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Materials desorbed from three  sorbent beds and from two ca ta lys t s  used d w i n g  

a 90-day manned t e s t  were iden t i f i ed  and quantif ied.  Since these S O P P ~ ~ E ~ ~ S I ,  

i n  addition t o  t h e i r  prime function, a l so  showed the  tendency t o  adsorb md 

accumulate t r a c e  contaminants from t h e  atmosphere, t h i s  capacity was inves"g;- 

gated and compared. The r e s u l t s  indicated t h a t  t he  amounts of organic materials 

adsorbed by molecular sieve were lower than those adsorbed by s i l i c a  gel ,  The 

la rges t  quant i t i es  of organics were adsorbed by act ivated charcoal, 

The number of iden t i f i ed  organic compounds and t h e i r  concentrations were P m  

below those iden t i f i ed  and measured during t h e  60-day run. These data  Sndicla%ed 

t h a t  t h e  a i r  ins ide  t h e  Space Stat ion Simulator was of very high P-ILY. 

The action of Hopcalite and nickel ca ta lys t s  may be gradually reduced o r  com- 

p le te ly  l o s t  by interact ion with halogenated organic compounds. These corn- 

pounds were formed by t h e  thermal degradation of F'reon 113 and were fowd Lo be 

present i n  both ca ta lys t s  a f t e r  t h e  90-day t e s t .  
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Section 1 

INTRODUCTION AND SUMMARY 

During t h e  recent  90-day manned t e s t  seve ra l  d i f f e r e n t  types of sorbents  

and c a t a l y s t s  were used i n  t h e  various subsystems of t h e  l i f e  support system, 

The adsorbents included: s i l i c a  g e l ,  molecular s i eve  and ac t iva ted  charcoal .  

Cata lys ts  t h a t  were used included nickel  on Kieselgur i n  t h e  Sabat ier  r eac to r  

and Hopcalite f o r  oxidat ion of t r a c e  contaminants i n  t h e  atmosphere. 

The various ma te r i a l s ,  i n  addi t ion  t o  t h e i r  r egu la r  funct ions ,  showed t h e  

a b i l i t y  t o  accumulate s i zeab le  concentrat ions of organic and inorganic compounds 

t h a t  were present  i n  t h e  atmosphere during closed manned t e s t s .  Reference b 

presents  r e s u l t s  of pos t - t e s t  analyses of sorbent beds a f t e r  t h e  60-day test. 

The study repor ted  here in  i s  intended t o  provide comparative da ta  on the  90-day 

manned t e s t .  Complete r e s u l t s  of t h e  90-day t e s t  a r e  reported i n  Reference 2 

and summarized i n  Reference 3. 

Accurate knowledge of t h e  t c e s  and amounts of contaminants adsorbed by t h e  

various sorbents  and c a t a l y s t s  i s  important because ( 1 )  s u b s t i t u t i o n  of present  

regenera t ive  systems by more advanced techniques may a f f e c t  t h e  cont ro l  of trace 

contaminants wi th in  t h e  cabin atmosphere and ( 2 )  t h e  e f f i c i ency  of c e r t a i n  

c a t a l y s t s  present ly  i n  use may be g r e a t l y  reduced o r  completely destroyed by 

i n t e r a c t i o n  with contaminants i d e n t i f i e d  i n  t h e  atmosphere of t h e  Space S ta t ion  

Simulator (SSS). 

The p r i n c i p a l  objec t ives  of t h i s  program were t o  evaluate  t h e  sorbents '  and 

c a t a l y s t s '  c a p a b i l i t y  t o  adsorb and remove contaminants, t o  determine t h e  corn; 

pos i t ion  and q u a n t i t i e s  of adsorbed contaminants, and t o  determine t h e  extent 

t o  which t h e  adsorbent bed o r  c a t a l y s t  may have been a l t e r e d  by t h e  chemical 

i n t e r a c t i o n  with t h e  t r a c e  contaminants. 



To accomplish t he  objectives of t h i s  program, t he  following tasks  weire per-- 

formed: (1 )  two-gas chromatographs t o  be used f o r  qua l i t a t ive  and qumti tat ive 

determination of organic compounds were cal ibrated by determining e lut ion times 

f o r  two temperatures and two column packing materials;  (2) a procedme was 

established t o  provide t h e  optimum conditions f o r  t h e  desorption of orgmic: 

compounds from t h e  sorbents used during t h e  90-day run; ( 3 )  compounds released 

by t h e  th ree  sorbents were iden t i f i ed  and quanti tated;  and ( 4 )  the  nickel  a d  

Ropcalite ca ta lys t s  used ins ide t he  SSS were analyzed and compared with mused 

material.  

The r e s u l t s  of t h i s  study may be summarized a s  follows: 

Qual i t a t ive  analyses of desorbates from s i l i c a  ge l ,  molecular sieve md activa%ed 

charcoal beds led  t o  t he  iden t i f i ca t ion  of 12-14 organic comtaminanls. This 

compares t o  approximately 40 compounds iden t i f i ed  a f t e r  t h e  60-day m (~eferenee 

1). The quant i t i es  of c o n t a i n a n t s  released by the  3 sorbents were a le0  s ign i -  

f i can t ly  lower. Both observations confirmed t h e  high qual i ty  of t h e  atmosphere 

ins ide t he  SSS. 

Amounts of organic compounds desorbed from s i l i c a  ge l  sorbent were csns%derably 

higher than from molecular sieve. These beds were desorbed every 45 minutes 

during approximately 20 days when the  un i t  was i n  operation during the 90-day 

t e s t .  The highest amounts of organic compounds were driven off  t he  ac%ivat,ed 

charcoal bed. This sorbent had been i n  continuous use during t h e  en t i r e  80-dagr 

run. Neither s i l i c a  g e l  nor molecular sieve sorbents showed the  prenence of 

ammonia, oxides of nitrogen or  su l fur  dioxide. Activated charcoal was found t o  

desorb ammonia and oxides of nitrogen. 

Hopcalite and nickel  ca ta lys t s  may be gradually deactivated or  comple"c1y 

destroyed by interact ion with halogenated compounds ( ~ e f e r e n c e  4). These com- 

pounds may be formed by thermal degradation of Freon 113 which had been found in 

t h e  SSS atmosphere. Their presence was detected i n  both ca ta lys t  materids 

which were used during t h e  t e s t  period. 



Section 2 

SOURCES OF SAMPLES OF SORBENT BEDS AND CATALYSTS 

2.1  Molecular Sieve and S i l i c a  Gel Sorbents 

The molecular s ieve  and s i l i c a  g e l  sorbents used i n  t h i s  p ro jec t  were obtained 

from t h e  sorbent beds of t h e  regenerable CO concentrator shown i n  Figures i 
2 

and 2. The concentrator  included two molecular s ieve  beds f o r  t h e  r m o v a l  of 

carbon dioxide. Since molecular s ieve  would p r e f e r e n t i a l l y  adsorb any traces 

of atmospheric moisture thus  reducing t h e i r  CO adsorption capaci ty ,  two s i l i c a  
2 

g e l  beds were provided i n  t h e  system t o  remove t h e  moisture content of the 

c i rcu la ted  atmosphere. The beds were arranged so t h a t  one p a i r  of sorbent 

beds adsorbed and accumulated water and carbon dioxide during a 45-minute 

cycle while t h e  o ther  p a i r  were heated t o  423 '~  and t h e  molecular s ieve  was 
2 

evacuated t o  about 134 kN/m (100 mm ~g ) i n  order t o  r e l e a s e  t h e  previously 

loaded gases thereby regenerat ing t h e  sorbent beds. The desorbed C02 was 

then t r ans fe r red  by a compressor t o  an accumulator f o r  t h e  processing i n  t h e  

Sabat ier  r eac to r .  

The s i l i c a  g e l  and molecular s ieve  samples evaluated i n  t h i s  study were Laken 

a f t e r  t h e  concentrator  was shutdown with t h e  beds near t h e  end of t h e  adsorbing 

and desorbing operat ion por t ions  of t h e  cycle.  

2.2 Activated Charcoal 

The ac t iva ted  charcoal samples used i n  t h i s  p ro jec t  were taken from the charcoal 

bed t h a t  formed a p a r t  of t h e  wick evaporator u n i t  shown i n  Figures 3 and k ,  

The bas ic  components of t h i s  u n i t  were: s i x  wick packages, blower, carbon filter, 

p a r t i c u l a t e  f i l t e r  and zero-g condenser/separator. During t h e  90-day run this 

u n i t  w a s  used a s  a backup f o r  t h e  Vacuum Distillation-Vapor F i l t r a t i o n  (VD-VF) 

u n i t .  



CHECK VALVE 

Figure $. . C 0 2  Concentrator-Molecular Sieve Unit 



Figure 2. Molecular Sieve C 0 2  Concentrator Unit 
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Figure 4. Potable Water Recovery Units-Humidity Control Unit, Air Evaporation Unit, VD-VF Unit, Water Control Panel 



When t h e  wick evaporator u n i t  was used t o  recover potable water from u r i n e ,  

t h e  p re t rea ted  u r ine  was pumped t o  one of t h e  wick packages. A t  t h i s  point 

t h e  ur ine  s o l i d s  were deposited i n  t h e  wick f i b e r s  and heated cabin a i r  w a s  

used t o  vaporize t h e  u r ine  water. The vapors were then passed through an 

11 kg (24  l b .  ) ac t iva ted  charcoal bed where most organic and inorganic cola- 

taminants were adsorbed. They were then passed through a condenser/separator. 

The condensed water was then pumped i n t o  t h e  holding tanks i n  t h e  de tox i f i -  

c a t i o n s / m u l t i f i l t r a t i o n  u n i t .  The wick evaporator u n i t  was used t o  process 

u r ine  during 31 days while t h e  humidity control  por t ion  of t h e  u n i t  operated 

f o r  t h e  e n t i r e  90-day t e s t  period. The 11 kg a i r  carbon c a n i s t e r  s a t i s f a c t -  

o r i l y  removed a l l  ur ine  odors and organic const i tuents  from t h e  gas s t r ean  

during t h e  e n t i r e  90 days. Samples from t h i s  charcoal ma te r i a l  were taken 

a t  t h e  end of t h e  90-day t e s t  t o  determine types and q u a n t i t i e s  of adsorbed 

compounds. 

2.3 Hopcalite Catalyst  

The Hopcalite c a t a l y s t  analyzed i n  t h i s  program was removed from t h e  toxin 

burner, which i s  a component of t h e  In tegra ted  Sabat ier  Reactor/Toxin Control 

Unit,  a f t e r  completion of t h e  90-day t e s t .  This u n i t  i s  shown i n  Figures 5 

and 6. Analyses were a l s o  performed on a white powder col lec ted  a t  t h e  eind 

of t h e  discharge tube of t h e  toxin  burner and on t h e  impingement area of the 

wall  immediately behind t h e  u n i t .  

The bas ic  components of t h e  tox in  burner a re :  a regenerat ive heat  exchanger, 

an e l e c t r i c  heating element, a temperature c o n t r o l l e r ,  and a catalyGie 

( ~ o ~ c a l i t e )  r eac to r .  The Hopcalite c a t a l y s t  promotes t h e  oxidation of carbon 

monoxide, hydrocarbons and methane t o  carbon dioxide and water vapor, This 

reac t ion  occurs a t  a temperature of 588-643'~ ( 3 1 5 ' ~  - 370'~) in t h e  presence 

of t h e  Hopcalite c a t a l y s t .  To maintain reac t ion  condit ions,  heat  must be 

added t o  t h e  system. 
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2.4  Nickel Catalyst 

The nickel  ca ta lys t  analyzed i n  t h i s  program was removed from the  Sabatier  

reactor  component of t he  Integrated Sabatier  Reactor/Toxin Control Unit 

( ~ i g u r e s  5 and 6 ) .  The Sabatier  reaction depends upon t he  ca t a ly t i c  a c t i v i t y  

of n ickel  on Kieselgur. When carbon dioxide from t h e  CO concentrator and 
2 

hydrogen from water e l ec t ro ly s i s  reac t  i n  t he  presence of t h e  nickel  catalyst, 

methane and water a r e  formed. The water re turns  t o  t h e  e l ec t ro ly s i s  u n i t  

while methane and other  noncondensible exhaust gases are discarded overboard. 



Section 3 

TEST CONDITIONS AND PROCEDURES 

3.1 Calibration of Gas Chromatographs 

The materials  desorbed from each of t he  th ree  types of sorbents were first 

iden t i f i ed  by gas chromatography and then confirmed by mass spectrographic 

analyses. 

TWO Perkin-Elmer gas chromatographs, Model 800, were used. Each in s t rmen t  

was equipped with 12-foot dual columns and dual flame ionization deteedsrs,  

The columns of one instrument were packed with didecylphthalate (DDP) an 

Chromosorb W, 80-100 mesh; t h e  columns of t h e  second instrument contained 

Carbowax ( C W )  1500 on Chromosorb W. Helium was t h e  c a r r i e r  gas i n  both 

instruments. A flow r a t e  of about 30 ml/min was maintained. Gas samples of 

known composition were then introduced in to  each of t he  two gas chromatographs, 

while the  column temperature was maintained a t  373'~ ( 1 0 0 ~ ~ ) .  Thus, two e lu t ion  

times were obtained, one with each instrument. Two addit ional e lut ion times 

were obtained for  t he  same compound when the  column temperatures were Lowered 

t o  323 '~ (50 '~) .  

A t o t a l  of 75 organic compounds were calibrated.  This l i s t  is shown ow Tabla 1, 

The compounds were selected on t h e  bas i s  of materials  iden t i f i ed  i n  the  SSS 

atmosphere by MDAC-W and other workers i n  t h i s  f i e l d .  These cal ibrat ions  were 

repeatedly checked and brought up t o  date.  They were then used t o  iden t i fy  

unknown samples by matching the  exhibited e lut ion times with t he  tabub&blsd data. 

Whenever a l l  four e lut ion times from a sample matched a l l  four e lut ion times 

of t h e  cal ibrated mater ia l ,  t he  iden t i f i ca t ion  of t h e  samples was assmed $0 be 

posi t ive .  A t  times, preliminary iden t i f i ca t ions  had t o  be based on L k e e  elution 

peaks i f  t h e  four th  one was covered by an in te r fe r r ing  major peak from another 

substance. In  these instances,  it was possible t o  confirm t h e  iden t i f i ca t ion  by 

mass spectrographic analyses. 



Table 1 

COMPOUNDS FOR WHICH CALIBRATION OF GAS 
CHROMATOGRAPHS IS MAINTAINED 

Compound 

Ethyne (acetylene) 
Methane 
Propane 

2-Methylpropane (isobutane) 

Ethanal (acetaldehyde ) 

2-Methylbutane ( isopentane ) 
Pent ane 
2,2-Dimethylbutane 

Ethoxyethane (e thy l  e ther )  
Fur an 
2-Methyl-1,3-butadiene ( isoprene ) 

Methanal ( formaldehyde ) 
Propanal ( propionaldehyde ) 

Methanol (methyl alcohol ) 
Ethyl methanoate (e thy l  formate) 
3-Methylpentane 

Propenal ( acrolein ) 

Ethanol ( ~ t h y l  alcohol) 
2-Propanone ( acetone ) 

Hexane 

2-Propanol ( Isopropyl alcohol) 

1-Hexene 

Carbon d i su l f ide  

2-methyl-2-propanol ( t e r t  butyl  alcohol) 

Dichloromethane (methylene chloride ) 

2-Methylfuran 

Ethyl ethanoate ( ethyl  aceta te  ) 

But anal  ( n-butyraldehyde ) 

2-Propen-1-01 (Ally1 alcohol) 

2-Butanone (methyl e thy l  ketone) 

Compound 

Propanol ( ~ r o p y l  alcohol ) 

Tetrahydrofuran 

Cyclohexane 

Hept ane 

2-Octene 

2-but an ( sec-butyl alcohol) 

Tetrachloromethane (carobon te t rachlor ide)  

1 ,l ,1-Trichloroethane (methyl chlorof o m )  

Trichloromethane ( chlorof om)  
Benzene 

2-~eth~l-4-butanal  ( isovaleraldehyde 1 
2-Methyl-1-propanol ( isobutyl alcohol ) 

1,2-Dichloroethane (ethyl.enc dieknloride 1 
Propyl ethanoate ( propyl ace la te  ) 

Methyl methacrylate 

3-Pentanone ( diethyl  ketone ) 

2-pent anone (methyl propyl ketone ) 

Trichloroethylene 

Pentanal (valeraldehyde) 

Dioxane 

But an01 (butyl  alcohol ) 

n-Octane 

4-  ethyl-2-pentanone (methyl Gsobutyl 
ketone ) 

1-Hept ene 

1-Toluene 

Ethanoic acid ( ace t i c  acid) 



Table 1 (continued) 

Compound 

Butyl ethanoate ( butyl acetate ) 

3-Methyl-1-but an ( isoamyl alcohol) 

1-Pentauol ( amyl alcohol ) 

Ethyl benzene 

1,4-~imethylbenzene (p-xylene) 

1,3-Dimethylbenzene (m-xylene ) 

1,2-Dimetblbenzene ( o-qlene) 

Pentyl ethanoate ( pentyl acetate) 

2-Ethoxyethanol acetate 
( cellusolve acetate ) 

2-Ethyl-1-but -01 

Isopropylbenzene ( cumene ) 

Cyclohexanone 

1,3,5-Trimethylbenzene 
(mesitylene ) 

1,2,4-  rim ethyl benzene 
( pseudocumene ) 

Trichlorotrifluoroethasle 
(Freon 113) 

Ethane nitrile ( acetonitrile) 

2-Ethyl-1-hexanol 

Methylethyl Acetate ( isopropyl acetate) 



3.2 Optimum Desorption Conditions 

A procedure f o r  t h e  optimum desorption of contaminants from s i l i c a  ge l  (sG), 

molecular sieve (MS) and activated charcoal ( ~ c t .  C . )  was established,  The 

apparatus used f o r  t h e  desorption procedure i s  shown i n  Figure 7. A knom 

amount of SG, MS and Act. C was placed i n t o  a 500-ml Erlenmeyer flask., By mems 

of a heating mantle, t h e  temperature of t h e  material  ins ide t h e  f l a sk  was raised t o  

348 '~ (75OC), 398'~ (125OC), 448'~ (175'~) and 523 '~ (250'~) during successive 

t e s t  runs. During the  heating process, t he  pressure ins ide t h e  f l a sk  xaa main- 
2 ta ined below 530 N/m (4  mm ~ g )  . The desorbed gases were carr ied by a vcm low 

helium flow t o  a br ine  t r a p  253'~ (-20°C) where most of t h e  water was condensed, 

The desorbed gases were then swept i n t o  a U-shaped s t a in l e s s  s t e e l  t r a p  imersed  

i n  l iqu id  nitrogen. Samples of 5 ml from t h i s  t r a p  were then introduced f a to  the 

two gas chromatographs and the peak heights obtained a t  t h e  four d i f fe ren t  

temperatures were compared. 

FLOW CONTROL DESORPTION 

HELIUM v 
WATER 

OUT 
SAMPLE 
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BRINE 
TliAP LN2 TRAP 

FIGURE 7. DESORPTION APPARATUS 



Measurements were made of the quantities of organics,  exprersdd i n  mfero- 

grams of toluene f o r  each gram of sorbent. Toluene was se lec ted  because it 

was desorbed from each sorbent and exhibited a prominent peak i n  most 

chromatograms. 

Table 2 --em.--- 

Effect; of Temperature on Q u a n t i t i e s  of Organics ( ~ o l u e n e  )- 

Recovered from Sorbents -- 

( ~ a m p l e  Size: 1 gm   or bent) 
----.---- ------. --,--,.- ,-.-.- -- -.--.---- 

Q u a n t i t i e s  of Organics ( ~ o l u e n e )  Desorbed 

(pg/gm of sorbent ) 

Desorpt ion 
Temperature 

Mol 
Sieve 

S i l i c a  Activ,  
Gel Charcoal 

0 Results  i n  Table 2 ind ica te  t h a t  a desorption temperature of 448 '~  (175 6 )  

was c lose  t o  optimum, s ince  t h e  l a r g e s t  q u a n t i t i e s  of organic mate r i a l s  

were found t o  desorb i n  t h i s  range. 

To determine t h e  optimum sampling time, one sample of each sorbent was desorbed 

i n  successive 40-minute time i n t e r v a l s .  The amount of toluene e lu ted  during 

each sampling period was determined. Table 3 shows t h e  r e s u l t s  of these 

successive desorptions.  



Table 3 

Effect  of S 9 l i n . g  Time on Q u a n t i t i e ~ f - . ? r g a n i c s  ( a s  ~ l _ u _ e ~ e _ i  
-----.- -.- .-----A 

Desorbed From 3 Sorbents -------.---- 

Sample Size:  1 gram 

Quanti t ies  of Organics ( ~ o l u e n e  ) Desorbed 

(micrograms per gm of sorbent)  

Samplin(l; Mol S i l i c a  Act iv . 
Time Sieve % Gel % Charcoal $ 

F i r s t  40 min .  . n o 8  61.23 .0351 86.38 264.700 88,75 

Second 40 min. .0166 9-19 .0018 4.54 22 597 7.57 

Third 40 min. .0249 13.77 .OOOg 2.27 4.906 1.64 

Fourth 40 min. .0120 6.64 .0009 2.27 4.132 1.39 

F i f t h  40 min. .0092 5.11 .oo18 4.54 1.090 0e37 

Sixth 40 min. .0074 4.08 - - - - 0.026 0, 28 

The r e s u l t s  of t h i s  t e s t  ind ica te  t h a t  s i l i c a  g e l  and ac t iva ted  charcoal release 

86.38% and 88.75% of adsorbed organics during t h e  f i r s t  40-minute desorbing 

period,  if t h e  desorption temperature i s  maintained at  448'~ (1?5°~) ; Lbe 

desorption of molecular sieve under identical conditions is 61.23%. Based on 

the data in Tables 2 and 3, further desorptions were done at a desorbing 

temperature of 448'~ (175'~) and a desorbing time of 40 minutes. 



Section 4 

TEST RESULTS 

4 . 1  Molecular Sieve, S i l i c a  Gel and Activated Charcoal Analysis 

During t h e  90-day run two s i l i c a  g e l  beds were used. When t h e  u n i t  was shut 

down, s i l i c a  g e l  #1 bed was near t h e  end of t h e  desorbing cycle ,  while 

s i l i c a  g e l  #2 was near t h e  end of t h e  adsorbing cycle a s  shown i n  Figure 8, 

Each of t h e  beds contained approximately 3.8 kg (8.3 l b s )  of s i l i c a  g e l .  To 

obta in  representa t ive  samples, each bed of s i l i c a  g e l  was divided i n t o  at t o p ,  

a  cen te r ,  and a bottom por t ion,  each containing about one t h i r d  of t h e  total 

s i l i c a  g e l  used. It was noted t h a t  t h e  top  por t ion had a number of yellow-brown 

c r y s t a l s ,  t h e  center  port ion was co lo r less ,  while t h e  bottom port ion was light 

yellow. The t h r e e  por t ions  of t h e  s i l i c a  g e l  were analyzed separately.  

The samples of molecular s ieve  beds #1 and #2 corresponded t o  t h e  adsorption 

and desorption cycles of t h e  s i l i c a  g e l  samples. Each of t h e  two beds contained 

about 5.4 kg (11.8 l b s )  of molecular s i eve ,  a s  weighed a t  t h e  end of t h e  90-day 

t e s t .  Molecular s ieve  beds were a l s o  divided i n t o  top ,  cen te r ,  and bottom 

por t ions ,  each consis t ing  of one t h i r d  of t h e  t o t a l  molecular s ieve  sorbent 

used. No v i sua l  d i f ferences  between t h e  t h r e e  por t ions  were found. The three 

molecular s ieve  por t ions  were a l s o  separa te ly  analyzed. 

Activated charcoal samples were taken from t h e  a i r  evaporator bed which contained 

11 kg (24 l b s )  of t h i s  sorbent. Samples of charcoal were taken near t h e  top 

of t h e  bed and frorn t h e  center  and bottom. The por t ions  were combined t o  fomn 

one homogenous sample. Unused charcoal from t h e  same manufacturer w a s  used for 

basel ine  determinations. The amounts of organic compounds observed i n  the base- 

l i n e  chromatograms were negl ig ib le  compared with t h e  l a r g e  q u a n t i t i e s  of organics 

desorbed from t h e  used charcoal.  
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4.1.1 Organic Compounds 

The desorption of organic materials  from t h e  th ree  sorbents was carr ied ou$ 

according t o  t he  procedures derived i n  Section 3. Assignment of indiv%dua% 

chromatographic peaks t o  spec i f ic  compounds was based on cal ibrated e lut ion 

times, as  previously described. Agreement of four e lu t ion  times with the  

cal ibrated values was considered suf f ic ien t  f o r  posi t ive  iden t i f i ca t ion .  In 

most instances mass spectrographic analyses provided f i n a l  confirnation of gas 

chromatographic iden t i f i ca t ion .  

The types and quant i t i es  of organic compounds driven off t he  t h r ee  sorberaLs 

a r e  shown i n  Tables 4 ,  5 and 6. The number of organic compounds released by 

t h e  th ree  sorbents varied from 12 f o r  s i l i c a  g e l  t o  1 4  f o r  molecular sieve and 

activated charcoal. This compares t o  approximately 40 compounds iden t i f i ed  

during the 60-day run ( ~ e f e r e n c e  1). 

The mass spec t ra l  analyses of desorbate from t h e  act ivated charcoal revealed 

t h e  presence of trifluoromethane. This compound i s  i n  all likelihood derive13 

from the  use of Freon 113, t h e  only f luor ine containing solvent introduced in%s 

t h e  SSS. The iden t i f i ca t ion  of a f luor inated compound i s  important since i n  a21 

previous t e s t s  only chlorine containing compounds were ident i f ied.  Goneen"ta%;ions 

desorbed from s i l i c a  g e l  and molecular sieve sorbents were generally too low t o  

obtain a suf f ic ien t  sample s i ze  of t h i s  highly v o l a t i l e  material  f o r  detection 

by gas chromatography and mass spectrometry. 

The presence of e thaneni t r i l e  ( ace ton i t r i l e )  o r ig ina l ly  iden t i f i ed  by NASA-LaC 

by microwave spectroscopy during t h e  60-day run was a l so  confirmed i n  the 90%- 

day t e s t .  This compound was iden t i f i ed  i n  t he  desorbates of s i l i c a  ge l  m d  

char coal. 

4.1.1.1 QuarnLitative ~ e t e r h i n a t i o n  of Desorbed Compounds 

After iden t i f i ca t ion  of gas chromatographic peaks and confirmation by mass 

spectroscopy, it was important t o  determine concentration leve ls  of individual 

contarninants driven off t h e  sorbents. This involved quant i ta t ive  calitbraliga~re 

of one gas chromatograph with t he  organic compounds of i n t e r e s t .  Known 

quant i t ies  of spec i f ic  materials  were introduced i n t o  t h e  5-ml sample loop o:eD 



Table 4 Desorbates From S i l i c a  Gel ( i n  ug/g sorbent)  

TOP Center Bottom 
S i l i c a  S i l i c a  S i l i c a  S i l i c a  S i l i c a  S i l i c a  
G e l - 1  Gel-2 Gel-1 Gel -1 Gel-2 Gel-2 

Tota l  Volume 27 mR 27 mR 27 mR 27 mR 27 mR 27 mR 
--- ------ --- ---.-----,-a- ---- 

1. Trichlorotrifluoroethane 69. 000 15.000 2.300 9.656 37 170 10.100 
(Freon 113) 

2. Propanone (Acetone ) -- -- .1662 .896 6.120 1.224 

3. Ethane n i t r i l e  (Ace ton i t r i l e )  793 .631 

4. Benzene -0199 -- 
5. l,2-Dichloroethane .289 .0633 

6. octane .188 -- 
7. ~ u t . a n o l  ( ~ u t y l  alcohol ) 3.474 -- .0161 -- ,0804 -- 

10. Dichloromethane ( ~ e t h y l e n e  4.983 .671 
chloride ) 

11. 4-~ethyl-2-pentanok  ethyl -- .0805 
isobutyl  ketone ) 

12. Toluene .0565 .I53 



Table 5 Mol Sieve Desorbates in pg/g of Sorbent (DDP-50) 

MS-1 MS-2 
Total Volume 27 mR 127 mR 

Center Bottom 

1. Trichlorotrifluoroethane 
(Freon 113) 

2. Propanone (Acetone) 

3. Dichloromethane  ethylene 
chloride ) 

4. Butbtgol (~utyl alcohol) 

5. 4-~ethyl-2-~entanone  ethyl 
isobutyl ketone) 

I 
N 6. Toluene 
[U 
I 

7. Pentane 

8, Hexane 

9 1,2-Dimethylbenzene ( o-xylene ) 

10. Tetrachloromethane (carbon 
Tetrachloride ) 

11. 1,2-Dichloroethane 



Identified 
Organic Compounds 

TABLE 6 ACTIVATED CHARCOAL DESORBATES 

Air Evap, DDP-50'~ 

1. 2-Methylpropane (Isobutane) 

2, 3-Methylbutane ( Isopentane ) 

4, Trfchlorotrifluoroethane  reon on 113) 
5. 2-Propanone (Acetone) 

6. Hexane 

7. Ethanenitrile (Acetonitrile ) 

8. 2-Butanone  ethyl ethyl ketone) 

9. Tetrachloromethane ( Carbon Tetrachloride ) 

LO. Benzene 

11. l,2-Dichloroethane 

12. Butanol (~utyl alcohol) 

13. Toluene 

14. 2-Ethyl-l-but an 

15. Trifluoromethane* 

" Not quantitated. 

ug/g sorbent 



t he  gas chromatograph and t h e  peak heights produced with d i f fe ren t  concentra- 

t i ons  were determined. This provided a measure of t h e  concentration of %he spe- 

c i f i c  compounds i n  terms of pa r t s  per mill ion by volume, o r  i n  weight of the 

spec i f ic  compound released per  gram of sorbent. A l l  ca l ibrat ions  of the 17 

organic compounds shown i n  Table 7 were carr ied out with didecyl phthalate 

columns a t  a temperature of 323'~ (50'~).  The Table shows the  peak beighds, i n  

recorder divis ions ,  produced by each of 17 organic compounds, based on 1 ppm of 

each compound. Total  organics were l a t e r  estimated by using average value8 of 

peak height and molecular weights. 

4.1.1.2 Iden t i f i ca t ion  and Analysis of Desorbates 

The first columns of Tables 4 and 5 show t h e  individual organic colllpasmds iden- 

t i f i e d .  The volume of desorbate which was collected i n  t h e  s t a in l e s s  steel 

t r aps  immersed i n  l iqu id  nitrogen varied from 27 m l  t o  127 m l  when reLurned Lo 

atmospheric pressure and temperature. The samples which were analyzed were 

taken from t h e  top,  center,  o r  bottom pa r t s  of the  s i l i c a  ge l  and moleculm 

sieve sorbents. The desorbing cycle i s  expressed by S i l i c a  Gel-1 or  Mo% Sieve- 

1, while t he  adsorbing cycle reads S i l i c a  Gel-2 o r  Mol Sieve-2. 

The desorbates from activated charcoal used i n  t he  a i r  evaporator dwiwg the  

e n t i r e  90-day run a r e  shown i n  Table 6. I n  t h i s  case th ree  charcoal sennples 

were taken from three  locations of t h e  charcoal bed. They were thew combined 

i n t o  one s ingle  sample representative of t h e  e n t i r e  bed. 

The quant i ta t ive  ana ly t ica l  r e s u l t s  a re  expressed i n  micrograms of contminmt  

per gram of sorbent. It w i l l  be noted t h a t  t h e  amounts of organics dcsorbed 

from t h e  s i l i c a  g e l  sorbent a re  considerably higher than from moleculm eieve* 

This could be due t o  t he  f a c t  t h a t  during t h e  90-day run s i l i c a  g e l  dcsomtian 

took place a t  t h e  ambient cabin pressure,  while t h e  molecular sieve w a s  desorbed 
2 a t  about 13.4 kN/m (100 nun ~ g ) .  Both types of beds were desorbod at wproxi- 

mately 423'~ (150'~ ) . 



TABLE 7 - QUANTITATIVE CALIBRATIONS 

Recorder 
Divisions per ppm 

1. Propanone (Acetone ) 21.7 

2. Toluene 16.0 

3. Tetrachloromethane ( Carbon 2.46 
Tetrachloride ) 

4. 2-Butanone  ethyl ethyl ketone) 16.1 

5. Trichlorotrifluoroethane  reon on 31 . 3 
113 1 

6. Trichloroethylene 7.16 

7. Benzene 32.1 

9. Butanol ( ~ u t ~ l  alcohol) 1.88 

10. Ethanenitrile (~cetonitrile) 3.7 

11. 4-Methyl-2-pentanone 23.9 
(Methyl isobutyl ketone) 

12, Octane 13 . 9 

14. Dichloromethane  ethylene 7.24 
Chloride ) 

15. Pentane 84.4 

17. 2-Methylpropane ( Isobutane ) 105.0 

Molecular Weight 



The q u a n t i t i e s  of 2-ethyl 1-butanol,  a decomposition product of Coolanol-35, 

were lower than those  observed i n  t h e  previous 6 0 ~  and 30-day t e s t s ,  By 

using b e t t e r  l eak  check procedures and improved valves and f i t t i n g s ,  a system 

with a minimum of Coolanol l eaks  was obtained which r e s u l t e d  i n  much lower 

concentrat ions of t h i s  compound i n  t h e  atmosphere. 

The highest  amounts of organic compounds were driven o f f  t h e  ac t iva ted  charcoal 

bed. This sorbent had been i n  continuous use f o r  t h e  e n t i r e  90-day run. It 

may a l s o  be of i n t e r e s t  t h a t  t h e  q u a n t i t i e s  of organic compounds desorbed from 

t o p  and bottom s i l i c a  g e l  samples a r e  considerably higher than t h e  organics 

re leased by t h e  cen te r  por t ion  of t h e  bed. It was mentioned before t h a t  each 

por t ion  of t h e  s i l i c a  g e l  had a d i f f e r e n t  color .  However, it i s  a t  t h i s  L i m e  

not c e r t a i n  whether t h i s  d i f f e rence  i n  color  was i n  any way r e l a t e d  to t h e  

types and q u a n t i t i e s  of re leased contaminants. 

Not only t h e  number of i d e n t i f i e d  contaminants were lower than i n  previous runs, 

t h e i r  concentrat ions were a l s o  considerably lower. Sole exceptions were the  

Freon 113 and c e r t a i n  r e l a t e d  halogenated compounds. The genera l ly  low 

number and low concentrat ions of contaminants observed ind ica tes  t h a t  t h e  air 

i n s i d e  t h e  SSS was of exceptionally high pur i ty .  

4.1.2 Inorganic Compounds from Desorbates 

The desorbed gases from t h e  s i l i c a  g e l ,  molecular s i eve  and ac t iva ted  chszl-coal. 

sorbents  were a l s o  t e s t e d  by wet chemical procedures f o r  t h e  presence of 

oxides of n i t rogen and s u l f u r  dioxide.  Neither s i l i c a  g e l  nor molecular sieve 

sorbents  showed t h e  presence of any of t h e  t h r e e  contaminants. However, ac t ivated 

charcoal contained 170 pg of ammonia and 18.1 pg of oxides of ni trogen pel- grm 

of charcoal .  

4.2 Hopcalite and Nickel Cata lys ts  

The operat ion of t h e  tox in  burner and t h e  Sabat ier  r eac to r  a r e  based on t h e  

e f f i c i ency  of t h e  Hopcalite and n ickel  c a t a l y s t s  respect ive ly .  Malfunctioning 

of t h e  n ickel  c a t a l y s t  r e su l t ed  i n  t h e  i n a b i l i t y  t o  s u s t a i n  a r eac t ion  i n  the  

bed. This r eac t ion  i s  normally exothermic and s e l f  sus ta in ing a s  long as 



reactants  a r e  supplied, but f a i l ed  with increasing frequency during the first 

29 days of t h e  90-day t e s t ,  

Data from t h e  90-day t e s t  ( ~ c f e r e n c e  2) shows t h a t  t he  Hopcalite catELPysL was 

act ive  throughout t h e  period. Quant i ta t ive  measurements of capacity were not 

available,  however, The pos s ib i l i t y  ex i s t s  t h a t  some damage t o  t he  HopcaHBLe 

and t h e  complete l o s s  of a c t i v i t y  of t he  nickel  ca ta lys t s  were caused by the i r  

adsorpLion of t h e  halogens from Freon 113. Samples of t h e  two catalJvsLs 

which had been used during t he  90-day t e s t s  were analyzed together with mused 

materials  which served as  "blanks. " 

4.2.1 Hopcalite 

Analysis of compounds desorbed from Hopcalite showed the  presence of chlorides 

a t  a concentration of 0.3 mg per gram of Hopcalite, and of ammonia a% a con- 

centration of 0.056 mg per gram of Hopcalite. No oxides of nitrogen, suPfi r  

dioxide, o r  other inorganic o r  organic compounds were detected. The mused 

Hopcalite "blanks" were f r ee  of chlorides,  ammonia, and organic compomds* 

A white powder a t  t h e  ou t l e t  of t he  toxin burner was collected at t he  end of 

t h e  t e s t .  Qual i t a t ive  analysis of t h i s  powder showed a high concentration of 

chlorides. The presence of f luor ide was not spec i f ica l ly  iden t i f i ed  because 

it was obscured by the  high chloride content. Analysis of t he  powder by atomic 

adsorption spectroscopy showed the  following major consti tuents;  i ron ,  alminm, 

nickel ,  md  copper, besides several  minor t r ace  consti tuents.  These mador 

metal l ic  consti tuents may have originated i n  t he  Hopcalite ca ta lys t  or from 

at tack of t h e  tubing or  heat exchanger downstream of t h e  ca ta lys t  bed. by 

t he  highly corrosive decomposition products of t h e  Freon. 

4.2.2 Nickel on Kieselgur 

A l i t e r a t u r e  survey indicated t h a t  metal l ic  nickel  and, t o  a smaller extent, 

metal l ic  oxide ca ta lys t s  may be adversely affected or completely des l rwcd  by 

compounds containing halogen and su l fur  groups ( ~ e f e r e n c e  4 1. Since Prcoa 113 

contains both chlorine and f luor ine,  t he  pos s ib i l i t y  ex i s t s  t h a t  t he  thermal 

decomposition of t h i s  solvent under reactor  conditions contributes t o  the deter- 

io ra t ion  of t he  cata lyst .  The ensuing halogenated materials  w i l l  a l so  adversely 



a f f ec t  t he  s t a in l e s s  s t e e l  and aluminum components of t h e  un i t .  

In  view of t h e  ca ta lys t  poisoning experience, it was important t o  know the corn-. 

posit ion of t he  gas stream reaching t h e  Sabatier  ca ta lys t .  A s  reported i n  

Reference 2 ,  analyses of t h e  gas stream from the  C02 concentrator shwed "ibe 

presence of Freon 113 a t  a concentration of 5.0 t o  39.0 ppm, with a medim of 

11.2 ppm, i n  addition t o  small amounts of ethanol and propanone (acetone) , 

On the  29th day of t he  90-day t e s t ,  t h e  spent nickel  ca ta lys t  was replaced with 

new material.  The l a t t e r  was protected by placing an activated carbon f i l t e r  

i n  t he  C02 l i ne .  Analysis of gas samples taken downstream of t h e  cabon  f i l t e r  

showed t h a t  t h e  Freon 113 was i n i t i a l l y  almost completely removed. 

Three samples of nickel  ca ta lys t  of d i f fe ren t  or igins  were analyzed for  chloride 

ions and f o r  organic coqounds. 

Sample A consisted of spent nickel  ca ta lys t  used during t h e  first 29 days of 

t he  90-day run, 

Sample B was  t he  ca ta lys t  used during t h e  remainder of t h e  90-day run. 

Sample C was unused nickel  ca ta lys t  which served as "blank." 

The amounts of chloride ions found i n  Samples A ,  B, and C were: 

Sample A - 6.24 mg chloride ions/gm of N i  ca ta lys t  

Sample B - 1.92 mg chloride ions/gm of N i  ca ta lys t  

Sample C - 0.96 mg chloride ions/gm of N i  ca ta lys t  

Deducting t h e  "blank" concentration found i n  t h e  unused nickel  ca ta lys t  Prarm 

t h e  values of Samples A and B,  t h e  net  values obtained were 5.28 mg chlar%de 

and 0.98 mg chloride respectively,  per gram of nickel  ca ta lys t .  

The amounts of t o t a l  organic compounds found i n  Samples A ,  B, and C were: 

Sample A - 0,569 pg organics/gm N i  ca ta lys t  

Sample B - 0.048 pg organics/gm N i  ca ta lys t  

Sample C - None 

The organic compounds desorbed from t h e  ca ta lys t  were propanone, 3-methyl- 

pentane, hexane, l , l , l - t r ichloroethane,  3-pentanone, and toluene. 



Although an activated charcoal t r a p  was placed i n  the  C02 l i n e  t o  remove 

halogenated and organic compounds, a small amount reached the  nickel catalyst 

since the  t r a p  was by-passed fo r  a short  period whenever t he  charcoal was 

replaced. The charcoal was replaced f ive  times during the  l a s t  60 dez~~s o f  

the  t e s t  ( ~ e f e r e n c e  2 ) .  

A metal analysis of t he  nickel cata lyst  by atomic adsorption showed nickel mi% 

s i l i con  as maj o r  components . Present i n  t r ace  mounts were baron, phasphoarus , 
manganese, i ron,  magnesium and lead. These elements were normally present i n  

the  nickel  ca ta lys t ,  The unused sample was completely f r e e  of contaminmts, 



CONCLUSIONS 

1. Q u a l i t a t i v e  analyses of desorbates from t h r e e  sorbent beds, s i l i c a  

g e l ,  molecular s ieve ,  and ac t iva ted  charcoal l e d  t o  t h e  i d e n t i f i c a t i o n  

l e v e l  of 12 t o  1 4  organic contaminants. This compares t o  approximately 

40 compounds i d e n t i f i e d  i n  t h e  60-day run. 

2. I n  addi t ion  t o  t h e  smaller number of i d e n t i f i e d  compounds, t h e i r  

q u a n t i t i e s  were a l s o  s i g n i f i c a n t l y  lower than i n  previous runs,,  

Low number and low concentrat ions of contaminants observed during 

t h e  e n t i r e  90-day run indicated  t h a t  t h e  a i r  ins ide  t h e  SSS was of 

very high pur i ty .  

3. Amounts of organic compounds desorbed from s i l i c a  g e l  sorbent were 

considerably higher than from molecular s ieve.  The highest  mounts  

of organic compounds were driven off  t h e  ac t iva ted  charcoal bed. 

This sorbent had been i n  continuous use f o r  t h e  e n t i r e  90-day run. 

4. Neither s i l i c a  g e l  nor molecular s ieve  sorbents showed t h e  presence 

of ammonia, oxides of ni trogen o r  s u l f u r  dioxide. Activated charcoal 

was found t o  desorb ammonia and oxides of ni trogen but no s u l f u r  

dioxide. 

5. Hopcalite and Nickel c a t a l y s t s  may be gradually deactivated o r  

completely destroyed by i n t e r a c t i o n  with halogenated hydrocarbons, 

These compounds may be formed by thermal decomposition of Freon 113, 

6 .  Performance of t h e  n ickel  c a t a l y s t  i n  t h e  Sabat ier  r eac to r  w a s  l o s t  

during t h e  f i rs t  29 days of t h e  90-day t e s t .  Analysis of t h i s  ca ta lys t  

indica ted  t h e  presence of quan t i t i e s  of halogen impur i t ies .  Reactor 

performance was res tored by replacing t h e  c a t a l y s t .  



7. By placing an act ivated charcoal bed ahead of t he  nickel  ca ta lys t  

of t he  Sabatier  reactor  t h e  Freon 113 contaminants were e f fec t ive ly  

trapped, thereby preventing t h e  formation of chlor inated  compolmds 

and degradation of t he  ca ta lys t .  

8. No quant i t a t ive  evidence indicates  t h a t  de te r io ra t ion  of t he  Hapedi te  

ca ta lys t  had occurred. However, halogen impurit ies were detected i n  

t h e  ca ta lys t  bed a f t e r  t e s t  completion, and i n  t h e  exhaust t u b i w  of 

t h e  un i t .  
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