
SUBTRFE REPLACEMENT SYSTEMSt

by

Barry K. Rosen

SUBTREE REPLACEMENT SYSTEMSt

by

Barry K. Rosen

2-71

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts 02138

t The first four chapters of this report formed the author's Ph. D. thesis
at Harvard University, 1971. Some of these results were announced at
the Second ACM Symposium on the Theory of Computing, Northampton,
Massachusetts, May, 1971. This research was supported in part by the
National Aeronautics and Space Administration under Grant No. NGR 22-
007-076, and by the National Science Foundation under Grant No. GS-1934.

PREFACE

At the end of September 1969 I began to study some recent work

on finite tree automata and tree transducers. I was also concerned

with another kind of tree-manipulating system: formal computations

in McCarthy's calculus for recursive definitions [34]. Recursively

defined functions were obviously singlevalued, even in versions of the

calculus that allowed much more freedom than the original one in

deciding which formal procedure call to evaluate next, yet a rigorous

proof was strangely elusive.

The proof that eventually emerged had two stages. First the

"subtree replacement system" defined by any recursive definition was

shown to be "unequivocal" and "closed." Then singlevaluedness was

derived from these properties alone. The ensuing search for other

applications of the abstract singlevaluedness theorem led immediately

to some minor results about tree transducers. I then conceived the

outline of a relatively simple proof of the Church-Rosser Theorem for

the lambda calculus. By late November it was clear that a short paper

should be written.

The paper grew. During 1970 it gradually turned into a long paper

[42] and then into this thesis. More questions about the application

areas arose, and some of them were answerable with the help of the

growing theory. The current state of the theory of subtree replace-

ment systems and most of the applications explored so far are presented

here. This work does not solve any software engineering problems; it

provides mathematical tools that may help those who do solve them.

II

111

In 1960 McCarthy [331 pioneered the mathematical basis for

designing, judging, and communicating practical nonnumerical algo-

rithms, especially linguistic algorithms. Modest but nontrivial

progress has been made since then. The software engineer now has

some science to apply to his problems. He still needs experience,

creativity, perseverance, and luck - as do all the other engineers.

He must still envy the riches of his brother in hardware, who can

draw on solid state physics and electromagnetic theory. I hope this

thesis will help him feel a little less impoverished.

I wish to thank P. J. Downey for suggesting an improvement in the

definition of closed subtree replacement systems. Prof. R. Hindley

and Dr. G. Mitschke kindly supplied copies of their dissertations, [21]

and [36], for comparison with the work reported in [41]. Prof. Hindley

also called my attention to [4 71 and suggested some improvements in

the proof of the classical Church-Rosser Theorem. Profs. F. D. Lewis

and W. A. Woods suggested many improvements in the exposition.

I am especially grateful to Prof. R. V. Book, who supervised this

research. His guidance and support have been beyond the power of

words to acknowledge.

This research was supported by the National Science Foundation

under Grant No. GS-1934 and by the National Aeronautics and Space

Administration under Grant No. NGR-22-007-176.

EE

iv

CONTENTS

Preface	 ii

Index of Major Definitions	 vi

Synopsis	 ix

CHAPTER 1. INTRODUCTION

§ 1. Motivation and Overview 	 1-1

§2. Terminology	 1-20

CHAPTER 2. THEORY OF GENERAL AND
SUBTREE REPLACEMENT SYSTEMS

§3. General Replacement Systems	 2-1

§4. Trees and Substitution	 2-16

§5. Subtree Replacement Systems	 2-26

§6. Parameters and Rule-Schemata 	 2-47

CHAPTER 3. APPLICATIONS TO RECURSIVE DEFINITIONS

§7. An Algorithmic Explanation	 3-1

§8. A Semantic Explanation	 3-21

CHAPTER 4. APPLICATIONS TO THE LAMBDA CALCULUS

§9. Lambda Calculus	 4-1

§10. Classical Church-Rosser Theorem 	 4-17

CHAPTER 5. APPLICATIONS TO TREE TRANSDUCERS

§ 11. Formal Language Theory and Compiling 	 5-2

§12. Tree Transducers and Compiling	 5-24

§13. Finite Tree Transducers	 5-34

§14. Closure Under Composition	 5-65

S

V

CHAPTER 6. EPILOGUE

§15. Summary	 6-1

§16. Further Research	 6-4

Appendix A. Elementary Properties of the Lambda Calculus 	 A-i

Appendix B. Equivalence of Two Versions of the

Lambda Calculus	 B-i

References	 R-i

INDEX OF MAJOR DEFINITIONS

The following index locates the definitions for the major concepts

involved in this work. Every concept defined in one chapter and used

in another is included, except for the standard mathematical termi-

nology reviewed in §2.

alphaequivalence of R and S

strong, R	 S 4-8

weak, R	 5 4-8

application of rules at each node in a set N of nodes, 2-34

ancestor relation, anc 2-19

beta rules, 1R 4-12

call-by-name 3-6

call-by-value 3-6

canonical solution 3-25

Church-Rosser property 2-4

closed SRS 2-30

code generator 5-27

coding tree 5-27

commutativity (as a relation between GRSs) 2-4

concatenation of X and Y, XY 2-18

delta rules, 1R 6 4-12

eta rules	 IR 4-12
11

evaluation of a tree R under a recursive definition L, EvalLR 3-14

father of a node n, Fa(n) 2-19

vi

vii

2-26

2-2

2-21

2-19

2-21

2-50

2-2

2-21

5-10

5-11

5-10

5-9

2-19

2-2

2-25

1-2

2-49

5-11

5-5

2-44

2-23

5-15

2-25

2-25

3-9

forest

general replacement system, GRS

independence

property of a set of nodes

relations among nodes, m i n and m I n

relation among sets of nodes, M I N

instance of a rule-schema

irreplaceable

leaf in a tree

lexical analyzer

lexical filter

lexical synthesizer

lexical variable

node

normal form

operation on trees in V,¼ defined by a symbol in V

operator-operand structure

parameter

parser

phrase structure

pseudoclosed rule

quotient of nodes n and m, n/m

ranked parse tree

ranked trees with labels in V, V

rank function, p

recursive definition

viii

replacement by S in R

at a node n, R(n - S) 2-19

at a set of nodes M, R(M - S) 2-21

residue map 2-30

rule 2-26

rule-schema 2-50

semantic analyzer 5-28

subtree of R at n, R/n 2-19

subtree replacement system, SRS 2-26

tree 2-19

tree domain 2-19

trees with labels in V. V 2-19

tree transducer

bottom-up 5-46

deterministic 5-61

finite 5-51

linear 5-52

partial deterministic 5-52

top-down 5-43

total 5-60

unequivocal SRS 2-27

union of GRSs 2-6

value of a tree R under an interpretation I, Val 1 R 3-24

verification of diagrams 2-10

Page intentionally left blank

Page intentionally left blank

SYNOPSIS

Subtree replacement systems form a broad class of tree-

manipulating systems including many of the special cases from logic,

linguistics, and automata theory. Subtree replacement systems with

the Church-Rosser property are appropriate for evaluation or trans-

lation processes. In a Church-Rosser system, the final result of

operating on a tree (then on the resulting tree, and so on, until no

further changes are possible) does not depend on which of several

possible operations is performed at each stage. This singlevaluedness

permits the system to specify "meanings" or "values" for trees unam-

biguously. Such flexibility has both theoretical and practical advantages.

Chapter 1 motivates the mathematical study of subtree replace-

ment systems and outlines the main results. We also review common

mathematical terminology to be used throughout the rest of this thesis.

Chapter 2 presents the abstract theory of general replacement

systems (3) and subtree replacement systems (s5). The preliminary

results in §3 apply to any situation where changes in the data are made

in discrete steps, whether or not the data are trees. Theorem 3.5 and

Lemma 3.6 in this section were discovered by Hindley [21] and inde-

pendently by the author. The other results and the diagrammatic proof

technique are new.

Slight extensions of Brainerd's arithmetic of trees [6] are

described in §4. Using this formal computational technique in §5, we

establish sufficient conditions for the Church-Rosser property in sub-.

tree replacement systems. The abstract conditions are fairly easy to

ix

x

verify for several important subtree replacement systems that bear

little resemblance to each other at the level of concrete detail. The

concepts and results in §5 are new. It is sometimes rather tedious to

verify our sufficient conditions. In order to avoid burdensome repe-

tition in these verifications, we present part of the argument abstractly

in §6.

Chapter 3 applies the theory to McCarthy's calculus for recursive

definitions [34], extended and disambiguated by the addition of an

explicit choice between call-by-value and call-by-name. In §7 we

prove a singlevaluedness result that had not been proven before without

severe restrictions on the use of call-by-name [3][311. Recursive defi-

nitions may also be interpreted as equations to be solved: an assign-

ment of functions to the function variables in a definition may or may

not force all its equations to be true statements. In §8 we show that

the functions specified by the extended McCarthy calculus for any

recursive definition do solve the definition, and we show how this

solution is related to any other solutions that may exist. This result

verifies a conjecture of Morris [37]. When restricted to definitions

that call all their parameters by value, our result is closely related

to the "first recursion theorem" [26]: any partial recursive functional

has a unique minimal fixed point that is partial recursive. The proofs

of the results in §7 and §8 are not based on the proofs for the previ-

ously known special cases.

Chapter 4 applies the theory to the full lambda calculus, including

eta and delta rules as defined by Curry and Feys [14]. We define the

calculus in §9, using a novel approach to alphabetic equivalence that

xi

permits a higher degree of mathematical rigor than does the con-

ventional approach. In §10 we prove the classical Church-Rosser

Theorem of [14] with a divide-and-conquer strategy. The lambda

calculus is analyzed as a hierarchy of simpler systems. The main

theorem from §5 implies that the parts are Church-Rosser. We then

apply results from §3 to the effect that appropriately connected

Church-Rosser parts form Church-Rosser wholes. The hierarchy

method was discovered by Hindley [21] and independently by the

author [41]. Mitschke [36] independently used a construction similar

to ours for the proof that the part formed by beta reduction is Church-

Rosser. Mitschk&s proof that the construction is correct differs sub-

stantially from ours. Neither proof has much in common with tra-

ditional approaches to beta reduction [13] [14] [21] [22] [48].

Chapter 5 applies the theory of subtree replacement systems to

finite tree transducers and describes the use of these transducers in

compiler design. In §11 we review some relevant topics in formal

language theory. In § 12 we sketch a model for syntax-directed compi-

lation as a five-stage process. One of the five stages is a tree trans-

ducer: an abstract device which maps trees to trees. The model is a

natural combination of two traditions in computer science: formal

language theory (including the theory of tree transducers) and more

concrete discussions of compiler design problems [7] [43] [54]. The

basic theory of tree transducers is developed in §13. This section is

mostly exegesis on the work of Rounds [45] [46] and Thatcher [51] [52],

with emphasis on the significance of this work for compiler construction.

In § 14 we consider the question of whether the composition of two maps,

xii

both definable by a certain type of transducer, is also definable by a

transducer of the same type. We elaborate slightly upon theorems of

Rounds [46] and Thatcher [52] to the effect that certain classes of

transductions are indeed closed under composition. (A transduction is

the map defined by a transducer.) We also show that there is a pair of

"linear" and "partial deterministic" transductions whose composition

is not computable by any finite tree transducer, deterministic or non-

deterministic, that reads input trees from the top down. This result

is new.

Chapter 6 summarizes our conclusions and indicates some

possible directions for further research on the theory and applications

of subtree replacement systems.

CHAPTER 1

INTRODUCTION

This chapter begins with a preliminary intuitive description of

the main results of this thesis and their motivation. It concludes with

a survey of the basic mathematical notation to be used in the following,

more technical chapters.

1. Motivation and Overview

This section reviews one of the several ways to use trees in

representing the structures of expressions in natural or artificial

languages. We then consider methods for specifying the meanings of

expressions in terms of rules for manipulating their tree structures.

We introduce 'subtree replacement systems" as a general class of

such tree-manipulating systems. The abstract study of subtree

replacement systems leads to results useful in understanding many

of the particular systems from logic, linguistics, and automata theory.

The main results of this thesis are outlined here on an intuitive level.

We begin with a type of structure familiar from mathematics

and logic. Consider the arithmetic expression

(47 X 23 - 981) X 6!

built upfrom numerals that denote numbers and operators that denote

operations on numbers. A sequence of operands is associated with

each occurrence of an operator: the operands are subexpressions

1-2

denoting the numbers on which the corresponding operation is to be

performed. The first occurrence of X has the operands 47 and 23.

The only occurrence of - has the operands 47 X 23 and 981.

The structure of operators and operands in (47 X 23 - 981) X 6!

is displayed in the tree at the top of Figure 1-1. For each occurrence

of an operator there is a node labelled by that operator. If a node m

is labelled by an operator a, then m has a son for each operand of

the corresponding occurrence of a. The subtree rooted at each son

of m displays the structure of the operand it represents. We call such

trees operator-operand structures. Let 47 be the tree with one node

labelled by the numeral 47 and no other nodes. Let(V,) be the

tree consisting of a root labelled X and then two sons of the root,

with the first son labelled 47 and the second one labelled 23. (Thus

we are naming trees by means of strings in a vocabulary consisting of

the possible labels plus grouping symbols. The same idea with differ-

ent punctuation is used in labelled bracket notation and in Cambridge

Polish notation.) The tree at the top of Figure 1-1 can be described as

3C(3 (.),T) ,T()).

The pair of trees

7(47,23)— 1081

represents the fact that 47 X 23 = 1081. The familiar algorithms for

computing with decimal numerals generate an infinite set IR of pairs

of trees, including

T()	 720

(1081,1)	 15

72000.

1-13

x

x	 981

47	 23	 6

172000]

L5^

/c\
11001	 17201

Figure 1-1. One of three ways to derive 72000 from

(47 X 23 - 981) x 6 in bottom-up arithmetic.

1-4

As the use of an arrow rather than brackets and commas suggests, we

will think of pairs of trees as "rules" for replacing parts of trees by

other trees. To apply a rule to a tree we must do two things: match

the left half of the rule against a subtree of the tree and then replace

that subtree by the right half of the rule.

When a tree R can become another tree S by the application of a

rule to a subtree of R, we write R ==' S and pronounce this as	 can

become S.tI In Figure 1-1 we display one of the ways to derive the tree

72000 from the operator-operand structure of (47 X 23 - 981) X 6 1

The evaluation process is a nondeterministic algorithm: an

algorithm that includes instructions to choose among several alterna-

tives as well as the more familiar assignment and branching

instructions. To evaluate a tree R we must apply a rule to R, then

apply a rule to the resulting tree, and so on, until eventually we arrive

at a tree T to which no rules can be applied. We say that T is a normal

form for R. At any step in the process there may be several rules that

could be applied. In this example the nondeterminism has no net effect:

each tree R has just one normal form T, and any sequence of appli-

cations of rules beginning at R will lead to T. Our system for evalu-

ating trees by means of rules from arithmetic has two desirable

properties:

(a) Every R has at most one normal form T.

(b) Every sequence R 0 , R 1 , R 2 ,... such that R == R+i for each i

is a finite sequence.

1-5

-

	

	 Property (a) permits the set of rules to specify normal forms

unambiguously without the additional complication of a sequencing

mechanism that computes which rule to apply next and where to apply

it, at each stage of the evaluation process. If our system had

property (a) but not property (b), then we could still speak of "the

normal form, if any, of R" but we would not have complete freedom

in choosing a sequencing mechanism. An infelicitous choice might

omit some normal forms by defining an infinite sequence

R = R 0 =='	 == ... even when R does have a normal form.

The evaluation of arithmetic expressions is one example of a

system for evaluating trees by applying rules. In general, a subtree

replacement system is specified by

(1) a vocabulary V with which to label nodes of trees

(2) a set IF of trees with labels in V

(3) a set IFt of rules (pairs of trees)

(4) the binary relation	 on IF defined by the application of rules to

trees at nodes.

Application of rules is defined just as in our example. First,

match the left half of a rule against the subtree of R at some node.

Second, replace that subtree by the right half of the rule, so that R

becomes a new tree S. We write R = S. We remark that this

matching and replacement process is similar to the way a grammar's

rules are applied to strings in formal language theory.

Suppose a subtree replacement system has property (a): normal

forms are unique. The system defines an unambiguous notion of

1-6

semantics for trees: the "meaning" or "value" of a tree is its unique

normal form, if any. Normal forms are defined by a simple mathe-

matical system, and knowledge of their properties will presumably be

helpful in choosing an efficient sequencing mechanism to actually find

them. If property (b) holds too, then the choice of sequencing mecha-

nism is free from concern about infinite computations. If property (b)

does not hold, then we must try to choose a sequencing mechanism

that finds a normal form for every tree that has one, but at least we

are assured that the normal forms we do find are correct.

Subtree replacement systems are defined formally in Chapter 2,

where sufficient conditions for uniqueness of normal forms are

established. (Property (b), the finiteness of all sequences of appli-

cations of rules, will not be studied in any detail in this thesis.) The

Main Theorem (5.6) in Chapter 2 asserts that every "unequivocal" and
 closed ti 	 i subtree replacement system s " Church-Rosser. " It is not

very difficult to establish that several important systems are-unequivo-

cal and closed; it is quite trivial to prove that normal forms are unique

in Church-Rosser systems. Formal definitions for the words

"unequivocal" and "closed" and "Church-Rosser" are in Chapter 2,

but the intuitive content of the se.notions can be sketched here.

We begin with the Church-Rosser property. Suppose that S and 5'

are trees that can both be derived from a tree R by applying rules. Is

there a tree T that can be derived from both S and S' by applying rules?

A Church-Rosser system is one where the answer to this question is

always affirmative. If one sequence of applications of rules leads from

R to S and another leads from R to S', then both sequences can be

1-7

extended so as to meet at a common tree T. If S S' then both trees

can be processed further and neither can be a normal form for R.

Therefore normal forms are unique in Church-Rosser systems. To

exploit this observation we need sufficient conditions for the Church-

Rosser property that are easier to verify than the property itself.

We therefore consider "unequivocal" and "closed" systems.

A subtree replacement system is unequivocal if the set of rules

is a partial function on trees: no two rules have the same left half.

Our example from arithmetic is such a system. If p -k /i is a rule

then q, has the form a(x) or	 where a is an arithmetic operator

while x and y are numerals. The right half cli must be of the form z,

where z is the numeral representing the result of applying the oper-

ation denoted by a to the numbers denoted by x or x and y. Because

the operations are singlevalued, z is determined by a together with

x or x and y. Therefore cli is determined by q, and there could not be

another rule q - " with.

The evaluation process in an unequivocal system is still non-

deterministic. At most one rule is applicable at any node in a tree

because there is at most one rule whose left half is the subtree rooted

at that node, but there may be several nodes where rules could be

applied. The rules

(i) X(47,23) - 1081

and

(ii) ! (6) -k 720

are both applicable to the tree at the top of Figure 1-1. Applying (i)

leads to the tree

1-8

(1) X (-(1081, 981), ! (6)).

Applying (ii) leads to the tree

(2) X(-(X(47, 23), 981), 720).

By applying (ii) to (1) and (i) to (2), we can derive

(3) X(-(1081, 981), 720),

so the difference between (1) and (2) is only transitory. Our system is

indeed Church-Rosser, and in part because it is unequivocal, but there

is a subtler phenomenon involved as well: applying (i) at one place in

a tree does not interfere with the attempt to apply (ii) somewhere else.

Having derived S from R and S' from R, - we know just which rules we

wish to use in deriving some common tree T from both S and 5'; we

also know that we can indeed apply these rules.

Now we must complicate our example in order to show how rules

might interfere with each other, but not seriously enough to prevent the

system from being Church-Rosser. We add conditional expressions to

our arithmetic. In any expression of the form

if P then A else B

we say that the conditional operator C has the operands P, A, B. We

introduce true, false, and predicate symbols for building up test

expressions P. To evaluate conditional expressions we use a set of

rules that includes

T((true,T(),(T7,) -k)

and

(iv)	 720,X(47, 23)) - 720.

1-9

If (iii) is applicable at a node n in a tree R, so that the subtree

of R at n is C(true,T(6),X(47,23)), then (ii) is applicable at the second

son of n. Call this node p. Applying (iii) at n would destroy the oppor-

tunity to apply (ii) at p; applying (ii) at p would destroy the opportunity

to apply (iii) at n. No permanent harm is done, however. Suppose we

apply (iii) at n, so that R is replaced by a tree S that is like R except

that the subtree of S at n is T(). Applying (ii) at n in S. we get a tree

T that is like R except that the subtree of T at n is 720. On the other

hand, suppose we apply (ii) at p so that R is replaced by a tree S' that

is like R except that the subtree of S' at p is 720. Then the subtree of

S' at n is	 7,5Z(V,	 so we may apply (iv) at n to derive a

tree T' that is like R except that the subtree of T' at n is 720. But

this means that T =T.
The reason that (ii) and (iii) can interfere at all is that (ii) is

appliLable at the second son of the root in (iii) and hence at the second

son of any node in a tree where (iii) is applicable. The reason that

such interference does not destroy the Church-Rosser property is that

another rule (iv) can compensate for an application of (ii) that preempts

an application of (iii): applying (ii) and then (iv) has the same effect as

applying (iii) and then (ii). The rule (iv) is formed from (iii) by

applying (ii) at the second son of the root in C(true,!(6),X(47, 23)) and

at the corresponding node (it happens to be the root) where ! (6)

reappears in ! (6) on the right half of (iii).

In general we are concerned about interference between rules

whenever a little rule -p -k iji is applicable inside the left half 	 of

a big rule	 Applying cp - cu in	 leads to a tree q. If

1-10

we can apply q -k at appropriate places in 'o to form a tree

such that	 is a rule of the system, then we say the system is

closed. Figure 1-2 illustrates this idea under the assumption that

cu is applicable at n in	 and .t p and q in

In our example with (ii), (iii), and (iv), the appropriate nodes in

were obvious, but for the general theory we must define just what

kind of assignment of "corresponding" nodes in 0 0 to each node in

will be allowed. In Chapter 2 we define a residue map for	 -k

to be any assignment of sets of nodes in 00 to nodes in	 such that

certain conditions hold. The most important of these is that, whenever

n is a node in	 and q is one of the "residues" assigned to n in

then the subtree of ip o at q is a copy of the subtree of 	 at n. Any

little rule 'p - 0 applicable at n in 	 will then be applicable at each

residue of n in 00 . By applying p -k cu at n in	 and at each resi-

due of n in qjO , we can form a pair of trees	 -k 0 1 . The crucial

property of a closed subtree replacement system is that 	 is a

rule of the system. In that case the interference between 'p -k cu and

can be shown to be harmless. As we remarked earlier, the

Main Theorem in Chapter 2 asserts that every unequivocal closed sub-

tree replacement system is Church-Rosser.

The Main Theorem and some other abstract results from Chapter 2

are applied to various situations in the succeeding chapters. The first

application is to recursive definitions.

A function may be defined by an equation of the form

Ax) : ...

1-11

4)1: A

-A

Figure 1-2. The rule	 ' Is applied at n in epo and at

p and q In	 to form another rule ço1

1-12

where the ... is built up from x and constants and previously defined

functions. This is an explicit definition and its meaning is clear. It is

not so clear how the factorial is defined by.

(1)	 f(x)	 if x = 0 then 1	 x f(x-1),

since the name of the function we are defining reappears on the right.

In general we could write a system of equations

f 1 (x) := e1

	

-	

that looks very much like an explicit definition except that some of the

f, f 2 ,... may reappear (or recur) in some of the e 1 , e 2 ,... . Perhaps

f 1 does not itself recur in e 1 , but if f 1 is in e 2 and f2 is in 6. then the

definition is still not explicit and still in need of further explanation.

Such systems of equations are called recursive definitions.

McCarthy [34, p. 421 explained such definitions in terms of a

nonde termini stic algorithm for calculating values of recursively defined

functions. For example, one could evaluate conditionals, multiply

numbers, appeal to (1), and so on to compute f(1) as follows:

f(1) ==' if 1 = 0 then 1 else 1 X f(1-1)

if Qjqe then 1.	 1 X Al - 1)

=='1Xf(l-1)

=' 1 X f(0)

then 1 else 1Xf(0-1))

= 1 X (L true then 1 else 1 X f(0-1))

=1x1

=1.

1-13

According to this algorithmic explanation, the function defined by (1) is

the set of all ordered pairs (., r) of numbers such that f() can be

evaluated to Y7 by some sequence of applications of the formal rules

specified by (1) and by the computations of the given functions. In

general (although not in this particular example) this is only a partial

function: for some values of there may be no formal computation for

f() that terminates at a numeral.

Recursive definitions may also be explained semantically by

considering them as implicit definitions. Just as

(2)	 Y2+Y-6=O

implicitly defines the set of numbers 12, -31, any one of which will make

(2) a true statement if substituted for Y, the recursive definition (1)

implicitly defines a set of partial functions, any one of which will make

(1) a true statement :(for all relevant values of x). In this example

there is just one solution: the factorial function {(, i'	 = r}.
In Chapter 3 we extend the McCarthy calculus by allowing a choice

betsreen two classes of variables for the x's in definitions like (1). The

chOie will bethé same as the choice between call-by-value and call-

by-name in ALGOL 60 [38, §4.7.3]. McCarthy's algorithmic expla-

nation is formalized by subtree replacement systems and it is shown

that recursive definitions specify singlevalued partial functions despite

the nondeterminism of the evaluation algorithm. (As with any nondetermi-

nistic algorithm, it is still possible that one attempt to compute f() will

succeed while another goes into an infinite computation.)

A recursive definition defines one partial function under the

algorithmic explanation and a set of partial functions that solve its

1-14

equations under the semantic explanation. Are there any solutions?

Is the algorithmically defined function one of the solutions? Which

one? Morris [37, Chap. 3, Thm. 21 conjectured that the algorithm

specifies the minimal solution: the partial function which solves the

equations and is extended by every other solUtion. (Strictly speaking,

we must introduce a new datum oo and work with total functions, but

the preceding approximation to the conjecture is accurate enough for

this preliminary sketch.) In Chapter 3 we verify this conjecture.

When restricted to definitions that call all their parameters by value,

our Validity Theorem (8.4) is closely related to the "first recursion

theorem" [26, §66, Thm. 661: any partial recursive functional IF has

a unique minimal fixed point defined by formal calculations using the

set of equations that specifies T.

Chapter 4 applies the theory to the full lambda calculus, including

eta and delta rules as defined by Curry and Feys [14, Chap. 31. We

add a new operator symbol 'y to represent application of one lambda

expression to another, so that a lambda expression such as Xx.x(yz)

corresponds to the tree	 3 (x, 3 (, i))), wherein the root is labelled

by X, the first son of the root is labelled by x, the second son of the

root is labelled by-'y, and so on. The beta, eta, and delta rules are

expressed as rules in a subtree replacement system.

The classical Church-Rosser theorem [14, Chap. 4] asserts that

the lambda calculus is Church-Rosser modulo a certain equivalence

relation: if S and S' can both be derived from a lambda expression R,

then there are equivalent lambda expressions T and T' such that T can

be derived from S and T' can be derived from 5 1 . We must be content

1-15

with T ^ T' in many examples. The equivalence relation involved is

essentially the same as the i-elation between j cos (x+y) dy and
7r	

0

fcos(x+z) dz: equivalent expressions are the same except for the

arbitrary names of dummy 'Variables. This relation is usually defined

by saying that R is equivalent to S if R can be transformed to S by a

sequence of "alpha conversions," but this simple definition is quite

awkward in actual use. In Chapter 4 we introduce a new definition that

permits a higher degree of mathematical rigor than the usual one. (In

Appendix B we prove that our equivalence relation is indeed the same

as the one used in [141.) For the sake of simplicity in completing this

introductory sketch, we will ignore the difference between equivalence

and equality of lambda expressions. The actual technical exposition in

Chapter 4 will be extremely careful about this distinction.

The main result of Chapter 4 is a relatively simple proof of the

classical Church-Rosser theorem using a divide-and-conquer strategy.

We consider the whole lambda calculus as a "union" of two parts: one

defined by beta rules and the other by eta and delta rules. The beta part

is divided into two stages by new sets of rules called "gamma" and

"sigma." Gamma rules detect subtrees of the form (X(, S), R), which

correspond to "beta redexes" (Xx.S)R in ordinary notation, to which

beta rules might be applied. Rather than replace such a subtree by the

result [R/x]S of applying a beta rule, a gamma rule replaces

(3(x, S), R) by (R, , S), where o is a new symbol introduced to mark

places where beta substitutions have been "requested." The sigma

rules "perform" the substitutions that gamma rules request, deriving

[R/xl S from a (R, x, S). Using results from Chapter 2 and various ele-

mentary properties of the lambda calculus, we show that gamma and

1-16

sigma rules define Church-Rosser subtree replacement systems and

that these systems can interact to simulate beta rules. The net result

is that the beta part of the lambda calculus is Church-Rosser. By a

direct application of the fact that unequivocal closed subtree replace-

ment systems are Church-Rosser', we also show that the eta-delta

part is Church-Rosser. To complete the proof we then apply results

from Chapter 2 to the effect that appropriately connected Church-

Rosser parts form Church-Rosser wholes.

Chapter 5 applies the theory of subtree replacement systems to

finite tree transducers and describes the use of these transducers in

compiler design. We analyze syntax-directed compilation as a sequence

of five processes (which would be implemented as coroutines in

practice):

(1) Lexical analysis transduces the source program (a string of

characters) to a string of terminal symbols from a context-

free grammar.

(2) Context-free parsing assigns a "ranked parse tree" to the string

of terminal symbols; this tree displays the way the grammar

generates the string.

(3) Lexical filtration verifies that the character strings in the

program corresponding to terminal symbols in the ranked parse

tree do not violate restrictions such as the ALGOL 60 prohibition

of transfers into a block.

(4) Semantic analysis transduces the ranked parse tree, whose nodes

are labelled by context-free productions, to a "coding tree" whose

1-17

nodes are labelled by code-building operations: operations on

machine code that can readily be programmed in assembly

language or other languages appropriate for compiler writing.

(5)	 Code generation performs the operations specified by the coding

tree.

There are helpful mathematical models for the difficult aspects

of lexical analysis, context-free parsing, and semantic analysis.

These three processes provide the lexical filter and the code generator

with such explicitly structured data that lexical filtration and code

generation are rather straightforward.

Finite tree transducers provide a model for semantic analysis

and are discussed in detail. These devices are generalizations of the

well-known finite transducers (often called "generalized sequential

machines with final states" or "deterministic a- transducers") which

provide a model for lexical analysis. To see how the two classes of

abstract device are related, we consider string transducers as

restricted Turing machines. A finite string transducer has a single

tape on which the input is originally written. The tape head begins at

the left end of the input and can move only to the right. Whenever the

head reads an input symbol, it erases that symbol and writes out a

short string of output symbols (creating some new tape squares if

necessary) before changing control state and moving on to the next in-

put symbol. In a top-down finite tree transducer the tape head begins

at the root and moves downward toward the leaves. (Bottom-up tran-

ducers are also considered in Chapter 5 but will be ignored in this

1-18

preliminary sketch.) As with finite string transducers, there are just

finitely many possible control states associated with the tape head, and

only finitely many responses to each (state, input symbol) combination

are possible.

Whenever the tape head reads an input symbol, it erases that

symbol and writes out a small portion of the output tree before changing

state and moving down to the next input symbol. Here there is a compli-

cation unknown in the case of string transducers: if the current input

symbol is on a node with more than one son, then there are more than

one 'next" input symbols. In order to use one-way tape motion without

arbitrarily discarding all but one son, we allow the tape head to split

into several independent heads, each with its own control state, so that

for each "next" input symbol there is a tape head that moves down to it.

Although such behavior is extremely awkward to formalize in the usual

style of automata theory (as in [24]), it can be obtained easily from a

subtree replacement system that uses additional nodes labelled by states

to record the positions and states of tape heads. A finite tree transducer

is specified by a subtree replacement system under restrictions appro-

priate for expressing the way tape heads are to move.

Several important properties of finite tree transducers are con-

sidered in Chapter 5. A transducer is partial deterministic if there is

at most one response to each (state, input symbol) combination and is

total if there is at least one response to each such combination. Trans-

ducers that are both partial deterministic and total are deterministic.

Since the tape heads are not synchronized, tree transduction is still a

nondeterministic process with "deterministic" transducers, but we show

1-19

that the nondeterminism is harmless. Specifically, partial determinism

implies that the subtree replacement system is Church-Rosser, so that

the output tree is determined by the input tree, while totality implies

that there is at least one output for every input.

A transducer is linear if it never makes more than one copy of a

portion of the input: whenever a tape head moves down to a son of a

node, it does not split into more than one head for that son. Finite

string transducers are trivially linear, and theorems on string trans-

ducers may require the addition of linearity to the hypothesis before

they can be extended to tree transducers.

The transduction computed by a transducer is the correspondence

it establishes between input and output trees. Chapter 5 concludes with

a study of the question of whether the composition of two transductions

of a certain type is also a transduction of that type. After discussing

the practical significance of constructive proofs that classes of trans-

ductions are closed under composition, we construct the product

transducer 111 A H for any top-down finite tree transducers ll1 and

such that the output vocabulary of fl1 is the input vocabulary of

Elaborating slightly upon theorems of Rounds [46] and Thatcher [52],

we note that partial determinism, totality, and linearity are inherited

by 1T 2 A H if possessed by ll1 and III 2' and that

(Transduction computed by 11 2 A	 =

(Transduction computed by 11 2 o (Transduction computed by

if 111 and 11 are deterministic. Finally, we show that there is a pair

1-20

of linear partial deterministic transductions whose composition is not

computable by any top-down finite tree transducer, deterministic or

nondeterministic.

2. Terminology

Standard mathematical notations are used as much as possible.

We sometimes abbreviate "for all x in IN" by (YxE IN), "there is a

y less than z such that" by (2y <z), and so on. The abbreviation 2

is used for "there is exactly one" or "there is a unique"; this symbol

is less widely known than V and 2.

For any sets X and Y, X X Y is the set of all ordered pairs (x, y)

such that XE X and y Y. A map or function F : X 	 Y is any sub-

set of X Y such that, for each XE X, there is at most one YE Y

with (X,y)EF. The domain DomF is {xExI(ayEY)((xy)EF)}.

Thus

Dom F = {xE XI (2! YE Y)((x,yE F)}

also. If Dom F = X then F is total; otherwise F is partial. For each

XE Dom F, the unique y E Y such that (x, Y) E F is denoted F(x) or

Fx, depending on which is more readable in each context.

A total function F : X - Y is injective iff

(Vx, x' E X)(Fx = Fx' implies x = x')

and is surective iff

(VyE Y)2XE X)(Fx = y).

1-21

A map that is both injective and surjective is bijective. A bijective

function is also said to be a bijection.

Given functions F : X - Y and G : Y -. Z, we set

G° F ={(x,z) 1 (By (E Y)((x,y) E F & (y, z) E

so that G o F X -k Z and

Dom(G o F) ={x c Dom F I Fx E Dom G}.

The same equation may be written more succinctly as

Dom(G o F) = F '(Dom G)

where, for any subset B of Y,

F 1 (B) ={x E DomF I Fx E B}.

For any y E Y we also write

F_ 1 (y) ={x E Dom F I Fx = y}.

Any set == of ordered pairs is a relation. We write	 y

rather than (x, y) E ', but a symbol like 	 is sti being used as

the name of a set. Equations like

are well-formed and mean exactly what they say about sets of ordered

pairs. Round brackets are used liberally to make such equations

readable. When (==) ç lB X lB we say that = is a relation on lB.

The composite of relations =j and 	 is defined by

(= =) ={(x,z)j (2 y)(x=j y &y=z)}. 1	 2

If F and G are functions then they are also relations and we have

(FG) = Go F.

This reversal is unfortunate but unavoidable so long as we apply

functions from the left (as is standard) rather than from the right

(as would be more elegant). The best way to have composition

operations for both functions and relations is to retain the raised

circle ° for functional composition and pronounce it as tiafterl!

Juxtaposition with-no o always means relational composition rather

than functional composition.	 .1

The set {o, 1, 2, ...} of nonnegative integers is denoted V. The

letters i, j, k, J, K are often used as variables ranging over IN.

The set of all subsets of a set X is denoted 2. The set of all

subsets of V is then typed as 2#, but this notation is standard.

1-22

CHAPTER 2

THEORY OF GENERAL AND SUBTREE
REPLACEMENT SYSTEMS

This chapter presents the abstract theory of general replacement

systems (3) and subtree replacement systems (5). The preliminary

results in §3 apply to any situation where changes in the data , are

made in discrete steps, whether or not the data are trees. We define

the Church-Rosser property formally and establish conditions under

which the Church-Rosser property for a complex system can be

derived from properties of its parts and their interconnections.

Slight extensions of Brainerd's arithmetic of trees [6, §21 are

described in §4. We have added many mnemonics and have extended

some of the operations from single nodes to certain sets of nodes.

Using this formal computational technique in S5, we establish sufficient

conditions for the Church-Rosser property in subtree replacement

systems. Our main theorem asserts that every "unequivocal" and

"closed" subtree replacement system is Church-Rosser. In later

chapters it will be fairly easy but sometimes rather tedious to verify

that several important systems are unequivocal and closed. In order

to avoid burdensome repetition in these verifications, we present part

of the argument abstractly in §6.

3. General Replacement Systems

Let lB be a set of "objects" and let there be some means of

"replacing" one object by another. We write R == S and pronounce

this as "R can become S." For example, TB might be the set of all

possible arithmetic expressions, and R == S might mean that the

expression R can be transformed to the expression S by performing

one of the innermost indicated operations. In this and in many other

examples the replacement relation	 ' is not singlevalued, yet the

net result of a complete computation should sometimes depend only

on the starting configuration, not the specific path chosen. The

expression (14 + 32) X (93 + 8) can be reduced to a single numeral by

two additions and then one multiplication. It makes no difference

which addition is performed first, since there are no side effects or

round-off errors.

If R 0 can become R 1 . R 1 can become R2, ..., RK1 can become

RK. let us say that R 0 "can evolve" to RK. More precisely, the evo-

lution relation	 is the reflexive transitive closure of the becoming

relation	 . When R can evolve to RK and RK cannot become any-

thing new, then R is to be considered the "value" or "meaning" of R0.

To avoid unwanted connotations, we use the term "normal form"

instead. Systems in which normal forms are unique are appropriate

for evaluation or translation processes.

(3.1) Definition. Let TB be any set, = be any binary relation on TB.

Then S = (TB, ==) is a general replacement system (GRS). A member

T of lB is irreplaceable iff

(1) (VSE]B)(T==S implies T=S).

Let R, T E lB. Then T is a normal form for R iff

* (2) R = T & T is irreplaceable

where	 is the reflexive transitive closure of =.

2-3

When are normal forms unique? The condition that 	 itself be a

function is much too restrictive. Why not beg the question by adding a

sequencing mechanism 1fl to a GRS? The mechanism fl will look at R

and the various 5, T, .. . that R can become, then determine which one

R does becoxñe, perhaps after consulting some sort of record of past

steps.	 Suppose one has a mechanism 27 and then is given

a very different and complex mechanism fl' that purports to find the same

normal forms more cheaply. Whether we try to verify this claim by a

formal proof or by testing it on many "well-chosen" examples, it will

help if there is an invariant core of knowledge about the normal forms.

More precisely, consider three -ways that fl' might err in seeking the

normal form defined by :R for an object R:

(a) 40' finds a normal form 5' for R although 14 finds no normal form

for R.

(b) fl' finds a normal form S' for R although P finds a normal form

S with S * 5'.	 -

(c) nfl' finds no normal form for R although 34 finds a normal form S.

Error (a) is more properly considered an improvement: 	 gives out-

put where the original mechanism would enter an endless computation.

Error (b) cannot occur if normal forms are unique in the underlying

GRS. Uniqueness of normal forms provides no assurance that error (c)

does not occur, but the insights gained while proving uniqueness should

assist in the analysis of this problem. We therefore seek abstract suf-

ficient conditions for uniqueness of normal forms that do not depend on

how the system is implemented by a sequencing mechanism.

2-4

(3.2) Definition. A GRS	 = (lB , ==) is Church-Rosser iff

(VR,S,S' E 113)[(R=4 S & R== S') implies

(2TEIB)(S=4T &S'T)].

Normal forms are unique in Church-Rosser systems. The name

comes from the work of Church and Rosser [13] on this property for a

particular GRS. There are several easy but useful theorems telling

how to infer the Church-Rosser property for a complex system from

various properties of its parts.

(3.3) Definition. Let A l = (lB, =j=) and	 2 = (TB, =r*) be GRSs.

Then	 commutes with 2

(VR, Sip S 2 E TB) [(R+ S 1 & R+ S2) implies

(3TE]B)(Si+T & S2+T)].

It is convenient to diagram the Church-Rosser property and corn-

mutativity, as in Figure 2-1. The variables in the universal quantifier

(v R, S. S' E TB) are represented by filled circles and the variable in the

existential quantifier (El T E TB) is represented by an open circle. The

pairs in the relation == are represented by arrows joining some of the

circles.

In the right half of Figure 2-1 we add labels to the arrows so as

to indicate which of several relations is being asserted. In general, a

diagram asserts that, whenever given objects stand in the relations

indicated by the filled circles and the arrows joining them, then further

objects indicated by the open circles exist, so as to make the relations

indicated by the other arrows true also. As in the "diagram-chasing"

2-5

IN
	

IN

T	 T

(a)	 (b)

Figure 2-1. Diagrams for the Church-Rosser property (a) and

commutativity (b).

2-6

arguments in algebraic topology, manipulations of this two-dimensional

symbolism are sometimes clearer than the corresponding manipulations

of the usual one-dimensional symbolism of mathematics.

(3.4) Lemma. Let	 = (TB, -->) be a GRS. If there exists a binary

relation	 on TB such that

*	 *
(1) = (.)

(2) (VR, S. 5' E 113) [(R 	 S & R	 S') implies

(2TETB)(S=.T&S'.T)],

then 2 is Church-Rosser. I

(3.5) Commutative Union Theorem. Let {; I a E A} bea family of

Church-Rosser GRSs with S a = OB, =) for each a € A. Let

commute with	 for all a, b E A with a * b. Then the union

= (TB, ==) is Church-Rosser, where

(113, ==) = (lB , U
aEA a

Proof: We will use Lemma 3.4. Let

	

	 be U I 4

.,

so that (3.4. 1)

aEA

is trivial. To prove (3.4.2), we assume (R =' S & R = S') and show

that some T E TB has (S = T & S = T). For some a, b E A we

have R = S and R	 51. By the Church-Rosser property 1a =b

or by commutati.vity if a * b, some T E TB has (S =EJ T & S'	 T).

Therefore (S => T & S' == T), as wanted.I

The usefulness of this theorem is enhanced by the following suf-

ficient condition for commutativity, which will be proven by diagram-

matic reasoning.

(3.6) Commutativity Lemma. Let JA1 = (lB. =) and Z2 = (lB.

be GRSs. Let =' be the reflexive closure of =. If

(1)	 (VR, S 1 . S2 E B3) (R	 S1 & R == S2) implies

El (TElB)(S1=T&S2==T)],

then	 commutes with

Proof: We assume (1) and prove commutativity by two inductions.

For each K E IN we prove that

(2)(VR, S 1 , S 2 E IB)[(R =j S 1 & R =f S 2) implies

(3TE113)(Sl+T & S2=T)}.

When K = Owe let T be S 1 . To pass from K to K+1, suppose (2) holds

for K and that R, S 1 S 2 E 113have R =j S 1 and R 2 K+ 1 > S
2 . Let. P E 113

with R	 P	 S2. This situation is diagrammed by the filled

circles and arrows between them at the top of Figure 2-2. We call

this the working diagram. The procedure for adding to this diagram

(with the help of whatever we are assuming or have already proven)

will now be explained.

The induction hypothesis is expressed as diagram a in

Figure 2-2. (For obvious typographical reasons, we will write (Da)

rather than E1 ..) Suppose (Da) is cut on a mimeograph stencil and lay

this stencil over the working diagram. so that each filled circle of (Da)

is over a circle in the working diagram and each arrow joining filled

circles in (Da) is over a similarly labelled and directed arrow in the

working diagram. (The circles R, S 1 , P in the working diagram are

used.) Now print through the stencil, forming the circle Q and the

2-7

S2

2-8

II

Figure 2-2. Adding to a diagram with the help of two stencils.

2-9

arrows from S 1 to Q and from P to Q. This step corresponds to the

valid inference

R=S 1 &RP &P=S2

(Vr,s 1 ,pEIB)[(rs 1 &rp) implies

(QEIB)(s 1 Q &pQ)]

K
R==S &R=P&P=S2&

1	 1	 2	 2
(2QEIB)(S 1 Q &P=Q)].

The working diagram now consists of circles R, S 1 . P. S, and Q,

together with the arrows joining them.

Next we note that (1) implies the corresponding statement with

R	 S1 in place of R	 S1. Indeed, if R = S, we may simply let T

be S2 . We express this trivial extension of (1) as (Db) in Figure 2-2.

Consider (Db) as a stencil and lay it over the working diagram so that

each filled circle in (Db) is over a circle in the working diagram and

each arrow joining filled circles in (Db) is over a similarly labelled and

directed arrow in the working diagram. (The circles P, Q, S 2 in the

working diagram are used.) Now print through the stencil, forming

the circle T and the arrows from Q to T and from S 2 to T. This corre-

sponds to the valid inference

R==S &RP&P=S&
1	 1	 2	 2

113)

(V p q, 2 E 113) [(p ? q & =r 	
implie s

(9TE)(q=T&s2=T)]

(3) RS1&RP&PS2&

(3 Q, T E IB)(S 1 2 Q &P = Q & Q	 T &S2=T).

2-10

In adding open circles and arrows to the working diagram, we

have built up a diagram that says

(4)	 (V R, S 1 . S 22 P E IB)[(R =' S 1 & R	 P =-=> S2) implies

(9Q,TE)(S14QT&P=jQ&S2=T)].

Telescoping our two inferences, we can construct a deduction in first

order logic of (3) from the premisses (Da), (Db), and

R=rS1&R?P&P?S2.

Any such deduction can be mechanically transformed into a deduction

of (4) from the premisses (Da) and (Db) alone. The diagrammatic

manipulations in Figure 2-2 determine a proof of (4).

A more concise way to expound the diagrammatic proof of (4) is

shown at the top of Figure 2-3. Here we display only the final state of

the working diagram, together with numbers to indicate the order in

which portions of the diagram appeared during the process of choosing

stencils, laying them on the working diagram, and printing through.

To verify a diagram like this is to check that it could indeed be built

up from the filled circles and arrows between them alone, using only

available stencils.

In situations where it may not be obvious which stencils were

used or why they were true, we will add commentary in the text. Here,

for example, we can say that (Dl) was filled in because of the induction

hypothesis and that then (D2) was filled in because of a trivial extension

of (1).

Having deduced (4) from the induction hypothesis (2), we note

that (4) implies a statement similar to (2) but with K+1 in place of K.

S2

2-11

R

T

Figure 2-3. Induction steps in the proof of the

Conunutativity Lemma (3.6).

2-12

We have passed from K to K+1, and the inductive proof that every

K E IN satisfies (2) is complete.

We now prove commutativity by proving that each J E IN satisfies

(5) (VR,S 1 ,S 2 E IB)[(R 4 S 1 &R 4p S 2) implies

(2TE)(S1jT&S2T)].

When J = Owe may let T be S 2 . To pass from J to J+1 we verify the

diagram at the bottom of Figure 2-3. First (D3) is filled in by the

induction hypothesis and then (D4) is filled in by the fact that (2) holds

for all K E IN. I

Theorem 3.5 and Lemma 3.6 were discovered by Hindley [21,

Chap. 1, Theorem 1.2, Lemma 1.31 and independently by the author.

There is a condition weaker than commutativity which implies

that the union of two Church-Rosser GRSs is Church-Rosser.

(3.7) Definition. Let	 = (lB.) and t 2 = 03, be GRSs. Then

requests 22 iff

(VR,Si,S2EIB)[(R+ S 1 & R==2=> S2) implies

(TE]B)(Sl+T & S2(++)T)].

Figure 2-4 illustrates this definition.

(3.8) Theorem. Let	 j = (IB, and	 2 = (lB. =.=) be Church-Rosser

GRSs and let t request 2 2•	 Then the union	 = (lB.	 '), where

(lB. =) = (]B, == u==),

is Church-Rosser.

Si S2

2-13

I-

T

Figure 2-4. The GRS 1 = (]B,) requests the GRS

2-14

Proof: We will use Lemma 3.4. Let 	 be the composite (= j).

Then (') = () because

() c (= U =) = (=) & (:?) C () = ().

We must verify (3.4.2):

(YR. S, S' E IB) [(R : S &R	 S') implies

(2 T E 113) (S = T & S'	 T)].

We begin with the hypothesis (R 	 S & R =jp	 S') in Figure 2-5.

We fill in (Dl) because t is Church-Rosser. We then fill in (D2) and

(D3) because S8 requests 2 Finally, we fill in (D4) because 2 is

Church-Rosser. Since	 is transitive, we do have S j	 T and

S 	 T.I

Unfortunately, there seems to be no analog of Lemma 3.6 for

utrequests.0 Only the star in R j' S2 can be removed.

(3.9) Lemma. Let	 = (IB, =) and 22 = (IB,	 be GRSs, 2 be

Church-Rosser. If

(1) (.VR,S1,S2 E)[(R	 S1 & R	 S2) implies

(TEIB)(S 1 j4 T & S 2(= j=)T)],

then l requests 2•

Proof: We assume (1) and prove that 9t 1 requests 2 by proving that

each K E IN satisfies

(2) (YR. S1.S 2 EIB)[(R == S 1 & R	 S2) implies

(TEIB)(Sl+T & S2 (+4)T)].

S S,

2-15

r'

T

Figure 25. Diagram for the proof of Theorem 3.8.

2-16

We use induction on K. When K = 0 let T be S 1 . We assume (2) holds

for K and pass to K+1 by verifying Figure 2-6.
K+l

We begin with the hypothesis (R = S 1 & R 2 > S2) in

Figure 2-6. We fill in (Dl) by the induction hypothesis, (D2) by (1),

and (D3) because 2 is Church-Rosser. This proves

K+1
(VR,S 1 ,S2 EIB)[(R = S 1 & R 2 S 2) implies

(2 T E]B) (S 1 j	 T & S2 =p	 j T)].

which implies (2) for K+1 because	 is transitive. I

4. Trees and Substitution

This section describes some elementary concepts in the mathe-

matics of trees. It corresponds to arithmetic and basic algebra in

numerical mathematics. The system of arithmetic and the basic algebra

for trees sketched here are mostly taken from work of Brainerd [6, §2].

We have added convenient notations for string manipulation and many

mnemonics. We have also extended some operations on nodes in trees

to sets of "independent" nodes.

There are several common mathematical definitions for finite

trees with labelled nodes and a left-to-right ordering. The one most

appropriate here is often called "Dewey decimal" or "branch numbers."

This formalism has also been useful in studying regular sets of trees

[6] and syntactic complexity [40]. Strings of integers keep track of

relations among a tree's nodes.

For any set A, the set of all strings of members of A is A*. The

members of A need not be "symbols" because strings are defined to be

Si

S2

2-17

R

ii

Figure 2_6. Induction step in the proof of Lemma 3.9.

2-18

finite sequences. In particular, TN is the set of all strings of non-

negative integers. We name strings in A* by listing (within round

brackets and separated by commas) the names for the members of A

that occur in them. The null string is (), the string consisting of just

thirty-seven is (37), and the string consisting of three followed by

seven is (3, 7). This is already the systematic way to- , write argument

strings for functions of several variables, and it avoids all ambiguity

in naming strings of strings.

The length of a string w is denoted I w I. The set of all strings of

length J in A* is A. In particular, A 0 = {()}. For any string w and

any KEIN, K: w is the first K entries in w, in the same order as in w.

For wi K this is w itself. The positions in w are numbered

O,l,...,Iwi-1 and wewrj.te	 -

w=(w0,...,w111) =(w0,...,w1).

When the value of J is obvious or irrelevant, we write -1 rather than

J-1, as here. The word "last" is a good pronunciation for -1 here.

Concatenation is indicated by a dot:

(x0,...,x1).(y0, ... ,y 1) =(x0, ... ,x1,y0, --- ,y1).

This operation on strings extends to sets of strings in the obvious way.
*	 * For WEA ; X,YCA we have

w•X {wx I xEX} & X.Y ={x . yxEx & yEY}.

Now we define the father and left brother functions and the ancestor

and independence relations on 1N. (The reasons for these names will be

clear shortly.)

2-19

(4. 1) Definition. Let m, n E IN. Define the following:

(1) Fa(n) = (ml -1) : n 	 (for n *	 (father)

(2) LBr(n) =Fa(n).(n1-1)	 (for n 0; n_ 	 0) (left brother)

(3) m anc n 1ff mml : n = m	 (ancestor)

(4) mm n iff NOT(mancn or nancm)	 (independence)

(5) min iff (mm	 or m=n)

* (4.2) Definition. A tree domain is any finite nonempty subset D of IN

closed under the father and left brother functions:

Fa[D] C D & LBr[D] C D.

The way these definitions express the structure of a tree's nodes

is illustrated in Figure 2-7. For any n E IN that appears as a node in

this tree domain, Fa(n) is indeed the father of n in the usual intuitive

sense. Note that the sons of a node n in D are the members of the

set D fl Fa(n). From now on, "node" means "string of nonnegative

integers."

Once a tree domain is given, only the assignment of labels to

nodes is needed to specify a tree. (We are discussing labelled trees.)

(4.3) Definition. Let V be any set and let

V. {RI R: IN' - V (partial) & Dom R is a tree domain}.

Members of V are called trees.

(4.4) Definition. Let R, S E V,,.; n E Dom R.

(1) R/n={(p,x)I(n.p,x)ER}	 (subtreeof R at n)

(2) R(ni —S) = {(m,x)I(m,x) ER & NOT (nancm)}

U {(np,y) I (p y) E s}	 (Replace n by S in R)

2-21

Figure 2-8 illustrates a tree R whose domain is the set of nodes

shown in Figure 2-7. Now let us extend the idea of independence to

sets of nodes.

(4.5) Definition. Let M,N ç

(1)	 MIN iff (VmEM)(VnEN)(mJn)

(2)	 M is independent iff (Vm, n E M)(m±n)

The proofs of the following lemmas are trivial calculations.

*	 *
(4.6) Lemma. Let m,n E IN ; M,N c

*
(1) mancn iff (pEIN)(m•pn)

(2) M IN = In E]N I (m M)(m anc n)}

(3) (anc anc) C (anc) 	 (transitivity)

(4) MIN iff M.INflN.IN*=

(4.7) Lemma. Let R, S. T E V; m, n E Dom R; p Dom S; min.

(1)	 R(n	 S)/(n-p) = S/p	 (embedding)

(2)	 R(n - S(p - T)) = R(n - S)(np - T)	 (associativity)

(3)	 R(n - S)/n R/m	 (persistence)

(4)	 R(n - S)(m - T) R(m - T)(n	 S)	 (commutativity)

(5) For M C Dom R an independent set, we may define

R(M - S) = R(m 0 .-S) . . . (m - S)

(just R if M 0), where (m 0 , . . ., m 1) is any list

of the members of M; the order is irrelevant.

(6) Any set of leaves in Dom R is independent, where n

is a leaf iff Dom Rfl Fa(n) = 0.

2-22

h/\

R/(1): 	 b
\ S

qfJ /

x? igure 2-8. The subtree of R at (1) and the result of

replacing it by S.

2-23

(4.8) Definition. Let m, n, p E IN*. The quotient of n by m is defined

by

n/m=p 1ff m.pn.

For example, (3,4,5, 6)/(3, 4) = (5, 6) because (3,4) -(5,6) =

(3, 4, 5, 6). This notation is taken from [6, §21 without change.

(4.9) Lemma. Let R,SEV* ; m,nE Dom R; mancn.

(1) R/n = (R/m)/(n/m)	 (cancellation)

(2) R(n - S)/m = (R/m)(n/m - S)	 (distributivity)

The lemmas (4.6), (4.7), (4.9) are used constantly but rarely cited,

just as commutativity and distributivity for numbers are used constantly

but rarely cited in real analysis.

Diagrams like Figure 2-8 are too cumbersome as names of trees.

Tabulations like

S = {(O.p). ((0), q), ((1), c), ((2),r)}

are even more awkward. The natural algebraic structure of V leads

to more manageable nomenclature. Each a E V defines an operation :
(V,)*	 V. For example, consider (R, S) E (V) 2 , with R, S from

Figure 2-8. The tree a(R, S) is shown in Figure 2-9. Here we indicate

the value of a function F at an argument w by Fw (with no round

brackets because the scope of the argument expression is already clear).

The values of trees are indicated similarly: Rm, not R(m).

2-24

T:

X /I \c q/I\r
T	 (R,S)

Figure 2-9. The operation	 is applied to (R,S), where R,S are

from Figure 2-8.

2-25

(4. 10) Definition. Let a E V; K E IN; (R0 , ...R 1) E (V.,.)K

	

.,	 . Then

(R 0 , ...,R 1) = {(Q,a)} U Uj(k).m , y) I (m,y) E Rk}.

Applying this definition to R in Figure 2-8, we have

R =	 1(h())), (jO))

We will henceforth omit the names of null argument strings when

using this definition. When confusion between a E V and : (VJ -b

is unlikely, we will even omit the overlines, so that R has two abbrevi-

ated names:

R =])) = x(x,b(h,$),c(j)).

This amounts to the 'pseudoterm tt notation [50, §11. Several well-

known notations are essentially the same as this one. Cambridge Polish

notation uses (b, h, s) rather than b(h, s), while labelled bracket notation

uses [h,s].
b	 b
In many applications only the ranked trees are of interest: there

is a rank function p: V - IN and the symbols are thought of as

operators. Each operator x takes p(x) operands and so a node

labelled x in a tree should have exactly p(x) sons. The set of all ranked

trees with labels in V is denoted V and defined as follows:

(4.11) Definition. Let p:V — IN and set

= V# (p) = { R E V* I (Vn E Dom R)(I Dom R fl Fa(n)I =p(Rn))}.

The round brackets and commas in our algebraic nomenclature can be

omitted without any logical ambiguity for ranked trees. The result is

the well-known Lukasiewicz notation.

2-26

5. Subtree Replacement Systems

Subtree replacement systems generalize the main idea in rewriting

systems, where a replacement relation =' is defined on strings. For

strings X and Y, X ' Y iff some substring of X matches the left side

of a rule and Y is the result of substituting the right side of the rule in

place of that substring in X.

(5.1) Definition. A subtree replacement system (SRS) is any 4-tuple

= (V, IF, =, IR), where

(1) IF c V	 (IF is a forest.)

(2) lac	 (Write	 for (p,i) EIR.)

(3) (VREIF)(VSEV)

(R=S iff(-EIR)(3nE Dom R)

[R/n= (p & S=R(n4—)]).

(4) (==) C IFXIF.

This definition generalizes the notion of ==' in Brainerd's

tt regular systems' [6, Def. 3.2]. The crucial difference is that we do

not require that IR be finite. The use of infinite sets of rules will per-

mit us to describe many complex tree-manipulating systems within the

SRS framework. The complexity of these systems will be broken down

into two stages: specification of an infinite set of rules by some finite

means, and then the use of rules in this set to evaluate trees.

Note that condition (3) in Definition 5.1 tells how to apply rules to

trees in the forest F, while condition (4) requires that the results of

such applications be in IF too. (In all our examples (4) will be quite

trivial.) The system (IF, =') is therefore a GRS.

2-27

The same letter will often be used for an SRS and for the corre-

sponding GRS, and results from §3 will be used to construct Church-

Rosser wholes from Church-Rosser parts. For an initial source of

Church-Rosser systems we consider some formal properties an SRS

might have.

(5.2) Definition. An SRS G = (V,]F, ==>, lB.) is unequivocal iff lB. is a

partial function: no two rules have the same left side.

Many SRSs are unequivocal but not Church-Rosser. To see how

interference between rules can destroy the Church-Rosser property,

let us momentarily revert to string rewriting systems. Consider a

system with these two rules:

AB — CA	 A—*a.

Let R be the string bABc. By applying AB -k CA we can form

S = bCAc. By applying A -k a instead, we can form S' = baBc. Because

the substrings used to form S and S' overlap in R, the opportunity for

applying AB - CA was destroyed in passing to S'. No common string T

is derivable from both S and S'. Now construct a third rule by applying

A—k a to the A in AB and to the A in CA in the rule AB -k CA:

aB - Ca.

By adding this rule to the system we obtain the Church-Rosser property,

since both S and S' can now evolve to bCac.

In general we need systems "closed" under the operation of

applying rules to rules. Whenever a little rule q -k &
is applicable

inside the left half of a big rule q,,	 then replacing	 by i/i at

appropriate places in both	 and qj O leads to another rule

2-28

The net effect of applying o	 00 and then (p 	 V' can be obtained

by applying -p - ç& and then 	 cl'1.

The closure concept for rules that are pairs of trees is illus-

trated in Figure 2-10. Trees are actually simpler than strings here,

since two subtrees cannot overlap in a tree unless one includes the

other. A more complicated closure concept is needed to insure the

Church-Rosser property in an unequivocal string rewriting system.

In Figure 2-10 the little rule p -k Vi is applicable at a node n

inside the left half of the big rule	 More concisely:

go0/n = go, where n E Dom go0 and n	 We suppose that n has

ttresidueslt p and q where this same subtree appears after	 has been

replaced by cl'0: i0 /p =	 = (p0 /n. Replacing go by Vi at n in Dom go0

and at each residue of n in Dom rpo leads to a pair of trees

we could say that the little rule 47	 Vi has been applied to the big rule

In a closed system,
go -b	 is also in the set of rules

being used.

The formal definition is conveniently divided into two parts. A

"residue map" for	 -	 assigns to each node n E Dom a set

r(n) of residues" in Dom cu 0. Each node n may have any number

(including zero) of residues, but each residue p of n must have

00 /p = goo /n. We also require that independent nodes have independent

residues: if p 1 q in Dom then r(p) I r(q), where the independence

relation between sets of nodes is as defined in (4.5.1). (This additional

requirement is motivated more by technical considerations in the proof

of the theorem we are approaching than by the basic intuitive idea.)

2- 2

r(n)	 {p, qJ

Figure 2_1. The rule So	 >i/, is applied at n in go and at each of the

residues of n	 to form another rule go,	 >ib1.

2-30

(5. 3) Definition. Let 1. = (V. IF, ==, IR) be an SRS; ç - 	 'o E IR.

A function r defined on Dom	 is a residue map for this rule iff

(1) (V nE Dom p 0)[r(n) ç Dom i/i 0 & (V m E r(n))(ç)0/m (p0/n)}

(2) (V p. q E Dom (p0)(p I q implies r(p) I r(q)).

Now suppose that a residue map r[p0, ü' has been assigned to

each rule	 -	 and choose any specific rule 	 -	 Let r0

be r[q,0 , Vio l and let n E Dom	 In (1) above, we have m I m' when-

ever m, m' E r 0(n), so r 0(n) is an independent set of nodes. For any

tree Vj we can form	 = ç 0(n -) and cu 1 = 0(r 0(n) - 4. In par-

ticular, if some rule p -k cu has -p0 /n = p, then we can form the pair

of trees	 by applying .p - /i at n in	 and at each residue

of n in 00 . In a closed system c°1	 must also be one of the rules.

We will also require that nodes independent of n in be uneffected by

all this: if p 1 n in Dom , then p has the same residues in Vj as in

VJO

r[cp1,cuJ1](p) = r[p0,Vi0](p).

(Since	 = p0(n - 1i) and p 1 n, p is indeed a node in Dom ço 1 .) (This

additional requirement is motivated more by technical considerations

in the proof of the theorem we are approaching than by the basic intuitive

idea.)

(5.4) Definition. Let G = (V. IR, ==, IR) be an SRS. Then T is closed

iff it is possible to assign a residue map r[cp 0 ,	 to each rule

E IR in such a way that the following holds: whenever 	 -

- i E IR and n E Dom with n * () and p0 /n = ç, then

(1)

and

(2) (Vp E Dom	 J. n implies r[q 11 0 1 }(p) = r[ø0,i0I(p)I,

where

(3) = pe-__0) & 0 1 = 1P 0(r[q 0 100 1(n) 4-1/).

The evaluation of arithmetic expressions in §1 provides an

example of a closed SRS. If) is an ordinary arithmetic operator,

as in

23) - 1081,

we set r[ç00,] (n) = for all n E Dom 	 This is trivially a residue

map. If () is the special conditional operator C, then 	 is

either of the form

(*)C (True— , kb 0' w)

or of the form

(**)	 (false, w,	 -k

In the first case we set

{n/(1)} if (1)ancn
r[*](n) =

L0	 otherwise

2-31

for all n E Dom	 In the second case we set

2-32

{n/(2)} if (2) ancn
r[**](n) =

Lotherwise

for all n E Dom p0.

To see that r[*] is indeed a residue map in Definition 5.3, note

that (5.3. 1) is only nontrivial for a node n with (1) anc n. Since

=	 n/(1) is indeed in Dom qj O . Furthermore, the cancellation

law (4.9. 1) implies that each p E r[*](n) = {n/(1)} has

q'oI'	 (q0/(l))/(n/(l)) = /o/p.

We also need (5.3.2): independent nodes have independent residues.

For p 1 q in Dom q, we may simply note that b1 M and M I b for

any set M of nodes, unless both r[*](p) and r[*}(q) are nonempty. But

in that case we have p/(l) I q/(l) because p 1 q and (1) anc p and

(1) anc q. Therefore, r[*](p) I r[*](q) in all cases. (Similarly, r[**]

is also a residue map.)

To see that this system is indeed closed in Definition 5.4, suppose

that q 0 — 00 , q -k	 JR and n E Dom q,0 with n * () and ç00 /n = q'.

Then q 0	 cannot be an ordinary arithmetic rule because q, -k

cannot be of the form numeral -k	 . Therefore	 -k	 is as

in (*) or (**). Both cases are treated the same way, so we will assume

(*) for the sake of definiteness. As in (5.4.3), we set

= q70(n - /) &	 = 00(r[q0,/0] -

We must verify (5.4.1): q -k	 E ER. In(±rue,&0,w) = q' o,

there is only room for q 0/n to be the left half of a rule if (1) anc n or

(2)anc n. Suppose first that (1) anc n. Then

2-33

p 1 =

= (Fr ue,1i0(n/(l) *___1,),w),

while

	

ct'1 =	
4-	

= 'o'1	 tb).

Therefore	 -k	 is another of the rules for conditionals. Now

suppose that (2) anc n. Then

	

=	 ())(n - cu)

	

=	 cl'0, w(n/(2) -

cl/ i = 0(cu') = 00.

Therefore	 -	 is another of the rules for conditionals. In both

cases,	 -k	
E IR.

We must verify (5.4.2): for p 1 n in Dom p0 , the new set of

residues r [p 1 ,cl' 1] (n) is the same as r[ç00 ,4l/0](p). We saw above that

c' 1 	
is of the form (*), so r[q1,c1i1](p) is defined by the r[*]

equation:

({p/(1)} if	 anc
r[p1 , 1}(p)	 3

L çt'	 otherwise

Since r[p0 , cl'0] (p) is also defined by the r[*] equation, we do have

r[p1 , 0 1] (p)r[(90, 0](p).

In the next section we will show that any system whose rules can

be specified in a certain natural way is closed. The argument given

2-34

above is actually a special case of the argument in the next section;

these tedious verifications do not have to be carried out in every

concrete situation.

That an unequivocal closed SRS should be Church-Rosser is quite

plausible, but neither induction on lengths of derivations nor induction

on sizes of trees is appropriate. Induction on the sizes of certain sets

of nodes does work. The size of N ç IN *
is its cardinality INI. Given

an SRS T,= (V,]F,===,IR), we define a relation 	 on IF for every
*

N C IN . The union of all the relations =---4 will be called ==. When-
-	 N	 I

ever R == S, it will be possible to derive S from R by simultaneously

applying rules at all the nodes in an independent subset of Dom R.

* (5.5) Definition. Let 	 = (V, IF,==, lEt) be an SRS. For any N C IN

let (n01 .. .,n I -1) be a listing of the members of N and define =

to be the set of all (R, S) in IF X V such that

(1) N is an independent set of nodes in Dom R

(2) (8 Q	 E (VNt)

[(V i < IN)(R/n. = 0. & q. - O. E]R) & i	 ,i	 .i	 i

S R(n0 -	 . . . (n_ 1 - Vii)].
Now define

(3) (=).
NIN N

By (1) in this definition,	 is 5 unless N is actually a finite set

of nodes that is independent in the sense of (4.5.2). Suppose that N is

indeed an independent finite set of nodes. By (1) and (2), to say that

2-35

R S is to say that S may be formed from R by applying rules at the

members of N. The order of the listing (n0 , ..., n 1) is irrelevant by

commutativity (4.7.4). For any i < INI, we can show that

R(n 0 -	 ... (n.1 - Vi. 1)/n. = R/ni

by i applications of persistence (4.7.3), so that

R(n0..*-0...)(n	 =R(n0— 0). ..(n.'—.) i-i

by application of -	 at n1 . Therefore

INi
(==,) c (>) N

and == is actually a subset of F X IF because - is a subset of IF X IF. N

(5.6) Main Theorem. Any unequivocal closed SRS is Church-Rosser.

Proof: Let G = (V. IF, >,]R) be an unequivocal closed SRS. We will

use Lemma 3.4 to show that (IF, >) is Church-Rosser. Let =' be as

in Definition 5.5. Since (f') c (IN) whenever N is an independent

finite subset of N and == = çb otherwise, the union =' in (5.5.3) is

contained in U. Therefore == is indeed a relation on F.

We need (3.4.1): () =(We already have () C (),

so it will suffice to show that () C (f). Suppose R = S, so that

Definition 5.1 implies that some n E Dom R and some q, — /i E JR have

R/n=q, & SR(n—)).

In Definition 5.5 we have R	 > S and therefore R 	 S. as desired. {n}
We need (3.4.2):

2-36

(VR,S,S' E IF) [(RTS & R	 S') implies

	

(3T EIF)(S	 T & S'	 T)].

When RS and R	 S' we have R	 S and R	 S for

some N, N' C Dom R. The induction will be on I N U N' I. As often

happens in inductions, we must carry along more information than is

actually used at the journey's end. The extra information is the fact

that S and S' can both become a common tree T by a single step of

in which the nodes used are descended from nodes in NU N.

Specifically, we verify (3.4.2) by proving the following statement for

each KEIN:

(1)	 (VR,S,S'E IF) (VN,N'c Dom R)

	

[(R .S & R	 S' & IN U NF = K) implies

C1 P c Dom S)(F' C Dom S')(T E IF)

(S====> T & S'T &PUPPc(NUNf),IN*)].

We use the induction schema

(V K E IN)[(V k < K)(... k ...) implies (... K...)]

implies (VKEIN)(...K...).

Let K E IN and let (1) hold for all k < K. Let R, S, S', N, N' be as

in (1), with IN U N'I = K. Let rules 	 be applied at nodes n i in N

to form S, while rules	 -	 are applied at nodes n in N' to form S'.

We show how to choose P. F', T.

2-37

Case 1 (N I N') Let P = N'; P' = N;

T = R(n0 __) ... (nl 4- i)(nb 4- Vi()) ... (n	 -

Then F, F', T have all the desires properties by persistence (4.7.3) and

commutativity (4.7.4).

Case 2 (NOT N I N') Suppose some member of N is an ancestor of

some member of N'. After permuting the listings for N and N' as needed,

we may assume that some J > 0 has n o anc n for all j <J and

NOT(n0 anc n) for all j J. (The roles of primed and unprimed

variables can simply be reversed if no member of N is an ancestor of

a member of N'.) Let N 0-	 0 be N—{n} and Nbe N'—{n' I j <J}. Then

no I (N 0 U N I) by independence of Nb, transitivity (4.6.3), and the defi-

nitions (4.1.4), (4.5).

Case 2.1 (n0 = n' for some j <J; choose one.) Let R 0 be R(n0 -

Since	 is unequivocal, R 0 = R(n' *- 0!) also. We have

	

R ====) S & R	 >S' & IN0UN'-{n}I=K-1.

By the induction hypothesis there are F, P', T with S === T and S' == T
P	 Pr

and P UP' ç (N 0 UN' -{n}) .	 C (NUN').

Case 2.2 (n 0 * n, all j <J.) We wish to apply the induction

hypothesis to N 0 and N b, which do have IN 0 U NbI <K. We therefore

construct trees R 0, S0, Sb that are closely related to R, 5, 5' and that

have R —> S and R	 > 5' . The construction hinges on a rule -	 ON0 0	 °N	 0
'p - ci'. Intuitively, 'p -k 0 is the result of applying

2-38

Let residue maps be assigned to rules so as to satisfy the con-

ditions in the definition of closed systems (5.4). Let r[q7 0 , Vio } be the

residue map for	 Since {n/n0 I j <,J} is an independent sub-

set of Dom	 the sets

M = r[0, V' 0](n /n0) for all j <J

are independent subsets of Dom 	 with 1VI I Mk whenever j * k. The

union

M= U M.
:1< 3	 :1

is therefore an independent subset of Dom q) 0'

Define a pair of trees q' —	 by

(2)	 ... (n/n4—)

= 0(M -) ... (M

We claim that q' -k cu is in IR. Suppose not. Closure implies

(PO(nI /n o i- ct) -.. 0(M 0 4-- '4) E IR

by (5.4.1), so we must have 3 > 1 and there must be some j <J-1 such

that

-/E
A
(M	 -0!+,) TR j+1	 j

where

Q0(n/n0
4-) ...

0(M0)

But j applications of (5.4.2) imply that r[, Qi}(nç 1 /no) = M31 and

j applications of persistence (4.7.3) imply that '/(n!1/n0) =

2-39

In (5.4.1) we get a contradiction:

E R• +1

Therefore (-k ç& E IR.

Figure 2-11 will be verified next. Let

(3) R0=R(n04—li)

so =S(n0*—_)

S' =S'(n0—).

We will show that -b i/i may be applied to S' at n 0 , and that then

(4) S'—>S'.
{n0 }	 0

By J applications of distributivity (4.9.2) to (2),

= (R /no)(nb/no 4--	 (fl1/n0 -

= R(nb 4- (n?

By n0 I N and IN' I applications of persistence (4.7.3), this becomes

= S'/n0.

By ço S'/n0 ,	 E IR, and S = S'(n 0 i-) in (3), we have (4).

Because M is an independent subset of Dom Vi o and vo = S/n0.

n0 . M is an independent subset of Dom S. We will show that

(5) S
n0 .M 0'

where	 -b	 is applied at no . p whenever j <J and p E M3 . Suppose

<J and p EL M. By INI - 1 applications of persistence (4.7.3) and then

no

Sr

nol

R

2-40

T

Figure 2-11. Case 2.2 in the proof of the Main Theorem (5.6).

2-41

one application of embedding (4.7.1), we have

S/(n 0 •p) = R(n0 - cu).. .(n_1—cui1)/(n0.p)

= R(n 0 .—i0)/(n0.p)

= cu0/p.

By (5.3.1) in the definition of residue maps we have

=	 o' (n '/n) =

so that S/(n0 . p) = p. By IMI applications of associativity (4.7.2) in (3)

and (2),

S	 M —b')) 0=S(n0—cui0(M0----V4)...(-i

= S(n0—cui0)(n0•M0---- cu's).. .(n0.M...14-.--_

But S(n0 — cu 0) = S because S/n0 = TPOI so

M - i" S 0 =S(n .M o 0 – cuJb) ... (n . o	 J-1

This completes the proof of (5).

We now claim that

(6) R ==#S0 & R ------5'
N	 N' 0	 0

First we must show that R 0 E IF. By applying - 0! at n for

each j <J, we get

(7) R=R(n' 1	 0

By J applications of distributivity (4.9.2) and then by (2),

2-42

R(n — Vi b).	 r	 Mr -i	 -,/"o

n'	 11 = (R/n0)(n/n0—V4)... (j_i/no1_i)

= co0(n/n0 - t,). . . (n i/nO -

= 49.

Applying the rule - at n0 , we get

R(n)...(n 1 -u---)

.(n1..—ç(i!1)(n0

= R(n0 -v;)

because no anc n for all j <J. (Recall the definition of substitution

	

(4.4.2).) By (7) and R(n 0 _) = R0 in (3), we have R	 -_ R.

Therefore R 0 E IF.

Now we will show that R = S by applying (p. — cu. at n. for 0 No .0 1	 1	 1

each i with 0 <i < INI. Suppose 0 <i < INI, so that n I no and

persistence (4.7.3) implies that

R 0/n. = R(n 0 .—)/n. = R/n = (p.

in (3). By 1N 0 1 applications of commutativity (4.7.4) in (3),

S 0 = S(n0 —)

	

= R(n0-00)(n 1 — I ' j) .. . (n1 	 _ 1)(n0 — 5)

= R(n0 — 0)(n0 -)(n 1 ' 01 . (n_ 1 —

By no anc no we have

R(n0 — cl 0)(n0 - = R(n0 —

in the definition of substitution (4.4.2), so that

S0 =R(n0 — iP)(n 1 .'-01)...(n1 .—c('l)

= R 0(n 1	 . .(n_i -

This proves the first half of (6). Similar reasoning with n, ..., n' 1 in

place of n 1 ,...,n 1 and use of (4.4.2) to show

R(n—_&b).. .(n	 =R(n0—)

leads to the second half of (6).

By (4), (5), and (6), the upper portion (Dl) of Figure 2-11 is now

complete. Because IN 0 UNI = K - i -J <K, the induction hypothesis

yields P 0 . P, T with S0	 . T; S	 . T; P0 U P ç (N 0 UN) 1N.
P0	

P,
0

This completes the lower portion (D2) of Figure 2-11.

Let P =n0 •MU P 0 and P' n0}u P. By

(8)	 n0I(N0UN) & P0UPbc(N0U NI) .1N.

both P and P' are independent sets of nodes. By (5) and (4),

Dom S 0 — n IN C Dom S & Dom S' — n 0 • IN C Dom Sr.

But (8) implies that

P 0 c Dom Se— n• 1N' & P I C Dom S - n0 • IN

Therefore

P 0 C Dom S & P I C Dom ',

which implies that

PC Dom S & P' C Dom S'.

Thus P and P' are independent subsets of Dom S and Dom S', respect-

ively. By S 0 - T and In0 . MI applications of persistence (4.7.3) to
0

2-43

2-44

(5), we have ST. P By S	 j
0

T and one application of persistence

(4.7.3) to (4), we have S'	 T. Finally,

U ç	 (N0UN]N* ç (NUN') IN*.I

As we have remarked, some of the restrictions in the definitions

of residue maps and of closed SRSs are based less on the intuitive ideas

than on the need to show that q' —'1i E IR in the proof of the Main

Theorem above. In Chapters 3 and 5 these strong definitions are appro-

priate: all the SRSs are closed in the full technical sense. In Chapter 4

there will be a system that seems to be "essentially" closed but that

does not meet all the formal requirements. A complicated special con-

struction will be needed to imitate this SRS by the interaction of two

SRSs that do meet the requirements. It would be helpful if the defi-

nitions could be weakened so that unequivocal closed SRSs would still

be Church-Rosser but more systems would be unequivocal and closed.

The following modification of the closure concept is too weak to

support a Church-Rosser theorem, but it does have some uses in

Chapter 4.

(5.7) Definition. Let S = (V, IF, =,IR) be an SRS; IR 1'2

(PO —' 0 E1R 1 ; nE Dom q 0 ; n*(); MC Dom 0 with M independent.

Then	 - o is pseudoclosed at (n, M) with respect to 	 iff,

whenever q -k li E IR 2 and q7 0/n = ç, then there is some E V such

that

(1) 0(n-) -	 (M 4_i) E

(2) (VP E M)(0/p	 E

2-45

The set M is like the set r(n) of residues of n in a closed system,

but here we have only assigned a subset of Dom 0 to one node n in the

left half of one rule q. 	 We have not assigned a subset of the

right half's nodes to every hode in the left half of every rule. We do

require that M be independent, but çli0 /p need not be -p0 /n for p E M.

As is appropriate with so weak a method of assigning nodes in

to nodes in q, we say that the individual rule 	 is pseudoclosed

at the specific pair (n, M) of a node in 	 and "corresponding" nodes in

We do not require that every node in the left half of every rule

behave a certain way.

We require that some i/' E V. have

(a) 0(n -))	 - 0(M - 7) E

rather than the condition

(b) O(n)	 O([O,O](n) . —i) EIR

in the definition of closed SRSs (5.4). Since we may not have 1) 0 /p =

for all p E M and we may not have	 c/i, we must require

EIR2 separately.

In one respect we have strengthened the definition: (a) says that

the new rule belongs to the same subset 1R 1 of IR as does	 -
while (b) merely says that the new rule is in]R. This additional infor-

mation will be helpful in Chapter 4, where the rules of the lambda

calculus will quite naturally divide into two subsets.

A fragment of the proof of the Main Theorem (5.6) can be extended

to the context of pseudoclosed rules. Using the 	 notation defined by

(5.5), we suppose that R	 > S and R	 > S', where m anc m' m
{m}	 {m'}	 -

2-46

and the rule applied at m is pseudoclosed at (m'/m, M) for some M.

We will show that some T has S M > T and S' T. The formal

lemma yields additional information about the rules used to derive T.

(5.8) Lemma. Let 9, (V. F,==,]R) be an SRS; 1R 1 ,1R 2 C IR;

R, S, S' E IF; m, m' E Dom R. Suppose R =. S; R	 ,) 5';
{m)	 {m}

m anc m' *m; R/m—* S/rn E 1R; R/m'—ø S'/rn' EIR 2 . Suppose

M C Dorn (S/rn), independent, with R/m - S/m pseudoclosed at

(m'/m, M) with respect to(IR 1 .Then there is a T E IF such that

	

T	 (using rules in

5'	 , T	 (using a rule in 1R1).

Proof: Let (p o 	 be R/m— S/rn; n be m'/m; q,— /i be

R/rn' -k S'/m'. Let /i be as in Definition 5.7 and set 4i 	 ;

= 4'.i 0(M -?P), so that	 E IR, by (5.7.1). Let T be

R(m—/) 1). Then

S'/m = (R/m)(m'/m - cu) = p0(n	
=

T = R(rn' - i)(m - /)) = S'(m -

So S' == T using a rule in 1R 1 . On the other hand, suppose p E M. so

that tp 0/p -k ji EIR2 by (5.7.2). Then

S/(m . p) = (S/rn)/p cui0/p

T = R(m - 0(M -)) = S(rn . M -

MI So S	 —> T using rules in 1R2.

2-47

6. Parameters and Rule-Schemata

In order to apply the theorem that every unequivocal closed SRS

is Church-Rosser, we must consider ways to specify SRSs and ways

to ascertain whether they are unequivocal and closed from such speci-

fications. It is impossible to inspect every rule in an infinite set of

rules; it is impractical to continue to specify sets of rules informally

as in our example of arithmetic with a conditional operator. We need

a flexible general method for specifying sets of rules that can generate

important infinite sets from finite specifications and that lets us verify

properties of the sets of rules by inspecting these specifications. Such

a method is introduced in this section.

In practice it is usually easy to ascertain whether SRSs are

unequivocal, so we will concern ourselves only with whether they are

closed. In §5 we illustrated the definition by laboriously checking that

arithmetic with conditional expressions forms a closed SRS. The crux

of the matter was simple: If 	 E IR and ço— çO E lEt is
applicable at n in Dorn	 with n * (), then	 -k	 has the form

(*)	
o'

or

(**)Iff (false, w,	 -

and the new rule	 -	 has the same form. Since every rule of that

form is in lB.	 -	 is in IR.

This situation is represented pictorially in Figure 2-12, where

two "schemata" represent the two sets of rules in (*) and (**). The

hatched triangles in the figure represent "arbitrary trees": more

2-48

/i\ true	 A AA
ti_ false

iigure 2-12	 Schemata for the rules governing conditional expressions.

No

2-49

precisely, we are to substitute any operator-operand structure for the

vertically hatched triangle (wherever it appears) and any operator-

operand structure for the horizontally hatched triangle (wherever it

appears). The set of all "instances" of a schema obtainable in this

way is the set of rules generated by the schema. A set L of schemata

generates a set IRL of rules.

Rather than use pictures as schemata, we will introduce special

symbols. Let u and v be new symbols, neither numerals nor arithme-

tic operators. The pair of trees

(1)

is a schema generating all the rules of form (*). The pair of trees

(2) E (false,u,v)—v

is a schema generating all the rules of form (**). The new symbols are

"parameters" for which trees may be substituted to form rules. Associ-

ated with each parameter is a "domain" - the set of trees that may be

substituted for that parameter in schemata.

For the rest of this section, we suppose that sets V and U are

given and that to each u E U there has been assigned a subset D of

Members of U will be called parameters; each parameter u has

domain D. In some examples we will have Ufl V = , but in others

we will have U C V. The results of this section will be stated in such

a way that both possibilities (and any other relation between U and V)

are allowed.

A schema for generating rules ("rule-schema") is to be a pair of

trees in (VU Three of the formal properties of the schemata (1)

and (2) will be required of any rule-schema R — S:

2-50

(a) Parameters occur only at leaves (defined as in (4.7.6)

of R and S.

(b) No parameter occurs twice in R.

(c) Every parameter that occurs in S also occurs in R.

(6.1) Definition. A template is any R E (VU U), such that R(U) is

a set of leaves in R. A rule-schema is any pair R -k S of templates

such that

(1) (VuEU)(IR(u)I	 1)

(2) (V u E U)(S 1 (u) * 0 implies R * 1 (u) * çb).

To form an "instance" of a rule schema, we must choose a

specific tree in the domain of each parameter involved, then replace

subtrees of the form u for u E U by the appropriate chosen trees.

This is the familiar method of substituting "expressions" for "variables"

in algebra and logic.

(6.2) Definition. Let R - S be a rule-schema. If (u0,..., uKl)

with K E IN is a list Of the members Of {u E U I R 1 (u) * } and

Tk E D uk for each k <K, then ç - is an instance of R -k S, where

-1 (1) R(R(u0)	 T0).. . (R (u 1)	 T1)

= S(S(u0)	 T0). . . (S'(u 1)	 T1).

If L is a set of rule-schemata, then

(2) IRL {--Ev*xv*kR—sEL)

((P - ç& is an instance of R -k S)}.

2-51

Given an instance ço - ' of a rule-schema R -b S, there is a

natural way to define a residue map for q - . Let n E Dom p.

There is at most one node m E R 1 (U) such that m anc n because

R 1 (U) is an independent set of nodes. If there is such a node m let

u = Rm and let T = (P/m, so that T E D U in the previous. definition. For

each node p in S with Sp = u, we have cu/p = T because T was substi-

tuded for u at p also. Therefore

0/(p-(n/m)) T/(n/rn) = (tp/m)/(n/m) =

by /p T and two applications of cancellation (4.9.1). Thus p - (n/rn)

has the basic property of residue nodes: a copy of -p/n appears at

p . (n/rn) in ip. All such p . (n/rn) will be considered residues of n.

(In particular, if n should have no ancestors in R_ 1 (U), then n has no

residues in O.)

(6.3) Lemma. Let -k cu be an instance of a rule-schema R -k S.

Define a map from Dom q, into the set of subsets of INC by

r(n) = {p (n/ m) I m E R_ 1 (U) & m anc n & Sp = Rm}.

Then r is a residue map for q—

Proof: Let n E Dom ço,. We must show that r(n) C Dom cli and that

= q'/n for each q E r(n) in order to verify (5.3.1) in the definition

of residue maps. If r(n) = these are trivial, so we may assume

r(n) * 0. Some m E R 1 (U) has m anc n and

r(n) = {p . (n/m) I Sp Rm}.

Let u Rm and T = q'/m, so that T E Du and cl has the form

kb = S(...)(S1(u)—T)(...)

2-52

where (...) represents substitutions at nodes that are independent of

S(u). Since n/rn E Dom T by n E Dom (p, each p E S(u) has

p . (n/rn) E Dom ri. ' By Vi/p T and two applications of cancellation

(4.9.1), we have

= T/(n/m) = ((p/m)/(n/m) = (p/n.

This completes the verification of (5.3.1).

We must verify (5.3.2): independent nodeshave independent

residues. This is implied by

(V n, n' E Dom ço)(V q E r(n))(V q' E r(n'))(q anc q' implies n anc n'),

which we will now prove. Suppose q E r(n); q' E r(n'); q anc q'. For

some m anc n and some m' ancn' we have m, m' E R- 1 (U). For some

P E S(Rm) and some p' E S(Rm') we have q = p . (n/m) and
*	 *

q'=p'.(n'/m'). Byqancq' we have p•IN fl p'•]N *, so (4.6.4)

implies that NOT(p I p'). But p and p' are leaves in S. so we must have

P p'. From qanc q' it now follows that n/mane n'/m'. But p = p'

also implies that S- (Rrh)n S(Rm') ç, so that Rm and Rm' are the

same parameter. In the definition of rule-schemata we have m m' by

(6.1.1), so that n/rn anc n'/m. This implies that n anc n', as desired.I

Replacing parts of .an instance (p - çlí of a schema will often lead

to another instance of the same schema. If we replace only parts of p

that were substituted in for parameters, if these replacements do not

result in substitutions from outside the domains of parameters, and if

the appropriate replacements are made at residues in i also, then the

result	 should still be an instance of the schema.

2-53

(6.4) Lemma. Let a rule p - cli be an instance of a rule schema

R - S. Let N be an independent subset of Dom qp and let Q[n] E Va,

for each n E N. For any listing (n 0 ,. . . 'K-1 of the members of N,

set

(1)

T = O(r(n0)—Q[n0])... (r(n1)..-.--Q[n1]),

where r is the residue map from the previous lemma. For each

m E R 1 (U), let (Na',. . . ,N_ 1) be a listing of the members of N

descended from m. Suppose

(2) (Vk<K)(mE Et - '(U))(mancnk)

(3) (Vm E R (U))[(q/m)(N/m -Q[N])...(N/m — Q[N']) E DRI.

Then 42 - cli is an instance of R - S.

Proof: Let (i.,. . . '"Jl be any listing of the members of R- 1 (U) and

let u. = R. for each j <J. Write N J rather than Nk3 for N when

IA

M = JA.. For each j <J, set

Q[N]). . . (N 3 1/M— Q[N1]),

so that T. E Du by (3). We therefore have an instance q' -k ?Pof
J	 3

of R -k S, where

(4)

= S(S(u 0)— TO) ... (S(u1)-1).

We will show thatand 3 =

First we note that (2) establishes a bijection between indices i<K

and pairs of indices (j, k) with j <J and k < K	 such that n = N m .
3

2-54

The listing

(N... ,N° 1 . ,N1,

is a permutation of (n0, ... fl (). and such permutations may be ignored

by commutativity (4.7.4). In (1) we have

= p(N—Q[N])...(N	 ..—Q[N])

= [R(,.z0—(P/0)..

(N.-Q[N])...(N' ...—Q[N]).

We write each Ni as. (N/) and use commutativity (4.7.4) and

associativity (4.7.2) to rearrange this as

= R(.- (p/M0)(N/0 -

(N 0 1 / 0 4—Q[N1]))...

J
.—Q[N0- 1])...

(N'/i2_ 1-Q[N]))

Comparison with (4) shows that =

Whenever n. = N J , the residue map from Lemma 6.3 evaluates to

r(n.) = S_ 1
(U	 (N/.).

Applying this to (1) and rearranging by commutativity (4.7.4), we get

= (S(u0) . (N/) - Q[N])

(S- (u 1) . (N/ 1) - Q[N])

-1
= [S(S

-1
 (u0)—q,/.z0)...(S (uj1)—q2/ii1)]

(S'(u0) . (N/ 0) - Q[N])...

(S(u .1) . (N/ 1) - Q[N]).

2-55

Letting S(u) play the role that m j played in the proof that = , we

can now repeat that reasoning to show that = -I

At last we have our general method for specifying closed SRSs:

generate the rules from rule-schemata and use the above lemma to

establish closure. More precisely, we have the following theorem:

(6.5) Rule-Schemata Theorem. Let L be a set of rule-schemata and

let ct be an SRS of the form	 = (V. IF, ==, la L). Suppose that each

E IRL has

(1) (3 1 R - S E L) ('p0 -k	 is an instance of R -k 5)

(2) (V n E Dom	 (V 'p	 E IRL)
[(n) & p0 /n=q) implies

E R(U))(mancn&(q,0/m)(n/m4—) E

where R is the left half of the rule-schema R - S with 	
-p as

an instance. Then T is closed.

Proof: Since each rule is an instance of a unique rule-schema,

residue maps may be assigned to the rules by Lemma 6.3. We must

verify the properties of closed systems in Definition 5.4. Suppose

E IR L' n E Dom p0; n	 'p0/n q. Set

*.-

= 00(r['p01 00](n) —ç&).

We will apply Lemma 6.4 with the independent subset N = {n} of

Dom	 and the tree Q[n] = assigned to n. By (2), some m R_ 1 (U)

has m anc n and (p0/m)(n/m.— Q[n]) E DRm 50 (6.4.2) and (6.4.3)

2-56

do hold. Therefore	 i is an instance of R -k S by Lemma 6.4.

We do have	 -	 E lRL as required by (5.4.1).

We must show (5.4.2): any p with p 1 n in Dom	 has

r[co 1 . 0 1] (p) = r[ço. 00] (p).

In Lemma 6.3 we defined r[-p1, 0 1](p) by an equation involving a schema

R1 ----.s 1 of which	 is an instance. But R 1 - S 1 = R - S by

(1), so r[1 , c&1] (p) is defined by the same equation as r[q00, 001(p). I

The following chapters will apply the Rule-Schemata Theorem (6.5)

and the Main Theorem (5.6) to show that various SRSs are

Church-Rosser. The condition (6.5.2) is not very difficult to test in

practice. Although only a very special case of Lemma 6.4 has been

used so far, the full generality will be needed to establish additional

results in the application areas.

One application for this theory that will not be treated in detail by

later chapters should be mentioned here. Hindley [personal communi-

cation] has found conditions that imply the Church-Rosser property

for systems of combinatory logic. When applied to rule-schemata in

the special format used in combinatory logic, these conditions insure

that the logical system is unequivocal and closed when expressed as an

SRS; the proof that this is so is a specialization of the proof of the

Rule-Schemata Theorem (6.5). The Church-Rosser property then

follows from the Main Theorem (5.6).

Hindley's conditions were inspired by Sanchis' proof of the

Church-Rosser property for one specific combinatory system [47, §2,

Lemma 11. Implicit in Sanchis' proof are broad outlines of the proofs

2-57

of (6.5) and (5.6), as restricted to this one set of rule-schemata and

the set of rules it generates. The simplicity of this particular system

made it appropriate to ignore all details and to carry out the proofs on

an intuitive level, as in our preliminary discussion motivating the

closure concept.

CHAPTER 3

APPLICATIONS TO RECURSIVE DEFINITIONS

This chapter applies the theory of subtree replacement systems

to recursive definitions. In §7 we extend McCarthy's calculus for

recursive definitions by introducing a choice between two types of

parameter that corresponds to the choice between call-by-value and

call-by-name in ALGOL 60. We show that formal calculations using

recursive definitions define singlevalued partial functions despite the

nondeterminism of the evaluation algorithm.

Recursive definitions are commonly written as sets of equations,

and it is natural to assume that the functions they define are solutions

to the equations. In8 we formulate this idea precisely and prove that

it is correct. When restricted to definitions that use only call-by-value,

our result is closely related to Kleene's "first recursion theorem"

{26, §66, Thm. 261: any partial recursive functional ' has a unique

minimal fixed point defined by formal calculations using the set of

equations that specifies T. (A detailed comparison is given at the end

of §8.)

7. An Algorithmic Explanation

A function may be defined by an equation of the form

f(x) := .

where the ... is built up from x and constants and previously defined

functions. It is not so clear how the factorial is "defined" by

3-2

(1)	 f(x)	 if x= 0 then 1 else xXf(x-1).

The circularity of this definition renders it useless without some further

explanation. Following Morris [37, Chap. 3], we recognize two sorts of

explanation for recursive definitions. An algorithmic explanation tells

how to use (1) in formal computations. For each argument there is

a procedure for transforming the expression f() to a numerical value

r. A careful algorithmic explanation for recursive definitions with

conditional operators is given by Manna and Pnueli [32, §3]. A

semantic explanation treats (1) as an equation that may or may not be

solved by any particular choice for the function f. The function speci-

fied by (1) is defined to be one of the solutions to the equation.

This chapter uses an elaboration of the McCarthy calculus for

recursive definitions [34, p. 42] to deal with two basic problems posed

by algorithmic and semantic explanations. The Main Theorem (5.6)

leads to satisfactory and intimately related solutions for both. We treat

the "functionality" problem in this section and the "validity" problem in

the next section.

First we review McCarthy's concept of recursive definitions

from [34]. A recursive definition is a set of equations of the form

f(a 0 , ... laki) :	 e

where f is a "function letter" used to name the function we are

defining, and e is any expression built up from function letters, names

of given functions that have already been defined, the if then... else

construction, variables chosen from among a 0, ... , ak_i. and constants.

In [34] there can be only one equation beginning with f for each function

letter f, and the arguments a 0 , ... ,ak_i must all be variables. These

3-3

restrictions will be slightly relaxed below, but they can be imposed

here for the sake of simplicity in this preliminary sketch.

Our example (1) is a recursive definition if we consider the data

space to be the nonnegative integers and the given functions to include

the test for equality (), multiplication (X), and subtraction (-). The

general concept is not restricted to primitive recursion or even to

integer data.

Each equation

f(aO, ... , akl) := e

in a recursive definition generates a set IR [f] of rules of the form

f(Ao, ... ,Akl)_-E

where each A i is an expression that may be substituted for a i and E is

the result of performing all these substitutions in e. For each given

function g, we also have a set IR [g] consisting of all rules

77

where rl is a constant representing the value of g for the constants

For conditional expressions we also have the set IR[C]

of all rules

if true then E else E' - E

if false then E else E' - E'.

Expressions are to be evaluated by matching subexpressions against

the left sides of rules, then replacing these subexpressions by the

right sides of the rules.

3-4

We have sketched the essence of the nondeterministic algorithm

used by McCarthy for evaluating expressions. A formalization in

terms of subtree replacement systems (and a more specific comparison

with [34]) will be given later. For the moment it is enough to agree

that we can associate with each recursive definition an algorithm for

evaluating expressions. Given such an assignment of algorithms to

recursive definitions, we have an algorithmic explanation of these

definitions: a definition L defines a function Lf, for each function

letter f, such that

Lf(0 , ... ,	 = TI

whenever	 and rj are constants such that the formal

expression f(, ...	 evaluates to ii. (This means that the algorithm

has at least one computation that begins with f(0 , ... ,) and halts at

TI not that every computation that begins at f(, ... 	 must halt at TI.)

In general, Lf will be only a partial function: for some choices

of	 ...	 there may be no computations by the algorithm that halt

at a value TI. We do expect Li to be a function: for each (, ... ,

there should be at most one TI such that f(0 , ... , can be evaluated

to TI.

When an algorithmic explanation is nondeterministic (or involves

asynchronous parallel processing), the singlevaluedness of the relation

between input and output needs to be shown. The general remarks

motivating this functionality problem in §3 are applicable here. They

can be fleshed out with examples where ingenious implementations of

recursive definitions could save a great deal of time [35, §2.2] or

space [49].

3-5

Now we can proceed with the formal development. For the rest

of this chapter, let ID be the data space of objects on which we compute.

For each k in the set IP of positive integers, we consider any set Gk of

given functions. Each g E Gk is a total function g: ID - ID, whose

computations are taken for granted. In applications the given functions

are the hardware capabilities, library subroutines, and so on that the

programmer can use as black boxes. The examples in this section will

use ID = IN and given functions from arithmetic. The actual results apply

to arbitrary data spaces with at least two members.

In order to write recursive definitions of new functions in terms of

old ones and each other, let F be an infinite set of function letters for

each k E IP. The sets F are to be disjoint from each other, from ID,

and from the sets G.. Finally, let W and X be infinite sets that are

disjoint from each other and from all the previous sets. These sets

will supply the variables" in the intuitive sketch of the McCarthy

calculus. For reasons that will be clear shortly, we say that W is the

set of call-by-name parameters and X is the set of call-by-value

parameters.

The given functions, function letters, parameters, and data com-

bine to form a total vocabulary V with a rank function p : V - N, as

follows:

VIDUWUXUFUG where F= U F
kElP

G=U Gk

kElP

p(f) = k for f E Fk U Gk

p(a)=O for aEIDUWUX.

3-6

The forest V = V#[p] defined by (4.11) consists of all operator-

operand structures for well-formed expressions constructed from this

vocabulary. The surface syntax in implementations is of no concern to

us here. For example, the pair of trees involved in defining factorials

by (1) is shown in Figure 3-1, which assumes C E F 3 ; ,X, -- E G2;

f E F 1 ; x E X; ID = IN. (Subtraction is made total by the usual expedi-

ent of setting - = 0 when < i.) We will retain the overlines in

the algebraic nomenclature (4.10) in order to prevent confusion between

the tree (,) with three nodes and the value +(4, 6) = 10 of the function

+ at the argument string (4, 6). Thus +(4, 6) = +(5, 5) but

The pair of trees in Figure 3­ 1 is to be a rule-schema in the sense

of Definition 6.1. The set U = W U X is to be the set of parameters.

The domains of the parameters are specified as follows. 	 -

(7.1)	 (Vu E W)(Du = V#)	 call-by-name

(Vx E X)(D = ID #)	 call-by-value

Call-by-name is used in the definition of the conditional operator

needed for our definition of factorials. To compute conditionals, we

use any two schemata of the form

(2) (,u,v)	 u

C(no, u, v)	 v

where

(3) CEF3 & u,vEW & yes, noEID & u * v & yes* no.

In our example with ID = IN it would be natural to use 1 for yes

and 0 for no. In any situation with I ID I 2 we can form two schemata

as in (2) such that (3) holds. Note that conditional expressions will be

3-7

f	 x

Figure 3-1. Operator-operand structures in the

definition of factorials.

3-8

evaluated in the proper way by the set of rules generated by (2). To

evaluate ?(P, A, B) we must first evaluate P, and (P, A, B) should

have no value unless P can evolve to either yes or no. If P can

evolve to yes we should forget about B and attempt to evaluate A.

The rule

C(yes,A,B) —A

expresses this. On the other hand, if P can evolve to —no, we should

apply

B

after evaluating P. If we think of (2) as the definition of a "procedure"

C and we think of C(yes,A,B) as a call on C with A as the "actual

parameter" in place of the "formal parameter" u 3 then A and B should

be passed unevaluated, as in ALGOL 60 call-by-name [38, §4.7.3.21.

If A has a value but B does not, then it is incorrect as well as inef-

ficient to try to evaluate all subexpressions of C(yes, A, B) before

evaluation of the whole expression. In Figure 3-1, on the other hand,

there is no need to call the procedure f before evaluating A in f(A).

Substituting A for x would lead to three independent evaluations of A

(one for each occurrence of x in the procedure body) if A does not

have the value 0. Because we used a call-by-value parameter x in

Figure 3-1, the only way to evaluate f(A) is to let A evolve to 	 for

some E ID and then use the rule

f() -b C(= V 0), 1,X(, f(--(, 1))))

to enter the procedure f, as in ALGOL 60 call-by-value [38, §4.7.3.1].

If A has no value, then neither does f(A).

owe

All instances of Figure 3-1 and (2), together with all the rules like

no and -(2, 1) -k 1 that describe the given functions, define

the set IR of rules in an SRS	 (V, V,===, IR). For any 	 K'T, the

tree f() should have a unique normal form 5 such that 	 = r, even

though the only sequencing is that implied by the use of X or ID rather

than W at some of the argument positions in the schemata. Like parallel

program schemata [25, § 11, a has only permissive control: at any point

in the computation, the next operation to be performed may be any one

of the operations permitted to start next. Whenever a subtree of the

working tree has the form ë(,A,B) for 	 {yes.no}. we may apply

the appropriate rule to this subtree, or we may apply a rule elsewhere.

It is easy to write a set of rule-schemata that does not define a

function, such as {f(-k , f(ii) -k 41. We formalize conditions

under which sets of schemata could reasonably be expected to define

functions. The left half R of each schema R - S should be of the form

with f E F and a. E IDU WLj X for all i < k. This is

equivalent to saying that R E V with R() E F and Dom R c IN 0 U IN'.

(Recall that lN i is the set of all strings J long of nonnegative integers.)

As in our schemata for conditionals, there may be two schemata R—.S

with the same root label R(), but then there must be differences between

constant arguments that will separate the instances of the two schemata.

(7.2) Definition. A recursive definition (RD) is any set L of rule-

schemata in V X V such that

(1) (VR—SEL)(ROEF & DomRc&U1N0)

(2) (VR—S,R'----S'EL)([R--S*R'—S' &RO=R'O]

implies C1 i E IN) {R(j),R'(j) E ID & R(j) * R'(j)])

3-10

In defining rule-schemata in §6, we required that every parame-

ter occurring in 'S should occur in R when R - S is a rule-schema

(6.1.2). Therefore no two rules have the same left half in the set

lRr	 i of instances of any schema R —k S, where instances are

defined by (6.2). By (2), ço * q" whenever to - cu, (pt	 cl" are instances of

R—'S, R'—S' E L and R'—'S' * R—S. Therefore no two rules in IRL

have the same left half.

(7.3) Definition. Let L be an RD and let IR L be the set of all instances

of members of L. Define an SRS T, L by

(1) IRgiv ={o''-1	 rig E G & g 0 ,	 r}

(2) T L = (V, V#==iIRgiv U IRE).

For each f F, the set of ordered pairs

= {(,n) E1DXID	 in a L}

will be the partial function represented by f when the definition L is used.

Definitions (7.2) and (7.3) extend the McCarthy formalism in two ways.

First, they allow members of ID as well as parameters to appear at

argument positions in the left sides of schemata, as in the "proper

programs" of E. K. Blum [3, §1 This flexibility renders the original

ad hoc treatment of conditionals [34, p. 42, Rule 11 unnecessary. To

write an RD using if else, we simply add

C(yes, u. v) - u

C(no, u, v) - v

to the other schemata. Second, our definitions introduce an explicit

choice between call-by-value with X and call-by-name with W.

3-11

Examples such as [34, p. 37] and the inspiration from LISP suggest

that McCarthy meant to use call-by-value exclusively, except of course

for the A and B in Lf P then A else B. Yet his evaluation rules speci-

fied call-by-value for given functions [34, p. 42, Rule 2] and call-by-

name for function letters [34, p. 42, Rule 31.

The "proper programs" of E. K. Blum [3, §41 in the Herbrand-

Gödel-Kleene formalism are a special case of our system. The crucial

restriction on "proper programs" is that all parameters are called by

value: only numerals may be substituted for variables in formal calcu-

lations. Rather than speak of applying rules to trees, Blum speaks of

deducing "equations" from sets of "equations." The initial set of

"equations" corresponds to our set L of schemata. The rule of

"substitution" [3, p. 254] deduces instances of schemata, the rule of

"replacement" [3, p. 2541 allows our SRS rules to be applied to parts

- ' of "equations," and the rule of "counting" [3, p. 2541 evaluates given

functions. (The assumptions IDIN; G 1 = {successor function};

for all k> 1 are also made in [3], but the y a r p irrelevant to

the functionality problem.)

We have assigned domains to the parameters in (7.1) and defined

RDs to be certain sets L of rule-schemata in (7.2'. Our algorithmic

explanation for RDs is provided by the SRSs 	 in (7.3): to arrive at

a value 77 for an expression A by formal calculation s to let A evolve

to ri in L In order to solve the functionality problem we will now

apply Chapter 2 to the SRSs

For any RD L, the set of rules IRgiVU IR L in GL may also be

described as

3-12

IR givL1R UL giv

because each q: -k ill E IR giv is a schema with no parameters and with

itself as the only instance. The SRS M does have the form

(V, IF, ==, IRM) for M a set of schemata, so it is appropriate to use

the Rule-Schemata Theorem (6.5).

(7.4) Lemma. Let L be an RD. Then W U X is a set of parameters

and IR giv U L is a set of rule-schemata such that

(1) IR giv	 L =	 giv U L

(2) Each	 E IR giv U lR is an instance of just one

R — SEIR. UL. giv

(3) Suppose	 E IR giv U IR L is an instance of R -k S E IRgiv U L;

n E Dom c; n 0 . Then some rn E ROD U W U X) has mane n

and either q 0m E ID or

R E W & (V (P E V#)[(coo/m)(n/m —) E DR].

(4) L is Church-Rosser.

Proof: For U = WU X, we have assigned a domain D C V to each

u E U by (7.1). We defined L to be a set of schemata in (7.2). The set

IR giv was defined in (7.3.1); since no parameters are used in TRgjv it

is trivially a set of rule-schemata. The set IR 	 u L of instances of
giv

members of IR ivU L has

IRIR giv UL= IRIR giv	 L U IR 	 giv U

because the only instance of a member of lRgiv is itself. This proves (1).

3-13

Suppose	 E IRgivU	 If (p0() E G, then (p0	 is

an instance of itself in lRgiv and of no schema in IRL, since () F.

If q() c F, then	 is an instance of just one R — S E L (by

(7.2.2) in the definition of RDs) and of no schema in IRgivi since -() 4 G.

This proves (2).

Suppose	 °o E IRgivU IR L is an instance of R - S E L.

Suppose n E Dom	 with n 0 (), so that n begins with an integer no

such that n0 <p((p0()). Set m = (n0), so that m E IN and manc n. In

the definition of RDs, (7.2.1) says that R has the form f(a 0) ... , a)

with f = q(), k = p(f), and a E IDLJ WU X for all i < k. Therefore,

Rm E IDU WU X. To complete -the proof of (3) we consider two cases:

Case 1 ((p0m E ID) Nothing more needs to be shown.

Case 2 ((p0m ID) We must show that Rm E W and that any	 V

has ((p0/m)(n/m -'-- Ji) E DR. If Rm E]D then cp0 /m = R/m because

all the substitutions are made at nodes independent of m. If Rm E X

then (p0/mE ID# because D	 ID# for all x E X. Both Rm E ID and

Rm E X would contradict 0m ID, so we must have Rm W. But

then DRm = V and ((p0/m)(n/m -)) E V, so ((p0/m)(n/m—)) E DRm

and (3) has been proven.

We use the Main Theorem (5.6) to prove (4). As we noted in

discussing Definition 7.2, (7.2.2) implies that no two rules in IRL have

the same left half. Since the given functions are singlevalued. no two

rules in IRgiv have the same left half. Since F n G = Q. these facts

imply that T is unequivocal. We must show that Q L is closed. By (2)

and the Rule-Schemata Theorem (6.5), it will suffice to prove (6.5.2):

whenever -b	 E IRL U IRgiv	 -k	 is an instance of

3-14

R - S E lRgivL) L, n E Dom	 n () and P0/fl = çü, then some

m E R_ 1 (WU X) has m anc n and (q 0/m)(n/m - T)) E DR. Let m

be the node from (3). If p0m E ID then m = n and 'p - cli has the form

cli for = 'p0m E ID. But there are no such rules in]RgIVU IR L'
so we have p0m ID. Therefore (3) implies that R E W and

('p0/m)(n/m -)	 as desired.0Rm

The result EvalL R of evaluating a tree R E V under an RD L

will be defined as whenever 	 ID and R	 in 'L• It will be

convenient to make evaluation a total function by letting a new object

be EvalL R whenever R has no normal form in ID #. Although evaluation

is not a bottom-up algorithm, it will be shown that replacing a subtree

R/n of a tree R by a tree S that evaluates like R/n does not change the

evaluation of R.

(7.5) Evaluation Theorem. Let oo ID and set ED = ID U {oo}. Let L

be any RD. There is a unique surjection

(1) EvalL : V -k ID (total)

such that

(2) (VR E V#)(V E ID)(EvalL R = iff R ==	 in

(3) (VR, S E V#)(R == 4 S in G L implies EvalL R = EvalL S)

(4) (VR, S E V#)(Vn E Dom R)

(EvalL S = EvalL R/n implies EvalL R(n - S) = EvalL R).

3-15

Proof: If R == , then	 is a normal form for R in LL. By (7.4.4)

and uniqueness of normal forms there is just one function EvalL satis-

fying (1) and (2). Since EvalL = for each E]D and EvalL a =

for each a E W U X, this function is surjective. Now (3) follows from (2)

and the Church-Rosser property. Finally, suppose R, S E V#;

n E Dom R; EvalL S = EvalL R/n. We show that EvalL R(n'—S) = EvalLR.

Case 1 (EvalL S * co .) Let EvalL S = = EvalL R/n. Then

R==R(n—) by R/n==

R(n - S) == R(n) by S ==

Therefore EvalL R(n - 5) = EvalL R(n -) EvalL R by (3).

Case 2 (EvalL S 00.) We may still have a finite value for EvalL R.

Case 2.1 (EvalR*°0 .) Let KEIN;	 c- ID; (Ro,...,RK)E (V#) K+l with

For each k <K, let a rule	 be applied at a node mk in R to

form Rk+l. Let r be the residue map for	 defined by

Lemma 6.3. We will define a subset N of Dom R for each k K.

Intuitively, suppose that n has been painted red, that a red node stays

red when a rule is applied there, and that residues of red nodes are

painted red whenever a rule is applied. Then N is the set of all red

nodes in Rk. Formally:

N 0 ={n}

Nk+l = { p E Nk I NOT mk anc p} u ({ mk} flNk) U

{ m.q l(p E Nk)[mk p 1k & q E rk(p/mk)I}.

3-16

For each k K, N is an independent subset of Dom R such that

(5) (Vp E Nk)(EvalL Rk/ p =

by (3) and the fact that R/n : Rk/p whenever p c Nk.
For each k K set

(6) Tk=Rk(Nk4__S).

For each k < K we claim that

(7) Tk==Tk+l.
*	 -¼ If m E	 then T = Tk+l , so we may assume m 	 NklN . Let

Nk/ mk be the set { p/ mk I P E N & m anc p}. For each 1 E Nk/mk,
we have .2 E Dom	 with .2 * (). We may apply the sublemma (7.4.3)

to	 to show that .2 has an ancestor u in left half	 of

schema such that either	 E]D or

(8) E W & (vu' E V#) [(k1) (.2 1 -) E D].

But (L E]D would imply m = .2 and then R/mk . - E	 which would

contradict (5), so (8) must hold for all 1 E Nk/mk. We will apply

Lemma 6.4 to show that

(9) q)k(Nk/mk - S) -.* k(rk(Nk/mk) - S) E giv

The left half	 of	 kS schema plays the role of ' T R" in

Lemma 6.4, and we have just shown that each .2 E Nk/mk has an

ancestor z in	 1 (WU X), as required by (6.4.1). By (8) and

we have

-S) . . . (N 1 / - S) E V

for each such M, where (N',, ... , N') is a listing of the members of

3-17

Nk/mk descended from M. This is just what (6.4.2) requires, so (9)

does follow from Lemma 6.4.

Direct calculations using the elementary properties of trees from

§4 show that this rule is applicable to T at m and that Tk+l is the

result. First we note that

Tk/ mk = Rk(Nk4—S)/mk = (Rk/mk)(Nk/mk-.- S)

=

so that Tk/mk matches the left half of the rule in (9). By m 	 Nk.]N*,

the definition of Nk+l can be rewritten as

Nk+l =	 E Nk l mk I p}Li[mk.rk(Nk/mk)].

Therefore

Tk+l = Rk+l(Nk+l—S)

= Rk(mk.Eik)({pE NkIMk' p}.—S)

(m k' rk(N k/mk) —S)

= Rk(Nk -_ S)(mk — i.)(mk. rk(Nk/ mk) i- S)

= Tk(mk_k(rk(N k/mk) —S)).

This completes the proof of (7).

By (6) and (7) we have

R(n'—S) =To==LTK=(NK4_s)

while (5) implies that N = çI. Therefore EvalL R(n - S) = = EvalL R.

Case 2.2 (EvalL R = oo.) Suppose EvalL R(n - S) # °°. Then

EvalL R(n - S)(n - R/n) * oo by the reasoning of Case 2.1. But

3-18

R(n - S)(n - R/n) = R, so this is absurd. Therefore

EvalL R(n - S) = 00 = EvalL RA I

If L is an RD and f E F then we could define a partial function

ID by the evaluation process:

=EvalLf(O,...,l).

The totai function Lf: 1D 	 - ID defined below includes this function

and is more convenient. Our ultimate interest is usually in

= LI fl (ID P X ID) for some one f E F, but the mathematics of

{LhIh E v} tells much more about	 than the mathematics of

{Lh P (D p X]D)h E F} alone.

(7.6) Definition. Let L be an RD, Tc, be any member of V such that

EvalL T 00 = oo For each 0 e ID set

(1) —0. else

For each I E V and all 0	 set

(2) Lf(60, ... ,6 1) =EvalL f(0 O , ... ,Ol).

When f E ID we have Dom LI = { O} and the only value assumed is

Lf() = I. When I E W U X we have Lf() = co. When f E G, LI is the

natural extension of f from a function on 	 to a function on]—DP(f)

Lf(0 0 , ... , o) Is f(0 0 , ... ,0) if each 0 E ID and is oo otherwise. When

f E F the values of LI depend on the choice of L and may be finite despite

infinite arguments. For example, if L includes the schemata for

conditionals, then LC(yes, 17, oo) = 17.

3-19

What have we really gained by adding oo to the data space and

expressing the theory in terms of total functions? One advantage is

that the theory is somewhat richer. If an RD L and function letters

f, f' E F are such that

(a) Lf fl (IDk X ID) = Lf' fl (IDk X]D),

then the theory restricted to partial functions would be unable to dis-

tinguish between Lf and Lf', although Lf Lf' is quite consistent with

(a). By introducing oo we have made it possible to assert more than we

could before; in the next section we will find that some of these new

assertions are true. Of course, we may still use a definition such as

(b) [L]f = Lffl (flP(f) XID)

to restrict parts of the discussion to partial functions whenever we wish

to do so.

Another advantage is simplicity. Suppose that : ID 2 - ID and

W: ID -k ID, with both functions partial. An expression such as

'I(r)) is quite awkward to work with if we have no assurance that

rl E Dom 1F and that (, (i i)) E Dom . What does

W(ri)) =

mean? Suppose r Dom W but (37, —) is a constant function on ID.

Is it correct to write

1)(37,',267)) = 'I(37, 94) ?

Kleene [26, §63] introduces special notions of equality and of compo-

sition of functions in order to handle such problems consistently. We

only need the usual intuitive notions, yet we can make finer distinctions.

If : ID -k ID is a total function and (37, -) is constant on ID, then

3-20

(37, oo) = -(37,94)

will be true if 45 (37, —) is actually constant on all of ID but will be false

otherwise.

The introduction of 00 here is very much like the addition of oo to

the number system in the study of infinite series: the mathematics

becomes somewhat richer and simpler than before, but none of the real

difficulties are magically removed. Clever notations can only dissolve

the crust of merely notational difficulty that often obscures a real

problem. In particular, the set ' of partial functions : ID - ID

computable by finite RDs is the natural generalization of partial

recursive functions. We would define this set as

={ 1(2 L, a finite RD)(2 f E F 1)[Lffl(IDXID)}}.

Someone who prefers not to consider oo would write

= {	 (2 L, a finite RD)(3 f F1)

(={(,n) EDXIDIf() ==	 in

instead but would specify exactly the same class of partial functions.

Unsolvable problems are still unsolvable problems in either case.

We have defined RDs and have explained them algorithmically:

for any RD L, the SRS T provides a nondeterministic algorithm for

evaluating expressions, and any function letter f defines a function

Lf: IDPW	 ID that is singlevalued because normal forms are unique

in the Church-Rosser system	 The fact that Lf fl (ID	 x it is

singlevalued whenever f E F and L is an RD without call-by-name has

been proven by E. K. Blum [3, §4, Thm. 1], whose "proper programs"

are equivalent to this kind of RD. (As we remarked earlier, the

3-21

additional assumptions on the data space and given functions in [3] are

irrelevant to the functionality problem.) Blum's proof depends on the

restriction to call-by-value and does not cover our result.

8. A Semantic Explanation

Any recursive definition L defines a set of rules IRL that may also

be viewed as a set of equations. The rule q - cu corresponds to the

statement q = cu. If we interpret the function letters as names of spe-

cific functions on ID, then the assignment of functions to function letters

may or may not solve" the equations by assigning the same value of ID

to the left half of every rule as to the right half.

For an example we return to the RD for factorials:

f(x) -k C(EQ(x, 0), l,X(x, f(-- (x, 1))))

C (yes, u, v) - u

C(

no, u,v)— v.

Here we have named the given function

D & {(=n & =yes) or (&	 =no]}

"EQ" rather than = ' in order to prevent confusion between it and the

relation of equality on ID.

The rule for f(6) may be thought of as an equation

(1)	 f(6) = C(EQ(6,0), 1,X(6,f(--(6, 1))))

that may be true or false, depending on which operations are considered

to be the meanings of the operators. We are concerned with whether f(6)

and C(...) have the same value in ID; we already know they are not the

same tree! We therefore write (1) more explicitly as

3-22

(2)	 Val 1 f(6) = Val C(EQ(6, 0), 1,X(6,f(--(6, 1))))

where I is an "interpretation" of the function letters that assigns an

actual function

p(f)	 ID (total)

to each f c F. Whether (2) is true or false will depend on the choice

of I and on the precise definition of "values" by a map

Val1 : V -k	 (total)

for each possible choice of I.

A semantic explanation for RDs is any scheme for assigning

value maps Val to interpretations I, so that an interpretation I can

be said to solve an RD L if

Va11 (= Va11 cu

for each rule -k i	 An RD L has a set of solutions I, just as

the numerical equation

+ y - 6 = 0

has a set of solutions {-3, 2}. (Because RDs may have many function

letters, we must consider assignments of functions to function letters

rather than just single functions as solutions.)

For numerical equations there is little else to say: some

equations have no solutions and others have many. The answer to a

numerical question is often one of an equation's solutions, but which

one is determined by parts of the question not modeled by the equation.

Different questions may determine the same equation but require

different choices from among its solutions.

3-23

For recursive definitions there is much more to say about their

solutions. Under the natural semantic explanation we will use, every

RD L has solutions. Indeed, the assignment I = Lf of functions to

function letters defined by (7.6.2) is a solution. This particular

solution can also be characterized in a purely semantic way - it is the

unique solution that is "extended by every other solution. (The notion

of "extension" to be used here is similar to the familiar relation

among partial functions: f extends g if the set f of ordered pairs is

a superset of the set g of ordered pairs.) We call this the "canonical"

solution.

By showing that I = Lf for all f E F will solve any RD, we will

show that the algorithmic explanation from §7 is "valid" relative to our

semantic explanation. Each RD L has a canonical solution I, and the

algorithmic explanation defines nondeterministic algorithms for com-

puting the functions I• The function Lf computed by the algorithm for

f is indeed If : the program is correct. A rule of inference is said to

be valid if all its instances are correct inferences; similarly, we say

that the algorithmic explanation in §7 is valid because the algorithms

it defines for eae	 are correct when considered as attempts to

specify the functions in the canonical solution for L. The main result

of this section will be called the "Validity Theorem.'

If we call members of FL) G "operators" and members of

]DU wL) X "individual symbols" then V corresponds to a set of

"terms" in logic. A logician would "interpret" operators f of rank k
— k	 - as operations If : ID	 ID and individual symbols a as members

J a E ID, in order to interpret terms as denoting menbers of ID.

3-24

It will be more convenient to treat "symbols" of rank 0 consistently.

We will say that each individual symbol is interpreted as an operation

I a : fl 0	 ID, so that 'a = {((), e',} for some 9 E D. This will save

some unnecessary case analyses without changing the familiar intuitive

notion of "interpreting" symbols as members of ID or operations on

them.

(8.1) Definition. An interpretation of V on ID is any function I

assigning to each a E V a total function I : 	 -k 5.
Interpreting members of V-F as well as members of F is a

technical convenience. Once an operation 'a has been assigned to each

a E V by an interpretation I, values in ID can indeed be assigned to all

the "terms" in V by straightforward bottom-up applications of oper-

ations, just as in our original example of evaluating arithmetic

expressions. More precisely, the following lemma is proven by

induction on the sizes of trees.

(8.2) Lemma. Let I be an interpretation of V on ID. There is a

unique function

(1) Val i:V# -­-]D	 (total)

such that

(2) (VaE V)(VT E (V#)P(a))

	

[Val 1(T0,...,T1)	 1 (Val 1 T 0 ,..., Val 1T1)].0

(The members of V of rank 0 are treated consistently and need no

different kind of interpretation.)

An interpretation I of V on ID solves a recursive definition L if

it agrees with the meanings of the constants, parameters, and given

3-25

functions and turns every instance of L into a true equation. A

solution for L that agrees with all other solutions wherever it is

finite is a canonical solution.

(8.3) Definition. Let L be an RD. An interpretation I of V on ID is

a solution for L iff

(1) (V EID)(I ={(O,})

(2) (VaEWUX)(Ia={((),00)})

(3) (Vg E G)(VO E P(Ige =, 0 E 1P(9) then g(0) zise 00)

(4) (Vq -k i E IRL)(VI (= Val 1 cli).

A solution I for L is canonical iff every solution J for L satisfies

(5) (V a E V)(V 6 E P(a))

[1(e) * oo implies	 Ia(0) 1.

Thus a canonical solution agrees with every other solution where-

ever it is finite. An alternative way to characterize canonical solutions

is to define a partial ordering	 on the total functions :	 by

W iff (VU Ek)((0) :f
oo implies (6) = w(0))

iff fl ()k X ID) C W fl (k X ID),

so that	 is very much like the relation "is extended by" among partial

functions. Then	 can be generalized to interpretations by setting

I	 J if f (Va E V)(I	 J). a a

A solution I for L is canonical iff it is a minimal solution in this partial

ordering: I J for every solution J.

3-26

Now we are ready to show that any RD does have a unique canonical

solution and that this solution is the one specified by our algorithmic

explanation.

(8.4) Validity Theorem. Let L be an RD and define an interpretation

I of V on ID by setting 'a = La for each a E V. Then

NR E V#)(Vali R = EvalL R)

(2) I is the unique canonical solution for L.

Proof: We prove (1) by induction on the size IRI of R. (This is the

cardinality of R as a set of ordered pairs in (4.3).) Suppose R is a

tree such that Val T = EvalL T whenever TI < IRI. We show that

Val 1 R = EvalL R. Let a = R() and k = p(a), so that

R= &(T 0 , ...,T 1) with (T 0 , ...,T 1) E (V#)k

Let 01 = Val 1 T 1 for each i < k. By Lemma 8.2 and Definition 7.6,

(3) Val, R = IatO O ... , 0 i) = L(0 0 , ..., O i)	 EvalL

By the induction hypothesis, 0 = EvalL T 1 for each i < k. Therefore,

by EvalL 	 for all	 ID in (7.5.2) and by the definition (7.6.1) of

Eval 	 0. E ID then 0. else oo 0. = Eval T.
L 1	 1 	 L 1

For each i <k we therefore have

EvalL T. = EvalL[(T O, ... , T i_ 1 , 0, 9, ... 1

and so

Eva1L(TO,...,Tll,Tl,0+l,...)6l) =

(1)

Eva1L (TO,..., T l, o il 0l+l,...,0l)

3-27

by part (4) of the Evaluation Theorem (7.5). In k steps we may replace

0	 by T 0 , ... , T_ 1 in a(00'... 01) without changing the value

of EvalL. Therefore (3) implies that

Val T REvalL a(TO,... , T_l) =EvalLR.

Now we must prove (2). By the definition of canonical solutions

(8.3.5), any pair of canonical solutions H, J must have

(Va E V)(V0 E P(a))

[(H(0) *	 or	 * oo) implies Ha(0) =

This implies H = j , so there can beat most one canonical solution.

Now we show that I is a canonical solution.

To show that I is a solution we must verify conditions (8.3. 1) -

(8.3.4).	 For any	 E ID we have EvalL 	 = and so I() = L() =

as required by (8.3.1). For any a E WU X, is irreplaceable in

and	 ID, so EvalL a = . Therefore 1a = La() = , as required

by (8.3.2). For any g E G and 0	 p(g) 1g 0 = Lg(0) =

EvalL 	 ... ,Or). If 0	 ID for all i then g(0 0 , ... , 0) -k i is a

rule of T for rl g(0). If 01 = oo for some i then any S E V with

0o,	 S has S() = g and S/(i) 	 Therefore

EvalL	 is oo in this case. In both cases we have

Ig(0) = iL 0 E 1P(g) then g(0)	 00,

as required by (8.3.3). Finally, we must show that Val 1 q' = Va11 i/i for

each cp - qj E IRL to verify (8.3.4). To do this we apply (1) to the

special case

(V (P -* çi'i E	 = EvalL

3-28

of part (3) in the Evaluation Theorem (7.5). Therefore I is a solution

for L. We must show that I is canonical.

Suppose J is also a solution. We verify (8.3.5) by showing that

each K E IN has the property

(4) (YR E V#)(Y E ID)(R	 implies Val R =

For K = O we have R	 and so

Val R =) =

by (1) in the definition of solutions (8.3). To pass from K to K+l,

suppose (4) holds for K and R, 5, are such that

R==S=L.

We show Val R=. Let nEDomR and Q9EIRgivUIRL with

(5) R/n = q' & S = R(n

We claim that

(6) Val49=Val/.

If P -k 0 E ERgiv then (6) holds because J, as a solution for L, satisfies

(8.3. 1) and (8.3.3). If -p— cli E IRL then (6) holds because J, as a

solution for L, satisfies (8.3.4). By (5) and (6),

S R(n - cl') & Val 3 cl' = Val(R/n).

By induction on ml and the definition of values under interpretations

from Lemma 8.2, this implies that Val R = Val S. But Val S = by

the induction hypothesis, so Val R = . U

3-29

Morris [37, Chap. 3, Thm. 2] stated a conjecture that amounts

to this theorem when RDs are defined formally in the manner of §7.

He suggested that the theorem could be derived from a small extension

of a theorem about the lambda calculus [37, Chap. 3, Thm. 71. Rather

than formally relate the McCarthy calculus to the less intuitive lambda

calculus, we proved the Validity Theorem directly.

Suppose that H, J are solutions for an RD L with canonical

solution I. Let f E F and let Af = { & E p(f) I Lf(6) * -o}. Then each

0 E A has If(0) oo by the Validity Theorem and so I f(0) = Hf(0) and

I(0) = if because I is canonical. Therefore

(VO E 4 f)[Hf(G) = Jf(0)].

This is an extension of McCarthy's principle of "recursion induction"

[34, §81, which asserts only that

NO E f fl DP(f)).[Jf(e) = Jf(e)].

The Validity Theorem is also related to Kleene's "first recursion

theorem" [26, §66, Thm. 26]: any partial recursive functional ' has

a unique minimal fixed point defined by formal calculations using the

set of equations that specifies '. A functional is a mapping from functions

to functions, or from interpretations of V on ID to interpretations of V

on ID, when we wish to think in terms of replacing one system of several

functions by another. A partial recursive functional is one definable by

formal calculations from sets of equations [26, §631. An interpretation

I is a fixed point of a functional ' if I = (I). Minimality is defined by

the partial ordering	 that we considered earlier:

I J iff (Va E V) [In (P(11) x ID ç Jfl (P(a) x ID)].

3-30

To state the Validity Theorem in terms of functionals, we assign

a functional T to each RD L. Suppose that I is an interpretation of

V on 15 which agrees with the intended meanings of constants, parame-

ters, and given functions, but which may not make each rule in]RL a

true equation. Thus we are considering interpretations that satisfy

(1) - (3) but not necessarily (4) in Definition 8.3. We define a new

interpretation J = }I). For a E V-F let J = I. For f E F consider

any 0 E510(f) . ' There is at most one rule q -k t/i E IRL of the form

If there is such a rule we set

(1)	 if (0) = Va11 cu;

otherwise we set J f(0) = If(0).

We claim that I is a fixed point of 	 iff I is a solution for L,

so that I is a minimal fixed point of 	 iff I is a canonical solution

for L.

Suppose that I is a fixed point of I	 If p - /i E IR L' we must

show that Vail = Va11 cl' . Let cp = ? (R 0, ... , R_with f E F. Set

= Val R for each i <p(f). Replacing R i by O at (i) in Dom qp and at

each residue of (1) in Dom ii, we construct a rule p -k cl', where

and Va11 = Va11 and Va11 = Val1 0. By (1) and the fixed point

property,

If(OO. ... e -1) = Val1 '

Therefore

Val1 -p = VaL1 ?(R0 , ... , R 1) = If (Val 1 R 0 , ... , Val R_ 1)

-If(6 0 ...) O_ 1) 	 Val 1 cO Val 1'.

Now suppose that I is a solution for L. For f E F and 0

we must show that J f(0) .If(0) where J = L'• If there is no rule in

of the form

then Jf(0) = If(6) already, so we may assume there is such a rule. If

0i = oo we may assume that the tree	 has been chosen in (7.6.1) so as

to make Val1 0 = oo; we could, for example, take 0 to be x for any

x E X. Therefore we may assume Val O = 0 for all i <p(f), since

ValL 0. = 0 for 0 ;4 oo also. Therefore, by Lemma 8.2,

i
f
 (0) = Val FOOJ ... $

But Va11 ?(, ... , 1) = Val i because I is a solution for L, so

I(0) Val /i. Comparison with (1) yields J f(0) = If(0).

In light of the equivalence just demonstrated, the Validity

Theorem can be restated as follows:

(*) Any functional 7 such that 7 =L for some RD L has a unique

minimal fixed point I, and If = Lf for each f E F.

Restating the "first recursion theorem" [26, §66, Thm. 261 for

comparison, we have the following statement about functionals that

map functions on 5 k to functions on

3-31

3-3?

(**) Any functional 	 definable by formal calculations from a system

of equations E has a unique minimal fixed point , and is defined by

formal calculations based on E.

Aside from the minor difference in format between calculations

with equations and applications of rules, there are two differences

between (*) and (**). The first difference is that only numerals can be

substituted for variables in (**) [26, §54], so that only call-by-value is

allowed. There are no restrictions on call-by-name in W. The second

difference is that (*) does place syntactic restrictions on the equations

that are not required by (**).

An RD corresponds to a set of equations of the form

f(a 0 , ... ,a1)=e

where each a has rank zero. Further syntactic restrictions in

Definition 7.2 guarantee that the SRS will be unequivocal and that single-

valued functions will be defined. In [26] the system E may be any

system such that, for each choice of f and	 , ... ,	 , at most one

equation f(01 ...	 = ri can be derived. Furthermore, this single-

valuedness must not depend on the choice of the given functions [26, §63].

For example,

f(x, g(x. x)) = 3 where gEG; fEF

is an acceptable set of equations. For any W: 5 2 	 set

r) = 3

whenever , v * co and r = w(,), with	 z)	 otherwise. Then

the functional =	 I') is definable by this set of equations: ' is the

3-33

set of all ((i,),) such that

f(, 77) =

is deducible when g is considered to be 'I'. To define this functional

by an RD we could use

f(x,y)

	

	 C(EQ(y,f(x,x)),3,h(0))

u-

U (no, n, v) - v

where h e F 1 . (We only need to have R(0) be something with

EvalL 0) 00.) For any interpretation I, the functional L will re-

place If by J for J =	 where J = 7(I).

We do not consider the restriction to RDs in (*) to be very serious,

since it is well-known that RDs can define all the partial recursive

functions in terms of successor and equality [34, §9] and that RDs are

generally quite convenient for defining functions in terms of other

functions [33] [34]. Under the restriction to integer data in [26], it

appears likely that RDs suffice for defining all partial recursive

functionals, but that has not been demonstrated.

CHAPTER 4

APPLICATIONS TO THE LAMBDA CALCULUS

This chapter applies the theory of general and subtree replace-

ment systems to the full lambda calculus, including eta and delta rules

as defined by Curry and Feys [14, Chap. 31. In §9 we explain the

lambda calculus informally and then formalize it in terms of general

and subtree replacement systems. Our novel approach to alphabetic

equivalence permits a higher degree of mathematical rigor than does

the usual approach.

In §10 we prove the classical Church-Rosser theorem [14, Chap. 4]

with a divide-and-conquer strategy. The lambda calculus is qnalyzed

as a union of two systems:	 (defined by the beta rules) and

(defined by the eta and delta rules). New systems 	 and	 are

defined, so that .	 can be simulated by the interaction of	 and
ly

yet these systems by themselves are much simpler than

The Main Theorem (5.6) implies that c,	 , and Tr,6 are all

Church-Rosser. We derive the Church-Rosser property for 21 from

the properties of	 and T, by a special argument. After showing
ly

that	 and 13 are Church-Rosser, we use the Commutative Union

Theorem (3.5) to conclude that the full lambda calculus is Church-Rosser.

8. Lambda Calculus

Analogies between the lambda calculus and programming

languages have been discussed by many authors. Landin [29] even

proposes defining the semantics of a programming language with

4-2

this calculus. He considers a syntactic description of the usual sort

together with a syntax-directed translator that maps programs to

lambda expressions. The semantics of lambda expressions are already

defined by the nondeterministic evaluation procedure specified by the

formal "reduction" rules of Curry and Feys [14, Chap. 3].

Although Landin's paper and the references cited there suffer

from some gaps and confusions, the approach does clarify many issues

in programming language design, and our interest in the lambda

calculus stems partly from this fact. (Wegbreit [53, pp. 132-138] has

taken a similar view.) The lambda calculus is also interesting as a

mathematical example. Unlike the McCarthy formalism for recursive

definitions, the lambda calculus is complex enough to illustrate the

whole-part theorems of §3. Unlike English or PL/1, it is also simple

enough to be treated in detail without overwhelming the rest of our dis-

cussion. We begin with an informal description of the lambda calculus.

The standard mathematical approach to functions is to define them

as sets of ordered pairs. The lambda calculus treats functions the way

ordinary mathematics treats sets (or classes) -- as primitive entities

that satisfy certain axioms but are not definable in terms of other entities.

Functions and their arguments are objects on an equal footing. An object

R may be "applied" to another object S, forming a third object 'y(R, S).

New objects can also be "abstracted" by using "variables" x, y, z, ... and

a special symbol X. Suppose S is an expression that would name an

object if all the occurrences of a variable x were to be replaced by the

name of an object. Then the expression X(x, 5) names an object T. For

each object R, -y(T, R) is the object named by S after x has been

replaced by a name for R.

4-3

To illustrate the notation we suppose for the moment that the

objects under consideration include the nonnegative integers and the

addition map ADD. Then -y(ADD, 3) corresponds to the function

{(k, 3+k) I k E IN} while 'y('y(ADD, 3). 5) is the result of applying this

function to 5. The equation

(9.1.1)	 y(7 (ADD, 3), 5) = 8

and an infinity of similar equations are approximately equivalent to

ADD ={(h,(k,h+k') I h,k E IN}

which is only trivially different from the usual

ADD = {((h, k), h+k) j h, kE IN}.

The function {(h, h+h) I h E IN } can be described by abstraction as

X [x, 'y(y(ADD, x), x)]. An infinity of equations like

(9.1.2)	 'y(X[x, 'y(y(ADD, x), x)], 3) = -y(y(ADD, 3), 3)

express the meaning of the abstraction.

Since the variable x does not occur in ADD, the abstraction

X (x. -y(ADD, x)) is a needlessly long description of ADD. The equation

(9.1.3)	 X(x,'y(ADD,x)) =ADD

and similar equations collapse such abstractions.

The lambda calculus consists of a precise syntax for application

and abstraction plus three sets of axioms. The three equations (9.1)

illustrate the three kinds of axiom used. There is one rule of

inference: from RS and P = Q, we may infer R = T, where T is the

result of replacing P by Q somewhere in S. To prove a theorem of the

form R = 7 amounts to evaluating the expression R and getting the

4-4

answer 7. The study of this system is facilitated by using trees rather

than parenthesized strings and a set of rules in an SRS rather than a

set of equations. Our formulation is logically equivalent to that of

Curry and Feys [14, Chap. 31 but more amenable to detailed mathe-

matical analysis. Comparisons are given at the end of this section.

We will now begin constructing the SRS which will be used to

formalize the lambda calculus. The notation developed in the next few

paragraphs will be used throughout the chapter.

The vocabulary consists of a set C of constants denoting "known"

objects, an infinite set X of variables, and two special symbols X, Y.

V = C u x u {x, y}.

We require that C, X, and {x, 'y} be mutually disjoint and specify a rank

function p: V - IN by assigning rank 2 to X and y, rank 0 to other symbols.

The forest IF of interest here is not all of V, since X(R, S) is only

significant when R consists of a single variable. In the fully abbreviated

algebraic nomenclature of (4.10), IF may be defined inductively as follows:

(CuX)	 IF

(Vx E X)(VS E IF) (X(x,S) E IF

(VR,S E IF) ('y(R,S) ElF).

The following family (9.2) of definitions deals with bound and free

variables. The distinction between bound and free occurrences of

variables in more familiar notations is discussed by Curry and Feys

[14, Chap. 3]. For example, x has a free occurrence and y has a bound

occurrence in the expression f cos (x+y) dy, while y has both kinds of
0	 ir

occurrence in the expression	 f cos (x+y) dy + y. For S E IF and

0

4-5

x E X, the set S 1 (x) is divided into bound and free occurrences of x:

(9.2.1)	 BS ={nES (x) l (mancn)(5m-X &S(m.(0))=x)}
(bound occurrences of x in S)

FS = S 1 (x) - BS (free occurrences of x in S).

For S E IF and m, n E Dom . S define

(9.2.2)	 n is bound to m in S iff [m anc n & Sm = X & S(m . (0)) = Sn &

(VP anc n)([Sp = X & S(p . (0)) = Sn] implies p anc m)1

so that n is bound to m when n E BS for some x E X and m is the

closest ancestor of n involved in the definition cf B S. x
For example, let y, z E X with y * z and let S be

(a)	 -Y (X (z, 'Y (Y ' y)), -Y (Y ' X (z, X (z, z))))

Then BS is b and BS is {(0, 0), (1, 1, 0), (1, 1, 1, 0), (1, 1, 1, l)}. The

node (1, 1, 1, 1) is bound to (1, 1 1) rather than to (1, 1). In this example,

the set of variables that occur bound in S is BVb1 S = {z}, while the set

of variables that occur free in S is FVbl S = y}. For any S E IF we

define

(9.2.3)	 BVb1S =Ix EXlBS*(PI

FVblS={xEXFSçZ}.

For S E IF such that

(9.2.4)	 BVb1 S fl FVb1 S =	 &

(Vm,n E S -1 (X))(S(m.(0)) = S(n.(0)) implies m = n)

we say that S is aiphanormal and set

(9.2.5)	 IFO ={S E IF I S is alphanormal}.

4-6

No variable is both free and bound in an aiphanormal tree. No

two occurrences of any single variable are bound to distinct occur-

rences of)s. in an aiphanormal tree. Our example (a) satisfies the first

of these criteria but not the second. The reasons for introducing IF

will emerge gradually, once certain equivalence relations have been

defined. One of the properties of IF can be stated immediately:

subtrees of alphanormal trees are aiphanormal. This fact will be

used repeatedly in inductive arguments in the next section.

The result of substituting R E IF for each free occurrence of a

variable x in S E F will be called [R/x] S:

(9.2.6)	 [R/x]S S(FS4—R).

For example, if R is 'y(y, z) and S is y(x, y(X(y, x), X(x, z))),

then

[R/x]S = -y('y(y, z), 'y(X(y, 'y(y, z)), X(x, z)))

Notice that the free variable y in R is "captured" by the occurrence

(1,0) of X in S, since (1,0) is an ancestor of the node (1, 0, 1) in FS

and (1, 0, 0) is an occurrence of y in S. Although (0) is a free occur-

rence of y in R, the ocrresponding node (1, 0, 1) . (0) in [R/x]S is a

bound occurrence of y in [R/x] S. We will often wish to assume

FVbl Rfl BVbl S = in order to avoid such "captures" of free

variables.

The use of variables requires arbitrary choices. The expressions

cos (x+y) dy and	 cos (x+z) dz differ only in an irrelevant alpha-
0

betic decision. Even free variables are ultimately used only to require

that the same expression be substituted for a free variable at each of its

4-7

7T

occurrences. Intuitively, f cos(x+y) dy and f cos(z+y) dy are only
0

trivially different, although only changes in bound variables are commonly

recognized as "trivial" in logic.

Here it will be convenient to recognize two sorts of alphabetic

equivalence Trees are weakly aiphaequivaient" if they are the same

except for the choices of variables. They are "strongly alphaequivalentt'

if they are the same except for the choices of bound variables. To aid in
*

defining these relations we first define a relation

	

	 on IN for each

R

R IF.

(93	 in	 n iff

[(:xgX)(m,n E FxR) or (pER(X))(mn are bound to p inR)].

The "links" of Bourbaki [5, p. 161 inspired the R notation.

Note that only one of the alternatives in (9.3.1) can hold. Although

defined as a relation on IN, R is in fact a subset of R(X)X R(X).

Since every node in R_ M is a free or a bound occurrence of the

variable that labels it,	 is reflexive. It is obviously symmetric.

Suppose m -	 n	 p. We claim that m	 p. There are two cases.

If m, n E FRfor some x E X, then n	 p implies that n,p E FR,

so that m,p E FR and m	 p. On the other hand, if m and n are

bound to q for some q in R_ 1 (X), then n	 p implies that n and p

are bound to q, so that m and p are bound to q and m R p. Thus
-1 is an equivalence relation on R M. Another technical conveni-

ence in working with the forest IF of alphanormal trees defined in (9.2.5)

is the fact that, whenever R E IF and m, n E Dom R, then

iff Rm=Rn.

4-8

For aiphanormal trees, nodes labelled by variables are equivalent iff

they have the same label.

By a straightforward case analysis (given in Appendix A) we can

show that, whenever R E IF and m, ii, p E Dom R with m anc n and

m anc p, then

(9.3.2)	 n -	 p iff n/m	 p/m R	 R/m

Now the two kinds of alphaequivalence can be defined. We use the

usual notation f / A for the restriction of a function f to arguments in A.

(9.4) Definition. For R E IF let the frame Frame R be R /' R(V-X).

For R, S E IF define weak alphaequivalence () and strong alpha-

equivalence () by

(1) R S iff [Frame R Frame S &) = ()]

(2) R S iff [R S & (VxEX)(VnEF R)(Sn x)}.

The technical motivation for introducing weak alphaequivalence

lies in the inductive properties anticipated in the lemma (9.3.2). Recall

that any tree in F with more than one node has the form X(x, S) or -y(R, S)

with R, S F and x E X. We can almost say that X(x, S))(x', S') iff

S S' and that y(R, S) 	 y(R', 5') iff R S and R' S': complex trees

are weakly alphaequivalent iff all the corresponding subtrees are weakly

alphaequivalent. A bothersome complication arises from the need to

make free variable changes in one subtree consistent with free variable

changes in another. This requirement is stated formally by the

following lemma.

(9.5) Lemma. Let R, R', S, S' E F and x, x' E X. Then

4-9

(1) X(x,S)X(x',S') iff (SS' & F x	 x S=F ,S')

(2) y(R,S)	 'y(R',S') iff

{RR' &SS' &

(Vy, y' El X)(FR = FR r * (i implies FS=F y ? Sr)] .

The proof is a straightforward application of the definition of

weak alphaequivalence (9.4.1) and the lemma (9.3.2). Details are in

Appendix A.

At first glance the clause

(Vy, y' El X)(FS F, S' * 0 implies FR = F,R')

seems to be missing from the right half of (9.5.2), but it follows from

the right half as stated.

The following lemma relates alphabetic changes in trees of the

form

T S(m 0 - R0).. . (m 1 - R1)

to alphabetic changes in the appropriate trees S, R 0 , . . ., R_ I

(9.6) Lemma. Let x x' El X; K El IN; S, S', R 0 , RI, ..., RK1, RI Kl El IF

mKl El IN (distinct nodes). Suppose

(1) FS _{mklk<K} = F, S'

(2) (Vk <K)(FVb1 R fl (BVbl S U{x}) = 0)

(3) (Vk <K)(FVbl R n (BVbl s' u{x'}

Then the statement

(4) S(m 0 - R0) . . (m 1 - R 1) S'(m04— Rb)... (m 1 - R'1)

holds iff the following statements hold:

4-10

(5) SS' & (Vk<K)(RkR)

(6) (Vy,y' E X)[F S=F ,S' 	 implies (Yk < K)(FRk= F,Rf)]
y	 y	 y

(7) (Vy,y'EX)(Vj,k<K)(F R 	 ,R! *Ø implies FR =F ,R'). yj y j	 y 	 y k

Proof: Let T, T' be the left and right halves of (4). We assume (4) and

derive (5), (6), (7). Intuitively, (6) and (7) say that the changes in free

variables made in passing from S. R, ..., R to S', R, ..., R' 1 are

consistent.

Obviously Frame S = Frame S'. Now suppose m	 n. We show

m If mE FS then m,n E FX,S' by (1) and so m Other-Sr

wise we have m, n FS and then m, n 4 F, S' by (1). In the definition

(9.3.1), m and n may both be free occurrences of a variable other than

x or m and n may both be bound to a single occurrence of X. Both

these conditions are unaffected by substitutions at nodes in FS, so

m —T n. Therefore m
T'

n. But this implies m	 n because Sr

both conditions in the definition (9.3.1) are unaffected by substitutions

at nodes in F, S'. We have shown that). Similarly,

c (3), so that S 5'. For each k <K we show that Rk R

with the help of the lemma (9.3.2). This proves (5).

Suppose y, y ? E X with FS = FS' * . For k <K we show

FyRk =	 By (1) we have y = x iff y' = x', and in that case

FY Rk = = Fyt Rj by (2) and (3). Now we assume y * x and y' * x'.

Let p E FS. so that c E Fy T and i E F I T r also.

*
m k' F y k R =F y Tflmk - IN	 by (2)

Ini	 p}	 by def. of(9.3.l) ={nEmk.	 T	 T
*

z{nEmk.]NInl)p}	 by (4)
T'

*
de 	 '- (9.3.1) F, T' fl mk.	 by	 . of

 T'

=mk F , Rk	 by (3)

This proves (6).

Suppose y,y'EX and ,k<K with FR.=F,R*Ø. We show

FyRk =	 by reasoning like that for (6) with a node m q for

q E FR. in the role of p in the proof of (6). This proves (7).

Now we assume (5), (6), (7) and derive (4). From (5) we get

Frame T Frame T'. Now we suppose m
T n and show m T' n.

Case 1 (m c- Dom S - F S). x

Case 1.1 (n c- Dom S - FXS). Then m	 n, so m	 n by (5).

Therefore m	 , n.

Case 1.2 ((ak < K)(mk anc n); choose one). Let y Sm = Tm, so that

m,n E FT by (2) and the definition (9.3.1). Let y' = S'm = T'm, so that

m, n E F,T' follows from (5) and (6) and then (3). Therefore m 	 n.

Case 2 ((j <K)(m3 anc m); choose one).

Case 2.1 (n E Dom S - F 5). Similar to Case 1.2. x

Case 2.2 ((ak <K)(mk anc n); choose one). If j = k we can show

m T' n by (5) and two applications of the lemma (9.3.2), so we may

assume	 k. By (2), some y E X has m, n E FT. Let y' = T'm.

Then m, n E FT ? by (3), (5), and (7).

4-il

4-12

We have shown that (i______) C (______) Similarly, T'______	
T T - T'

Therefore T T1.5

The lambda calculus can now be defined.

(9.7) Definition. A full lambda calculus is any SRS	 = (V, IF, =', IRx)

such that

(1) IRX=]RI3UIRflUIRo

where

(2) IR O = { y(X(x,S),R) -b [R/x]SIFVb1 R fl(BVb1 SL) {x}) =

(3) IR={X(x,(R,x))	 R i FR	 }

(4) IR c{'y(R,S)—s. T I R() X & FVb1 R = FVb1 S = FVb1 T =

(5) (y R. R', 5, 5' E IF)(Vn E Dom R)

([R -k S E 1R 6 & R/n R' I implies

[RI _S'EIRx iff (n=() & S'=S)]).

The substitution [R/x]S in (2) above is defined by (9.2.6). By

requiring FVb1 R fl BVbl S =	 we have prevented captures of free

variables. The additional requirement that FVbl R fl {x} çb is a

minor technical convenience. Notice that FVbl R fl (BVb].SU {x}) =

will be true if 'y(X(x, 5), R) is aiphanormal in the sense of (9.2.4).

Notice also that (2) covers our original intuitive example (9.1.2):

'y(X [x, y(y(ADD, x), x)], 3)__4. 'y(7(ADD, 3), 3).

Comparison of X(x,y(x,x)) with x illustrates why we should only

u abbreviate " X(x,'y(R,x)) as R when FR = ç. Notice that (3) covers

our original intuitive example (9.1.3):

4-13

X(x, -y (ADD, x)) -k ADD.

The differences between one lambda calculus and another are in

]R ö : any choice of lRc5 that satisfies (4) and (5) is allowed. Since most

applications involve just one system	 we will speak of " the " lambda

calculus, as is customary. Our original example

y('y(ADD, :3), 5) - 8

from (9.1.1) does meet the restrictions. To see the effect of (5), suppose

first that n = (). Then the choices of bound variables in R are irrelevant

to any rule R - S in JR 6 : R' -p S is still in 1R 6 if R R', and there is

no other rule R'	 S' with S' :^ S in IR) . Now suppose n (). Then no

proper subtree of R in a rule R - S in JR 6 can be replaceable, even

after changes of bound variables. This requirement is similar to the

bottom-up evaluation of given functions in Chapter 3.

The sets 1R,]R and JR 6 are partial functions on trees by (2), (3),

and (5). By 'y X, no çp E V. can be the left half of both a beta and an eta

rule or the left half of both a delta and an eta rule. By the condition

R() X in (4), no ço E V, can be the left half of both a beta rule and a

delta rule. Therefore lRx is a union of partial functions with disjoint

domains and so lRx is a partial function. The system G is unequivocal.

Unfortunately Ij., is not quite the system we wish to use. As the

following counterexample shows, T is not Church-Rosser.

Let x, y, z be distinct variables and set

R = y(X(x,y(X(z,'y(z,x)),y)),X(y,y))

S = 'y(X(z,y(z,X(y,y)),y))

S' = y(X(x,7(y,x)),X(y,y))

5" = y(y,X(y,y)).

4-14

By applying a rule from IR at () in R we can show that R r S. By

applying a rule from IR at (0, 1) in R we can show that R 57^1 S r . By

applying a rule from IR at () in S' we can show that S' - S". Since

R	 S and R	 5" while S and 5' are irreplaceable, both are normal

forms of R. But S :^ 5 1 . Normal forms are not unique in

In our counterexample the tree S is irreplaceable because

y E FVb1[y] fl (BVb1['y(z, my, y))] U {z}).
In light of the arbitrary nature of bound variable choices that we discussed

in connection with the definitions of 	 and	 in (9.4), this difficulty

seems rather insubstantial. Consider a new variable w and set

T = 'y(X(z, y(z, X(w, w)), y))

so that S T. By applying a rule from IR at () in T, we can show that

T =	 -j (y, X(w, w)).

By deliberately confusing S with T and 'y(y, X(w, w)) with 5 11 , we can blunt

the force of the counterexample. The tree R does have a unique normal

form, at least when we ignore differences between strongly alphaequiva-

lent trees. The precise way to "identify" equivalent objects is to pass

to equivalence classes. We replace M by a GRS	 = (IE, >), where

JE is the set of all strong alphaequivalence classes of trees in the forest

IF of lambda expressions. The replacement relation between classes of

trees is the natural relation induced by the replacement relation between

trees: for all ,4 E IE,

iff (2REQfl(2SE4)(RS).

The classical Church-Rosser theorem [14, Chap. 4] asserts only that

is Church-Rosser. (The fact that	 is indeed the GRS considered

4-15

in [14] may not be obvious. A proof is given in Appendix B.)

For later convenience we state the formal definition in terms of

any pair of relations =' and 1R 1 such that the 4-tuple T= (V, IF, =',]R)

is an SRS. The examples of interest to us will involve IR i = 	 =

and lR. = IR UIR
1	 17	 6

(9.8) Definition. Let IE be the set of all strong alphaequivalence

classes of trees in IF. For each pair of relations = and IR. such that
1	 1

= (V, IF,	 IR.) is an SRS, define a GRS 	 (IE. >) by setting, for

all ,J EIE,

iff (DR E.)(SEI)(R=S).
1	 1

In the next section we will prove that 	 is Church-Rosser. In

order to represent manipulations of equivalence classes by manipu-

lations of atypical" members of the classes, we will use the alpha-

normal trees defined by (9.2.4). Every tree is strongly alphaeqivalent

to an aiphanormal tree, so every class 0? E IE has an alphanormal

representative R E fl	 The convenient properties of F 0 will

expedite our proofs. To prepare for the next section we will now state

an elementary lemma relating IRx to weak alphaequivalence. (We use

weak alphaequivalence in order to facilitate induction arguments.)

Intuitively, the rules of S are insensitive to changes in bound

and free variables, so long as bound and free roles for each variable

do not clash. Formally, the following is proven in Appendix A.

(9.9) Lemma. Let i E {13 , Ti,	 -k 1' E IR ;	 (
0'. If i = , let

q,' E IF' 0 also. Then there is ,O' E IF such that) 	 /i' and

4-16

(1) q9'—)'E]R. 1

(2) (Vy,y' E X)(FO = Fr//'	 b implies Fq7 =

For each change from a variable x in q to a variable x' in ' at

a node n, we simply replace x by x' at the appropriate corresponding

nodes (if any) in /i. The verification that the resulting tree i/i' has the

desired properties is trivial, once we can say where to make the

changes in 0. To each rule q. - 4i E]Rx we therefore assign a map

r = r[ç,, Vj] that assigns to each n E Dom q, a subset of Dom cu. The

three kinds of rules lead to three kinds of pseudoresidue map.

(9.10.1)	 For q - i1i = 'y (R, S) - T E IR : r(n) =

(9.10.2)	 For q' - = X(x, -y(R,x)) -* RE IR

r(n) = if (l, 0) anc n then {n/(l, o)} else

(9.10.3)	 For q_* O = y(X(x,S),R) -k [R/x]S E 1R

r(n) = if (0, 1) anc n & n/(0, 1)	 FS then {n/(0, i)}

else if (1) ancn then {p.(n/(l))IpEFS}

else 0

Because independent nodes do not always have independent residues in

the last equation, r ['p, cui is not a genuine residue map when q— EIR.

We have defined the lambda calculus and stated some of its ele-

mentary properties. The "obs" in the system of Curry and Feys

[14, Chap. 31 correspond to trees in IF in the obvious way, and it is not

hard to show that "a-convertibility" [14. §3D3] corresponds to strong

alphaequivalence. When the "reducibility relation " [14, §3D3] is

4-17

lifted to equivalence classes in the manner of Definition 9.8, it corre-

sponds to	 . Details are in Appendix B. The reasons for departing

from [14] are sketched below.

A rudimentary tree formalism is introduced in [14, §B} and

the morphology of the "obs" is stated abstractly [14, §3C2], but these

gestures have no effect on the proof of the Church-Rosser theorem

[14, Chap. 4]. No workable methods for calculating with trees and nodes

to make arguments flow are provided in [14].

The "a-convertibility" approach to changes of bound variables is

simple to define but awkward to use. In practice, writers on lambda

calculus must often resort to vagueness and dubious "without loss of

generality" claims. Weak and strong alpha e quivalenc e let us say exactly

what is being assumed about changes of bound variables. If someone

questions these assumptions ., proofs can be supplied. The calculations

are tedious (as in Lemma 9.6), but no new ideas are required.

Curry and Feys avoid assuming FVb1 R fl BVb1 S = b in defining

IR by means of a definition of substitution [14, §3E1] more complicated

than our (9.2.6). Finding no technical advantages in shifting the complex-

ity from IR to substitution in our treatment, we have left the irritant

where it first appeared. Our definitions of substitution for free variables

and iR are very close to the original formulation of Church [12, §4, 7].

10. Classical Church-Rosser Theorem

We work toward the proof that the system L, defined by (9.7) and

(9.8) is Church-Rosser. Recall that I = (IE, >x), where IE is the set

of all strong alphaequivalence classes of trees in IF and the relation >

4-18

on E is induced by the relation	 on F:

' >4. iff (BR E 1) OS E I) (R = S).

The definitions of 1R, 1R, and JR 5 in (9.7) lead to SRSs

I3
= (V, IF, =,1a)

= (V, IF, =>,1R) where JR 6 = JR T7 U
r

The corresponding GRSs	 and
20 defined by (9.9) form a family of

GRSs {8a I a E {j3,r7 o}} whose union is t.. Lemma 10.2 asserts that

is Church-Rosser, Lemma 10.3 asserts that	 commutes with

and Theorem 10.11 asserts that
110

is Church-Rosser, so the

Church-Rosser property for 	 follows from the Commutative Union

Theorem (3.5).

In order to establish the results mentioned above we will represent

relations between strong alphaequivalence classes by relations between

certain trees in the classes. The following lemma is the formal basis

for these representations.

(10.1) Lemma. Let i,j E {3, vi, a };	 , 4, At E IE. Suppose ? > S and

Z >2'. Then there are R,S,S'EF such that

RE a flIF 0 & SEj & S'E4'
R==S & R=S'.
1	 J

Proof: By Definition 9.8 there are R 1 , RF E ; S 1 E 2; S E

with R	 ' S and R' == S' . Let R be any alphanormal tree in d.
1	 13	 1

Let a rule p - 1i be applied at a node n in R 1 to form S 1 , so that

R 1 /n = p. By ml applications of Lemma 9.5 in the 'only if direction,

4-19

R/n is an alphanormal tree p' such that q q'. By Lemma 9.9 there is

a tree Vi' E IF such that /'	 ji', q2'------l.Or E IR, and

(1)	 (Vy,y'E X)(FyVi=Fy; Vi' b implies F go = F,p'

Set S = R(n	 ui'), so that R	 S. We wish to show that S 1 S. By

S 1 = R 1 (n— Vi), S = R(ne- 4/'), R 1 R, and	 ipl, we can show that

S 1 S by InI applications of Lemma 9.5 in the "if" direction. (The con-

sistence of free variable changes is assured by (1) and R 1 R.) More-

over, the changes in free variables between S and S are the same as

those between R 1 and R:

(Vy,y' EX)(FyS 1 FS	 implies F
y R 1 = FyR

By R 1 R, F y R 1 = FyrR	 implies that y = y'. Therefore

(Vy i y'EX)(FyS 1 =F,S	 implies y=y').

Together with S 1 S. this implies that S 1	 S.

By repeating the above argument with R in place of R 1 and S in
place of Si. we find that some S' E IF has R ' 5' and S 5'. There-

fore R, 5, and S' have the desired properties. U

(10.2) Lemma. Let IR = IR U JR 6 and let S	 be the SRS

(V, IF, =>, JR). The GRS It	 is Church-Rosser. ió	 776

Proof: First we show that	 is Church-Rosser. By y * X and the

definitions of IR and 1R 6 in (9. 7), IR is a partial function. Therefore

T Y16 is unequivocal. We have assigned a map

r [q', i]: Dom q - 2Dom Vi

to each çü — i/' 1R776 by (9.10.1) and (9.10.2). It is easy to check that

r[q,Vi] is a residue map for each q'— 0 and that 0: r16 is closed in

4-20

Definition 5.4. By the Main Theorem (5.6), G is Church-Rosser.

Now suppose that 01, S, 2' E IE with and	 I'.

By Lemma 10.1 and similar reasoning, there are R, S, 5' E IF such that

R = S j and R 4 5' J'. Therefore some T E F has S	 T
176	 176	 176

and S'	 T because	 is Church-Rosser. Letting T be the strong
17 6	 176

alphaequivalence class of T, we have 4.	 7 and 4'	 7. I

(10.3) Lemma. The GRSs 13 and	 commute.

Proof: We use the Commutativity Lemma (3.6). Suppose , A,	 IE

with	 >	 1 and ik >, I. We will show that some 7E IE has

-	 and 42 >f3 'T. By Lemma 10.1, there are RE fl F0;

4 ; S2	 2 with R —> S 1 and R ' 2• Let rules 	 — cli and
/3

- 2 be applied at nodes n 1 , n2 to derive S 1 and S 2 , so that

= R (n 1 — cli 1) and S 2 = R(n2E—ç1)2).

Case 1 (n 1 I n2). Let T = R(n 1 - i1)(n2	 and let 7' E IE

with T E T.

Case 2 (n1 anc n2). By the definition of IR /3 (9.7.2), there are x E X

and P,Q E F 0 with

= 'y(X(x,Q),P) & 0, = [P/x]Q

while, because R E F0,

FVb1 P fl (BVbl Q u{x}) = çb.

Case 2.1	 (n 1 (0) = n 2). Then 2	 2 E 1R 17 with

= X(x,Q) = X(x,y(ç1i2 ,x)) & F cl/2 =

It is easy to compute that S = 2 Let 7' E IE with S1 E T.

4-21

Case 2.2 (n 1 . (0, 1) anc n 2). Let m = n 2 /(n 1 . (0, 1)), so that
ç0

2 Q/m

and r(n2 /n 1) ={m} in (9.10.3). We claim that (p 1 —Vi l is pseudoclosed

at (n2/n1,{m}) with respect to OR 91 IR). Let 	 be [P/x}çi2.

In Definition 5.7 we need

(1) 12I1	 ({m} -	 E 1R13

(2)

For Q = Q(m - VY we have

(3) p1(n2/n1	 =

But BQ = ç by RE IF O J and so

(4)

1 Vii(Iml -) = ([P/x]Q)(m - [P/x]) = [P/x1..

Now FVb1 P (BVb1 U {x}) 	 by BVb1 C BVb1 Q, so (1) follows

from (3), (4), and the definition of 1R (9.7.2).

By the definitions of 1R and 1R 6 in (9. 7), [P/x}a 2 — [P/x]/i2 E

Since B = implies that

{P/x} 402 = {P/x](Q/m)	 1/m

while [P/x]ç0 2 = by definition, this proves (2).

By Lemma 5.8, some TE IF has S +T and S2?T. Let TE IF

with TE T.

Case 2.3 (n 1 (1) anc n2) . Similar to Case 2.2, but easier. Letting M

be r(n2 /n 1) in (9.10.3). we show that 	 -	 is pseudoclosed at

(n 2 /n 1 , M) with respect to (1R, IR), using = 2 now. We then have

S1 == T and S 2 	 T for some T E IF by Lemma 5.8.
776

4-22

Case 3 (n2 anc n 1). By the restriction (9.7.5) on 	 2	 2 E

and so some x E X has

= X(x,y(r/i2,x)) & Fi2 =

Case 3.1	 (n 2 .(1) n 1). There are yEX and QEIE' such that

= X(y,Q) and /i	 [x/y]Q. Therefore

S =R(n — X(x, [x/y]Q)) & 2 = R(n 2 4—.- X (r , Q)).

Since Q 1 (x) = 0, it is easy to show that X(x, [x/y]Q) X(y,Q) and hence

that S	 S2. Let T E IE with S 1 . S 2 E

Case 3.2 (n 2 (1,0) anc n 1). Letting M = r(n 1 /n2) in (9.10.2), we check

that 2 - 2 is pseudoclosed at (n 1 /n2 ,M) with respect to (1R. IR),

using =	 in Definition 5.7. By Lemma 5.8, there is a T E IF such that

IMI
2r & S1==T.

TI

By IMI = 1 we have S = T and 2 r T. Let 7 E IF with T E 7'.0

We cannot show that JR., is Church-Rosser as simply as in

Lemma 10.2 because	 is not closed. Insteadwe analyze 	 as a

combination of "requests" for substitutions and "performances " of

substitutions. Rather than apply a rule from iR to a tree in IF in one

step, we first apply a rule of the form 'y(X(x, S), R) -k o(R, x, S) where

a is a new symbol. The set of such rules will be called IR and will be

defined later. These requests for substitutions form trees in a larger

forest IT that includes IF as well as trees of the form a(R, x, S) with

R, S E II and x E X. Substitutions will be performed by a set IR of

0

4-23

rules that move a downward. A single step R	 S will be simulated by

a sequence of steps R (>) S with the intermediate trees in IH - IF.
'y	 a

Let a be a new symbol (pronounced "substitute") and let

(10.4.1)	 W = V u{a}

Assign rank 3 to a and define]H C W inductively:

(10.4.2)	 (C U X)# C JET

(V x E X)(V S E IH)(X (x, S) E lET)

(V R ,S E IH)(y(R,S) (E JET)

(Vx E X)(VR, S E IH)(a(R, x, S) E IH).

We expect a(R, x, 5) to have normal form [R/x]S whenever R, S E IF.

Let IRa be the set of rules defined by

(10.4.3)	 a(R, x, -y (S, T)) - y(cr(R, x, S), a(R, x, T))

a (R, x, X (x, S)) -k X(x,S)

cr(R,x,X(y,S)) -k X (y, a (R, x, S))

a (R, x, x) - R	 a (R, x, a) -k a

whenever R, 5, T E lET; x, y E X; a E C U X with x 0 y and x * a. The

SRS G C7 = (W, IH,?, 11a will perform substitutions. The actual letters

R, 5, T and a letter a a x for each choice of x above may be con-

sidered as parameters with domains

(10.4.4)	 DR=DS=DT=IET&Da=(CUX_{X})#•

Then (10.4.3) defines an infinite set of rule-schemata as x and y vary.

The substitution [R/x] of R for the free occurrences of x in S was

defined by (9.2.6):

[R/x]S =S(FS—R).

4-24

The following lemma shows that	 can compute substitutions by

finding normal forms for -trees in lET. It also establishes useful inductive

properties of these normal form computations.

(10.5) Lemma.

(1) (Vx E X)(VR-,S E IF) (a(R,x,S) =' [R/x]S)

(2) Each P E TEl has a unique normal form Z P IF under

(3) (Yx (E X)(VR,S E IH)(EX(x,S)= X(x,ES) &

Zy(R,S) = y(R,.ES) & Z a(R,x,S) = [R/x]S)

Proof: Comparing [R/x]S from (9.2.6) with the rules from (10.4.3)

leads to a proof of (1) by induction on the size of S. By the inductive

definition of lET in (10.4.2), we can show that each P E lET has at least

one normal form in IF, where (1) is used in the only nontrivial case

[P() = o} in the induction. To show that each P E lET has at most one

normal form, we will show that is Church-Rosser. The rules in

(10.4.3) form a partial function on trees, so T is unequivocal. By the

Rule-Schemata Theorem (6.5),	 is closed. Therefore .t is

Church-Rosser by-the Main Theorem (5.6). This proves (2), and (3)

follows from (2) and the-definition of IR in (10.4.3).1

Let IR
1

be the set of rules defined by

(10.6.1)	 -y(X(x,S),R) - cr(R,x,S)

whenever x E X; R, S E lET. The SRS L = (W, lET, =, IR) will request

substitutions. The actual letters R, S above may be considered as

parameters with domains

A-25

(10.6.2)	 DR D5 =

In order to relate G and	 to	 we set
ly

(10.6.3)	 (=) = ()flF X
1	 y	 o	 0	 0

	

We will show that) is a Church-Rosser GRS and that

this implies the Church-Rosser property for 	 . The first two steps

are easy lemmas.

(10.7) Lemma. Let Sc- IF; SE IH. Suppose S	 S. Then
ly

BVb1 ES C BVb1 S and FVbl ES C FVb1 S.

Proof: We prove both assertions simultaneously by induction on the

size of S. The only nontrivial case is when S () = and S() =a.

Suppose this happens. Then some XEX and P,QE]F have Sy(X(x,Q),P)

while some P,QE IH have S = r(,x) and P 	 and QQ. By

the induction hypothesis and (3) in Lemma 10.5,

BVb1 ES BVbl [EP/ x]EQ C BVb1 EPU BVb1 EQ

C BVbl P U BVb1 Q C BVbl S.

Also by the induction hypothesis,

FVb1EScFVb1EPU(FVb1EQ—{x})

CFVb1PU(FVb1Q—{x})=FVb1S.I

(10.8) Lemma.	 =r

Proof: It suffices to show that each R E IF has the property

(1)

(VS E IH)(R	 S implies R	 ES)
ly

since (=') = (E) when the map E:]H 	 is viewed as a relation.

4-26

Suppose that (1) holds for all trees smaller than R and that R => S.

The proof that R ES is straightforward, using (3) in Lemma. 10.5,

except in the case where R() = y and S() a. Suppose this happens,

so that R has the form y(X(x, Q), F) with FVb1 Pfl (BVbl Q U {x}i) =

There are P,Q E lIT such that S = a(P, x, Q) and P	 P and Q = Q.ly
By the induction hypothesis, P	 EP and Q	 EQ. By (3) in

Lemma 10.5 and FVb1 EP fl (BVb1 ZQ U x}) = from Lemma 10.7,

	

R = 'y(X(x,Q),P)	 'y(X(x,EQ),EP) r [EP/x]E = ES.I

Suppose R,SEIF; R,SEH; R	 R;S=z=.S. Itis reason able to ly
expect that [R/x]S .'	 [ER/x]ES, at least when appropriate

restrictions on . variables being, both bound and free are imposed. The

next lemma carries out this idea and allows .a. different choice of R at

each node in F S. x

(10.9) Lemma. Let S E IF; S E lIT. Let (m0, ..., mK_l) be a listing of

FS for some x E X and K E IN.' Let R . E IF and RkE lIT for each

k < K. Suppose

(1) BS = ç & (Vk<K)(FVb1 Rk nBVbl S =

(2) S 	 & (Vk<K)(Rkk).

Then there are mutually independent sets N 01 .. . ,	 of independent

nodes in ES such that

(3) FES =	 N
k<K

(4) S(m - R) . . . (m	 - R) (> 0	 0	 -1	 -1	 a

ES(N 0 - ER0)... (N_ 1	 ER_ 1)

4-27

Proof: For some J E IN there are trees S 0. ..., S. with

s=s ==s. ...='•s =.
0 7 1	 J

For each j <J, let a rule - çli be applied at a node n to derive

S. 1 from S.. Each . is an instance of a rule-schema in the

definitions (10.6.1) and (10.6.2). Let r be the residue map assigned

toqi	 by Lemma 6.3. For each k <K define M O, ...,	 by

Mk O = {mk} and

M1 ={mEMImIn.}U

{n.. p I (El m E M)(n. anc m & p E r. (m/n.))}.

By induction on j, we can show that S. W =	 M, and no
k<K

mE M has the form q . (0) with S
i q

.= or q•(1) with Sq = a. By

Lemma 6.4 we can then show that each j <J has

(5) S.(M3 -R0 . (M	 - R_ 1) >
JO

S (M	 - R0). . .(M	 - R_) .j+1	 0

In (2) we have

(6) S(m 0 '—R 0). .(m1—R1)(

For some J E IN there are trees S,. . . ,S with
J

•=• or • i ••• r=ES.

For each j <.J, let a rule	 -k	 E IR, be applied at a node n to

derive S.
J+1

from S J .	
J

. Each . - /i. is an instance of a rule-schema
J	 .

in the definitions (10.4.3) and (10.4.4). Let r be the residue map

assigned to n - çli by Lemma 6.3. For each k <K define

4-28

by	 =	 and

j+l	 {iiIi}
{i p I(3m E	 anc m & p E

By induction on j, we show that 	 (x) =	 and no m EM
k<K
U

has the form q-(0) with Sq=X or q . (l) with S1 q = a. Setting

(7) (Vk<K)(Nk=i)

yields (3). Now we will show that each 3<J has

(8) 4- E 0)..	 4—ER) r

i+1 0 .4-	 . .(. 'j' - ER)

In all but one case we can prove (8) by means of Lemma 6.4, as in (5).

The odd case occurs when -	 is of the form a(P, y, x) -k x for

y E X with y x. Assume this happens. There is no rule

in lRa but several steps can achieve the same effect. We claim that

By S E IF we have y E BVb1 S, so FYE k = by (1).

Therefore [ZP/y] ERk = IRk, and we do have a(P, y, ER k) : [EP/y] ERT

by (3) in Lemma 10.5. This completes the proof of (8). Combining (8)

with (6) and (7) yields (4).i

4-29

The next lemma will show that the assertion diagrammed by

Figure 4-1 is correct. The reason for proving this complicated state-

ment is simply that we wish to use it as a stencil later, in verifying a

diagram by the technique introduced in the proof of the Commutativity

Lemma (3.6). We discuss the content of Figure 4-1 before proceeding

with the proof.

Suppose we have R E IF and we apply some gamma rules to

derive a tree R' E lET. We can now apply more gamma rules to form

R" E IF!, but we can also perform the substitutions presently requested

in R' instead. By applying sigma rules to R' we can derive the normal

form ZR', which is actually in IF and is therefore strongly alphaequiva-

lent to some S E IF 0 . Can we apply gamma rules to S so as to parallel

the derivation of R" from B'? Can we obtain S = S' where S' is

essentially the same as R", at least after we perform the substitutions

and allow for changes of bound variables? Figure 4-1 asserts that

this is always possible.

(10.10) Lemma. Let R,S E IF 0 ; R I , R" EN. Suppose R =z4 R' == R"

and ZR'S. Then S(

Proof: Consider three statements involving indeterminate trees

R,	 ,

(1) R—R' =R" & ZR'S
1'

(2) S=S' & ZR"ZS' 7

(3) (V y, z E X)(FyZR P ' = FZS'	 implies F y	 z ZR' = F S).

S

R"

4-30

R

Figure 4_1. Stencil for use in the proof that (F 09) is

Church-Rosser. Small circles represent members of

111; large circles represent members of IF

I i

4-31

It will suffice to prove that each R E]F0 satisfies

(4)	 (VS EIF 0)(VR',R " E IH)1) implies (ES' EIIT) [(2) & (3)])

Suppose (4) holds for all trees smaller than R in IF and suppose

R S R', R" satisfy (1). We will show there is an S' E IH such that (2)

and (3) hold. There are three basic cases: R() CU X or R()=X

or R() = . The case where R() = 'y has two subcases: R"() = or

R"() = o. When R"() = a there are also two subcases to consider:

R'() = or R'() a. Except for the trivial case [R() E C U X], all

the cases are treated by applying the induction hypothesis to various

subtrees of R. Various trees play the role of S' in (4) for each of these

subtrees of R, and we must combine them into a tree S' that satisfies

(2) and (3). The leaves [R() = ; R"() = a; R'() =] and [R() =

R"() a; R' () a] in the hierarchy of cases require some extremely

tedious verifications, but the strategy is exactly the same for them as

for [R() = X]. The leaves in the hierarchy of cases are doubly under-

lined in the detailed argument below.

Case 1 (R() e C U X). Then some a E C U X has

R = R' = R" = ER' = ER" = a

and some b E CU X has S = b. (If ac- C then b = a. If a E X then

b E X but perhaps b * a, since only weak alphaequivalence is assumed

in (1).) Let S' 5, so that ES' = b and (2) and (3) are trivial.

Case 2 (R() X). There are x, x E X and Q,Q E IF	 and Q', Q" E IH

with

R = Mx, Q) & R' = X(x,Q') & R" = Mx, Q") & S =

4-32

By the definition of R in (10.6) and the inductive lemma (9.5.1) for
ly

QQ'	 Q" & EQ'	 & FQ' F.

By the induction hypothesis, some Q' E U has

QzP & EQ"EQ' & ly
(V y, z E X)(FEQ" = FZEQ' 	 implies FEQ? = FZQ)..

Setting S' = X(x,Q'), we find that (2) is trivial and (3) follows from

direct calculations based on equations like

FX(x,Q)=ify=x then 0 2.1se (1).FQ.

Case 3	 (R() = 'y).

Case 3.1 (R"() = y) . Similar to Case 2.

Case 3.2 (R"() = cr). There are XE X and P,Q E IF and P", Q" E]H

with

R y(X (x, Q), P) & R" = cr(P", x, Q")

Case 3.2.1 (R'() = y) . There are XEX and ,EIB' 0 and P I , Q'EIH

with

R' = 7(X(X,Q'),P') & S = y(X(,),P)

By the definition of IR in (10.6) and the inductive lemma (9.5) for
ly

(5) P	 F 	 P" & Ept P
ly

(6) Q	 Q'	 Q" & ZQ'

(VY zEX)(FX(x zQ') = FX.(x,)	 implies FEP = FZP).

4-33

We will show that this last fact and (6) imply

(7) (V y, z E X)(FEP' = FP	 implies FQ' =

Suppose FEP' FP	 so that	 x and z R. Consider two cases.

Case a (FEQ' çb) By (6), some w E X has FEQ' = FwQ	 . We

have w x because y x so FyX(x, EQ') = FX(x.) b. Therefore

FEP' = FP. But FP' = FP b, so z = w. The equation FQ'

FQ becomes F y ZQI = FQ. as desired.

Case b (FyEQ' = b) Suppose FQ çI. By (6), some w E X has F WZQ' =

FQ ç. We have w x because z	 so FX(x, EQ') = FX (,) çb.

Therefore F WEP ' = FP. But FEP' = FP	 , so y = w. The equation

FwEQ ' = FZQ b becomes FQ' = F 	 b. But this contradicts

= çb, so the supposition is false and FQ =	 FJQ'. This proves

(7).

By (5) and the induction hypothesis, some T51 E IH has

(8) P	 P' & ZP"
7

(9) (V y, z E X)(FZP'I = FEP' çb implies FP? = FP).

By (6) and the induction hypothesis, some Q 1 E lET has

(10) F&EQ"EQ'
'1

(11) (V Y, z E X)(FQ" = FZQ' b implies FQ' = FZQ).

Let S' be a(P',,'), so that (8) and (10) imply S =' S'. To
ly

complete the proof of (2), we will use Lemma 9.6 to show that

4-34

ER" = [EP"/x]EQ" [EP'/x]EQ' = ES'.

We must verily (9.6.1)--(9.6.3) and (9.6.5)--(9.6.7). For (9.6.1) we

must show that FEQ" = F-EQ'. There are two cases to consider.

Case a (FEQ" :^) By (10), some WE X has

(12) F x	 w EQ" = F EQ'.

By (11) and Lemma 10.7, this implies that

F XEQ' = FQ ^ çb.

But FXEQ' = FQby the inductive lemma (9.5) for and ER' S, so

this yields w = . In (12) we have FEQ" = F...E'.

Case b (FEQ" =) Suppose FEQ'	 . Reasoning as in Case a, we

find that some w E X has FEQ" = F-EQ'	 and then that w = x.

Therefore FEQ";4a contradiction. We must actually have FEQ' =

çl: FEQ".

The only other conditionnottrivial to verify is (9.6.6):

(V y, z E X)(FyEQ" = FE' b implies FyEP" = FE').

Suppose FEQ ?' = FZEQ' çb, so that (11) and Lemma 10.7 imply

(13) FEQ' FQ

Case a (FEP" :^) By (8), some w E X has

(14) F EP" = F w EP'
y

To this we apply (9), then Lemma 10.7, and then (7), so that

FEQ ? = FQ.

Comparing with (13), we find that w = z and so (14) implies that FEP?

= F z EP', as desired.

4-35

Case b (FP ? ' =	 Suppose that FZP' çZ. Reasoning as in Case a,

we find that some w E X has FEP" FZ EP,	 and then that w =

Therefore FP" ^ çi, a contradiction. We must actually have FE'

= = FEP". This completes the proof of (2).

To show that our S' = a(P', x, Q') satisfies (3), we suppose that

FER'? = FZ ES ' i4 b and show that FR? = FS. By Lemma 10.7 and

R,SEIF0

FR?? = FQ" FEP"U (FQ"—FzQ")

FZ ES ' = F-EQ' . FZ ZP ' U (F'—FE'),

so that our supposition implies

(15) F 	 " Q FY " P = FEQ'.FP'

(16) FEQ"_–FQ" = FE'_FEQ'

where both equations cannot be çz = P.

Case a (FEQ". FyEP" =) Then (16) cannot be = . soy x and

z :^ x. By (16), (11), and Lemma 10.7:

FyEQ' =Fz 7b &yx &z.

By ER' S. this implies that FER ? = FS.

Case b (FEQ" FEP) Then (15) implies that

F EP" = F z EP' y

By (9) and Lemma 10.7 we have FEP ? = FP L çb. BY ER' S, this

implies that FZR' FS. The proof of (3) is complete.

4-36

Case 3.2.2 (R'() = a) There are P', Q 1 E IH such that

(17) R' = a(P',x,Q') &R' = [EP'/x]Q'

**	 *
(18) P = P' = F" & Q = 3Q' ==Q".

7	 '1	 7	 1'

By Frame ZR I = Frame S we have FXEQ' ç Dom Sin (17). Set

= S(FEQ' -) where R is any new variable.

Let (m0 ,. .. , mK_ for K IF x ZQr be any listing of FXQ' and let

be S/mk for each k <K, so that (17) and the definition of Q imply

(19)	 ER' = EQ'(m 0 - EP') ... (m- 1 - EP')

S=Q(m0 —P 0) ...(m14—P1).

By Lemma 9.6, ER' S implies that

(20) EQ'	 & (Vk <K)(EP'

(21) (Vy, z E X)[FyEQ' = Fz * çb implies (Vk <K)(FyEP' = FZPk)]

(22) (Vy,z E X)(V3,k<K)(F EP'F P * implies F EP' F y	 .	 y	 z P k

From (20) and (21) it follows that

(23) (Vy, z E X)(V k <K)(FyEP' FZPk ^ b implies FyEQ' = FZQ).

Applying the induction hypothesis to Q in (18) and (20), we find

that some Q' E IH has

(24) ' &

(25) (Vy, z E X)(FyEQ? ' = FE' * 0 implies FEQ? = FZQ).

Applying the induction hypothesis to P in (18) and (20), we find

that some... ,P') E	 has

4-37

-
(26) P =	 & P" k7

(27) (Vy,zE X)(F EP" = F EP'	 implies F EP' = F P) y	 z k	 y	 z

for all k <K.

The listing (m 0, ..., mof FXEQ' is also a listing of F-.

By (24) and (26), Lemma 10.9 is applicable with Q in the role of S

and P in the role of R in Lemma 10.9. Therefore there are

mutually independent sets N 0 , ..., NK_l of independent nodes in

Z—Q 1 such that

(28) FE' = U N
k<K

and

.Q(m4—)...(m *-)== 0	 0	 -1	 -1 'y	 a
'(N0—EN)... (N1—E'1).

Comparing this last fact with (19), we find that some S' E lii has

(29) S = S' & ES' = E'(N 0 — EP) ... (N_ i -

We must show that ER" ES' to complete the proof of (2). First

we will show that F EQ" FEQ'.

Case a (FEQ" *) By (24), some w E X has

(30) F x EQ"	 w = F EQ' :^

By (25) and Lemma 10.7, this implies that

FXEQ' = FQ çb.

But FXEQ' = FQ by definition of Q, so this yields w = R. In (30) we

have F EQ" = FEQ'.

4-38

Case b (FEQ" =) Suppose FEQ' 9 . Reasoning as in Case a, we

find that some w E X has FEQ" = FEQ' . b and then that w = x.

Therefore FXEQ" b, a contradiction. We must actually have FE' =

çb = FEQ".

By FEQ" = FE' and (28):

ER" = [EP"/x]EQ" = EQ"(N 0 — EP") .. (N1

Comparing this with (29), we find that we have most of the conditions

needed to establish ER" ES' with the help of Lemma 9.6. The

conditions still to be verified are (9.6.6) and (9.6.7):

(31) (Vy, Z E X) [FEQ" = FZE' ^ b implies (Vk < K)(F EP" = FEPp}

(32) (Vy, z E X)(Vj, k <K)(FEP" =FZEP	 implies FEP" = FZE{()

Suppose FEQ'? = FZ EQ' ;4 çb, so that (25) and Lemma 10.7 imply

(33) FyEQ' = F Q çb.

For any k <K there are two cases to consider.

Case a (FyEP' I çZ) By (26), some w E X has

FEP" = FWEP

To this we apply (27), then Lemma 10. 7, and then (23), so that

FEQ' = FQ.

But then w = z by (33), so FyEP" = FZE.

Case b (FyEP" = çb) Suppose FZ EP	 (A. Reasoning as in Case a, we

find that some w E X has FEP" = FEPf ^ çb and then that w = y.

Therefore FEP" ç, a contradiction. We must actually have F Z EP & =

= F,CTEP". This completes the proof of (31).
J

4-39

Now suppose that FEP" FZ EP	 . To this we apply (27), then

Lemma 10.7, and then (22), so that

(34)	 F y
	 z EP' = F IDk.

By FyEP"and EP" EP, some w E X has

FEP" = FWEP

By (27) and Lemma 10.7, this implies FyEP' = Fwk :^ 95. Comparison

with (34) yields w = z, so FEP" = FZEc• This proves (32).

Finally, we must prove (3). Suppose that F ER" = FZES'. For any

k < K we have

• ER" = F EQ" F EP" L) (F EQ"—F EQ") y	 x	 y	 y	 x

• ES' = F-EQ' F EP' U (F EQ'—F_EQ'), z	 x	 z k	 z	 x

and so

(35)	 FEQ".FEP" = FEQ' FZEPfc

(36)	 FyEQ"_FxEQ" = FZE'_FE',

where both equations cannot be 95 = çb.

Case a (FEQ". FEP' P =) Then (36) cannot be =	 so y x and

z i Applying (25) and Lemma 10.7 to (36) yields

FEQ? =F Q	 &y:^ x&z

By ER' S and the equations (19), this implies FER' = FS.

Case b (FEQ". FEP" b) Then K 0 and (35) implies that

F EP" = F EP' y	 z 0

4-40

By (27) and Lemma 10.7 we have

FEP ? = FP0 :^ b.

By ER' S and K :^ 0 in (19), this implies FER' = FS. I

(10.11) Theorem. The GRS	 is Church-Rosser.

Proof: First we will show that (F 0,—) is Church-Rosser, where =j

is from (10.6.3):

=	 =)flF0XF0.
ly

By Lemma 3.4 and transitivity of , it will suffice to verify Figure 4-2.

The SRS M defined by (10.6) is unequivocal and is closed because
ly

 of the Rule-Schemata Theorem (6.5). By the Main Theorem (5.6), is

Church-Rosser. Therefore we fill in (Dl). Figure 4-1 is available as a

stencil because of Lemma 10.10, so we fill in (D2) and (D3). Finally,

we fill in (D4) because normal forms are unique in G and any tree in

F can be aiphanormalized by changing bound variables.

Now suppose R, , V E IE with d	 4 and	 2'. We will

show there isa TElE such that LT and 4'. Let	 and

0?.	 4-'. For J = 0 or K = 0 the choice of 7 is trivial, so we may

assume J 0 and K :^ 0. Let

(=) = (=r)flF0XF0.

By 1+(J-1)+(K-1) applications of Lemma 10.1, there are R E Ot and

S E j and S' E i' with

(1)	 R=S & RS'.

S SI

4-41

R

I.

Figure 4-2. Diagram for the proof that (is

Chruch-Rosser. Small circles represent members of

Ii; large circles represent members of IF0.

4-42

By the definition of	 in (10.6) and the ability of G to perform

substitutions (established by (1) in Lemma 10.5), we have

(=) (== ==) so that(= ')	 (=j. By (1) and the Church-Rosser

property for (IF 0 ,), there is a T E'o such that S	 T and S' ='T.

By Lemma 10.8, this implies that 2	 'Y and 4' >T. for .'T E E with

TE.I

(10.12) Theorem. The GRS	 is Church-Rosser.

Proof: We use the Commutative Union Theorem (3.5). By Lemma 10.2,

Lemma 10. 3, and Theorem 10.11, { a I a E {13 , r, o }} is a family of

Church-Rosser GRSsE a =	 >a) that commute with each other.

Therefore the union (IE,>U >flO) is Church-Rosser. But

TI6)

because	 (=) U () and each > is induced by the corresponding r16	 1

== in Definition 9.8. Therefore Z. is Church-Rosser. I

Curry and Feys [14, §4S] review the early work on the Church-

Rosser theorem. Theirs is the first proof that 	 is Church-Rosser

and the first correct proof that 	 is Church-Rosser. They show that

a complex array of abstract postulates implies the Church-Rosser

property [14, §C2 (Thm. 2), §4A4 (Thm. 5), §4A3 (Thm. 4)] and that

these postulates hold for A [14, §4B3 (Thm. 3), §C1 (Thm. 1)].

Hindley [21] and Schroer [48] also proved that 	 is Church-Rosser by

arguments of this form. Hindley's proof that his postulates imply the

Church-Rosser property appears in [22] and his proof that 	 satisfies

his postulates will appear in [23]. The three arguments are all quite

4-43

difficult and dissimilar to our proof.

Mitschke [36, §2-4] independently proved that
110

is Church-

Rosser with a construction similar to our 	 . Aside from minor nota-

tional differences, the only difference between the constructions is that

he defines substitution for free variables and 1R [36, §21 in the manner

of Curry and Feys. As was remarked at the end of §9, we have almost

returned to Church's original formulation of these notions.

Mitschke's argument relating his al to 	 is organized differ-

ently but resembles ours in that both are shallow analyses of T and

, in contrast to the deep analyses of alone in earlier proofs. We

have been completely scrupulous about alphabetic changes. A similarly

detailed exposition would lengthen Mitschke's argument (particularly in

Claim II in the proof of [36, §4, Thm. 4.2]), but it could still be some-

what shorter than ours.

The idea of applying the Commutative Union Theorem (3.5) to

and	 was discovered by Hindley [21] and independently by the author

[41, §5]. Hindley's exposition of the idea will appear in [23]. Curry

and Feys used a complicated special argument [14, §41)].

The proofs of Theorems 10.11 and 10.12 use general theorems

about SRSs to establish intermediate results such as the Church-Rosser

property for	 and	 and (3.6. 1) in the proof that 	 and
Y16	 ly	 In 6

commute (Lemma 10.3). In this respect, our treatment appears to be

unique. For us the classical Church-Rosser theorem is an example,

not a goal.

CHAPTER 5

APPLICATIONS TO TREE TRANSDUCERS

This chapter studies tree transducers in terms of subtree

replacement systems. We develop basic mathematical properties of

tree transducers and explain how these properties can assist in con-

structing syntax-directed compilers.

In §11 we review some well-known topics in formal language

theory that are clearly relevant to compiler construction. We also note

some practical difficulties-which prevent these ideas themselves from

being a satisfactory theory of compilers. A model for syntax-directed

compilation that permits the use of formal language theory without

ignoring these difficulties is described in §12. The model consists of

five devices connected in sequence. The first device reads in a source

program and the last device writes out machine code. For each of the

five abstract machines used, there is a significant body of theoretical

results or practical experience (or both) to assist in designing and

implementing the specific device to be used in each particular compiler.

The use of coroutine linkages to compress the five stages into a single

pass process is discussed.

One of the five components of our model for compilers is a tree

transducer: a device that maps trees to trees in a manner reminiscent

of the operation of finite transducers on strings. The basic theory of

tree transducers is developed in §13. This section is mostly exegesis

on the work of Rounds [45] [46] and Thatcher [51] [52 1 . We obtain some

very modest extensions of some of their results and we indicate the

5-2

significance of this work for compiler construction.

One of the problems in this area is complex enough to be discussed

in a section by itself. In § 14 we consider the: question of whether the

composition of two maps, both definable by a certain type of transducer;

is also definable by a transducer of the same type. After explaining how

such closure-under-composition theorems could be helpful in construct-

ing compilers, we elaborate slightly upon theorems of Rounds [46] and

Thatcher [52] to the effect that certain important classes of trans-

ductions are closed under composition. (A transduction is the map

defined by a transducer.) We also present a negative result: there is a

pair of "linear" and "partial deterministic" transductions whose compo-

sition is not computable by any finite tree transducer, deterministic or

nondeterministic, that reads input trees from the top down.

11. Formal Language Theory and Compiling

In this section we review some well-known topics from formal

language theory in the context of compiling.. We consider context-free

grammars, finite transducers, syntax-directed transductions, and

generalized syntax-directed translations.

Consider arithmetic expressions of the form a+(a+a) Xa, where

the four a's represent arbitrary constants or variables. Such

expressions may be evaluated by performing an addition, then a multi-

plication, and then another addition, as shown in the operator-operand

structure displayed in Figure 5-1. It seems rather easy to produce

machine code that evaluates a+(a+a)Xa if the tree structure is available.

U. U.

/

5-3

Figure 5-1. Operator-operand structure for a+(a+a)Xa.

5-4

But how is the operator-operand structure to be recovered from the

string of characters that constitutes a computer program? Many

constructions in programming languages do not even have an obvious

meaning in terms of operator-operand structures. For example, the

sequence of operations performed on the data by an ALGOL 60 for

statement [38, §4.61 is only determined at run time.

Context-free grammars provide a convenient way to define sets

of strings and assign tree structures to the strings in such a way that

the structure of a string can often be recovered from the string itself.

They can assign structures to for statements as naturally as to arith-

metic expressions. 	 -

(11.1) Definition. A context-free grammar is any 4-tuple G=(N,T,P,X),

where N and T are disjoint finite nonempty sets, XEN, and P is a finite

subset of

{(A,)I A E N &wE(NU T)* &w

Members of N are called nonterminals while members of T are

called terminals. The designated member X of N is the initial symbol.

Members of P are called productions and are written A -k w rather

than (A, w) (just as rules are written ç - çO rather than (p, cu)).

There are several variants of this definition in use. We have

followed Hoperoft and Ullman [24, §2.3] because this is a very ac-

cessible source with references to many of the others. The main differ-

ence between this definition and several others is that we require w * ()

in each production A - w. Programming languages never include the

null string as a complete program, and there is a systematic procedure

5-5

for eliminating all productions of the form A -k () from context-free

grammars for such languages [24, §4.6]. Since the problem of finding

structures of strings is less complicated when no productions have the

form A -), we prefer the narrower definition.

In order to explain how a context-free grammar assigns tree

structures to strings we first define a function yield that maps trees to

strings. The yield of a tree is the stying formed by the labels on the

leaves when listed in the natural left-to-right order. Using the alge-

braic nomenclature defined in (4.10), we define yield as follows.

(11.2) Definition. Let V be any set and let IP be the set of all positive

integers. Then yield: V - V is the unique total function such that

(1) (VaEV)(yield(a) = (a))

(2) (Va E V)(VK E IP)(VR E (V)

(yield(&(R 0, ..., R 1)) = yield(R 0) . yield(R 1) yield(R1)).

(Existence and uniqueness may be demonstrated by induction on sizes of

trees.)

A context-free grammar G=(N,T,P,X) defines a forest of "phrase

structure" trees: each tree R displays one way to derive a string of

terminals from the initial nonterminal X by applying productions.

(11.3) Definition. Let G=(N,T,P,X) be a context-free grammar and let

V = NUT. A tree R E V. is a phrase structure generated by G iff R() =

X, each leaf in Dom R is labelled by a terminal, and, whenever n E

Dom R and n has sons n - (0),... n (J-1) with J 4 0 in Dom R, then there

is a product A -k w E P such that

5-6

A= Rn&	 J &(y j <J)(w = R(n.(j))).

Phrase structures are the "derivation trees" of [24, §2.61. We

prefer the term borrowed from linguistics [8, §31[9, Chap. 41 because

it prevents confusion between phrase structures and another type of

tree structure to be considered later in this section.

The language generated by a grammar is the set of all yields of

phrase structures generated by the grammar. If each string generated

is the yield of just one phrase structure, then the grammar is said to

be unambiguous.

(11.4) Definition. Let G=(N,T,P,X) be a context-free grammar and let

£ (G) be the set of all phrase structures generated by G. The language

generated by G is

L(G) = {yield(R) I RE F,' (G) }.

If

(Yw E L(G))(3! R E £ (G))(w = yield(R))

then G is unambiguous.

A grammar for a programming language should be unambiguous.

Unfortunately, there is no decision procedure for this property [24,

Thm. 14.7].

For an example of a context-free grammar we return to a+(a+a)Xa

and similar forms for arithmetic expressions. Let

N = {e,t,f}&T = {(,),+,X,a}

5-7

P= {e—.t

e - e+t

t

t—tXf

f - a

f -* (e)}.

The grammar G0=(N,T,P,e) assigns to a+(a+a)Xa the phrase structure

shown in Figure 5-2. A direct proof that G 0 is unambiguous would be

too laborious for consideration here. A more practical way to demon-

strate unambiguity is to verify a stronger but decidable property, such

as the LR(k) property [24, §12.51.

Suppose G(N,T,P,X) is an unambiguous grammar and WE L(G).

To parse w is to find the one tree R E £ (G) such that w = yield(R). There

are several algorithms, each correct for a broad class of grammars, that

read w from left to right and construct R with little or no backtracking.

Some build R from the top down (i.e., from the root to the leaves), as in

[16] or [44], while others build R from the bottom up, as in [15] or [19].

Rather than survey this area here; we will simply note that there are

efficient methods for context-free parsing.

Unfortunately, many programming languages cannot be generated

by context-free grammars. Floyd [17] has shown that certain very

natural constraints, such as the requirement that all identifiers used be

declared, will remove a language from the context-free family. On the

other hand, a programming language may be "almost" context-free in

that it can be specified by a context-free grammar G together with an

5-8

e

	

It
t	 tj	 f
f	 a

a

I
a

Figure 52. Phrase structure for a+(a+a)xa.

5-9

informal discussion of the restrictions on allowable members of L(G),

as in the definition of ALGOL 60 [38]. Since the theory and practice of

context-free parsing are much more advanced than parsing techniques

for more complex forms of grammar, there is good reason to use

context-free grammars even for languages that are not quite context-

free. There is even a systematic way to do this with a two-stage gener-

ative process consisting of a context-free grammar and a device that we

will call a "lexical synthesizer." Using ALGOL 60 as an example, we

will now sketch the two-stage method. (For the sake of simplicity, we

delete the production (label) -k (unsigned integer), so that (label)

(identifier) is the only production for (label) that remains in [38 ., §3.5.1].)

The following discussion is based on remarks by Cheatham [7, pp. Ill.B.11,

III.B.12, IX.A.1, 1X.A.21.

Reserved words like gare single terminal symbols in the

ALGOL 60 grammar [38, §2, fn. 6], so some additional device that con-

verts the symbol gto the string of five characters BEGIN is needed.

By simplifying the grammar and complicating this spelling device, we

can specify the ALGOL 60 character strings formally. First we replace

the productions for the nonterminal (identifier) by a new production

(identifier) - identifier

where tidentifierl is a new terminal. Unlike the terminals	 +, and

so on, this new terminal can be spelled as a character string in more

than one way. We call it a lexical variable. In general, a programming

language might need several lexical variables, as in treal identifier

and jinteger identifiers in FORTRAN.

5-10

Let G be the modified ALGOL 60 grammar. In order to generate

a program we first generate a phrase structure R cE £(G). The lexical

synthesizer assigns a string k of characters to each position k <Iwl in

w = yield(R). The concatenation	 i" fiW1 -1 of all these strings

of characters is then a well-formed ALGOL 60 program. The way each

k <Iwl is treated depends on the terminal wk at that position. If Wk is

an ordinary terminal like then k is simply the spelling of Wk. In

this case the lexical synthesizer acts like a homomorphism from strings

of terminals to strings of characters. If wk is a lexical variable like

4identilier}, however, then 	 is one of the character strings that the old

grammar could generate from the nonterminal corresponding to Wk. In

choosing k the lexical synthesizer does not merely apply the old rules.

It also inspects relevant portions of the tree R and relevant s for j 0 k,

so as to obey the restrictions that prevent ALGOL 60 from being context-

free. For example, actual label identifiers cannot be assigned to occur-

rences of {identifier} in such a way that a Jump statement transfers into

a block [38, §4.3.41. The restriction on jumps, the requirement that each

identifier used be declared, and several other indisputably well-motivated

restrictions can be formalized readily because the lexical synthesizer has

access to the tree R as well as the string w.

In order to invert the two-stage generative process with the help of

context-free parsing techniques, we consider three processes in sequence:

lexical analysis, context-free parsing, and lexical filtration.

The input to the lexical analyzer is a string of characters that is

presumably a source program. The analyzer finds a string w of termi-

nals and a string k of characters for each k <Iwl such'that

5-11

w-1

and each k is a possible spelling for the terminal Wk. The output of

the lexical analyzer is w together with spelling information for each

k <Iwl such that Wk is a lexical variable. One natural format for this

output is the augmented terminal string

((w0 , go) ,(w1,131),. .

where each 13k is a pointer. If Wk is an ordinary terminal then 13k can be

any "don't care" pointer. If Wk is a lexical variable then 13k is a true

pointer to a symbol table location where the actual spelling k used in

the program may be found. (Other data, such as which block an identi -

fier belongs to, may be accumulated in the symbol table later.)

The input to the context-free parser is the augmented terminal

string produced by the lexical analyzer. The parser treats each (a, 13)

like the terminal a, ignoring the pointer 13, and finds the phrase

structure R E £ (G) of wE L(G). (An error message results if w L(G).)

Each leaf in R is actually labelled by a pair (a, 13): the pointers are

ignored but not erased. To be more precise, we say that the parser

produces an augmented phrase structure.

Finally, the lexical filter determines whether the lexical variables

at leaves of R could be generated by the synthesizer in accord with the

way they are actually spelled in the program , as indicated by the

symbol table entries pointed to by the augmented terminals. The output

of the filter is R if the actual spellings could be generated by the syn-

thesizer and an error message otherwise. This is the stage that detects

undeclared identifiers and similar faults in programs that are well-formed

5-12

in terms of the context-free portion of the syntax. The lexical filter

inspects structures that the lexical analyzer and context-free parser

have already provided. This is not a very difficult task, so we will not

consider formal models for lexical filtration.

We have sketched a three-stage method for context-free parsing

of languages that are not quite context-free. Lexical filtration is not

very difficult and several efficient context-free parsing methods are

available, as in [15] [16] [19] [44], but we have said nothing about how

lexical analysis is to be performed. Our next task is to define a concept

from formal language theory that is useful as a mathematical model for

the most difficult part of lexical analysis.

The source program must be analyzed as	 •... jwI-1 for
some string w of terminals such that Wk can be spelled as k for each

k <K. As	 is read from left to right, the analyzer should sometimes

decide that the end of a 	 has been reached and should output the appro-

priate (Wk,	 as the next symbol of the augmented terminal string. The

symbol table pointers '3k can be assigned by well-known methods for

searching and updating tables (such as hash coding), so we will only con-

cern ourselves with the mapping from to w. We wish to define a class

of abstract devices that are easy to implement and that can map strings

to strings efficiently.

(11.5) Definition. Let M be any 7-tuple

M = (K, E, z, 6, X, s, F)

where K, Z, A are finite sets, s E K, F C K, and

5-13.

X: KXZ__1*.

Then M is a deterministic finite string transducer with set K of states,

input vocabulary Z, output vocabulary z, transition Dap 6, outputDap X,

starting state s, and set F of final states.

The adjective "finite" modifies "transducer," not "string."

Strings are defined to be finite already. The deterministic finite string

transducers are often called "generalized sequential machines with final

states" or "deterministic a-transducers."

(11.6) Definition. Let M = (K, Z, i, 6, X, s F) be a deterministic finite

string transducer. The extended transition Map : K X E -k K is

defined by

(1) (q, Q) = q

and

(2) Z(q,(a) . x) = (6(q,a),x)

for all q E K; XE E; a E E. The extended output map : K)<

is defined by

(3) q,O) =()

and

(4) (q,(a).x) = X(q,a).(o(q,a),x)

for all q E K; x E *; a E E. The transduction computed by M is the

partial function (M): E	 defined by

(5)	 (M)= {(x,(s,x)) I XE Z*. &(s,x) E F}.

5-14

In our intended application to compiling, the input vocabulary Z is

the set of characters available for writing programs. The output

vocabulary A is the set T of terminals in a context-free grammar

(N, T, P, X). The set F of final states may be used to reject certain

character strings without the expense of an attempt at parsing. If M is

not in a final state after processing the input string then an error

message results. If no such test seems to be appropriate, we may let

F = K, so that all character strings are transduced to terminal strings

and sent to the parser. In this case it is customary to omit the refer-

ence to F and call the 6-tuple (K, E, A, 6, X, s) a "generalized sequential

machine." (Hoperoft and Ullman call M a "generalized sequential

machine" even when F K [24, §9.31, but this is a departure from the

more usual nomenclature.)

Many mathematical properties of finite transducers have been

established, as can be seen by consulting [24] and the references cited

there. In §14 we will consider the uses of one of these properties: the

class of transductions defined by deterministic finite string transducers

is closed under composition. These transducers also appear as parts

of an important LR(k) parsing system [15].

Finite transducers are reasonably straightforward to implement.

Whenever a character is read the lexical analyzer consults a IKI by Izi

matrix of entries (6(q, a), X(q, a)) for qEK and aEL Unless a matrix

with IKI IEI entries is unmanageably large, implementation of a finite

transducer is quite easy. Finally, the deterministic finite string trans-

ducers appear to be powerful enough to perform lexical analysis without

unreasonably restricting the programming language designer [7, Chap. IX].

5-15

We have sketched the role of context-free grammars and finite

transducers in assigning tree structures to computer programs. After

lexical analysis, parsing, and lexical filtration, a source program has

been transformed to a phrase structure tree augmented by pointers to

symbol table entries at leaves labelled by lexical variables Concepts

and results from formal language theory are helpful in designing and

evaluating lexical analyzers and context-free parsers, while lexical

filters are rather straightforward to design because of the explicitly

structured data available to them. But how can augmented tree structures

be used to generate machine code?

Before sketching two relatively well-known mathematical proposals

for generating code from augmented tree structures and the practical

shortcomings of these proposals, we must introduce a slight compli-

cation. Phrase structures are simple to define and intuitively natural,

but a somewhat less transparent class of trees has several technical

advantages in the detailed consideration of parsing or code generating

algorithms. The "ranked parse trees" defined below have nodes labelled

by productions rather than by terminals and nonterminals. Recall the

definition of ranked trees (4.11).

(11.7) Definition. Let G = (N, T, P. X) be a context-free grammar. For

each iT E P let p(r) be the unique K E IN such that ir has the form

(1)	 A -k x0 (B0) ... xK l . (BK_i) . xK

where A, B0, ..., BK_ l EN and x0, ..., xK E T*, so that p: P —'IN.

A tree S E P is a ranked parse tree generated by G 1ff So is a pro-

duction X -k x for the initial symbol X and, whenever n E Dom S and

5-16

k < K for K = p (Sn), then S(n . (k)) is a production Bk -b w for the non-

terminal B when Sn is expressed in the form (1).

Aho and Ullman call such structures "parse trees" [2, §2]. We

have added the word "ranked" to prevent confusion between these trees

and phrase structures, which are also called "parse trees" by some

authors.

For an example, we return to the grammar G 0 = (N, T, P, e) for

forms of arithmetic expressions. We have N = {e,t,f} and T={(,),X, a}.

The productions are

7r 0 = e - t

iT =e — e+t

V = t -p f

7r = t -+ tXf

7r = f - a

it 5 f - (e)

with p(ir0) = 1

with p(7r 1) = 2

with p(ir2) = 1

with p(7r 3) = 2

with p(7r4) = 0

with p(7r 5) = 1.

The ranked parse tree shown in Figure 5-3 conveys the same infor-

mation about a+(a+a) X a as the phrase structure tree shown in Figure 5-4.

By comparing the definition of phrase structures in (11.3) with the

definition of ranked parse trees in (11. 7), we can show that there is a

bijection between the two forests for any context-free grammar. A

ranked parse tree is essentially a phrase structure tree where each

node labelled by a nonterminal A has been replaced with a node labelled

by the appropriate production A -b w.

5-17

7TC1,	 VT

7r2	 7T^	 74

Jr5

.17 2	
7r4

77

Figure 5-3. Ranked parse tree for a+(a+a)Xa.

5-18

tj

	

f

a

•1
CA

Figure 5-4. Phrase structure for a+(a+a)Xa.

5-19

In the intended application to compilers, lexical variables will

only occur in productions of the form

(syntactic category) -k 4syntactic category,

so that each w in a production A 	 w is free of lexical variables or is

of the form (a) for some lexical variable a. Corresponding to augmented

phrase structures, we have augmented ranked parse trees whose leaves

are labelled by pairs (ir, 0) where ir is a production of rank zero and 13 is

a pointer. If ir is A - w with w free of lexical variables then 0 is a

"don't care" pointer, but if ir is A -k (a) for some lexical variable a

then 0 points to a symbol table entry.

We will assume that the code to be generated from an augmented

ranked parse tree depends mainly on the basic tree, without the pointers.

The symbol table is consulted for the actual address fields of machine

instructions and perhaps for some details such as the choice between

real number and integer arithmetic. The basic ranked parse tree should

suffice to determine the machine language program except for some blank

spaces to be filled in by following pointers to the symbol table in a

straightforward way. This is the semantic aspect of the idea that pro-

gramming languages are almost context-free. Therefore we consider

the problem of generating code from a ranked parse tree without regard

to the pointers that are attached to the leaves in practice.

Let MLR be the set of all machine language routines definable by

phrases in programs in the language being compiled, where a phrase is

a segment of a program that can be traced back to a single node in the

phrase structure or ranked parse tree. Let P be the set of productions

5-20

in the grammar, with a rank function p in Definition 11.7. We i-night

assign to each 7T E P an operation

I:	 - MLR

so that, if a tree in P has the form 7r(R 0 , ..., R 1) and each R

determines a machine language routine 1k E MLR, then r(R 0 , ..., R_

determines the routine	 ...,	 By interpreting ir as the oper-

ation i on machine code, we can assign a machine language program to

each ranked parse tree. This is exactly the same process we used for

Lemma 8.2 in Chapter 3, where each operator-operand tree could be

assigned a value in the extended data space ID after each operator had

been interpreted as an operation on ID. In the nomenclature of Brooker

and Morris [43, §S1, 4, 61, eachI is a "format routine" macro-

instruction. In the nomenclature of Knuth [27], we are using a single

"synthesized attribute" whose range of values is MLR.

The scheme just sketched is too flexible, rather as if we had

allowed an arbitrary Turing machine to perform lexical analysis. There

do not appear to be many theorems that could assist someone who wishes

to construct a compiler along these lines. We will now consider some

restrictions on MLR and the I's that lead to a richer theory.

In defining "syntax-directed trans ductions," Lewis and Stearns [30]

assume that MLR is a subset of r for some finite set r and that each

I has the form
IT

(1)	 (Vy0 , ..., y_1 c MLR)(I(y0. ••	 = x0.yf(0). ... XK1 • f(K-1) . XK)

where K= p(IT) and xO,...,xK.4cr and f: -0,...,K-1}----. -f0,...,K11 is

5-21

a bijection. These assumptions hold in their example [30, p. 466], where

the source language consists of simple arithmetic expressions and the

target machine has a hardware stack, but not in some other important

situations. As Aho and Ullman point out in the case of for statements

[2, p. 94], the routine I(y0, •'Kl might require several copies of

some of the Yk'S. The desired flexibility can be obtained by replacing (1)

with

(2) (Vy,	 K-1 E MLR)(I(y0, ••• y) x0 f(0)• ... X4 . f(J-1) . Xj)

where K = p(ir) and JE N and x 0 , ...x_1 ET and f : {o, ...,-i} -

{o, . .., K-11. We simply omit the assumption that J = K and f is a bijection.

The "generalized syntax-directed translations" proposed in [2] are yet

more flexible than this. A tree in P may define several machine

language routines, one for each of several "translation symbols" [2, §3]

associated with the left half of the production at the root. To simplify

the notation we suppose that all nonterminals have the same number H 0

of translation symbols, so that a tree in P determines a sequence of H

machine language routines. The code defined by a ranked parse tree is

defined to be the first component of the member of MLR 11 determined by

the tree as a member of P. Instead of (2) we have I: (MLRH)K

MLRH , and each h <H has

(3) (VY 0 , ... ,YE MLR 1)

([I.(Y0	 K-i	 f(0)	 f(J-1) ,...,Y)]h =xO .Y	 g(0Y"J-i	 9(1-1)J

for some x0,...,xjET* and f:{0,...,J-1}---'{0,...,K-1} and g:{0,...,J-i}

- {o, ..., H-11. The choices of J, x0 , ..., Xj , f, and g depend on h.

5-22

The concept of "generalized syntax-directed translations" summa -

rized by (3) shares a fundamental restriction with narrower theory of

"syntax-directed transductions' t summarized by (1): machine code

consists of strings of symbols and the only way to combine several

machine language routines is to concatenate them.

To concatenate routines is to link them in a linear sequence. This

is not a sufficiently powerful way to manipulate code, since it prohibits

many common uses of branch instructions. For example, suppose a

statement in an ALGOL 60 program has the form

IF P THENa ELSE

and that the character strings P. Lx., 6 determine machine language

routines , , . Suppose that executing 1 would place the value of

P in some register X whose contents can be tested by a branch

instruction. Then ,	 , and the branch instruction should be linked

as shown in Figure 5-5.

Fortunately, the results in [2] deal with the size of the compiled

program as a function of the size of the source program, without really

using the linear linkage assumption. It is enough to assume that size is

measured in such a way that the size of each combination of machine

language routines is a constant plus the sum of the sizes of the com-

ponents. For example, suppose that the size of a routine is the number

of machine instructions in it, and that the normal flow of control is from

each instruction to its successor in a sequence of instructions. Then the

size of the routine shown in Figure 5-5 is

2 + size(l) + size(1) + size(),

1

5-23

Figure 55. Nonlinear linkage in the code for iconditlonal statement.

5-24

where the branch instruction and one transfer instruction (the bend in

the link down from 'Z) account for the 2.

For further study of context-free semantics we wish' to avoid the

unrealistic linear linkage assumption, but we also wish to assume

somewhat more about machine code than do Aho, Hoperoft, and Ullman

[1] or Knuth [27]. We seek a model that allows nonlinear linkage but

still has enough structure to support a theory comparableto that of

-	 finite transducers or context-free parsers. Such a model is proposed

in the next section.

12. Tree Transducers and Compiling

In this section we sketch a model for syntax-directed compilation

that allows the use of formal language theory without requiring unreal-

istic assumptions about the method of generating code from ranked

parse trees. The model presupposes the existence of "deterministic

finite tree transducers" similar to deterministic finite string trans-

ducers such that all states are final states. (The basic theory of such

tree transducers will be presented in the next section.) This section

concludes with remarks on the use of coroutine linkages to implement

the five processing stages of our model without impractically large inter-

mediate storage requirements.

We return to the problem of nonlinear linkage that arose in the

previous section. Consider an ALGOL 60 conditional statement

IF iP THEN d ELSE

5-25

where the character strings P , .,	 determine machine language

routines fl, .I, 8 . Suppose that executing	 would place the value of

in some register X whose contents can be tested by a branch

instruction.

Two binary operations on machine language routines are of inter-

est here. For all routines Ti and • let SEQ(R,) be the result of

linking 2 and 6 sequentially, so that the exit from R becomes the

entry to G . For all routines R and G, let TESTX(,) be the result

of merging the exits from ?t and G and forming a branch instruction

that tests X and branches to fl on true and to G on false. Thus

TESTX(X,) is the routine displayed below the dotted line in Figure 5-6

while

(1) SEQ(, TESTX(J,))

is the entire routine displayed in Figure 5-6. In (1) we have a de-

scription of the code for IF P THEN d ELSE tB in terms of given

routines and elementary operations on code that could easily be pro-

grammed in assembly language, AMBIT/G [11] [20], or any other

language at all suitable for compiler writing. The routines 3, 2,L , and

IB may be quite complex, but they are also built up from smaller

routines by basic code-building operations. The set Q of available oper-

ations is a ranked alphabet including SEQ and TESTX (both with rank

two). The routines 11, X, and	 can be described by trees , , and

in	 The code for IF tP THEN d ELSE 18 in (1) can then be

described by the tree

(2) SEQ(L TESTx(, Z))

Figure 5-6. The conditional IF dO THEN a. ELSE 6 is coded as

SEQ(,TESTX(J,)) when	 , ., € are coded as

5-26

5-27

where SEQ and TESTX are the operations on Q defined by (4.10).

By hypothesis, Q consists of names for readily programmed

operations on machine code. To pass from the tree (2) to the routine

(1) is simply to perform the indicated operations. More generally, we

may assume that there is a code generator which converts ranked trees

to machine code. (The actual input to the code generator will, of

course, be an augmented tree, with pointers attached to the leaves as

in the previous section.) The code generator may perform ordinary

bottom-up evaluations as in (1). It may also perform operations with

side effects on an environment that includes the symbol table, which

must eventually be expanded to include addresses as well as spellings.

We will not attempt to model code generation in detail. In each specific

application Q is to be a selection from operations that are already well

understood and hence not in urgent need of a mathematical model.

In order to avoid dubious assumptions about the mathematical

structure of machine code, we have postulated a code generator that

maps trees to machine language routines. The input to the code gener-

ator is a coding tree: a ranked tree augmented by pointers to symbol

table entries as well as ordinary labels at the leaves. The ranked

alphabet Q represents whatever basic code-building operations are

available; it has no simple relation to the ranked alphabet P defined by

the context-free grammar G = (N, T, F, X) used in generating the source

language. (Recall that ranks are assigned to productions by Definition

11.7.)

There is a gap in the method of compiler construction we have

developed. Lexical analysis, context-free parsing, and lexical filtration

5-28

map a character string to an augmented ranked parse tree, as we indi-

cated in the previous section. Code generation maps a coding tree to

machine code. A fifth process is needed to map augmented ranked parse

trees to coding trees. We will call this process semantic analysis.

The semantic analysis of an augmented parse tree is to be de-

termined mainly by the corresponding ranked parse tree without the

pointers: the source language is almost context-free semantically as

well as syntactically. We will assume that the semantic analyzer can

map trees labelled by productions to trees labelled by code-building

operations with the help of a "deterministic finite tree transducer" analo-

gous to the type of string transducer defined in (11.5). The semantic

analyzer ignores but does not erase the pointers on leaves of the aug-

mented ranked parse tree. The pointers are simply carried along so as

to appear where needed in the coding tree.

The practical significance of lexical analysis as a first stage. in

compilation is enhanced by the existence of a fruitful mathematical

model for string transduction. There is a similarly fruitful model for

tree transduction in semantic analysis, but the greater complexity of

trees as opposed to strings forces us to postpone formalization until the

next section. For the moment, it will suffice to anticipate that tree

transducers will be generalizations of string transducers and that they

can perform the macroexpansions for "format routine" macro-

instructions [43, §1, 4, 61.

Our model for compilation is summarized in Figure 5-7, where

the boxes represent processes and the arrows represent data flow. As

the two-headed arrow indicates, the lexical filter might modify the

5-29

character
string

LEXICAL
ANALYZER

augmented
terminal string

CONTEXT—
FREE

PARSER

augmented
ranked parse tree

symbol	 J LEXICAL
table	 FILTER

augmented
ranked parse tree

CODE	 coding	 SEMANTIC
GENERATOR	 tree	 ANALYZER

machine
code

Figure 5-7. A model for syntax-directed compilation.

5-30

symbol table as well as consult it. For example, spelling of identifiers

might be supplemented by pairs (j, k) where j indicates the block where

the identifier is declared and k indicates where the identifier falls in a

list of that block's identifiers. The code generator might also modify

the symbol table, perhaps by adding addresses that will be needed later

in the generative process.

This view of syntax-directed compiling is the natural result of

combining two traditions in computer science. Formal language theory

(if understood in a broad sense that includes the recent introduction of

tree transducers) provides the mathematical background. More concrete

discussions of compiler design problems [7] [43] [54] provide the general

shape of Figure 5-7 and the specific practical techniques for table

searching, linking routines, and so on that we take for granted here.

Without proceeding to a complete mathematical formalization, we have

separated some of the general ideas stated or implied in these dis-

cussions from each other and from considerations of more specific

problems.

In contrast with the attempt to model the entire compiler formally

by a single abstract automaton as proposed by Lewis and Stearns [30,

p. 4671, we have attempted to divide and conquer in Figure 5-7. We con-

sider syntax-directed compilation to be a complex task; different formal

models are appropriate to different aspects of the task. As we suggested

in the previous section, deterministic finite string transducers are

appropriate for lexical analysis, several algorithms in the formal

language theory literature are appropriate for context-free parsing, and

5-31

lexical filtration is a fairly straightforward inspection of structures

already available. We claim that deterministic finite tree transducers

are appropriate for semantic analysis, and some evidence will be pre-

sented in the next two sections. By definition, the coding tree can be

readily transformed to code by the code generator.

Dividing the task of compilation into several stages has two other

advantages regardless of the availability of theoretical models. The

algorithms to be used at each stage can be specified and implemented

separately, and this will facilitate debugging and documentation.

Another advantage is that transportability is enhanced: a compiler for

a language on one target machine can be converted to a compiler for the

same language on another machine with a minimum of reprogramming.

The code generator may need extensive changes, but the other stages

should be useable with hardly any changes if written in a higher level

compiler writing language such as AMBIT/G [11] [20].

Any model of compilation that involves several stages faces a

severe practical difficulty when large programs are considered: there

may not be enough primary storage to hold the entire ranked parse tree

or coding tree. Even the augmented terminal string may be too large in

some situations. Fortunately, there is a programming technique that

often permits us to have the advantages of a multistage process without

excessive intermediate storage requirements. We conclude this section

with a discussion of this coroutine linkage" [28, §1.4.21 technique and

the constraints it imposes on the separate stages.

Suppose that the five stages in .Figure 5-7 have been implemented

by programs LA, CFP, LF, SA, and CG in an appropriate language, so

5-32

that the compiler is the sequentially linked program

(1) LA; CFP; LF; SA; CG

with burdensome intermediate storage requirements. We modify the

five programs slightly to form coroutines LA', CFG', LF', SA', and

CG' that can transfer control back and forth as shown below:

(2) LA?	 CFP'LF' SA ? CG'.

Whenever control passes from one coroutine C to another coroutine D,

C pauses until control returns from D. Then C continues from whatever

place in C's control sequence transferred to D. Except for this linkage

mechanism, LA' is just like LA, CFP' is just like CFP, and so on.

The general idea of coroutine linkage is applied here in order to

save intermediate storage. The rules by which the coroutines call on

each other are simple:

(a) Each of LA', CFP', LF'., and SA' computes only as long as is

necessary to determine some further portion of the string or tree

that it should output. It then passes control and the new portion of

its output to its successor in the sequence (2).

(b) Whenever one of CFP', LF', SA', and CG' must examine some

further portion of its input in order to continue, it passes control

to its predecessor in the sequence (2).

(c) Whenever LA' must examine some further portion of its input in

order to continue, it reads in more characters from the input

buffer for the whole system.

5-33

This is the mode of operation used by Cheatham [7] and Wirth

and Weber [54]. If transfers of type (a) are fairly frequent compared

to transfers of types (b) or (c), then only fairly small portions of the

augmented terminal string, augmented ranked parse tree, and coding

tree must be retained in primary storage at any one time. The time

saved by avoiding secondary storage may well be more than enough to

compensate for the time spent in transferring control back and forth

among the coroutines.

Coroutine linkage is only useful here if the original routines

LA, . . . , CG are such that transfers of type (a) are fairly frequent

compared to transfers of types (b) or (c). Since LA can only produce

a prefix of the augmented terminal string after reading a prefix of the

character string, CFP should read its input from left to right,

remembering only what it might need to know later about previous

portions of the terminal string. Furthermore, CFP should be able to

output part of the augmented ranked parse tree after reading only part

of the augmented terminal string. If CFP builds the tree from the top

down, then LF and SA should read it from the top down, and so on.

The intended use of coroutine linkages puts constraints on the design of

LA, . . . , CG. In particular, SA should read the augmented ranked parse

tree in the order that CFP builds it and should output the coding tree in

the order that CG reads it. Once the compiler designer has chosen the

order in which some chains of events occur, he must follow suit with

other chains or risk exhausting the available primary storage. As we

will see in §14, this practical consideration leads to many open

questions in the theory of tree transducers.

5-34

13. Finite Tree Transducers

In this section we define several types of tree transducers in

terms of subtree replacement systems. By expressing each type of

transducer as a special case of a general model, we hope to facilitate

the development of a unified theory with applications to tree trans-

duction in linguistics as well as compiler design. The actual results

presented here are only very modest extensions of results of Rounds

[45] [46] and Thatcher [51] [52]. In addition to establishing some basic

properties of finite tree transducers, we indicate the significance of

these properties for compiler construction.

First we set up some notation that will be used throughout this

section and the next.

(13.1) Notation. Let ?/I and U be disjoint infinite sets. Members of

are markers; members of U are parameters. The letters r, s and

the symbols @, $, are used as variables ranging over X. The parame-

ters are listed in a sequence u 0 , u 1 , u2 , ... and subscripted u's always

refer to this sequence.

Parameters will be used to form rule-schemata, as in §6.

Markers carry two kinds of information. Intuitively, if a tree R has a

node n with Rn E ?fl, then a tape head of an automaton is positioned at

node n and can read the labels on n and some nearby nodes. (Imagine

an automaton for strings whose heads can read all of several adjacent

tape squares at once.) In addition to this information about a tape head's

position, a node labelled in Yfl encodes a partial record of previous

5-35

computations in the specific marker chosen. A member of 771 acts like

a state of an automaton's control unit, but here there is a separate con-

trol unit for each head and the units are only partially synchronized.

Another anomaly is that tape heads will often split into several heads,

especially when moving down from a node with more than one son.

They will coalesce into one when moving back up. Sometimes tape heads

will even vanish. Such activities are extremely awkward to formalize in

the usual style of describing automata (as in [241), but they can be

obtained easily from an SRS. After two definitions we will be able to

give examples.

Our transducers will manipulate trees whose nodes are labelled by

markers, parameters, and the actual labels occurring on nodes of input

and output trees. (To avoid confusion, these labels should be distinct

from the markers and parameters.) We will deal with ranked input and

output trees because this is technically convenient and because the aug-

mented ranked parse trees and coding trees considered in the previous

section actually are ranked trees. It will be convenient to assume that

any symbols shared by the input and output vocabularies have the same

ranks in both vocabularies.

(13.2) Definition. Let Z and A be finite sets with rank functions

IN and 6: A - IN. Then (,z) is a proper pair of ranked

alphabets iff

(1) (Uz)fl(7)ZUU)=

and

(2) (VaEEflL) Ma) =6(a)).

5-36

If (,) is proper, then the transducer vocabulary

(3) v=UUnUU
is assigned the rank function

(4) p = a 	 6 U{(r, 1)1 rE?n}U{(w,O)l w u}.

For the rest of this chapter, the letters V and p will be used as

in (3) and (4) above. The relevant proper pair (Z, z) will be clear in

context, as in the following definition of SRS transducers. We omit the

overlines in the algebraic nomenclature defined in (4.10).

(13.3) Definition. Let II be any 4-tuple (Z, A, @, a.), where @ E cm,

(E, z) is a proper pair of ranked alphabets, and is an SRS of the

form (V. IF, =, IR) with

(1) IF = {SE V# k2 RE (z U U)#)(@(R) => S)}.

Then II is an SRS transducer with input vocabulary Z, output vocabulary

L, and root marker @. The map (IT) from 2E# into 2# defined by

(2) (H)R = {TE #l (2RE)(@(R) = T)}

for all A ç Z is the transduction specified by H.

The root marker @ is analogous to the left endmarker I— in work

with strings. We do not need an analog for the right endmarker -

because the subtree of a tree at a node already includes everything at

or below the node.

The condition (1) in Definition 13.3 means that 	 is determined

by IR alone, since the transducer vocabulary was already fixed as

5-37

U AU 7/2 U U in (13.2.3). The forest IF consists of all trees derivable

in S from trees of the form @(R) where @ is the root marker and R is

labelled by input symbols and parameters.

By using 2z # and 2# in (2) above, we made the transduction (II) a

total function even though the relation

(*)	 {(R.,S)E	 I @(R) =4 s}

may be neither total nor singlevalued. Conditions under which (*) is a

total function will be considered later. Theorem 13.16 asserts that (n)

is a total function if II is a "deterministic finite tree transducer."

For an example we return to the grammar G 0 = (N, T, F, e) from

§ 11 for forms of arithmetic expressions. We have N = {e, t, f } and

T = {(,), +, x, a}. The productions are

= e -k

e—e+t

= t - f

IT 3 = t	 tXf

7T = f -k a

7r = f -'. (e)

with p(7r0)	 1

with p(ir 1) = 2

with p(7r 2) = 1

with p(7T 3) = 2

with p(1T4) = 0

with p(7T 5) = 1.

The ranked parse tree shown in Figure 5-8 conveys the same infor-

mation about a+(a+a)Xa as the operator-operand structure shown in

Figure 5-9. We can map the tree in Figure 5-8 to the tree in Figure 5-9

by means of an SRS transducer with input vocabulary E = P and output

5-38

-ffo

7T4	 7T*5

H

11
7T4

Figure 5-8. Ranked parse tree for a+(a+a)Xa.

5-39

+

DO

Figure 5-9. Operator-operand structure for a+(a+a)Xa.

5-40

vocabulary z={+,X,al. We choose any @E'11Z as the root marker and

consider the set L of pairs of trees shown in Figure 5-10. Let each

w E U be assigned the domain

Dw =(ZLJU)#cV#.

so that L is a set of rule-schemata in the sense of Definition 6.1.

Let IR be the set of all instances of members of L, as in

Definition 6.2. Then there is a unique SRS

= (V 1 IF, ==,IRL)

such that

IF = {TE V 1 (3R E (EL) u) #) @(R) = T)}.

Thus we have specified an SRS transducer

11 0 =

If R is the tree in Figure 5-8 and S is the tree in Figure 5-9, then it is

easy to verify that

(11 0){R} = {s}.

Once E, A, and @ have been specified, an SRS transducer may

always be defined by assigning domains to the parameters and defining

a set L of rule-schemata in the sense of Definition 6.1. The rules of

the transducer's SRS are the instances of members of L (in the sense

of Definition 6.2).

(13.4) Definition. A (finite) presentation of an SRS transducer

11 = (z, A, @,), with CE = (V. F, =', IR), is any pair (]D, L) such that

110

U
ii ii

5-41

@

a/iT

1\

	

Jr
	 iT4

-	 a

M.

1
112 j5 'I

Figure 510. Rule-schemata for an SRS transducer. The parameters

u. and u 1 are written as u and v for legibility.

5-42

ID C V and L is a (finite) set of rule schemata such that IR =IRL when

each w E U is assigned the domain D w = ID.

We will be concerned with finite presentations using very simple

domains:

ID=(EUU) or ID=(1UU).

A finitely presented SRS transducer- is still only finite in a very weak

sense: it takes only finitely much information to specify exactly which

transducer we are considering. (Note that Turing machines are finite

in this , sense.) The definitions given so far' allow markers to move up

or down as freely as a Turing machine's heads move left or right. We

wish to restrict such motions so as to obtain the stronger finiteness

associated' with "finite automaton" and similar phrases. By requiring

that tape heads always move downward or always move upward, we will

obtain the desired strong finiteness properties in Lemma 13.13. Down-

ward motion will be considered first.

Our transducer ri 0 that maps ranked parse trees to operator-

operand structures is defined by a set L of rule-schemata in Figure 5-10.

Imagining that nodes labelled by markers are positions of tape heads, we

consider how tape head motion is restricted by the forms of the rule-

schemata. For any 4 -k E L, 15 has the form

s(a(u0 , ... ,u1))

where s E 7fl and a E Z, so that the tape head reads only the label

immediately below it. The list (u 0, ..., u i of the first p(a) parameters

indicates that the trees T 0 , ..., T_ 1 in any instance p -k

5-43

(1)	 s(a(T 0 , ...,T 1))	 W(W 1 (u 0) .E— T0) .. .(W(u 1) —T1)

of - 'I' will vanish or be carried over to cu without change. Further-

more, the tape head will move downward (perhaps splitting into several

heads) so as to be able to read the root labels of T 0 , ..., T_ 1 next. The

tree ' is ranked and is labelled by output symbols, markers, and

parameters. Each node labelled by a marker has its one son labelled

by a parameter u: the tape head will move down to T in (1). Each node

labelled by a parameter is the one son of a node labelled by a marker:

no T can be simply written out having a tape head pass over it. The out-

put symbols occur above the tape heads and are not processed further.

The schemata in Figure 5-10 satisfy many other interesting

restrictions, but the ones already mentioned suffice to make the tape

heads move down from the root in trees @(R) with R E (E U U) #* The

downward moving tape heads may change markers (although not in this

example) and may split into several heads at each node read. The heads

will always have output symbols above them and input symbols or

parameters below them.

(13.5) Definition. An SRS transducer II = (, A, @,I) is a top-down

finite tree transducer (TDFTT) iff there is a finite presentation

((E U U)#, L) for 11 such that

(1) (V — 'E L)(3s E1Z)(3aE z)[= s(a(u 0, ... ,u1))}

(2) (VI)	 c- L)[WE (zUfl UU) &w 1 (7i)(0) =

5-44

(13.6) Lemma. Let II = (Z,&@,) be a TDFTT. There is a unique

set L of rule-schemata such that ((E U U)#. L) is a presentation for n

satisfying conditions (1) and (2) in Definition 13.5.

Proof: Let £ be the class of all sets L of rule-schemata such that

((z U U)#. L) is a presentation for II satisfying (13.5.1) and (13.5.2).

We must show that £ is a singleton: (3 L) (JC = {L}).

Suppose L,L'E C and — --WEL. We will show that

'Ti E L'. Note that -k 'Ti is an instance of itself, so that

WE IRL. But IRL = L' because ((7, 11 U)#,L) and ((z U U)#1 Lt)

are both presentations for II, so ' -b W is an instance of some

— T I E L. For s = () and a = (0),(13.5.1) for Land L' implies

that

= s(a(u, ...,u	 =

Let N = W''(uk) for each k < p(a). Then

Therefore 4D -k W = -k W' and -k W E L'.

We have shown that L C L' whenever L, L' E E. Therefore £ is

empty or a singleton. But £ * 95 because II is a TDFTT, so £ is a

singleton.I

The earlier definitions by Rounds and Thatcher will not be re-

produced here, but we note that transducers equivalent to TDFTTs have

been called "nondeterministic finite state transformations" and abbrevi-

ated "NDFST" [46, §11.11 or "NFST" [52, §8]. They have also been

called "nondeterministic root-to-frontier automata with output" and

5-45

abbreviated "nondeterministic RFAO" [51, Del. 7', P. 272]. The next

paragraph explains why we introduced "TDFTT" rather than choose

among the names previouly used.

"Transformation" could lead to confusion between the transducer

and the transduction, while "automaton with output" is awkward and

suggests more similarity to ordinary (string) automata (as in [241) than

is actually present. The word " tree " should be included because string

transducers and tree transducers must be discussed together but not

confused under the model for syntax-directed compilation sketched in

§12. Hence we say "tree transducer." Finiteness is important while

the word "state" after "finite" would add nothing, so we say "finite tree

transducer." Some indication of how the markers move is necessary

because other directions of movement will be considered shortly.

"Top-down" is more common (and more graceful) than "root-to-

frontier," so the result is "top-down finite tree transducer" as a concise

and natural way to name the class of transducers in Definition 13.5 with-

out inviting confusion later.

As we remarked at the end of §12, the tree transducer in a

semantic analyzer should read the ranked parse tree in the same

direction that the parsing algorithm builds it. The TDFTTs are appro-

priate when a top-down parsing algorithm is used, but several major

parsing algorithms are bottom-up, as in [15] or [19]. We therefore

wish to define tree transducers that move markers upward from the

leaves toward the root.

For an example, we return to the grammar G 0 = (N, T, F, e) for

forms of arithmetic expressions. We have N = {e,t,f} and

5-46

T = {(,), +,X, a}. The productions are

e+t

7T 3 t	 tXf

7r 5 =f

with p(7r0) = 1

with p(ir 1) = 2

with p(7r 2) = 1

with p(ir3) = 2

with p(7r4) = 0

with p(ir 5) = 1.

We can map the ranked parse tree for a+(a+a)Xa shown in

Figure .5-11 to the operator-operand structure shown in Figure 5-12,

using an SRS transducer that moves markers upward.

Let the input vocabulary E be P and let the output vocabulary A be

{+,X,a}. We choose any @E 7/ as the root marker and any $Em with

$ @ as a marker to be moved upward. Consider the set 'L Of pairs of

trees shown in Figure 5-13. Letting ID =' (A U U)#. we have a finite

presentation (ID, L) for an SRS transducer ll= (E, A, @, lj) with T of

the form (V. F,== ItL). (Recall the definition of presentations (13.4).)

This transducer meets the requirements of the following definition.

(13.7) Definition. An SRS transducer 11 = (z, A, @, 9,) is a bottom-up

finite tree transducer (BUFTT) iff Z fl A = çZ and there is a finite

presentation ((zU U)#. L) for 11 such that L * and

(1) (V	 WE L)(aEZU1@1)(2sE(_{@})P)

['= a(s(u),...,si(u))]

5-47

o.	

27T4

1

7r4

7r4

Figure 511. Ranked parse tree for a+(a+a)Xa.

5-49

7T0

$

	

$

$
	

7r4

U	 a

U

I 	
7r 5

1 I	 I	 '
7r 2

$ $	 I	 $

L1

U	 U

/\H
$	 $	

///\\

U	 V	 U	 V

Figure 5-13. Rule-schemata for an SRS transducer. The parameters

and u 1 are written as u and v for legibility.

5-50

(2) (cD 	 implies

TO E: 	 —{@}&'I'/(o)E (z.UU)#])

(3) (V (D - 'I'E L)(() = @ implies Nk = {(O,u0)}).

The rootmarker is only used to mark the root here, while other

markers may be interpreted as states for tape heads that move upward.

The requirements E fl A = çb and L	 are technical conveniences.

Condition (1) says that a head can only move upward from a node n if

there are heads at all the brothers of n also. The label a Z {@}

on Fa(n) and the actual string s E (Z'z	 {@ })P(a) of markers involved

are scanned in choosing the upward motion. As the use of parameters

indicates, the trees in (/ U U)# below the tape heads must vanish or be

carried along without being processed further. Conditions (2) and (3)

specify just how the tape heads can coalesce and move upward. If

E then W has the form r('/(0)) where rE ?)Z —{@}: the heads

have coalesced to a single head in the state r. The subtree w/(0) speci-

fies the output produced at this stage and where the previous output trees

are to be attached. Thus W/(0) E (A U U)#. On the other hand, if () =

then ' has the form @(s(u 0)) with s E ?72 - { @}. The tape heads have

travelled all the way up to the root and whatever is below the one

remaining head is the complete output tree. Thus W consists of one node

labelled by U 0 : the markers vanish and the complete output tree is left.

Reasoning just as in the proof of Lemma 13.6, we can demonstrate

the following fact.

5-51

(13.8) Lemma. Let 11 = (Z, 1,	 be a BUFTT. Then there is a

unique nonempty set L of rule-schemata suchthat ((Lx U U)#, L) is a

presentation for 11 satisfying conditions (1)--(3) in Definition 13.7.

Transducers equivalent to BUFTTs have been called "nondetermi-

nistic frontier-to-root automata with output" and abbreviated

"nondeterministic FRAO" [51, Def. 8, p. 2701. The reasons for our

nomenclature are similar to the reasons already advanced for "TDFTT."

An SRS transducer that is either a TDFTT or a BUFTT is a finite

tree transducer (FTT). A map form.2# to 24 expressible as (II) for

some transducer 11 is a transduction of the same kind: top-down finite

tree transduction, bottom-up finite tree transduction, and so on.

In general an SRS transducer may have many presentations, but

an FTT has just one natural presentation (D, L) which exhibits the fact

that the transducer is an FTT by satisfying conditions (1) and (2) in

Definitions 13.5 or conditions (1) -- (3) in Definition 13.7. Indeed,

suppose II is an FTT with a set IR of rules. If II is top-down, then each

çO E JR has qi(0) E Z. If II is bottom-up, then JR 0 and each

t/i E JR has qt(0) E 771 if (0) E Dom çü. Therefore II cannot be both

top-down and bottom-up. The uniqueness of (ID, L) now follows from

Lemmas 13.6 and 13.8.

The definitions of TDFTTs and BUFTTs given by Rounds [45] [46]

and Thatcher [51] [52] are essentially definitions of the natural presen-

tations of such transducers. Repeated ad hoc for each class of trans-

ducers are definitions equivalent to our definitions of instances of rule-

schemata (6.2.1), of =' in an SRS (5.1.3), and of transductions (13.3.2).

5-52

An important property that FTTs may have is linearity [46, p. 272].

Linear transducers do not make extra copies of portions of their inputs

or outputs.

(13.9) Definition. Let II be an FTT with natural presentation (ID, L).

Then II is linear iff

(V—EL)(VuEU)('(u)I1).

In languages with linked storage manipulation facilities (such as

AMBIT/G), it is especially easy to implement linear FTTs. Each rule-

schema can be represented by a simple local operation on the data graph.

There is no need to use an expensive copying process or an ingenious

trick that avoids copying but may be difficult to debug or applicable only

in special cases.

There is another important property of FTTs that can be formally

defined for TDFTTs and BUFTTs simultaneously. Recall that a determi-

nistic automaton has exactly one response to each combination of control

state and currently scanned input and storage symbols. Rounds

[46, p. 2641 has considered the weaker notion of "partial determinism":

there is at most one response to each combination of control state and

currently scanned input and storage symbols. The discussion in [46] is

limited to TDFTTs, but the same definition applies to BUFTTs.

(13.10) Definition. Let II be an FTT with natural presentation (ID, L).

Then II is partial deterministic iff L is a partial function on V#: no two

rule-schemata have the same left half.

5-53

(13. 11) Lemma. Let U =	 be a partial deterministic FTT.

Then (II) represents a partial function from Z into

(1)	 (VREE#)(I(ll){R}k 1).

Proof: Let (D, L) be the natural presentation for II, so that

= (V. F, ==', IRL). We will show that 	 is Church-Rosser and that

this implies (1).

We claim that	 is unequivocal: no two rules have the same left

half. Suppose q' -k .	 - ' E IRL with q, = p' . Then there are

 — 	 ELsuchthat --- isaninstanceof --+Wand

cli' is an instance of " -b '• By the restrictions (13.5.1) and

(13.7.1) on the left halves of schemata in FTTs, ç = q' implies that

= '. Therefore 'I' = ' by partial determinism. Since q = q,', the

tree substituted for each parameter in ' to form cli is the same tree

substituted for that parameter in W' to form r/'', so W = W' implies cl' = cli'.

This proves that	 is unequivocal.

We claim that G is closed in the sense of Definition 5.4. Let each

1'L be assigned the trivial residue map: no residues for each

n in Dom p. The conditions in Definition 5.4 will be trivially true if,

whenever ço0— oEIRLand n Dom with n*Q, then -p 0 /n is not

the left half of a rule. To show this we consider two cases. If II is top-

down, then p0n	 2 and so (p0 /n)() 712. If II is bottom-up, then

p0n (E 	 {@}) and so ((p0 /n)() (E U {@}). In both cases the label at

the root of p0 /n is outside the set of possible labels ç() for q' — cli E

so q 0 /n is not the left half of a rule.

By the Main Theorem 5. 6,	 is Church-Rosser. For all RE

and T E , we have

5-54

TE(ll){R} iff @(R)	 T iii

1ff T is a normal form for @(R) in C

because trees in z#.are irreplaceable in TDFTTs or BUFTTs. This

implies (1) because normal forms are unique in Church-Rosser

systems. I

If II is partial deterministic, then the relation

{(R,T)I REz &TE(fl){R}}

is a partial function from Z into &. It is convenient to denote this

function (II) also, using an expression like

(ii) :

to remove ambiguity.

The definitions of linearity (13.9) and partial determinism (13.10)

are the same for TDFTTS and BUFTT,s. The other FTT concepts

require slightly different definitions for top-down and bottom-up

transducers. Perhaps a more unified formulation will emerge in the.

course of further investigation. The treatment given below is as unified

as is feasible at present.

Although the set ?iI of markers is infinite, only finitely many

markers can actually be used as states of tape heads in each FTT. In a

TDFTT the root marker acts as the initial state for the tape head that

begins reading the input tree at the root. In a BUFTT the root marker

merely marks the root for tape heads that use other markers as states.

5-55

(13.12) Definition. Let H =	 be an FTT with natural presen-

tation (ID, Q. The set Q of states of II is defined by

(1) Q = {s E ?n 1(3 - 'I'E L)(W(s) *)} U {@}

if H is top-down and by

(2) Q = {s E 711 - {@} 1(2	 L)((s) *

if II is bottom-up. When IQ = K, then II is said to be a K-state trans-

ducer.

An FTT has only finitely many states because the natural presen-

tation is finite. Finiteness of the state sei is not by itself very helpful:

even Turing machines have only finitely many control states. The

reason we consider FTTs to be"finite" is that important questions

about them can be answered effectively from the finite amount of infor-

mation in their natural presentations. The following lemma illustrates

this idea.

(13.13) Lemma. Let II = 	 be. an FTT with T = (V, IF, =', IR).

Let (ID, L) be the natural presentation for H. For any R E IF, the set of

normal forms of R under G is a finite nonempty subset of IF that is

effectively computable from R and L.

Proof: Let R E IF. Consider the sequence of subsets of IF defined by

R O = {R}

i+1 =	 U {T l(2SE OY i)(s == T)}.

5-56

For each i E IN and S E
6 ,

the finiteness of S and L implies that

{T IS == T } is finite and effectively computable from S and L. By

induction on i, each 6Z is therefore finite and effectively computable

from R and L.

Suppose that some KE IN has RK+l = K• Then

= {TE F I R	 T}

and every normal form for R is in ö?. By computing ? o, R	 and

checking whether	 =	 at each step, we can find	 Since L is

finite, we can test each member of K for irreplaceability, and the ir-

replaceable members of OZ K are exactly the normal forms for R. Thus

the set of normal forms for R is finite and effectively computable from

R and L.

We must show that R K+1 = K for some K E IN and that the set of

normal forms for R is nonempty. It will suffice to show that a "weight"

w(S) E IN can be assigned to each S E IF in such a way that

(VS, T E F)(S =' T implies w(S) > w(T)).

Case 1 (11 is top-down) Define the height

h(T) = Max {inl I nE Dom T}

for any tree T. Using the natural presentation (ID, L) and the set Q of

states for II, set

M = Max {I'(Q)I 1(30c- V#)(E L)}

and

5-57

W(S) =
	

(M'M+l)h(S/fl)

nES'(Q)

for all S E IF. If S = T by application of a rule at a node n in Dom S,

let h = h(S/n) and note that

w(T) - w(S) M (M+ l) h - (M+l)h = _(M+l)h_l <

so w(S) > w(T).

Case 2 (II is bottom-up) Set w(S) = I S_ 1 (Z U {@})I for all SE F. If

S == T then w(T) = w(S) - 1, so w(S) > w(T). I

If II = (,&@,) is an SRS transducer in Definition 13.3, then

has the form (V. IF, =', IR) with

v=UUd1flUu

and

IF = {SE V#I(3RE (Y, U U)#)(@(R) =' s)}.

If IT is an FTT then the restrictions on the forms of the rules lead to

restrictions on the forms of trees in F. These restrictions formalize

the idea of one-way tape motion. For example, suppose that II is a

TDFTT in Definition 13.5 with a set Q of states from Definition 13.12.

Let S E F. Then S_ 1 (Q) is the set of all positions of tape heads on S,

and Dom S fl (S'(Q).(0).]N*) is the set of nodes in S that have yet to be

scanned by tape heads. These nodes must be labelled by input symbols

or parameters:

Dom S fl (s- 1 (Q)-(0)-]N*) C S 1 (E U U).

5-58

On the other hand, Dom S - (S1(Q),IN*) is the set of nodes in S that

have already been formed by the actions of downward moving tape heads:

Dom S - (S'(Q),IN*) c S(z).

We also have

S_ (Q) = çb 1ff all tape heads have vanished

iff processing is complete

iffSEz#.

Similar remarks apply to BUFTTs from Definition 13.7, but now the

nodes below tape heads display previously formed portions of the output

and the nodes above tape heads have yet to be read. The following

lemma formalizes these considerations.

(13.14) Lemma. Let II = (E,i,@,) be an FTT with G = (V, IF, =,1R).

Let (]D, L) be the natural presentation and let be the set of states. If

II is top-down then, for all S E IF,

(1) Dom S fl (s- M-M-W) c S(U U)

(2) Dom S - (S- 1	 IN,.,) ç 5_1()

(3) S_ 1 (Q) =	 iff S E

If II is bottom-up then, for all S E F,

(4) Dom S fl (S- 1 (Q)-(0)-]N*) ç 5_1()

(5) S()* @ or Dom S - (5(Q).]N*) C S_ 1 (U @} U Ti)

(6) SO*@ iff SEL.

5-59

Proof: The forest F is defined to be

{sE V#I (2RE (EU U) #)(@(R) == S)}

by (13.3.1), so it will suffice to show that trees of the form @(R) for

(' U	 have the desired properties and that these properties are

preserved by applications of rules. For S @(R) with R E (E U U)#.
(1)--(3) (if II is top-down) or (4)--(6) (if II is bottom-up) are trivial.

Now let S E F with the desired properties. Suppose S ==' S' by appli-

cation of a rule qi - çO at n E Dorn S.

Case 1 (II is top-down) The restrictions (13.5.1) and (13.5.2) on the

rule-schemata in L assure that S' inherits (1) and (2) from S. Since (2)

implies that

S_ 1 (Q) =	 iff Dom S C S() iff SE

(3) follows from (2).

Case 2 (II is bottom-up) The restrictions (13.7.1)--(13.7.3) on the rule-

schemata in L assure that 5' inherits (4) from S. Now we prove (5).

Suppose first that q' -k cu is of the form

a(s 0(T0), ... , s 1 (T))W(W(u0)—T6) .. (1 (u 1)	 T_ 1)

with a E E and

a(s0(u0), ..., s 1(u	 -k W E L.

By (5) for 5,

Dom S - (S- 1 (Q)-]N*) c S(E U {@} U U).

5-60

By W() E Q in the restriction (13.7.2) on members of L, S' inherits this

property from S. On the other hand, suppose p - çO is of the form

@(s(T))—'T with TE(UU).

Then S = @(s(T)) and S' = T. We have TQ* @ and so (5),holds for S' in

any case.

Finally, we prove (6) by showing that both sides have the same

truth value. Suppose first that- tp - cu is an instance of a schema

a(s0(u0), ..., s 1 (u 1)) -	 E L

with a E E. Then S'() = @ because So = @ while 5' V A because

W() E fl. Both sides of (6) are false. On the other hand, suppose q' -k

 is of the form

@(s(T))— T with TE (A U U)#.

By (4) for S. T is actually in A and so S' E A . Both sides of (6) are

true. I

The state set of an FTT permits us to complete the definition of

determinism for FTTs. The idea that there is at most one response to

every combination of control state and currently scanned input symbol

has been formalized in the definition of partial determinism (13.10). The

idea that there is at least one response to each such combination can now

be formalized.

(13.15) Definition. Let 11 = (E. z, @,) be an FTT with natural presen-

tation (ID, L) and set Q of states. Then U is total iff either II is top-down

and

5-61

(1) (VsE Q)(VáE Z) (3,k V#)

[s(a(u 0 , ..., u 1)) - W E L]

or II is bottom-up and

(2) (VaE u @})(VsE Qp(a))(3WC v#)

[a(s 0 (u0), ..., s 1 (u 1)) -. WE LI.

An FTT that is bOth partial deterministic and total is deterministic.

This agrees with the concepts of determinism used by Rounds [45] [46]

and Thatcher [51] [52].

(13.16) Theorem. Let II	 be a deterministic FTT. Then

(n) represents a total function from Z into

(yR E E#)(3 T E L#)((ll) {R} = {T}).

Proof: Using the assumption that II is total, we will show that

(1)	 (VS E IF) [S(U) =	 implies (2T E	 =4 T)],

where a = (V. IF, ==',]R). Assume this for the moment.

Let R E Z . Condition (2) in the definition of SRS transducers

(13.3) specifies that

(rr){R}= IT 	 @(R) T}.

By (1) with S = @(R), this implies that

(3TE

But R rr){R}	 1 by Lemma 13.10 and the partial determinism of II, so

5-62

this implies that some T E A has {T} = (n) {R}, as desired. We must

prove(l).

By Lemma 13.13, each SE F has at least one normal form TE IF,

and S_ I (U) = çi implies that T_ 1 (U) b since applications of rules cannot

introduce parameters. It will therefore suffice to prove

(VT E F)((T irreplaceable & T(U) =) implies T E

which is implied by

(2) (VT E F) [(T 0 A & T(U) =) implies

(2nE Dom P)(2q9— E IR)(T/n =

Suppose T	 and T_ 1 (U) = ç.

Case 1 (II is top-down) By Dom T - (T_ 1 (Q) .]N*) c T_ 1 (A) (from (2) in

Lemma 13.4) and T()* Dom, T, there is a node nE Dom T with Tn C- Q.

By Dom T fl (T(Q).(0).1N*) T_ 1 (Z U U) (from (1) in Lemma 13.14) and

T(U) = çb, T(n.(0)) E Z. Let s be Tn and let a be T(n . (0)). Since II is

total there is a rule-schema

s(a(u 0 , ...u 1))	 E L

with an instance

(3) s(a(P 0 , ..., P_ i))	 (u0) - Po) ... (W(u 1) - P_ 1)

in IR for any P, ... ,P 1 E (E U U)#. In particular, let P k= T/(n.(O,k))

for all k < P (a), so that Dom T fl (T'(Q).(0),IN*) C T_ 1 (Z U U) (from

(1) in Lemma 13.14) implies Pk E (E U U)#. The rule (3) is applicable

at n in T.

5-63

Case 2 (II is bottom-up) By T o A and part (6): of Lemma 13.14,

To = @.

Case 2.1 (T(0) E Q) Let s be T(0). Since II is total there is a rule-

schema

u0 E L

with an instance

(4)	 @(s(P)) -.-- P

in IR for any P E (A U U)#. In particular, let P = T/(O, 0), so that

Dom T fl (T(Q).(0).]N) C T- 1 (A) (from (4) in' Lemma 13.14) implies

P E A . The rule (4) is applicable at () in T.

Case 2.2 (T(0) o Q) By To = @ and part (5) of Lemma 13.14, T(0) E

E U {@} U U. By induction on J in @(R) 	 T for some R E (E U U)#, we

can show that T -1 M c {O}. Therefore T(0) E E U U. By T(U) =

T(0) E E. Therefore T(E)^ çb.

Let nE T- 1 M with ml maximal. Let a be Tn. We claim that

T(n . (k)) EQ for each k < p(a). By 	 = and Dom T fl
(T(Q).(o).]N*) C T - (A) (from (4) in Lemma 13.14), n T - (Q)-(0)-1N*.

But n o T(Q) by Zfl Q = , so no T- (Q).V*. Therefore n-(k)

T4(Q).]N*.IN so

n•(k) E T(Q) U (Dom T_(T(Q),IN*)).

But n- (k) E Dom T(T(Q).1N*) would imply T(n . (k)) E E by the same

argument that showed T(0) E Z, so n-(k) E T-1 (Q), as desired.

5-64

Let s be T(n4k)) for each k < p(a). Since II is total there is a

rule-schema

a(s 0(u0), ..., s 1 (u 1)) — WE L

with an instance

(5)	 a(s0(P0), ..., s 1 (P 1)) ---* W(W(u0). - Po) ... (W(u 1) _- P_ 1)

in IR for any P 0 , ..., P_ 1 E (A L) U)#. In particular, let P k = T/(n . (O, k))

for all k < p(a), so that Dom T fl (T(Q).(0).1Nl*) C T_ I (A) (from (4) in

Lemma 13.14) implies PkE L. The rule (5) is applicable at n in T.

This completes the proof of (2). I

The semantic analyzer in a compiler should assign exactly one

coding tree to each augmented ranked parse tree; we have just shown

that deterministic FTTs can do this. The 1-state deterministic FTTs

have an additional convenient property: they can be considered to be

either top-down or bottom-up, whichever is appropriate for the use of

coroutine linkages as described at the end of §12. As Thatcher

[51, p. 2711 points out, 1-state TDFTTs can be effectively transformed

into 1-state BUFTTs (and vice versa) without changing the transductions

they compute. Unfortunately, multistate FTTs appear to have no similar

theorem, and Thatcher has shown that some deterministic TDFTT

transductions cannot be computed by I -state deterministic TDFTTs

[52, Thm. 6.13].

5-65

14. Closure Under Composition

Several kinds of tree transducer are now available: 1 -state FTTs,

linear TDFTTs, and so on. These transducers define classes of trans-

ductions which map sets of trees to sets of trees. In this section we

show that some of the classçs are closed under composition of functions.

Only top-down transducers are considered here, but we conjecture that

bottom-up transducers have similar closure properties. We also show

that the class of partial deterministic linear TDFTT transductions is

not closed under composition.

Closure under composition is a natural mathematical question to

raise about any class of maps, and positive answers are both common

and valuable. Continuous maps, recursive functions, algebraic

morphisms, and many other major classes are closed. When proven

constructively, closure theorems can have direct practical significance

as well. We begin by discussing the computational uses - of constructive

closure theorems.

Suppose we are given a class X of objects and that to each X E

we can assign two sets, In(X) and Out(X), and a (partial) map

(1) (X) : In(X) - Out(X).

In particular, In(X) could be 2# and Out(X) could be 2# if X is a tree

transducer with input vocabulary Z and output vocabulary A. Now sup-

pose that to each X E X we can assign a computer program Prog(X) that

computes (x). One strategy for computing a map

(2) h:A —'C

5-66

would be to seek an object Z E X such that

(3) In(Z) = A & Out(Z) = C & (Z) = h.

If such a Z can be found, then Prog(Z) is a . program for h with no bugs.

In complicated situations, however, it will not be obvious how to choose

Z. We could attempt to divide and conquer by expressing h as a compo-

sition of simpler maps, say

(4) hgof where f:A—B&g:B----C.

It might then be relatively easy to find objects X and Y such that

(5) In(X) = A & Out(X) = B & (x) = f

(6) In(Y) = B & Out(Y) = C .& (Y) = g.

One way to compute h would be to link Prog(X) and then Prog(Y) in

sequence, but this could require a great deal of intermediate storage.

A more efficient way would be to form a third program Prog(Y) + Prog(X)

in which Prog(Y) calls upon Prog(X) for input and Prog(X) returns control

to Prog(Y) whenever it outputs a portion of Prog(Y)'s input. We sketched

the use of coroutine linkages for this purpose at the end of §12. Note

that adding these linkages to Prog(Y) and Prog(X) so as to form Prog(Y)

+ Prog(X) is not an automatic operation at present: the new program

must be written by hand from the texts of Prog(Y) and Prog(X). This

process may introduce bugs.

If a closure theorem can be proven constructively, then there is

another method with moderate intermediate storage requirements.

5-67

This method cannot introduce bugs and will generally lead to a program

faster than Prog(Y) + Prog(X).

From (5) and (6) it follows that

(*)	 Out(X) = In(Y).

An effective closure theorem would construct a ! 'product" object Y A X

on the basis of this fact such that

(**)	 In(YAX) 1n(X) &Out(YAX)Out(Y) &(YAX)= (Y)o(X).

In (5) and (6) this implies that

In(YAX) = A &Out(YAX) = C &(YAX) = gof.

By (4), choosing Z = Y A X will make (3) true. Assuming, of course, that

the closure theorem is correct, then Prog(Z) will compute h in one stage

with no bugs. In effect we form the coroutine linkages between the objects

X and Y themselves, then pass to a program. The product operation

A: X 2	 is a precise mathematical function, while the linkage oper-

ation + is only a programming heuristic.

We claim that Prog(Y AX) will generally be faster than Prog(Y) +

Prog(X). To support this assertion in the abstract would require a more

formal treatment of coroutines operating on structured data than was

given in §12. It will be simpler here to consider an example that supports

the claim adequately for present purposes and that displays the general

principle clearly.

Let . be the class of all deterministic finite string transducers

as defined in (11.5). For any 	 =	 in X , we have

5-68

In(M) = E and Out(M) = I. The transduction (M) defined by (11.6.5) is

a partial map from In(M) to Out(M). To mimic the action of M when

reading symbol a in state r, Prog(M) finds (6(r, a), Mr, a)) in a I K I by

matrix, updates the row pointer of the matrix to 6(r, a), and writes

Mr, a). This takes K + IX(r, a) I units of time, where K represents the

accessing and updating time for the matrix. Unless I I IZI is so large

that the matrix must be stored in an unusual way, K does not depend

on M.

The well-known Cartesian product construction defines a new

transducer M A M whenever the output vocabulary of M is the input

vocabulary of M 2 . Recall the definitions of the extended output and

transition maps in (11.6).

(14.1) Definition. For i = 1, 2 let M 1 = (Kt, Zip	 o, X 1, s, F.) be a

deterministic finite string transducer. Suppose A =	 Then

(1) M 2 A M 1 = (K2 X K 1 , E1, '2' 6 3 X 3 , (S2. 1' F 2 X F1)

where, for all r 2 E K2 , r 1 E K1 , and a E

(2) 6 3 ((r 2 , r 1), a) = (2 (r 2 , X 1 (r 1 , a)), 6 1 (r 1 , a))

(3) X 3 ((r 2 , r 1), a) = X 2(r 21 X 1 (r 1 , a))

By induction on lengths of strings, we can show that all r 2 E K2,

r 1 E K 1 , and xE	 have

3 ((r 2 , r 1), x) = (2 (r 2 , 1 (r 11 x))J1 (r 1 , x))

and

5-69

X 3 ((r 2 , r 1), x) =T 2(r 2 , 1 (r 1 , x)).

By the definition of (M) in (11.6.5), we therefore have

(M 2 AM 1) = {(x,53((s21s1),x))IxE Z1* &

3 ((s 2 , s 1), x) E F 2 X F1 }

= {(x,2(s2151(s11x)IxE E &1(s11x)E F 1 &

2 (s 2 , 1 (s 1 , x)) E F2	 }

= (M2)o(M1).

Thus the product A provides an effective closure theorem for determi-

nistic finite string transducers.

Assuming that a 1K 2 I 1K1
I
by

I 1j matrix is not too large, we com-

pare the time required by Prog(M 2 AM 1) to process input a from state

(r 2 , r 1) with the time required by Prog(M 2) + Prog(M 1) to process a

from state r 1 on M 1 and then process X 1 (r 11 a) from state r 2 on M 2 . If

r is the time spent in coroutine transfers, then the times are

Prog(M 2) + Prog(M 1) : K +(1±K)l X 1 (r 1 , a)I + I5 2 (r 2 , X 1 (r 1 1a))I + T

Prog(M 2 AM 1) : K + I 2(r 2 , X 1 (r 1 , a))
I

Difference: (1+K) I X 1 (r 1 , a)
I

+ T

A similar saving will be apparent in our product construction for

TDFTTs. The construction itself will be similar to the one just given,

but the inductive verification will no longer be trivial.

Recall from Definition 13.3 that an SRS transducer is a 4-tuple

5-70

II = (, z, @,) where S is an SRS of the form (V, IF. 	 , ER) and

V=ZUz1U?1lUU

IF = {sE V#I(3RE (z U U) # (@ (R) = S)},

so that T is actually determined by IR. If there is a finite set L of rule-

schemata such that IR = IRL when each parameter is assigned the domain

(E U U)#. and such that each W E L satisfies two constraints, then

II is a TDFTT. The constraints are (13.5.1):

(2aEE)(2sE)[=s(a(u0u))]

and (13.5.2):

WE (L U '172 U U)# & 'F (M) •(0) = IF- (U).

As a prelude to the discussion of the product construction for TDFTTs,

we consider a formal statement of the idea that TDFTTs generalize

finite string transducers. The set '111 of markers is infinite, so we may

assume that the state set K of any string transducer is a subset of M.

We may also assume that the input and output vocabularies contain no

markers or parameters, since this can always be achieved by renaming.

(14.2) Theorem. Let M = (K, , , 6, X, @, F) be any deterministic

finite string transducer with K C 7/i and (Z U A l) fl (fl U U) = çb.

There exist a proper pair (E,) of ranked alphabets, bijections

M: l —E# &v:/*_—*L#,

and a linear partial deterministic TDFTT H = (E, z, @,) such that the

5-71

tree transduction (1T M) : 	 corresponds to the string transduction

= vQ(M)°i1.

Proof: Let -I be a new symbol and set Z = 	 U {-i } and A = U {- }.

Let -I have rank zero and let members of Z U A have rank one, so

that (, z) is a proper pair of ranked alphabets in Definition 13.2. The

bijection u is defined by induction on lengths of strings: each x E Z has

..., x 1) = x0 (x 1 (... x 1 (-1)...)).

(Thus j. () is the tree with one node labelled - .) The definition of v is

similar.

Let L 1 be the set of all rule-schemata

r(a(u)) -k b0(b 1 (... b1(s(u0))...))

such that (b 0 , ...,b 1) = Mr, a) and s = 6(r, a). Let L 2 be the set of all

rule-schemata

r(H) ---1

such that r EF. Let LM = L 1 U L2 , so that ((E U U)#, LM) is the

natural presentation of a TDFTT 11 M = , @,) with = (V. IF, ==, IR)

whose root marker is the starting state @ of M. This transducer is linear

in the sense of Definition 13.9 and partial deterministic in the sense of

Definition 13.10. By Lemma 13.11, 	 M> may be treated as a partial

function M> : Z
-b

To show that (rIM) = v o (M) o	 is to show that

5-72

(1) (YxE E *)(VYE A 1*)

[@(IA x) =4 vy iff (X(@, X) = y &(@, x)E F)].

To facilitate an inductive argument we will replace IF by a larger forest

lET. Let Q be the set of states of rIM. Let H be the set of all trees of the

form

y0(y1C.. y_1(s(x0(... x_(e)...))) ...)) or

where XE Z, sEQ. yE	 and eE U U f- 1, so that F CU. Trees

in U need not be derived from trees of the form @(R) with R E (E U U)#.

The relation on V defined by

R S iff (RE JH & (3p—. 1iE IR) (nE Dom R)

[R/n = (p & S = R(n -

is actually a relation on H, so we have an SRS

= (V. U, >>, IR).

Note that (=) = (>>) fl (F X 1W. By induction on lengths of strings we

will show that each XE Z has

(2) (r E Q)(Vy E *)(v t E Q)

[r (M x)	 YO(... y 1 (t(-1))...) iff ()(r, x) = y & (r, x) = t)].

For x = () we wish to show that

r(H)	 y0(...y1(t()) ...) iff (() 	 y & r =t).

5-73

By the construction of the sets L 1 and L2 of rule-schemata, the only

rules of the form r(-1)— cli have	 = b. Therefore r(-I) > S with

S (Q)	 can only be true if S = r(-1). We have

r()	 y0(... y 1 (t())...) iff Y O(... y 1 (t())...) = r()

iff (y=()&t=r),

as desired.

To pass from xto (a) . x for XE E, let r Q, yE L, tE Q.

We wish to show that

r(a(zx))	 YO(... y 1(t(4.))...) iff

(X (r, a) .X(â(r, a), x)	 y & (6(r, a)., x) = t).

Let (b0 , ..., b_ i	 X(r, a) and let s ö(r, a). By the construction of the

sets L 1 and L 2 of rule-schemata, we have

r(a(jx))	 Y O(... y 1 (t(-))...) iff

r(a(x)) >> b0(...b i (s(zx)) ...)	 y0(...y1(t(-j).)...)

if

IX(r,a)l _< j yl &(Vj <IX(ra)I)(b	 y.) &
*

s(Mx) >> iX(r,a)l (...y_1(t(-l'))..)

By the induction hypothesis we therefore have

5-74

r(a(x))y0(...y1(t(-fl)...)iff 	 S

Mr, a)I lyl &(Vj < Mr, a)t)(b = Y) &

if f

Mr, a)•T(s,x) = y&(s,x) =t,

as desired.

We have shown that each xE Z satisfies (2). By the construction

of the sets L 1 and L 2 of rule-schemata, (2) Implies

(3)	 (V r E Q)(Vy E 4)

iff((rx) y &(r,x)EF)].

Applying (3) with r = @ to every XE E 1 yields (l).i

Following Thatcher [52, §6], we have phrased inductions on lengths

of strings in terms of passing-from x to (a) . x rather than in terms of

passing from x to x . (a) as is more common in formal language theory.

This change is an attempt to smooth the transition from string trans-

ducers to tree transducers. Arguments by induction on sizes of trees

pass from R 0, ...R 1 to a(R0 , ... ,R1).

Another feature of the preceding proof that will appear again later

is the use of a forest lET that includes IF but is better suited to inductive

arguments. The relation = on IF in each TDFTT is extended to the

relation >> on U defined by applications of the same set of rules. In the

general case, JET -is defined by two formal properties: nodes properly

5-75

descended from nodes labelled by states are labelled by input symbols

or parameters, while nodes not descended from nodes labelled by states

are labelled by output symbols. The ad hoc introduction of lIT in the

previous proof is a specific example.

(14.3) Definition. Let H = (E,i,@,j) with S = (V, IF, =,]R) be a

TDFTT. Let Q be the set of states. Define lIT to be the set of all

S E V such that

(1) Dom S fl (S(Q).(0).]N*) C S -1 (7- U U)

and

(2) Dom S_(S(Q).lN*) c S().

Let >> be the set of all (R, S) E V X V such that

R E lET & (3 - E IRXB n E Dom R)[R/n = (o& S R(n - i))]

and set

(3) c.= (V,IH,>>,]R).

Define (ri):2 --2 lIT by

(4) (111) +0? = {TE IHI(3RE)(R > T) & T(Q).(0) = T(U)}..

By parts (1) and (2) of Lemma 13.14, we do have F ' H. By the

arguments used for the induction steps in parts (1) and (2) of Lemma

13.14, >> is actually a relation on H: the result of applying a rule at a

node in a tree S E lET is another tree S' E E. Thus (3) above defines an

SRS that is essentially the same as T but is somewhat more amenable

5-76

to inductive proofs. Note that (') = (>) fl (F X IH). The definition of

(rI)+ in (4) above resembles the definition of (II) in (13.3.2):

(n) 9 ={TE AO I(2)(@(R)T)}.

In (13.3.2) we consider normal forms T for @(R) that are irreplaceable

because T E z. In (4) above we consider normal forms T for R that

are irreplaceable because the set T- I (Q) of tape head positions corre-

sponds to the set of all fathers of nodes labelled by parameters. The

heads have moved downward as far as they can before specific input

trees are substituted for the parameters.

The string transduction equation (M)x = 3(s, x) for XE E with

(s. x) E F has the analogue (rx){R} = (n)+{@(R)} for R E E. The

following lemma establishes this and other useful technical properties

of

(14.4) Lemma. Let II = (E, & @,) be a TDFTT with natural presen-

tation ((z U U)#. L).

(1) (yR E E)((rI) {R} = (n){ @(R)})

(2) (YR E 1H)((ll){R} is finite and effectively computable from R and L)

(3) (II partial deterministic) implies (YR E 1H)(I(ll){R}I 1)

(4) .(II total) implies (YR E 1W((11){R} * çb).

Finally, suppose II is linear and set

L= {SEN I (VwEU)(I S (w)I l)}.

5-77

Then

(5)	 (VRELX(n) 1{R}c L).

Proof: For any R E Z we have

(III) {R} ={TE L#l@(R) 	 T}

={TE IETITE A & @(R) > T}

={TE]H I T (Q) = çb & @(R) > T},

where T_ (Q) = çb implies T E A by (2) in Definition 14.3.. Since no

parameters appear in R, each T with @(R) > T has T(U) çi and so

T_ 1 (Q) = çb iff T(Q).(0) = T(U). The equation becomes

(rr){R} = {T E]HIT 1(Q) (0) = T-1 (U) & @(R)'>> T} = (fl){@(R)}

This proves (1).

By repeating the proof of Lemma 13.13 for TDFTTs with]H in

place 'of IF andwith> in place of =, we can show that each R E IT has

a finite nonempty set ?l of normal.formsrn + and that this set is

effectively computable from R and L. To compute (n)+{ R} we have but

to select out {TE 7t IT(Q) . (0) = T 71 (U)j. This proves (2).

Now suppose II is partial deterministic. By the same argument

+ i used m proving Lemma 13.11 for TDFTTs ,,	 s Church-Rosser. Each

R E lET has (n)+{R} C fl with 17Z1 1, where ?Z is the set of normal

forms for R in 1. This proves (3).

Now suppose II is total. The set 71 of normal forms for R in

is nonempty, so (4) will follow from

5-78

(VT E ?Z)(T(Q) . (0) = T(U)).

Suppose T E 71 but T_ 1 (Q)-(0) T_ 1 (U). By (2) in Definition 14.3,

T_ 1 (U) ç T(Q).1N*, so that this supposition implies that some

nE T(Q) has T(n . (0)) U and therefore T(n•(0)) E E by (1) in Definition

14.3. Let s = Tn and a = T(n•(0)). Since 11 is total there is a rule-

schema

s(a(u0,...,u1))—WE.L

with an instance

(6)	 s(a(P 0 , , P_ 1))	 W('(u0) - 0).-JIF	((u1)-F1)

in IR for any P 0, P_ 1 E (E U U). In particular, let P = T/(n . (0, k))

for all k < p(a), 'so that Dom T fl (T (Q) (0) '-]N*) C T_ (YE U U) (from

(1) in Definition 14.3) implies PkE (z U U)#. The rule (6) is applicable

at n in T. contradicting irreplaceability. This completes the proof of (4).

Now suppose 11 is linear. To prove (5) it will suffice to show that,

whenever S> T and S E L, then TE L. Let S> T by application of a

rule -b i at a node .n in S.

By q = S/n, c'p E L. From qo E IL and the definition of'. linearity

(13. 9), it follows that cli E IL. For any w E U we show that I T_ 1 (r)	 1.

Case 1 (Vi (w) çl). Then q,(w) # , so 1p E S(w)p I n}= ç by

SE IL and n . ç(w) c S_ 1 (w). Therefore

T_ 1 W = n.1(w) U {pE T(w)I p I n}.

= n . (w)U{pE S_ 1 (w) 1p I n}

= n•'(w)

5-79

and 1T
1(w)I=Y(w)I	 1.

Case 2 (0 (w) =	 Then

T_ 1 (w) = {pE T_ 1 WIP i n}

= {pc- S 1 (w) I p in} ç S_ 1(w)

and IT(w)I	 IS(w)I	 1.1

The basic apparatus for studying closure under composition for

classes of TDFTT transductions is now at hand. The next step is to

generalize Definition 14.1 to a product construction for TDFTTs. To

simplify the statement of the following definition) let us suppose we are

given TDFTTs 11I and H 2 where

= (Ei , A i , @, a..) & 0 = (V 1. F ,	 1R).

Let these transducers have state sets Q and natural presentations

(]D, L 1). Suppose also that A l = 2' so that 21 # =,2z 2# and it is

reasonable to try to define a product transducer H 2 A ll. Since the

states of 11 2 A H must be markers in our formalism, but they should

correspond to pairs of states by analogy with Definition 14. 1, we . noose

any bijection

Codepair: 7/2 X 212 -k

and abbreviate Codepair((s 2 ,s 1)) as {s 2 ,s 1]. Thus ['2 1 S11 is a marker

that represents the pair (s 2 ,	 of markers.

For r 2 E Q and r 1 E Q 1 and a E El. we must define rule-schemata

with the left half [r 2 ,r 1 }(a(u 0 , ...,u 1)). As with string transducers, we

5-80

first apply 11 1 with state r 1 to a(u0 , ...,u 1), getting the set of all 'I' such
that r 1 (a(u0 , ..., u))— ' E L 1 . This set can be succinctly described
as (1I 1){r 1 (a(u0 , ...,u 1))}. Given any 'I' in this set, we apply 11 2 with
state r 2 to T. Since 'I' may include nodes labelled in Q as well as

and U, this is not strictly possible. But if we simply relabel 'I' by

replacing each s E Q 1 by a new symbol	 of rank 1, then the resulting
tree k can be processed by 11 2 , a transducer similar to H 2 whose input

vocabulary consists of Z 2 together with all the new symbols. In addition
to the rule-schemata in L2 , we let 11 2 have all schemata

[s, s 1] (u0)

for s 2 E Q2 and s 1 E Q 1 , so that (11)+{ (')} is a set of trees Q E 112

where1H is assigned to 11 2 by Definition 14.3. Each

[r 2 ,r 1](a(u0 , ...,u 1)) -

formed in this way is a rule-schema because parameters occur only at

leaves in 0 and the only parameters that might occur are U 0 , ..., U_ 1* The
set L3 of all such schemata specifies an SRS transducer 11 3 . which will
prove to be a TDFTT. We will define H 2 A 111 to be this TDFTT.

(14.5) Definition. Letting 	 be a new symbol of rank 1 for each
s 1 EQ 1 , and Q i = { 1 I s 1 E Q 1 }, set

(1) L 2 = L 2 U {s 2 (1 (u 0))	 [s 2 , s 1] (u0)I s 2 E	 & s E Q 1 }

and let 112 be the unique TDFTT of the form

(2) 2 = 2	 11 A 2' @2,

5-81

with natural presentation ((E 2 UQ U U) # . -2) For any

w E (z U Q 1 U U)#, let	 result from replacing each label in Q1 by

the corresponding label in Q 1 . Now set

(3) L 3 = {[r 2 , r 1](a(u0 , ..., u_ 1))	 r2 E Q 2 & r 1 E Q 1 &a E Z &

(3 'I' E (n){r i(a(u, • u_ 1))I)(Q E (112) {r 2 (W)}) }

and let H 2 A 11 be the SRS transducer

(4) H A H = (E 1 , 2 ,[@ 21 @ 1], 3)

where the set of rules specifying T is the set of all instances of

members of L 3 (with domain D = (1 U U)# for each wE U).

(14.6) Example. Let 7, = {a, b, c} be a ranked alphabet with p(a) 2;

p(b) = 1; p(c) = 0. Let @,$.. be three markers.. Writingu 0 ,u 1 as u,v

for legibility, set

= { @(a(u, v)) -k a($(u), ç(v))

$(a(u,v))'---a($(t),$(v))

$(b(u)) . — b($(u))

$(c) —c

}

and

L2={ @(a(u,v))—$(u)

$(a(u,v)) - a($(u),$(v))

$(b(u)) -k b($(u))

$(c)—c

5-82

For i = 1, 2 let II. = (E, E, @, cr 1), with	 = (V. 1F f.	 1R). be the TDFTT

with natural presentation ((E U U)#. L1).

We apply Definition 14.5 to this example. The new input symbols

for H 2 are @, $, Q, so that (14.5.1) becomes

= L 2 U{@	 [@,@}(u),

$(@(u)) -k

$((u))	 [$,fl(u) }.

The TDFTT from (14.5.2) is

11 2	 EU{@,$,S},@,.2)

with natural presentation ((z U {, , }U U)#, L2).

In (14.5.3) the set L is the union of 18 sets of schemata, one set

for each [r 2 ,r 1](f(u0 , ...,u 1)) with r 2 E {@,$}; r 1 E {@,$, Q};

f E {a, b, c}. For [$, @](a(u, v)) the set of all relevant Q is

1	
= (112) {$(($() (v)))}

WE (111)F{@(a(u, v))}

= (112) {a($($(u)) $(Q(v)))}

={a([$,$] (u), [$, c](v))}.

Thus we have a rule-schema

[$, @] (a(u, v)) - a([$, $] (u), [$. Q] (v))

in L 3 . As in this example, each [r 2 ,r 1](f(u0 , ...,u 1)) leads to at most

5-83

one schema. The complete list follows.

[@,@](a(u, v))

[$,@](a(u,v))

[@,$](a(u,v))

[$,$}(a(u,v))

[$,$}(b(u))	 _.L.

[$,$](c)

ç] (c)

a([$,$](u),[$,ç](v))

[$;$] (u)

a([$. $] (u), [$, $] (v))

b([$,$](u))
C

c

The set Q 3 of 11 2 A H is defined by (13.12.1) as

Q 3 { s E fl1 (3- WE L)(W(s)	 U {[@,@]}

= {[$$I,[$,Q],[@,@]}.

Thus Q 3 corresponds to a proper subset of Q 2 X Q1 in this example.

The SRS transducer H 2 A	 inherits many properties from 112

and 11k. It is a TDFTT, is linear, and is partial deterministic. Although

one may be tempted to add that 	 .A 11 	 °	 "by the obvious

induction," that temptation must be resisted. As the following theorem

shows, (11 2) 0 (i i) is not computable by 11 2 A H or any other TDFTT!

(14.7) Theorem. Let E be the ranked alphabet fa, b, c} with p(a) = 2;

p(b) = 1; p(c) = 0. For. i 1, 2 there are linear partial deterministic

TDFTTs 11. 1 = (E, z , @,) such that, for each RE

(1)	 (112)((11l){R}) = Lf R() = a &R(1) = c then {W(°)}	 ct.

However, there is no TDFTT 11 3 such that, for each R E

5-84

(2)	 (11 3){R} = if R() = a & R(1) = c then {R/(o)} else ç.

Proof: Let 11 and 112 be as in Example 14.6. For all RE

(11 1){R} = Lf R() = a & R(1) = c then {R} else ç.

(11 2){R} = LRO = a then {R/(0)} 21se ct.

Combining these two equations yields (1).

Now suppose 11 3 is a TDFTT with root marker @ 3 that satisfies

(2) for all RE E. Let ((E U U)#. L3) be the natural presentation. Since

{b, c}# is infinite and L 3 is finite, it is possible to choose T, T' E {b, c}
and a rule-schema @ 3 (a(u,v)) - 0E L 3 such that T * T' and

(3) (11 3){a(T, c)} = {T} = (n 3) {cXci '(u) - T)(2(v) - c)}

as well as

(r13){a(T', c)} = {T'} = (113)+{c2(c2_l(u) —T')(Q(v) 4—c)}.

Therefore 2(2 1 (u) - T) * 2(2(u) - T') and so

(4) ci(u) * çb.

On the other hand,

(r13){a(T,b(c))} = 0 = (n3)'{Q(c2(u) - T)(Q 1 (v) 4—b(c))}.

Comparing this with (3) leads to

(5)

By (4) and (5) and u 0 v, some node n E Dom Q has at least two sons.

5-85

But then n E Dom T in (3), and this contradicts T E {b, c}#

Rounds [46, P. 267] discusses an example by Ogden of two linear

partial deterministic TDFTT transductions whose composition is not a

partial deterministic TDFTT transduction. He suggests that this

composition is not even computable by a nondeterministic TDFTT

[46, p. 272], but a proof would require much deeper insight than is

presently available. Our 11 1 and 11 2 were inspired by Ogden t s example

but were chosen in such a way that a simple argument would show that

is not a TDFTT transduction.

Definition 14.5 defines an SRS transducer 11 2 A H whenever 11 and

are TDFTTs and the input vocabulary of H 2 is the output vocabulary

of 11 k . Theorem 14.7 shows that this prodiictconstruction . does not lead

to closure under composition for linear partial deterministic TDFTT

transductions, although linear partial deterministic TDFTTs are a

natural generalization of deterministic finite string transducers, as was

shown in Theorem 14.2. Fortunately, several other important classes

of TDFTT transductions are closed under composition. Elaborating

slightly upon [52, Lemma 6.9] and [46, pp. 266, 275], we have the

following theorem.

(14.8) Composition Theorem. For i= 1, 2 let 11 = (Z.. A V @, .) be

TDFTTs with state sets 	 Suppose A =2 so that there is a product

transducer 11 2 A 11k. Then 11 2 A 11 is TDFTT with a state set Q such

that

(1)	 lQ3I	 1Q211Q11

5-86

and

(2)	 2 linear) implies	 A H linear)

i. 2 partial deterministic) implies

A III, partial deterministic)

(4)	 (11 H 2 total) implies	 All1 total)

deterministic) implies 	 A	 = (1, 2 °

Proof: To show that H A H is a TDFTT we will show that the set L3

of rule-schemata in part (3) of Definition 14.5 is finite and satisfies the

conditions (1) and (2) in Definition 13.5. For (13.5. 1) we need

(V	 .	 E L 3)(sE IM)(3aE E 1)[= s(a(u0, ...,u1))].

But L3 is a set of schemata

(6)

for r 2 EQ 2 , r 1 EQ 1 , and	 Each [r 2.,r 1 } isa marker, so

(13.5. 1) holds.

For (13.5.2) we must show that each 0 in (6) has

(7) 0E(z2U?/1 UU) &Q1(?)t).(0) =Q(U).

Let r 2 E Q 2 , r 1 E Q 1 , and a€ Z	 By the definition of L 3 (14.5.3), we

must show that (7) holds for any 0 such that

(8) (2WE (11I1){r1(a(u0,...,u 1))})(c2 E (r12){r2(w)}).

5-87

Suppose Q satisfies (8). Let IH be the subset of

(E 2 U Q
1

U A U 9/? U U) # assigned toll 2 by Definition 14.3, so that

(8) and (14.3.4) imply Q E 1E1 2 . By the condition (14.32) on 112,

(9) Dom c^ (l()*) c

where Q is the state set for 11
2 .But (8) and (14.3.4) also imply that

= Q- (U). Therefore (9) implies that ^ E	 Q2U U)#.
while

= ç 1 (Q)(o) =

This proves (7). The product transducer is indeed a TDFTT.

Suppose Q satisfies (8). From 1/- 1 (Q l) . (0) =	 (U) and

)(0) = Q- 1 (U), it follows that whenever a node r, Dom Q has

Qn = wE U, then a rule of the form

2' slI(w)

must have been applied at Fa(n) in deriving2 from r 2 (W). Therefore

(Vs 3 E)[2(s 3)	 implies (3s, 2 EQ 2)(2 s 1 EQ 1)(s3 [s2 , s1])j.

This proves (1).

Suppose 11 1 and 11 are linear, so that H 2 is linear also. For each

Q that satisfies (8), we have

(VwEU)(I'(w)I	 1)

by linearity of H and then

(VwEU) (l Q (w)l	 1)

5-88

by linearity of H and (5) in Lemma 14.4. This proves (2).

Suppose fl1 and H are partial deterministic, so that H is partial

deterministic also. For each choice of r 2 , r 1 , and a, part (3) in

Lemma 14.4 implies that there is at most one Nk in (it 1)+ {r1(a(u0,...,u1))}

and then that there is at most one 0 in (II 2)+fr2(P)J. Therefore at most

one 0 has

[r 2 ,r 1](a(u01 ...,u 1))—i. c2E L3.

This proves (3). Similarly, part (4) in Lemma 14.4 implies (4).

The crux of the matter is (5), which is Lemma 6.9 of [52] expressed

in our terminology. There is no need to repeat the very clear inductive

proof in [52] here.I

We noted in §13 that linear or 1-state deterministic TDFTTs are

especially easy to implement. Thus the following special case of this

theorem is of interest:

(14.9) Corollary. Let IT and H be deterministic TDFTTs such that

the output vocabulary of 111 is the input vocabulary of 11 2* Then H 2 A ri

is a deterministic TDFTT with	 A	 = (1, 2)o (ri) and

(1) 011P 11 2 are 1-state TDFTTs) implies	 A 11 is a 1-state TDFTT)

(2) linear) implies	 A fl linear). I

The Composition Theorem (14.8) and its corollary (14.9) are

restricted to top-down transducers. We conjecture that the product

construction (14.5) can be turned upside down for bottom-up transducers

in such a way that analogues of these results will hold.

5-89

The restriction to deterministic FTTs in 	 A	 °

does not appear serious for the application to compiling that we

described in §12. Once an augmented ranked parse tree has passed

through the lexical filter, it should be converted into just one coding

tree by the semantic analyzer, with no further testing. The tree trans-

ducer should act like a string transducer in which every state is a final

state. There appears to be no need to use a nontotal transducer in

order to reject certain inputs.

Since the input to the semantic analyzer's FTT is a ranked parse

tree, not an arbitrary ranked tree with nodes labelled by productions,

there may well be many (state, symbol) combinations that never arise

in semantic analysis. The corresponding schemata may be deleted

from a deterministic FTT in order to replace it by more compactly

presented FTT without altering the transduction it specifies. Compar-

ison of the negative theorem (14.7) with the Composition Theorem (14.8)

suggests that such optimization should be postponed until the very end

of the FTT design process.

Although the Composition Theorem (14.8) (and its conjectured

bottom-up analogue) suffice for compiler design purposes, additional

closure results would be of mathematical interest and might have appli-

cations to more complex tree-manipulating systems implicit in the use

of natural language. Total linear TDFTT transductions appear to be

closed under composition, regardless of determinism.

(14.10) Conjecture. If fl1 and 111 2 are total linear TDFTTs and the out-

put vocabulary of fl1 is the input vocabulary of II 2' then

5-90

(11 2 A fl) =	 °

The author has written a proof of this conjecture similar to the

reasoning in [52, Lemma 6.9] or [46, p. 2751, but the argument in its

present form is more tedious than the result warrants. The proof is

most naturally written in the elegant algebraic style of Thatcher [52].

Unfortunately, his formalism seems essentially limited to FTTs, per-

haps even to TDFTTS. As the definition of "production systems" [52, §9]

illustrates, it is extremely difficult to deal with SRSs and rule-schemata

in general without switching to our formalism. Our more explicit and

intuitive notation from §4 can deal with all the SRS's discussed in this

report and with the infinite transducers introduced by Rounds [45, P. 112]

[46, §11.51, as well as with TDFTTs, but the resulting treatment of

TDFTTs becomes awkward in the detailed proofs for theorems like the

above or part (5) in the Composition Theorem (14.8). It should be possible

to mix the arithmetic of trees and substitution in [52] with our §4; at

present we can only say that anyone interested, in the mathematics of

trees would do well to learn both systems.

CHAPTER 6

EPILOGUE

15. Summary

Subtree replacement systems form a broad class of tree-

manipulating systems that includes many of the special cases from

logic, linguistics, and automata theory. Systems with the Church-

Rosser property are appropriate for evaluation or translation

processes: the end result of a complete sequence of applications of

the rules does not depend on the order in which the rules were used.

We derived sufficient conditions for the Church-Rosser property and

applied them to two important tree-manipulating systems: the

McCarthy calculus for recursive definitions and the full lambda

calculus.

In Chapter 2 we defined two classes of abstract mathematical

systems: general replacement systems and subtree replacement

systems. We defined normal forms and indicated why uniqueness of

normal forms is desirable in systems intended to define "values" or

"meanings" for the objects they manipulate. We defined the Church-

Rosser property and remarked that normal forms are unique in

Church-Rosser systems. The theorems in Chapter 2 established

sufficient conditions for the Church-Rosser property. In particular,

the Main Theorem (5.6) asserted that every unequivocal closed sub-

tree replacement system is Church-Rosser. The abstract approach

in Chapter 2 avoided assumptions about the specific forms (or syntax)

6-2

of the rules, so that the results were not restricted to one system or

to a narrow class of systems.

In Chapter 3 we applied the theory of subtree replacement

systems to recursive definitions. We proved that recursively defined

functions are singlevalued despite the nondeterminism of the evalu-

ation algorithm. The Evaluation Theorem (7.5) asserted that any two

successful attempts to evaluate an expression must produce the same

result, and that this result is-invariant under replacement of sub-

expressions by new expressions that evaluate the same way as the

subexpressions they replace. The Validity Theorem (8.4) asserted

that the function specified by a recursive definition solves-the defi-

nition (considered as a set of equations) and is the canonical solution:

the solution that agrees with every other solution wherever it is finite.

By using the theory from Chapter 2, we were able to derive these

results without the severe restrictions on call-by-name that were

imposed in the previously known special cases.

The classical Church-Rosser theorem for the full lambda calcu-

lus was proven in Chapter 4. We defined a subtree replacement

system S that manipulated (tree structures of) lambda expressions.

By lifting the replacement relation	 from	 to a relation >

between equivalence classes of lambda expressions, we defined a

general replacement system 	 that performed lambda reductions

without distinguishing between lambda expressions that are strongly

alphaequivalent: alike except for the choices of bound variables. We

expressed S as the union of two systems,	 and	 We used the

Commutativity Lemma (3.6) to show that t commutes with

6-3

Once	 and 2 had been shown to be Church-Rosser, we concluded

that	 was Church-Rosser by the Commutative Union Theorem (3.5).

That A was Church-Rosser followed almost immediately from the

Main Theorem (5.6). That was Church-Rosser could not be shown

so easily. We introduced a new symbol o and new subtree replacement

systems ,, c. We used the Main Theorem (5.6) to show that

and	 were Church-Rosser. Then we showed that c.Tr and	 could

interact to simulate

In Chapter 5 we applied the theory of subtree replacement

systems to tree transducers and described the role of these trans-

ducers in syntax-directed compiling. We analyzed compilation as a

sequence of processes: lexical analysis, context-free parsing,

lexical filtration, semantic analysis, and code generation. Finite tree

transducers were defined in order to perform semantic analysis by

converting trees with nodes labelled by context-free productions to

trees with nodes labelled by code-building operations. We showed that

a deterministic finite tree transducer maps each input tree to exactly

one output tree. We described the , practical significance of closure-

under-composition theorems and elaborated slightly upon the. known

theorem that the maps defined by deterministic top-down finite tree

transducers are closed under composition. Finally, we proved that

the maps defined by partial deterministic linear top-down finite tree

transducers are not closed under composition.

6-4

16. Further Research

This section surveys some possible directions for further

research in the study of generaland subtree replacement systems and

their applications. We begin with problems that are, stated or implied

in the previous chapters. We conclude with a discussion of possible

applications in the study of asynchronous parallel processing.

We have studied the Church-Rosser property as a means of

obtaining uniqueness of normal forms. As we remarked in §1, another

desirable property of general replacement systems is the finiteness of

every sequence R0 , R i ,... such that R	 R11 for all i. Are there

any helpful abstract sufficient conditions for this property? In systems

without this property, are there theorems that help ascertain whether a

sequencing mechanism omits any normal forms?

Another problem in the general theory is to weaken the definitions

of residue maps and closed subtree replacement systems. As we

remarked in §5, some of the restrictions in the definitions are moti-

vated less by the intuitive ideas than by technical considerations in the

proof of the Main Theorem (5.6). Can the definitions be weakened in

such a way that unequivocal closed systems will still be Church-Rosser,

yet more systems will be closed?

The recursive definitions considered in Chapter 3 suggest many

questions for further investigation. As is usual in the theory of com-

puting, our study of recursion has no provision for "side effects" or

for "self-modifying" programs where the data at one stage become the

instructions executed at another stage. Side effects and s1f-modifying

programs are so common in the practice of computing that it would

surely be worthwhile to introduce them here. With or without these

complications, there are several promising directions for further work.

Efficient evaluation of the functions specified by recursive defi-

nitions requires more than random application of rules when some

parameters are called by name. For example, consider the rule-

schemata

(1) f(u) -k C(=(u, 0) , 1 , X(u,f(--(u, 1))))

and

(2)

no, u,

The recursive definition formed by (1) and (2) is almost the same as

our example, the natural definition of the factorial, but we have used

a call-by-name parameter in (1). This is obviously a poor choice,

and an analysis of just why it is a, poor choice may assist in making

better choices in more complicated situations. In general one should

evaluate subexpressions before passing them to procedures if the

whole expression being evaluated will not have a finite value unless the

subexpressions do. On the other hand, the branches of conditionals

should be passed unevaluated, as in (2). A multitude of schemes for

computing recursively defined functions can be imagined; further

development of the theory in Chapter 3 should assist in formulating

such schemes, establishing their validity, and analyzing their compu-

tational complexity.

6-6

The abstract theory of computational complexity fOr recursive

functions may also have fruitful interactions with Chapter 3, at least

in the case where the data space is the nonnegative integers and the

given functions are successor and the test for equality. If we identify

recursive definitions that differ only in the function letters and

parameters used (just as we might identify ALGOL 60 programs that

differ only in the names chosen for the identifiers and labels), then a

model for the axioms of M. Blum [4] can be obtained. We measure

the size of a recursive definition L by the number of nodes that appear

in it:

IILH=	 I	 (IRI+ISI).

R — SEL

Under our convention of identifying definitions that are alphabetic

variants of each other, there are only finitely many recursive defi-

nitions of each size, and they can be effectively enumerated. These

are the axioms on sizes of machines [4, p. 2581. By enumerating

pairs of the form (L, f) where • L is a recursive definition and f is a

function letter of rank 1 involved inL, we can define an "acceptable

Gödel indexing	 . ;. of thepartial recursive functions, in the

sense of [4, p. 258]. If (L, f) i the k-th pair in the enumeration, let

be 17 whenever rl is the smallest integer such that

T() =

in the subtree replacement system	 We now have a Blurn complexity

measure [4, p. 261]. What other properties do these size and complexity

measures have?

6-7

In Chapter 4 we showed that beta reduction in the lambda calculus

is Church-Rosser with the help of two subtree replacement systems

and c. For both of these systems it is quite easy to show that every

sequence of applications of rules is finite and to compute normal forms.

For any tree R. in the forest 1H of lambda expressions augmented by a,

let rR be the normal form of R in M and let ER be the normal form

of R in	 For any tree R in the forest F of lambda expressions, let
Cr

AR be an aiphanormal tree that is strongly equivalent to R. The

following algorithm seeks the normal form of any tree R under beta

reduction:

R:= AR

(2) S:=rR

(3)

(4) R:ES

(5) go t2 (1).

(1)

(We omit various time-saving tricks, such as checking whether R = rR

while computing . r'R, in order to keep the basic strategy clear.) The

results of Chapter 4 imply that the final value of R is the unique (up to

strong alphaequivalence) beta normal form of the initial value of R

whenever the algorithm does halt. We conjecture that the algorithm

omits no normal forms: it does halt eventually whenever the initial

tree has a beta normal form.

6-8

In Chapter 5 we defined both top-down and bottom-up tree trans-

ducers, but the major theorems, here. and in our references were

restricted to top-down transducers. This is unfortunate for the appli-

cation to syntax-directed compilers, since parsers and code generators

are frequently bottom-up. Do the . properties of top-down transducers

have bottom-up analogs?	 -

By relaxing some of the restrictions on the forms of rules in finite

tree transducers, it may be possible 'to build useful- models f or- tree-

manipulating processes in, natural languages. We will -remark on two

such processes: transformational grammars and semantic interpreters.

Transformational grammars have been described informally by

Chomsky [8] [9] [10] and formally by Ginsburg and Partee [18], who

also present an extensive bibliography on the subject. A transfor-

mational grammar assigns two tree structures"to each sentence it

generates: a "deep structure" and a "surface structure" derived from

the deep structure by "transformations" that map trees.to trees. Some

generalizations of top-down finite tree transducers that could be rele-

vant to the study . of trans formational'gramm'ars have been discussed by

Rounds [46, pp. 280-281].

Woods [55] [56] has proposed a theory of computational semantics

wherein the deep structures of natural language sentences are translated

into a "query' language" whose sentences . have operator-operand

structures. The operators represent whatever subroutines are available

for changing the system's data base, applying various functions and

predicates to portions of the data base, and reporting the results of such

computations. The "semantic rules" in this theory specify a transducer

mapping natural language deep structures to query language operator-

operand structures. The tree transducer used here is somewhat more

6-9

complex than the transducers implicit in Syntax-directed compilers for

programming languages ,, but the intuitive ideas are similar. The theory

of tree transducers sketched in Chapter 5 should eventually be extended

to deal with Woods' tree transducer as well.

The whole-part theorems in §3 may be useful in showing the

singlevaluedness of functions defined by algorithms or computer

systems that allow asynchronous parallel processing. These systems

appear to be representable by the "parallel program schemata" of

Karp and Miller [25, §1]., After sketching this model for parallel

computation, we will indicate how the theorems of §3 may be useful.

A parallel program schema consists of a "memory" M, a set A

of "operators" together with functions D : A - 2M and R : A - 2M

called "domain" and "range" maps, an "alphabet" Z, and a "control

automaton" '. The memory M is a finite set of "cells" imagined to

contain data being manipulated. No assumptions about the size or

shape of cells are made - anything from a flip-flop to a disk file might.

be involved. The set A of operators represents the processors that

have access to the data stored in the memory. For each a E A, the

domain Da is the set of cells from which a fetches data and the range

Ra is the set of cells where a stores results. The alphabet E has

	

symbols a 0 , a 1 , . . . a 	 (with Ka 1) for each operator a. We say that

a has initiator a and K a terminators a 1 ,. . . , á.1 . . The control

automaton is a set Q of states together with a special starting state

s E Q and a transition function

	

ó : Q X Z '	 Q (partial)

such that ó(q, a) is defined whenever a is a terminator. Intuitively,

the operators a such that o(q, a 0) is defined are the ones permitted

6-10

to begin computing when control is in state q. Any process that has

been initiated previously may terminate (unpredictably) at any time

and send a terminator to the control. The terminator chosen permits

the process to give the control a little information about the compu-

tation just completed.

An interpreted schema is a parallel program schema together

with interpretations for the operators. We consider a set ID of possible

data to be stored in cells. To each a E A we assign a map Fa from

possible assignments c : Da - ID of values to the domain cells for a

to possible assignments d : Ra -k ID of values to the range cells for a.

To each a E A we also assign a map G from possible assignments

c : Da -k ID of values to the domain cells for a to terminators for a.

A configuration for an interpreted schema is any triple a = (c,q,j.i)

where c : M -k ID (the current contents of the memory cells), q E Q

(the current state of the control), and Ii is a map assigning to each

a E A an input queue: a string of maps from Da into ID. An initial

configuration is one where q is the starting state s and M (a) is the

empty queue for each a A. Computations are sequences of transitions

from one configuration to another.

Let lB be the set of all possible configurations for an interpreted

schema. We will set up a general replacement system = (TB, =') to

represent the transitions between configurations. Karp and Miller

define a partial function mapping 113 X E into 113 (whose value at (a, o)

is denoted a . cr). Restating the definition [25, Def. 1.5] here, we define

a • o to be the unique 13 E TB, if any, such that the following conditions

hold:

6-il

Case 1 (o = a 0 for some a E A) Then a = (c, q, p) with 6(q, a 0) defined.

We have 13 = (c, o(q, a 0), ii), where the queue map v has v(b) = p (b) for

all b E A with b a and

v(a) = p (a)•(c ,I Da),

so that the current contents of a's domain cells are added to the tail of

a's previous input queue p (a).

Case 2 (a = akfor some:aEA and k>0) Then a= (c, q, with

p(a) = (ic) . .for some K : Da— D (a nonempty queue headed by K)

and a = Ga(K)• We have 13 = (d, ö(q, ak). v) where d(m) = c(m) for all

m M—Ra and d /Ra = Fa(K) while v(b) = p(b) for all bE A with

b a and v(a) = r, so that the head of a's previous input qÜèue p (a)

has been serviced and is now deleted.

(Various restrictions on the model are of interest in practical situations.

For example, if LllI is large then only configurations with very short

queues are reasonable. The general model is a convenient framework

for expressing and comparing more restricted models.)

Each o E E defines a relation = on lB by a.

a13 jff o.cr=13

and so each a E E defines a general replacement system (lB.). One

way to show that the final configuration after a halting computation is

determined by the initial configuration is to show that the general

replacement system

(lB,=)=(lB, Li
tIEE

is Church-Rosser, since there is a computation that starts at a and

6-12

halts at 0 iff a has normal form f3 in (lB.). The Church-Rosser

property for (TB,) is much weaker than "determinacy" as defined

in [25, Def. 1.91, but it is enough to insure uniqueness of normal forms.

Since each	 is a partial function on IB, each (TB, =) is a

Church-Rosser system. The union process is associative and com-

mutative, so there is a multitude of ways to analyze (]B, ==') as a

hierarchy of simpler systems, with the systems on each-level being

unions of systems on the level below. For each such analysis,

Theorems 3.5 and 3.8 tell us that appropriately connected Church-

Rosser parts form Church-Rosser wholes, while Lemmas 3.6 and 3.9

assist in showing that the parts are indeed appropriately. connected.

We can therefore approach each specific interpreted schema

with general tool's applicable to any union of general replacement

systems. Perhaps we can also use the general tools to show that any

interpreted schema satisfying certain conditions leads to a Church-

Rosser system, where theconditionsare reasonably easyto verify in

many practical situations., Np such results are known at present.

APPENDIX A

Elementary Properties of the Lambda Calculus

By straightforward applications of the definitions in § 19 and use

of the basic algebraic identities from §4, we can verify a multitude of

obvious properties of bound and free variables. For example,

FX(y, S) = if . x = y then çb	 (1) FS.

rn . B(R/rn) C BR fl rn 1N,

and so on. This appendix establishes some less obvious but still quite

elementary properties of the lambda calculus.

First we verify the assertion (9. 3.2) with

(A.1) Lemma. Let RE IF; m,n,p E Dorn R; mancn; mane p. Then

R	 iff n/rn h/rn p/rn.

Proof:	 Suppose that n	 p and let x = Rn = Rp.

Case 1 (n, p E FXR) Then n/rn, p/rn E F(R/m), so n/rn

Case 2 (n, p are bound to some q E Dorn R)

Case 2.1 (rn anc q) Then n/rn and p/rn are bound to q/m in R/rn, so

n/rn R/ I P/rn.

Case 2.2 (NOT m anc q). If n/rn were bound to a node J? in R/rn, then

n would be bound to mi in R rather than to q. Therefore n/rn E

F x (R/rn). Similarly, p/mE F(R/m), and son/rn -	 p/rn. R/rn

A-2

Now suppose that n/rn 	 p/rn. Let x = (R/m)(n/m)=(R/m)(p/m), R/m
so that x = Rn = Rp also.

Case 1 (n/m, p/rn E F(R/m))

Case 1.1 ((31 ancm)(R =\ &R(Q•(0)) = x)) Let I . with I anc rn and

RQ = X and R(!-(0)) = x be chosen with III maximal. Then n and p are

bound to .Q in R and so n R

Case 1.2 ((VQ anc m)(RQ * X or R(-(0)) * x)) Then n, p E FR and so

Case 2 (n/rn and p/rn are bound to some q in R/m) Then n and p are

bound to m . q in R and so np. I

Next we verify Lemma 9.5.

(A.2) Lemma. LetR,R',S,S' E F; x, x' E X. Then

Mx, S)	 X(x',S') iff (S	 S' &FXS = F,S')

(2)	 y(R,S)	 'y(R',S') iff

[RR'&ss'&

(Vy,y'E X)(FR = F I R I	 implies FyS=FyiS')l•

Proof:	 Suppose X(x, S)	 X(x', 5'), so that

(1) FS = { q E Dom X(x, S) I q is bound to () in X(x, S)}
*
 qX(x,S) (0)}

= {q E * I q
X(x',S')

(0)} = (1)-F sr.

(1)

Therefore F S= FX,S'. We also have Frame S = Frame S' because

Frame X(x, 5) = Frame X(x',S'). We must show that	 =St

A-3

Let m,n E IN 	 By X(x,S) X(x',S') and two applications of Lemma A. 1:

m 's	 (1).m (x, S) (1).n

iff (1) . m	 (1).n X(x', S')
iff m	 n.

S,

Now suppose that S S' and FS= FX ,S ' . We have Frame X(x, S) =

Frame X(x', S') because Frame S = Frame 5'. We must show that

S) = (, ,ç). By symmetry, it will suffice to show that

) C () Suppose m X(x, S) n. X(x, S)	 - X(x', 5')

Case 1 (m,n E FX(x,S) for some y E X) Then y * x and m/(1), n/(1)

E FS. By S S' and two applications of Lemma A.1 we hakre

)fl•
X(x',S')

Case 2 (m, n are bound to some p in X(x, S))

Case 2.1 (p = ()) Then m/(1), n/(l) E FS and so m/(l), nj(1)EF,S'.

Therefore m, n are bound to () in ?(x', S') and m (x', S')

Case 2.2 (p * ()) Then (1) ancp and m/(l),n/(1) are bound to p/(l)

in S. By S S' and two applications of Lemma A.1 we have

n. X(x', S')

This proves (1).

Now suppose y(R, S) 'y(R'. S'), so that Frame R = Frame R' and

Frame S = Frame S' because Frame y(R, S) = Frame -y(R', S'). Using

Lemma A.l and y(R 5)3)
= (R',s''

we can show that R =

and	 (s' just as in the proof of (1). We now have R R' and

A-4

S 5'. Suppose y,y'E X with FR F IR ? 0. Let m FR. Then

FS = In E Dom S I(1) .n (RS) (0).m}

= In Dom S' I (1) . n	 (0).m} = F,S'.

Now suppose that R R', S S', and F
y	 y

S = F ,S' whenever

F R = F ,R'	 . Then Frame -t (R, S) = Frame '(R', S!) because y	 y
Frame R = Frame R' and Frame S Frame S'. We must show that

(R, S;)	 '(R ',S) By .symmetry, it will suffice -to show 'y '5
4-

) C (). Suppose m, € IN' with m	 n. Then 7(R,S)	 'y(R',S')	 y(R,S)
(0) anc m or (1) anc m, and similarly for n.

Case 1 ((0) anc m)

Case 1.1 (0) anc n) By R -• R' and two applications of Lemma A;1,

m<	 n.
y(R',S')

Case 1.2 ((1) anc n) Since () is the only common ancestor of m and n

and 'y(R, S)() ^ X, we must have m, n F7(R. 5) for some y E X. Let

= R'(m/(0)). Then m/(0) E F IR ? byR R' and rn/(0) FR. • Since
F

y
R = FR ? cb, we have FS = F T P S ' and so n/(1.).E F ? S! because

n/(1) E FyS• Thus	
0 	

.0

M/(0) E FR ? & ri/(1) E FytS

In E Fy 1/(R'S') & n E F Y(R'S')	 0

'y(R',S')

Case 2 ((1) ancm)

A-S

Case 2.1 ((0) anc n) We have m 	 n by Case 1.2 and the sym-

metry of both	 relations.

Case 2.2 (0) anc n) By S S' and two applications of Lemma A. 1,

m 'y(R',S')

Finally, we must prove Lemma 9.9.

(A. 3) Lemma. Let i E { j3, ri ., a }; çü -k Vj E	 ; q'	 cp'. If i 13. let

also. Then there is i,li' E F such that Vj	 and

(1) 49'-- 1i ' E IR.
1

(2) (Vy,y' E	 = F4i' (P implies Fyco = FP' çb).

Proof:	 Suppose first, that I = 6. Recall that 1R 6 satisfies restrictions
(4) and (5) in Definition 9.7. Then p q1 because FVbl q = ç1 in (9.7.4).
Letting zP 1 = 1i, we have (1) by (9.7.5). Since FVbl cli = çb in (97.4), (2)
is trivial.

Now suppose that i = i7, so that some. R E F and x E X have

= X(x, 'y(R, x)) & cli = R & FR

by the definition of 1R (9.7.3). By q, q' there are R' E F and x' c- X
with

= X(x', 'y (R',

while Lemma A.2 implies that

R R' & FX,R ' = FR = ç.

Letting O' = R' yields cl'	 ill' and (1). Now let y, y'EX and suppose

Fy l/ = F,ç&' ;4 çb. Then 	 x and y' ;4 x', so

A-6

= (1, 0) . FR = (1, 0) .F,R' = F,'p' 36 c.

Finally, suppose i = , so that some R, S E F and x E X have

= 'y(X(x, S), R) & Vi = [R/x]S & FVb1 Rfl (BVb1 SU{x}) =

by the definition of 1R (9.7.2). By p 'p' there are It', S' E IF and

x' X such that

of = 7(X(x',S'),R')).

Set qj I = [R'/x']S'. By OF E IF 0 we have FVb1 It' fl (BVb1 S' U{x'}) =

and (1) follows. Let y. y' E X and suppose FiIi = F9Y çZ. We must

show that	 Fya" b. Since FVb1 R fl BVbl S = FVb1R' fl BVb1S'

= , we have

F(FS—FS)UFS.FR

	

y	 y	 x	 x y

F ,b' = (F ,S'—F ,S')LJF ,S' . F R' Y	 x	 x	 y'

Combining these with Y = F 1Vi yields

(3) (F S - F S)U F S•F R = (F ,S'— F ,S')LJ F ,S' F ,R' y	 x	 x y	 y	 x	 x	 y

Since FS = F X , S ' while S(X) and S' - '(X) are both independent,

FS - FS I FX ,S ' & FSr - FX,S' I FS.

Therefore

	

(F y	 x S - F S)fl F x ,S'-F y ,R' = = (F y ,S' - F x ,S')fl F x y S . F R

and (3) becomes

(4) F
y	 x	 y	 x	 x S — F S=F ,S' — F S' &F SFy

	 x R=F tS'FyR'

where both equations cannot be ç = because F 	 There are two

cases to consider.

A-7

Case I (F S . F R =) Then (4) implies that F S - F S = F x y	 y	 x	 y
;4 q. Applying this to

Fq=(O,l)(F
y
S—F S)U(l)F R x.	 y

and to the corresponding equation for F y P' i we find that some

p E Dom S has

(0, l)p . E Ffl F1-'.

But this implies that Fc9 = F,q' çb by ç	 99g.

Case 2 (FS.FR :^ ç7) Then FS is a nonempty independent et of nodes

with FS .= FX,S'.. Any equation M .N = M . P for M, N, p c	 with M

nonempty and independent implies N = P, so (4) implies that

F
y
R = F	 . y ,R' By x SF y R;^,

FR = Fy R' ' •

Applying this and (4) to

Fc = (0, 1)(F S—F S) U (1) . F R y y	 x	 y

and to the corresponding equation for Fyi '• we find that Fyc?=Fyc

This proves (2).

We must still show that Vi ' in the first place! Let K = I FS

and let (m0 , ..., mK_l) be a listing of FS. We will use Lemma 9.6 to

prove

(5) S(m0 - R) . . . (m- 1 - R) S'(m0 - R'). . (rn 1 - R').

Comparing (5) with (9.6.4), we see that it suffices to show

A-8

F
x
S=F

x
,S'

FVb1R:Th(BVb1SU{x})=çb

FVb1R' (BVb1S'U{x'}) =

SS'&RR'

(6)	 (Vy, y' c- X)(FS = F,S'	 implies'n-iplie FR = F,R')

(V y, y' E X)(FR = FR' ;4. implies FR = FR').

Only (6) is neither trivial nor already proven. Suppose FS = F1S? ;4
If x =r then FS' = F X ,.S ' 0, and so x' =y!. We have FR = =

FR ? . If x:^ y then '	 too and •F R	 Lemma A.2 and
çü	 q'. This proves (6). I

APPENDIX B

Eauivalence of Two Versions of the Lambda Calculus

As we noted at the end of §9, our formalization of the lambda

calculus differs somewhat from that of Curry and Feys. Even after

setting up the obvious correspondence between tt obs" [14, Chap. 3]

and trees in our forest F, it may not be completely obvious that our

is the same GRS that Curry and Feys show is Church-Rosser

[14, Chap. 41. This appendix defines a GRS 1Z such that the statement

is Church-Rosser

is obviously equivalent to the classical Church-Rosser theorem

[14, Chap. 41. Next we show that	 , so that Theorem 10.12

does cover the classical theorem.

First we define a substitution operation that corresponds to

[14, §3E1]:

(B. 1) Definition.	 Choose any map Newvbl: 2X - {x}	 X such

that

(1) (VY (. X)(Newvbl(Y) 	 Y).

For all R F and x E X, define

(2) {R/x}: F --- F

inductively by setting

(3) {R/x} -y (S, T) 7{R/x}S,{R/x}T)

(4) {R/x}X(x,S) = X(x,S)

B-2

(5) {R/x My, S) = If FS = O . or FR	 then X(y,{R/x-S)

else X(z,{R/x}{z/y}S)

(6) {R/x}x=R &{R/x}a=a.

for all S, T E F; y, z E X; a E C U X such that y :^ x and a x and

z = Newvbl(FVb1 RU FVb1SU {x}).

Note the similarity to the definition of 1R (10.4.3), except in (5)

above, where occurrences ofy are changed to occurrences of z as

needed to prevent captures of free variables. This complication in the

definition of substitution for free variables permits a simple definition

of beta-reduction [14, §3D31:

(B.2.l) 1	 IR 19 {'i(X(x,S),R)	 {R/x}SI R,S E F &X E x},

where we use	 rather than "J3" to prevent confusion between this set

of rules and our own 1R. Letting

(B.2.2)	 IR =IR UIR UIR
/.4	 0	 ó

we have an SRS of the form

(B.2.d)	 = (V, IF, =,1R
L	 /2

that carries out reductions" just as in [14, Chap. 3].

The Church-Rosser property is only sought modulo an equivalence

relation defined by yet another set of rules [14, §3D3]:

(B.3.l)	 IR ={X(x,S)_—* X(y,{y/x}S) I SE F &x,yE X & F y S =

These rules define an SRS of the form

(B.3.2) = (V,F,==,1R a	 a a

B-3

where == corresponds to the relation of alpha-convertibility among

"obs." Curry and Feys assert that 	 is an equivalence relation

because IR is symmetric [14, §3D3]. This is an error, if x, y E X

with x y and if z = Newvbl {x, y}, then

X(x,X(y,x))—X(y,X(z,y)) EIR a

but

X(y,X(z,y))—'X(x,X(y,x))	 1R a

The relation	 is symmetric, as we will soon show by proving that it

is actually the same as our strong alphaequivalence relation . Thus

the assertion in [14] is correct although the reason given for it is not.

Using the fact that	 is an equivalence, we define Curry and Feys'

GRS:

(B.4) Definition.	 Let lEa be the sèt of all equivalence classes of

trees in IF under the relation =. Define a GRS	 = OE >)) by

setting, for all ft ,	 E

0? > i iff (3 R E ft)(2 S E A) (R = S).
U	 12

(B.5) Lemma.. (=) = ().

Proof:	 First we will show

(1) () C (). a -

Suppose RS. For some QEIF; x,yEX; mE Dom Rwehave

FyQ=and	 .

(2) R/m = X(x,Q)

S = R(m - X(y,{y/x}Q).

B-4

By a straightforward induction on IQI in the definition (B.1) for {y/x}Q,

we can show that Q {y/x}Q and that

(Vz E X)(Vn E FQ) [(z = x & ({y/x}Q)n = y) or

(z x & ({y/x}Q)n = z)].

By the definitions of and (9.4) and by (1) in Lemma 9.5, these facts

imply that

X(x,Q)	 X(y,{y/x}Q).

Applying this to (2) and using Lemma 9.5 ImI times, we find that R S.

This proves (1).

In order to show that () .ç (), We will show that every P E F

satisfies

(3)	 (VP' E IF) (P F implies p	 p').

Let FE IF and suppose all smaller trees in]F satisfy (3). Suppose

PP'.

Case 1 (P()E CL) X) Then P = P'and P	 P'.

Case 2 (P() = X) Then P = X(x, S)for some S E IF; x EX.

Since Frame P = Frame F', we have F' = X(x', S') for some S' E IF;

X? E X. Let y E X with S(y) = S'(y) = b, so that P F' implies

that

[y/x]S	 [y/x']S'

by the definition of (9.4.2) and by(1) in Lemma 9.5. By the induction

hypothesis and the definition of	 as an SRS,

(4)	 X(y, [y/x}S)	 X(y, [y/x']S').

B-S

By S(y) = we have [y/x]S ={y/x}S and FS b, so that

(5) X(x, S) =	 X(y, [y/x]S).

Now consider any subtree of the form X(z, T) in [y/x']S'. If

z = x' then T- 1 (Y) = because S 1-1 (y) =	 and [y/x']S' = S'(F,S'-y).

Therefore either Fx' = çi or FT = çi and so

{x'/y}X(z,T) X(z,{x'/y}T)

in (5) from Definition B. 1. Since this is true for all subtrees of the

form X(z, T) in [y/x']S' and since replacing (B.l.5) with

{R/x}X(y)S) = X(y,{R/x}S)

would turn (B. 1) into a characterization of our [R/x] substitution, we

have

(6) {x'/y}[y/x']S'	 [x'/y][y/x']S'.

But F,[y/x n]S' = 95 while [x'/y][y/x']S' = 5' by S'(y) = çb,

so (6) yields

My, [y/x']S') ==>X(x', 5'). a

Combining this with (4) and (5), we get

P = X(x, S)	 X(x', 5')	 F'.

Case 3 (P() = 'y) Then P = 'y(R,S) and P"= 'y(R',S') for some R,R',S,

S' E F with R R' and S 5' by (2) in Lemma 9.5. We apply the

induction hypothesis twice to get P = P'.

Lemma B.5 implies that the set lEa in the definition (B.4) of

is the same set IE used to define	 To complete the proof that

=
2. we must show that (>) = () on this set IE.

(B.6) Theorem.	 =

Proof:

	

	 The proof of Lemma 9.6 can be adapted to show that

{R/x}S {R'/x'}S'

whenever R R', S S?, FS = FX,S', and

(Vy, y' E X')(FS = F,S' çb implies FR

Therefore the proof of Lemma 9.9 given in (A.3) can be carried out

with 0 in place of /3. Using Lemma 9.9 with 6 in place of /3, we may

prove Lemma 10.1 with 0 in place of /3. Thus the corollary

(1) (V 1 4 E]E)[4 iff(3REflFo)(3SEA.)(R=rS)]

of Lemma 10.1 has the analog

(2) (V , 4 € IE)[R > 4 iff (3 R E 0? fl IF 0)(2 S I)(R => S)]
12

for

For all R,S E IF and x E X with FVbl Rfl(BVbl SU{x}) =

[R/x]S = {R/x}S,

and therefore

(=) fl OF 0	 IF X IF) =	 fl (0 X IF).

Combining this with the definitions of IRx (9.7. 1) and 1R12 (B.2.2) yields

(==)fl(F 0 XF)=(=)fl(IF0XF).

Therefore (1) and (2) imply that (>) =
JA X

B-6

REFERENCES

1. Aho, A.V, Hoperoft, J.E., and Ullman, J.D. A general theory of
translation. Math. Systems Theory 3 (1969), 193-221.

2. Aho, A.V., and Ullman, J.D. Translations on a context-free
grammar. ACM Symp. on Theory of Computin (1969),
93-112.

3. Blum, E.K. Towards a theory of semantics and compilers for
programming languages. J. Computer and System Sci. 3
(1969), 248-275.

4. Blum, M. On the size of machines. Inform, and Control 11
(1967), 257-265.

5. Bourbaki, N. Theory of Sets. Addison-Wesley, Reading, Mass.,
1968.

6. Brainerd, W.S. Tree generating regular systems. Inform, and
Control 14 (1969), 217-231.

7. Cheatham, T.E., Jr. Theory and Construction of Compilers,
Second ed. Massachusetts Computer Associates, Inc.,
Wakefield, Mass., 1967.

8. Chomsky, N. Three models for the description of language.
IRE Trans. on Inform. Theory IT-2 (1956), 113-124.

9. -------- Syntactic Structures. Mouton, The Hague, 1957.

10. -------- Aspects of the Theory of Syntax. M.I.T. Press,
Cambridge, Mass., 1965.

11. Christensen, C. An example of the manipulation of directed graphs
in the AMBIT/G programming language. In Klerer, M., and
Reinfelds, J. (Eds.), Interactive Systems for Experimental
Applied Mathematics. Academic Press, New York, 1968,
pp. 423-435.

12. Church, A. A set of postulates for the foundation of logic.
Ann. of Math. (2) 33 (1932), 346-366.

13. -------and Rosser, J.B. Some properties of conversion.
Trans. Amer. Math. Soc. 39 (1936), 472-482.

14. Curry, H.B., and Feys, R. Combinatory Logic. North-Holland,
Amsterdam, 1958.

R2

15. DeRemer, F.L. Practical translators for LR(k) 'languages.
MAC-TR-65, M.I.T. Project MAC, Cambridge, Mass.,
1969.

16. Earley, J. An efficient context-free parsing algorithm.
Comm. ACM 13 (1970), 94-102.

17. Floyd, R.W. On the nonexistence of a phrase-structure grammar
for ALGOL 60. Comm. ACM 5 (1962), 483-484.

18. Ginsburg, S., and Partee, B.H. A mathematical model of trans-
formational grammars. Inform, and Control 15 (1969),
297-334.

19. Gray, J.N., and Harrison, M.A. Single pass precedence analysis.
Tenth Annual IEEE Symp. on Switching and Automata
Theory (1969), 106-117.

20. Henderson, D.A. Description and definition of simple AMBIT/G.
Report CA-69Q4-2811, Massachusetts Computer
Associates, Inc., Wakefield, Mass.; . 1969.

21. Hindley, R. The Church-Rosser property and a result in com-
binatory logic. PhD. Thesis, Ti. of Newcastle-upon-Tyne,
1964.

22. -------- An abstract form of the Church-Rosser theorem,
Part I. J. Symbolic Logic 34 (1969), 545-560.

23. -------- An abstract form of the Church-Rosser theorem,
Part II. In preparation.

24. Hoperoft, J.E., and Ullman, J.D. Formal Languages and Their
Relation to Automata. Addison-Wesley, Reading, Mass.,
1969.

25. Karp, R.M., and Miller, R.E. Parallel program schemata.
J. Computer and System Sci. 3(1969), 147-195.

26. Kleene, S.C. Introduction to Metamathematics. VanNostrand,
New York, 1952.

27. Knuth, D.E. Semantics of context-free languages. Math. Systems
Theory 2 (1968), 127-145.

28. -------- The Art of Computer Programming, Vol. 1: Funda-
mental Algorithms. Addison-Wesley, Reading, Mass.,
1968.

29. Landin, P.J. A formal description of ALGOL 60. In Steel, T.B.Jr.
(Ed.), Formal Language Description Languages for
Computer Programming. North-Holland, Amsterdam, 1966,
pp. 266-294.	 .	 .

R3

30. Lewis, P.M., II, and Stearns, R.E. Syntax-directed transduction.
J. ACM 15 (1968), 465-488.

31. Manna, Z., and McCarthy, J. Properties of programs and
partial function logic. In Meltzer, B., and Michie, D.
(Eds.), Machine Intelligence 5. American Elsevier,
New York, 1970, pp. 27-38.

32. Manna, Z., and Pneuli, A. Formalization of properties of
functional programs. J. ACM 17 (1970), 555-590.

33. McCarthy, J. Recursive functions of symbolic expressions and
their computation by machine. Comm. ACM 3 (1960),
184-195.	 -

34. -------- Basis for a mathematical theory of computation.
In Braffort, P., and Hirschberg, D. (Eds.), Computer
Programming and Formal Systems. North-Holland,
1963, pp. 33-70.

35. Minsky, M. Form and content in computer science. J. ACM 17
(1970), 197-215.	 -

36. Mitschke, G. Eine algebraische Behandlung von X-K-Kalkiil und
Kombinatorischer Logik. PhD. Thesis, Rheinischen
Friedrich-Wilhelms Universit.t, Bonn, 1970.

37. Morris, J.H., Jr. Lambda-calculus models of programming
languages. MAC-TR-57, M.I.T. Project MAC,
Cambridge, Mass., 1968.

38. Naur, P. (Ed.) Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6 (1963), 1-17.

39. Rosen, B.K. Context-sensitive syntax analysis, Part II:
Generative power. Math. Ling. and Autom. Translation
NSF-18 (1967), VI-1 —VI-59. Harvard Computation
Laboratory, Cambridge, Mass.

40. -------- Syntactic complexity and finite automata. Computer
Res. Lab. Memo. RC-T-068, NASA Electronics Research
Center, Cambridge, Mass., 1969. Submitted for publi-
cation.

41. -------- Tree-manipulating systems and Church-Rosser
theorems. Second Annual ACM S ymp . on Theory of
Computing (1970), 117-127.

42. -------- Tree -manipulating systems and Church-Rosser theorems.
To appear in J. ACM.

R4

43. Rosen, S. A compiler-building system developed by Brooker and
Morris. In Rosen, S. (Ed.), Programming Systems and
Languages. McGraw-Hill, New York, 1967, pp. 306-331.

44. Rosencrantz, D.J., and Stearns, R.E. Properties of determi -
nistic top-down grammars. Inform, and Control 17 (1970),
226-256.

45. Rounds, W.C. Tree-oriented proofs of some theorems on context-
free and indexed languages. Second Annual ACM Symp. on
Theory of Computing (1970), 109-116.

46. -------- Mappings and grammars on trees. Math. Systems
Theory4(1970), 257-287.

47. Sanchis, L.E. Functionals defined by recursion. Notre Dame J.
Formal Logic 8(1967), 161-174.

48. Schroer, D.E. The Church-Rosser theorem. PhD. Thesis,
Cornell U., Ithaca, N.Y., 1965.

49. Strong, H.R., Jr. Translating recursion equations into flowcharts.
Second Annual ACM Symp. on Theory of Computing (1970),
184-197.

50. Thatcher, J.W. Characterizing derivation trees of context-free
grammars through a generalization of finite automata
theory. J. Computer and System Sci. 1 (1967), 317-322.

51. -------- There's a lot more to finite automata theory than you
would have thought. Fourth Annual Princeton Coni. on
Inform. Sci. and Systems (1970), .263-276.

52. --------. Generalized sequential machine maps. J. Computer
and System Sci. 4 (1970), 339-367.

53. Wegbreit, B. Studies in extensible programming languages.
PhD. Thesis, Harvard U., Cambridge, Mass., 1970.

54. Wirth, N., and Weber,-H. EULER: a generalization of ALGOL,
and its formal definition. Comm. ACM 9 (1966), 13-25
and 89-99.

55. Woods, W.A. Semantics for a question-answering system.
Math. Ling. and Autom. Translation NSF-19 (1967).
Harvard Computation Laboratory, Cambridge, Mass.

56. -------- Procedural semantics for a question-answering
machine. Proc. AFIPS 1968 FJCC, Vol. 33, Pt. 1.
MDI Publications, Wayne, Penn., 1968, pp. 457-471.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288

