supersonic  regions  and  in  subsonic  regions 
where  the  surface  curvature  decreases  abruptly  in  the  direction of flow. It should  be 
noted  that  the flow tends  to  compress  where  the  curvature  decreases  abruptly  and it tends 
to expand  where  the  curvature  increases  abruptly.  The  junctions  where  the  X-derivatives 
tend  to  undergo  large  changes  are  designated by the  letter  L  in  figure 6. 

If the flow at the  junction is supersonic, it is calculated  in  the  same  fashion as at a 
sharp  supersonic  shoulder. Another procedure is employed when the flow at the  junction 
is subsonic.  This  procedure  involves  the  use of the  governing  equations  in a form which 
does not contain  curvature  terms  explicitly.  These  equations a r e  

where s is the  distance  along  the  surface  from  the axis of the  coordinate  system  in a 
plane of constant + so  that 

Since  the  solution at a subsonic  junction is influenced by both the  upstream  and down- 
s t ream flows,  one-sided  difference  expressions  cannot  be  used  to  evaluate  the  derivatives 
with respect  to s. Instead,  the  upstream  and  downstream  derivatives  are  evaluated  and 
the  results  are  averaged.  Let X, and X- be  the  values of the  scale  factor  for  points 
with  values of X greater  than  and less than  that of the  junction,  respectively.  The 
finite-difference  expressions  for  the  partial  derivatives with respect  to s are 
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(i = 1,2,4,5) 

At points  where  the  modified  equations are employed,  the  damping  functions which 
are  used are of the  same  form as those  used at sharp  supersonic  shoulders  and  are  given 
by equations (22). 

Calculation of Flow at Bow Shock Wave 

The  method of characteristics is used  to  determine  the flow properties at the bow 
shock wave. This  method  consists of solving  simultaneously  the  Rankine-Hugoniot  rela- 
tions  for a moving shock  and  one  characteristic  compatibility  relation.  In this paper  the 
characteristic  compatibility  relation is integrated  with a finite-difference  technique. 

Let  the  direction  cosines of the  normal  to  the  shock wave  with respect  to  the x-, y-, 
and  pdirections at the  shock  point  be  cos &, cos &, and  cos p,, respectively. 
These  quantities  can  be  calculated with  the  equations 

cos 15 ='E: 
1 

where 

The  unit  vector  normal  to  the  shock is written as 

" e, = e, cos px + iZy cos 4 + Zq cos p (P 



The  Rankine-Hugoniot  relations are written  in  terms of the  thermodynamic  vari- 

ables p, p, and 7 = E, the  velocity  component  normal  to  the  shock V, the  component of 

the  shock  velocity  in  the  y-direction 6, the  quantity &, the  angle u between  the  nor- 
mal  to  the  shock  wave  and  the  free-stream  direction,  and  the  magnitude of the free- 
stream  velocity 7, as 

p t  - 6 sec  4) 

p + p(v - 8 sec  

cos o - 6 sec  

4.)” = p, + p, V, cos o - 8 sec  r 4)2 

The  unsubscripted  quantities  on  the  left  side of equations (27) are evaluated  immediately 
behind  the bow shock  wave,  whereas  the  quantities  subscripted  with 03 on  the  right  side 
of these  equations are evaluated  in  the  free  stream. It should  be  noted  that  the  normal 
velocity V is related to  the  velocity  components  u,  v,  and w by the  equation 

“ 

V = es + V = u  cos pX + v  cos 47 + w  cos p, 
... 

where  the  total  velocity  vector v is expressed as 

Let  the  direction  cosines of the  free-stream  direction with respect  to  the x-, y-, 
and cp-directions of a point  be  cos ax, cos Q! and  cos  aq,  respectively.  Expressions 
for  these  quantities a r e  

Y7 

cos cyx = sin 8 cos a+ cos 8 cos cp sin Q! 

cos aY = -cos 8 cos a + sin 8 cos cp s in  a 

cos Q ! ~  = -sin cp sin Q! 

where a is the  angle of attack.  The  unit  vector  in  the  free-stream  direction is 

e = Zx cos ax + e  cos Q! + e q  cos Q ! ~  
4 -c  -c 

v, Y Y 
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The  cosine of the  angle u is 

cos u = e- . & = cos ax cos px + cos ay cos 47 + cos  aq  cos p 4 , (32) v, 

The  characteristic  compatibility  relation which is used  in this paper is derived  in 
appendix C. It is written  in  the  form 

- ~ k v  r - w2 cos 47 + vw cos p,)sin e + (au - w2 cos px + uw cos p, cos e ) I  
The  quantities U, and U, in  equation (33) a r e  the  components of the  shock  tangential 
velocity  component U in  the x- and  ,-directions,  respectively. It can  be  determined 
from equation (29) and  the  vector  relation 

that  these  quantities  and  the  component uy satisfy the  equations 

(34) 

It should be noted that  the  angles &, &, and p, a r e  evaluated at the  shock point 
where  the flow is being  calculated  and  do  not  vary  with X, Y, or GJ when the  deriva- 
tives of V, U,, and Up are being  Calculated.  In other  words,  the  only  quantities  in 
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The  solutions at the axis for  other  values of Q, a r e  obtained  from  equations (16). 

The  present  approach  differs  from  the  standard  time-dependent  method-of- 
characteristics  approach at shock  waves  in  that  the  characteristic  compatibility  relation 
given by equation (33) o r  (35) is integrated  with  finite-difference  expressions.  Central- 
difference  formulas are  used  to  evaluate  the  partial  derivatives with respect  to  X  and 
6,, and  backward-difference  expressions  are  used to  evaluate  the  derivatives  with  respect 
to Y. All these  difference'expressions  are  correct  to  second  order. It should  be  noted 
that this modification of the method of 'characteristics is similar  to  that  used by Masson, 
Taylor,  and  Foster  (ref. 6) at the  shock  and body. 

A two-step  Brailovskaya  scheme of the  sort  used  in  the  shock  layer and on the body 
surface is used  to  perform  the  integration.  For  the first step,  the  direction  cosines sf 
the  normal  to  the bow shock wave and  the  free-stream  direction and  the  shock  angle (T 

are determined by using  equations (24),  (30), and (32). Then,  the  right  side of equa- 
tion (33) o r  (35) and  the  coefficient  pa on the  left  side are evaluated at time T - AT. 
Let  the  right  side of equation (33) or  (35) be  designated as R. The  integrated  compati- 
bility  equation for  the first step is written as 

The  subscript I used  in  equation (36) denotes  the initial solution. This equation is 
solved  simultaneously  with  the Rankine-Hugoniot relations (27) in  order  to  determine 
an initial solution  for  the  thermodynamic  properties  p,  p,  and 7, the  velocity  compo- 
nent V, and  the  shock  velocity  component 6 at time T. If an equilibrium  gas  model 
is being treated, it is necessary  to  perform an iteration  in  order  to  obtain a converged 
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solution  for  the  thermodynamic  properties.  The  velocity  components  u,  v,  and  w are 
determined  with  the  equations 

u = v, cos ax - cos u cos px + v cos px - (  ) 
v = v, cos ay - cos u cos + v cos @ - (  4r! 
w = v, cos acp - cos u cos p d  + v cos pcp - (  

For the  second  step,  the  right  side of equation (33) or  (35) and  the  quantity  pa a r e  
evaluated at time T with the initial solution  just  obtained.  The  integrated  compatibility 
relation is written as 

P(T7x717@) + PI(T7x717@.)aI(T,x71,@)v(T,x,1,@) 

= p ( ~ - h ~ , X , l , @ )  + P I ( ~ , X , l , ~ ) a I ( ~ , X , 1 , ~ ) V ( ~ - A ~ , X , 1 , @ )  + ATR~(T,X,~ ,@) 

This  equation is then  solved  simultaneously with the Rankine-Hugoniot relations  in  the 
same  manner as for  the first step. 

No damping terms  are   used at the  shock wave since they  proved  to  be  unnecessary. 

Starting  Solution 

It has  been shown by a number of investigators  that  converged  solutions  for  the 
steady  supersonic blunt-body problem which have  been  calculated  with  time-dependent 
finite-difference  methods are independent of the  starting  solution  for all means  and  pur- 
poses.  Thus,  the  starting  solution  can  be  quite  approximate. 

In  this  paper  the  starting  solution is constructed  from a specified  axisymmetric 
shock  wave with its axis in  the  free-stream  direction  and a specified  surface  pressure 
distribution  and  surface  streamline  pattern. It is assumed  that  the  shock  velocity  for  the 
initial solution is zero.  Therefore,  the  complete  solution at the  shock  can  be  determined 
with the Rankine-Hugoniot shock  relations,  the  specified  free-stream  conditions,  and  the 
shock  geometry. 

The  basic  surface  pressure  distribution is the Newtonian  one. At sharp  corners  for 
which the  upstream  value of the  velocity  component  u is subsonic  the  pressure is 
adjusted so that  u is equal  to  the  local  speed of sound. If the Newtonian pressure dis- 
tribution  does not indicate a stagnation point  on the  windward  surface of the body (this 
happens,  for  example,  for a flat-face  cylinder at angle of attack),  the  stagnation  pressure 
is imposed at the  points  with  the  largest Newtonian pressure,   and  the  pressure at the 
other  points is increased  proportionally.  In  regions of wind  shadow,  the pressure is set 
equal  to  the  pressure at the last point on the  windward  surface  in  the  same cp-plane. 
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There is a provision  for  imposing a lower bound on  the  pressure at all points in  the flow 
field. 

The  density at the  surface is determined  from  the  pressure  distribution  and  the 
normal  shock  entropy.  The  use of normal  shock  entropy is considered  reasonable  since 
the  results of Shifrin. (ref. 16) suggest  strongly  that  the  maximum  entropy  streamline 
wets  the  surface when the flow field is not symmetric.  The  magnitude of the  velocity 7 
at the  surface is determined  from  the  pressure,  density,  and  the  total enthalpy. The  sur- 
face  components of velocity are obtained  from  the  total  velocity  and  the  Newtonian  surface 
streamlines which are used  even  in  regions of wind  shadow. 

The flow properties at points  between  the  shock  and body are determined by linear 
interpolation. When an equilibrium  gas  model is to  be  used,  the initial solution is cal- 
culated as a perfect  gas.  The  value of 7 which is used is the  normal  shock  value. 

RESULTS AND DISCUSSION 

In this section  the  results of the  present  method  are  compared with those of experi- 
ment  and  other  methods  for  the flow of equilibrium air past  the Apollo command  module 
at the tr im angle of attack  and  for  perfect  gas flow past a spherical  cap  and a spherically 
blunted  cone at angle of attack.  Both  the  cap  and  the  cone are  terminated with sharp 
shoulders.  Results  are  presented  also  for  perfect  gas flow past a prolate  spheroid with 
its major axis normal  to  the flow. In  addition, several  solutions  for  the  flat-face  cylinder 
at zero angle of attack which were  obtained by using  different  finite-difference  techniques 
are compared. 

Smooth  Bodies 

Apollo command  module.-  The  results of the  present  method  for  the  bow-shock and 
sonic-line  shapes  and  surface  pressure  distribution  for  the Apollo command  module are 
compared with those of the  inverse  method of Webb, Dresser,  Adler,  and Waiter (ref. 17) 
in  figure 7. The  angle of attack is 220, the  flight  velocity is 6935 m/s (22  754 ft/sec), 
and the  altitude is 45.866 km (150  480 ft) in  the  atmosphere of the  earth.  For  the  pres- 
ent  calculations,  the  free-stream  properties at this  altitude  were  obtained  from  refer- 
ence 18 in  term.s of the  geopotential  altitude.  It  should  be noted that  since  the Apollo 
command  module is axisymmetric  and  has a generator  composed of segments of constant 
curvature, it is well suited  for  treatment with the  present method. The  results of both 
methods are for air in  thermodynamic  equilibrium. 

The  shock-  and  sonic-line  shapes  presented  in  figure "(a) are those  in  the plane of 
symmetry.  The  results of the  present  method  and  those of the  inverse  method  (ref. 17) 
for  the  shock  location  and  the  sonic-line  location  in  the  windward  semiplane (cp = 180°) 
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coincide  to  within  plotting  accuracy. It is seen  that  the results of the two methods differ 
somewhat as to  the  location of the  sonic  line  in  the  leeward  semiplane (cp = 00). 

The  results  for  the  pressure  distribution  for  the  plane of symmetry (cp = Oo and 
180°) and  for  the  plane  normal  to  the  plane of symmetry (cp = 90°) are compared  in  fig- 
u re  7(b). It is seen  that  the  difference  in  the  sonic-line  location  in  the  leeward  semiplane 
(cp = Oo) is associated  with only a small  difference  in  the  surface  pressure  distribution. 
This may  be  due  to  the  fact  that  the  value of the  quantity = h/e is close  to 1. Since 
the  gas is in  thermodynamic  equilibrium,  the  value of 7 varies  somewhat  over  the flow 
field.  However, in  the  subsonic  region,  the  value of 7 is within 1 percent of the  mean 
value of 1.145. It is seen  in  the  figure  that  the  inverse  method  predicts  that  the expan- 
sion at the  corner  in  the  plane cp = 90° starts closer  to  the axis than  the  present  method 
does. It should  be  noted  that difficulties are often  experienced  with  the  inverse  method  in 
the  vicinity of shoulders. 

The  calculation  presented  in  figure 7 for  the Apollo command  module was performed 
with a grid with seven  semiplanes of constant cp so that A@ = 30°, three  s t r ips  between 
the body and  shock so that AY = 1/3, and  nine  mesh  spacings AX along  the  generator 
of the  reference  surface.  Five of these  mesh  spacings  are on  the a r c  subtending  the  face 
of the  configuration,  and  the  remaining  four a r e  on  the a r c  subtending a portion of the 
shoulder.  The  time  required  to  calculate  the  results of the  present  method  shown  in  fig- 
ure  7 on the CDC 6600 computer  was 10 minutes.  However,  the  results  obtained  after 
5 minutes of calculation  did not differ  appreciably  from  the  results  presented  in  the fig- 
ure.  The  inverse  solution of reference 17 required many hours of computer  time on the 
IBM 7094. A  second  calculation  was  made  with  the  present  method  with a more  refined 
grid.  The  results of this  calculation  did not differ  appreciably  from  those  presented  in 
figure 7. 

It was noted  that  the  numerical  solution is extremely  sensitive  to  errors  incurred 
by using  too few cp-planes. An attempt  was  made  to  calculate  the flow  field about  the 
Apollo  command  module by using  the  same  grid as that  just  discussed  except  that  five 
rather  than  seven  planes of constant cp were  used.  This  attempt  was  unsuccessful. 
The  results  obtained  indicated  that a pseudoseparation  occurred  on  the  shoulder  on  the 
leeward  side of the body. First the  cross-flow  component of velocity  w  and  then  the 
u-component reversed  directions  near  the  shoulder.  The  total  enthalpy  increased  in  the 
region of reverse  flow. Eventually,  the  calculation  became unbounded. 

Prolate  spheroid.-  In  order to demonstrate  the  ability to compute flow about non- 
axisymmetric bodies, two calculations  with  different  mesh  spacings  were  made  for a 
prolate  spheroid  with its axis perpendicular  to  the flow. It should be noted that a prolate 
spheroid is a body of revolution  with  an  ellipse  for a generator  and  with  the axis of revo- 
lution  passing  through  the  foci.  For  the first calculation,  seven  planes of constant (p 

~ 
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and three  s t r ips  between  the body and  shock  were  used so that A@ = 30' and AY = 1/3. 
Seven mesh  spacings AX were  used  along  the  generator of the  reference  surface. For 
the  second  calculation,  the  mesh  spacings A+ = 22.5O and AY = 1/5 were  used. 
Along the  generator of the  reference  surface,  14  mesh  spacings AX were  employed. 
The bow-shock-wave and  sonic-line  shapes  in  the  planes cp = 00 and = 900, which 
are normal  to  and  contain  the  major axis, respectively, a r e  shown in  figure 8(a).  The 
surface  pressure  distributions  for  these  planes  are shown in  figure 8(b). Since  the 
results of the two calculations  are  in good agreement, it can  be  concluded  that  conver- 
gence  has  been  attained.  Also shown in  figure 8(b) is the Newtonian distribution. It is 
seen  that  the  present  results and the Newtonian resu l t s   a re   in  good agreement  for  the 
plane cp = Oo but  differ  somewhat  for cp = 90°. 

Bodies With Sharp  Shoulders 

Flat-face  cylinder.-  In  the  Analysis  section of this  paper, it was  indicated  that a 
special  procedure  was  needed  in  order  to  use  finite-difference  equations at sharp  sonic 
shoulders.  In  order  to  demonstrate  the  need  for  the  refinement,  calculations  were  made 
for  the flow past a flat-face  cylinder at zero  angle of attack with M, = 2.81 and y = 1.4 
with  both the  modified  and  the  unmodified  procedures.  The  results  for  the  surface  pres- 
sure  distribution  and  the  pressure  profile  across  the  shock  layer  along a line  normal  to 
the  face at the  shoulder are presented  in  figure 9. The  circles  depict  the  results of the 
present method,  which uses equations (23) at the  shoulder when the  upstream flow is sub- 
sonic,  and  the  squares  depict  the  results of a variation of the  present  method which uses 
equations (9) at the  shoulder.  The  results  depicted by the  triangles  were  taken  from  ref- 
erence  9  where  the  method of characteristics was used at the body surface.  The  experi- 
mental  results of Kendall  (ref. 19) a r e  depicted by a solid  line. 

Since  the  present  method  employs  equations (9) at all points  except  the  shoulder, it 
might  seem  appropriate  to  use  these  equations at the  shoulder  also.  However, it is seen 
from  the  figure  that  such a procedure  does not predict  the  solution  correctly at the  shoul- 
der. Both the  present  method  and  that of reference  9  are  in fair agreement with experi- 
ment  and  each  other,  and  the  singular  character of the flow at the  shoulder is predicted 
correctly. It should  be  noted  that  the error in  the  results  obtained  with  equations (9) at 
the  shoulder is restricted  to  the neighborhood of the  shoulder. In fact, it was found that 
the  results of both the  present  method  and its variation  for  the  shock-wave  and  sonic-line 
locations  agree with those of experiment  and  method of reference 9. 

Spherical  cap.-  In  figure  10,  the  results of the  present  method  for a spherical  cap 
with a sharp  shoulder  are  compared with  the  experimental  results of Stallings  and Howell 
(ref. 20). The  angle of attack is 15O, the  free-stream Mach number is 2.49, and y is 
1.4. The  radius of curvature of the  cap is \(zrb. The  shock-wave  and  sonic-line 
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locations in  the plane of symmetry  are shown in  figure lO(a), the  pressure  distributions 
for  the  plane of symmetry (cp = 00 and cp = 1800) and  the  plane  normal  to  the  plane of 
symmetry (cp = 900) are given in  figure 10(b),  and  the  distributions, of the Mach number 
and  the  ratio  u/a  along  the  shoulder  edge are given in  figure lO(c). The  mesh  spacings 
A+ and AY have  values of  22.5O and 1/3, respectively.  There  were 15 mesh  spacings 
AX along  the  generator of the  reference  surface. 

The  interest  in  calculating this particular  case  stems  from  the  fact  that  experimen- 
tal results show the flow at the  shoulder  to  be  sonic  on  the  windward  side of the body and 
supersonic on the  leeward  side.  Therefore,  this  case  provides a good test  of the  ability 
of the  present  method  to  calculate  both  sonic  and  supersonic  shoulder flow. It is pointed 
out in  the  Analysis  section  that  different  computational  procedures  are  used at sharp 
shoulders,  depending upon whether  the  upstream flow is subsonic o r  supersonic. When 
the Mach number of the  approaching  flow is less  than 1, equations (23) are used; when it 
is greater  than 1, equations (9) are employed. It can  be  seen  from  the  results  presented 
in  figure 10 that  the  present  method  predicts  the  character of the flow in  the  vicinity of 
the  shoulder  correctly. 

Spherically  blunted  cone  with sharp  shoulder.-  The  results  for  the flow about a 
spherically  blunted  cone  with a sharp  shoulder  are  compared with the  experimental 
results of Stallings  and  Tudor  (ref. 21) in  figure 11. The  semiapex  angle of the  cone is 
60°, the  ratio of nose  radius  to  base  radius is 0.25, the Mach number is 4.63, and  the test  
gas is air. The  values of angle of attack which a re   t rea ted   a re  loo and 20°. The  grid 
which is used  for  the CY = loo calculations  has 25 mesh  spacings AX along  the  gen- 
erator of the  reference  surface,  four  mesh  spacings AY between  the body and  shock, 
and six mesh  spacings A+ between cp = Oo and cp = 180°. The  grid  used  for CY = 20° 
has  the  same  number of mesh  spacings AX and AY and eight  mesh  spacings A+. 
Converged results  were  obtained  for  each of these  cases  in 300 time  steps which corre- 
sponds  to  about 30 minutes of computer  time. 

The  pressure  distributions  in  the  plane of symmetry  are shown in  figure ll(a). In 
addition  to  the  results of the  present method  and  experiment,  the  approximate  solution 
obtained  with a time-dependent,  finite-difference  method by Cohen, Foster,  and Dowty 
(ref. 5) for a 100 angle of attack is also presented.  This  method, which was discussed 
briefly  in  the  Introduction, is basically  the  refined Godunov method of Masson,  Taylor, 
and  Foster  (ref. 6). The flow is calculated  in  the  plane of symmetry  only,  and  the  cross 
flow is assumed  to  vary as sin cp. Two solutions  for  different  values of the  cross-flow 
weighting  function are presented  in  reference 5. The  solution  presented  in this paper is 
that  designated as the ".433 crossflow  approximation" in  reference 5. 

Several  observations  can  be  made  concerning  the  results  presented  in  figure ll(a). 
For the loo angle of attack, both the  present method  and  the  approximate  method of 
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reference 5 show good agreement with  experiment. Both methods  indicate  that  the flow 
stagnates at a point  on  the  spherical  cap  in  agreement  with  experiment. It is seen  that  the 
present  results  indicate  that  the  pressure  on  the  cap is about 2 percent less than  the  exact 
stagnation  value pt. It should  be  noted  that  for  the  present  method,  four  mesh  spacings 
AX were used  between  the  geometrical  stagnation  point  and  the  edge of the  spherical cap. 
It is believed  that  better  agreement  with  experiment would have  been  achieved  had  more 
mesh  spacings  been  used  on  the  cap. Six mesh  spacings were used on the  cap  for  the  cal- 
culation of reference 5, and  excellent  agreement  with  experiment  was  achieved. It is seen 
that a discontinuity in  the  pressure  gradient at the  junction of the  cap  and  cone  in  the  plane 
of symmetry is predicted by both methods  for both the windward  and  leeward  sides. 

The  results of the  present  method  for  the 20° angle of attack  are  in good agreement 
with  experiment  except  near  the  shoulder  on  the  leeward  side  where  an  irregularity  in  the 
present  results  for  the  pressure  distribution  occurs.  This  irregularity  occurs  concur- 
rently  with a nonphysical  variation of the  surface  entropy of 4 percent  near  the  corner. 
The  irregularity  does not affect  the Mach number  distribution  adversely as it does  the 
pressure  distribution.  The  computed Mach number at the  leeward  corner is 0.969, which 
is reasonably  close  to 1, and  the  Mach  number  computed at grid  points  in  the  leeward 
plane  upstream of the  shoulder  decreases  monotonically as it should but remains  close  to 
1 for  some  distance.  The  present  results show that  the  stagnation  point is located  on  the 
conical  surface  in  the windward  plane in  agreement with  experiment. 

It was  stated  in  reference 5 that a calculation  was  made  for a 200 angle of attack  but 
that  the  results  did not agree with  experiment. It was  reported  that  the  stagnation point 
was located  on  the  spherical  cap  in  the  windward  plane  rather  than  on  the cone. The 
results of the  present  method  give an indication as to why the  approximate  method of ref- 
erence 5 was successful  for a loo angle of attack  and  unsuccessful  for 20°. The  periph- 
eral distribution of the  cross flow along  the  edge  and  along  the  junction of the  cap  and 
cone a r e  shown for 10' and 20° angles of attack  in figures l l (b)  and ll(c),  respectively. 
Also shown in  these  figures  are  the  distributions of the  form 

w = w sin cp 
goo 

which is the  form  assumed  in  reference 5. It is seen  that  for a loo angle of attack,  the 
computed cross  flow varies  as sin cp both at the  edge  and at the  junction. For a 20° 
angle of attack,  the  cross flow at the  edge  varies as s in  cp, but at the  junction  in  the  nose 
region  the  computed  cross-flow  solution  and  the  trigonometric  function  differ  slightly. 
Apparently  the  solutions  for  the  various flow properties  in  the  stagnation  region  are 
strongly  coupled so  that  even a small  deviation in  the  cross-flow  velocity  distribution  has 
a marked  effect  on  the  other  properties. 
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The  peripheral  pressure  distributions  for  three  values of S/q, are shown  for loo 
and 20° angles of attack  in  figures  ll(d)  and  ll(e),  respectively.  The  values of s / rb  
are 0.10, 0.45, and 0.90 and  were  chosen  because  there are both computational  points  and 
experimental  orifices  very  close  to  these  locations.  The first ring  (S/rb = 0.10) is 
located  on  the  spherical  cap  near  the  junction with the  cone,  the  second  ring  (S/rb = 0.45) 
is located  on  the  cone  and is closer  to  the junction  than  the  edge,  and  the  third  ring 
(S/rb = 0.90) is located  on  the  cone  near  the  edge. It is seen  in   f igures   l l (d)  and l l (e )  
that  the results for both angles of attack are in fair agreement with experiment but that 
the  present  and  experimental  results  for  the 100 angle of attack are in  closer  agreement 
than  those  for 20°. It should  be  pointed  out  that at the  location s / rb  = 0.10 where  the 
comparison is made  on  the  cap,  there is more  difference  between  theory  and  experiment 
than at the  other  computational  points  on  the  cap, as can  be  seen  in  figure ll(a). 

In  figure  ll(d),  results  are  presented  for two calculations  for  the loo angle of 
attack.  For  one  calculation  the  mesh  spacing A@ has a value of 300, whereas  for  the 
other  calculation  the  value of A+ is 45O. The  number  and  size of the  mesh  spacings 
AX and AY a r e  the  same  for both  calculations.  The  results of the  calculation with 
A@ = 30° a r e  the  ones  presented  in  the  rest of figure 11. A comparison of the results 
of the two calculations  presented  in  figure  ll(d)  shows  that  the  solution is converged  near 
the  edge  (S/rb = 0.90) for all values of cp. It is also  converged  on  the  leeward  side  for 
all values of s. However, it is seen  that a refining of the  grid  does  improve  the  results 
at other points  on  the  surface. 

It was shown in  the  Analysis  section  that  the  cross flow  should not exhibit  singular 
behavior at sonic  shoulders although  the  other flow properties do  show singular  behavior 
at these  shoulders.  In  order  to show  that  the  numerical  solution  does,  in  fact,  behave  in 
this manner,  the  results at 100 and 200 angles of attack  for  the  pressure,  velocity  com- 
ponent u,  and  cross-flow  component w in  the  plane cp = 90° a re  shown in  fig- 
ures  l l ( f ) ,  l l (g),  and ll(h),  respectively. It is seen  that both the  pressure  and  the  veloc- 
ity  component  u  have  steep  gradients at the  shoulder  whereas  the  cross flow does not. 

C ONC LUDING REMARKS 

A two-step,  time-dependent  method of second-order  accuracy  for  calculating  super- 
sonic flow  about  nonaxisymmetric  blunt  bodies  and  axisymmetric  blunt  bodies  with  sharp 
shoulders is presented.  The bow shock  wave is treated as a discontinuity,  and a modifi- 
cation  to  the  time-dependent  method of characteristics is used  to  determine  the  solution 
at the  shock.  Finite-difference  techniques are used  to  calculate  the  solution at the body 
surface and in  the  shock  layer  between  the  shock  and  surface. An approximate finite- 
difference  method  for  use at sharp  sonic  shoulders is presented. A stability  analysis of 
the  finite-difference  method is given. 
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Comparisons of the results of the  present  method  with  experiment  and  the  results 
of other  methods are made  for  the flow of equilibrium air past  the Apollo command 
module at the  trim  angle of attack  and  for  perfect  gas flow past a spherical  cap  and a 
spherically  blunted  cone at angle of attack. Both the  cap  and  the  blunted  cone are termi- 
nated  with sharp  shoulders.  In  general,  the  agreement with other  results is good. 
Results are presented  also  for  perfect  gas flow past a prolate  spheroid with its major 
axis normal  to  the flow. 

It is found that  time-dependent  methods  which  employ only finite-difference  inte- 
gration  techniques  can  be  used  to  calculate  numerical  solutions at sharp  shoulders  where 
the flow is singular.  In  particular,  finite-difference  techniques  can  be  used  to  integrate 
the  compatibility  relation which is employed in  conjunction  with  the  Rankine-Hugoniot 
relations  in  the  time-dependent method-of-characteristics solution at the bow shock wave. 
Thus, it is not necessary  to  construct  the  characteristics  network  that would otherwise  be 
required. 

The  present  solutions  account  for  the  cross flow at the  shoulder. It is shown that 
when there is cross  flow at the  shoulder,  the  sonic or  supersonic  nature of the  solution 
depends upon whether  the  component of velocity  tangent  to  the  surface  and  normal  to  the 
shoulder  edge is subsonic or  supersonic  upstream of the  shoulder.  The  properties  which 
are singular at a sonic  shoulder are the  component of velocity  just  discussed  and  the 
thermodynamic  properties;  the  cross flow is not singular. 

It is demonstrated  that  numerical  solutions  for  supersonic flow about blunt bodies 
at angle of attack  can  be  obtained  in a reasonable  amount of computer  time. For example, 
the flow field  with  real-gas  effects  about  the Apollo command  module at the  trim  angle of 
attack was calculated  in 10 minutes  on  the CDC 6600 computer. 

Langley Research  Center , 
National  Aeronautics  and  Space  Administration, 

Hampton, Va. , May 25, 1971. 
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CURVE FIT FOR THE THERMODYNAMIC FUNCTION T(p,e) 

FOR EQUILIBRIUM AIR. 

The data of Allison  (ref. 22) and  Browne (ref. 23) have  been  used  to  construct  this 
curve f i t  for  the  function 7 = h/e  for  equilibrium air. The  independent  variables a r e  
the  density p and  the  internal  energy  e.  The  ranges of these  variables  for which  the 
curve f i t  applies are 

The  heat of formation of the  gas  must be  adjusted so that  h = e = 0 at a temperature of 
absolute  zero. 

The  curve f i t  is given by the  following  equations: 

F = 1.405 

3.255 - 2.278  loglo e 
F = 1.5055 - 0.1255  loglo % 

RTO 
< loglo e 5 m o o ;  loglo JL 2 

RTO Po 1 - 0.822 l o g l o 2 )  RTO 

- 0.0332 loglo :)loglo & 
(0.1366 - 0.0366  loglo 5) - (0.0833 - 0.0248  loglo  loglo lo & 3.255 - 2.278  log 

< loglo e C 2.300;  loglo f -  < 
10 RT, 

RTO & - 0.0320  loglo - 1 . 9 4 4  
1 - 0.822  loglo 2% 

RTO 
PO 

- 0.0038 loglo R) - (0.1342 - 0.0084 loglo d l o g l o  & 
PO 

(0.3274 + 0.0091  loglo f - )  - (0.1342 + 0.0016  loglo f-)lOglo & 
- 0.0320 loglo - 2.708 Y 

The  quantity po is the  reference  density  and  has a value of 1.292 kg/m3 (2.507 X 

slug/ft3).  The  quantities  R  and  To are the  gas  constant for air and  the  freezing 
temperature at 1 atmosphere of pressure;  the  product  RTo  has a value of 78.40 kJ/kg 
(8.439 x 105 ft2/sec2). 
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STABILITY ANALYSIS FOR FINITE-DIFFERENCE EQUATIONS 

In  this  appendix  the Von Neumann  condition for  the  linearized  form of the  present 
finite-difference  equations is determined. This condition  specifies  the  upper bound for 
the  mesh  spacing AT above  which it may  be  expected  that  the  magnitude of a given 
infinitesimal  error  will  increase at successive  time  steps.  In  general,  difference 
schemes which amplify  small  errors  produce  solutions which either  diverge or contain 
large  errors .  

The  basic  procedure which is used  here is similar  to  that of reference 9 and is 
based  on  the  earlier  work of Richtmyer  (ref. 24). A  technique  employed by Van Leer 
(ref. 25) is used  to  account  for  the  difference  in  the  mesh  spacing  sizes  for  the X-, Y-, 
and  +-coordinates.  This  treatment  accounts  for  the  nonorthogonal  nature of the X,Y,+ 
coordinate  system.  A  nonphysical  dissipation  function of fourth  order  similar  to  that 
used by Richtmyer  and  Morton (ref. 12) is employed  to  avoid  neutral  stability. 

The  partial  differential  equations (2) and (4b) can  be  written  in  matrix  form  in 
te rms  of the  coordinates 7, X, Y,  and + as 

where  the  vectors W and 6 and  the  matrices x, E, and e are as follows: 

D =  
- 

PU + Pv(T K + ") sin 0 

UV"W - x r 
K 2 COS e 

uw - +vw- COS e sin 8 
r r 

J 

(Equations  continued  on  next page) 
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- 
U 

0 

A =  0 

0 

0 

- 

L 

P 

U 

0 

0 

Pa2 

where 

The  finite-difference  representations of equations  (Bl)  for  the initial and  final  steps 
of the  Brailovskaya  scheme are written as 
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r r  1 

WI(7 ,X ,~ ,@)  = W(T-AT,X,Y,@) - - 
2 A x  

+s E W(T-AT,X,Y+AY,+) - W(T-AT,X,Y-AY,+) [ 2 AY 1 
+-[ 

E W(T-AT,X,Y,@+AG) - W(T-AT,X,Y,@-A@) 
r 2  A@ ]+6)AT 

and 

- 
2 AY 

+ P C ]  r W  (T,X,Y,@+A@)  2 A@ - W I ( ~ , x , ~ , @ - ~ @ )  + 6} AT 

- E ~(T-AT7X+2Ax,Y,@)  - 4W('r-AT7X+AX,Y,@) + ~W(T-AT,X,Y,@) 

- 4W(T-AT7X-AX,Y,@) + W(T-AT7X-2Ax,Y,@) 

+ W(T-AT,X7Y+2AY,@) - 4W(T-AT,X7Y+AY,@) + 6W(T-AT7X,Y,@) 

- 4W(T-AT,X,Y-AY,@) + W(T-AT,X,Y-2AY7@) 

+ W(T-AT,X,Y7@+2A@) - 4W(T-AT7X,Y,@+A@) + 6W(T-AT7X,Y,@) 

- ~W(T-AT,X,Y,@-A+) + W(T-AT,X,Y  ,@-2A@fl 035) 

The  subscript 1 in  equations (B4) and (B5) indicates  the initial solution.  The  matrices 
A, E, and  and  the  vector 6 are evaluated at the  point ( T  - AT,X,Y,@). 

It is assumed  that  the  solution is of the  form 

W(T+AT,X*AX,Y*AY,@*A@) = W(T,X,Y,@)exp  AT f i(v + 5 + It/) I (B6) J 
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where 

and i is p. The  quantities  Lx, %, and  Lq are the  wavelengths of the e r r o r  
solutions  in  the X-, Y-, and  G-directions,  respectively.  Define  the  quantities r l ,  '2, 
and r 3  as 

AT  AT  AT r1 =- 
X AX 

r2 = - r3 =- 
6 AY r A@ 

and  assume  that AT is small  so that  the  term 6 AT can  be  neglected. By using  equa- 
tions (B6) to (B8), equations (B4) and (B5) can  be  written as 

and 

respectively,  where  the  matrices E and E a r e  given by the  respective  equations 

and 

where 

f = 4 (1 - cos v) + (1 - cos t )  + (1 - cos *)? 1 2 2 

The  quantity I is the  identity  matrix.  The  numbers  and  are  both defined as 
exp(5 AT) although  they a r e  not equal  since  the  quantity G is not the  same  for  the first- 
and  the  second-step  solutions.  The  equations (B9) and (B10) can  be  written  in  the  forms 

(E - 1qw = 0 (C - 1g)W = 0 
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For nontrivial  solutions of W, the  determinant of the coefficients of the components of 
W in  these  equations  must  vanish; that is 

Equations (B14) can be used  to  determine  the  eigenvalues  and g" of the matrices E 
and 6, respectively. 

First consider the matrix E. Let the quantities  m,  cos 1.1 1, cos 1-12, cos p 3 ,  
and e be  defined as 

r1 sin q - 
cos 1-11 = 

h 
m 

r2 ~8 + y sin 5 
r r3 sin rl/ - ( * d  

cos p3 = m 

N 

u = u  cos 1-11 + v - Y6)cos p2 + w cos 1.13 ( '  
The  matrix E can  be  written  in terms of these  quantities as 

- 

U 

0 

r- 

- 
E =  0 

0 

0 
L 
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By using  the first of equations (B14) and  equation (B16), the  eigenvalues of the  matrix E 
are 

It should  be  noted  that 

It can  be  shown  from  equations (B12) and (B14) that  the  eigenvalue of the  matrix E 
can  be  expressed as 

The  stability  condition  which is used  in this paper is that  the  magnitude of 
should not exceed 1. This condition is expressed as 

Consider what happens if  & = 0, and  note  from  equation (B13) that 0 5 f 5 48. It is seen 
from  these  conditions  and  the  inequality (B18) that E must  satisfy  the  inequalities 

The  inequality (B18) can  be  rewritten as 

where F1 and F, are the  lower  and  upper  bounds of C?. It can  be  shown  that  for  the 
values of E in  inequality (B19) the  lower bound has a maximum  value of zero.  Thus  the 
inequality  can  be  rewritten as 

I 
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From  the first of equations (B15) it is seen  that  m  must  satisfy  the  inequality 

where 

cos v2 = I I 

cos "3 = I I 

The  quantity rmm is simply  the  largest of rl,  r2, and r3. It can be shown that  the 
quantity r?i satisfies  the  inequality 
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f i 2 = 1 + - p  + p  1 2  
2 (  1 :)(l + cos 2v2) + 2(P1 cos v1 + P3 cos "3 ) cos "2 

= (1 +iQ2) + $ Q I G  
where  the  quantity Q is defined  by  the  equation 

It can  be  seen  from  equation (B13) that  the  quantity f can be written as 

+ sin4 5 + sin4 
2 

where 0 S x 5 1. Let E be defined as 

E - I  = E = 246 

The  upper bound Fu of g2 can be written as 

At this point, it should be noted  that 
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It follows  that 

Therefore,  the  inequality (B21) can  be  rewritten as 

where 

For  each  value of E between 0 and 1, the  function Tu(x,E) reaches a minimum  value 
for  some  particular  value of x between 1/2 and 1. The  minimizing  values of E' and 
x are  related by the  equation 

4x2 + 8% - 5 + 16x4 + 64x3 + 24x2 - 16% - 7 
E =  

16x2 

The  least  upper bound of Tu(x,E') for  each  value of E' is designated as f;(E). This 
function, which varies monotonically  from a value of 1 at E' = 0 to a value of at 
E = 1, is plotted  in  figure 12. 

In the  situation  encountered  in  this  paper,  the  shock  velocities are relatively  small. 
Thus,  the  effective  upper bound of 6 is the  magnitude of the  total  velocity T; that is 

and  the  quantity + a is the  effective  upper bound of e,, = I f i  I + a. 

It follows from  the  analysis  presented  in  this  appendix  that  the Von Neumann  con- 
dition  for  stability  for  the  present  finite-difference  scheme is expressed by the  inequality 

fu(e)min(h AX,6 AY,r A@) 
Ar 5 
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THE CHARACTEFUSTIC COMPATIBILITY  RELATION 

There  are a number of treatments of the  multidimensional  method of characteris-  
tics.  The  analysis  presented  here  follows  the  treatment of Von Mises (ref. 26). 

Consider a multidimensional  space.  Compatibility  relations  for  this  space are 
linear  combinations of the  equations of motion  which  can  be  expressed  in  terms of total 
derivatives  along  given  lines called a bicharacterist ics  and  partial   derivatives  in  terms 
of some of the  independent  variables. It should be noted  that  compatibility  relations  do 
not exist for all flow fields.  However, if one of the  independent  variables is time  and  the 
flow field is inviscid,  compatibility  relations  always exist. The  total  derivatives  in  these 
relations are with  respect  to  time,  and  there are no partial  derivatives  with  respect  to 
time. 

The  space which is used  in  this  paper is four  dimensional,  and  the  independent 
variables are time t and  the  coordinates x, y,  and cp. The  equations of motion  which 
are combined  linearly  to  form  compatibility  relations  along  the  acoustic  bicharacteristics 
are equations  (2b),  (2c),  (2d),  and  (4b). 

Let  the  direction  cosines of the  bicharacteristic  in t,x,y,cp space  along  which a 
compatibility  relation  applies  be  ht, hx,  hy,  and hq. By using  the  techniques dis- 
cussed  in  reference 26, it can  be  shown  that  there is a family of bicharacteristics  through 
each point in t,x,y,cp space,   the  members of which  have  direction  cosines  which  satisfy 
the  equation 

ht + uh, + vhy + whq = +a hx + h + hcp 2 2  \I" Y (C 1) 

Let  the  constants of proportionality  for  equations  (2b),  (2c),  (2d),  and (4b) in  the 
compatibility  relations be al, a2,  a3,  and  a4,  respectively. It can be shown  that a l ,  
a2,  and  a3 are related  to  a4 by the  equations 
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BY using  equations  (Cl)  and  (C2),  the  compatibility  relations  can be written as 

The  quantities F h x h m ,  Thy/{-, and T h P h m  

have all the  properties of direction  cosines.  In  this  paper  these  quantities are chosen  to 
be  the  same as the  direction  cosines of the  shock  normal,  cos &, cos &,, and  cos pP, 
so that  the  total  derivatives dp/dt  and  dV/dt  will  appear  in  the  compatibility  relation 
which is used  and dU/dt  will  not. It has  been  assumed  that  the  bicharacteristic  can be 
approximated by a straight  line so  that  the  quantities  ht, hx, hy,  and  hP  can  be  con- 
sidered  constant. With these  assumptions,  the  compatibility  relation  can  be  written as 

+ vw cos  pP-sin e + (au - w2cos p~ + uw cos p cos e .> 1 
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With the  aid of equations (29) and (34), it can be  shown  that  the  following  relationship 
holds : 

Equations (C4) and (C5) can  be  combined  to  yield 

- ~[i.. r - w2cos 47 + vw cos pep) sin e 

+ (au - w2cos px + uw cos p cos e d 3 
where  (d/dt)+  denotes  the  total  time  derivative  along  the  bicharacteristic  and is written 
as 

( - $ + = G + i ( u + a c o s k - +  ):x ( v + a c o s  9aaY - + - w + a c o s p q -  :( ) s", (C7) 

The  bicharacteristic  has  the  slopes 

($)+ = + a cos px ) 

For the  purposes of the  paper, it is desired  to  express  the  compatibility  relation  in 
te rms  of the  independent  variables T, X, Y, and @ which a r e  given by equations (7). 
This is accomplished  with  the  aid of expressions (8) which relate  the  partial  derivatives 
with respect  to t, x, y,  and cp to  those  with  respect  to 7, X, Y, and @. First 
consider  the first group of t e rms  on  the  right  side of equation (C6). These  terms  can  be 
transformed as follows: 
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The last step follows  because 

Similarly,  the  expression ((27) for  the  total  derivative with respect  to  time  along  the 
bicharacteristic  can  be  transformed as follows: 

Thus,  the  compatibility  relation  can  be  written  in  terms of the  independent  variables 7, 

X, Y, and @ as 

+ uv cos px) + y(aV - w 2 cos h/ + vw cos p .) 
+ e(.. r - wacos px + uw cos p 
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(a) Bow-shock-wave and  sonic-line  locations  in  plane of symmetry. 

Figure 7.- Comparison of results  for  equilibrium air flow field  about Apollo command 
module at 22O angle of attack  and  traveling at a speed of 6935 m/s (22 754 ft/sec) 
at an  altitude of 45.866 km (150 480 ft). 
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Figure 7. - Concluded. 
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Figure 8.- Flow field about prolate  spheroid  with ii/b = 3/2 and  with its axis normal 
to  the  direction of flow for M, = 3 and y = 1.4. 
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Figure 8.- Concluded. 
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Figure 9.- Pressure  distribution  on  surface and  along  line across  shock  layer  at  shoulder for flat-face  cylinder 
at  0' angle of attack with M, = 2.81 and y = 1.4. 
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Figure 10.- Flow  field  about  spherical  cap  with  sharp  shoulder at 150 angle of attack 
with M, = 2.49 and y = 1.4. 
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Figure 10. - Continued. 
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(a) Surface  pressure  distribution  in  plane of symmetry. 

Figure 11.- Flow  field  about  spherically  blunted  cone  with  sharp  shoulder,  semiapex 
angle of 60°, and  ratio of nose  radius  to  base  radius of 0.25 for  angles of attack 
of loo and 20°. M, = 4.63; y = 1.4. 
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( c )  Peripheral  distribution of cross-flow  component 
of velocity  w  for a = ZOO. 

Figure 11. - Continued. 

70 



1.0 - 

- 

.8 - 
- 

.6 - 

s / r , , = . F  

“ k  p t  

.8 

- 
0 Present  method, f i n e   g r i d  

0 Present  method,  coarse  gr id .6 - 
h. 

I3 Present  method, 
f i n e   g r i d  - - Experiment  ( ref .  21) - 

.4 I I I 1 I I 1 I I I I I .4 
0 30 60 90 120 150 180 0 30 60 90 120 150  180 

cp Y deg 5 0 9  deg 

(d) Peripheral  pressure  distributions for CY = 10’. (e)  Peripheral  pressure  distributions for (Y = 20°. 

Figure 11.- Continued. 
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(f) Surface  pressure  distribution  in  plane cp = 90°. 
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( g )  Surface  distribution of u-component of velocity  in  plane cp = 900. 
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(h) Surface  distribution of cross-flow  component of velocity w in  plane cp = 90° 

Figure 11. - Concluded. 
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Figure 12.- Variation of function f;(Z) governing  upper bound of time 
step AT with  normalized  damping  coefficient E'. 
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