

TURBULENT MIXING OF COAXIAL COMPRESSIBLE HYDROGEN-AIR JETS

by James M. Eggers Langley Research Center Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . SEPTEMBER 1971

1. Report No. NASA TN D-6487	2. Government Acce	ssion No.	3. Recipient's Catal	og No.					
4. Title and Subtitle	.L		5. Report Date						
TURBULENT MIXING OF CO	AXIAL COMPRI	ESSIBLE	September	1971					
HYDROGEN-AIR JETS			6. Performing Organ	lization Code					
7. Author(s)		······································	8. Performing Organ	ization Report No					
James M. Eggers			L-7901						
9. Performing Organization Name and Address	·	· · · · · · · · · · · · · · · · · · ·	10. Work Unit No.						
NASA Langley Research Cent	or		764-75-01-	-06					
Hampton Va 22265	lei		11. Contract or Gran	tNo. <u>,</u>					
nampton, va. 25565									
12 Spansoring Agency Name and Address			13. Type of Report a	and Period Covered					
National Appropriate and Sec			Technical	Note					
Washington D.G. 20546	ce Administratio	n	14. Sponsoring Agence	cy Code					
washington, D.C. 20546									
15. Supplementary Notes									
16. Abstract									
1									
An experimental and an	alytical study of	the compressible to	rbulent mixing	of parallel					
coaxial hydrogen-air jets has	been conducted.	Data were acquire	ed for outer air	iet Mach					
numbers of 1.32 and 2.50. The second se	he inner hydroge	n iet Mach number	was approximat	elv 0 9 for					
both air jet Mach numbers.	Experimental by	trogen mass fractio	n profiles and w						
profiles were determined through	ughout the non	field and fan field	n promes and v						
ity of different oddy wigoesity	ugnout the hear-	-neld and far-field	mixing regions.	The valid-					
ity of amerent eddy viscosity	models was stud	fied by incorporation	g them into an a	inalysis and					
attempting to compute the pre	sent hydrogen-ai	r data and previous	s air-air data.	It was con-					
cluded that a kinematic formu	lation of eddy via	scosity which provi	des radial as we	ell as axial					
variation in dynamic eddy vis	cosity, through in	ncorporation of the	local density, is	essential					
in order to compute both hydr	ogen-air and air	-air mixing data.	- /						
		-							
				-					
			·····						
17. Key Words (Suggested by Author(s))		16. Distribution Statement		_					
Fluid mechanics									
Turbulent mixing		Unclassified -	- Unlimited						
Propulsion systems									
19. Security Classif. (of this report)	20. Security Classif, (o	f this page)	21. No. of Pages	22, Price*					
Unclassified	Unclassifie	d	57	\$3.00					

*For sale by the National Technical Information Service, Springfield, Virginia 22151

. .

т

- ·

TURBULENT MIXING OF COAXIAL COMPRESSIBLE

HYDROGEN-AIR JETS

By James M. Eggers Langley Research Center

SUMMARY

An experimental and analytical study of the compressible turbulent mixing of parallel coaxial hydrogen-air jets has been conducted. Data were acquired for outer air jet Mach numbers of 1.32 and 2.50. The inner hydrogen jet Mach number was approximately 0.9 for both air jet Mach numbers. All jets had a total temperature near 300 K and mixed in an unconfined region at 1 atmosphere. Experimental hydrogen mass fraction profiles and velocity profiles were determined throughout the near-field and far-field mixing regions.

The validity of different eddy viscosity models was studied by incorporating them into a finite-difference-type analysis and attempting to compute the present hydrogen-air data and previous air-air data. A formulation of eddy viscosity based on a mass flow defect (or excess) across the mixing zone was unsatisfactory in computing the data. The kinematic eddy viscosity model of Cohen and a kinematic form of an eddy viscosity model used in a previous study both satisfactorily correlated the data. It was concluded that a kinematic form of eddy viscosity which provides radial as well as axial variation in dynamic eddy viscosity, through incorporation of the local density, is essential in order to compute both hydrogen-air and air-air mixing data.

INTRODUCTION

An interest in the computation of turbulent mixing exists because of the wide variety of applications. Typical problems involving turbulent mixing occur in jet-engine exhaustnoise generation, shear-layer interference heating, ejector design, mixing of pollutants with the atmosphere, and fuel injector design. The latter problem of fuel injector design, specifically the mixing of hydrogen fuel with air in a supersonic-combustion ramjet-engine combustor, is the motivation for this study. The study is restricted to consideration of the unconfined mixing of nonreactive, circular coaxial jets, which is an approximation to the downstream parallel injection of fuel from an in-stream injector.

In order to design a combustor for a hydrogen-fueled hypersonic ramjet engine, it is necessary to predict the fuel distribution obtained from a given injector design. For combustors of small height, it is conceivable to inject the fuel from the wall and achieve the desired uniform fuel distribution. As combustor size increases, however, it becomes necessary to consider injection from struts or, if the engine geometry permits, from an inlet center body in order to uniformly distribute the fuel. It is advantageous to inject the fuel in a downstream direction in order to benefit from the momentum of the fuel and in order to minimize pressure disturbances initiated by the fuel injection. Therefore, an analytical method is needed to predict the turbulent mixing of parallel compressible streams of hydrogen and air.

Unfortunately, current knowledge of the fundamental nature of turbulence is not sufficient to permit generation of a completely analytical solution to the mixing problem. Analysis of the mixing of turbulent flow fields has been performed by employing the boundary-layer equations with suitable models for the turbulence terms (conventional eddy viscosity and turbulent Prandtl and Lewis numbers). The semiempirical nature of the analysis arises through the need to specify the magnitude of the turbulent Prandtl and Lewis numbers and an eddy viscosity model. No universally accepted eddy viscosity model is currently available.

Many different eddy viscosity models have been proposed and reported in the literature. In reference 1, Ferri proposed a model relating the dynamic eddy viscosity to a mass flux difference. Later studies reported in reference 2 noted no tendency for two jets to remain segregated (unmixed) when the mass flux difference approached zero as Ferri's model would indicate. Also, no tendency was reported for two jets to remain unmixed when the velocity difference approached zero. From the studies of reference 2 it was not possible to determine whether the inadequacy of the Ferri model (or the inadequacy of Prandtl's model which expressed eddy viscosity as proportional to a velocity difference) was merely a limitation of the range of applicability of the models or an indication of invalidity. In reference 2, Alpinieri presented a model which was developed from purely empirical considerations and which correlated his data.

A more recent study by Schetz (ref. 3) expressed the dynamic eddy viscosity as being proportional to the mass flow defect (or excess) across the mixing zone. Also given in reference 3 were the computations resulting from using the Schetz model, the Prandtl velocity difference model, and the Ferri model. The general observation reported in the reference was that the Schetz model provided results in better agreement with the data considered than any other previously suggested model.

A kinematic eddy viscosity model has been developed by Cohen and reported in reference 4. The Cohen model was satisfactorily applied to hydrogen-air, hydrogen-nitrogen, reacting, and nonreacting data (ref. 5). Comparison calculations using the Prandtl velocity difference model, the Ferri model, and the Cohen model for high-temperature hydrogennitrogen mixing were also presented in reference 5. It was noted that the Prandtl model

2

1.1.1

1

÷

produced a much too slow mixing rate and the Ferri model produced a much too rapid mixing rate for the data considered.

Previous to the present study the author had participated in a coaxial air-air mixing study (ref. 6). Initial efforts to correlate the data were made with an eddy viscosity model attributed by the authors of reference 7 to Zakkay. It was found that limitations imposed by the definition of the mixing width in the Zakkay model restricted its application to the far-field mixing zone. Therefore, a new mixing width was defined and resulted in improved data correlation and a new dynamic eddy viscosity model.

Some additional eddy viscosity models for the region downstream of the potential core and wake flow have been summarized in reference 3. Despite the sizable number of mixing studies performed, illustrated by the numerous suggested eddy viscosity models, these have not resulted in guidelines which could be expected to lead to the development of a satisfactory eddy viscosity model. Progress in developing a satisfactory model has been hampered by the limited quantity of data each investigator has considered as well as the insufficiencies and uncertainties of the available data.

Data resulting from experiments involving nonreacting coaxial hydrogen-air mixing have been presented in references 1, 2, 5, 8, and 9. However, only references 1, 5, and 8 contain data where the airstream was supersonic, which is of primary interest for supersonic-combustion-ramjet application. Of these three references, only reference 5 (data referred to in ref. 5 are actually for hydrogen mixing with a high-temperature vitiated nitrogen stream) gives detailed survey data for the initial mixing conditions. Even in the data of reference 5, initial boundary layers are not well defined because the data were taken at an elevated temperature. As a result, the size of the total temperature probe limited the resolution of the data. The supersonic data of references 1 and 8 dealt only with the far field, that is, the flow field downstream of the potential core. It has been noted in reference 10 that the near field has received less attention than the far field although the near field is considered to be just as important in the overall design of a ramjet combustor. In summary, available supersonic hydrogen-air mixing data do not adequately define initial conditions or the near-field mixing region.

The purpose of the present investigation was twofold. The first objective was to generate detailed supersonic coaxial hydrogen-air mixing data, both in the near field and far field, which could be used to aid in the development of an analysis and eddy viscosity model. The second objective was to evaluate those eddy viscosity models available in the literature which were believed to offer the best chance of success in correlating the data. The eddy viscosity models chosen for this evaluation were those of Schetz (ref. 3) and Cohen (ref. 4) and that developed in a previously conducted air-air mixing study (ref. 6).

These three eddy viscosity models were incorporated into the analysis of reference 11. The validity of each model was determined by comparing analytical solutions to

hydrogen-air data from the present study and air-air mixing data from reference 6. It was considered highly desirable that an eddy viscosity model permit the calculations to be initiated at the nozzle exit and to proceed continuously throughout the flow field. As eddy viscosity models are, in general, based upon dimensional analysis considerations, it was adjudged for this study that for the empirical constant to be truly a constant was too optimistic a viewpoint. Therefore, the value of the empirical constant associated with each model (assuming correct trends could be predicted) was chosen to best correlate the data.

Data were obtained corresponding to the nonreactive turbulent mixing of a circular coaxial near-sonic jet of hydrogen surrounded by a supersonic parallel stream of air at M = 1.32 or M = 2.50. The hydrogen jet Mach number was approximately 0.9 for both airstream Mach numbers. Representative unit Reynolds numbers are 1.18×10^6 per meter for the hydrogen jet and 3.71×10^6 per meter and 1.39×10^7 per meter for the Mach 1.32 and 2.50 air jets, respectively. The jets mixed in an unconfined region at a static pressure of 1 atmosphere (1 atm = $1.013 \times 10^5 \text{ N/m}^2$). Both the hydrogen and air jets had total temperatures of approximately 300 K. Radial distributions of pitot pressure and hydrogen concentration were obtained downstream of the jet exit at various axial locations. These data were reduced to velocity and hydrogen mass fraction profiles and are tabulated in appendixes A and B.

SYMBOLS

b

Ξ

- a mixing-zone width defined as radial distance between points where velocities are u₃ and u₄
- C_p local specific heat at constant pressure
- C_{p,a} specific heat at constant pressure of pure air
- C_{p,h} specific heat at constant pressure of pure hydrogen
- d inner diameter of center nozzle, 11.6 mm
- f^* parameter in Cohen's eddy viscosity model (see eq. (8))
 - ratio of integrated hydrogen flow rate to metered hydrogen flow rate (see eq. (2))
- 4

Ι

k	empirical constant for use with the Z-difference eddy viscosity model (see eq. (3))
^k 2	empirical constant for use with the unified eddy viscosity model (see eq. (6))
k3	empirical constant for use with the Cohen eddy viscosity model (see eqs. (8) and (9))
k ₄	empirical constant for use with the kinematic Z-difference eddy viscosity model (see eq. (13))
L	a characteristic length (see eq. (6))
М	local Mach number
M	local molecular weight
m	ratio of outer jet velocity to center-line velocity, u_a/u_o
m _h	metered center jet hydrogen flow rate
m _X	integrated center jet hydrogen flow rate calculated from measured pressures, temperatures, and concentrations (see eq. (1))
^m 1	velocity ratio fixed by turbulence level (see eq. (9))
N _{Le}	turbulent Lewis number (the product of the turbulent diffusion coefficient and the constant-pressure specific heat divided by the turbulent thermal- conductivity coefficient)
N _{Pr}	turbulent Prandtl number (the product of the constant-pressure specific heat and the turbulent viscosity divided by the turbulent thermal-conductivity coefficient)
N _{Sc}	turbulent Schmidt number (ratio of turbulent Prandtl number to turbulent Lewis number)
n	ratio of outer jet density to center-line density

ⁿ 1	density ratio fixed by turbulence level (see eq. (9))
р	static pressure
R	universal gas constant
R	local gas constant
Т	static temperature
т _t	total temperature
u	axial velocity, m/sec
^u 1	velocity defined by equation (4)
^u 2	velocity defined by equation (5)
u ₃	velocity defined by equation (10)
^u 4	velocity defined by equation (11)
x	axial coordinate
у	radial coordinate
Z	a mixing-zone width defined as radial distance between points where velocities are \mathbf{u}_1 and \mathbf{u}_2
α	local mass fraction of hydrogen (local mass of hydrogen divided by sum of local mass of hydrogen and local mass of air)
β	local volume fraction of hydrogen
γ	ratio of specific heats
δ^2_*	a displacement thickness defined by equation (7)
ε _t	eddy viscosity in kinematic form
6	

-

6

and the second second

-

-

 $(\rho\epsilon)_{t}$ dynamic eddy viscosity

ρ density

Subscripts:

а	evaluated in external airstream (see fig. 3)
j	evaluated in hydrogen flow at jet exit and on jet center line
0	evaluated on center line

Bar over symbol indicates that parameter is nondimensionalized by the center nozzle external diameter (12.7 mm).

APPARATUS

Nozzle

A sketch of the nozzle configuration used to generate the flow fields of this study is shown in figure 1(a). Nozzle contours are given in figures 1(b), 1(c), and 1(d). A Mach 1.32 circular-contoured plug nozzle with a subsonic circular nozzle contained in the center body was used in the initial phase of this study. A second phase employed a Mach 2.50 circular-contoured plug nozzle with the subsonic circular center nozzle. The exit diameter for both plug nozzles was 15.2 cm. The subsonic nozzles had inner and outer exit diameters of 11.6 mm and 12.7 mm, respectively. (See enlarged sketch in fig. 1(a)). The flow passage in the subsonic nozzles converged slightly in the flow direction to ensure that if choking occurred it would occur at the nozzle exit. The taper was approximately 0.005 cm/cm on the diameter. The tapered section extended approximately 10 cm upstream of the nozzle exit at which point the internal diameter was increased to 25.4 mm; this enlarged diameter resulted in the flow area being increased by a factor of approximately 4.

An exhaust duct 76 cm in diameter was located approximately 1 m downstream of the nozzle exit and thus provided means of exhausting the hydrogen-air jets from the test area. The inlet to the test cell was open to the atmosphere and provided sufficient flow area to prevent any detectable decrease in static pressure in the test chamber during data acquisition.

Survey Rake

A remote controlled actuator was installed at various distances in the axial direction from the nozzle exit and was used to traverse a survey rake across the flow field. The rake position was indicated by a servodriven counter. The counter which indicated probe location was calibrated to be 195 counts/cm with an observed uncertainty of ± 2 counts. The survey rake contained a pitot probe and a static-pressure probe which were 4.06 cm apart. Significant details of the rake and probes are shown in figure 2. A flow-field schematic is shown in figure 3.

Gas Analysis

Gas samples were piped directly from the rake to the injection valve in a gas chromatograph. Standard gas chromatography techniques similar to those described in reference 12 were used to perform the gas analysis. Briefly, this technique involves separation of the hydrogen from other gas components by passing the sample through a silica gel column followed by a molecular sieve column. The separated gas components then were passed through a thermistor detector. The output of this detector relative to that of a reference detector exposed to pure nitrogen carrier gas is an indication of the volume of hydrogen in a given sample. The detector output was recorded on a strip chart recorder. Comparison of the peak height output to peak heights corresponding to known mixtures of hydrogen and nitrogen gave the volume percent hydrogen in a sample. Pertinent data on the columns are as follows:

- Column 1: silica gel; mesh 60/70; diameter, 3.18 mm; length, 122 cm; conditioned for 4 hr at 470 K with argon gas purge.
- Column 2: molecular sieve; 5 Å; 70/80 mesh; diameter, 3.18 mm; length, 183 cm; conditioned for 6 hr at 620 K with argon purge.

The nitrogen carrier gas flow rate was approximately 45 standard cm^3/min . The columns were maintained at 310 K during gas analysis. Errors in gas analysis are not significant in comparison to the uncertainty of obtaining representative gas samples from the turbulent flow field.

TEST PROCEDURE

A constant flow of dry air at near-ambient temperature was supplied to the plug nozzle through a duct 36 cm in diameter. Ambient-temperature hydrogen was supplied to the inner nozzle through a support pipe. The temperature of each stream was measured in the supply pipes by use of iron-constantan thermocouples. For the established flow conditions, static-pressure orifices near the outer nozzle exit indicated ratios of nozzle-exit static pressure to atmospheric static pressure of 1.02 and 0.97 for the Mach

1.32 and Mach 2.50 jets, respectively. Radial surveys of pitot pressure and hydrogen concentration were performed at several axial stations in the flow field. A limited number of probe static-pressure surveys were also performed. Survey locations and temperatures for the two test conditions studied are summarized in table I. Schlieren photographs were also taken to aid in interpreting the data. Typical flash and time-exposure schlieren photographs are presented in figures 4 and 5.

During the early stages of the study, gas samples were extracted from the flow field through a pitot probe tip of the type shown in figure 2. Only the pitot pressure was used as the pumping force to extract these samples. In order to assess the accuracy of the data, the following integral was evaluated for each axial survey station:

$$m_{\rm X} = \sqrt{\gamma} \int_{\rm A} \frac{\alpha p M}{\sqrt{RT}} \, dA \tag{1}$$

Details on the evaluation of equation (1) are given in appendix C. The magnitude of m_X should be equal to the metered hydrogen flow rate m_h , or the magnitude of I as given by

$$I = \frac{m_x}{m_h}$$
(2)

should be near unity if there are no substantial errors in the data. Any deviation of I from unity is due to experimental error. For hydrogen-air mixing, I is particularly sensitive to hydrogen concentration. Typical values of I computed from the initial data were in the range of 0.7 to 0.8 which indicated that 20 to 30 percent of the hydrogen jet flow was not accounted for in the gas sample data. Attempts to obtain higher concentration values by aspirating the gas sample through the pitot probe and by pumping on the probe were unsuccessful inasmuch as no improvement was noted in the concentration data. A recent study (ref. 13) noted that differences between integrated and measured mass flows of 20 percent are considered typical.

The problem of obtaining representative gas samples has been discussed in reference 6. It was concluded in reference 6 that the actual physical mechanism which causes the sampling probe to obtain unrepresentative samples is not known; however, the results suggest that the erroneous concentration measurements are related to the local turbulence level in the flow field. It was noted in reference 14 that when sampling through a static probe, representative gas samples were always obtained. Therefore, several concentration surveys were performed with the Mach 1.3 static probe (fig. 2) and a diaphragm-type pump to extract the gas sample. A comparison of the gas concentration obtained by pitot probe sampling and static-pressure probe sampling is presented in figure 6 for two axial stations. It is evident from the data in figure 6 that significantly higher gas concentrations

were obtained with the static probe sampling technique. Reduction of the static-pressureprobe sampling data of figure 6 resulted in ratios of integrated hydrogen flow rate to measured hydrogen flow rate (eq. (2)) very near unity. Due to this excellent agreement, the static probe tips shown in figure 2 were used to extract all gas samples in the remainder of this test program.

Some uncertainty in the axial location of the concentration data is introduced by sampling through the static probe. The uncertainty is due to the inability to positively determine whether the gas samples are representative of the flow at the probe tip or at the location of the static orifices. However, the boundary-layer flow on the probe will stabilize the small-scale turbulent flow field and thereby mixing is reduced in the vicinity of the probe surface. Thus, gas samples taken through the static orifices would be expected to have undergone less mixing than actually occurred in the undisturbed flow field. The concentration data are therefore expected to be representative of the flow field at some location ahead of the static orifice (but of course not ahead of the probe tip). For this study (including the data of fig. 6), the tip of the static probe was positioned at the same axial location as the tip of the pitot probe. The concentrations measured were assumed to be representative of the flow field and the axial location of the probe tip. A comparison of the dimensions of the static probes and the center nozzle diameter indicates that the concentration data may be displaced downstream from the pitot pressure survey by up to 1 jet diameter for the $M_a = 1.32$ data. Similarly, the concentration may be displaced up to 1.54 jet diameters from the pitot pressure survey for the $M_a = 2.50$ data. The actual error introduced depends upon the axial total-pressure gradient and concentration gradient at each particular survey station and the effect of the interaction between the probe and the flow field.

As an indication of the accuracy of the data, values of I from equation (2) have been listed in table I. As shown in table I(a), values of integrated hydrogen flow rate ranged from 16 percent low to 4 percent high for the $M_a = 1.32$ data. Poorer accuracy was achieved for the $M_a = 2.50$ data where integrated hydrogen flow rates ranged from 12 percent low to 29 percent high. It is noted that values of I greater than 100 percent were calculated in the region of the flow field where large gradients in pitot pressure and concentration existed (from x/d = 4.31 to x/d = 15.36).

DATA REDUCTION

The measured pitot pressures, total temperature, and volumetric concentration of hydrogen were reduced to velocity profiles and hydrogen mass fraction profiles. The method employed is identical to the technique used in evaluating equation (1). Specific equations are presented in appendix C. The center of the hydrogen concentration profiles was assumed to be the center of the flow field. An assumption of uniform static pressure

:

equal to atmospheric pressure was used in all data reduction. Probe static-pressure measurements were found to be seriously affected by shock-wave intersections with the probe and were not used in data reduction.

It was observed during data reduction that the extent of the mixing zone (the region where hydrogen-air mixtures existed) could be determined from the fluctuations in the pitot-pressure signal. In the region of large gradients (in the mixing zone near the concentration potential core), pitot-pressure fluctuations were as high as ± 7.1 percent in an extreme case. (These fluctuations are not to be taken as indicative of the actual magnitude of the turbulence of the flow as they are a function of the recording system employed, but the pitot-pressure fluctuations are an indication of large turbulent fluctuations in the mixing zone.) The fluctuation in pitot pressure decreased to an insignificant value as either the undisturbed hydrogen potential core flow or the undisturbed airflow was approached. Some evidence of large-scale mixing vortices, and thus associated fluctuations, may be seen in figures 4(a) and 5(a), as the mixing boundaries are irregular in the schlieren flash photographs. Mean values of pitot pressure from the strip chart record were used in data analysis. The local Mach number, mass fraction, and velocity data are tabulated in appendixes A and B.

Concentration values required to compute local velocities were read from plots of the radial distribution of concentration inasmuch as pitot-pressure and concentration measurements were not necessarily made at the same radial location.

THEORY

Analysis

The analysis of reference 11 was used to correlate the experimental data of this study and the air-air mixing data from reference 6. The analysis employs equilibrium chemistry, transformation techniques, and an explicit finite-difference technique to compute turbulent mixing and reacting of parallel streams of hydrogen and air. Axial pressure gradients and nonunity turbulent Prandtl and Lewis numbers are provided for in the analysis. The analysis is applicable to both the near and far field providing a proper eddy viscosity model is specified. Further details of the analysis are given in reference 11. Information on the use of the computerized analysis may be found in reference 7.

In order to analyze the hydrogen-air mixing data without allowing a reaction to occur, the airstream was simulated by pure nitrogen. For air-air mixing, the center jet was specified as an oxygen-nitrogen mixture corresponding to that of air (oxygen mass fraction 0.232, nitrogen mass fraction 0.768) and the outer stream as pure nitrogen. The oxygen thus defined the extent of mixing of the center jet. Specifying the concentration

composition as just noted retains the validity of the mixing analysis by maintaining the approximately correct molecular weight ratio between the streams.

Eddy Viscosity Models

Different eddy viscosity models were incorporated in the analyses to test their validity. The first model examined herein was developed in reference 6 and is expressed as

$$(\rho\epsilon)_{t} = kz(\rho u)_{0} \tag{3}$$

In equation (3), $(\rho\epsilon)_t$ is the dynamic eddy viscosity, k is an empirical constant, and $(\rho u)_0$ is the mass flux per unit area on the jet center line. The mixing-zone width z is defined as the radial distance between the points where the local velocities are u_1 and u_2 as given by the following equations:

$$u_1 = u_a + 0.95(u_0 - u_a)$$
 (4)

$$u_2 = u_a + 0.50(u_0 - u_a)$$
 (5)

The definitions of u_1 , u_2 , and z are illustrated in the following sketch:

12

The eddy viscosity model of equation (3) is hereinafter referred to as the Z-difference model and was satisfactorily used in reference 6 to correlate air-air mixing data. Values of k employed in reference 6 were of the order of 0.01 and varied slightly with test conditions.

The second model considered relates the eddy viscosity to the mass flow defect (or excess) across the mixing zone. This model was termed the ''unified'' eddy viscosity model in reference 3 and is given by

$$(\rho\epsilon)_{t} = \frac{\pi k_{2}(\rho u)_{a} \delta_{*}^{2}}{L}$$
(6)

In equation (6), πk_2 is an empirical constant, $(\rho u)_a$ is the mass flow per unit area in the outer stream, and L is a characteristic length assumed to be the nozzle radius. The displacement thickness δ_*^2 is expressed as

$$\delta_*^2 = 2 \int_0^\infty \left| 1 - \frac{\rho u}{(\rho u)_a} \right| y \, dy \tag{7}$$

Correlation of data using the unified model of equation (6) was reported in reference 3 by using a value of πk_2 of 0.018. In the context of the usage of equation (6) in reference 3, the constant πk_2 was unchanged which implies that the constant is independent of test conditions and applicable to all data. A limitation in equation (6) is that defining the characteristic length L as the nozzle radius is a very poor approximation in the region near the nozzle exit. Therefore, the application of equation (6) is expected to be confined to the downstream region of the flow field.

The third eddy viscosity model considered was developed in reference 4 and is hereinafter referred to as the Cohen viscosity model. It differs from the other two models by employing the kinematic eddy viscosity. The model is defined by the following equations:

$$\epsilon_{t} = k_{3} \left(f^{*} \frac{\rho_{0} + \rho_{a}}{2\rho_{0}} \right)^{0.8} b'(u_{0} - u_{a})$$
(8)

$$\epsilon_{t} = k_{3} \left(\frac{1+n_{1}}{2} \right)^{0.8} b \left| 1 - m_{1} \right| u_{0} \frac{\left(1+n_{1} \right) (1+mn)}{\left(1+n_{1} \right) \left(1+m_{1} \right)}$$
(9)

In equations (8) and (9), k_3 is an empirical constant, f^* is an empirical parameter equal to unity for incompressible mixing but which may vary with Mach number, ρ_0 is

the density on the jet center line, ρ_a is the density in the external flow, u_0 is the velocity on the jet center line, and u_a is the velocity in the external flow. In equations (8) and (9), the mixing-zone width b is defined as the distance across the mixing zone between the points where the velocities are u_3 and u_4 as given by the following equations:

$$u_3 = u_a + 0.95(u_0 - u_a)$$
(10)

1.4.43

$$u_4 = u_a + 0.05(u_0 - u_a)$$
 (11)

In equation (9), n is the density ratio ρ_a/ρ_0 , m is the velocity ratio u_a/u_0 , n_1 is a density ratio fixed by turbulence level, and m_1 is a velocity ratio fixed by turbulence level. Equation (8) is to be used if $m \leq m_1$, and equation (9) is to be used for $m > m_1$. The value of n_1 is to be calculated at the axial station where $m = m_1$. If the initial velocity ratio exceeds m_1 , n_1 is to be taken as the ratio of the external stream density to the initial jet density. In reference 4, f^* was taken as unity and m_1 was taken equal to 0.40. A value of k_3 of 0.00764 was suggested for the core region and a somewhat larger value of 0.0089, for the downstream region. As it did not appear possible to change the value of the constant k_3 between the near field and the far field without introducing discontinuities, a constant value of k_3 was used throughout the flow field for all computations presented herein. Note that the dynamic eddy viscosity ($\rho \epsilon$)_t, obtained from the local density and equations (8) and (9), varies in both the radial and axial directions. The other two eddy viscosity models as given by equations (3) and (6) permit eddy viscosity variations in only the axial direction.

DATA PRESENTATION AND CORRELATION

General Comments

It is recognized that a transition region exists between the quasi-two-dimensional near-field mixing region and the far-field fully developed profiles. However, turbulent flow theory is not sufficiently developed to provide a means of treating this transition region. Therefore, in this study, as has been the approach of most investigators (see ref. 3 for further discussion on the neglect of the transition region), the flow field is considered to consist of only a near-field mixing region and a far-field mixing region (fig. 3). The neglect and inadequate knowledge of how to treat the transition region result in poorer data correlation in the region near the end of potential core than in the remainder of the flow field, as evidenced by the results of reference 6 and of this study. This inaccuracy has been accepted in order to provide an eddy viscosity model which permits initiation of

14

1

The second s

calculations at the nozzle exit and which permits continuous calculations to proceed throughout the flow field.

A primary purpose of this study was to evaluate several eddy viscosity models. It was realized that limiting the theoretical calculations to the two sets of hydrogen-air mixing data generated in this study was too restrictive an evaluation. Therefore, air-air mixing data from reference 6 was included in this study to evaluate the three eddy vis-cosity models of interest.

A technique of evaluating a particular eddy viscosity model is to compare experimental center-line velocity distributions with those predicted by a particular model and a selected value of the empirical constant. Once the empirical constant is selected, it remains to determine the best values of the turbulent Lewis number $\ N_{\mbox{Le}}$ and turbulent $Prandtl\ number\ \ N_{Pr}$ to correlate the center-line mass fraction distribution. It is important to remember that any eddy viscosity model can be made to fit a particular center-line velocity data point by a judicious choice of the empirical constant. However, the remainder of the data distribution will not necessarily be correlated. It was found in a previous study (ref. 6) that if the center-line velocity and concentration axial distributions were reasonably well correlated, then the radial profiles were also reasonably correlated. Therefore, the center-line correlation technique was used to evaluate eddy viscosity models in this study. Center-line velocity data from the current hydrogen-air mixing study and from the air-air mixing study of reference 6 are first presented. Presentation of radial velocity profiles and center-line and radial distributions of hydrogen mass fraction from the hydrogen-air mixing data are deferred until the eddy viscosity models are evaluated.

Hydrogen-Air Velocity Data

<u> $M_a = 1.32$ </u>.- The center-line velocity data for $M_a = 1.32$ and $M_j = 0.89$ are presented in figure 7(a). It is noted that the center-line velocity decays in a consistent manner and approaches the free-stream velocity at the most downstream station (x/d = 63.6). Integrated mass flows as previously discussed and given in table I give a good degree of confidence in the reliability of these data. It was noted during data reduction that the data for x/d = 0 were for a higher hydrogen jet total temperature than the remainder of the data. Therefore, the total temperature (and thus the velocity) in the hydrogen jet was reduced to a value representative of the entire data set before initiating theoretical calculations.

 $M_a = 2.50$. The center-line velocity data for $M_a = 2.50$ and $M_j = 0.91$ are presented in figure 7(b). For x/d = 4.31, 8.75, and 15.36 integrated mass flows averaged 27 percent high. (See table I.) It is believed that the high values resulted from uncertain

concentration measurements in the region of large radial gradients where large fluctuations occur. The accuracy of the data at the downstream stations (x/d = 19.8 to 58.0) is believed to be good inasmuch as integrated mass flows of 0.88 to 0.96 were calculated.

The data show an unexpected decrease in center-line velocity to values below the free-stream velocity for values of x/d near 20 and larger. Calculations indicate that the concentration measured near the center line at x/d = 19.8 would have to be increased 13.6 percent in order to increase the computed center-line velocity to the magnitude of the free-stream velocity. Uncertainties in the concentration measurements are not believed large enough to explain the below free-stream velocity values. Center-line velocity data at stations beyond x/d = 19.8 are less sensitive to the concentration measurements are not surements due to the low magnitude of the concentration.

The unexpected low center-line velocities may be explained in terms of the relative rates of mass and momentum transfer. The fact that mass transfer is faster than momentum transfer has been established experimentally (turbulent Schmidt number less than 1 for similar profiles). Therefore, the velocity can decrease axially even though the Mach number is increasing, as was found for the Mach 1.32 hydrogen-air velocity distribution. If the mass transfer is rapid enough relative to the momentum transfer, then a decrease in center-line velocity below free-stream velocity can occur as exemplified by the Mach 2.50 data. The difference in trends between the Mach 2.50 and Mach 1.32 center-line velocity data may be explained by noting that there was a smaller difference between jet and free-stream velocities for the Mach 2.50 data. Therefore, relatively less rapid momentum transfer would occur and the mass transfer effect would be more predominant than in the Mach 1.32 hydrogen-air mixing data.

A complex pattern of shock waves is evident in the schlieren photographs of figure 5. Inasmuch as no significant degradation in free-stream Mach number occurred over the entire survey length of 58 diameters, it is believed that the flow disturbances were small and did not significantly affect flow-field development.

Air-Air Velocity Data

 $M_a = 1.268$.- An air-air mixing study of circular, coaxial, parallel compressible air

jets has been reported in reference 6. The jets had total temperatures of approximately 300 K and exhausted to the atmosphere. Mixing of the jets was studied with the use of tracer gas. Figure 7(c) presents the center-line velocity data for a Mach 0.813 inner jet surrounded by a Mach 1.268 outer jet. Large initial boundary layers were prevalent in both jets and caused the initial decrease in center-line velocity shown in figure 7(c). Further details about these data and the air-air data in figure 7(d) may be found in reference 6.

16

1

Ī

 $M_a = 1.302.$ - Center-line velocity data from reference 6 for air-air mixing of a Mach 0.942 circular coaxial jet surrounded by a Mach 1.302 jet is given in figure 7(d). The test conditions differ from those for the air data in figure 7(c) only in the slightly larger values of M_a and M_j and the use of a larger center nozzle. Data obtained at x/d = 49 are reported to be of uncertain accuracy because the outer mixing boundaries had extended into the mixing zone; this necessitated large corrections to the data at this station.

Comparison of Unified and Z-Difference Viscosity Models

Theoretical center-line velocity distributions for hydrogen-air mixing and air-air mixing just discussed were generated by using the unified and Z-difference viscosity models and are presented in figure 7. Computations were started at the nozzle exit in two cases in order to support the contention that the unified model would lose its validity near the exit of an axisymmetric nozzle.

It is evident from inspection of figure 7(a) that the unified model drastically overpredicts the rate of decay of the center-line velocity for $M_a = 1.32$ when computations are started at the nozzle exit plane. Computations were also started at a downstream station (x/d = 9.58) with the initial conditions obtained from the actual measured profiles. Again, the unified model predicts much too rapid mixing when the recommended constant πk_2 of 0.018 was used. Calculations indicated that a constant πk_2 of 0.00306 was a more reasonable value for use with the unified model and the present data as shown by the dashed curve in figure 7(a).

The measured profiles at x/d = 9.58 were also used to initiate computations using the Z-difference model for the hydrogen-air data of figure 7(a) and a constant k value of 0.028. It is evident that the Z-difference model is superior to the unified model for these data.

Figure 7(b) presents the results of using the measured profiles at x/d = 4.31 to initiate calculations for the $M_a = 2.50$ data with both the unified and Z-difference models. Again the unified model with its recommended constant πk_2 of 0.018 greatly overpredicts the center-line velocity decay. Calculations indicated that a value of πk_2 of 0.00101 was more applicable to the data as evident in the right-hand curve of figure 7(b).

The center-line velocity decay predicted by using the Z-difference model and a constant k of 0.0255 is also shown in figure 7(b). As for the Mach 1.32 data of figure 7(a), the unified model prediction deviates more sharply from the data than the Z-difference model prediction. Neither model predicts the decay of center-line velocity below free-stream velocity as exhibited by the data. A discussion as to why the calcula-

tions do not predict the center-line velocities below free-stream velocity may be found in the section entitled '' $M_a = 2.50$ Hydrogen-Air Radial Profiles.''

The center-line velocity distribution predicted for the $M_a = 1.268$ air data by using the unified model with calculations initiated at the nozzle exit is shown in figure 7(c). As for the hydrogen-air data, the predicted center-line velocity change is much too rapid. Since the velocity trends appeared to be correct, the unified model solution was calculated for a constant πk_2 of 0.00356. Comparison of this solution with the Z-difference model solution (k = 0.0078) shown in figure 7(c) clearly shows the superiority of the Z-difference model.

Theoretical center-line velocity distributions for the $M_a = 1.302$ air data are presented in figure 7(d). Calculations were initiated at x/d = 17.2 and used the experimentally determined profiles from reference 6. The unified model together with the recommended value of πk_2 of 0.018 again overpredicts the mixing rate and associated velocity increase. (Similar calculations initiated at x/d = 25 are presented in fig. 12 of ref. 3. A similar trend of overpredicting the mixing rate was exhibited.) When the constant πk_2 was reduced to 0.0094, the unified model solution was only slightly less satisfactory than the Z-difference model solution with k = 0.0098, as evidenced by the curves in figure 7(d).

For all data considered, it is concluded that the Z-difference model correlates data more satisfactorily than the unified model. The recommended value of the empirical constant πk_2 of 0.018 for use with the unified model was unsatisfactory and too large by a factor of approximately 2 to 6. The unified model may find an application to the mixing of streams of nearly equal velocities across the mixing zone, where the mixing-zone width of the Z-difference model becomes indefinite, but where a mass flux difference exists between the streams. It is a desirable feature of any eddy viscosity model to be able to correlate data by initiating computations at the nozzle exit and to proceed downstream with the computations in a continuous manner. Satisfactory correlation and continuous computations from the nozzle exit were not possible with the unified model for the axisymmetric mixing data presented. Unsatisfactory correlation appears to result from an incorrect assumption that the viscosity is related to the mass flow defect or excess across the mixing zones. Continuous computations from the nozzle exit were not possible because of a poor approximation to the characteristic length of the near-field mixing zone.

Comparison of Z-Difference and Cohen Viscosity Models

In figure 8, center-line velocity data of figure 7 are compared with theoretical center-line velocity distributions computed by using the Z-difference and Cohen viscosity models. All Cohen model solutions presented employ values of the constants f^* and m_1 of 1.0 and 0.4, respectively, as recommended in reference 4.

18

i

ā.

Ŧ

į

ž

4.46

The center-line velocity distribution corresponding to the $M_a = 1.32$ hydrogenair data and the Z-difference model is presented in figure 8(a). The computed velocity distribution is seen to be low in the region of jet exit, high in the immediate far field, and to only approach the data at the most downstream stations.

The center-line velocity distribution computed by using the Cohen model and a value of k_3 of 0.002 is also presented in figure 8(a). (The values of turbulent Lewis number and turbulent Prandtl number quoted for the Cohen model calculations in figs. 8(a) and 8(b) are for later reference purposes.) Since the ratio of free-stream velocity to jet velocity was 0.366 (less than 0.4), equation (8) was used to initiate the Cohen model computations. As computations proceeded to an x/d of 6.81, the ratio of free-stream velocity to center-line velocity increased to 0.4; this necessitated a viscosity model change to equation (9), as recommended in reference 4. The Cohen model is seen to give a much better correlation of the center-line velocity than the Z-difference model for the data of figure 8(a).

In figure 8(b), the result of computations using the Z-difference model is shown for the $M_a = 2.50$ hydrogen-air data. The Z-difference model solution is seen to be low in correlating the velocity near the nozzle exit and high in the downstream region, as was the Z-difference solution shown in figure 8(a).

The Cohen model solution, as computed by use of equation (9) for $u_a/u_j > 0.4$, is also shown in figure 8(b) for a value of k_3 of 0.00129. The correlation with the $M_a = 2.50$ hydrogen-air data is seen to be good. The solution deviates from the data only when the center-line velocity data decreases to values below the free-stream velocity.

The Z-difference and Cohen model correlations for the air-air mixing data are shown in figures 8(c) and 8(d). The Cohen model solutions were computed by the use of equation (8) for $u_a/u_j > 0.4$. Both models correlate the air-air velocity data with approximately equal accuracy. Relative to each other, the Cohen model predicts slightly more rapid mixing in the near field and less rapid mixing in the far field than the Z-difference model.

It is concluded from the discussion of the correlations in figure 8 that the kinematic viscosity model of Cohen is superior to the Z-difference model. However, the Cohen model required empirical constants ranging from 0.00129 to 0.0038 compared with a recommended value from reference 4 of approximately 0.008. Since the empirical constants were significantly different from the recommended value, a calculation was performed for conditions corresponding to a known solution of Cohen in reference 5. The results obtained from using the present calculation technique and that given in reference 5 were found to be in good agreement, and the empirical constant was near 0.008.

the parameter m_1 (see eq. (9)) was taken to be 0.6 for this calculation, which has a direct effect on the value of the required constant.

It was anticipated that the Z-difference model would correlate the hydrogen-air data in a more satisfactory manner than occurred, particularly since the model satisfactorily correlated the air-air data of reference 6. Inasmuch as the Cohen model was superior to the Z-difference model, a study was made to determine the significant differences in the two models. If one considers the Cohen model given by equation (9) and reduces it to primary variables, the result is the following expression:

$$\epsilon_{t} = \text{Constant} \left[\frac{\rho_{0} u_{0} + \rho_{a} u_{a}}{\left(\rho_{a} + \rho_{0}\right) u_{0}} \right] \text{bu}_{0}$$
(12)

In equation (12), the empirical constant has been combined with other parameters which are only a function of test conditions. As pointed out by Cohen in reference 5, the term in the brackets is not a strong function. Upon comparison with equation (3), it is noted that the two models differ primarily in the definition of the mixing width and in the use of a kinematic viscosity in the Cohen formulation. Calculations were made with the two different mixing-width definitions. It was found that the mixing rate for a model was not significantly affected by changing mixing-width definitions, as long as the magnitude of the empirical constant was adjusted. It was concluded that the primary difference between the Cohen model of equation (9) and the Z-difference model was in the use of kinematic viscosity values in the Cohen model. Calculations were made to support this conclusion and the results are discussed in the next section.

Comparison of Kinematic Z-Difference and Cohen Viscosity Models

A kinematic form of the Z-difference model was developed and is given by

$$\epsilon_{\rm t} = k_4 z u_0 \tag{13}$$

1401

In equation (13) all parameters are as previously defined with the exception of a new empirical constant k_4 .

Figure 9 compares the results of computations using the kinematic Z-difference model and the Cohen viscosity model with the four sets of data previously discussed. In figure 9(a), the velocity distribution from the kinematic Z-difference model is seen to give excellent correlation of all data downstream of the velocity core for the $M_a = 1.32$ hydrogen-air data. A value of k_4 of 0.0175 was used in the correlation. The Cohen model correlation is seen to better predict the velocity core length but was less satisfactory than the kinematic Z-difference model in predicting downstream velocities. Com-

20

. 14

ì

ł

ż

8

parison of the Z-difference model solution of figure 8(a) and the kinematic Z-difference model solution of figure 9(a) indicates that substantial better correlation was achieved with the kinematic Z-difference model.

A comparison of the Cohen model solution of figure 8(a) for $N_{Pr} = 0.8$ and $N_{Le} = 1.0$ with the Cohen model solution of figure 9(a) for $N_{Pr} = 1.0$ and $N_{Le} = 1.0$ shows only a very slight effect on the value of N_{Pr} . This comparison supports the procedure of determining the empirical constant by correlating the velocity distribution and then determining the proper value of N_{Pr} and N_{Le} by correlating the concentration distribution.

In figure 9(b), the velocity distribution resulting from computations using the kinematic Z-difference model is seen to be slightly poorer than the Cohen viscosity model solution for the $M_a = 2.50$ hydrogen-air data. Differences in trends between the Cohen and kinematic Z-difference model solutions are due almost entirely to the bracketed term in equation (12). Comparison of the Z-difference model solution of figure 8(b) and the kinematic Z-difference model solution of figure 9(b) again indicates the superiority of the kinematic Z-difference model.

In figures 9(c) and 9(d), kinematic Z-difference model solutions and Cohen model solutions are presented for the air-air mixing data. For the air-air data, no significant difference between the kinematic Z-difference model solutions of figures 9(c) and 9(d) and the Z-difference model solutions of figures 8(c) and 8(d) is noted. The differences in the constants employed with the models (0.0078 as opposed to 0.0076 and 0.0098 as opposed to 0.0106) are considered beyond the accuracy of the data and correlation method.

On the basis of these comparisons, it is concluded that both the Cohen and the kinematic Z-difference eddy viscosity models permitted correlation of the velocity distributions satisfactorily and that a kinematic form of the eddy viscosity, which provides radial variations as well as axial variations in dynamic eddy viscosity through use of the local density, is superior to an eddy viscosity, which permits variations only in the axial direction. The latter conclusion is based upon the fact that an eddy viscosity which employed the local density permitted correlation of both air-air and hydrogen-air mixing data, whereas an eddy viscosity which employed the center-line density satisfactorily correlated air-air mixing data only. The conclusion is in agreement with the results of reference 15 which concluded that "the ultimate model for the turbulent transport coefficients must include variation in the axial as well as the radial direction." The requirement for a kinematic eddy viscosity formulation found herein is also in agreement with a conclusion of reference 16 which reported a study of turbulent boundary layers with mass addition, combustion, and pressure gradients. In reference 16, it was concluded that agreement between experimental and predicted velocity profiles validated the assumption that the Reynolds stress (which is directly related to the eddy viscosity by the velocity gradient) is kinematic in nature.

Center-Line Mach Number and Hydrogen Mass Fraction Correlations

Since both the kinematic Z-difference and the Cohen eddy viscosity models were satisfactory in correlating the velocity distributions, both models were used to correlate the center-line Mach number and the center-line hydrogen mass fraction distributions. These correlations, in particular the mass fraction distributions, determine representative values of the turbulent Prandtl number and turbulent Lewis number. Concentration data corresponding to the air-air data need no further consideration inasmuch as the velocity correlations, and therefore the concentration distributions, are essentially identical to those of reference 6. In reference 6, the concentration correlation for the air-air data was found to be insensitive to the actual magnitudes of $N_{\rm Le}$ and $N_{\rm Pr}$ and depended solely upon the turbulent Schmidt number $N_{\rm Sc}$. In reference 6 a turbulent Schmidt number of 0.6 was found to be representative of the $M_{\rm a}$ = 1.268 and $M_{\rm a}$ = 1.302 data.

The center-line Mach number distribution for $M_a = 1.32$ hydrogen-air mixing is presented in figure 10(a). The center-line hydrogen mass fraction distribution for the same condition is presented in figure 10(b). Center-line Mach number and mass fraction distributions computed by using the Cohen and the kinematic Z-difference models are also shown in figure 10. In figure 10(a), the center-line Mach number distribution is best correlated by the kinematic Z-difference model with $N_{Le} = 1.0$ and $N_{Pr} = 0.9$ ($N_{Sc} = 0.9$). The Cohen model solutions are seen to exhibit trends which diverge significantly from the data at x/d greater than approximately 15. Note that the two solutions shown for the Cohen model in figure 10(a) are for different values of N_{Pr} (0.8 and 1.0) but for values of N_{Le} of unity. It is evident that the Cohen model solution with $N_{Le} = 1.0$ and $N_{Pr} = 1.0$ best approximates the Mach data.

In figure 10(b), the hydrogen mass fraction distribution is well correlated by the kinematic Z-difference model with $N_{Le} = 1.0$ and $N_{Pr} = 0.9$ for x/d greater than approximately 7. However, the Cohen model solution with $N_{Le} = 1.0$ and $N_{Pr} = 1.0$ is seen to better predict the concentration core length. On the basis of the correlations of figures 9(a), 10(a), and 10(b), it is apparent that the kinematic Z-difference model correlates a larger portion of the flow field than the Cohen model.

The center-line Mach number distribution for $M_a = 2.50$ hydrogen-air mixing is presented in figure 10(c). The center-line hydrogen mass fraction distribution for the same test condition is presented in figure 10(d). It is noted in figure 10(c) that the kinematic Z-difference model solution with $N_{Le} = 1.0$ and $N_{Pr} = 1.0$ appears to best correlate the data. However, the kinematic Z-difference model solution with $N_{Le} = 1.0$

22

÷

-

-

1

Ē

and $N_{Pr} = 0.9$, as was used in the correlations of figures 10(a) and 10(b), is believed to be within the accuracy of the data and correlation technique. In figure 10(c) the Cohen model solution with $N_{Le} = 1.0$ and $N_{Pr} = 1.0$ exhibits the same trend as in figure 10(a), that is, diverging from the data in the region beyond x/d = 15.

In figure 10(d), the mass fraction distribution is best correlated by the Cohen model solution with $N_{Le} = 1.0$ and $N_{Pr} = 1.0$. It is indeterminate whether values of $N_{Le} = 1.0$, $N_{Pr} = 1.0$ or $N_{Le} = 1.0$, $N_{Pr} = 0.9$ are better for correlation using the kinematic Z-difference model mass fraction distributions of figure 10(d) because the $N_{Le} = 1.0$, $N_{Pr} = 1.0$ solution results in better correlation of the mass fraction data for x/d less than approximately 13 and the $N_{Le} = 1.0$, $N_{Pr} = 0.9$ solution results in better correlation for data farther downstream. As in reference 6, the concentration correlation was found to be insensitive to the actual magnitude of N_{Le} and N_{Pr} but depended only upon N_{Sc} . The sole dependence upon N_{Sc} is believed to be due to the fact that no significant transfer of heat is involved in the mixing process.

In reference 8, values of N_{SC} ranging from 0.3 to 2.3 were reported for hydrogenair, helium-air, and argon-air jets. (Some of the air jets considered in ref. 8 were heated.) No dependence of N_{SC} upon molecular weight was observed. Derivatives were obtained from experimental data in the determination of N_{SC} in reference 8; thus, some scatter was undoubtedly introduced during computations due to data uncertainties. Reference 17 reported a value of N_{SC} near 0.7 for coaxial nearly equal density jets; this value closely agrees with results reported in reference 6. Reference 2 also reported a value of N_{SC} near 0.7 for carbon-dioxide—air and hydrogen-air jets in the downstream region. The various calculation techniques used by different investigators in determining N_{SC} make valid comparison difficult. As N_{SC} is a measure of the ratio of concentration to velocity potential core length, it is difficult to conceive of N_{SC} as being other than near unity for hydrogen-air mixing. This follows from the fact that the velocity is extremely sensitive to hydrogen concentration and, thus, when the local hydrogen concentration changes, it would be closely accompanied by a change in velocity.

M_a = 1.32 Hydrogen-Air Radial Profiles

Radial velocity profile data obtained from the $M_a = 1.32$ hydrogen-air test are presented in figures 11(a) and 11(b). Radial hydrogen mass fraction profile data from the $M_a = 1.32$ test are presented in figures 11(c) and 11(d). Correlations generated by using the Cohen viscosity model and the kinematic Z-difference model and the constants previously determined are also shown in the figures.

The velocity data presented in figures 11(a) and 11(b) are seen to be generally selfconsistent with the exception of the profile at x/d = 15.4 where some unexplained asymmetry is noted. The velocity is seen to be nearly uniform at x/d = 63.6; however, the

hydrogen mass fraction is approximately 1.6 percent on the center line indicating the total pressure distribution is not uniform. In figure 10(a) it is seen that the center-line Mach number at x/d = 63.6 is 1.18 as opposed to a free-stream Mach number of 1.32, which indicates mixing to a uniform condition has not been achieved.

The velocity profile used to initiate the mixing calculations at x/d = 0.0 is shown as a solid line in figure 11(a). Because the data for x/d = 0.0 were for a higher temperature (and thus a higher velocity) than the remainder of the data, a lower more representative velocity profile was used to initiate the calculations. Analytical solutions were not possible beyond approximately 32 jet diameters from the nozzle exit because the mixing width used in the viscosity models fails as the velocity becomes uniform. Therefore, no correlations are presented for x/d = 42.8 and 63.6. With the exception of x/d = 5.51, the kinematic Z-difference viscosity model (dashed lines in figs. 11(a) and 11(b)) is seen to give slightly better correlation than the Cohen viscosity model (solid lines in figs. 11(a) and 11(b)) for the $M_a = 1.32$ velocity data.

The hydrogen mass fraction profile data in figures 11(c) and 11(d) exhibit uniform trends and good repeatability throughout the range of the measurements. (Note the scale change between figs. 11(c) and 11(d).) The poorest data appear to exist near the profile maximum at x/d = 9.58 which is in the region of large axial gradients and large fluctuations immediately downstream of the potential core.

As was found with the velocity correlation, the kinematic Z-difference solution results in slightly better correlation than the Cohen solution for all stations other than x/d = 5.51.

$M_a = 2.50$ Hydrogen-Air Radial Profiles

Radial velocity profile data obtained from the $M_a = 2.50$ hydrogen-air test are presented in figures 12(a) and 12(b). Radial hydrogen mass fraction profile data are presented in figures 12(c) and 12(d). Correlations generated by using the kinematic Z-difference and Cohen viscosity models and the constants previously determined are also shown in the figures.

The velocity profile for x/d = 0.0 (fig. 12(a)) is noted to have a slightly larger boundary layer in the airstream than the $M_a = 1.32$ data (fig. 11(a)). In order to limit the number of input points to the computer program, and thus limit the computational time to a reasonable amount, the actual measured boundary layer was approximated by the solid line shown in figure 12(a). It was found during computations that a step velocity profile could be satisfactorily used as input as long as only center-line correlation was attempted. However, when considering correlation of radial profiles, the actual measured profile must be used as input. Some possible effect of the approximation of the initial profile may be seen in figure 12(a) for x/d = 4.31 and 8.75. However, the effect of the

į

;

į

;

:

-

-

Ē

wake resulting from the finite nozzle lip thickness is impossible to separate completely from the initial boundary-layer approximation.

As was found during the center-line velocity correlation, the Cohen viscosity model solution is a better approximation of the $M_a = 2.50$ hydrogen-air data. However, neither model predicts the reduction in center-line velocity to below free-stream velocity shown in figure 12(b) for x/d = 19.8, 37.3, and 58.0. A study of the finite-difference technique employed in the analysis (ref. 11) indicates that once a uniform velocity profile is obtained, no further change in velocity is permitted. Furthermore, the viscosity models fail as the velocity profile approaches uniformity, due to employing a mixing width based on velocity. Thus, both the analysis employed and the eddy viscosity models prevent any computation of center-line velocity values below free-stream values.

The hydrogen mass fraction data in figures 12(c) and 12(d) exhibit wider spreading than the solutions predicted by either viscosity model, particularly for x/d = 8.75 and 15.4. It is interesting that these two axial stations were high in integrated-mass-flow ratio. The theoretical solutions of figures 12(c) and 12(d) indicate a possible bias in the data toward high values of concentration in this region of large radial gradients.

The Cohen viscosity model solution is seen to give better correlation than the kinematic Z-difference viscosity model solution for the $M_a = 2.50$ hydrogen-air data. Solutions were not possible for either viscosity model for x/d = 37.3 and 58.0 because the mixing width used in the models failed near x/d = 30 as the velocity profiles approached the uniform velocity condition.

The data and empirical constants employed herein are summarized in table II. Solutions beyond the region of application of the two viscosity models used herein can be generated by use of a constant viscosity, inasmuch as the regions are far downstream of the nozzle exit and should be approaching the boundary condition of uniform viscosity at infinity. Such computations were not made herein because they are in a region where application to scramjet combustor design would involve interaction between adjacent jets and, thus, involve an entirely different physical problem.

CONCLUDING REMARKS

An investigation of the compressible turbulent mixing of coaxial concentric hydrogen-air jets has been conducted. Hydrogen mass fraction profiles and velocity profiles were acquired for airstream Mach numbers of 1.32 and 2.50 corresponding to hydrogen jet Mach numbers of 0.89 and 0.91, respectively. These two sets of hydrogen-air data and two sets of air-air data (the air-air data from a previous study) have been satisfactorily correlated. For the data correlated, the ratio of jet velocity to free-stream velocity ranged from 0.648 to 2.730 and the ratio of jet mass flux to free-stream mass flux per unit area ranged from 0.647 to 0.0725. The total-temperature ratios of the streams for all data considered was near unity.

Three different eddy viscosity models were incorporated into a finite-differencetype analysis to test their validity in correlating the data. The kinematic eddy viscosity model of Cohen and a modified form of an eddy viscosity model used in a previous study both satisfactorily correlated the data.

A formulation of eddy viscosity which was previously employed to correlate air-air data and which only allowed axial variation in eddy viscosity was unsatisfactory in correlating the hydrogen-air data. It was found that a kinematic form of eddy viscosity which allowed radial variation as well as axial variation in dynamic eddy viscosity through incorporation of the local density was essential in order to correlate both the air-air and hydrogen-air data.

A formulation of eddy viscosity developed by Schetz, termed the "unified eddy viscosity model," which is based on a mass flow defect (or excess) across the mixing region, proved unsatisfactory in correlating the axisymmetric data considered herein.

Turbulent Schmidt numbers N_{Sc} used to correlate the hydrogen-air data were of the order of 0.9 to 1.0. The air-air data have been previously correlated with a value of N_{Sc} of 0.6.

Empirical constants used to correlate the data are, as yet, an unknown function of test conditions. The empirical constants used with the eddy viscosity models used herein varied by a factor of between 2 and 3 for the data considered. Correlation of a large quantity of data should permit a determination of the proper value of the constant to employ for given test conditions.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., August 24, 1971.

26

ALC: NOT ALL

VELOCITY AND HYDROGEN MASS FRACTION FOR $M_a = 1.32$ and $M_j = 0.89^a$

y/4Mu $y/4$ Mu $z/4$ </th <th></th> <th></th> <th>x/d =</th> <th>0.0b</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>x/d =</th> <th>5.5</th> <th>1</th> <th></th> <th></th> <th></th> <th>,</th> <th>ĸ/d = '</th> <th>9.5</th> <th>8</th> <th></th> <th></th>			x/d =	0.0b						x /d =	5.5	1				,	ĸ/d = '	9.5	8		
-6.565 0.368 126 0.225 0.374 128 -5.973 1.300 397 -1.129 0.000 -3.137 1.302 394 -1.584 0.000 -6.585 807 311 -543 966 315 -5.317 1.302 394 -1.235 0.00 -2.705 1.001 303 -1.235 0.00 -6.476 1.218 396 -5.126 1.327 396 887 0.041 -1.138 1.301 394 -1.066 0.06 -6.311 334 6.31 1.122 374 373 374 373 374 373 384 -547 1.43 1.127 1.30 396 -547 1.43 1.132 1.30 397 -1.33 1.333 398 -547 1.43 -1.132 1.30 394 -606 0.66 -066 -066 -066 -066 -066 -066 -066 -066 -066 -066 -026 -020 -026	y/d	м	u	у/	d M	u		y/d	м	u]	y/d	α]	y/d	М	u	ו	y/d	α	٦
-6.565 .897 280 .534 .423 2086 -5.139 1.109 0.00 -2.706 1.101 1.00 381 1.108 390 1.105 390 1.105 390 1.105 390 1.105 390 1.106 300 1.225 001 -6.476 1.284 371 .565 1.046 329 -5.126 1.327 396 887 1.041 1.314 393 1.225 001 -6.470 1.284 386 .675 1.277 373 370 1.317 396 312 1.334 402 926 0.00 867 0.46 867 0.46 867 0.46 877 1.437 1.417 1.317 1.302 402 926 0.01 867 1.417 1.117 1.202 391 133 1.33 1177 1.416 1.317 1.31 422 1001 1.222 401 566 1.23 766 0.22 661 1.001 1.222 401 566 1.23 331 .425	-6.595	0.368	126	0.5	25 0.37	1 128	-	5.973	1.330	397		- 1.200	0.000	1	-3.587	1.304	394		-1.584	0.000	1
-6.38 1.055 331 .543 .996 315 .5.36 1.327 366 .887 .004 -2.36 1.304 394 .1.068 .006 -6.47 1.284 386 .604 1.182 352 .4.497 1.327 396 816 .014 .1.341 1.310 386 926 .020 -8.37 1.334 395 .675 1.322 395 637 .1.321 1.334 402 926 .020 -5.965 1.324 395 .677 1.464 .1.187 1.321 402 807 .466 -5.121 1.324 396 237 396 434 398 414 .732 .122 .1107 1.226 401 706 .081 -4.222 1.322 394 1.413 .334 398 414 .737 922 1.65 404 706 .081 -3.370 1.337 394 1.361 .320 394 .1.101 1.297 392 .1001 1.222 411<	-6.565	.897	289	.5	34 .82	3 268		5.537	1.330	397		-1.129	.000		-3.137	1.302	394		- 1.381	.000	,
-6.476 1.248 371 .565 1.046 329 -5.126 1.27 366 -8.67 0.044 -1.318 364 -1.068 0.066 -0.307 1.348 396 .651 1.132 362 -4.497 1.327 366 -8.66 0.144 -1.341 1.310 366 .1.32 1.321 402 826 0.09 -5.651 1.327 373 -3.970 1.333 388 -5.477 1.467 1.137 1.321 402 807 0.465 -5.131 1.322 394 .402 1.393 399 -4.44 1.225 401 706 0.61 -4.729 1.322 394 1.101 1.393 398 -4.141 .1024 1.247 401 566 1.23 -3.780 1.317 394 1.315 394 -1.101 1.247 396 001 1.001 1.247 396 411 .779 391 408<	-6.538	1.055	331	.5	13 .99	315	- 1	5.316	1.328	396		- 1. 129	.000		-2.709	1.301	393		-1.235	.001	
-6.437 1.284 386 .604 1.182 352 -4.497 1.32 396 -7.16 .040 -1.813 367 926 .020 -6.203 1.334 395 .675 1.227 373 -3.070 1.332 396 635 .079 -1.332 1.33 402 807 .046 5.612 1.324 395 .675 1.227 373 -3.070 1.335 398 647 1.44 -1.187 1.321 1.227 401 807 .046 5.183 1.322 394 .103 390 -2.287 1.335 398 414 .792 1.107 1.226 102 706 1.23 -1.328 1.337 398 103 1.335 398 141 .773 .922 1.163 1.34 .706 1.22 401 506 1.22 3.137 1.328 396 .641 1.326 394 .1010 1.2	-6.476	1.218	371	.5	65 1.040	329	- {	5.126	1.327	396		887	.004		-2.316	1.304	394		- 1.068	.006	.
-0.31 1.318 394 .631 1.12 362 -7.10 .040 -1.334 1.324 387 -9.26 .029 -5.065 1.326 395 .724 1.221 377 -3.370 1.332 1.335 1.332 1.332 1.332 1.332 1.332 1.335 402 807 .046 -5.612 1.324 395 .603 1.260 385 -3.141 1.338 398 547 .143 -1.127 1.227 307 .007 .455 -1.322 394 1.050 1.303 390 -2.237 1.335 398 414 .772 .001 1.232 401 706 .082 -3.377 1.384 396 1.54 1.332 394 1010 1.234 396 .000 1.000 .685 1.014 .1177 .346 .311 .466 .1326 .335 .535 .535 .535 .535 .535 .535	-6.437	1.284	386	.6)4 1.138	352	-4	1.897	1.327	396		816	.014		-1.813	1.310	396		-1.068	.006	
-0.203 1.334 395 .675 1.227 373 -3.870 1.333 398 6.35 .079 .1.322 1.132 1.020 .926 .019 -5.015 1.324 395 .601 1.251 375 -3.465 1.338 398 547 1.46 .1.187 1.321 402 807 .066 -5.193 1.322 394 .949 1.207 389 .2.628 1.333 398 547 .146 .1.125 1.225 402 706 .081 -4.729 1.322 394 1.107 1.303 390 2.37 1.331 398 141 .773 222 1.001 1.232 394 .100 1.002 .869 1.103 408 476 .177 2.811 1.326 395 .2025 1.322 394 .1010 1.237 392 .000 1.000 .869 1.003 408 335 .626 2.202 1.328 396 .2432 396 .6411 .220 .911 <	-6.317	1.318	394	.6	31 1.182	362	-4	.429	1.328	396		710	.040		-1.394	1.274	387		926	.020	,
-3-365 1.326 395	-6.203	1.324	395	.6	1.22	373	-3	.970	1.337	398		635	.079		- 1.332	1.339	402		926	.019	,
-0.12 1.324 395 1.603 1.280 396 547 1.43 -1.125 1.297 401 706 0.881 -4.729 1.322 394 1.050 1.303 390 -2.227 1.335 396 4454 223 -1.107 1.295 402 706 0.881 -4.262 1.322 394 1.174 1.308 391 -1.738 1.334 398 141 .702 1.001 1.222 401 506 1.23 -3.370 1.317 394 1.311 1.332 391 -1.41 .703 0.922 1.62 1.62 1.634 1.406 476 1.82 -3.357 1.326 395 2.056 1.322 394 -1.001 1.227 392 0.00 1.000 865 1.044 411 476 1.82 -2.471 1.324 395 2.056 1.322 394 3.48 2.38 1.64 1.46 1.96 1.30 3.66 376 6.631 4.20 2.41 3.33	-5.965	1.326	395	.7	4 1.251	379	-3	.485	1.338	398		547	.146		-1.187	1.321	402		807	.046	
-1.4729 1.322 394 1.491 1.297 389 -2.682 1.339 399 -4.64 .223 -1.107 1.295 602 -7.06 0.681 -4.226 1.322 394 1.174 1.303 390 -2.237 1.335 398 313 455 -1.107 1.295 602 706 0.681 -4.262 1.322 394 1.315 334 398 141 .702 1.001 1.223 601 506 1.20 -3.357 1.328 396 1.654 1.334 398 141 .702 1.001 1.227 1.001 1.247 1.071 1.806 678 1.071 922 1.63 404 678 1.001 1.227 394 1.665 1.22 394 1.665 1.220 394 1.101 1.925 704 1.991 406 335 .261 -1.244 1.309 392 1.220 394 1.565 1.193 705 1.44 1.962 535 .758 1.55 .758	-5.612	1.324	395	.80	3 1.280	385	-3	.141	1.338	398		547	.143		-1.125	1.297	401		807	.045	
-1.729 1.322 394 1.050 1.303 396 313 .455 -1.024 1.247 401 596 1.232 -3.790 1.317 394 1.315 333 398 141 .792 -1.001 1.232 401 596 1.232 -3.357 1.328 396 1.654 1.320 394 -1.103 1.324 396 001 1.000 868 1.03 406 333 2.61 1.220 394 1.654 1.320 394 461 1.227 394 1.010 1.227 392 1.000 1.000 862 1.044 411 476 1.82 -2.471 1.324 395 2.462 1.326 395 661 1.023 394 3.65 768 1.04 396 595 333 .601 333 .601 335 .603 634 .422 1.24 .505 535 535 535 633 603 634 644 641 544 641 644 644 <td>-5.195</td> <td>1.322</td> <td>394</td> <td>.94</td> <td>9 1.29</td> <td>389</td> <td>-2</td> <td>.682</td> <td>1.339</td> <td>399</td> <td></td> <td>454</td> <td>.223</td> <td></td> <td>-1.107</td> <td>1.295</td> <td>402</td> <td></td> <td>706</td> <td>.081</td> <td></td>	-5.195	1.322	394	.94	9 1.29	389	-2	.682	1.339	399		454	.223		-1.107	1.295	402		706	.081	
1.222 1.324 1.344 1.308 1.738 1.334 398 141 .792 -1.001 1.232 101 596 1.123 -3.367 1.312 396 1.654 1.320 394 -1.103 1.324 396 000 1.000 869 1.004 596 1.123 -2.801 1.326 395 2.025 1.322 394 -1.101 1.227 392 .000 1.000 869 1.004 408 476 1.77 -2.021 1.320 394 2.956 1.328 396 861 1.220 394 1.19 873 704 .901 421 335 .261 -1.224 1.320 394 2.829 1.326 395 625 1.187 404 1.19 .731 596 8.1 4.36 776 .432 .218 503 .776 .771 .035 .630 .032 .722 .035 .604	-4.129	1.322	394	1.0	0 1.303	390	-2	.237	1.335	398		313	.455		-1.024	1.247	401		706	.082	
-1.31 1.31 1.31 1.33 1.33 1.32 396 -1.64 1.773 922 1.165 404 596 1.120 -2.861 1.323 395 2.025 1.322 394 -1.100 1.297 392 0.000 1.000 825 1.044 411 476 1.177 -2.029 1.320 394 2.462 1.320 394 904 1.220 394 .168 1.010 1.297 392 0.000 1.000 825 1.044 411 774 1.902 421 335 .261 -1.028 1.320 394 3.428 1.326 395 768 1.104 396 1.944 .692 503 .782 450 035 .640 -1.244 1.309 392 1.324 395 768 1.044 .492 503 .782 450 035 .640 629 635 .634 400 .432 .224 007 .637 .641 .305 .644 .640 .629 .	-4.262	1.322	394	1.1	4 1.308	391	-1	.738	1.334	398		141	.792		-1.001	1.232	401		596	.123	
-2.88 1.22 394 -1.103 1.324 396 0.000 0.000 869 1.103 408 -4.76 1.172 -2.841 1.326 395 2.026 1.322 394 -1.101 1.297 392 0.000 0.000 862 1.044 411 476 1.182 -2.029 1.320 394 2.956 1.322 395 851 1.202 394 1.119 873 701 992 421 335 .263 -1.628 1.320 394 2.856 1.328 395 768 1.104 396 1.947 .731 563 .752 450 035 .564 975 1.284 385 1.324 395 724 1.035 398 .251 .585 335 .756 5.64 075 .564 .632 .224 007 .607 .492 .607 .492 .667 .229 .413 .555 .106 .432 .224 .007 .667 .229 .413 .555 .106 <td>2 257</td> <td>1.317</td> <td>394</td> <td>1.38</td> <td>1 1.315</td> <td>393</td> <td>-1</td> <td>.354</td> <td>1.334</td> <td>398</td> <td></td> <td>141</td> <td>.773</td> <td></td> <td>922</td> <td>1.165</td> <td>404</td> <td></td> <td>596</td> <td>. 120</td> <td></td>	2 257	1.317	394	1.38	1 1.315	393	-1	.354	1.334	398		141	.773		922	1.165	404		596	. 120	
2.471 1.322 394 -1.010 1.297 392 0.000 1.000 825 1.044 411 776 182 2.029 1.320 394 2.956 1.328 396 851 1.20 394 1.19 873 794 991 408 335 .261 1.284 1.320 394 1.322 396 825 1.187 404 1.19 873 704 991 408 335 .261 -1.244 .309 392 1.326 395 724 10.53 396 .251 .885 333 7.56 535 .005 .680 776 1.245 397 5.157 1.324 395 684 448 395 4.32 .218 203 .777 677 .097 .492 677 1.245 397 5.152 .106 .637 .622 .396 .431 .555 .105 .1063 .822 739 .229 .413 647 .1023 356 6.079 </td <td>-3.337</td> <td>1.320</td> <td>390</td> <td>1.6</td> <td>4 1.320</td> <td>394</td> <td>-1</td> <td>.103</td> <td>1.324</td> <td>396</td> <td></td> <td>.000</td> <td>1.000</td> <td></td> <td>869</td> <td>1.103</td> <td>408</td> <td></td> <td>476</td> <td>. 177</td> <td></td>	-3.337	1.320	390	1.6	4 1.320	394	-1	.103	1.324	396		.000	1.000		869	1.103	408		476	. 177	
1.12 1.220 394 2.262 1.220 394 1.260 395 304 1.262 394 119 .873 704 991 408 335 .263 1.1028 1.320 394 3.428 1.326 396 825 1.187 404 1.94 .921 421 335 .263 975 1.294 386 4.301 1.324 395 768 1.104 396 .194 .692 503 .782 450 035 .504 975 1.294 386 4.301 1.324 395 764 1.055 398 .251 .585 335 .767 607 .492 647 1.204 386 5.629 1.326 .95 560 .783 425 .525 .109 .057 .822 739 .229 .413 543 .1024 386 .666 .133 .100 799 .663 .033 .463 .822 .393 .256 543 .613 .066 <td>2 471</td> <td>1.320</td> <td>395</td> <td>2.02</td> <td>5 1.322</td> <td>394</td> <td> - 1</td> <td>.010</td> <td>1.297</td> <td>392</td> <td></td> <td>.000</td> <td>1.000</td> <td></td> <td>825</td> <td>1.044</td> <td>411</td> <td></td> <td>476</td> <td>. 182</td> <td></td>	2 471	1.320	395	2.02	5 1.322	394	- 1	.010	1.297	392		.000	1.000		825	1.044	411		476	. 182	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2.11	1.324	204	2.40	2 1.326	395	-	.904	1.262	389		.119	.873		794	.991	408		335	.263	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.628	1.320	204	2.90	0 1.328	396	-	.851	1.220	394		.119	.873		701	.902	421		335	.261	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.244	1 309	392	3.92	0 1.320	205	-	.825	1.187	404		.194	.731		596	.831	436		176	.480	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	975	1.294	388	4 30	1 1 324	305	-	.768	1.104	396		. 194	.692		503	.782	450		035	.504	ł
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	040			1.50	1 1.524	383	-	. 124	1.035	398		.251	.585		335	.758	535		035	.480	
1.143 3.17 5.157 1.324 395 655 .664 400 .432 .224 097 .809 726 .097 .492 664 1.153 355 6.079 1.326 395 560 .783 425 .525 .109 .057 .822 739 .229 .413 561 1.079 337 6.481 1.305 391 366 .783 616 .575 .003 .463 .322 .782 590 .393 .256 563 .961 306 6.587 .968 308 313 .810 709 .635 .033 .463 .822 509 .534 .144 533 .961 306 6.587 .968 .384 .775 .944 .666 .019 .613 .997 .475 .613 .091 432 .817 1001 53 .860 927 .816 .001 .701 1.131 .449 .693 .049 432 .817 1001	843	1.271	383	4.83	5 1.324	395	-	.684	.948	395		.432	.218		203	.777	677		.097	.492	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	1,240	311	5.15	1.324	395	-	.635	.864	400		.432	.224		097	.809	726		.097	.492	
	037	1.204	255	5.62	9 1.326	395	- -	.560	.783	425		.525	. 109		.057	.822	739		.229	.413	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	591	1.133	333	6.01	1 1 205	396	-	441	.755	514		.525	. 109		.199	.796	674		.229	.413	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	565	1.023	323	6 52	5 1 106	366		366	.783	616		.578	.063		.322	.782	590		.393	.256	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	543	.961	306	6 58	7 968	308	-	313	.810	709		.635	.033		.463	.822	509		.534	.140	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	538	.823	268	6.61	7 .520	176		384	.040	504		.666	.019	1	.534	.891	488		.534	.144	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	490	.621	781					331	802	680		.000	.019		.613	.997	475		.613	.091	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-,472	.735	911				-	163	.860	927		816	001		,644 701	1.044	463		.693	.049	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	459	.772	952					110	964	1012		010				1.151	440		.093	.049	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	432	.817	1001					009	.004 860	1060		.010	.001		.741	1.209	446		.746	.026	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	384	.852	1039					044	.000	1056		.002	.000		.807	1.272	430		.754	.030	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	340	.862	1049					124	.840	975		966	.000		1 050	1.323	412		.754	.031	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	274	.872	1060					194	.802	858			.000		1.030	1.343	404		.843	.012	ĺ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	199	.878	1066					221	.793	807					1.275	1.345	403		.843	.014	ĺ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	154	.882	1070				.	265	.779	743					1.937	1 343	403		026	.004	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	097	.884	1072					313	.774	676					2.418	1.339	402		1 063	.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	018	.886	1074				.	344	.774	632									1.063	000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.119	.886	1074		1			424	.815	543					1				1.187	.000	
$ \begin{array}{ccccccccccccccccccccccccc$.251	.876	1064					481	.927	528						1					
.393 .846 1032 .463 .760 938 .485 .615 773 .485 .615 773 .618 1.227 466 .1812 1.332 400 1.090 1.338 398 1.518 1.340 399 1.998 1.343 400	.322	.868	1056					534	1.087	520						1		1			
.463 .760 938 .485 .615 773 .618 1.227 466 .485 .615 773 .618 1.303 431 .812 1.332 400 1.090 1.338 398 1.518 1.340 399 1.998 1.343 400	.393	.846	1032					587	1.184	485								1	1		
.485 .615 773 .688 1.303 431 .812 1.332 400 1.090 1.338 398 1.518 1.340 399 1.998 1.343 400	.463	.760	93 8					518	1.227	466											
.812 1.332 400 1.090 1.338 398 1.518 1.340 399 1.998 1.343 400	.485	.615	773	ĺ			.	588	1.303	431											
1.090 1.338 398 1.518 1.340 399 1.998 1.343 400								312	1.332	400											
1.518 1.340 399 1.998 1.343 400	}						1.0	090	1.338	398											
	1						1.5	518	1.340	399		1									
							1.9	98	1.343	400											
							2.1	15	1.345	400											
							2.9	73	1.344	400											
	 						3.4	28	1.343	400				L				L			

^a Total temperatures of the air and hydrogen jets for each x/d are given in table I(a).

 b Velocities tabulated for x/d = 0.0 were computed for a hydrogen jet total temperature of 295 K, inasmuch as this value was more representative of the entire data rather than the actual measured value of 306 K.

APPENDIX A - Concluded

y/d

-6.432

x/d = 42.8

-1.584

ì -2.021

1 -2.021

i -1,584

1

398

М u

.829 270

.949 303

-7.350 0.728 240 -7.266

-6.088 1.038 327 -5.625 1.143 353

-5.625 1.143 353 -5.409 1.176 362 -5.170 1.223 373 -4.853 1.265 383 -4.363 1.306 392

-3.860 1.324 396

-3.181 1.334 398

-2.793 1.334 398 -2.290 1.330 398 -1.884 1.314 399

-1.544 1.278 401 -1.249 1.223 401

- 1.010 1.164 399

-.754 1.114 401 -.326 1.073 412 -.040 1.068 416

.212 1.087 418

.428 1.108 415 .710 1.181 421

.838 1.217 423 1.063 1.257 421

1.288 1.293 416 1.654 1.324 406 2.082 1.332 400 2.515 1.332 398 3.031 1.330 397 3,432 1.320 395 3,957 1.299 390 4.443 1.259 381 4.879 1.210 370

-3.485 1.332

	x /	′d = 1	5.	44		x/d = 25.2									
y/d	м	u		y/d	α		y/d	м	u		y/d	α			
-4.253	1.331	398		- 1.504	0.000		-4.570	1.313	389		-2.444	0.000			
4.068	1.330	397		- 1.068	.012		-4.068	1.322	391		-2.021	.000			
-3.768	1.325	396		-1,068	.013		-3.573	1.325	392		- 1.593	.001			
-3.335	1.325	396		- 1.068	.012		-3.176	1.326	392		-1.390	.005			
2.991	1.331	398		-,878	.031		-2.797	1.327	392		- 1.390	.005			
-2.550	1.331	398		878	.031		-2.303	1,327	392		-1.156	.011			
-2.268	1.330	397		613	.084		- 1.862	1.323	392		940	.026			
-1.871	1.327	397		613	.084		-1.372	1.294	397		940	.026			
-1.513	1.319	396		494	.114		-1.200	1.259	401		715	.045			
-1.328	1.302	397		362	.154		-1.072	1.216	404		715	.045			
-1.213	1.269	398		216	.204		957	1,172	411		-,512	.066			
1.103	1.203	394		009	.235		÷.891	1.142	412		512	.066			
997	1.130	393		.150	, 22 5		-,785	1.082	410		234	.090			
887	1.053	394		.309	. 18 1		657	1.032	415		234	.089			
-,807	.988	393		.543	. 106		547	.996	421		071	.102			
-,688	.918	409		.741	.056		371	.947	428		071	.100			
~.543	.851	427		.988	.015		097	.919	443		.141	.098			
441	.826	447		.988	.015		.137	.922	443		.141	.099			
322	.820	479		1.116	.005		.278	.933	438		.371	.085			
150	.820	528		1.116	.005		.446	.960	431		.371	.086			
.075	.830	551		1.209	.002		.600	1.005	422		.587	.062			
.256	.842	529		1.209	.002		.719	1.049	414		.587	.062			
.410	.893	499		1.407	.000		.821	1.126	421		.812	.038			
.525	.959	483					.957	1.193	417		.812	.038			
.631	1.066	483					1.081	1.241	411		1.072	.017			
.715	1.141	478					1.209	1.281	404		1.072	.016			
.803	1.218	467					1.407	1.311	397		1.244	.007			
.887	1.269	451					1.619	1.324	395		1.526	.002			
1.019	1.311	424					2.007	1.327	393		1.526	.002			
1.271	1.327	399					2.528	1.328	393		1.932	.000			
1.509	1.330	397					2.943	1.327	392		1.932	,000			
1.932	1.331	398	ĺ				3.335	1.325	392						
2.400	1.331	398					3.953	1.321	391						
2.846	1.331	398													
			ĺ												
									1						
	L						L								

8		 	X,	/d = 6	53.	6	
y/d	a	y/d	м	u		y/d	α
-3,282	0.000	-8.091	0.633	212		-4.244	0.000
-3.282	.000	-7.650	.698	232		-3.763	.000
-2,876	.000	-7.187	.769	253		-3.763	.000
-2.876	.000	-6.776	.827	270		-3.388	.000
-2.413	.000	-6.304	.898	290		-2.925	.001
-2.413	.000	-5.872	.967	309		-2.501	.002
-2.021	.001	-5.457	1.037	327		-2.043	.004
-2.021	.001	-5.065	1.096	342		-1.566	.007
-1.584	.006	-4.690	1.145	354		-1.116	.010
-1.584	.005	- 4.293	1.193	366		675	.014
-1.116	.016	-3.851	1.250	380		675	.015
-1.116	.015	-3.582	1.270	384		238	.017
671	.030	-3.221	1.285	388		238	.017
671	.029	-2.929	1.291	391		.172	.017
190	.041	-2.607	1.296	393		.618	.015
190	.041	-2.188	1.291	396		1.046	.011
031	.041	-1.760	1.281	400		1.500	.008
031	.041	-1.434	1.259	400		1.954	.004
.216	.040	- 1. 129	1.237	401		2.404	.002
.657	.028	874	1.214	400		2.837	.001
1.125	.016	631	1.199	401		3.265	.000
1.535	.006	371	1.188	402		3.710	.000
1.557	.005	106	1.181	402		4.165	.000
1.968	.001	.154	1.186	402		4.597	.000
1.968	.001	.379	1.186	400			
2.413	.000	.622	1.199	401			
2.413	.000	.878	1,219	402			
2.828	.000	1.121	1.241	403			
		1.354	1.257	402			
		1.654	1.274	400			
		1.915	1.285	398			
		2.294	1.291	395			
		2,612	1.287	391			
		3.018	1.274	387			
		3.463	1.255	381			
		3,900	1.224	374			
		4.363	1.179	363			
		4.672	1.133	351			
		5,166	1.070	336			
		5.598	.998	317			
		6,075	,923	297			
		6.604	.843	274			
		7,147	.764	251			
		7.747	.658	219			
	L	8.365	.587	197			

28

.

APPENDIX B

VELOCITY AND HYDROGEN MASS FRACTION FOR $M_a = 2.50$ AND $M_j = 0.91^a$

		x/a	- 0.0					x/d = 4	.31				,	x/d ⇒ 8	.75				x	/d = 1	5.36	
y/d	M	u	y/d	м	u	y/d	м	u	y/d	α	1	y/d	М	u	y/d	a]	y/d	М	l u l	v/d	0
-6.666	6 0.432	153	0.459	0.598	761	-2.86	8 2.588	604	-0.979	0.000	5	-4.173	2.529	590	-1.076	0.000	{	-4 279	2 5 1 5	502		0.000
-6.591	1 .932	311	.472	.432	558	-2.67	3 2.567	602	860	.001		-3.865	2.560	594	776	.015	1	-3.600	2.531	593	-1 204	0.000
-6.512	1.548	461	.485	.309	403	-2.550	2.528	598	768	.005		-3.591	2.555	593	679	.058		-2.982	2.515	592	-1.204	.004
-6.437	2.105	555	.503	1.098	357	-2.33	4 2.503	596	- 706	.019		-3.018	2.545	592	543	.160		-2.607	2.510	591	984	.009
-6.026	2.499	603	.516	1.278	401	-2.20	2.536	599	662	.046		-2.722	2.545	592	543	.165		-2.312	2.503	590	768	.028
-5.572	2.494	603	569	1.522	400	-2.012	2.593	605	587	.114		-2.594	2.616	599	419	.298		-1.901	2.489	589	657	.063
-5.325	2.531	606	.596	1.760	500	-1.610	2.590	603	587	.115		-2.400	2.591	597	419	.300		-1.575	2.441	584	657	.064
-4.862	2.538	607	.622	1.834	513	-1.518	2.562	602	- 529	104		1 641	2.555	593	247	.500		-1.376	2.386	583	525	.103
-4.412	2.531	606	.688	1.975	536	-1.407	2.531	599	472	.316		-1.041	2.310	586	101	.651		-1.257	2.336	585	331	.198
- 3.922	2.538	607	.768	2.092	553	- 1.310	2.489	594	472	.316		-1.328	2.407	577	.015	441		-1.107	2.200	586	106	.252
-3.468	2.565	610	.860	2.204	568	- 1.218	2.414	586	- 375	540		1 156	2 220	500				- 1.000	2.150	302	.110	.240
-3.168	2.586	612	.962	2.287	579	-1.147	2.307	574	300	.773		-1.156	2.329	560	.476	.256		957	2.097	582	.331	.196
-2.943	2.511	604	1.054	2.333	584	- 1.072	2.214	562	194	.959		909	2 148	561	860	.035		847	1.912	581	.556	.106
-2.493	2.520	605	1.147	2.379	590	949	2.135	552	079	1.000		856	2.066	558	979	.000		003	1.783	574	.657	.058
-2.215	2.545	608	1.253	2.434	596	874	2.066	543	.066	1.000		807	1.988	559	1,103	000	Í	- 649	1.393	597	.759	.034
-1.990	2.524	606	1.368	2.472	600	785	1.967	540	.066	1.000		750	1.800	573			[- 521	1.206	602	1.010	.011
-1.562	2.503	603	1.522	2.507	604	701	1.835	569	.150	.945		706	1.639	590				406	1.067	612	1.010	.004
-1.394	2.461	599	1.703	2.527	606	649	1.675	625	.234	.841		688	1.503	576				159	.995	658	1 209	000
- 1.284	2.423	595	1.932	2.531	606	596	1.424	656	.313	.692		600	1.179	584	.			.013	1.001	656		
-1.134	2.363	588	2.126	2.519	605	560	1.206	642	.424	.402		534	1.023	595				.176	1.051	658		
904	2.240	513	2.303	2.496	603	521	1.025	639	.503	.255		300	.918	776				.388	1.170	641		
746	2.067	549	2.625	2.481	601	476	.922	671	.551	.168		154	.918	906				.503	1 295	621		1
578	1.732	496	2.912	2.472	600	397	.874	778	.591	.115		026	.918	922			1	.600	1.480	604		
547	1.600	471	3.238	2.575	611	326	.889	921	.649	.053		. 194	.918	840				.693	1.699	586		
499	. (18	248	3.684	2.541	607	229	.897	1051	.693	.026		.340	.927	750				.781	1.905	578		
- 468	.309	403	4.147	2.506	604	053	.897	1092	.715	.017		.507	1.037	650				.856	2.027	567		
. 454	644	915	4.003	2.014	605	.106	.897	1092	.759	.007		.591	1.248	626				.949	2.147	566		
446	.662	836	0.231	2.495	002	.212	.897	1092	.860	.001		.657	1.485	609				1.081	2.261	567		
432	.718	901		1		.315	.000	191	.860	.001		.768	1.865	560				1.315	2.381	577		1
415	.783	973				.100	1 040	656	.944	.000		.851	2.104	565				1.518	2.457	586		
397	.819	1013				.534	1.081	651				.966	2.226	562		1		1.760	2.492	589		
- 379	857	1054		1	1							1.094	2.329	269				2.025	2.507	591		
344	.877	1075	!	1		.551	1.182	658				1.222	2.396	576				2.541	2.513	591		
300	.896	1095				626	1.200	628	1			1.451	2.498	587				3.062	2.531	593		
053	.907	1107				.657	1 715	609	1			1.628	2.560	594				3.490	2.531	593		
.154	.907	1107				.693	1.805	577				2 260	2.570	595					1			
.251	.907	1107				.719	1.871	560				2.696	2 560	594							1	
.353	.871	1068				.776	1.947	542				3,123	2 550	593								
.366	.865	1062	1 1	1		.851	2.040	542										1			ł	
.384	.845	1040				.931	2.097	546										1				
.406	.815	1008				1.001	2.160	555														
.424	.769	957				1.076	2.202	560														
.446	.668	843				1.178	2.303	573							1			1				
						1.266	2.446	590	1												1	
						1.407	2.542	600														
1						1.548	2.579	604		[1							
						1.840	2.588	604														
l l						2.109	2.562	602													1	
						2.409	2.484	594			1				1							
						3.044	2.547	600														
		1				3.335	2.520	598 601														
		1				4 010	2.557	601											1			
a _{To}	↓ ∋taltem	I neratu	res of th						I		L_		1									

^aTotal temperatures of the air and hydrogen jets for each x/d are given in table I(b).

APPENDIX B - Concluded

	v/	d = 1	9.8	80				X /	′d = 3'	7.3	3				x /	/d = 5	8.0		
v/d	M	u		y/d	α		y/d	М	u	Γ	y/d	α		y/d	м	u		y/d	α
5 900	2 404	599		-1 332	0.000		-5.819	2.236	564		-2.056	0.000		-4.407	2.459	588	Γ	-2.201	0.000
-5.290	2.494	502		-1.332	0.000		-5.581	2.385	582		-1.610	.000		-4.187	2.470	590		-1.778	.000
-5.043	2.530	588		-1.112	.002		-5.400	2.455	590		-1.394	.001		-3.931	2.470	590		-1.337	.003
1 610	2.400	587		- 891	.011		-5.140	2.503	595		- 1.138	.003		-3.754	2.470	590		-1.116	.006
4 204	2.473	586		- 891	.012		-4.606	2.501	594		953	.011		-3.529	2.470	590		891	.012
-4 195	2 483	587		785	.022		-4.235	2,501	594		746	.019		-3.229	2.470	590		679	.018
-3.133	2 509	590		785	.023		-3.781	2.498	594		746	.018		-2,978	2.470	590		450	.025
-3 728	2.509	590		- 679	.042		-3.282	2.488	593		512	.038		- 2.7 71	2.470	590		238	.032
-3.476	2.499	589		679	.042		-2.912	2.488	593		203	.055		-2.307	2.462	589		132	.034
-3.172	2,509	590		560	.068		-2.448	2.498	594		044	.059		-2.025	2.438	586		004	.035
-2.793	2.514	591		560	.068		-2.025	2.482	592		.154	.055		-1.804	2.4 05	583		.097	.035
-2.448	2,499	589		560	.068		-1.721	2.434	587		.366	.045		-1.632	2.361	581		.216	.033
-2 126	2,488	588		393	.102		-1.465	2.357	580		.596	.031		-1,557	2.338	580		.309	.031
-1.893	2.478	587		393	.104		-1.328	2.300	576		.812	.017		-1.434	2.304	578		.432	.026
-1.650	2.440	583		247	.122		- 1.169	2.219	571		1.024	.007		-1.306	2.234	574		.666	.019
-1.504	2.391	577	ł	247	.122		-1.068	2.121	568		1.249	.002		-1.169	2.155	571		.856	.013
-1.341	2.324	570		115	.123		971	2.052	570		1.451	.001		- 1.063	2.099	571		.856	.013
-1.240	2.266	564		115	.125		856	1.918	565		1.451	.001		975	2.036	568		1.081	.007
-1.107	2.171	556		.009	.119		772	1.812	560					856	1.962	566		1.310	.003
993	2.052	548		.009	.120		693	1.722	556					785	1.900	562		1.769	.000
878	1.870	536		.168	.111		626	1.618	545					666	1.799	555		2.210	.000
821	1.775	532		.304	.098		534	1.524	543					551	1.717	549			
763	1.610	517		.428	.082		428	1.442	540]	1		335	1.604	544			
657	1.411	517		.565	.054		216	1.356	540					110	1.562	547			
591	1.303	516		.710	.028		.093	1.340	538					.115	1.579	551			
490	1.191	522		.869	.013		.243	1.372	536					.251	1.604	551			
349	1.083	528		.984	.005		.424	1.461	535				ļ	.459	1.717	559			
088	3 1.034	537		1.090	.002		.604	1.626	551					.569	1.815	568			
.124	1.053	534		1.196	.001	:	.724	1.760	559	1				.701	1.900	570			
.326	3 1.138	544		1.310	.000		.843	1.946	571					.847	2.023	576			
.39	7 1.186	548		1.310	.000		.966	2.109	578					.979	2.137	581			
.47	2 1.247	550					1.129	2.236	579					1.121	2.210	580			
.51	2 1.320	562					1.262	2.340	585					1.200	2.201	502			
.56	5 1.398	565	5				1.385	2.390	586					1.301	2.330	596			
.62	2 1.489	562	2		ĺ	1	1.566	2.466	591					1.500	2.300	587			
.70	1 1.659	569					1.875	2.519	596					1.707	2.422	588			
.78	5 1.827	574	Ľ]				2,369	2.522	597					2 119	2 450	588			
.87	4 1.993	576	5				2.850	2.498	594					2 396	2 465	5 589			
.98	8 2.147	572	2				3.318	2.500	595					2,872	2.470	590			
1.11	6 2.249	568	3				3.132	2.510	590					2.01	2 476	3 590			
1.27	1 2.324	1 57:	1		1		4.195	2.50	1 595				1	3 22	2.475	590			
1.43	8 2.39	1 57'	7		1		4,593	2.503	5 595					4 490	2.470	590			
1.66	3 2.456	5 584	1				5.21	2.48	5 593					4 02	2 44	3 587			
1.95	9 2.488	3 581	3	1			1							5 18	2 304	4 581			
2.38	7 2.49	58	9											0.10	1.00				1
2.76	6 2.50	1 58	9						1										
3.23	8 2.50	9 59									ł								
3.73	7 2.49	1 58	8					1	1		L		_	L				L	

APPENDIX C

DATA REDUCTION DETAILS

Primary variables measured in the test program included pitot pressures, total temperatures of both the hydrogen and the air jets, volumetric concentration of hydrogen, barometric pressure, and probe location. The hydrogen flow to the center nozzle was also determined by use of a calibrated sharp-edge orifice meter and redundantly measured by a variable-area orifice meter. (The flow rates determined by the two techniques were in agreement within 1 percent.)

The center of the flow field was assumed to coincide with the center of the hydrogen concentration (volumetric) profile. Since concentration and pitot measurements were not necessarily made at the same radial location, concentration values needed to determine velocity from the pitot-pressure measurements were taken from a plot of concentration as a function of probe location. The volumetric concentration values were reduced to hydrogen mass fraction values by assuming that the flow field consisted of a binary mixture of air and hydrogen. The mass fraction of hydrogen α is related, through the molecular weights, to the hydrogen volumetric concentration β by the following equation:

$$\alpha = \frac{2.016\beta}{2.016\beta + 28.96(1 - \beta)} \tag{C1}$$

The local molecular weight \mathcal{M} is given by

$$\mathcal{M} = 2.016\beta + 28.96(1 - \beta) \tag{C2}$$

and the local gas constant by

$$\mathbf{R} = \frac{\overline{\mathbf{R}}}{m}$$
(C3)

In equation (C3), \overline{R} is the universal gas constant. (Note specific values are not assigned to parameters in this appendix if the values of the parameters vary with different systems of units. Any consistent system of units may be used in the evaluation of the equations presented.) The mixture specific heat C_p is expressed as

$$C_{p} = C_{p,h}\alpha + C_{p,a}(1 - \alpha)$$
(C4)

In equation (C4), $C_{p,h}$ is the specific heat at constant pressure of hydrogen and $C_{p,a}$ is the specific heat at constant pressure of air. The local total temperature T_t was

computed by an energy balance as given by

$$T_{t} = \frac{\left[C_{p,h}\alpha T_{t,j} + C_{p,a}(1-\alpha)T_{t,a}\right]}{C_{p}}$$
(C5)

In equation (C5), $T_{t,j}$ and $T_{t,a}$ are the measured total temperatures of the hydrogen and airstreams, respectively.

The local Mach number was computed from the Rayleigh pitot formula (see eq. (100) of ref. 18) for supersonic Mach numbers and from basic isentropic flow relations (see eq. (44) of ref. 18) for subsonic Mach numbers. A constant value of the specific-heat ratio γ of 1.4 was used in all data reduction. The static pressure was assumed uniform and equal to local atmospheric pressure throughout the flow field. Local static temperature was computed from the local total temperature (eq. (C5)), and the local Mach number was computed from isentropic flow relationships (see eq. (43) of ref. 18).

The local velocity is then computed from

$$u = M \sqrt{\gamma R T}$$
(C6)

In equation (C6), M is the local Mach number and T is the local static temperature.

Equation (1)

$$m_{\rm X} = \sqrt{\gamma} \int_{\rm A} \frac{\alpha p M}{\sqrt{\rm RT}} \, dA$$

may also be evaluated to determine the total hydrogen flow rate m_x at any survey station. In this equation p is the static pressure, and the integral is evaluated over the area A for which α is greater than zero. The other parameters are as previously defined.

REFERENCES

- 1. Ferri, Antonio; Libby, Paul A.; and Zakkay, Victor: Theoretical and Experimental Investigation of Supersonic Combustion. ARL 62-467, U.S. Air Force, Sept. 1962.
- Alpinieri, Louis J.: An Experimental Investigation of the Turbulent Mixing on Non-Homogeneous Coaxial Jets. PIBAL Rep. No. 789 (Contract No. AF 49(638)-217), Polytech. Inst., Brooklyn, Aug. 1963.
- 3. Schetz, Joseph A.: Unified Analysis of Turbulent Jet Mixing. NASA CR-1382, 1969.
- 4. Cohen, L. S.: A New Kinematic Eddy Viscosity Model. Rep. G211709-1, United Aircraft Corp., Jan. 1968.
- 5. Cohen, Leonard S.; and Guile, Roy N.: Investigation of the Mixing and Combustion of Turbulent, Compressible Free Jets. NASA CR-1473, 1969.
- Eggers, James M.; and Torrence, Marvin G.: An Experimental Investigation of the Mixing of Compressible-Air Jets in a Coaxial Configuration. NASA TN D-5315, 1969.
- Hopf, H.; and Fortune, O.: Diffusion Controlled Combustion for Scramjet Application. Part II – Programmer's Manual. Tech. Rep. 569 (Contract No. NAS1-5117), Gen. Appl. Sci. Lab., Inc., Dec. 1965.
- Zakkay, Victor; Krause, Egon; and Woo, Stephen D. L.: Turbulent Transport Properties for Axisymmetric Heterogeneous Mixing. ARL 64-103, U.S. Air Force, June 1964. (Available from DDC as AD 604 008.)
- 9. Chriss, D. E.: Experimental Study of the Turbulent Mixing of Subsonic Axisymmetric Gas Streams. AEDC-TR-68-133, U.S. Air Force, Aug. 1968. (Available from DDC as AD 672 975.)
- 10. Henry, John R.: Recent Research on Fuel Injection and Mixing and Piloted-Ignition for Scramjet Combustors. Combustion Inst., 1969, pp. 1175-1182.
- Edelman, R.: Diffusion Controlled Combustion for Scramjet Application. Part I Analysis & Results of Calculations. Tech. Rep. 569 (Contract No. NAS1-5117), Gen. Appl. Sci. Lab., Inc., Dec. 1965.
- 12. Jeffery, P. G.; and Kipping, P. J.: Gas Analysis by Gas Chromatography. Macmillan Co., 1964.
- 13. Rogers, R. Clayton: A Study of the Mixing of Hydrogen Injected Normal to a Supersonic Airstream. NASA TN D-6114, 1971.
- 14. Reis, Victor H.; and Fenn, John B.: Separation of Gas Mixtures in Supersonic Jets.J. Chem. Phys., vol. 39, no. 12, Dec. 15, 1963, pp. 3240-3250.

- Zelazny, S. W.; Morgenthaler, J. H.; and Slack, M. W.: Spatial Dependence of Turbulent Transport Coefficients in Dissimilar Coaxial Flows. Rep. No. 9500-920123, Bell Aerosystems Co., Mar. 1969.
- 16. Jones, J. W.; and Isaacson, L. K.: A Turbulent Boundary Layer With Mass Addition, Combustion, and Pressure Gradients. AFOSR 70-1428TR, U.S. Air Force, May 1970. (Available from DDC as AD 710 308.)
- Forstall, Walton, Jr.; and Shapiro, Ascher H.: Momentum and Mass Transfer in Coaxial Gas Jets. J. Appl. Mech., vol. 17, no. 4, Dec. 1950, pp. 399-408.
- Anon.: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135, 1953.

x/d	T _{t,j}	T _{t,a}	I
(a)) $M_a = 1.3$	32; $M_j = 0.8$	39
0.0	306	298	0.97
5.51	302	298	.84
9.58	293	303	.94
15.44	299	299	1.00
25.2	288	293	.98
42.8	291	299	1.00
63.6	293	299	1.04
(b)	$M_a = 2.5$	0; M _j = 0.9	91
0.0	300	324	0.9
4.31	298	316	1.27
8.75	302	308	1.25
15.36	294	310	1.29
19.8	301	309	.91
37.3	302	315	.88
58.0	302	313	.96

TABLE I.- DATA SUMMARY

rence	, N _{Sc}	0.6	9.	6.	0.9 to 1.0
ic Z-diffe model	$^{\rm N}{ m pr}$	0.6	9.	6.	0.9 to 1.0
emat	NLe	1.0	1.0	1.0	1.0
Kine	k4 []]	0.0076	.0106	.0175	.0164
<u> </u>	NSc	0.6	9.	1.0	1.0
cosit	NPr	0.6	9.	1.0	1.0
n vise node	NLe	1.0	1.0	1.0	1.0
Coher	k3	0.00252	.0038	.002	.00129
E	۲,j/ ۲,a	1.0	1.0	1.0	1.0
	'juj/¤ua	0.556	.647	.171	.0725
	uj/ua /	0.648	.736	2.730	1.823
d.	cm	1.036	2.443	1.160	1.160
:	ż	0.813	.942	.89	.91
;	Ma	1.268	1.302	1.32	2.50
	uases	Air-air	Air-air	Hydrogen-air	Hydrogen-air
	Data source	Reference 6	Reference 6	Present report	Present report

÷

1

-

TABLE II.- CORRELATION SUMMARY

36

÷....

Figure 1.- Continued.

(c) Mach 1.32 plug nozzle contour details.

(b) Nozzle outer contour details.

-

x <u>x</u>	0.000 3.000 11.200 5.000 3.000 11.200	5 200 2 976 11 600	5.400 2.972 11.800	5.600 2.964 12.000	5.800 2.954 12.200	6,000 2,944 12,400 5,200 2,028 12,500	6 400 2 928 12 800	6.600 2.916 13.000	6.800 2.906 13.200	7.000 2.892 13.400	7.200 2.878 13.600	7.400 2.868 13.800	7.600 2.848 14.000	7.800 2.830 14.200	8,000 2,810 14,400	ve 8.200 2.788 14.600	8.400 2.758 14.800	, 8.600 2.722 15.000	8,800 2,702 15,200	9,000 2,668 15,400	9.200 2.630 15.600 2.630 2.630 15.600		9.000 2.438 16.400	10.200 2.376 16.600	10.400 2.308 16.800	10.600 2.230 17.000	10.800 2.154 17.200	11.000 2.064 17.400	18,200
						2	69	•9	=	Ā				Note: For location of	the origin of the	coordinates relati	to the overall	nozzle arrangement	see figure 1(a)										
					•	- 1																							

38

Contour coordinates

. . .

		Contour c	oordinate	s	
x	ÿ	x	ÿ	x	ÿ
9.930	5.930	15.200	2.522	20.600	1.022
10.000	5.854	15.400	2.446	20.800	0.984
10.200	5.632	15.600	2.370	21,000	0.950
10.400	5.424	15.800	2.294	21.200	0.914
10.600	5.216	16.000	2.224	21,400	0.880
10.800	5.030	16.200	2.158	21.600	0.846
11.000	4.850	16.400	2.096	21.800	0.810
11.200	4.690	16.600	2.030	22.000	0.776
11.400	4.5 2 0	16,800	1.960	22.200	0.748
11.600	4.378	17.000	1.912	22.400	0.720
11.800	4 .2 34	17.200	1.854	22.600	0.692
12.000	4.102	17.400	1.788	22.800	0.672
12.200	3.970	17.600	1.732	23.000	0.644
12.400	3.842	17.800	1.680	23.200	0.620
12.600	3.720	18.000	1.624	23.400	0.602
12.800	3.610	18.200	1.572	23.600	0.586
13.000	3.498	18.400	1.510	23.800	0.572
13.200	3.394	18,600	1.468	24.000	0.554
13.400	3.290	18.800	1.406	24.200	0.540
13.600	3.200	19.000	1.364	24.400	0.536
13.800	3.100	19.200	1.316	24.600	0.526
14.000	3.014	19.400	1.274	24.800	0.520
14.200	2.928	19.600	1,230	25.000	0.512
14.400	2.840	19.800	1.192	25.200	0.506
14.600	2.758	20.000	1.144	25.400	0.502
14,800	2.682	20.200	1.098	25.600	0,500
15.000	2.598	20.400	1,060	25.800	0.500
l		1		26.200	0.500

Note: For location of origin of coordinates relative to the overall nozzle arrangement, see figure 1(a)

(d) Mach 2.50 plug nozzle contour details.

Figure 1.- Concluded.

-

(a) Knife edge parallel to flow, flash exposure.

(b) Knife edge parallel to flow, time exposure.

(c) Knife edge normal to flow, flash exposure.

(d) Knife edge normal to flow, time exposure. L-71-690

Figure 4.- Schlieren photographs for $M_a = 1.32$ and $M_j = 0.89$.

(a) Knife edge parallel to flow, flash exposure.

time exposure.

(c) Knife edge normal to flow, flash exposure.

(d) Knife edge normal to flow, time exposure. L-71-691

Figure 5.- Schlieren photographs for $M_a = 2.50$ and $M_j = 0.91$.

(a) x/d = 42.8.

Figure 6.- Radial distribution of volume fraction of hydrogen for different sampling techniques.

Figure 11.- Continued.

(b) Velocity profiles; x/d = 15.4 to 63.6.

Figure 11.- Continued.

ŝ

Figure 12.- Continued.

-

(c) Hydrogen mass fraction profiles; x/d = 0.0 to 8.75.

•

.

.

.

...