NASA TECHNICAL NOTE

<u>NASA TN D-6455</u> C,1

LEAD, INDIUM, AND TIN AS POTENTIAL LUBRICANTS IN LIQUID HYDROGEN

by Donald W. Wisander Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • AUGUST 1971

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 1. Title and Sublite 5. Report Date 4. August 1971 2. Author(s) 6. Performing Organization Code 9. Performing Organization Code 2. Author(s) 8. Performing Organization Code 10. Work Unit No. 2. Someoring Agency Name and Address 12.6-15 11. Contract or Smath No. 12. Someoring Agency Name and Address 13. Type of Report and Period Covered 13. Supplementary Notes 13. Type of Report and Period Covered 14. Supplementary Notes 13. Type of Report and Period Covered 15. Supplementary Notes 13. Type of Report and Period Covered 16. Abstract 13. Type of Report and Period Covered 17. Key Words (Suggested by Author(s)) C riders in sliding contact. All three metal (Times lubricated by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antiguiling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 19. Sourity Classified 20. Seurity Classified 19. Sourity Classified 20. Seurity Classified				L	122222	
NASA TN D-6455 4. Title and Subtitie LEAD, INDIUM, AND TIN AS POTENTIAL LUBRICANTS IN LIQUID HYDROGEN 7. Author(s) Donald W. Wisander 8. Performing Organization Reme and Address Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohlo 44135 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Cleveland, Ohlo 44135 13. Type of Report and Period Covered Technical Note 14. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lowor friction and better antigalling protection than the electroplated coating for the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 1	1. Report No.	2. Government Accessi	on No.	3. Recipient's Catalog	No.	
4. Tite and Subtrite E. Report Date LEAD, DNDUM, AND TIN AS POTENTIAL LUBRICANTS IN LIQUID HYDROGEN Author(s) 2. Asthor(s) B. Performing Organization Report No. E-5880 Donald W. Wisander 8. Performing Organization Report No. E-5880 8. Performing Organization Name and Address Lewis Research Center 10. Work Unit No. 126-15 12. Somoring Agency Name and Address 11. Contract or Grant No. 12. Somoring Agency Name and Address 12. Type of Report and Period Covered Technical Note 13. Supplementary Notes 13. Supplementary Notes 14. Sponoring Agency Code 14. Sponoring Agency Code 15. Supplementary Notes 14. Sponoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricates in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Work (Suggetted by Author(s)) Cryogenic 18. Distribution Statement Unclassified Unclassified 19. Security Castle (of this report Lead 20. Securit	NASA TN D-6455		<u> </u> _			
IN LIQUID HYDROGEN Author(s) IN LQUID HYDROGEN 8. Performing Organization Code 7. Author(s) B. Performing Organization Report No. Donald W. Wisander 10. Work Unit No. 8. Performing Organization Name and Address 12.6-15 Lewis Research Center 11. Contract or Great No. National Aeronautics and Space Administration 13. Type of Report and Period Covered 12. Someoring Agency Name and Address 13. Type of Report and Period Covered 13. Supplementary Notes 14. Spemoring Agency Code 14. Abstract 14. Spemoring Agency Code 15. Supplementary Notes 14. Spemoring Agency Code 16. Abstract 14. Spemoring Agency Code 17. Key Work (Suggested by Author(s)) Cryogenic Cryogenic Lubrication Tin Liquid hydrogen 18. Distribution Statement Unclassified 19. Security Caseft (of this report) 20. Security Caseft (of this page) 11. Station	4. Title and Subtitle			5. Report Date		
1N LIQUID HYDROLEN 8. Performing Organization Report No. 2. Author(s) 6. Performing Organization Report No. 2. Performing Organization Names and Address 10. Work Unit No. 12. Evels Research Center 126-15 National Aeronautics and Space Administration 13. Type of Report and Period Covered Cleveland, Ohto 44135 13. Type of Report and Period Covered 2. Sponsoring Agency Names and Address 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstreet 14. Sponsoring Agency Code 17. Author (s) 14. Sponsoring Agency Code 18. Supplementary Notes 14. Sponsoring Agency Code 19. Abstreet Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Nathore 19. Security C	LEAD, INDIUM, AND TIN AS POTENTIAL LUB		RICANTS	6. Performing Organiza	ation Code	
7. Author(i) Donald W. Wisander 8. Performing Organization Report No. E-5880 9. Performing Organization Name and Address 10. Work Unit No. 126-15 1. Lewis Research Center 11. Contract or Grant No. 126-15 National Aeronautics and Space Administration 12. Spenoring Agency Name and Address National Aeronautics and Space Administration 13. Type of Report and Period Covered Technical Note 12. Spenoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and Space Administration 14. Sponsoring Agency Code Washingter, D. C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coating gar Unit of the Same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(i)) [18. Distribution Statement] Cryogenic Lubrication Tin Liquid hydrogen Lead Liquid hydrogen Lead Liquid hydrogen Lead Liquid hydrogen Lead Liquid hydrogen L	IN LIQUID HYDROGEN			•••••••••••••••••••••••••••••••••••••••		
Donald W. Wisander E-5880 9. Performing Organization Name and Address Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio 44135 10. Work Unit No. 126-15 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 11. Contrect or Grant No. 12. Supprentatory Notes 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 14. Sponsoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coating gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Works (Suggested by Author(b)) Tin Lead Indium 18. Distribution Statement Unclassified 18. Security Classified 20. Security Classified 21. No. of Pages 22. Price* \$3.00	7. Author(s)			8. Performing Organiza	tion Report No.	
9. Performing Organization Name and Address 10. Work No. 12. Lewis Research Center 11. Contract or Grant No. National Aeronautics and Space Administration 11. Contract or Grant No. Cleveland, Ohio 44135 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and Space Administration 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Trin Liquid hydrogen Lead Indium 19. Security Cleastif. (of this report) 20. Security Cleastif. (of this pepe) 21. No. of Pages 22. Phice* 11 \$3.00	Donald W. Wisander			E-5880		
8. Performing Organization Name and Address 126-15 Lewis Research Center 11. Contract or Grant No. National Aeronautics and Space Administration 13. Type of Report and Period Covered 7. Septementary Notes 13. Type of Report and Period Covered 15. Supplementary Notes 14. Sponsoring Agency Notes 16. Abstract 15. Supplementary Notes 17. Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which provents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 10. National 20. Security Clestif. (of this page) 18. Security Clestified 11 19. Security Clestified 20. Security Clestified		10. Work Unit No.				
12. Separation Content Notional Aeronautics and Space Administration 11. Contract or Grant No. 12. Sponsoring Agency Nome and Address 13. Type of Report and Period Covered 12. Sponsoring Agency Nome and Address 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 18. Security Cassified 20. Security Clessified of this page) 21. No. of Pages 22. Price* 19. Security Cassified 20. Security Clessified 21. No. of Pages 22. Price*	9. Performing Organization Name and Address			126-15		
National Aeronautics and Space Administration 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration Technical Note 14. Sponsoring Agency Name and Address 14. Sponsoring Agency Code Washington, D. C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 20. Security Classified 21. No. of Pages 19. Security Cassified 11 \$3.00	Lewis Research Center			11. Contract or Grant	No.	
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Note 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code Washington, D. C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) I8. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* 19. Security Classified 10. 22. Price* \$3.00	National Aeronautics and Space Administration					
12. spontoring Agency Name and Adoress Technical Note National Aeronautics and Space Administration 14. Spontoring Agency Code 15. Supplementary Notes 14. Spontoring Agency Code 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) I8. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* 11 \$3.00	Cleveland, Ohio 44135		·	13. Type of Report and Period Covered		
National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 10. Indium 20. Security Classifi. (of this page) 21. No. of Pages 22. Price* 19. Security Classified 11 \$3.00	12. Sponsoring Agency Name and Address			Technical Note		
Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 20. Security Classifi. (of this page) 19. Security Classified 21. No. of Pages 22. Price* \$3.00	National Aeronautics and Space Administration			14. Sponsoring Agency Code		
15. Supplementary Notes 16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricates by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) I8. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* \$3.00	Washington, D.C. 20546					
16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) It. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* Yan Ok Yan Ok Yan Ok Yan Ok	15. Supplementary Notes					
16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 10. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) 21. No. of Pages 11 \$3. 00						
16. Abstract Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 20. Security Classif. (of this report) Unclassified 21. No. of Pages 11 \$3. 00						
Friction and wear experiments were conducted in liquid hydrogen using AISI 440 C riders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) Image: Comparison of the three metal coatings used. 18. Distribution Statement Unclassified - unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 11 \$3.00	16. Abstract					
Friction and wear experiments were conducted in liquid hydrogen using ALSI 440 C fiders in sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
sliding contact with coated 440 C disks. These experiments revealed that thin coatings of lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 11 \$3.00	Friction and wear experiments	were conducted	in liquid hydrogen u	sing AISI 440 C	riders in	
lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Yanda 11 \$3.00	sliding contact with coated 440 C disks. These experiments revealed that thin coatings of					
lubricants in sliding contact. All three metal films lubricate by forming a transfer film on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages 11 \$3.00	lead, indium, or tin can function, for short times useful in rocket vehicles, as solid film					
on the mating surface which prevents welding or galling. Ion-plated coatings gave lower friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified 11 \$3.00	lubricants in sliding contact. All three metal films lubricate by forming a transfer film					
friction and better antigalling protection than the electroplated coating of the same metal. Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 19. Security Classified 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* 11 \$3.00	on the mating surface which prevents welding or galling. Ion-plated coatings gave lower					
Lead gave the best results of the three metal coatings used. 17. Key Words (Suggested by Author(s)) 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 19. Security Classifi. (of this report) 19. Security Classifi. (of this report) 19. Security Classifi. (of this report) 10. Security Classified 11	friction and better antigalling protection than the electroplated coating of the same metal.					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead 1 Indium 20. Security Classif. (of this page) 21. No. of Pages 19. Security Classified Unclassified 11 Yanchassified Yanchassified 11	Lead gave the best results of the three metal coatings used.					
17. Key Words (Suggested by Author(s)) I8. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) I8. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Distribution Statement Unclassified - unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* 19. Security Classified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages Unclassified 11						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Cryogenic Lubrication Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00						
Cryogenic Lubrication Unclassified - unlimited Tin Liquid hydrogen Lead Indium 20. Security Classif. (of this page) 21. No. of Pages 19. Security Classified Unclassified 11 Yange Yange Yange	17. Key words (Suggested by Author(s))		18. Distribution Statement			
Tin Liquid hydrogen Lead Indium 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 11 \$3.00	Cryogenic Lubrication		Unclassified - 1	unumited		
Lead Indium 19. Security Classif. (of this report) Unclassified Unclassified 11	Tin Liquid	l hydrogen				
Indium19. Security Classif. (of this report) Unclassified20. Security Classif. (of this page) Unclassified21. No. of Pages 21. No. of Pages 1122. Price* \$3.00	Lead					
19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price*UnclassifiedUnclassified11\$3.00	Indium					
Unclassified Unclassified 11 \$3.00		1				
	19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22, Price*	

. -

÷

ţ

ļ

۹,

4

l

*For sale by the National Technical Information Service, Springfield, Virginia 22151

LEAD, INDIUM, AND TIN AS POTENTIAL LUBRICANTS IN LIQUID HYDROGEN

by Donald W. Wisander

Lewis Research Center

3

SUMMARY

Stainless steel (AISI 440 C) was run in sliding contact with lead, indium, and tin coatings on 440 C in liquid hydrogen to determine their lubricating capability. Also studied was the effect of coating thickness on the effective coating life and the effect of the method of applying the coating.

Experiments were conducted with a hemispherically tipped (4.76-mm rad) rider sliding against the flat surface of a coated 440 C steel disk submerged in liquid hydrogen. The load was 1 kilogram, and the sliding velocity was 12.4 meters per second (40.7 ft/sec).

These experiments revealed that thin coatings of lead, indium, or tin can function as solid lubricants for short periods of time useful in rocket vehicles. The lead coating showed the longest life of the three metals used in this investigation.

INTRODUCTION

Bearings and seals of rocket vehicles require lubricants that will operate in liquid hydrogen for short periods of time with high reliability. Some applications require the bearing to operate also in a radiation environment (while in the liquid hydrogen) and to function under cyclic operating conditions (up to 100 start-stop cycles). These applications require lubricants which are not used in conventional bearing applications. Since the duration of an operating cycle for rocket vehicle bearings and seals is relatively short (compared to conventional applications), the total operating life is measured in hours. This point is important when determining the value of a lubricant selected for this type of application.

Radiation resistance refers to the ability of a material to withstand radiation for given periods of time without a significant loss of physical properties. A material selected for a radiation application should not become excessively radioactive (e.g., a cobalt alloy should not be considered a candidate material). Polymers such as polytetrafluoroethylene (PTFE) and polytrifluorochloroethylene (PTFCE) which have been shown to have satisfactory cryogenic lubricating properties (refs. 1 and 2) do not have the necessary radiation resistance (refs. 3 and 4). Other polymers which possess better radiation resistance (polyimides, polybenzimidazole, and pyrrone) do not have the required lubricating or physical properties for cryogenic service (refs. 5 and 6).

The three metals selected for this investigation, lead, indium, and tin, have satisfactory cryogenic physical properties (refs. 7 and 8). Also of importance in the selection of a solid lubricant is its shear strength and transfer film forming tendency. Lead, indium, and tin are common components of conventional bearing materials, and at normal operating temperatures (20° to 200° C) all form transfer films on the mating rubbing or sliding surfaces.

The objectives of this study were to determine (1) the effectiveness of lead, indium, and tin coatings as solid film lubricants in liquid hydrogen and (2) the best method of applying the metal film to the substrate to achieve the longest life.

Experiments were conducted using a pin-on-disk apparatus with the coating applied to the disk and the specimens submerged in liquid hydrogen. Sliding velocity was 12.4 meters per second, and the load was 1 kilogram.

APPARATUS AND PROCEDURE

The apparatus used in the friction and wear studies is shown in figure 1. The basic elements consisted of a hemispherically tipped, 4.76-millimeter-radius rider specimen held in sliding contact with the flat surface of a 63.5-millimeter-diameter rotating disk. The experiments were conducted with specimens completely submerged in liquid hydrogen. The drive shaft supporting the disk specimen was driven by a hydraulic motor through a 6:1 speed increaser and provided a sliding velocity of 12.4 meters per second for the data reported herein. Helium-purged seals (not shown in fig. 1) were used to prevent air leakage in and cryogenic fluid leakage out around the drive shaft.

The rider specimen was loaded to 1 kilogram against the rotating disk specimen by a helium-pressurized bellows assembly. Load and frictional force were continuously measured by strain-gage dynamometer rings mounted inside the environmental chamber and recorded on a strip-chart recorder. The rider wear was determined by measuring the wear-scar diameter and calculating wear volume.

The test chamber was cleaned with 90 percent ethyl alcohol prior to each run to eliminate contaminants from previous runs or moisture. After the cleaning and installation of specimens, the test chamber was bolted in place and purged with helium gas to remove residual air and moisture and then filled with liquid hydrogen. After the test chamber was full and the liquid boiling stabilized, the rider specimen was loaded against

÷

Figure 1. - Cryogenic fuel friction apparatus with specimen loading system.

the rotating disk. The duration of test runs was 2 to 60 minutes.

The surfaces of the metal rider specimens were prepared as follows: (1) ground to a root-mean-square finish of 10^{-1} micrometer (4 µin.), (2) scrubbed with moist levigated alumina, (3) washed in tap water, and (4) washed in distilled water and dried prior to the test.

RESULTS AND DISCUSSION

Electroplated Coatings

Lead. - Lead was electroplated to varying thicknesses on 440 C stainless-steel disks and run in sliding contact with AISI 440 C hemispherically tipped riders in liquid hydrogen. The sliding velocity of 12.4 meters per second (40.7 ft/sec) and the load of 1 kilogram were held constant for these experiments.

These results show that the 50-micrometer lead coating reduced the rider wear rate (fig. 2(a)) and the friction coefficient (fig. 2(b)) compared with the uncoated 440 C. The friction coefficient of uncoated 440 C on 440 C was 0.5 for the first 30 minutes and

Figure 2. - Performance of 400 C riders in sliding contact with electroplated lead on 440 C disks in liquid hydrogen. Load, 1 kilogram; sliding velocity, 12.4 meters per second; hardness of 440 C. Rockwell C-56.

4

then gradually increased to 1 as the run was continued to 60 minutes; the friction coefficient for the lead-lubricated specimens was 0.25. Wear rate (fig. 2(a)) was reduced by a factor of over 1000 with the 50-micrometer-thick coating. Figure 2(c) shows a coating life comparison for the 2.5-and 50-micrometer thicknesses. (Coating life was defined as that point when an appreciable change in friction indicated that the coating was worn through.) Note that the life of the thicker coating (50 μ m) was 60 minutes. Figure 3(a) shows photographs of the wear surfaces for 440 C on 440 C which indicate gross welding and galling. As a comparison, figure 3(b) shows the wear surfaces for 440 C after sliding on a 50-micrometer lead coating; these photographs indicate the low rider wear and good condition of the disk surface.

Indium. - Figure 4 shows the results obtained with a 12-micrometer-thick indium coating on 440 C sliding against a 440 C rider; for comparison, results for no coating

Rider

3

Disk

(b) 440 C rider and electroplated lead-coated 440 C disk.

Figure 3. - Wear on 440 C riders and uncoated and electroplated lead-coated 440 C disks after running in liquid hydrogen. Sliding velocity, 12.4 meters per second; load, 1 kilogram; duration of run, 60 minutes; thickness of coatings, 50 micrometers; hardness of 440 C disks and riders, Rockwell C-56.

Figure 4. - Performance of 440 C riders in sliding contact with electroplated indium or tin on 440 C disks, in liquid hydrogen. Load, 1 kilogram; sliding velocity, 12.4 meters per second; hardness of 440 C, Rockwell C-56.

and two tin coatings are also shown. Only one thickness of indium coating was run. The experiment indicated that, although the sliding surfaces were protected from galling by a transfer film, the indium was too soft to be usable under these test conditions. Cold flowing of the indium coating was evident on the disk surface. Friction coefficient and wear rate were not significantly reduced by the indium coating; coating life was very short (1 min).

<u>Tin</u>. - Results obtained running 440 C riders in sliding contact with electroplated tin are shown in figure 4. Friction coefficient is considerably lower than that for bare 440 C on 440 C. Wear rate was not significantly reduced by the tin coating, although a transfer film of tin was formed on the rider. Examination of the tin coatings indicated that the tin adjacent to the wear track (on the disk) had fine perpendicular cracks with some pieces chipped off outside the track area. This was not observed with the lead or the indium coatings. Photographs of the wear surfaces of the electroplated tin coatings are shown in figure 5. Friction coefficient with the tin coatings was about one-half of that for bare 440 C.

<u>Thickness of electroplated coatings</u>. - For lead films, the thickness of the coating had a greater effect on the wear rate than on the friction coefficient. With a thickness of 50 micrometers, a considerable reduction in wear was obtained. Examination of all coatings studied revealed that the thinner coatings became nonadherent to the substrate, whereas the thick $(50-\mu m)$ coatings showed better adherence. This indicated that wear

440 C rider

÷

Tin coating

Figure 5. - Electroplated tin on 440 C disk with respective rider wear scar after running in liquid hydrogen. Sliding velocity, 12.4 meters per second; load, 1 kilogram; duration of run, 60 minutes; thickness of coating, 50 micrometers; hardness of 440 C disk and rider, Rockwell C-56.

(and coating life) was a function of coating adherence as well as of coating thickness. Data in reference 9 indicate that, when coatings were applied by ion plating, a considerable improvement in life (at room temperature) was obtained as well as a reduction in the friction coefficient. Lead and indium were applied to 440 C disks by ion plating to determine if an improvement in lubricating characteristics would be obtained under the conditions of these experiments.

Ion-Plated Coatings

Lead. - Figure 6 shows the results obtained with ion-plated lead. Test results indicated that the ion-plated coatings did not fail from poor adherence but from penetration of the coating by the rider. After coating failure, wear rate increases but friction coefficient is essentially unaffected. Figure 6 also shows that lower wear and longer life can be obtained with ion platings. Compare the wear (fig. 6(a)) of the 0.25-micrometer ion-plated lead with the 2.5-micrometer electroplated lead (fig. 2(a)); wear rate is less by a factor of 10. By increasing the thickness of the ion-plated lead to 7 micrometers, a tenfold increase in life is obtained compared with the 0.25-micrometer ion-plated lead or the 2.5-micrometer electroplated lead. Friction coefficients of the ion-plated lead coatings were less than those for the electroplated lead.

Rider

Dîsk

(a) 440 C rider and ion-plated lead-coated 440 C disk; duration of run, 29 minutes.

(b) 440 C rider and ion-plated indium-coated 440 C disk; duration of run, 15 minutes.

Figure 7. - Wear on 440 C riders and ion-plated lead- and indium-coated 440 C disks after running in liquid hydrogen. Sliding velocity, 12.4 meters per second; load, 1 kilogram; thickness of coatings, 7 micrometers; hardness of 440 C disks and riders, Rockwell C-58.

Photographs of typical wear surfaces are shown in figure 7(a). No gross welding is evident, but wear is greater than that obtained for the 50-micrometer electroplated lead coating (fig. 3(b)).

Indium. - Wear rate, friction coefficient, and life of ion-plated indium are shown in figure 8. A comparison of the 7-micrometer ion-plated indium with the 12micrometer electroplated indium (fig. 4(a)) shows an improvement in wear rate by a factor of 7 and an improvement in life (fig. 4(c)) by a factor of 10 with the ion plating. Friction coefficient was also lower with the ion plating. Photographs of the wear surfaces are shown in figure 7(b).

SUMMARY OF RESULTS

Sliding-contact experiments with AISI 440 C riders against lead, tin, and indium coatings on 440 C disks in liquid hydrogen gave the following results:

1. Lead, tin, and indium coatings lubricate in liquid hydrogen. All three metal coatings showed transfer films (to the rider) which prevented galling of the sliding surfaces. The lead coatings gave the best results of the three metal coatings used.

2. Ion plating the metal coating onto the 440 C substrate (instead of electroplating) provided a coating with better adherence and better protection of the substrate against galling.

Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio, May 27, 1971, 126-15.

REFERENCES

- Wisander, Donald W.; Maley, Charles E., and Johnson, Robert L.: Wear and Friction of Filled PTFE Compositions in Liquid Nitrogen. ASLE Trans., vol. 2, no. 1, Apr. 1959, pp. 58-66.
- 2. Wisander, Donald W.; and Johnson, Robert L.: Friction and Wear of Nine Selected Polymers With Various Fillers in Liquid Hydrogen. NASA TN D-5073, 1969.
- 3. Kircher, John F.; and Bowman, Richard E., eds.: Effects of Radiation on Materials and Components. Reinhold Pub. Corp., 1964.
- 4. Bolt, Robert O.; and Carroll, James G., eds.: Radiation Effects on Organic Materials. Academic Press, 1963.
- Brewe, David E.; Scibbe, Herbert W.; and Anderson, William J.: Film-Transfer Studies of Seven Ball-Bearing Retainer Materials in 60⁰ R (33⁰ K) Hydrogen Gas at 0.8 Million DN Value. NASA TN D-3730, 1966.
- Dessau, P.: Bearing Retainer Materials Development. Second Prog. Rep. Aerojet-General Corp., May 1968. (Work under Contract SNP-1.)
- Ludwick, Maria T.: Indium. Second ed., Indium Corp. of America, 1959, pp. 17-19.
- Slartev, V. I.; Pustovolov, V. V.; and Fomenko, V. S.: Work-Hardening of Lead Single Crystals in the Temperature Range Below 4.2^o K. Proceedings of the International Conference on Strength of Metals and Alloys. Trans. Japan Inst. Metals, vol. 9, suppl., 1968, pp. 843-849.
- Spalvins, Talivaldis; Przybyszewski, John S.; and Buckley, Donald H.: Deposition of Thin Films by Ion Plating on Surfaces Having Various Configurations. NASA TN D-3707, 1966.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE \$300

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

020 001 C1 U 15 710730 S00903DS DEPT OF THE AIR FORCE WEAPONS LABORATORY /WLOL/ ATTN: E LOU BOWMAN, CHIEF TECH LIBRARY KIRTLAND AFB NM 87117

> POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution

because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Weshington, D.C. 20546