SUBTREE REPLACEMENT SYSTEMS'

by

Barry K. Rosen

2~T1

SUBTREE REPLACEMENT SYSTEMS'

by
Barry K. Rosen

2-71

Center for Research in Computing Technology
Harvard University

Cambridge, Massachusetts 02138

TThe first four chapters of this report formed the author's Ph. D. thesis
at Harvard University, 1971. Some of these results were announced at
the Second ACM Symposium on the Theory of Computing, Northampton,
Massachusetts, May, 1971. This research was supported in part by the
National Aeronautics and Space Administration under Grant No.NGR 22-
007-076, and by the National Science Foundation under Grant No. GS-1934.

ii

PREFACE

At the end of September 1969 I began to study some recent work
on finite tree automata and tree transducers. I was also concerned
with another kind of tree-manipulating system: formal computations
in McCarthy‘s calculus for recursive definitions [34]. Recursively
defined functions were obviously singlevalued, even in versions of the
calculus that allowed much more freedom than the original one in
deciding which formal procedure call to evaluate next, yet a rigorous
proof was strangely elusive.

The proof that eventﬁally emerged had two.stages'. First the
"subtree replacement system'' defined by any recursive definition was
shown to be 'unequivocal" and "closed." Then singlevaluedness was
derived from these properties alone. The ensuing search for other
applications of the abstract singlevalﬁedness theorem led immediately
to some minor results about tree transducers. I then conceived the
outline of a relatively simple proof of the Church-Rosser Theorem for
the lambda calculus. By late November it was clear that a short ‘paper
should be written.

The paper grew. During 1970 it gradually turned into a long paper
[42] and then into this thesis. More questions about the application
areas arose, and some of them were answerable with the help of the
growing theory. The current state of the theory of subtree replace-
‘ment systems and most of the applications explored so far are presented
here. This work does not solve any software engineering problems; it

provides mathematical tools that may help those who do solve them.

iii

In 1960 McCarthy [33] pioneered the mathematical basis for
designing, judging, and communicating practical nonnumerical algo-
rithms, especially linguistic algorithms. Modest but nontrivial
progress has been made since then. The software engineer now has
some science to apply to his problems. He still needs experience,
creativity, perseverance, and luck —as do all the other engineers.
He must still envy the riches of his brother in hardware, who can
draw on solid state physics and electromagnetic theory. I hope this
thesis will help him feel a little less impoverished.

I wish to thank P.J. Downey for suggesting an improvement in the
definition of closéd subtree replacement systems. Prof. R. Hindley
and Dr. G. Mitschke kindly supplied copies of their dissertations, [21]
and [36], for comparison with the work reported in [41]. Prof. Hindley
also called my attention to [47] and suggested some improvemenfs in
the proof of the classical Church-Rosser Theorem. Profs. F.D. Lewis
and W. A. Woods suggested many improvements in the exposition.

I am especially grateful to Prof. AR. V. Book, who supervised this
research. His guidance and .support have been beyond the power of
words to acknowledge. |

This research was supported by the National Scieﬁce Foundation
under Grant No. GS-1934 and by the National Aeronautics and Space

Administration under Grant No. NGR-22-007-176.

CONTENTS

Preface
Index of Major Definitions

Synopsis

CHAPTER 1. INTRODUCTION
§1. Motivation and Overview

§2. Terminology

CHAPTER 2. THEORY OF GENERAL AND
SUBTREE REPLACEMENT SYSTEMS

§3. General Replacement Systems
§4. Trees and Substitution
§5. Subtree Replacement Systems

§6. Parameters and Rule-Schemata

CHAPTER 3. APPLICATIONS TO RECURSIVE DEFINITIONS
§7. An Algorithmic Explanation

§8. A Semantic Explanation

CHAPTER 4. APPLICATIONS TO THE LAMBDA CALCULUS
§9. Lambda Calculus

§10. Cla-slsical Church-Rosser Theorem

CHAPTER 5. APPLICATIONS TO TREE TRANSDUCERS
§11. Formal Language Theory and Compiling
§12. Tree Transducers and Compiling
§13. Finite Tree Transducers

§14. Closure Under Composition

iv

ii
vi

ix

1-20

2-1
2-16
2-26

2-47

3-1

3-21

4-17

5-2

5-24

5-34

5-65

CHAPTER 6. EPILOGUE
§15. Summary

§16. Further Research

Appendix A. Elementary Properties of the Lambda Calculus

Appendix B. Equivalence of Two Versions of the

Lambda Calculus

References

6-1

- 6-4

A-1

vi

INDEX OF MAJOR DEFINITIONS

The following index locates the definitions for the major concepts
involved in this work. Every concept defined in one chapter and used
in another is included, except for the standard mathematical termi-

nology reviewed in §2.

alphaequivalence of R and S

strong, R= S 4-8

weak, R~ S _ 4-8
application of rules at each node in a set N of nodes, ? 2-34
ancestor relation, anc B 2-19
beta rules,]RB . . 4-12
call-by-name _ 3-6
call-by-value 3~6
canonical solution 3-25
Church-Rosser property 2-4 ‘
closed SRS , - 2-30
code generator ' 5-27
coding tree 5-27
commutativity (as a relation between GRSs) 2-4
concatenation of X and Y, X-Y | 2-18
delta rules,]Ré 4-12
eta rules,]Rn 4-12
evaluation of a tree R under a recursive definition L, EvalLR 3-14

father of a node n, Fa(n) 2-19

forest
general replacement system, GRS
independence
property of a sét of nodes
relations among nodes, m 1l n and mln
relation among sets of nodes, M L N
instance of a rule-schema
irreplaceabie
leaf in a tree
lexical analyzer
lexical filter
lexical synthesizer
lexical variable
node
normal form
operation on tfees in V, defined by a symbol in V
operator-operand structure
parameter
parser
phrase structure
pseudoclosed rule
quotient of nodes n and m, n/m
ranked parse tree
ranked trees with labels in V, V#
rankfuncﬁon,p

recursive definition

vii

2-26

2-2

2-21
2-19
2-21
2-50

2-2
2-21
5-10
5-11
5-10

5-9
2;19

2-2
2—25

1-2

 2-49

5-11

5-5
2-44
2-23
5-15
2-25
2-25

3-9

replacement by S in R
at a node n, R(n «—9S)
at a set of nodes M, R(M «— S)
residue map
rule
rule-schema
semantic analyzer
subtree of R atn, R/n
subtree replacerﬁent system, SRS
tree
tree domain
trees with labels in V, V,
tree transducer
bottom-up
deterministic
finite
linear
partial deterministic
top-down
total
unequivocal SRS
union of GRSs
value of a tree R under an interpretation I, ValI R

verification of diagrams

viii

2-19
2-21
2-30
2-26
2-50
5-28
2-19

2-26

. 2-19

2-19

2-19

5-46
5-61
5-51

5-52

5-52

5-43
5-60
2-21

2-6
3-24

2-10

Page intentionally left blank

Page intentiohally left blan'k

ix

SYNOPSIS

Subtree replacemént systems form a broad class of tree-
manipulating systems including many of the special cases from logic,
linguistics, and automata theory. Subtree replacement systems with
_the Church—Rosser property are appropriate for evaluation or trans-
lation processes. Iﬁ a Church-Rosser system, the final result of
operating on a tree (then on the resulting tree, and so on, until no
further changes are possible) does not depend on which of several
ppssible operations is performed at each stage. This singlevaluedness

""values' for trees unam-

permits the system to specify ''meanings" or
biguously. Suéh flexibility has both theoretical and practical advantages.

Chaptef 1 motivates the mathematical study of subtree replace-v
ment systems and outlines the main results. We also review common
mathematical terminology to be used throughout the rest of this thesis.

_Chépter 2 presenfs the abstract theory of general replacement
systems (§3) and subtree replacement systems (§5). The preliminary
results in §3 apply to any situation where changes in the data afe made
in discrete steps, whether 6r not the data are trees. Theorem 3.5 and
Lemma 3.6 in this section were discovered by Hindley [21] and inde-
pendently by the author. The other results and the diagrammatic proof
technique are new. |

Slight extensions of Brainerd's arithmetic of trees [6] are
described in §4. Using this _fo;;ma'l.computational technique in §5, we
establish sufficient pond‘itioné for the Church-Rosser property in sub-.

tree replacement systems. The abstract conditions are fairly easy to

verify for several important subtree replacement systems that bear
little resemblance to each other at the level of concrete detail. The
concepts and results in §5 are new. It is sometimes rather tedious to
verify our sufficient conditioﬁs. In order to avoid burdensome repe-
tition in these verifications, wé presient part of the argument abstractly
in §6. | | |

Chaptér 3 applies the theory to McCarthy's calculus for recursive
definitions [34], ‘extended and disambiguated by the addition of an
explicit choice between cail—by—vaiue and éall—by;name. In §7 we
prove a singlevaluedneés result tﬁat had not been proven before witﬁbut
severe restrictions on the use of call-by-name [3]>[31] . Recursive defi-
nitions may a_lso be'interpreted és equations to be solved: an assign-
ment of funétions to the function v.arial;les in a definition may or may
not force all its equations to be true statements. In §8 we show that
the functions spec.ified by the extendeh McCarthy calculus for any |
recursive definition do solve the definition, and we show how this:
solution is related to any other solutions that may exist. r‘I‘his result
verifies a conjectux:é of Morris [37]. When restricted to definitions
that call ali their param:eters by valﬁe, our result is c'losely related
to the "first recursion theorem" [26]: any partial recursive functional
has a unique rhinimal fixéd poinf that is partial recursive. The proofs
of the results 1n §7 and §18 aré not based on the proofs for the 'previ-
ously known special cases.

Chapter 4 applies the tﬁeory t6 the full lambda éalculus, including
eta and delta rules.as definéd by Cuirry‘ _arjld Feys [14]. We define the

calculus in §9, using a novel'approach' to alphabetic equivalence that

xi

permits a higher degree of mathematical rigor than does the con-
ventional approach. In §10 we prove the classical Church-Rosser
Theorem of [14] with a divide-and-conquer strategy. The lambda
calculus is analyzed as a hierarchy of simpler systems. The main
theorem from §5 implies that the parts are Church-Rosser. We then
apply results from §3 to the effect that appropriately connected
Church-Rosser parts form Church-Rosser wholes. The hierarchy
method was discovered by Hindley [21] and independently by the
author [41]. Mitschke [36] independently used a construction similar
to ours for the proof that the part formed by beta reduction is Church-
Rosser. Mitschke's proof that the construétion is correct differs sub-
stantially from ours. Neither proof ﬁas much in common with tra-
ditional approaches to beta reduction [13][14][21][22][48].

Chapter 5 applies the theory of subtree replacement systems to
finite tree transducers and describes the use of these transducers in
compiler design. In §11 we review some relevant topics in formal
language theory. In §12 §ve sketch a model for syntax-directed compi-
lation as a five-stage process. One of the five stages is a iree trans-
ducer: an abstract device which maps trees to trees. The model is a
natural combination of two traditidns in computer science: formal
language theory (including the théory of tree transducers) and more
concrete discussions of compiler design problems [7][43][54]. The
basic theory of tree transducers is deveioped in §13. This section is
mostly exegesis on the work of Rounds [45][46] and Thatcher [51][52],
with emphasis on the significance of this work for compiler construction.

In §14 we consider the question of whether the composition of two maps,

xii

both definable by a certain type of transducer, is also definable by a
transducer of the same type. We elaborate slightly upon theorems of
Rounds [46] and Thatcher [52] to the effect that certain classes of
transductions are indeed closed under composition. (A trjansduction is
the map defined by a transducer.) We also show that there is a pair of
"linear' and 'partial deterministic' transductions whose cbmposition
is not computable by any finite tree transducer, deterministic or non-
deterministic, that reads input trees from the top dowh. This result
is new.

Chapter 6 summarizes our conclusions and indicates some
possible directions for further research on the theory and appliéations

of subtree replacement systems.

CHAPTER 1
INTRODUCTION

This chapter begins with a preliminary intuitive description of
the main results of this thesis and their motivation. It concludes with
a survey of the basic mathematical notation to be used in the following,

more technical chapters.

1. Motivation and Overview

This section reviews one of the several ways to use trees in
representing the structures of expressions in natural or artificial
languages. We then consider methods for specifying the meanings of
expressions in terms of rules for manipulating their tree structures.
We introduce ”Subtree replaéement systems'' as a general class of
such tree-manipulating systems. The abstract study of subtree
replacement systems leads to results useful in understanding many
of the particular systems from logic, linguistics, and automata theory.

The main results of this thesis are outlined here on an intuitive level.

We begin with a type of structure familiar from mathematics

and logic. Consider the arithmetic expression
(47X 23 - 981) X 6!

built up from numerals that denote numbers and operators that denote
operations on numbers. A sequence of operands is associated with

each occurrence of an operator: the operands are subexpressions

1-2

denoting the numbers on which the corresponding operation is to be
performed. The first occurrence of X has the operands 47 and:23.
The only occurrence of - has the operands 47 X 23 and 981.

The structure of operators and operands in (47 X 23 - 981) X 6 !
is displayed in the tree at the top of Figure 1-1. For each occurrence
of an operator there is a node labelled by that operator. If a node m
is labelled by an operator «, then m has a son for each operand of
the corresponding occurrence of a. The subtree rooted at each son
of m displays the structure of the operand it represents. We call such

trees operator-operand structures. Let 47 be the tree with one node

labelled by the numeral 47 and no other nodes. LetX(47,23) be the
tree consisting of a root labelled X and then two sons of the root,

with the first son labelled 47 and the second one labelled 23. (Thus

we are naming trees by means of strings in a vocabulary consisting of
the possible labels plus grouping symbols. The same idea with differ-
ent punctuation is used in labelled ‘bracket notation and in Cambridge
Polish notation.) The tree at the top of Figure 1-1 can be described as

The pair of trees

X(47,23)— 1081

represents the fact that 47 X 23 = 1081. The familiar algorithms for
computing with decimal numerals generate an infinite set R of pairs
of trees, including

T(6) — 720

-(1081,981) —— 100

X (100, 720) —— 72000.

1-3

72000

Figure 1-1. One of three ways to derive 72000 from

(47 X 23 - 981) X 6! in bottom-up arithmetic.

1-4

As the use of an arrow rather than brackets and commas suggests, we
will think of pairs of trees as ''rules' for replacing parts of trees by
other trees. To apply a rule to a tree we must do two things: match
the left half of the rule against a subtree of the tree and then replace
that subtree by the right half of the rule.

When a tree R can become another tree S by the application of a
rule to a subtree of R, we write R => S and pronounce this as "R can
become S." In Figure 1-1 we display one of the ways to derive the tree
72000 from the operator-operand structure of (47 X 23 - 981) X 6 ! .

The evaluation process is a nondeterministic algorithm: an

algorithm that includes instructions to choose among several‘.alterna-
tives as well as the more familiar assignment and branchihg
instr/uctions. To evaluate a tree R we must apply a rule to R, then
apply a rule to the resulting tree, and so on, until eventually we arrive
at a tree T to which no rules can be applied. We say that T is a normal
form for R. At any step in the process there may be several rules that
could be applied. In this example the nondeterminism has no net effect:
each tree R has just one normal form T, and any sequence of appli-
cations of rﬁles beginning at R will lead to T. Our system for evalu-
ating trees by means of rules from arithmetic has tWo desirable

properties:

(a) Every R has at most one normal form T.

(b) Every sequence RO’ Rl’ RZ’ ... such that Ri == Ri+1 for each i

is a finite sequence.

1-5

Property (a) permits the set of rules to specify normal forms
unambiguously without the additional complication of a sequencing
mechanism that computes which rule to apply next and where to apply
it, at each stage of the evaluation process. If our system had
property (a) but not property (b), then we could still speak of "'the
normal form, if any, of R" but we would not have complete freedom
in choosing a sequencing mechanism. An infelicitous choice might
omit some normal forms by defining an infinite sequence
R = R0 = R1 = ... even when R does have a normal form.

The evaluation of arithmetic expressions is one example of a

system for evaluating trees by applying rules. In general, a subtree

replacement system is specified by

(1) a vocabulary V with which to label nodes of trees
(2) a set IF of trees with laioels in'V
(3) a set R of rules (pairs of trees)

(4) the binary relation = on IF' defined by the application of rules to

trees at nodes.

Application of rules is defined just as in our example. First,
match the left half of a rule against the subtree of R at some node.
Second, replace that subtree by the right half of the rule, so that R
becomes a new tree S. We write R = S. We remark that this
matching and replacement process is similar to the way a grammar's
rules are applied to strings in formal language theory.

Suppose a subtree repla;:ement system has property (a): normal

forms are unique. The system defines an unambiguous notion of

1-6

semantics for trees: the "'meaning' or "value' of a tree is its unique
normal form, if any. Normal forms are defined by a simple mathe-
matical system, and knowledge of their properties will presumably be
helpful in choosing an efficient sequencing mechanism to actually find
them. If property (b) holds too, then the choice of sequencing mecha-
nism is free from concern about infinite computations. If property (b)
does not hold, then we must try to choose a sequencing mechanism
that finds a normal form for every tree that has one, but at least we

are assured that the normal forms we do find are correct.

Subtree replacement systems are defined formally in! Chapter 2,
where sufficient conditions for uniqueness of normal forms are
established. (Property (b), the finiteness of all sequences of appli-
cations of rules, will not be studied in any detail in this thesis.) The
Main Theorem (5.6) in Chapter 2 asserts that every ''unequivocal' and
"closed" subtree replacement system is ''Church-Rosser.' It is not
very difficult to establish that several important systems are unequivo-
cal and closed; it is quite trivial to prove that normal forms are unique
in Church-Rosser systems. Formal defihitions for the words
"unequivocal" and "closed" and "Church-Rosser' are in Chapfer 2,

but the intuitive content of these .notions can be sketched here.

We begin with the Church-Rosser property. Suppose that S and S'
are trees that can both be derived from a tree R by applying rules. Is
there a tree T that can be derived from both S and S' by applying rules?

A Church-Rosser system is one where the answer to this question is

always affirmative. If one sequence of applications of rules leads from

R to S and another leads from R to S’, then both sequences can be

1-7

extended so as to meet at a common tree T. If S # S’ then both trees
can be proeessed further and neither can be a normal form for R.
Therefore normal forms are uﬁique in Church-Rosser systems. To
exploit this observation we need sufficient conditions for the Church-
Rosser property that are easier to verify than the prOperfy itself.
We therefore consider "unequivocal" and "closed" systems.

A subtree replacement system is unequivocal if the set of rules
is a partial function on trees: no two rules have the same left half.
Our example from arithmetic is such a system. If ¢ —> ¢ is a rule
then ¢ has the form o(X) or ofx,y), where o is an arithmetic operator
while x and y are numerals. .The right half ¢ must be of the form Z,
where z is the numeral representing the result of applying the oper-
ation denoted by @ to the numbers denoted by x or x and y. Because
the operations are singlevalued, z is determined by « together with
x or x and y. Therefore ¢ is determined by ¢, and there could not be
another rule ¢ — ¢¥' with ¢' # ¢.

The evaluation process in an unequivocal system' is still non-
deterministic. At most one rule is applicable at any node in a tree
because there is at most one rule whose left half is the subtree rooted
at that node, but there may be several nodes where rules could be

applied. The rules

(i) X(47,23) — 1081
and
(ii) T(6) — 720

are both applicable to the tree at the top of Figure 1-1. Applying (i)

leads to the tree

1-8

(1) X (<(1081, 981), T (6)).

(2) X(=(X (47, 23), 981), 720).

By applying (ii) to (1) and (i) to (2), we can derive.

(3) X (=(1081, 981), 720),

so the difference between (1) and (2) is only transitory. Our system is
indeed Church-Rossei', and in part because it is unequivocal, but there
is a subtler phenomenon involved as well: applying (i) at one place in
a tree doés not interfere with the attempt to apply (ii) somewhere else.
Having derived S from R and S’ from R, "we know just which rules we
wish to use in deriving some common tree T from both S and S'; we
also know that w.e can indeed apply these rules.

Now we must complicéte our example in order to show how rules
might interfere with each other, but not seriously enough to prevent the

system from being Church-Rosser. We add conditional expressions to

our arithmetic. In any expression of the form

if P then A else B

A T A~

we say that the conditional operator C has the operénds P, A, B. We

introduce true, false, and predicate symbols for building up test
expressions P. To evaluate conditional expressions we use a set of

rules that includes
(iii) C(true, T(6),X(47,23) — T(6)
and

(iv) C(true, 720,X(47, 23)) — 720.

1-9

If (iii) is applicable at a node n in a tree R, so that the subtree
of R at n is C(true, T(6),X(47,23)), then (ii) is applicable at the second
son of n. Call this node p. Applying (iii) at n would destroy the oppor-
tunity to apply (ii) at p; applying (ii) at p would destroy the opportunity
to apply (iii) at n. No permanent harm is done, however. Suppose we
apply (iii) at n, so that R is replaced by a tree S that is like R except
that the subtree of S at n is ! (6). Applying (ii) at n in S, we get a tree
T that is like R except that the subtree of T at n is 720. On the other
hand, suppose we apply (ii) at p, so that R is replaced by a tree S’ that
is like R excepf that the subtree of S' at p is 720. Then the subtree of
S’ at n is C(true, 720,X(47,23)), so we may apply (iv) at n to derive a
tree T’ that is like R except that the subtree of T' at n is 720. But
this means that T = T'.

Tﬁe reason that (ii) and (iii) can interfere at all is that (ii) is
applicable at the second son of the root in (iii) and hence at the second
son of any node in a tree where (iii) is applicable. The reason that
such interference does not destroy the Church-Rosser prope’rty is that
another rule (iv) can compensate for an application of (ii) that preempts
an application of (iii): applying (ii) and then (iv) has the same effect as
applying (iii) and then (ii). The rule (iv) is formed from (iii) by -
applying (ii) at the second son of the root in E(@,T(E),)? (47, 23)) and
at the corresponding node (it happens to be the root)i where ! (6)
reappears in ! (6) on the right half of (iii). | |

In general we are concerned about interference between rules

whenever a little rule ¢ — ¢ is applicable inside the left half %0 of

a big rule o wo. Applying ¢ — ¢ in %0 leads to a tree Py If

1-10

we can apply ¢ — ¢ at appropriate places in ¢/0 to form a tree xpl
such that 0 — d/l is a rule of the system, then we say the system is
closed. Figure 1-2 illustrates this idea under the assumption that
o — is applicablé at n in ¢0 and «t p and q in ;.

In our example with (ii), (iii), and (iv), the appropriate nodes.in
xpo were obvious, but for the general theory we must define just what
kind of assignmeﬁt of "corresponding’ nodes in ¢, to each node in ¢,

will be allowed. In Chapter 2 we define a residue map for g — (//0

to be any assignment of sets of nodes in wo to nodes in @ such that
certain conditions hold. The most important of these is_thét, whenever
n is a node in ¢, and q is one of the "residues'' assigned to n in goo;
then the subtree of ¢/0 at q is a copy of the subtree of ?0 at n. Any
little rule ¢ — ¢ applicable at n in ?q will then be applicable at each
- residue of n in ¢/O. By applying ¢ — ¢ at n in ?q and at each resi-
due of n in (,l/o, we can form a pair o_f trees ¢; — ¢11. The crucial
property of a closed subtree replacerﬁent system is that <p1'——> x//1 isa
rule of the syétem. In that case the_ interference between ¢ ——+. ¢ and
oy — d/O can be shown to be harmless. As we remarked earlier, the
Main Theorem in Chai)tér 2 asserts that every unequivocal closed sub-

tree replacement system is Church-Rosser.

The Main Theorem and some other abstract results from Chapter 2
are applied to various situations in the succeeding chapters. The first
application is to recursive definitions.

A function may be defined by an equation of the form

f(x) :=...

1

11

Figure 1-2. The rule ¢ —>y is applied at n in ¢o and at

p and q in 1[0 to form another rule ¢, —> ‘#l.

1-12

where the ... is built up from x .and constants and previously defined

functions. This is an explicit definition and its meaning is clear. It is

not so clear how the factorial is defined by.

(1) f(x) := if x=0 then 1 elge x* f(x-1),

ST

»

since the name of the function we are defining reappears on‘the rlght

In general we could write a system of equations

fl(X) = ey

i

fz(x) = e,

that looks very much like an explicit definition except that some of the
fl, f2’ ... may reappear (or recur) in some of the €1s€gs 00 - Perhaps
f1 does not itself recur in e but if fl'is in e, and f2 is in é-l then the

definition is still not explicit and still in need of further explahation.

Such systems of eqﬁations are called recursive definitioné,

N\

McCarthy [34, p. 42]. explained such definitions in terms of a
nondeterministic algorithm for calculating values of recursively defined
functions. For example, one could evaluate conditionals, multiply

numbers, appeal to (1), and so on to compute f(1) as follows:

f(1) => if 1 =0 then 1 else 1 X f(1-1)

=> if falge then 1 elgse-1X f(1-1)

=1 X f(1-1)
=> 1 X £(0)
=>1X(if 0=0 then 1 else 1 X £(0-1))

=> 1 X (if true then 1 else 1 X f(0-1))

= 1X1

= 1.

1-13

According to this algorithmic explanation, the function defined by (1) is
the se.t of all ordered pairs (&,7n) of numbers such that f(£) can be
evaluated to n by some sequence of applications of the formal rules
specified by (1) and by the computations of the given functions. In
general (although not in this particular example) this is only a partial
function: for some values of § there méy be no formal computation for
£(£) that terminates at a numeral.

Recursive definitions may also be explained semantically by

considering them as implicit definitions. Just as

2 Y2+Y-6=0

implicitly de»ﬁne‘_s the set of nurhbers {2, —'3}, any one of which will make
(2) a true statement if sﬁbstituted for Y, the recursive definition (1)
implicitly defines a set of partial functions, any one of which will make
(1) a true statement (for all relevant values of x). In this example
there is just one solution: the factorial function {(¢, n)| gt = n}.

In \Chapter 3 we extend the McCarthy calculus by allowing a choice
between two classes of variables for the x's in definitions like (1). The
chéice will be the same as the choice between call-by-value and call-
by;namé in ALGOL 60 [38, §4;7.3] . McCarthy's algorithmic expla-
natioﬁ is formalized by subtree replacement systems and it is shown
that recursive definitions specify singlevalued partial functions despite
fhe nondeterminism of the evaluation algorithm. (As with any nondetermi-
nis;cic alwgo'rithm’,' -it is still possible that one attempt to compute f(&§) will
succééd Whﬂe‘ another goes into an infinite computation.)

A. recursive definition defines one partial function under the

él'g‘lor:i‘thmic éxplanatio-n" and a set of partial functions that solve its

equations under the semantic explanation. Are there any solutions? |
Is the algorithmically defined function one of the solutions? Which
one? Morris [37, Chap. 3, Thm. 2] conjectured that the algorithm
specifies the minimal solution: the partial function which solves the
equations and is extended by every other solution. (Strictly speaking,
we must introduce a new datum o and work with total functions, but
the preceding approximation to the conjecture is accurate enough for
this preliminary sketch.) In Chapter 3 we verify this conjecture.
When restricted to definitions that call all their parameters by value,
our Validity Theorem (8.4) is closely related to the "first Irecursidn
theorem" [26, §66, Thm. 66]: any partial recursive functional F has
a unique minimal fixed point defined by formal calculations using the

set of equations that specifies F.

Chapter 4 applies the theory to the full lambda calculus, including
eta and delta rules as defined by Curry and Feys [14, Chap. 3]. We
add a new operator symbol v to represent application of one lambda
expression to another, so that a lambda expression such as Ax.x(yz)
corresponds to the tree M(x, v(x,¥(y,2))), wherein the root is labelledv
by N\, the first son of the root is labelled by x, the second son of the
root is labelled by v, and so on. The beta, eta, and delta rules.are
expressed as rules in a' subtree replacement system. |

The classical Church-Rosser theorem [14, Chap. 4] asserts that
the lambda calculus is Church-Rosser modulo a certain equivalence
relation: if S and S’ can both be derived from a lambda; expression R,

then there are equivalent lambda expressions T and T' such that T can

be derived from S and T’ can be derived from S'. We must be content

1-15

with T # T’ in many examples. The equivalence relation involved is
essentially the same as the relation between foﬂ cos(xty) dy and
f;r cos(x+z) dz: equivalent expressions are the same except for the
arbitrary names of dummy variabl.es. This relation is usually defined
by saying that R is equivalent to S if R can be transformed to S by a
sequence of "'alpha conversions," but this simple definition is quite
awkward in actual use. In Chapter 4 we introduce a new definition that
permits a higher degree of mathematical rigor than the usual one. (In
Appendix B we prove that our equivalence relation is indeed the same
as the one used in [14].) For the sake of simplicity in completing this
introductory sketch, we will ignore the difference between equivalence
and equality of lambda expressions. The actual technical exposition in
Chapter 4 will be extremely careful about this distinction.

The main result of Chapter 4 is a relatively simple proof of the
classical Church-Rosser theorem using a divide-and-conquer strategy.
We consider the whole lambda calculus as a "'union'' of two parts: one
defined by beta rules and the other by eta and delta rules. The beta part
is divided into two stages by new sets of rules called ''gamma'" and
"sigma." Gamma rules detect subtrees of the form v(\(x,S),R), which
correspond to '"beta redexes' (Ax.S)R in ordinary notation, to which
beta rules might be applied. Rather than replace such a subtree by the
result [R/x]S of applying a beta rule, a gamma rule replaces
7(N(x, S),R) by o(R,X,S), where ¢ is a new symbol introduced to mark
places where beta substitutions have been "requested." The sigma
rules "perform" the substitutions that gamma rules request, deriving
[R/x]S from o(R,X,S). Using results from Chapter 2 and various ele-

mentary properties of the lambda calculus, we show that gamma and

1-16

sigma rules define Church-Rosser subtree replacement systems and
that these systems can interact to simulate beta rules. The net result
is that the b‘eta part of the lambda calculus is Church-Rosser. By a
direct application of the fact that unequivocal closed subtree replace-
ment systems are Church-Rosser, we also show that the eta-delta
part is Church-Rosser. To complete the proof we then apply results
from Chapter 2 to the effect that appropriately connected Church-

Rosser parts form Church-Rosser wholes.

Chapter 5 applies the theory of subtree replacemént systems to
finite tree transducers and descﬂbes the use of these transducers in
compiler design. We analyze syntax—directed compilation as a sequence
of fivé processes (which would be impléfnented as coroutines in

practice):

(1)» Lexical analysis transduces the source program (a string of
characters) to a string of termipal symbols from a context-
free grammar. .

(2) Context-free garsihg assigns a '"'ranked parse tree' to the string
of terminal symbols; this tree displays the way the grammar
generates the string.

(3) Lexical filtration verifies that the character strings in the

program corresponding to terminal symbols in the ranked parse
tree do not violate restrictions such as the ALGOL 60 prohibition
of transfers into a block.

(4) Semantic analysis transduces the _ranked'parse tree, whose nodes

are labelled by context-free productioris, to a "coding tree'' whose

nodes are labelled by code-building operations: operations on
machine code that can readily be programmed in assembly
language or other languages appropriate for compiler writing.

(5) Code generation performs the operations specified by the coding

tree.

There are helpful mathematical models for the difficult aspects
of lexical analysis, context-free parsing, and semantic analysis.
These three processes provide the lexical filter and the code generator
with such explicitly structured data that lexical filtration and code
generation are rather straightforward.

Finite tree transducers provide a model for semantic analysis
and are discussed in detail. These devices are generalizations of the
well-known finite transducers (often called ''generalized sequential
machines with final states' or ''deterministic a-transducers") which
provide a model for lexical analysis. To see how the two classes of
abstract device are related, we consider string transducers as
restricted Turing machines. A finite string transducer has a single
tape on which the input is originally written. The tape head begins at
the left end of the input and can move only to the right. Whenever the
head reads an input symbol, it erases that symbol and Writes out a
short string of output symbols (creating some new tape squares if
necessary) before changing control state and moving on to the next in-

put symbol. In a top-down finite tree transducer the tape head begins

at the root and moves downward toward the leaves. (Bottom-up trans-

ducers are also considered in Chapter 5 but will be ignored in this

1-18

preliminary sketch.) As with finite string transducers, there are just

finitely many possible control states associated with the tape head, and
only finitely many responses to each (state, input symbol) combination
are possible.

Whenever the tape head reads an input symbol, it erases that
symbol and writes out a small portion of the output tree before changing
state and moving down to the next input symbol. Here there is a compli-
cation unknown in the case of string transducers: if the current input
symbol is on a node with more than one son, then there are more than
one "next' input symbols. In order to use one-way tape motion without
arbitrarily discarding all but one son; we allow the tape head to M
into several independent heads, each with its own éontrol state, so that
for each "next" input symbol there is a tape head that moves down to it.
Although such behavior is extremely aWkward to formalize in the usual
style of automata theory (as in [24]),. it can be obtained easily from a
subtree replacement system that uses additional nodes labelled by stafes
to record the positions and states of tape heads. A finite tree tfansducer
is Specified by a subtree replacement system under restrictions appro-
priate for expressing the way tape heads are to mo've.

Several important properties of finite tree transducers are con-

sidered in Chapter 5. A transducer is partial deterministic if there is

at most one response to each (state, input symbol) combination and is
total if there is at least one response to each such combination. Trans-

ducers that are both partial deterministic and total are deterministic.

Since the tape heads are not synchronized, tree transduction is still a

nondeterministic process with ''deterministic" transducers, but we show

1-19

that the nondeterminism is harmless. Specifically, partial determinism
implies that the subtree replacement system is Church-Rosser, so that
the output tree is determined by the input tree, while totality implies
that there is at least one output for every input.

A transducer is linear if it never makes more than one copy of a
portion of the input: whenever a tape head moves down to a son of a
node, it does not split into more than one head for that son. Finite
string transducers are trivially linear, and theorems on string trans-
ducers may require the addition of linearity to the hypothesis before
they can be extended to tree transducers.

The transduction computed by a transducer is the correspondence

it establishes between input and output trees. Chapter 5 concludes with
a study of the question of whether the composition of two transductions
of a certain type is also a transduction of that type. After discussing
the practical significance df constructive proofs that classes of trans-
ductions are closed under composition, we construct the Eroduct
transducer l'I2 A l'I1 for any top-down finite tree transducers H1 and I,
such that the output vocabulary of Hl is the input vocabulary of II2. :
Elaborating slightly upon theorems of Rounds [46] and Thatcher [52],
we note that partial determinism, totality, and linearity are inherited
A TI

by II if possessed by II1 and H2, and that

2 1

(Transduction computed by I, A Hl) =

(Transduction computed by l'[z) o (Transduction computed by Hl)

if I 1 and II2 are deterministic. Finally, we show that there is a pair

1-20

of linear partial deterministic transductions whose composition is not
computable by any top-down finite tree transducer, deterministic or

nondeterministic.

2. Terminology

Standard mathematical notatione are used as mu:ch ae pessible.
We sometimes abbreviate ''for all x in IN" by (Vxe IN), ''there is a
y less than z such that" by (3y < z), and so on. The abbreviaﬁon EI'
is used for "there is exactly one' or "there is a unique"; this s&mbol
is less widely known than V and 3.

For any sets Xand Y, X XY is the set of a11 ordered pa1rs (x v

such that xe X and ye Y. A map or functlon F:X—7Y is any sub-

set of X XY such that, for each xe X, there is at most one yeY
with (x,y)€ F. The domain Dom F is {xe X | @y e Mz, y) € F)}. 4
' Thus I

Dom F ={x¢ X| (Blye x,yye F)}

also. If Dom F = X then F is total; otherwise F is partial. For each
xe Dom F, the unique y € Y such that (x,y) € F is denoted F(x) or
Fx, depending on which is more readable in each context.

A total function F : X — Y is injective iff
(Vx, x' e X)(Fx = Fx' implies x = x')

and is surjective iff

(Vye Y)@X e X}Fx =y).

1-21

A map that is both injective and surjective is bijective. A bijective
function is also said to be a bijection,

Given functions F : X—> Y and G: Y — Z, we set
GoF={(x2)| @y e V(x,y) € F & (y.2) ¢ G)},
sothat GeF : X — Z and
Dom(G o F) ={x € Dom F | Fx € Dom G}.
The same ebquation may be written rﬁore succinctly as
Dom (G ¢ F) = F~!(Dom G)
where, for any subset Bof Y,
F }B) = {x € Dom F | Fx € B}.
For any y e Y we also write'
F—l(y) ={x € Dom F|Fx =y}.
Any set => of ordered pairs is a relation. We write « =y

rather than (x,y) € =>, but a symbol like => is stil] belng used as

the name of a set. Equations like

(=)=
are well-formed and mean exactly what they say about sets of ordered
pairs. Round brackets are used liberally to make such equations

readable. When (=) C B X B we say that = is a relation on IB.

The composite of relations —T‘> and 2@ is defined by

(= 5> = {({x,2) | ENx=>y&y=> z) }.

1-22

If F and G are functions then they are also relations and we have
(FG) =G F.

This reversal is unfortunate but unavoidable so long as we apply
functions from the left (as is standard) rather than ffom the right ,
(as would be more elegant). The best way to have composition
operations for both functions and relations is to retain the raised -
circle o for functional composition and pronounce it as "after."
Juxtaposition with no. o always means relational composition rather
than functional composition.

'fhe set {0, 1,2, ...} of nonnegative integers is denoted IN. The
letters i, j, k,J,K are often used as variables ranging over IN.. |

The set of all subsets of a set X is denoted 2X., The set‘of all

subsets of V# is then typed as ZV#, but this notation is standard.

CHAPTER 2

THEORY OF GENERAL AND SUBTREE
REPLACEMENT SYSTEMS

This chapter presents the abstract theory of general replacement
systems (§3) and subtree replacement systems (§5). The preliminary
results in §3 apply to any situation where changes in the data are
made in discrete steps, whether or not the data are trees. We define
the Church-Rosser property formally and establish conditions under
which the Church-Rosser property for a complex system can be
derived from properties of its parts and their interconnections.

Slight extensions of Brainerd's arithmetic of trees [6, §2] are
described in §4. We have added many mnemonics and have extended
some of the operations from single nodes to certain sets of nodes.
Using this formal computational technique in §5, we establ‘ish sufficient
conditions for the Church-Rosser property in subtree replécement
systems. Our main theorem asserts that every ”unequivoc;dl” and
"closed" subtree replacement system is Church-Rosser. In later
chapters it will be fairly easy but sometimes rather tedious tolverify
that several important systems are unequivocal and closed. In order
to avoid burdensome repetition in these verifications, we present part

of the argument abstractly in §6.

3. General Replacement Systems

Let IB be a set of "objects'' and let there be some means of

"replacing'' one object by another. We write R == S and pronounce

2-2

this as "R can become S." For example, IB might be the set of all
possible arithmetic expressions, and R => S might mean that the
expression R can be transformed to the expression S by performing
one of the innermost indicated operations. In this and in many other
examples the replacement relation = is not singlevalued, yet the
net result of a complete computation should sometimes depend only
on the starting configuration, not the specific path chosen. The
expression (14 + 32) X (93 + 8) can be reduced to a single numeral bj;r
two additions and then one multiplication. It makes no difference _
which addition is performed first, since there are no side effects or
round-off errors. |

If RO can become Rl’ R1 _cari become RZ’ ey RK—l can becorﬁe,
Ry, let us say that R "can evolve" to Ry More pr'ecise'ly', the evo-
lution relation ——*;——> is the refiexive transitive elosure of the becoming
relation =>. When RO can ev'oive to RK and RK cannot become any-
thing new, then Ry is to be considered the "value" or "meaning" of R,
To avoid unwanted connotatiohe, we use the term ''normal form" o

instead. Systems in which normal forms are unique are appropriate

for evaluation or translation processes.

(3.1) Definition. Let IB be any set, =3 be any binary relatio_n on IB.

Then fB = (B, =) is a general replacement system (GRS). A member

T of IB is irreplaceable iff

(1) (VS eB)(T=>S implies T =8).

Let R, T € B. Then T is a normal form for R iff

: *
(2) R= T & T is irreplaceable

where = is the reflexive transitive closure of = .

2-3

When are normal forms unique? The condition that — itself be a
function is much too restrictive. Why not beg the question by adding a
sequencing mechanism M to a GRS? The méchanism M will look at R
and the various S, T,. .. that R can become, then determine which one
R does become, perhaps after consulting some sort of record of past
steps. Suppose one has a mechanism T and then is given
a very different and complex mechanism M’ that purports to find the same
normal forms more cheaply. Whether we try to verify this claim by a
formal proof or by testing it on many "well-chosen" examples, it will
help if there is an invariant core of knowledge about the normal forms.
More precisely, consider three-ways that #f’ might err in seeking the

normal form defined by M for an object R:

(a) #t' finds a nornial form S’ for R although M finds no normal form

for R.

(b) ' finds a normal form S’ for R although M finds a normal form

S with S # S'.
(c) M' finds no normal form for R although # finds a normal form S.

Error (a) is more properly considered an improvement: ' gives out-
put where the original mechanism would enter an endless computation.
Error (b) cannot occur if normal forms are unique in the underlying
GRS. Uniqueness of normal forms provides no assurance that error (c)
does not occur, but the insights gained while proving uniqueness should
assist in the ahalysis of this problem. We therefore seek abstract suf-
ficient conditions for uniqueness of normal forms that do not depend on

how the system is implemented by a sequencing mechanism.

2-4

(3.2) Definition. A GRS 8 =(IB, =) is Church-Rosser iff

(VR,S,S' ¢ B)[(R—=>S & R—=> S') implies

(ITeBNS2 T & ' 2 T].

Normal forms are unique in Church-Rosser systems. The name
comes from the work of Church and Rosser [13] on this property for a
particular GRS. There are several easy but useful theorems telling
how to infer the Church-Rosser property for a complex system from

various properties of its parts.

(3.3) Definition. Let fel =(B, -—i——->) and ‘382 = (IB, =2=>) bé GRSs.

Then :Bl commutes with *Kz iff

* ' * o
(VR,S,,8, € B) [(R=~1—> S, & R=2> SZ)' implies

* * ,
(ITEB)(S; =T & 52——T>T)].

It is convenient to diagram the Church-Rosser property and com-
mutativity, as in Figure 2-1. The variables in the universal quantifier
(v R,S,S’ € B) are represented by filled circles and the variable in the‘
existential quantifier (3 T € IB) is represented by an open circle. The

A

pairs in the relation = are represented by arrows joining some of the

circles.

In the right half of Figure 2-1 we add labels to the arrows so as
to indicate which of several relations is being asserted. In general, a
diagram asserts that, whenever given objects stand in the relations
indicated' by the filled circles and the arrows joining them, then further
objects indicated by the open circles exist, so as to make the relations

indicated by the other arrows true also. As in the '"diagram-chasing"

2-5

Figure 2-.1. Diagrams for the Church-Rosser property (a) and

commutativity (b).

2-6

argumehts in algebraic topology, manipulations of this two-dimensional
symbolism are sometimes clearer than the corresponding manipulations

of the usual one~dimensional symbolism of mathematics.

(3.4) Lemma. Let 8 =(IB, =>) be a GRS. If there exists a binary

relation => on IB such that

1
(n (=) = (=)
(2) (VR,S,S' e B)[(R== S & R— §') implies

(I TeBAS=T & S' = T)],

then B is Church-Rosser.

(3.5) Commutative Union Theorem. Let {,‘Ba| ac A} be'a family of

Church-Rosser GRSs with $_ = (B, =) for each a € A, Let 3,
commute with B b for all a,b € A with a # b.. Then the union

B = (IB, =) is Church-Rosser, where

(B, =) =(B, U —

).
acA 2
. o U *
Proof: We will use Lemma 3.4. Let == be =, so that (3.4.1)

_ acA
is trivial. To prove (3.4.2), we assume (R ? S &R 1__> S’) and show

that some T € IB has (S T} T &S ? T). For some a,b € A we
* % o , . .
have R =;—-> S and R =:5=> S’. By the Church-Rosser property if‘a =b
: * *
or by commutativity if a # b, some T € IB has (S T} T & S ? T).

Therefore (S T> T & S’ _T—> T), as wanted. ®

The usefulness of this theorem is enhanced by the following suf-
ficient condition for commutativity, which will be proven by diagram-

matic reasoning.

(3.6) Commutativity Lemma. Let 'Bl =(B, ?) and :'Bz =(IB, =2;)

be GRSs. Let % be the reflexive closure of T> If
(1) (VR, Sl’ 82 e B)[(R - S1 & R - SZ) implies

b3 =
(ETEB)(Sl?T&SZT}T)],
then :‘El commutes with ‘,32)

Proof: We assume (1) and prove commutativity by two inductions.

For each K €]N we prove that
(2) . (VR,S5,,85 € B)[(R - S; & R? Sy) implies
* =
(ITeBNS; > T & S, = ™].

When K = 0 we let T bé Sl' To pass from K to K+1, suppose (2) holds
+1
for K and that R, 8182 € IB have R ? S1 and R I—%—% 82 . Let PeB

with R I;@ P ?—3> Sz. This situation is diagrammed by the filled

circles and arrows between them at the top of Figure 2-2. We call

this the working diagram. The procedure for adding to this diagram
(with the help of whatever we are assuming or have already prbven)
will now be explaineli.

i‘he induction hypd‘fhésis is expressed as diagram [g in
Figure 2_—2. (For obvious typographical reasons; we will write (Da)
rather than ‘ .) Suppose (Da) is cut on a mimeograph stencil and ’1aiy
this stencil over 'jche working diagrgm, so that each filled circle of (Da)
is over a circle in the working diagfam and each arrow joining filled
circles in (Da) is over a similarly labelled and directed arrow in the

working diagram. (The circles R, Sl’ P in the waking diagram are

used.) Now print through the stencil, forming the circle Q and the

Figure 2-2, Adding to a diagram with the help of two stencils,

2-8

2-9

arrows from S1 to Q and from P to Q. This step corresponds to the
valid inference
R=>S. & R =>P & P=>§
1 1 2 2° 2

, K
(Vr,s;,p € B) [(r ? s; & ? p) implies

BQREBNs; =>Q & p > Q)]

K
R=>S R=PDP P=>S, &
1 1 & 2 & 2" 72

@Q e BN, =>Q & P = Q).

The working diagram now consists of circles R, Sl’ P, Sz, and Q,
together with the arrows joining them.

Next we note that (1) implies the corresponding statement with
R % S, in place of R 5= S,. Indeed, if R = S;, we may simply let T
be 82' We express this trivial extension of (1) as (Db) in Figure 2-2.
Consider (Db) as a stencil and lay it over the working diagram so that
each filled circle in (Db) is over a circle in the working diagram and
each arrow joining filled circles in (Db) is over a simiiarly labelled and
directed arrow in the working diagram. (The circles P, Q, S2 in the
working diagram are used.) Now print through the stencil, forming
the circle T and the arrows from Q to T and from S2 to T. This corre-
sponds to the valid inference

R=S &R£>P&P=>S&
1 1 2 2

@QEBNS, =>Q & P=>Q)

(Vp,a.5y €B)[(p =>q & p 5> 5,) implies

@TEBa=>T &s, 5> T)]

K
> E
(3) RISI&R=>2P&P252&

(3Q, T € B)S; 5>Q&P>Q&Q

<

O lL»e
3
@
)

2-10

In adding open circles and arrows to the working diagram, we

have built up a diagram that says

K . .
(4) (‘v’R,Sl,SZ,PEIB)[(R"‘T?>S1 &R?P?SZ) implies

* * = =
(BQ,TEIB)(SI=—2—>Q?>T&P——I—>Q&82=I>T)].

Telescoping our two inferences, we can construct a deduction in first

order logic of (3) from the premisses (Da), (Db), and

K
R?SI&R?P&P?ST

Any such deduction can be mechanically transformed into a deduction
of (4) from fhe premisses (Da) and (Db) alone. The diagrammatic
manipulations in Figure 2-2 determine é. proof of (4).

A more concise way to expound the diagrammatic proof of (4) is
shown at the top of Figure 2-3. Here we display only the final state of
the working diagram, together with numbers to indicate the order in
which portions of the diagram appeared during the process of choosing
stencils, laying them on the working diagrar‘n, and printing through. -
To verify a diagram like this is to check that it could indeed be built
up from the filled circles and arrows between them élone, using only
available stencils.

In situations where it may not be obvious which stencils were
used or why they were true, we will add commentary in the text. Hér"e,
for example, we can say that (D1) was filled in because of the induction
hypothesis and that then (D2) was filled in because of a trivial extension
o (1). .

| Having deduced (4) from the inducﬁon hypothesis (2), we note

that (4) implies a statement similar to (2) but with K+1 in place of K.

2-11

Figure 2-3. Induction steps in the proof of the

Commutativity Lemma (3.6).

2-12

We have passed from K to K+1, and the inductive proof that ev'ery
K € IN satisfies (2) is complete.

We now prove commutativity by proving that each J € IN satisfies

J * . .
(5) (VR’SI’Sz € B)[(R5>S; &R 5> S,) implies

* *
(3T e B)(S, ——2—>T&sz——1~>T)].

When J = 0 we may let T be SZ' To pass from J to J+1 we verify the
diagram at the bottom of Figure 2-3. First (D3) is filled in by the
induction hypothesis and then'(D4) is filled in by the fact that (2) holds

for all K € IN.B

Theorem 3.5 and Lemma 3.6 were discovered by Hindley [21,
Chap. 1, Theorem 1.2, Lemma 1.3] and independently by the author.
There is a condition weaker than commutativity which implies

that the union of two Church-Rosser GRSs is Church-Rosser.

(3.7) Definition. Let 'IBI =(B, =1=)) and ‘Bz =(B, ?) be GRSs. VT‘hen
B, requests ,’82 iff |
(VR,S,,S, e B)[(R % S, & R —_} S,) implies
(ITEBXS, S5 T & Syl =)D].

Figure 2-4 illustrates this definition.

(3.8) Theorem. Let ‘fBl‘ =(B, —T—>) and ﬂz =(IB, ?) be Church-Rosser

GRSs and let %, request ‘32. Then the union B = (IB, =>), where

(B, =) =(]B,=1=>U——5—>),

is Church~-Rosser.

2-13

Figure 2-4, The GRS‘%’1 = (lB,==1==>) requests the GRS sz = (lB,=-2=->).

Proof: We will use Lemma 3.4. Let ? be the composite (

2-14

HU*

=5,
5)
Then (%>) = (-’-k——,*') because

e
b

(=) C(=>U =) = (=) & (=) C (B> L) = (5,

We must verify (3.4.2):

(VR,S,8' € B) [(R => S &R =>8') implies
(ATeEB)(S=T & S'=T)].

We begin with the hypothesis (R ;;} % S &R % % S’) in Figure 2-5.

We fill in (D1) because ‘!Bl is Church-Rosser. We then fill in (D2) and
(D3) because :{Bl requests);‘%z. Finally, we fill in (D4) because “132 is

Church-Rosser. Since % is transitive, we do have S % ;=> T and
g ko X . »
S 5T

Unfortunately, there seems to be no analog of Lemma 3.6 for

"requests." Only the star in R % S, can be removed.

(3.9) Lemma. Let '%1=(IB, =1=>) and fH‘2=(IB, =2=>) be GRSs, ’Bz be

Church-Rosser. If

(1) (VR,S,,S (-:IB)[(R%Sl & R=>S,) implies

2
(FTeBNS; - T & 82(1=> ?)T)],

2

then %, requests %2.

Proof: We assume (1) and prove that 531 requests fBz by proving that

each K € IN satisfies

(2) | (VR,Sl,SzelB)[(R? S; & R? Sy) implies

* * *
(ITeB)S; = T & Sy(5> 5)D].

2-15

Figure 2-5. Diagram for the proof of Theorem 3.8,

2-16

We use induction on K. When K = .0 let T be Sl' We assume (2) holds
for K and pass to K+1 by verifying Figure 2-6.

We begin with the hypothesis (R =j=> S5, &R 52—+—l> 8,) in
Figure 2-6. We fill in (D1) by the induction hypothesis, (D2) by (1),

and (D3) because f&z is Church-Rosser. This proves

%_ K+1 . .
(‘v’R,Sl,S2 e B)[(R ——1——}>S1 & R?Sz) implies
x_ % %k %
ATeB)S, 3> P TS T P 7D

b3
ps

which implies (2) for K+1 because ? is transitive. B

4, Trees and Substitution

This section describes some elementary concepts in the mathe-
matics of trees. It corresponds to arithmetic and basic algebra in
nuinerical mathematics. The system of arithmetic and the basic algebra
for trees sketched here are mostly taken from work of Brainerd [6, §2].
We have added conveniént notations for sfring manipulation and many
mnemonics. We have also extended some operations on nodes in trees
to sets of "independent' nodes.

There are several common mathematical definitions for finite
trees with labelled nodes and a left-to-x;ight ordering. The one most
appropriate here is often called ""Dewey decimal" or "branch numbers."
This formalism has also been useful in studying regular sets of trees
[6] and syntactic complexity [40]. Strings of integers keep track of
relations among a tree's nodes.

For any set A, the set of all strings of members of A is A*. The

members of A need not be ""symbols' because strings are defined to be

Figure 2-6. Induction step in the proof of Lemma 3.9.

2-18

finite sequences. In particular,]N* is the set of all strings of non-
negative integers. We name strings in A* by listing (within round
brackets and separated by commas) the namés for the members of A
that occur in them. The null string is (), the string consisting of just
thirty-seven is (37), and the string consisting of three followed by
seven is (3, 7). This is already fth.e' systematic way tq'.yvrite argument
strings for functions of several variables, and it avoicis éll.arpbiguity
in naming strings of strings. | *

The length of a string w is denoted |wl. The set of a11 strings of
length J in A>=< is AJ. In part1cu1ar A% = {()} For any string w and
any KeIN K:w is the flrst K entries in w, in the same order as in w.
For |w] < K thls is w itself. The positions in w are numbered

0,1,...,lwl -1 and we write

w = (WO, "'.’\‘Vlv.vl _1) = (WO, ...,W_l).

When the value 6f J is obvious or irrelevaﬁt, we write -1 rather than
J-1, as here. The word "last" is a good pronunciation for -1 here,
Concatenation is indicated by a dot:
(xo, e, X—l) . (yo"7 ..'.,y_l) = (xO, v X_1,Y ...,y_l) .
This operation on strings extends to sets of strings in the obvious way.
For WEA’& ; X,YgA* we have
w-X = {w-x|x€X} & X.Y-= {X-yIXEX & yeY}.
Now we define the father and left brothér.fuﬁctibns and the aﬁéésfor

and independence relations on IN . (The reasons for these names will be

clear shortly.)

2-19

(4.1) Definition. Let m,n & IN%. Define the following:

(1) Fa(n) = (Inl -1) : n (for n# ()) (father)

(2) LBr(n) =Fa(n)-(n_,-1) (for n# (); n_;# 0) (left brother)
(3) mancn iff iml:n=m (ancestor)

(4) mln iff NOT(m ancn or nanc m) (independence)
(5) mln iff (mln or rh=n)

(4.2) Definition. A tree domain is any finite nonempty subset D of]Nﬁ<

closed under the father and left brother functions:

Fa[D] c D & LBr[D] c D.

The way these definitions éxpress the structure of a tree's nodes
is illustrated in Figure 2-7. For any n €]N* that appears as a node in
this tree domain, Fa(n) is indeed the father of n in the usual intuitive
sense. Note that the sons of a node n in D are the members of the
set DM Fa_'l(n). From now on, ''node'' means "string of nonnegative
integers."

Once a tree domain is given; only the assignment of labels to

nodes is needed to specify a tree. (We are discussing labelled trees.)
(4.3) Definition. Let V be any set and let

V, ={R|R:IN" — V (partial) & Dom R is a tree domain }.

Members of V, are called trees.

(4.4) Definition. Let R,S e V.; ne DomR.
(1) R/n = {{(p, x)l(n-p, x)eR} (subtree of R at n)

(2) R(n «— 8) = {(m, x) | (m,x) e R & NOT(n anc m)}

U {{n-p,y) | (P':}’> € S} (Replace n by S in R)

2-21

Figure 2-8 illustrates a tree R whose domain is the set of nodes
shown in Figure 2-7. Now let us extend the idea of independence to
sets of nodes.

e
by

(4.5) Definition. Let M,NC IN .

(1) MLIN iff (VmeM)(VneN)(mln)
(2) M is independent iff (Vm,neM)(min}

The proofs of the following lemmas are trivial calculations.

5 ¢
(4.6) Lemma. Let mne N ; M\NCN .

(1) m anc n iff (apelN*)(m-p=n)

(2) M N ={neN" | (3meM)(m anc n)}

(3) (anc anc) C (anc) (transitivity)
(4) MLIN iff M-N AN-N =@

(4.7 Lemma. Let R,S.T e V,; m,ne Dom R; p € Dom S; mln.

(1) R(n «—— S)/(n'p) = S/p | (embedding)
(2) R(n «— S(p «— T)) = R(n «— S}{n:p «—T) (associativity)
(3) R(n «+— S)/m - R/m (persistence)
(4) R(n «— S)(m «— T). = R(m «— T)(n «—S) (commutativity) |
(5) For M C Dom R an independent set, we may define

R(M «+— S) =R(m0<-—S) oo (m_ +——9)

(just R if M = @), where (mo, .. .,m_l) is any list

of the members of M; the order is irrelevant.

(6) Any set of leaves in Dom R is independent, where n

is a leaf iff Dom R N Fa—l(n) =0Q.

X R/ b
b\c h/ 'S
!
AN
R((1)<—S): X
S P X | P c
I\ JIN

rigure 2-8. The subtree of R at (1) and the result of

replacing it by S.

2-23

&
(4.8) Definition. Let m,n,p € IN. The quotient of n by m is defined
by
n/m=p iff m-p =n.
For example, (3,4,5,6)/(3,4) = (5, 6) because (3,4)-(5,6) =

(3,4,5,6). This notation is taken from [6, §2] without change.

(4.9) Lemma. Let R,S&€ V,; m,ne Dom R; m ancn.
(1) R/n =(R/m)/(n/m) (cancellation)

(2) R(n «— S)/m = (R/m)(n/m «— S) (distributivity)

The lemmas (4.6), (4.7), (4.9) are used constantljr but rarely cited,
just as commutativity and distributivity for numbers are used constantly

but rarely cited in real analysis.

Diagrams like Figure 2-8 are too cumbersome as names of trees.

Tabulations like

S = {(0.p). (0, a), (1), c), ((2),)}

are even more awkward. The natural algebraic structure of V, leads

to more manageable nomenclature. Each a € V defines an operation a:
(V*)* — V,.. For example, consider (R, S) € (V*)z, with R, S from
Figure 2-8. The tree a(R, S) is shown in Figure 2-9. Here we indicate
the value of a function F at an argument w by Fw (with no round
brackets because the scope of the argument expression is already clear).

The values of trees are indicated similarly: Rm, not R(m).

2-24

" /’\ i -
h s]
T=3a (R,S)

Figure 2-9. The operation 3 is applied to (R,S), where R,S are

from Figure 2-8.

2-25

(4.10) Definition. Let aeV; Ke IN; (RO, ""R—l) c (V*)K. Then

é(RO, ~R_)) = {((),a)} U kk<JK {{(k)m,y) | {(m,y) e Rk}.

Applying this definition to R in Figure 2-8, we have

We will henceforth omit the names of null argument strings when
using this definition. When confusion between a € V and 5:(V*f —V,
is unlikely, we will even omit the overlines, so that R has two abbrevi-

ated names:

This amounts to the ”pseu;doterm" notation [50, §1]. Several well-
known notations are essentially the same as this one. Cambridge Polish
notation uses (b, h, s) rather than b(h, s), while labelled bracket notation
uses [h,s].

b b

In many applications only the ranked trees are of interest: there

is a rank function p:V — IN and the symbols are thought of as

"operators.' Each operator x takes p(x) operands and so a node
labelled x in a tree should have exactly p(x) sons. The set of all ranked

trees with labels in V is denoted V# and defined as follows:

(4.11) Definition. Let p:V — IN and set

V# = V#(P) = {REV* l (Vn € Dom R)(I DomR N Fa—l(n)l =p(Rn))}.

The round brackets and commas in our algebraic nomenclature can be
omitted without any logical ambiguity for ranked trees. The result is

the well-known Lukasiewicz notation.

2-26

5. Subtree Replacement Systems

Subtree replacement systems generalize the main idea in rewriting
systems, where a replacement relation = is defined on strings. For
strings X and Y, X =>Y iff some substiring of X matches the left side
of a rule and Y is the result of substituting the right side of the rule in

place of that substring in X.

(5.1) Definition. A subtree replacement system (SRS) is any 4-tuple

¢ = (v, IF, =>, R), where

(1) FCV, (IF is a forest.)
(2) RC V, XV, _ (Write g — ¢ for {¢,¥) € R.)
(3) (VReF)NVSeV,) o

(R=S iff (39— ¥ € R} 3n € Dom R)
| [R/n=¢ & S=Rn+—y)]).

(4) (=)C FXF.

This definition generalizes the notion of => in Brainerd's
"regular systems" [6, Def. 3.2]." The crucial difference is that we do
not require that IR be finite. The use of infinite sets of rules will per-
mit us to describe many complex tree-manipulating systems within the
SRS framework. The complexity of these systems will be broken down
into two stages: specification of an infinite set of rules by some finite
means, and then the use of rules in this set to evaluate frees.

Note that condition (3) in Definition 5.1 tells how to apply rules to
trees in the forest IF, While cohdition (4) requires that the results of
such applicétions be in IF too. (In all our examples (4) will be quite

trivial.) The system (IF, =>) is therefore a GRS.

2-217

The same letter will often be used for an SRS and for the corre-
sponding GRS, and results from §3 will be used to construct Church-
Rosser wholes from Church-Rosser parts. For an initial source of
Church-Rosser systems we consider some formal properties an SRS

might have.

(5.2) Definition. An SRS € = (V,IF,=>,R) is unequivocal iff R is a

partial function: no two rules have the same left side.

Many SRSs are unequivocal but not Church-Rosser. To see how
interference between rules can destroy the Church-Rosser property,
let us momentarily revert to string rewriting systems. Consider a

system with these two rules:
AB— CA A—a.

Let R be the string bABc. By applying AB — CA we can form

S = bCAc. By applying A — a instead, we can form S’ = baBc. Because
the substrings used to form S and S’ overlap in R, the opportunity for
applying AB — CA was destroyed in passing to S’. No common string T
is derivable from both S and S’. Now construct a third rule by applying

A — a tothe A in AB and tothe A in CA in the rule AB — CA:
aB — Ca.

By adding this rule to the system we obtain the Church-Rosser property,
since both S and S' can now evolve to bCac.

In general we needbsystems "closed" under the operation of
applying rules to rules. Whenever a little rule ¢ — ¢ is applicable
inside the left half of a big rule ¢y — ¥, then replacing ¢ by ¢ at

appropriate places in both ® and wo leads to another rule 01— x/xl .

2-28

The net effect of applying ¢6 —_— zpo and then ¢ — ¢ can be obtained
by applying ¢ — ¢ and then 0 — .wl. '

The closure concept for rules that are pairs of trees is illus-
trated in Figure 2-10. Trees are actually simpler than strings here,
since two subtrees cannot overlap in a tree unless one includes the
other. A more complicated closure concept is needed to insure the
Church-Rosser property in an unequivocal string rewriting system.

_ In Figure 2-10 the little rule ¢ — ¢ is applicable at a node n
inside the left half of the big rule 0y — z//O. More concisely:
<p0/n =@, where n € Dom god and n # (). We suppose that n has

"residues" p and q where this same subtree appears after ¢,y has been

replaced by ¥: wo/p = g[/o/q = goo/n. Replacing ¢ by ¥ at n in Dom ¢,

and at each residue of n in Dom (,[/0 leads to a pair of trees ¢ — wl;
we could say that the little rule ¢ — ¢ has been applied to the big rule
- (//0. In a closed system, 0 — z/xl is also in the set of rules
being used. |

The formal definition is conveniently divided into two parts. A
"residue map" for ¢, — ¥, assigns to each no.de n € Dom ¢ a set
r(n) of "residues" in Dom . Each node n may have any number
(including zero) of residues, but each residue p of n must have
(/Jo/p = cpo/n. We also require that independent nodes have independent
residues: if p 1l q in Dom % then r(p) L r(q), where the independence
relation between sets of nodes is as defined in (4.5.1). (This additional
requirement is motivated more by technical considerations in the proof

of the theorem we are approaching than by the basic intuitive idea.)

229

e ——

¢

Figure 2-10, The rule ¢ ——>y is applied at n in %o and at each of the

residues of n in VIO to form another rule 991-——> Wl.

2-30

(5.3) Definition. Let € = (V,IF,=>,1R) be an SRS; 9o — tpo € R.

A function r defined on Dom ?q is a residue map for this rule iff

(1) (v neDom¢0)[r(n) C Dom(ﬂo & (Vm € r(n)) (d/o/m = (po/n)]

(2) (V'p,q € Dom ¢p)p L q implies r(p) L r(q)).

Now suppose that a residue map r[goo, x//O] has been assigned to
each rule 0g— wo and choose any specific rule K7 (//0. Let ry
be rlgg,¥,] and let n € Dom g in (1) above, we have m 1 m'’ when-
ever m,m'’ € rO(n), 7o) ro(n) is an i'ndependent s.et of nodes. For any
tree ¢ we can form ¢y = q)o(n (//) and "l/i - z//o(ro(ﬁ) —_— w)». In par-
ticular, if some rule ¢ — ¢ has goo/n = ¢, then we can form the pair -
of trees 0y — wl by applying ¢ — ¢ at n in 9 and at each residue
of n in tpo. In a closed system ¢y — x[xl must also be one of the rules.
We will also require that nodes independent of n in ¢y be uneffected by
all this: if pln in Dom ?o then p has the same residues in ‘/’1 as in
Uy: | |

rlpy. ¥y 1(p) = rlgg, dg1(p) .
(Since ¢ = <p0(n — 1Y) and p L n, p is indeed a node in Dom <p1.) (This
additional requirement is motivated more by technical considerations
-in the proof of the theorem we are approaching than by the basic intuitive

idea.)

(5.4) Definition. Let @ =(V,IR,=>,IR) be an SRS. Then € is closed
iff it is possible to assign a residue map r[<p0, (//0] to each rule
og— (po € IR in such a way that the following holds: whenever P9 — !//0,

¢—> ¥ R and n € Dom ¢, withn # () and <p0/n=¢, then

2-31

and

(2) (Vp € Dom o)[p L n implies rlp,,¥,](p) = rlog. ¢,](p)],
where

(3) @1 = ppl——¥) &y, = wo(r[qoo,tllo](n) —).

The evaluation of arithmetic expressions in §1 provides an
example of a closed SRS. If (pO() is an ordinary arithmetic operator,

as in

X(47,23) — 1081,

we set r[<p0, x//O](n) =@ for all n € Dom ¢;. This is trivially a residue
map. If (po() is the special conditional operator C, then oy — xpo is

either of the form

% C (True —_

(*) C(icue. ¥, w) Yo
or of the form

(**) C(i,@lﬁg:w; ‘//0)"—’1//0-

In the first case we set

{n/(l)} if (1) ancn
r] -

0) otherwise

for all n € Dom Po- In the second case we set

2-32

{n/@} i (2 ancn
r[**](n) =

)] otherwise

for all n € Dom @0

To see that r[*] is indeed a residue map in Definition 5.3, note
that (5.3.1) is only nontrivial for a node n with (1) anc n. Since
q)O/(l) =¥y n/(1) is indeed in Dom Vo Furthermore, the cancellation

law (4.9.1) implies that each p € r[*](n) ={n/(1)} has
9o/n = (9o (1) /(0/(1)) = ¥y /p.

We also need (5.3.2): independent nodes have independent residues.
For p L q in Dom ¥y, We may simply note that L M and M L ¢ for
any set M of nodes, unless both r[*](p) and r[’k](q) are nonempty. But
in that case we have p/(1) L q/(1) because p L q and (1) anc p and

(1) anc q. Therefore, r[*](p) L r[*](q) in all cases. (Similarly, r[““]
is also a residue map.)

To see that this system is indeed closed in Definition 5.4, suppose
that gp— ¥y, ¢ — v & IR and n € Dom ¢, with n # () and (po/n = @.
Then 9o~ z//O cannot be an ordinary arithmetic rule because ¢ — ¢
cannot be of the form numeral — Therefore vy — (//0 is as
in (*) or (**). Both cases are treated the same Way, so we will assume

(*) for the sake of definiteness. As in (5.4.3), we set

(pl = (po(n Dy (//) & ?[/1 = wo(r[¢0,w0] ‘__ ll/)-

We must verify (5.4.1): ¢, — ¥ € R. In (-f(true,xpo,w) = ¢
there is only room for <p0/n to be the left half of a rule if (1) anc n or

(2) anc n. Suppose first that (1) anc n. Then

2-33

¢, = C(irue, ¥y, w)n ~—y)
while

0, = bl n/(} — 9 = wgln /(1) —).

Therefore ¢y — ([/1 is another of the rules for conditionals. Now

suppose that (2) anc n. Then

(pl = é(m: ‘1/0; w)(n - KP)

= C(true. ¥y, wln/(2) —¥)
Yy =@ —W0 =4,.

Therefore ¢; — Y, is another of the rules for conditionals. In both
cases, ¢; — Y, € R.

We muét verify (5.4.2): for p L n in Dom ¢, the new set of
residues r[gol, (pl](n) is the same as r[qoo, x//O](p). We saw above that
94 —y, is of the form (*), so r[<p1,x//1](p) is defined by the r[*]
equation:

{p/(D} if (1) ancp
r[(Pl, wl](p) =

0] otherwise
Since r[goo, wo](p) is also defined by the r[*] equation, we do have
ey, ¥1]1(p) = rlog, ¥ol(p) .

In the next section we will show that any system whose rules can

be specified in a certain natural way is closed. The argument given

2-34

above is actually a special case of the argument in the next section;
these tedious verifications do not have to be carried out in every

concrete situation.

That an unequivocal closed SRS should be Church—Rosser is quite
plausible, but neither induction on lengths of derivations nor induction
on sizes of trees is appropriate. Induction on the sizes of certain sets
of nodes does work. The size of N C IN>=< is its cardinality IN|. Given
an SRS € =(V,IF,==,R), we define a relation T on IF for every
N C IN*. The union of all the relations ? will be called =. When-
ever R == S, it will be possible to derive S from R by simultaneously

applying rules at all the nodes in an independent subset of Dom R.

(5.5) Definition. Let € =(V,IF,—>, R) be an SRS. For any N C N",
let (ng, ..., N _1) be a listing of the mernbers of N and define N=>

to be the set of all (R, S) in IF X V,, such that
(1) N is an independen_t set of nodes in Dom R
2 @eve vyl
[(Vi<IN|)(R/ni =¢; & o, — Y E.]R) &
S = R(n0 — Y- (1{’1_1 —y_Pl-

Now define

3 (=)= U (=)
1 N QIN* N
By (1) in this definition, ? is @ unless N is actually a finite set
of nodes that is independent in the sense of (4.5.2). Suppose that N is

indeed an independent finite set of nodes. By (1) and (2), to say that

2-35

R T_(I:} S is to say that S may be formed from R by applying rules at the

members of N. The order of the listing (no, -+-, n_4) is irrelevant by

commutativity (4.7.4). For any i < |IN|, we can show that
R(nO — tpo) e (ni__1 — x//i_l)/ni = R/ni
by i applications of persistence (4.7.3), so that
R(n0<— wo) - (ni-l —Y;_) = R(n0<—¢/0) ... (ni<— ://i)

by application of @, — x/Ji at n, . Therefore

IN|
(?) C (=)

and N: is actually a subset of IFF X IF because = is a subset of IF X TF.

(5.6) Main Theorem. Any unequivocal closed SRS is Church-Rosser.

Proof: Let € = (V,IF,=>,R) be an unequivocal closed SRS. We will
use Lemmai 3.4 to show that (IF, =>) is Church-Rosser. L'et => be as
in Definition 5.5. Since (ﬁ}) - ('Ag) whenever N is an independent
finite subset of IN* and I\]——> = (@ otherwise, the union = in (5.5.3) is
contained in =. Therefore -I—> is indeed a relation on IF.

We need (3.4.1): (f=>) = (*@). We already have (T}) C (é>),
so it will suffice to show that (=) C (?L Suppose R => S, so that

Definition 5.1 implies that some n € Dom R and some ¢ — s € IR have
R/n=¢ & S=R(n~—y).

In Definition 5.5 we have R {=}> S and therefore R 5> S, as desired.
n ,

We need (3.4.2):

2-36
(VR,S,8' e F)[(R =>'S & R =>S') implies

(ITeFS=T & S'==>T)].’

When R == S and R?S’ we have R?S and R?S for
some N, N’ ¢ Dom R. The induction will be on |NU N’ | . As often
happens in inductions, we must carry along more information than is
actually used at the journey's end. The extra information-is the fact
that S and S' can both become a common tree T by a single step of |
= in which the nodes used are descended from nodes in NU N,
Specifically, we verify (3.4.2) by proving the following statement for

each K& IN:

(1) (VR,S,S" ¢ IF)(VN, N’ ¢ Dom R)
[(R=N=»"s & Ri= S' & |[NUN'| =K) implies
~ (3P ¢ Dom S)Y3P' C Dom S8'NIT € IF)

BT &S T & PUP' C(NUN) N].

We use the induction schema

(VK e N)[(vk<K)..k...) implies (...K..)]

implies (VK & N)(...K...).

Let K € IN and let (1) hold for all k < K. Let R,S,S’, N, N’ be as
in (1), with IN U N'I = K. Let rules ¢; = wi be applied at nodes n, in N
to form S, while rules (p:'j — W3 are applied at nodes ng in N’ to form S'.

We show how to choose P, P', T.

2-317

Casel (NLN') Let P=N'; P'=N;

T = R(no <——(//0) - (n._1 <—¢_1)(n6 <—¢16) e (n'_i*—-——x//'_l).

Then P, P’, T have all the desires properties by persistence (4.7.3) and

commutativity (4.7.4).

Case 2 (NOT N 1L N’) Suppose some member of N is an ancestor of
some member of N'. After permuting the listings for N and N’ as needed,
we may assume that some J > 0 has n, anc nJ'. for all j < J and

NOT(n0 anc nJ'.) for all j = J. (The roles of primed and unprimed
variables can simply be reversed if no member of N is an ancestor of

a member of N'.) Let Njbe N—{n } and N be N'—{nJ’.Ij <J}. Then

0
ng 1 (NOU Nb) by independence of N/, transitivity (4.6.3), and the defi-

nitions (4.1.4), (4.5).

Case 2.1 (n0= nJ’. for some j < J; choose one.) Let RO be R(n0 «-——wo).

Since ¢ is unequivocal, RO = R(nJ’. D g[/J'.) also. We have
R,—>S & R,———= S' & [N, UN'-{n'}|=K-1.
0 NO 0 N —{n;'i} 0 { 3}

By the induction hypothesis there are P,P',T with S== T and S'== T

. P P!

* *

and PUP'C (NOUN’—{ns})-N C (NUN").IN .

Case 2.2 (n0 # ns , all j<J.) We wish to apply the induction

hypothesis to N and Nj, which do have INOU Nbl < K. We therefore

construct trees RO, SO’ Sb that are closely related to R, S, S’ and that

have R, ==> S, and R, === S!. The construction hinges on a rule
0 NO 0 0 N 0

¢ — ¢ . Intuitively, ¢ — ¢ is the result of applying

(pb—”//b:---:(P&_l-"'W&_l to 900-_"//0-

2-38

Let residue maps be assigned to rules so as to satisfy the con-
ditions in the definition of closed systems (5.4). Let r[<p0, ([/0] be the -
residue map for %0 ——>,(//0. Since V{nJ'./nO | i< J} is an independent sub-
set of Dom Pgs the sets

Mj = r[goo,z/jo](nJ!/nO) for all j<J

are independent subsets of Dom (po with MJ 1 Mk whenever j # k. The
union

M M.

= U
i<Jd 1
is therefore an independent subset of Dom x/;o.
Define a pair of trees ¢ — ¥ by °
- ' ' ' '
(2) ¢ = go(np/ng ~—¥g) ... (nf_y/ng —yf_y)
- , ,
We claim that ¢ — ¢ is in IR. Suppose not. Closure implies
¢olng/ng ——vh) —.¢o(My ~—yl) € R

by (5.4.1), so we must have J > 1 and there must be some j <J-1 such

that

oAngyy/ng = Wi y) — WM, — Vjv) ¢ TR
where

Q= <p0(n6/n0 — Yy - (n:'i/nO <-—¢/J')

<
13

But j applications of (5.4.2) imply that r[g, (//](nJ!_*_l/nO) = Mj+1 - and

. . . : . CA [= !
j applications of persistence (4.7.3) imply that ¢/(nj+1/n0) I

2-39

In (5.4.1) we get a contradiction:

pnty) /ng —— W) — WM, — e R.
Therefore ¢ — ¥ € IR.
Figure 2-11 will be verified next. Let
(3) R, = Rin, —)
Sg = S(n, —)
Sy =S'ny—1).

We will show that —» ¥ may be applied to S’ at n.., and that then

0’
(4) S? {—T—? Sb .
By J applications of distributivity (4.9.2) to (2),
@ = (R/ng)ng/ng =—yg) ... (af_;/ng —v])
= Rlng ~—p) ... (nj_y ~—¥5_y)/ng.
By n, 1 Nb and INE)I applications of persistence (4.7.3), this becomes
© = R(ng ——yp) ... (nf_;~—¥5_)).. (n! —u!))/n,
= S'/n0 .

By ¢=8'/n;, 9 — ¥ € R, and Sf = S"(ny ——Y) in(3), we have (4).
Because M is an independent subset of Dom z/xo and Vo = S/no,

ng- M is an independent subset of Dom S. We will show that

S .
(5) W S0 s

where (pJ'. — wJ! is applied at ng-p whenever j <J and p € Mj' Suppose

j<J and p & Mj' By IN| -1 applications of persistenée (4.7.3) and then

2-40

Figure 2-11., Case 2.2 in the proof of the Main Theorem (5.6).

2-41

one application of embedding (4.7.1), we have
S/(ng-p) = Rlng ~—yg)...(n_;——y_,)/(ng-p)
=¢y/P-
By (5.3.1) in the definition of residue maps we have

wo/p = 990/(nﬁ/no) = 03:

so that S/(nd -p) = ¢)5 By IM| applications of associativity (4.7.2) in (3)

and (2),
8o = Stng — wo(Mg—yp) ... (My_;~— ¢)
= S(ng— Yol g - Mg—— Up) .. - (ng - My — ¥} _,).
But S(ny<~— ¥g) = S because S/n0 =Yg, SO
sd = S(ny - Mg——o}) ... 0y M;_ ~—9}_)).

This completes the proof of (5).

We now claim that

- ’ . '
(6) - R0=>SO & RO——'=>SO.
Ny Ny

First we must show that RO € IF. By applying (pJ'. — ¢/J’. at nJ’. for

each j <J, we get

(7 R—I———>R(n6«—¢6)...(n3_1<——w3_1).

By J applications of distributivity (4.9.2) and then by (2),

2-42

R(nf) ~— wh) ... (f_; —w}_)/ng
= (B/ng)ng/ng—dp) . .. (ng_, /ng—1y5_;)
= @g(ng/ng —dg) - - - (nf_;/ng — ¥3-1)
s

Applying the rule ¢ — ¢ atn,, we get

0,
Rlng ~—vg) ...}y —¥5.9)

= R(nf—y¢)...(f_j — v} _Mny ~—7)

because n, anc nJ! for all j <J. (Recall the definition of substitution

0
(4.4.2).) By (7) and R(n, —) = R, in (3), we have R => =>R,.
Therefore RO'E ¥,

Now we will shqw that RO N——O> S_0 by applying ?; ———«pi at n, for

each i with 0 <i<IN|. Suppose 0 <i< IN}, so that n, ln, and

0
persistence (4.7.3) implies that

. Ro/ni_= R(n, ~—¥)/n, = R/n, = ¢;
in (3). By lNol applications of commutativity (4.7.4) in (3),
Sy = S(nO — 1)
= R{ng~— y)n; —vy) ... (n_j —y_))n,—)
=Rlng—y)ng—¥n —¢)...n_ —y_)).

we have

By nQ anc n,

R(ng ~— ¢)ng ~—7¥) = R(ng ~—)

| in the definition of substitution (4.4.2), so that

2-43

SO = R(no ‘—w)(nl '— wl) oo (n_l -— ‘p_ 1)

= Ry(n, —y).. o —v_)).

This proves the first half of (6). Similar reasoning with n’, ..., n'_1 in

place of n n_, and use of (4.4.2) to show

100 By

!] 1 € — 7 = —)
R(no ’/jb) oo (nJ_l ¢ (//J_l)(no ¢) R(no ‘l’)
leads to the second half of (6).
By (4), (5), and (6), the upper portion (D1) of Figure 2-11 is now

complete. Because INJUNpl = K-1-J <K, the induction hypothesis

P!, T with S

yields P 0’ 0

. ! . . *
Py Po

This completes the lower portion (D2) of Figure 2-11,

0:

Iet P=n -MUP

0 and P’ = {ngtu Py By

0

' . *
(8) n, 1 (NOUNO) & POU Pb - (NOU N6) N ,
both P and P’ are independent sets of nodes: By (5) and (4),

Dom S;—ny- N' C Dom S & Dom S .N" c Dom §'.

r_
0~ "o
But (8) implies that

% %
- R [| R .
POQDom SO n, N & PogDom SO n, N
Therefore

PogDomS &P(')c_:DomS',

which implies that

PC DomS & P'C Dom S'.

Thus P and P' are independent subsets of Dom S and Dom S’, respect-

ively. By S0 > T and Ino- M| applications of persistence (4.7.3) to
0

2-44

(5), we have S TD———> T. By Sb 'P——,> T and one application of persistence
0
(4.7.3) to (4), we have S' P:' T. Finally,

PUP! Cny- N'UNUNY - N C(NUN)- I .8

As we have remarked, some of the restrictions in the definitions
of residue maps and of closed SRSs are based less on the intuitive idéas
than on the need to show that ¢—¥ € R in the proof of the Main
Theorem above. In Chapters 3 énd 5 these strong definitions are appro-
priate: all the SRSs are closed in the full technical sense. In Chapter 4
there will be a system that seems to be "essentially' closed but that
does not meet all the formal requifements. A complicated special éon—
struction will be needed to imitate this SRS by the interaction of two
SRSs that do meet the requirements. It would be helpful if the defi-
nitions could be weakened so that unequivocal closed SRSs would still
be Church-Rosser but more syétems would be unequivocal and closed.

The following modification of the closure concept is too weak to
support a Church-Rosser theorem, but .it does have some uses in

Chapter 4.

(5.7) Definition. Let & =(V,IF,=3,IR) be an SRS;]Rl,IR2 CR;

®q -—-djo e IRl; n € Dom ¢g; n# (); M Cc Dom 1//0 with M independent.

Then (po--—u//O is pseudoclosed at (n, M) with respect to (]Rl'IRz) iff,
whenever ¢ — ¢ € IR2 and (po/n = ¢, then there is some Z € V, such
that

(1) go(n—) —> (M ~—) € R

(2) (Ype Mwy/p — ¥ € Ry).

2-45

The set M is like the set r(n) of residues of n in a closed system,
but here we have only assigned a subset of Dom (//0 to one node n in the
left half of one rule ?q ——»1[/0. We have not assigned a subset of the
right half's nodes to every node in the left half of every rule. We do
require that M be iﬁdependent, but wo/p need not be <p0/n for p € M.

As is appropriate with so weak a method of assigning nodes in z[/O
to nodes in ?q: we say that the individual rule 0y — (po is pseudoclosed
at the Spécviﬁc pair (n, M) of a node in ¢, and "corresponding'' nodes in
wo. We do not require that every node in the left half of every rule
behave a certain way.

We require that some J € V, have
(a) op(n —¢) —— (M ~— 0) € R,
rather than the condition |
(b) <p0'(n —) — ¢, 9‘;0’ Volm) ~—) € R

in the definition of closed SRSs (5.4). Since we may not have wo/p=¢
for all p € M and we may not have J = ¢y, we must require
(//O/p — e R, separately.

In one respect we have strengthened the definition: (a) says that
the new rgle belongs to the same subset lRl ovaR as does P~ q/;o,
while (b) merely says that the new rule is in IR. This additional infor-
mation will be helpful in Chapter 4, where the rules of the lambda
calculus will quite naturally divide into two subsets.

A fragment of the proof of the Main Theorem (5.6) can be extended

to the context of pseudoclosed rules. Using the ? notation defined by

(5.5), we suppose that R ===>S and R =—= §’, where manc m' #+ m
{m} {m'}

2-46

and the rule applied at m is pseudoclosed at (m'/m, M) for some M.

M
We will show that some T has S ‘——-|—> T and S' === T. The formal

lemma yields additional information about the rules used to derive T.

(5.8) Lemma. Let QG =(V,F,=,R) be an SRS;]RI’]RZ CIR;
R, S, S’ éIF; m, m' € Dom R. Suppose R=—= S; R == S’;
{m} {m'}

mancm’#m; R/m-— S/m e R, ; R/m' — S!'/m' ¢ R, . Suppose
M C Dom (S/m), independent, with R/m — S/m pseudoclosed at

(m’/m, M) with respect to (IRl’IRZ)‘ Then there is a T € IF such that

S -]—M-%-) T (using rules in IRZ)

S!' —= T (using a rule in IRl))

Proof: Let ¢j— ¢, be R/m — S/m; n be m'/m; g — ¢ be
R/m'" — S'/m'. Let ¥ be as in Definition 5.7 and set ¢ =<p0(n-— v);
¢1 = wO(M —¥), so that ¢y — ‘”1 c]Rl by (5.7.1). Let T be

R{m «— d/l). Then
S'/m = (R/m)(m'/m «~—) = g4(n +—) = ¢,

T = R(m' «=—¢)m ~—¢,) = 8'"(m ~—y,).

So S!' == T using a rule in IRl' On the other hand, suppose p € M, so

that (po/pe» v e R by (5.7.2). Then

2

~8/(m-p) = (S/m)/p = ¥,/p
T = R(m ~— ¢o(M ~—§)) = S(m-M ~—).

| M
So S=—== T using rules in R,. 8

2

2-47

6. Parameters and Rule-Schemata

In order to apply the theorem that every unequivocal closed SRS
is Church-Rosser, we must consider ways to specify SRSs and ways
to ascertain whether fhey are unequivocal and closed from such speci-
fications. It is irhpossible to inspect every rule in an infinite set of
rules; it is impractical to con‘ginue to specify sets of rules informally
as in our example of arithmetic with a conditional operator. We need
a flexible general method for specifying sets of rules that can generate
important infinite sets from finite specifications and that lets us verify
properties of the sets of rules by ir;specting these specifications. Such
a method is introduced in this section.

In practice it is usually easy to ascertain whether SRSs are
unequivocal, so we will concern ourselves only with whether they are
closed. In §5 we illustrated the definition by vlaboriously checking that
arithmetic with conditional expressions forms a closed SRS. The crux
of the matter was simple: If 0y — xpo €IR and p— ¥ € IR is

applicable at n in Dom 9o with n # (), then 99— ¥, bas the form

(*) C (true, Vo 0 — ¥
or
(%) C (false, w, vo) — ¥,

and the new rule ¢ — zpl has the same form. Since every rule of that
form is in IR, ¢, — wl is in IR.

This situation is represented pictorially in Figure 2-12, where
two ''schemata' represent the two sets of rules in (*) and (**). The

hatched triangles in the figure represent "arbitrary trees': more

2-48

e
true
AN
C
————
false
L. a2 ad

Figure 2-12. Schemata for the rules governing conditional expressions.

2-49

precisely, we are to substitute any operator-operand structure for the
vertically hatched triangle (wherever it appears) and any operator-
operand structure for the horizontally hatched triangle (wherever it
appears). The set of all "instances" of a schema obtainable in this
way is the set of rules generated by the schema. A set L of schemata
generates a set IRy of rules.

Rather than use pictufes as schemata, we will introduce special
symbols. Let u and v be new symbols, neither numerals nor arithme-

tic operators. The pair of trees

(1) C (irue, u, v) —u

is a schema generating all the rules of form (¥). The pair of trees
(2) C(false, u, v) — v

is a schema generating all the rules of form (**¥). The new symbols are
"parameters' for which trees may be substituted to form rules. Associ-
ated with each parameter is a ''domain'' — the set of trees that may be

substituted for that parameter in schemata.

For the rest of this section, we suppose that sets V and U are
given and that to each .u € U there has been assigned a subset Du of V.
Members of U will be called parameters; each parameter u has
domain D .. In some examples we will have U\ V = @, but in others
we will have U C V. The results of this section will be stated in such
a way that both possibilities (and any other relation between U and V)
are allowed.

A schema for geherating rules ("'rule-schema'') is to be a pair of
trees in (VU U),, . Three of the formal properties of the schemata (1)

and (2) will be required of any rule-schema R — S:

2-50

(a) Parameters occur only at leaves (defined as in (4.7.6)

of R and S.
(b) No parameter occurs t\}vice‘ in R.

(c) Every parameter that occurs in S also occurs in R.

(6.1) Definition. A template is any R € (VU U), such that R-l(U) is

a set of leaves in R. A rule-schema is any pair R — S of templates

such that
(1) (Vue U(IR wl < 1)
(2 (vuecuNs Nw# @ implies R™ () £ 0).

To form an ''instance' of a rule schema, we must choose a
specific tree in the domain of each parameter involved, then replace
subtrees of the form u for ue€ U by the éppropriate chosen trees.

This is the familiar method of substituting "expressions" for "variables"

in algebra and logic.

(6.2) Definition. Let R — S be a rule-schema. If (uo, e, uK-l)
with K € IN is a list of the members of {u € U| R™}(u) # 0} and

’I_‘k S Du for each k < K, then ¢ — ¢ is an instance of R — S, where
k

(1) ¢=RE M) —Ty...R u_) —T_

)
v=868"tu) —T).. . (sHu) —T .)
0 o -1 -1
If L. is a set of rule-schemata, then
(2) By = {o—ve VXV [(IR—S L)

(p — ¢ is an instance of R — S)}.

2-51

Given an instance ‘9 — ¥ of a rule-schema R — S, there is a
natural way to define a residue map for ¢ — . Let n € Dom ¢.
There is at most one node m € R_I(U) such that m anc n because
R—I(U) is an independeént set of nodes. If there is such a node m let
u=Rmandlet T = (p/m, so that T € Du in the previous.definition. For
each node p in S with Sp = u, we have §/p = T because T was substi-

tuded for u at p also. Therefore
¢/(p«(n/m)) = T/(n/m) = (¢/m)/(n/m) = ¢/n

by ¢/p = T and two applications of cancellation (4.9.1). Thus p-(n/m)
has the basic property of residue nodes: a copy of ¢/n appears at
p-(n/m) in y. All such p-(n/m) will be considered residues of n.
(In particular, if n should have no ancestors in R_l(U), then n has no

residues in ¢ .)

(6.3) Lemma. Let ¢ — ¢ be an instance of a rule-schema R — S.
‘ %
Define a map from Dom ¢ into the set of subsets of N by

r(n) = {p.- (n/m) | m € R_l(U) & mancn & Sp=Rm}.

o

Then r is a residue map for ¢ — ¢.

Proof: Letn € Dom 9o We must show that r(n) C Dom ¢ and that
¥/q = ¢/n for each q € r(n) in order to verify (5.3.1) in the definition
of residue maps. If r(n) = @ these are trivial, so we may assume
r(n) # @. Some m € R-l(U) has m anc n and

r(n) = {p-(n/m) | sp = Rm }.
Let u = Rm and T = ¢/m, so that T € D and ¢ has the form

v = SC.S™ Hw) — T)(...)

'2-52

where (...) represents substitutions at nodes that are independent of
s !(u). Since n/m € Dom T by n € Dom ¢, each p € s™}(u) has
p-(n/m) € Dom ¢. By ¢/p = T and two applications of cancellation

(4.9.1), we have
¥/(p-(n/m)) = T/(n/m) = (¢/m)/(n/m) = ¢/n.

This completes the verification of (5.3.1).

We must verify (5.3.2): independent nodes have independent

residues. This is implied by

B

(Vn,n' € Dom ¢)(V q € r(n)) (V q’ € r(n))(q anc q' implies n anc n'),

which we will now prove. Suppose q € r(n); q' € r(n'); q g_r}_é:_ q’. For -
some m anc n and some m/’ anc n’ we have m,m' € R_l(U). For some
pe s™1(Rm) and some p' € s Y Rm") we have g =p-(n/m) and

q' =p'-(n'/m'). By qanc q' we have p-]N*ﬂ p' -]1\!]*¢ O, so (4.6.4)
implies that NOT(p 1 p'). But p and p' are leaves in S, so we‘ must have
p=p'. From qanc q' it now follows that n/m anc n'/m’. Butp = p"
also implies that S-'I(Rrh) M S-l(Rm') # @, so that Rm and Rm' are the
same parameter. In the definition of rule-schemata we have m = m' by

(6.1.1), so that n/m anc n’/m. This implies that n anc n’, as desired.®

Replécing parts vof .an instance ¢ —» Y of a schema will often lead
to another instance of the same schema. If we replace only parfs of ¢
that were substituted in for parameters, if these replacements do not
result in substitutions from outside the domains of ‘parameters, and if
the appropriate replacements are made at residues in ¥ also, then the

result ¢ — ¥ should still be an instance of the schema.

2-53

(6.4) Lemma. Leta rule ¢ — ¢ be an instance of a rule schema
R — S. Let N be an independent subset of Dom ¢ and let Q[n] € V,,
for each n € N. For any listing (nO, e, nK—l) of the members of N,

set

(1) @ = olng—Q[ngD...(n_; ~—Q[n_;
¥ =yrng —QnyD...(r(n_)) —Q[n_;]),

where r is the residue map from the previous lemma. For each

m
K
m

descended from m. Suppose

m e R—I(U), let (Ngn, ..., N _1) be a listing of the members of N

(2) (Vk<K(3ImeR XU) (mancn,)

(3) (Vme R‘l(U>>[(<p/m>(Ng“/m «vQ[Ngn])...(Nfrll/m —Q[NT]) e Dp_ 1.

Then ¢ — ¢ is an instance of R — S.

Proof: Let (uo, ... ’“J—l) be any listing of the members of R—l(U) and
N . : , "
let uj = Ruj for each j <J. Write N%{ rather than NkJ for N{{n when

m = “j' For each j <J, set
T = (cp/uj)(N%/uj*—- QINID... (N{l/uj_ QN),

so that _"I-‘j € D, by (3). We therefore have an instance ¢ — i of

of R — S, where
(4) ¢=Rluyg~—Ty...Qu_;—T_,)

~ -1 = -1 =
=56 u) —Tp...(s () —T.

o).

We will show that 9= g and ¥ = ¥.

First we note that (2) establishes a bijection between indices i<K

and pairs of indices (j, k) with j < J and k < Km~’ such that n, = N:IL‘
J

2-54

The listing

0 0

(NO,...

J-1
LN

is a permutation of (no, vees nK—l)’ and such permutations may be ignored
§ by commutativity (4.7.4). In (1) we have
- 0 0 J-1 J-1
Q= ¢(NO<—Q[N0]) . (N_1 <——Q[N_1)
= Rug—o/ug) . gy — o/uz_)]
J-1

(Ng— @D ... I 1 —ml 1)),

We write each N"lj{ as “j . (N{{/uj) and use commutativity (4.7.4) and

associativity (4.7.2) to rearrange this as

7 = Rl — (o/ug)No/ug — QINGD) .

) Jug —QIN2).
-y Cofag N5 — QN
NI ug_ — QN T,
Comparison with (4) shows that ¢ = @.

Whenever n, = N7, the residue map from Lemma 6.3 evaluates to

k)

= g1 . (N9
r(n) =S (uj) (Nk/uj)v.

Applying this to (1) and rearranging by commutativity (4.7.4), we get

7= s ug) - (Ng/ug) — QINGD) . ..

- J-1

(S “uy_)- (N2 /uy) ~— QNZ,

= [S(S_l(uo) — olug) ... (S_l(uJ_l) —¢/uz_1]
(5™ Mug) - (Ng/ug) ~— QINQD). ..

sy 7) — QNI

2-55

Letting S_l(uj) play the role that U played in the proof that ¢ = 9, we

can now repeat that reasoning to show that ¢ = .18

At last we have our general method for specifying closed SRSs:
generate the rules from rule-schemata and use the above lemma to

establish closure. More precisely, we have the following theorem:

(6.5) Rule-Schemata Theorem. Let L be a set of rule-schemata and

let € be an SRS of the form &€ = (V,IF, =,]RL). Suppose that each

99— ¥g € IRL has
(1) (3tR— S e L)(<p0~——>w0 is an instance of R — S)

(2) (Vne Dom <p0)(V<p—>1//elRL)
(n#()& ¢o/n=¢) implies

(Im e R HU)(m anc n & (¢y/m)(n/m «— v e Dp.)1

where R is the left half of the rule-schema R — S with 9o — ¥ 2s

an instance. Then @ is closed.

Proof: Since each rule is an instance of a unique rule-schema,
residue ‘maps may be assigned to the rules by Lemma 6.3. We must
verify the properties of closed systems in Definition 5.4. Suppose

0y — Vg ©— ¥ € Ry ; nEDomgoO; n#+(); (po/n=w. Set

(01 (po(n D (//)

Uy = ¥olrleg, volm) «—vy).

We will apply Lemma 6.4 with the independent subset N = {n} of

1

Dom ?0 and the tree Q[n] =y assigned to n. By (2), some me R~ (U)

has m anc n and (¢,/m)(n/m<—Q[n]) € D so (6.4.2) and (6.4.3)

Rm’

2-56

do hold. Therefore ¢ ¥y is an instance of R — S by Lemma 6.4.
We do have ¢, — ¢, € R, as required by (5.4.1).

We must show (5.4.2): any p with p 1 n in Dom % has
rle, ¥, 1(P) = rlog, Yol (P) .

In Lemma 6.3 we defined r[qol, wl](p) by an equation involving a schema
R,— S1 of which o — ¢, is an instance. But R)— S1 = R— S by

(1), so r[<p1, wl](p) is defined by the same equation as r[(po, wo] (p). B

The following chapters will apply the Rule-Schemata Theorem (6.5)
and the Main Theorem (5.6) to show that various SRSs are
Church-Rosser. The condition (6.5‘.2) is not very difficult to test in
practice. Although only a very special case of Lemma 6.4 has been
used so far, the full generality will be needed to establish additional

results in the application areas.

One application for this theory that will not be treated in detail by
later chapters should be mentioned here. Hindley [personal communi-
cation] has found conditions that imply the Church-Rosser property
for systems of combinatory logic. When applied to rule-schemata in
the special format used in combinatory logic, these conditions insure
that the logical system is unequivocal and closed when expressed as an
SRS; the proof that this is so is a specialization of the proof'of the
Rule-Schemata Theorem (6.5). The Church-Rosser property then
follows from the Main Theorem (5.6).

Hindley's conditions were inspired by Sanchis' proof of the
Church-Rosser property for one specific combinatory system [47, §2,

Lemma 1]. Implicit in Sanchis' proof are broad outlines of the proofs

2-57

of (6.5) and (5.6), as restricted to this one set of rule-schemata and
the set of rules it generates. The simplicity of this particular system
made it appropriate to ignore all details and to carry out the proofs on
an intuitive level, as in our preliminary discussion motivating the

closure concept.

CHAPTER 3

APPLICATIONS TO RECURSIVE DEFINITIONS

This chapter applies the theory of subtree replacemeht systems
to recursive definitions. In §7 we extend McCarthy's calculus for
recursive definitions by introducing a choice between two‘ types of
parameter that corresponds to the choice between call-by-value and
call-by-name in ALGOL 60. We show that formal calculations using
recursive definitions define singlevalued partial functions despite the
nondeterminism of the evaluation algorithm.

Recursive definitions are commonly written as sets of equations,
and it is natural to assume that the functions théy define are solutions
to the equations. In §8 we formulate this idea precisely and prove that
it is correct. When restricted to definitions that use only call-by-value,
our result is closely related to Kleene's ''first recursion theorem"
[26, §66, Thm. 26]: any partial recursive functional F has a unique
minimal fixed point defined by formal calculations using the set of
equations that specifies F. (A detailed comparison is given at the end

of §8.)

7. An Algorithmic Explanation

A function may be defined by an equation of the form
f(x) := ...

where the ... is built up from x and constants and previously defined

functions. It is not so clear how the factorial is "'defined" by

3-2

(1) f(x) := if x=0 then 1 else x X f(x-1).

The circularity of this definition renders it useless without some further
explanation. Following Morris [37, Chap. 3], we recognize two sorts of
explanation for recursive definitions. An algorithmic explanation tells
how to use (1) in formal computations. For each argument & there is

a procedure for transforming the ekpression f(£) to a numerical value
n. A careful algorithmic explanation for recursive definitions with
conditional operators is given by Manna and Pnueli [32, §3]. A
semantic explanation treats (1) as an equation that may or may not be
solved by any particular choice for the function f. The function speci-
fied by (1) is defined to be one of the solutions to the equation.

This chapter uses an elaboration of the McCarthy calculus for
recursive definitions [34, p. 42] to deal with two basic problems posed
by algorithmic and semantic explanations. The Main Theorem (5.6)
leads to satisfactory and intimately related solutions for both. We treat
the "functionality' problem in this section and the "validity" problem in
the next section.

First we review McCarthy's concept of recursive definitions

from [34]. A recursive definition is a set of equations of the form
f(ao, ’ak-—l) = e,

where f is a "function letter' used to name the function we are

defining, and e is any expression built up from function letters, nnme‘s
of given functions that have already been defined, the if...then...else..
construction, variables chosen from among 85 e s @ 1 and constants.

In [34] there can be only one equation beginning with f for each function

letter f, and the arguments TR must all be variables. These

3-3

restrictions will be slightly relaxed below, but they can be imposed
here for the sake of simplicity in this preliminary sketch.

Our example (1) is a recursive definition if we consider the data
space to be the nonnegative integers and the given functions to include
the test for equality (=), multiplication (X), and subtraction (-). The
general concept is not restricted to primitive recursion or even to
integer data.

Each equation
f(ao, cees ak—l) = e

in a recursive definition generates a set R[f] of rules of the form

Ay, ..., Ay) —E

0’

where each Ai is an expression that may be substituted for a; and E is
the result of performing all these substitutions in e. For each given

function g, we also have a set R[g] consisting of all rules
g(SO, cee s S_l) — n
where n is a constant representing the value of g for the constants

£.,...,& .. For conditional expressions we also have the set R|C
0 -1

of all rules

if true then E else E! — E

if false then E else E! — E’.

Expressions are to be evaluated by matching subexpressions against
the left sides of rules, then replacing these subexpressions by the

right sides of the rules.

3-4

We have sketched the essence of the nondeterministic algorithm
used by McCarthy for evaluating expressions. A formalization in
terms of subtree replacement systems (and a more specific comparison
with [34]) will be given later. For the moment it is enough to agree
that we can associate with each recursive definition an algorithm for
evaluating expressions. Given such an assignment of algorithms to
recursive definitions, we have an algorithmic explanation of these
definitions: a definition L defines a function Lf, for each function

letter £, such that

Li(Ey, ... E_) = n

whenever EO, cees S__l and n are constants such that the formal
expression f(§,,...,§_,) evaluates to n. (This means that the algorithm
has at least one computation that begins with f(SO, cee s E’_l) and halts at

n, not that every computation that begins at f(SO, cees §_1) must halt at n.)

In general, Lf will be only a partial function: Kfor some choices
of SO, cers S_l there may be no computations by the algorithm that halt
at a value n. We do expect Lf to be a function: for each (80, cee S_l)
there should be at most Qne n such that f('g“o, cee s 55_1) can be evaluated
to n.

When an algorithmic explanation is nondeterministic (or involves
asynchronous parallel processing), the singlevaluedness of the relation
between input and output needs to be shown. The general remarks
motivating this functionality problem in §3 are applicable here. They
can be fleshed out with examples where ingenious implementations of
recursive definitions could save a great deal of time [35, §2.2] or

space [49].

3-5

Now we can proceed with the formal development. For the rest

of this chapter, let ID be the data space of objects on which we compute.

For each k in the set TP of positive integers, we consider any set Gk of

given functions. Each g e Gk is a total function g:]Dk — ID, whose

computations are taken for granted. In applications the given functions
are the hardware capabilities, library subroutines, and so on that the
programmer can use as black boxes. The examples in this section will
use D=IN and given functions from arithmetic. The actual results apply
to arbitrary data spaces with at least two members.

In order to write recursive definitions of new functions in terms of

old ones and each other, let Fk be an infinite set of function letters for

each k € IP. The sets Fk are to be disjoint from each other, from ID,
and from the sets Gj' Finally, let W and X be infinite sets that are
disjoint from each other and from all the previous sets. These sets

"'variables' in the intuitive sketch of the McCarthy

will supply the
calculus. For reasons that will be clear shortly, we say that W is the

set of call-by-name parameters and X is the set of cail-by-value

parameters.

The given functions, function letters, parameters, and data com-

bine to form a total vocabulary V with a rank function p : V— N, as

follows:

V=DUWUXUFUG where F=UFk

p(f) =k for feF, UG

k k

p(a) =0 for acecDUWUX.

3-6

The forest V# = V# [p] defined by (4.11) consists of all operator-
operand structures for well-formed expressions constructed from this
vocabulary. The surface syntax in implementations is of no concern to
us here. For example, the pair of trees involved in defining factorials
by (1) is shown in Figure 3-1, which assumes Ce F3; =X, = e Gz;

fcF.: xe X; D=N. (Subtraction is made total by the usual expedi-

13
ent of setting € = n =0 when § < n.) We will retain the overlines in

the algebraic nomenclature (4.10) in order to prevent confusion between
the tree +(4, 6) with three nodes and the value +(4, 6) =10 of the function
+ at the argument string (4, 6). Thus +(4, 6) = (5, 5) but +(4, 6) # A5, 5).
The pair of trees in Figure 3-1 is to be a rule-schema in the sense

of Definition 6.1. The set U=W U X is to be the set of parameters.

The domains of the parameters are specified as follows.

(7.1) (Vu e W)(Du = V#) call-by-name

(Vx e X)(DX =]D#) call-by-value

Call-by-name is used in the definition of the conditional operator
needed for our definition of factorials. To compute conditionals, we

use any two schemata of the form

(2) C(yes,u,v) — u
C(no,u,v) — v
where

(3) CeF, & uveW & yes,noelD & u#v & yes # no.

3
In our example with ID=IN it would be natural to use 1 for yes
and 0 for no. In any situation with |ID| = 2 we can form two schemata

as in (2) such that (3) holds. Note that conditional expressions will be

Figure 3-1,

_— 0

u
J—

Operator-operand structures in the

definition of factorials.

3-7

3-8

evaluated in the proper way by the set of rules generated by (2). To
evaluate C(P,A,B) we must first evaluate P, and C(P,A, B) should
have no value unless P can evolve to either yes or no. If P can
evolve to yes we should forget about B and attempt to evaluate A.
The rule

C(yes,A,B) — A

expresses this. On the other hand, if P can evolve to no, we should

apply
C(no,A,B) — B

after evaluating P. If we think of (2) as the definition of a '"procedure"
C and we think of C(yes,A,B) as a céll on C with A as the "actual
parameter'' in place of the '"formal parameter' u, then A and B should
be passed unevaluated, as in ALGOL 60 call-by-name [38, §4.7.3.2].
If A has a value but B does not, then it is incorrect as well as inef-
ficient to try to evaluate all subexpressions of C(yes, A, B) before
evaluation of the whole expression. In Figure 3-1, on the other hand,
there is no need to call the procedure f before evaluating A in f(A).
Substituting A for x would lead to three independent evaluations of A
(one for each occurrence of x in the procedure body) if A does not
have the value 0. Because we used a call-by-value parameter x in
Figure 3-1, the only way to evaluate f(A) is to let A evolve to € for

some & € D and then use the rule

£(8) — C(=(E, 0), 1,X(E, f(=(E, 1))))

to enter the procedure f, as in ALGOL 60 call-by-value [38, §4.7.3.1].

If A has no value, then neither does tT(A).

3-9

All instances of Figure 3-1 and (2), together with all the rules like
2(2,0) — 1o and X2,1) — 1 that describe the given functions, define
the set IR of rules in an SRS € = (V, V#,==>,]R). For any & « IN, the
tree f(E) should have a unique normal form 7 such that £! =17, even
though the only sequencing is that implied by the use of X or ID rather
than W at some of the argument positions in the schemata. Like parallel
program schemata [25, § 1], € has only permissive control: at any point
in the computation, the next operation to be performed may be any one
of the operations permitted to start next. Whenever a subtree of the
working tree has the form C(E,A,B) for £ {yes.no} we may apply
the appropriate rule to this subtiree, or we may apply a rule elsewhere.

It is easy to write a set of rule-schemata that does not define a
function, such as {f(x) — 3, f(u) — 4}. We formalize conditions
under which sets of schemata could reasonably be expected to define
functions. The left half R of each schema R — S should be of the form
fag,...,a,_;) with f € F|_and a; ¢ DU WU X for all i <k. This is
equivalent to saying that R € V, with R() € F and Dom R C ~noU wi
(Recall that]NJ is the set of all strings J long of nonnegative integers.)
As in our schemata for conditionals, there may be two schemata R—> S
with the same root label R(), but then there must be differences between

constant arguments that will separate the instances of the two schemata.

(7.2) Definition. A recursive definition (RD) is any set L of rule-

schemata in V# X V#

() (YR—SeL)(R() e F & DomRc N'uUN°

such that

(2 (YR— S, R'"— '€ L)([R—> S#R'—= 8" & R() = R'()]

implies (3j e N)[R(j),R'(j) € D & R(j) +R'(j)]).

3-10

In defining rule-schemata in §6, we required that every parame-
ter occurring in 'S should occur in R when R — S is a rule-schema
(6.1.2). Therefore no two rules have the same left half in the set
B{R—»S} of instances of any schema R - S, where instances are
defined by (6.2). By (2), @ # ¢’ whenever ¢ — ¢, ¢' = ¥’ are instances of
R—S, R'—S' € LL and R'—S' + R—S. Therefore no two rules in]RL

have the same left half.

(7.3) Definition. Let L be an RD and let]RL be the set of all instances

of members of L. Define an SRS G:L by
(1) Ry ={eEy .. E) —nlgeG & gl&, ... 8) =n}

(2) @L=(V» V#,=:R : UIRL)-

giv

For each f € F, the set of ordered pairs
o={(&m e VxDITE, . E)—n in G}

will be the partial function represented by f when the definition L is used.
Definitions (7.2) and (7.3) extend the McCarthy formalism in two ways.
First, they allow members of ID as well as parameters to appear at
argument positions in the left sides of schemata, as in the '"proper
programs' of E. K. Blum [3, §4]. This flexibility renders the original

ad hoc treatment of conditionals [34, p.- 42, Rule 1] unnecessary. To

write an RD using if ... then ... else, we simply add

RSS2

to the other schemata. Second, our definitions introduce an explicit

choice between call-by-value with X and call-by-name with W.

3-11

Examples such as [34, p. 37] and the inspiration from LISP suggest
that McCarthy meant to use call-by-value exclusively. except of course
for the A and B in if P then A else B. Yet his evaluation rules speci-
fied call-by-value for given functions [34, p. 42, Rule 2] and call-by-
name for function letters [34, p. 42, Rule 3].

The "proper programs' of E.K. Blum [3, §4] in the Herbrand-
Gddel-Kleene formalism are a special case of our system. The crucial
restriction on ""proper programs'' is that all parameters are called by
value: only numerals may be substituted for variables in formal calcu-
lations. Rather than speak of applying rules to trees, Blum speaks of

' The initial set of

deducing ""equations' from setvs of "equations.'
"equations'' corresponds to our set L of schemata. The rule of
"substitution'" [3, p. 254] deduces instances of schemata, the rule of
"replacement" [3, p. 254] allows our SRS rules to be applied to parts
| of "equations,'" and the rule of "counting' [3, p. 254] evaluates given
functions. (The assumptions ID=IN; G1 ={successor function};

G, =@ for all k >1 are also made in [3], but thev are irrelevant to

the functionality problem.)

We have assigned domains to the parameters in (7.1) and defined
RDs to be certain sets L of rule-schemata in (7.2). Our algorithmic
explanation for RDs is provided by the SRSs GL in (7.3): to arrive at
a value n for an expression A by formal calculation s to let A evolve
ton n G‘,L. In order to solve the functionality problem we will now
apply Chapter 2 to the SRSs GL'

For any RD L, the set of rules IR ivU R

in GL may also be

g L

described as

3-12

R . UR, =R

giv L "R . UL

giv

because each ¢ — ¢y ¢ IR v is a schema with no parameters and with

gi
itself as the only instance. The SRS GL does have the form

(V, IF, =>, IRM) for M a set of schemata, so it is appropriate to use

the Rule-Schemata Theorem (6.5).

(7.4) Lemma. Let L be an RD. Then WU X is a set of parameters

and IR UL is a set of rule-schemata such that

giv

(1) R_, UR; =R :
giv L]RginL

(2) Each S wo c R - U]RL is an instance of just one

gi
R—»Se]RgivUL.

(3) Suppose <p0-—>¢0 e R VU]RL is an instance of R— S e IR . UL;

giv

gi
neDomch; n# (). Then some m‘eR—l(]DUWUX) has m anc n

and either gym € D or

RmeW & (Vy e V#)[(<p0/m)(n/m —yY) € DRm]'

(4) @:L is Church-Rosser.

Proof: For U= WU X, we have assigned a domain Du C V# to each
u c U by (7.1). We defined L to be a set of schemata in (7.2). The set
it

]Rgiv was defined in (7.3.1); since no parameters are used in IRgiv

is trivially a set of rule-schemata. The set]RIR 1, of instances of
iv

g

members of IRgivU L has

IR R UIRL=IR

giv giv YR

]Rgivu L

R L

because the only instance of a member of]Rgiv is itself. This proves (1).

3-13

Suppose o — (//0 c IR iVU]RL. If (pO() € G, then 0g — (ﬁo is

g

- an instance of itself in]Rgiv and of no schema in IRL, since (po() ¢ F.
If oo() € F, then ¢ — ¥ is an instance of just one R — S € L (by

(7.2.2) in the definition of RDs) and of no schema in IR since goo() ¢ G.

giv’
This proves (2).

Suppose ¢, — ¥, € R ivU R; is an instance of R — S € L.

g
Suppose n € Dom ¢, with n # (), so that n begins with an integer n,
such that nj < p((po()). Setm = (no), so that m € IN' and m anc n. In
the definition of RDs, (7.2.1) says that R has the form f(ao, cee s ak—l)
with f = goO(), k = p(f), and a; € DU WU X for all i <k. Therefore,

Rm € DU WU X. To complete the proof of (3) we consider two cases:

Case 1 (¢p.m € ID) Nothing more needs to be shown.
Lase 2 ¢,

Case 2 (pym ¢ D) We.must show that Rm € W and that any ¢ € Va
has (<p0/m)(n/m «—¥) € Dp_ . If Rm € D then gao/m = R/m because
all the substitutions are made at nodes independent of m. If Rm e X
then ¢,/m'e D, because D = Dy for all x € X. Both Rm € D and

Rm e X would contradict Pom ¢ ID, so we must have Rm ¢ W. But
then Dy =V, and (goo/m)(n/m —Y) e Vy, so (goo/m)(n/m*— ¥) e Dg
and (3) has been proven.

We use the Main Theorem (5.6) to prove (4). As we noted in
discussing Definition 7.2, (7.2.2) implies that no two rules in R, have
the same left half. Since the given functions are singlevalued. no two
rules in]Rgiv have the same left half. Since F NG = . these facts
imply that GL is unequivocal. We must show that © L is closed. By (2)
and the Rule-Schemata Theorem (6.5), it will suffice to prove (6.5.2):

whenever ¢ — ¥, ¢ — ¥ €]RLU R Yy is an instance of

giv: Y07

3-14

R—SeR UL,neDomch,ni(), and gDO/n=(p, then some

giv
m e R} (WU X) has m anc n and (pp/m)(n/m «—y)e Dp . Let m
be the node from (3). If Pom € ID then m =n and ¢ — ¢ has the form
£ — ¢ for & = pom € ID. But there are no such rules in]RgivU IRL,
so we have ¢,m ¢ ID. Therefore (3) implies that R_ € W and

(<p0/m)(n/m —) e Dp > @s desired.

The result EvalL R of evaluating a tree R & V# under an RD L
* -
will be defined as £& whenever £ € D and R== £ in G}L. It will be
convenient to make evaluation a total function by letting a new object %

be Eval, R whenever R has no normal form in ID#. Although evaluation

L
is not a bottom-up algorithm, it will be shown that replacing a subtree
R/n of a tree R by a tree S that evaluates like R/n does not change the

* evaluation of R.

(7.5) Evaluation Theorem. Let o ¢ ID and set D=DU {o}. Let L

be any RD. There is a unique surjection

(1) Eval, : V — D (total)

L #

such that
(2) (VR € V,)(VE € DNEvaly R=§ iff R — £ in C;)
(3) (VR,Se V(R Z5S in € | implies Eval| R = Eval; §)

(4) (VR,Se V#)(Vn € Dom R)

(EvalL S = Eval R/n implies Eval; R(n+——298) = EvalL R).

3-15
Proof: If R —*5 £, then £ is a normal form for R in G’L' By (7.4.4)
and uniqueness of normal forms there is just one function EvalL satis-
fying (1) and (2). Since EvalL é =& for each £ € D and EvalL a =
for each a € W U X, this function is surjective. Now (3) follows from (2)
and the Church-Rosser property. Finally, suppose R,S & V#;

n € Dom R; Eval; S = Eval; R/n. We show that Eval; R(n+-S) = Eval; R.

Case 1 (EvalL S+£o.) Let Eval, S=¢& = EvalL R/n. Then

L
R =% R(n «— &) by R/néé

R(n S) =£ R(n = E) by S=%5 E

Therefore Eval, R(n«—S) = Eval; R(n «— §) = Eval; R by (3).

Case 2 (Eval, S =®.) We may still have a finite value for EvalL R.

L

Case 2.1 (EvalR#®.) Let Ke N; £€D; (Ry,...,Rp) € (V#)K+l with

0

R=RO=>R1...=>RK=E.

For each k <K, let a rule Vs wk be applied at a node my in Rk to
form Rk+1‘ Let r. be the residue map for @ — tpk defined by
Lemma 6.3. We will define a subset Nk of Dom Rk for each k < K.
Intuitively, suppose that n has been painted red, that a red node stays
red when a rule is applied there, and that residues of red nodes are

painted red whenever a rule is applied. Then Nk is the set of all red

nodes in Rk' Formally:
Ny = {n}

Nk+1 :{p S NklNOT mkg._{l_gp}u ({mk}me) U

{mk-f-ﬂ(EJp eNk) [mka_nc_p# m & q€ rk(p/mk)]}.

3-16

For each k < K, Nk is an independent subset of Dom Rk such that
(5) (Vp e N]&)(EvalL Rk/p = 00)

by (3) and the fact that R/n => R, /p whenever p & N,

For each k K set

(6) Tk = Rk(Nk — S),'

For each k < K we claim that

(7 T = Tis1-

* - *
If m €N -IN then T, =T, ,, sowe may assume m ¢ N, -IN . Let

k
Ny /m, be the set {p/m, |p e N, & m, anc p}. For each £ ¢ N, /my;
we have £ € Dom ¢ With £ # (). We may apply the sublemma (7.4.3)
to ¢, — ¥, to show that £ has an ancestor u in left half o, of

— ! 1 '_
P ‘wk s schema such that either P € D or

K

But ¢,u € ID would imply u = £ and then R/mk- NS]D#, which would

(®) eue W& (Ve Vylo/we/u—yp ey].

contradict (5), so (8) must hold for all £ Nk/mk‘ We will apply

Lemma 6.4 to show that

(9) (pk(Nk/mk ~—385) — wk(rk(Nk/ mk) ~8) €R UR

giv L~

The left half ¢ of ¢ — ¥, 's schema plays the role of "R" in

Lemma 6.4, and we have just shown that each £ ¢ Nk/mk has an
ancestor u in @il(WU X), as required by (6.4.1). By (8) and D‘I’ku: V#

we have

(qok/u)(N‘é/u ~9)... (N‘_‘l/u —9) eV,

for each such u, where (W s een s N‘_‘l) is a listing of the members of

3-17

Nk/mk descended from u. This is just what (6.4.2) requires, so (9)
does follow from Lemma 6.4.
Direct calculations using the elementary properties of trees from

§4 show that this rule is applicable to Tk at m, and that T is the

k k+1

result. First we note that
Ty /my = R (Np—8)/my = (R} /m)(N} /m, «— 8)
so that Tk/mk matches the left half of the rule in (9). By mk(-;f Nk- IN*,
the definition of Nk+1 can be rewritten as
Nk+1 = {p c Nkl m, 1 p}U[m, - rk(Nk/mk)] .
Therefore

T =R

k+1 = BpeN

= R, (m, =y)({pe N, [m, L p}—5)

k1)

(m, - rk(Nk/mk) ~—3S)
= R (N} —8)(m —¢) (m -) (N, /m,)«—S)
= Tk(mk<—¢/k('rk(Nk/mk) —9)).

This completes the proof of (7).

By (6) and (7) we have

R(n «— S) =T0é=> TK=S(NK<—-—S)

while (5) implies that NK = (. Therefore EvalL R(n «— S) = & = Eval, R.

L

Case 2.2 (Eval; R =w.) Suppose Eval, R(n<—S)# ©. Then

Eval R(n «~— S){(n «— R/n) # o by the reasoning of Case 2.1. But

3-18

R(n +— S)(n «#— R/n) = R, so this is absurd. Therefore-

EvalL R(n+—S) =0 = EvalL R.N

If L is an RD and f € F then we could define a partial function

® :]Dp(f) ——> ID by the evaluation process:

(5,5_;) = Eval; #§,,....E_)).

The tota: function Lf: ﬂ_)p(f) —> DD defined below includes this function A '
and is more convenient. Our ultimate interest is usually in

& =LfN (]Dp(f) X]D). for some one f € F, but the mathematics of

{Lhlh e V} tells much more about @ than the mathematics of

{Lh ~ (PP X D) |h € F} alone.

(7.6) Definition. Let L be an RD, T00 be any member of V# such that
EvzzmlL Too = o . For each § ¢ D set

(1) 5=3j9€1D thenaelse Ty -

For each f € V and all 6 ¢ Il—ip(f) set

(2) Lf(eo,..,,e_l) =Eva1L f(GO""*e-l)'

When f ¢ D we have Dom Lf ={()} and the only value assumed is
Lf() =f. Whern f €« WU X we have Lf() =w. When f € G, Lf is the
natural extension of f from a function on]Dp(f) to a function on]]_Z)p(fi) :
Li(6y,...,0_,) is f(6,,...,6_;) if each 6, € D and is = otherwise. When
f € F the values of Lf depend on the choice of L and may be finite deSpite-

infinite arguments. For example, if L includes the schemata for

conditionals, then LC(yes, 17,) = 17.

3-19

What have we really gained by adding « to the data space and
expressing the theory in terms of total functions? One advantage is
that the theory is somewhat richer. If an RD L and function letters

f,f' Fk are such that

(2) Lt (DX X D) = L' N (DX X D),

then the theory restricted to partial functions would be unable to dis-
tinguish between Lf and Lf’, although Lf # Lf' is quite consistent with
(a). By introducing « we have made it possible to assert more than we
could before; in the next section we will find that some of these new

assertions are true. Of course, we may still use a definition such as
(b) L]t = Lt N (@ x D)

to restrict parts of the discussion to partial functions whenever we wish
to do so.

Another advantage is simplicity. Suppose that &:]D2 — ID and
¥: D — ID, with both functions partial. An expression such as
o(&, ¥(n)) is quite awkward to work with if we have no assurance that

n € Dom ¥ and that (£, ¥(n)) € Dom &. What does

2(8,¥(n) = ¢

mean? Suppose n ¢ Dom ¥ but ®(37,-) is a constant function on ID.

Is it correct to write
®(37, ¥(n)) = (37,94) ?

Kleene [26, §63] introduces special notions of equality and of compo-
sition of functions in order to handle such problems consistently. We
only need the usual intuitive notions, yet we can make finer distinctions.

If 3 D2 — D is a total function and 3(37,-) is constant on D, then

3-20

B(37, ©) = D(37, 94)

will be true if ¥(37,-) is actually constant on all of D but will be false
otherwise.

The introduction of « here is very much like the addition of « to -
the number system in the study of infinite series: the mathematics
becomes somewhat richer and simpler than before, but none of the real
difficulties are magically removed. Clever notations can only dissolve
the crust of merely notational difficulty that often obscures a real
problem. In particular, the set & of partial functions &:ID — DD
computable by finite RDs is the natural generalization of partial

recursive functions. We would define this set as
g={2|(3L, afinite RD)(If € F,)[2=L{IN (DX D)]}.
Someone who prefers not to consider « would write

g={2|@L, afinite RD)3f € F,)
(e={(&,n) e DXD]HE Lo 7 in C, h}

instead but would specify exactly the same class of partial functions.

Unsolvable problems are still unsolvable problems in either case.

We have defined RDs and have explained them algorithmically:
for any RD L, the SRS GLL provides a nondeterministic algorithm for
evaluating expressions, and any function letter f defines a function
Lf:]]_I)p(f) — D that is singlevalued because normal forms are unique
in the Church-Rosser system €; . The fact that L{ M (]Dp(f) X D) is

singlevalued whenever f € F and L is an RD without call-by-name has

been proven by E.K. Blum [3, §4, Thm. 1], whose "proper programs'"

are equivalent to this kind of RD. (As we remarked earlier, the

3-21

additional assumptions on the data space and given functions in [3] are
irrelevant to the functionality problem.) Blum's proof depends on the

restriction to call-by-value and does not cover our result.

8. A Semantic Explanation

Any recursive definition L defines a set of rules IRL that may also
be viewed as a set of equations. The rule ¢ — ¢ corresponds to the
statement ¢ = ¢. If we interpret the function letters as names of spe-
‘cific functions on]]—), then the assignment of functions to function letters
may or may not "solve' the equations by assigning the same value of ID
to the left half of every rule as to the right half.

For an example we return to the RD for factorials:

Here we have named the given function

{((%’,‘-ﬂ),fﬂs,n,C e D&[(E=n&f=yes) or (§4n & {=no]}

"EQ" rather than ''='" in order to prevent confusion between it and the

relation of equality on D.

The rule for (6) may be thought of as an equation

(1) £(6) = C(EQ(S6,0), 1,X(6, f(=(6, 1))

that may be true or false, depending on which operations are considered
to be the meanings of the opera{ors. We are concerned with whether £(6)
and C(...) have the same value in ID; we already know they are not the

same tree! We therefore write (1) more explicitly as

3-22

(2) Val (6) = Val; C(EQ(6,0), 1,X(6,£((6, D)),

where I is an "interpretation' of the function letters that assigns an

actual function

I : P . B (total)

to each f € F. Whether (2) is true or false will depend on the choice
of I and on the precise definition of ''values' by a map

ValI : V# — ID (total)

for each possible choice of L.

A semantic explanation for RDs is any scheme for assigning

value maps ValI to interpretations I, so that an interpretation I can

be said to solve an RD L if
ValI Q= ValI 1/

for each rule o — ¢ € IRL. An RD L has a set of solutions I, just as
the numerical equation

Y2+v-6=0

has a set of solutions {—3, 2}. (Because RDs may have many function
letters, we must consider assignments of functions to function letters
rather than just single functions as solutions.)

For numerical equations there is little else to say: some
equations have no solutions and others have many. The answer to a
numerical question is often one of an equation's solutions, but which
one is determined by parts of the question not modeled by the equation.
Different questions may determine the same equation but require

different choices from among its solutions.

3-23

For recursive definitions there is much more to say about their
solutions. Under the natural semantic explanation we will use, every
RD L has solutions. Indeed, the assignment If = Lf of functions to
function letters defined by (7.6.2) is a solution. This particular
solution can also be characterized in a purely semantic way — it is the
unique solution that is "'extended" by every other solution. (The notion
of "extension' to be used here is similar to the familiar relation
among partial functions: f extends g if the set f of ordered pairs is
a superset of the set g of ordered pairs.) We call this the "canonical"
solution.

By showing that If = Lf for all f ¢ F will solve any RD, we will
show that the algorithmic explanatién from §7 is "valid" relative to our
semantic explanation. Each RD L has a canonical solution I, :and the
algorithmic explanation defines nondeterministic algorithms for com-
puting the functions If. The function Lf computed by the algorithm for
f is indeed If: the program is correct. A rule of inference is said to
be valid if all its instances are correct inferences; similarly, we say
that the algorithmic explanation in §7 is valid because the algorithms
it defines for eact . are correct when considered as attempts to
specify the functions in the canonical solution for L. The main result

of this section will be called the "Validity Theorem."

If we call members of FU G '"operators' and members of
DU WU X "individual symbols' then V, corresponds to a set of
"terms" in logic. A logician would "interpret" operators f of rank k
— i

as operations If: D —-]1_5 and individual symbols a as members

Ja c ID, in order to interpret terms as denoting members of ID.

3-24

It will be more convenient to treat ''symbols' of rank 0 consistently.
We will say that each individual symbol is interpreted as an operation
I D’ — D, so that 1. ={{(),0)} for some § € D. This will save
some unnecessary case analyses without changing the familiar intuitive
notion of "interpreting' symbols as members of D or operations on

them.

(8.1) Definition. An interpretation of V on D is any function I

assigning to each o € V a total function Ia:']]—)p(a)_> D.

Interpreting members of V-F as well as members of F is a
technical convenience. Once an operation Ia‘has been assigned to each
a € V by an interpretation 'I, values in]1_) can indeed be assigned to all
the '"terms' in Vy by straightfbrward bottom-up applicétions of oper-
ations, just as in our original example of evaluating arithmetic
expressions. More precisely, the following lemma is proven by

induction on the sizes of trees.

(8.2) Lemma. Let I be an interpretation of V on D. There is a

unique function

(1) valp: Vy — D (total)
such that
(2) (Vae VIVT e (v,)Pe))

[ValI;(TO,...,T_l):Ia(Vall o Val T_)].m
(The members of V of rank 0 are treated consistently and need no
different kind of interpretation.)
An interpretation I of V on D solves a recursive definition L if

it agrees with the meanings of the constants, parameters, and given

3-25

functions and turns every instance of L into a true equation. A
solution for L that agrees with all other solutions wherever it is

finite is a canonical solution.

(8.3) Definition. Let L be an RD. An interpretation I of V on D is

a solution for L. iff

(1) (V€ € DX, ={(0,&)})

(2) (Vae WU XN ={{0),=)})

(3) (Vg € QYO ¢ n’ap(g))(xg(e) =if 6 c DP® then g(6) else w)
(4) (Vo — ¢ € Ry)(Val; ¢ = Val ¢).

A solution I for L is canonical iff every solution J for L satisfies

(5) (V @ € V)V o e D)

[Ia(e) # implies J (8) =1 (6)].

Thus a canonical solution agrees with every other solution where-
ever it is finite. An alternative way to characterize canonical solutions
is to define a partial ordering < on the total functions &: D — D by

< U iff (VO € DN)(8(6) # » implies &(6) = w(6))

iff @M (DxD) c vN (DX D),

so that < is very much like the relation 'is extended by' among partial

functions. Then < can be generalized to interpretations by setting
< i S <
I<J iff (Vece V)(Ia < Ja) .

A solution I for L is canonical iff it is a minimal solution in this partial

ordering: I < J for every solution J.

3-26

Now we are ready to show that any RD does have a unique canonical
solution and that this solution is the one specified by our algorithmic

explanation.

(8.4) Validity Theorem. Let L be an RD and define an interpretation

I of V on D by setting I,=La for each @ € V. Then

(1) (YR c V#)(ValI R = EvalL R)
(2) I is the unique canonical solution for L.

Proof: We prove (1) by induction on the size |R| of R. (This is the
cardinality of R as a set of ordered pairs.in (4.3).) Suppose R is a

tree such that Val, T = Eval, T whenever |T] < |R|. We show that

I L

Val. R = Eval, R. Let ¢ = R() and k = p(a), so that

I L

- . k
R= a(TO, ..., T with (T "-T-l) c (V#))

-1 0

Let Gi = Val Ti for each i < k. By Lemma 8.2 and Definition 7.6,

I

(3) Val, R=1(0
a

1 .,6_1) = La(eo, ...,6_1) = EvalL a(eo, ...,6_1).

0

By the induction hypothesis, Oi = EvalL Ti for each i < k. Therefore,

by Evalg £=¢ for all £ € D in (7.5.2) and by the definition (7.6.1) of Ei,

~

Eval, 0. =if 0. €¢ ID then 6. else o =0, = Eval, T, .
i ~ 7 i i L i

L
For each i < k we therefore have

Eval; T, = Evaly [&(Tq, ..., T;_1, 60,0504, -+, 0_1)/(D]

and so

Eval; a(Tg, ..., T; 1, Ty, 0,050 ;) =

Evaly @(Tg, ..., T;_ 1,056, 1 ,0_)

3-27

by part (4) of the Evaluation Theorem (7.5). In k steps we may replace
8. -e 0]

o201 by Tgieees T_; in &(90, ..., 8_4) without changing the value
of EvalL. Therefore (3) implies that
Val; R = Eval; a(T,...,T_;) = Eval; R.

Now we must prove (2). By the definition of canonical solutions

(8.3.5), any pair of canonical solutions H,J must have
Vo € Vve e DPLD)

[(H_(6) # = or Jo(0) # «) implies H (6) = J (0)].

This implies H = J, so there can be at most one canonical solution.
Now we show that I is a canoniclal solution.

To show that I is a solution we must verify conditions (8.3.1) -
(8.3.4). For any £ € ID we have EvalL E = £ and so IE(y=LE&()=§&,
as required by (8.3.1). For any a € wU X, a is irreplaceable in G',L
and a ¢ Dy, so Evaly a = . Therefore I () =La() =, as required
by (8.3.2). Forany g G and 6 €]]—Dp(g)’ Ig(G) = Lg(0) =
Eval, g@,,...,8_;). If 6, € D for all i then 86y,0_) —nisa
rule of @‘L for n = g(6). If 6, = = for some i then any S € Vy with
é(go, ,5_1) £5 S has S()=g and S/(i) ¢ ID#. Therefore

Eval fg(ao, cer, 5_1) is o in this case. In both cases we have

Ig(G) =if 6 ¢ le(g) then g(0) else o,

as required by (8.3.3). Finally, we must show that ValI Q= ValI ¢ for
each ¢ — ¥ € R; to verify (8.3.4). To do this we apply (1) to the

special case

Vo— vy €]RL)(EvalL ¢ = Eval; ¢)

3-28

of part (3) in the Evaluation Theorem (7.5). Therefore I is a solution
for L. We must show that I is canonical.
Suppose J is also a solution. We verify (8.3.5) by showing that

each K € IN has the property

R=29.

(4) (VR € V#)(VE € DXR L é implies ValJ

For K=0 we have R = & and so
ValJR=J§()=’§

by (1) in the definition of solutions (8.3). To pass from K to K+1,

suppose (4) holds for K and R, S, £ are such that
R==S L £,

We show ValJR=§’. Let ngDomR and g— ¢y € R v U R with

gi
(5) R/n=¢ & S=R(n+—y).

We claim that

(6) Val; ¢ = Val; ¢.

foe—yeceR v then (6) holds because J, as a solution for L, satisfies

gi .
(8.3.1) and (8.3.3). If o — ¢ € R; then (6) holds because J, as a

solution for L, satisfies (8.3.4). By (5) and (6),

S=R(n+—y) & Vale = ValJ(R/n) .

By induction on [n| and the definition of values under interpretations

from Lemma 8.2, this implies that ValJ R = ValJ S. But ValJ S =¢§& by

R=E&.8

the induction hypothesis, so ValJ

3-29

Morris [37, Chap. 3, Thm. 2] stated a conjecture that amounts
to this theorem when RDs are defined formally in the manner of §7.
He suggested that the theorem could be derived from a small extension
of a theorem about the lambda calculus [37, Chap. 3, Thm. 7]. Rather
than formally relate the McCarthy calculus to the less intuitive lambda
calculus, we proved the Validity Theorem directly.

Suppose that H,J are solutions for an RD L with canonical
solution I. Let f € F and let A, = {6 e Il_l)p(f) | Lf(8) # «}. Then each
0 e Af has If(e) # o by the Validity Theorem and so If(e) = Hf(e) and

1.(6) = J.(6) because I is canonical. Therefore

(V6 € AP[HLO) = I(0)].

This is an extension of McCarthy's principle of ''recursion induction"

[34, §8], which asserts only that

(V6 € AN mp(f)).[Jf(e) = J{0)].

The Validity Theorem is also related to Kleene's ''first recursion
theorem' [26, §66, Thm. 26]: any partial recursive functional ‘¥ has
a unique minimal fixed point defined by formal calculations using the
set of equations that specifies “F. A functional is a mapping from functions
to functions, or from interpretations of V on D to interpretations of V
on ID, when we wish to think in terms of replacing one system of several
functions by another. A partial recursive functional is one definable by
formal calculations from sets of equations [26, §63]. An interpretation
I is a fixed point of a functional F if I = F(I). Minimality is defined by

the partial ordering < that we considered earlier:

I<J iff (VeeVI[I.N (D x D) ¢ g N (0P x D).

3-30

To state the Validity Theorem in terms of functionals, we assign
a functional 'FL to each RD L. Suppose that I is én interpretation of
V on ID which agrees with the intended meanings of constants, parame-
ters, and given functions, but which may not make each rule in]RL a
true equation. Thus we are considering interpretations that satisfy
(1) - (3) but not necessarily (4) in Definition 8.3. We define a new
interpretation J = ‘FL(I). For a € V-F let J, = I. For f € F consider

p(f)

any 6 ¢ D There is at most one rule 9 — ¢y IRL of the form

0, - 6_1) — ¥

If there is such a rule we set

(1) J{6) = Val y;

otherwise we set Jf(e) = If(O)‘.

We claim that I is a fixed point of "FL iff I is a solution for L,
so that I is a minimal fixed point of ‘?L iff T is a canonical solution
for L.

Suppose that I is a fixed point of ‘FL. If op— ¢ € R, , we must

LJ
show that Val; ¢ = Val; ¢. Let ¢ = f(Rj,...,R_;) with f € F. Set
6, = ValI Ri for each i < p(f). Replacing Ri by 51 at (i) in Dom ¢ and at

each residue of (i) in Dom ¢, we construct a rule 5——» @, where

5= TGy nBy)
and Val; @ = Val; ¢ and Val U= Val; ¢. By (1) and the fixed point
property, |

If(eo, cees 9_1) = ValI v.

3-31

Therefore

Val, ¢ = Val; f(Rg,....R_;) = If(Vall Ry, ..., Val. R_

0 I 1)

= 1.6 ,6_1)=Va11¢=VaIIt//.

RCPYRTE

4
Now suppose that I is a solution for L. For f € F and 6 < Iﬁp‘f)
we must show that Jf(e) =‘If(0) where J = ‘FL(I). If there is no rule in

lRL of the form

@y,0_) — v

fhen Jf(e) = If(e) already, so we may assume there is such a rule. If
91 = o we may assume that the tree 51 has been chosen in (7.6.1) so as
to make ValI §i = o ; we could, for example, take 5i to be x for any
x € X. Therefore we may assume ValI 51 = Gi for all i < p(f), since

-~

ValL Gi = 61, for Bi # o also. Therefore, by Lemma 8.2,
If(G) = ValI f(eo, cees 9_1);

But Val; f(go, cees 5_1) = Val; ¢ because I isa solution for L, so
If(e) = ValI Y. Comparison with (1) yields Jf(G) = If(e).
In light of the equivalence just demonstrated, the Validity

Theorem can be restated as follows:

(*) Any functional ¥ such that F = ‘;L for some RD L has a unique

minimal fixed point I, and If = Lf for each f ¢ F.

Restating the '"'first recursion theorem' [26, §66, Thm. 26] for
g

comparison,' we have the following statement about functionals that

map functions on Il_Dk to functions on]l_)k:

3-32

(%) Any functional ‘¢ definable by formal calculations from a system
of equations E has a unique minimal fixed point &, and & is defined by

formal calculations based on E.

Aside from the minor difference in format between calculations
with equations and applications of rules, there are two differences
between (%) and (x*). The first difference is that only nﬁmei‘als can be
substituted for variables in (¥*) [26, §54], so that only cail-by-value is
allowed. There are no restrictions on call-by-name in (). The second
difference is that (x) does place syntactic restrictions on the equatiohs
that are not required by (%x). | |

An RD corresponds to a set of equations of the form

f(ao, ,a_l) =e

where each a; has rank zero. Further syntactic restricfions in
Definition 7.2 guarantee that the SRS will be unéquivocal and that single-
valued functions will be defined. In [26] the system E' may be any
system such that, for each choice of f and 50, ee, §’_1, at most one
equation f(‘g“o, e 'g"_l) = n can be derived. Furthermore, this single-
valuedness must not depend on the choice of the given functions [26, §63].

For example,

f(x,g(x.x)) =3 where gecG; fecF

2-—»]]_D, set

is an acceptable set of equations. For any ¥: ID
®(§,n) =3

whenever §,n# o and n = ¥(&, £), with ®(&, n) = © otherwise. Then

the functional @ = F(¥ is definable by this set of equations: @ is the

3-33

set of all ((&,n), ¢) such that

f(§,n) =¢

is deducible when g is considered to be ¥. To define this functional

by an RD we could use
J

where h e F,. (We only need to have h(0) be something with
EvalL h(0) = ©.) For any interpretation I, the functional ‘FL will re-
place I; by J. for J = ¥ (I), where J, = F(I) .

We do not consider the restriction to RDs in (%) to be very serious,
since it is well-known that RDs can define all the partial recursive
functions in terms of successor and equality [34, §9] and that RDs are
generally quite convenient for de.fining functions in terms of other
functions [33][34]. Under the restriction to integer data in [26], it

appears likely that RDs suffice for defining all partial recursive

functionals, but that has not been demonstrated.

CHAPTER 4

APPLICATIONS TO THE LAMBDA CALCULUS

This chapter applies the theory of general and subtree replace-
ment systems to the full lambda calculus, including eta and delta rules
as defined by Curry and Feys [14, Chap. 3]. In §9 we explain the
lambda calculus informally and then formalize it in terms of general
and subtree replacement systems. Our novel approach to alphabetic
equivalence permits a higher degree of mathematical rigor than does
the usual approach.

In §10 we prove the classical Church-Rosser theorem [14, Chap. 4]
with a divide-and-conquer strategy. The lambda calculus is analyzed
as a union of two systems: ‘BB (defined by the beta rules) and fgné
(defined by the eta and delta rules). New systems @7 and G’o are
defined, so that. ’BB can be simulated by the interaction of G’Y and @G,
yet these systems by themselves are much simpler than :‘BB.

The Main Theorem (5.6) implies that G:’Y (_Y,G, and :Bné are all
Church-Rosser. We derive the Church-Rosser property for %B from
the properties of @7 and @,G by a special argument. After showing
that %B and ﬂné are Church-Rosser, we use the Commutative Union

Theorem (3.5) to conclude that the full lambda calculus is Church-Rosser.

8. Lambda Calculus

Analogies between the lambda calculus and programming
languages have been discussed by many authors. Landin [29] even

proposes defining the semantics of a programming language with

this calculus. He considers a syntactic description of the usual sort
together with a syntax-directed translator that maps programs to
lambda expressions. The semantics-of lambda expressions are already
defined by the nondeterministic evaluation procédure specified by the
formal "reduction' rules of Curry and Feys [14, Chap. 3].

Although Landin's paper and the references cited there suffer
from some gaps and confusions, the approach does clarify many issues A
in programming language design, and our interest in the lambda
calculus stems partly from this fact. (Wegbreit [53, pp. 132-138] has
taken a similar view.) The lémbda calculus is also interesting as a
mathematical example. Unlike the McCarthy fofmalism for recursive
definitions, the lambda calculus is complex e_nough to illustrate the
whole-part theorems of §3. Unlike English or PL/tl, it is also simple
enough to be treated in detail without overwhelrhing the rest of our dis-

cussion. We begin with an informal description of the lambda calculus.

The standard mathematical approach to functions i;q to define them ;
as sets of ordered pairs. The lambda calculus treats functioris'the way
ordinary mathematics treats sets (or classes) -- as primitive entities
that satisfy certain axioms but are not déﬁnable in terrﬁs of other entitﬁies.
Functions and their arguments are objects on an equal footing. An object
R may be ""applied" to another objeét S, forming a third object y(R, S).. .
New objects can also be "abstracted' by using ''variables'" x, y, z, ... and
a special symbol . Suppose S is an expression that would name an
object if all the occurrences of a variable x were to be replaced by the
name of an object. Then the expression \(x,S) nameﬂs an object T. For
eéch object R, v(T,R) is the object named by S after x has been

replaced by a name for R.

To illustrate the notation we suppose for the moment that the
objects under consideration include the nonnegative integers and the
addition map ADD. Then vy(ADD, 3) corresponds to the function
{(k, 3+k) | k € N} while y(y(ADD, 3).5) is the result of applying this

function to 5. The equation
(9.1.1) v(v(ADD, 3),5) = 8
and an infinity of similar equations are approximately equivalent to
ADD ={(h,{(k, h+k» | h,k € N}
which is only trivially different from the usual
ADD = {((h,k), h+k) [h,k € N}.
The function {(h,h+h) | h € IN} can be described by abstraction as
N[x, v(v(ADD, x), x)]. An infinity of equations like
(9.1.2) v(\M[x, y(y(ADD, x),)], 3) = v(v(ADD, 3), 3)

express the meaning of the abstraction.
Since the variable x does not occur in ADD, the abstraction

N (x, v(ADD, x)) is a needlessly long description of ADD. The equation
(9.1.3) N(x, vy(ADD, x)) = ADD

and similar equations collapse such abstractions.

The lambda calculus consists of a precise syntax for application
and abstraction plus fhree sets of axioms. The three equations (9.1)
illustrate the three kinds of axiom used. There is one rule of
inference: from R=SAand P=Q, we may infer R = T, where T is the
result of replacing P by Q somewhere in S. To prove a theorem of the

form R=7 amounts to evaluating the expression R and getting the

4-4

answer 7. The étudy of this system is facilitated by using trees rather
than parenthesized strings and a set of rules in an SRS rather than a
set of equations. Our formulation is logically equivalent to that of
Curry and Feys [14, Chap. 3] but more amenable to detailed mathe-

matical analysis. Comparisons are given at the end of this section.

We will now begin constructing the SRS which will be used to
formalize the lambda calculus. The notation developed in the next few
paragraphs will be used throughout the chapter.

The vocabulary consists of a set C of constants denoting "'known"

objects, an infinite set X of variables, ‘and two special symbols \, 7.
V=CUXU{\ 7},

We require that. C, X, and {\, v} be ml;tually disjoint and specify a rank
function p:V — IN by assigning rank 2 to X and v, rank 0 to other symbols.
The forest IF of interesf here is not all of V#, since N (R, S) is only
significant when R consists of a single variable. In the fully abbreviated

algebraic nomenclature of (4.10), IF may be defined inductively as follows:
(Cux), ¢ T

(Vx € X)(VS € F)(\ (x,5) € TF)
(VR,S € F)(7(R.S) € TF).

The following family (9.2) of definitions deals with bound and frée
variables. The distinction between bound and free occurrences of
variables in more familiar notationé is discussed by Curry and Feys
[14, Chap. 3]. For examble, x has a free occurrence and y has a bound
occurrence in the expression fﬂ cos (x+y) dy, while y has both kinds of

0 i
occurrence in the expression f cos (xty) dy +y. For Se IF and
0

4-5

x € X, the set S_l(x) is divided into bound and free occurrences of x:

(9.2.1) B_S ={n€STl(x)|(Zm anc n)(Sm =X & S(m-(0)) =x)}
) (bound occurrences of x in S)
F_S= S (x) - B_S (free occurrences of x in S).

For S€IF and m,n € Dom S define

(9.2.2) n isbound to m in S iff [m anc n&Sm = X & S(m+(0)) = Sn &
(Vp anc n)([Sp=X & S(p-(0)) =Sn] implies p anc m)]

so that n is bound to m when n € BXS for some x € X and m is the

closest ancestor of n involved in the definition of BxS°

For example, let y,z € X with y # 2z and let S be
(a) YNz, v(y, y)); v(y. Mz, (2, 2)))) .

Then B_S is ® and B_S is {(0,0),(1,1,0),(1,1,1,0),(1,1,1,1)}. The
node (1,1,1,1) is bound to (1,1 1) rather than to (1, 1). In this example,
the set of variables that occur bound in S is BVbl S = {z}, while the set
of variables that occur free in S is FVbl S = {y}. For any S e IF we

define
(9.2.3) BVbl S ={x € X|B_S # @}
FVbl S ={x € X|F_S+# @}.

For S € IF such that
(9.2.4) BVbl SNFVbl S=Q &
(Vm,n € S-l()\))(S(m-(O)) = S(n-(0)) implies m =n)

we say that S is alphanormal and set

(9.2.5) F,={SeF | S is alphanormal}.

4-6

No variable is both free and bound in an alpﬁanormal tree. No
two occurrences of any single variable are bound to distinct occur-
rences of \ in an alphanormal tree. Our example (a) satisfies the first
of these criteria but not the second. The reasons for introducing]F0
will emerge gradually, once certain equivalence relations have been
defined. One of the properties of IFO can be stated immediately:
subtrees of alphanormal trees are alphanormal. This fact will be
used repeatedly in inductive arguments in the next section.

The result of substituting R € IF for each free occurrence of a
variable x in S € IF will be called [R/x]S:

(9.2.6) [R/x]S = S(F_S <—R).

For example, if R is ¥y, z) and S is v(x, My, x), Mx, 2))),
then

[R/x]S = v(v(y, 2), Y(My, v(y, 2)), Mx, 2))) .

Notice that the free variable y in R is "captufed" by the occurrence
(1,0) of A in S, since (1, 0) is an ancestor of the node (1,0, 1) in FXS
and (1,0,0) is an occurrence of y in S. Although (0) is a free occur-
rence of y in R, the ocrresponding node (1, 0, 1)-(0) in [R/x]S is a
bound occurrence of y in [R/x]S. We will often wish to assume

FVbl RM BVbl S = @ in order to avoid such "captures' of free

variables.

The use of variables requires arbitrary choices. The expressions
T s
f cos(x+y) dy and f cos (x+z) dz differ only in an irrelevant alpha-
0 0 '
betic decision. Even free variables are ultimately used only to require

that the same expression be substituted for a free variable at each of its

4-7

occurrences. Intuitively, foncos (xty) dy and foﬂcos (z+y) dy are only
trivially different, although only changes in bound variables are commonly
recognized as 'trivial" in logic.

Here it will be convenient to recognize two sorts of alphabetic
equivalence Trees are "weakly alphaequivalent'" if they are the same
except for the choices of variables. They are ""strongly alphaequivalent'
if they are the same except for the choices of bound variables. To aid in
defining these relations we first define a relation «? on]N* for each

R e IF.
9.3 1) m <~—— n iff
(mn R i

[(3xe X)(m,n € FXR) or (dp ER_l()\)) (m, n are bound to p in R)].

The ''links'' of Bourbaki [5, p. 16] inspired the ?Anotation.
Note that only one of the alternatives in (9.3.1) can hold. Although
defined as a relation on]N*, = is in fact a subset of R_l(X) X R_l(X).
Since every node in R—l(X) is a>free or a bound occurrence of the
variable that labels it, R is reflexive. It is o'bviously symmetric.
Suppose m <> n <g> P. We claim that m “® P There are two cases.
If m,ne FXR for some x € X, then n “RP implies that n,p € FxR’
so that m,p € FXR and m T P On the other hand, if m and n are
bound to q for some q in R™1(\), then n <=+ p implies that n and p

R

are bound to g, so that m and p are bound to q and m] P- Thus

R is an equivalence relation on R_l(X). Another technical conveni-
ence in working with the forest IFO of alphanormal trees defined in (9.2.5)

is the fact that, whenever R < IF0 and m,n € Dom R, then

an iff Rm = Rn.

4-8

For alphanormal trees, nodes labelled by variables are equivalent iff
they have the same label.

By a straightforward case analysis (given in Appendix A) we can
show that, whenever R € IF and m,n,p € Dom R with m anc n and

m anc p, then

9.3.2) n +— iff n/m <———s m .
(= P / Rm p/

Now the two kinds of alphaequivalence can be defined. We use the

usual notation f A A for the restriction of a function f to arguments in A,

(9.4) Definition. For R € IF let the frame Frame R be R M R_l(V—X),

For R,S € I define weak alphaequivalence (=) and strong alpha-

equivalence (=) by

(1) R =~S iff [Frame R = Frame S & (4?{) = (3)]

(2) R=S iff [R>S & (VxeXVneF_R)Sn = x)].

The technical motivation for intréducing weak alphaequivalence
lies in the inductive properties anticipated in the lemma (9.3.2). Recall
that any tree in IF with more than one node has the form \(x,S) or ¥(R, S)
with R, S € IF and x € X. We can almost say that \Mx,S) =~ \(x',S!) iff
S = 8’ and that y(R,S) ~ y(R',S") iff R~ S and R' ~ S': complex trees
are weakly alphaequivalent iff all the corresponding subtrees are weakly
alphaequivalent. A bothersome complication arises from the need to
make free variable changes in one subtree consistent with free variable
changes in another. This requirement is stated formally by the

following lemma.

(9.5) Lemma. Let R,R',S,S' € IF and x,x' € X. Then

4-9

(1) N(x,S) = N(x!,S") iff (S~S'& F_S=F_,S"
X X

(2) v(R,S) =~ y(R',S") iff
[R2R'&S~3 &

(Vy.y'e X)(FyR=Fy,R'¢§Z) implies FyS=Fy,S’)] .E

The proof is a straightforward application of the definition of
weak alphaequivalence (9.4.1) and the lemma (9.3.2). Details are in
Appendix A.

At first glance the clause

(Vy,y' € X(F S = F,S"# ¢ implies F R = F ,R')

y
seems to be missing from the right half of (9.5.2), but it follows from
the right half as stated.

The following lemma relates alphabetic changes in trees of the

form

T = S(m0 — Ry .. Am_, <-—R_1)

to alphabeticr changes in the appropriate trees S, RO’ ... R

R'

(9.6) Lemma. Let x x’e€ X; KEN; 5,5, R 0’

LR R IF;

[} =
0’ K-1'7" K-l €

mg,....my € IN" (distinct nodes). Suppose

(1) FXS={mk|k<K}:FX,s'

(2) (Vk <K)(FVbl R, N(BVbL SU{x}) = @)

(3) (Vk <K)(FVbl R! N (BVbl 8" U{x'}) =).

Then the statement

(4 Stmy+—Ry) ..(m_j+— R) = S"(my+——Rp)...(m 4 ~—R])

holds iff the following statements hold:

4-10

(5) S=8" & (Vk< K)(Rk o R{{)

(6) (Vy,y'€ X)[FyS= Fy,S'# @ implies (Vk < K)(FyRk = Fy'Ri{)]

=F_,R!).

yk Ty

(7Y (Vy,y'eXNVj k< K)(Fij =Fy, RJ'. # @ implies F_R

Proof: Let T,T' be the left and right halves of (4). We assume (4) and
derive (5), (6), (7). Intuitively, (6) and (7) say that the changes in free

variables made in passing from S, R, ..., R , to S’, R!

'
0 e R

are
-1

0’ -1

consistent.

Obviously Frame S = Frame S'. Now suppose m 5 n We show
m ?n. If me FXS then m,n € FX,S’ by (1) and so m ?n. Other-
wise we have m,n ¢ F_S and then m,n ¢ F_+S’ by (1). In the definition
(9.3.1), m and n may both be free occurrences of a variable other than
x or m and n may both be bound to a single occurrence of A\. Both
these conditions are unaffected by substitutions at nodeé in FxS’ SO

m <> n. Thergfore m <?'> n. But‘thls implies m ? n because

both conditions in the definition (9.3.1) are unaffected by substitutions

at nodes in FX,S' . We have shown that () € (57). Similarly,

S

o~ 4 ~ !
(S') C(S), sothat S~ S'. For each k <K we show that Rk Rk

with the help of the lemma (9.3.2). This proves (5).

Suppose y,y' € X with FyS = Fy,S' # @. For k <K we show
FyRk = Fy'Ri<' By (1) we have y = x iff y’ = x', and in that case
FyRk =@ = Fy’Ri{ by (2) and (3). Now we assume y # x and y' # x'.
Let p € FyS, so that p € FyT and p € Fy,T' also.

4-11

m, - FyRk = FyT Nm, -IN by (2)
={nem N |[n+—p} by def. of < (9.3.1)
%
={n€mk-IN In?p} by (4)
. %k .
=Fy,1'ﬂmk-IN by def. of?(Q.S.l)
- . !
=m, Fy'Rk by (3)

This proves (6).
Suppose y,y' € X and j, k <K with Fij = Fy

Fy R, = Fy’R]'& by reasoning like that for (6) with a node m, - q for

q € Fij in the role of p in the proof of (6). This proves (7).

'R;'i # (. We show

Now we assume (5), (6), (7) and derive (4). From (5) we get

Frame T = Frame T'. Now we suppose m N n and show m T n.

Casel (m & Dom S-— FXS))

Case 1.1 (n € Dom S — FXS). Then m g~ M SO m-egn by (5).

Therefore m Fron-

Case 1.2 ((3k < K)(mk anc n) ; choose one). Let y = Sm = Tm, so that

m,n FyT by (2) and the definition (9.3.1). Lety’ = S'm = T'm, so that

m,n e Fy,T’ follows from (5) and (6) and then (3). Therefore m o
Case 2 ((Fj< K)(mj anc m) ; choose one).
Case 2.1 (n € Dom S - FXS). Similar to Case 1.2.

Case 2.2 ((3Fk< K)(mk anc n) ; choose one). If j =k we can show
m - n by (5) and two applications of the lemma (9.3.2), so we may
assume j # k. By (2), somey € X has m,n € FyT. Let y'" = T'm.

Then m,n € Fy,T’ by (3), (5), and (7.

4-12

We have shown that (<T>) C (*—T—r). Similarly, (<—-T—,>) C (<—T>).

Therefore T = T'.8

The lambda calculus can now be defined.

(9.7) Definition. A full lambda calculus is any SRS G’,)\ =(V, IF, ?]R)\)
such that -

(1)]R)\leBU]RnUIRé

where

(2) Rg= {v(\(x,S),R) — [R/x]S|FVbl RN (BVbl SU {x}) = @}
(3) R, ={Mx,v(R,x) — R|FR =0}
(4) IRég{y(R,S)—-T]R();ex&FVb1R=FVb1 S=FVbl T = ¢}

(5) (VR,R"S,S' € IF(Vn € Dom R)
([R—SeR; & R/n = R'] implies
[R' — 8" € R, iff (n=() & S"=9)]).

The substitution [R/x]S in (2) above is defined by (9.2.6). By
requiring FVbl R (M BVbl S = (), we have prevented captures of free
variables. The additional requirement that FVbl R M {x} = @ isa
minor technical convenience. Notice that FVbl R M (BVblsU {x}) = @
vviil be true if y(\(x, S), R) is alphanormal in the sense of (9.2.4).

Notice also that (2) covers our original intuitive example (9.1.2):
v(\[x, v(v(ADD, x), x)], 3)— v(y(ADD, 3), 3) ..

Comparison of \(x,v(x,x)) with x illustrates why we should only
"abbreviate" M (x,v(R,x)) as R when F _R= (. Notice that (3) covers

our original intuitive example (9.1.3):

4-13

N\ (x, vy(ADD, x)) — ADD.

The differences between one lambda calculus and another are in

IR, : any choice of IR, that satisfies (4) and (5) is allowed. Since most

6 o
applications involve just one system @,, we will speak of "the' lambda

calculus, as is customary. Our original example
v(v(ADD, 3), 5) — 8

from (9.1.1) does meet the restrictions. To see the effect of (5), suppose
first that n = (). Then the choices of bound variables in R are irrelevant
to any rule R — S in IR(S : R — S is still in IR(S if R = R’, and there is
no other rule R’ — S’ with S’ # S in R,. Now suppose n # (). Then no
proper subtree of R in a rule R — S in]Ré can be replaceable, even
after changes of bound variables. This requirement is similar to the
bottom-up evaluation of given functions in Chapter 3.

The sets]RB, IR?? and]Ré are partial functions on trees by (2), (3),
and (5). By v# \, no ¢ € V, can be the left half of both a beta and an eta
rule or the left half of both a delta and an eta rule. By the condition
R()#XNin(4), no ¢ V* can be the left half of both a beta rule and a
delta rule. Therefore IR, is a union of partial functions with disjoint
domains and so IR)\ is a partial function. The system G)\ is unequivocal.
Unfortunately §, is not quite the system we wish to use. As the

following counterexample shows, @‘,)\ is not Church-Rosser.

Let x, y, z be distinct variables and set

R = y(Mx, y(Mz, v(z,x), y)), My, y)

S

v(\Mz, v(z, My, y),¥y)
ST = y(Mx, v(y, x), My, y)

S'" = v(y, My, y)).

4-14

By applying a rule from IRB at () in R we can show that R$S. By
applying a rule from IRB at (0, 1) in R we can show that R T §'. By
applying a rule from]RB at () in S’ we can show that S’ 5> S"". Since

R —;:——"—> S and R %——> S’ while S Aand S! are irreplaceable, both are normal
forms of R. But S # S'. Normal forms are not unique in G:)\.

In our counterexample the tree S is irreplaceable because
y € FVbl[y] M (BVbl[y(z, My, y)] U {z}))

In light of the arbitrary nature of bound variable choices that we discussed
in connection with the definitions of & and = in (9.4), this difficulty

seems rather insubstantial. Consider a new variable w and set
T = v(\z, 7(z, Mw, W),) ,

so that S = T. By applying a rule from IRB at () in T, we can show that
T > v(y, Mw, w)) .

By deliberately confusing S with T and ¥y, M(w, w)) with S”, we can blunt
the force of the counterexample. The tree R does have a unique normal
form, at least When we ignore differences between strongly alphaequiva-
lent trees. The precise way to "identify' equivalent objects is to péss

to equivalence classes. We replace 6)\ by a GRS fB)\ =(E, >)\), where
IE is the set of all strong alphaequivalence classes of trees in the forest
IF of lambda expréssions. The replacement relation between classes of
trees is the natural relation induced by the replacement relation between

trees: forall R ,4 c E,
®> 4 iff BReR)3Scd) R5>9).

The classical Church~Rosser theorem [14, Chap. 4] asserts only that

ﬁ)\ is Church-Rosser. (The fact that %)\ is indeed the GRS considered

4-15

in [14] may not be obvious. A proof is given in Appendix B.)

For later convenience we state the formal definition in terms of
any pair of relations "T—> and]Ri such that the 4-tuple ®i=(V, IF, <>, IRi)
is an SRS. The examples of interest to us will involve IRi =]R}\’ IRi = IRB,

and R.=R U R._.
1 n é

(9.8) Definition. Let IE be the set of all strong alphaequivalence
classes of trees in IF. For each pair of relations ——T> and]Ri such that
G;i =(V, IF, ? IRi) is an SRS, define a GRS ‘Bi = (IE. >i) by setting, for
all R, d €E,

® >, 4 iff (3R €R)3S e L)R = 9.

In the next section we will prove that %)\ is Church-Rosser. In
order to represent manipulations of equivalence classes by manipu-
lations of ''typical" members of the classes, we will use the alpha-
normal trees defined by (9.2.4). Every tree is strongly alphaeqgivalent
to an alphanormal tree, so every class ® ¢ IE has an alphanormal
representative R ¢ ® M)]FO. The convenient properties of IFO will
expedite our proofs. To prepare for the next section we will now state
an elementary lemma relating IR)\ to weak alphaequivalence. (We use

weak alphaequivalence in order to facilitate induction arguments.)

Intuitively, the rules of Q’,)\ are insensitive to changes in bound
and free variables, so long as bound and free roles for each variable

do not clash. Formally, the following is proven in Appendix A.

(9.9) Lemma. Let 1e{3,n,a};(p—»¢emi;¢m¢u If i =8, let

S]F0 also. Then there is ¢’ € IF such that ¢ =~ ¢’ and

4-16

(1) o — v e R,
!~ = ! i i = Y
(2 (Vy,y cX)(wa Fy,w # @ implies Fop=Fy9' # D). n

For each change from a variable x in ¢ to a variable x' in ¢’ at
a node n, we simply replace x by x' at the appropriate corresponding
nodes (if any) in . The verification that the resulting tree ¢’ has the
desired properties is trivial, ‘once we can say where to make the
changes in ¢. To each rule o — Y & IR)\ we therefore assign a map
r = r[p,] that assigns to each n € Dom ¢ a subset of Dom . The

three kinds of rules lead to three kinds of pseudoresidue map.

(9.10.1) . For ¢ — ¢ = v(R,8) — T € R : r(n) = 0)

(9.10.2) For ¢ — ¥ =N (x, v(R, x))-——»RE]Rn:

r(n) = if (1, 0) a_n_gri then {n/(1,0)} else @

(9.10.3) For ¢ — ¥ = v(\ (x,8),R) — [R/x]S € IRB :

r(n) = if (0,1) ancn & n/(0,1) ¢ FXS then {n/(0, D}

else if (1) anc n then {p-(n/(1))|p € F_S}
else @

Because independent nodes do -not always have independent residues in

the last equation, r[¢, ¥] is not a genuine residue map when w—-welRB.

We have defined the lambda calculus and stated some of its ele-
mentary properties. The "obs" in the system of Curry and Feys
[14, Chap. 3] correspond to tfees in IF in the obvious way, and it is not
hard to show that "a-convertibility' [14, §3D3] corresponds to strong

alphaequivalence. When the ''reducibility relation 2" [14, §3D3] is

4-17

lifted to equivalence classes in the manner of Definition 9.8, it corre-
sponds to %;)\. Details are in Appendix B. The reasons for departing
from [14] are sketched below.

A rudimentary tree formalism is introduced in [14, §2B] and
the morphology of the "obs'' is stated abstractly [14, §3C2], but these
gestures have no effect on the proof of the Church-Rosser theorem
[14, Chap. 4]. No workable methods for calculating with trees and nodes
to make arguments flow are provided in [14].

The "@-convertibility'' approach to changes of bound variables is
simple to define but awkward to use. In practice, writers on lambda
calculus must often resort to vagueness and dubious "without loss of
generality'' claims. Weakr and strong alphaequivalence let us say exactly
what ié being assumed about changes of bound variables. If someone
questions these assumptions, proofs can be supplied. The calculations
are tedious (as in Lemma 9.6), but no new ideas are required.

Curry and Feys avoid assuming FVbl R () BVbl S = O in defining
IRB by means of a definition of substitution [14, §3E1] more complicated
than our (9.2.6). Finding no technical advantages in shifting the complex-
ity from lRB to substitution in our treatment, we have left the irritant
where it first appeared. Our definitions of substitution for free variables

and IRB are very close to the original formulation of Church [12, §§4, 7].

10. Classical Church-Rosser Theorem

We work toward the proof that the system 'IB)\ defined by (9.7) and
(9.8) is Church-Rosser. Recall that ’B)\ = (IE, >)\), where IE is the set

of all strong alphaequivalence classes of trees in IF' and the relation >,

4-18

on IE is induced by the relation 5> on IF:

®> 4 iff GReR)BSed)(R5>S).

The definitions of]RB’]Rn, and]Ré in (9.7) lead to SRSs
=(V,IF,=, 1R
G’B (3 B)
Cns = (V,IF,=>,]Rné) where R.s = IRnU R, .

The corresponding GRSs ‘fBB and '3?76 defined by (9.9) form a family of
GRSs {8, |a € {8, n6}} whose union is B,. Lemma 10.2 asserts that
B né is Church-Rosser, Lemma 10.3 asserts that fBB commutes with
:BTIG , and Theorem 10.11 asserts that iBB is Church—Résser, so the
Church-Rosser property for fB)\ follows from the Commutative Union
Theorem (3.5).

In order to establish the results mentioned above we will represent
relations between strong alphaequivalence classes by relations between

certain trees in the classes. The following lemma is the formal basis

for these representations.

(10.1) Lemma. Leti,je{B né6}; &, 4, 4’ cIE. Suppose R >iX and .

® >j 4'. Then there are R,S,S’ ¢ IF such that

R e (ROIFO & Secd & S'e d’
R?S &R:J}S'.

Proof: By Definition 9.8 there are Rl,R'1 cR; S1 cd; S’1 cd
with R, T> S'1 and R’1 = S'1 . Let R be any alphanormal tree in ®.
- J ’ ;
Let a rule ¢ — ¢ be applied at a node n in R1 to form Sl’ so that

R,/n = ¢. By In| applications of Lemma 9.5 in the "only if" direction,

4-19

R/n is an alphanormal tree ¢' such that ¢ = ¢'. By Lemma 9.9 there is

atree ¥ € IF suchthat ¢y 2 ¢', ¢o'— Y’ IRi’ and
(1) (Vy.y'e X)(Fy¢=Fy, Y'# @ implies Fy(p=Fy,<p' £0).

Set S=R(n<«— '), so that R =>S. We wish to show that S1 = S. By
i

S1 = Rl(n<—x//), S =R(n—uvy"), R1 =~ R, and ¢ = ¢', we can show that

S, = S by In|l applications of Lemma 9.5 in the "if'" direction. (The con-

sistence of free variable changes is assured by (1) and R, ~ R.) More-

1
over, the changes in free variables between S1 and S are the same as

those between R1 and R:

(Vy.y' eXNF S, =F_,S # @ implies FR; =F_ R # Q).

By R, %R, Fle = Fy,R # @ implies that y = y'. Therefore

Vy.,y' eX)(FyS1 = Fy,S # @ implies y = y').
Together with §, = S, this implies that S, = 8.
By repeating the above argument with R! in place of R

1 1
place of S;, we find that some S’ IF has R ? S' and S} = 8'. There-

and S'1 in

fore R,S, and S’ have the desired properties. il

(10.2) Lemma. Let IRmS =]RTI U]Ré and let Gnﬁ be the SRS

: . i - .
(v, Ir, e IRmS) The GRS %775 is Church-Rosser

Proof: First we show that G;né is Church-Rosser. By ¥ # \ and the
definitions of]RTI and]R6 in (9.7), IRmS is a partial function. Therefore
6775 is unequivocal. We have assigned a map

r{e.v]: Dom ¢ — gDom ¢

to each o — Y IRT)6 by (9.10.1) and (9.10.2). It is easy to check that

r[¢,¢¥] is a residue map for each ¢ — ¢ and that Gné is closed in

4-20

Definition 5.4. By the Main Theorem (5.6), @;né is Church-Rosser.
' * *
Now suppose that R, 4, 4' € E with & >n64 and ﬂ>n6 d'.
By Lemma 10.1 and similar reasoning, there are R,S,S'e IF such that

né

* * .
R?Se,é and R?S’EJ-'. Therefore some Te IF has S = T
n n
“ ,
and S’ ;’——? T because €, is Church-Rosser. Letting 7T be the strong

* *
alphaequivalence class of T, we have 4 >n6’T and {' >néT'l
(10.3) Lemma. The GRSs fBB and ;’Bna commute.

Proof: We use the Commutativity Lemma (3.6). Suppose R, 41, 42 cE

with &/ >B Jl and & >n6 42' We will show that some T ¢ IE ‘has

0
4, >, and 42 >B’J’. By Lemma 10.1, there are Re ® N Fj;
S;€4dy; S,€ ,‘2 with R-? Sy ar_ld R r_y—g> S,. Let rules ¢, — ¥, and

Py — Uy be applied at nodes n,, ngy to derive S1 and SZ’ so that

S1 = R(nl*—(lll) and S2 = R(n2<-—1//2).

Case 1 (n;ln,). Let T = R(n, — Y)(ny «—y,) and let T E

with T e 7T.

Case 2 (n1 anc n2). By the definition of]RB (9.7.2), there are x € X

and P,Q € IF with
¢, =7(Mx.Q,P) & ¢y, =[P/x]Q
while, because R & IFO ,

FVbl PN (BVbl QU {x}) =@ .

Case 2.1 (n1 -(0) = n2). Then ¢, — ¥, € IRTI with
@5 = Mx, Q) =Mx, 7Yy, %) & F ¥y =0.

It is easy to compute that 5, = S,. Let TeE with 5, € 7.

9°

4-21

Case 2.2 (n;-(0,1) anc n,). Let m = nz/(nl- (0, 1)), so that Py = Q/m
and r(nz/nl) = {m} in (9.10.3). We claim that @1 ———>'(//1 is pseudoclosed

at (nz/nl,{m}) with respect to (]RB’IR Let ¢ be [P/x]d/z.

né)'

In Definition 5.7 we need
(1) py(ny/ny ~—yy) — ¢, {m} —) € Ry

For Q = Q(m «~— ;//2) we have

(3) ¢ (ny/ny ——vy) = 7(M(x,Q), P).

But B.Q=0 by R IF, and so

(4) Y, {m} —9) = ([P/x]Qm — [P/x]y,) = [P/x]Q.

Now FVbl PN (BVbl QU {x}) = @ by BVbl @ C BVbl Q, so (1) follows
from (3), (4), and the definition of Ry (9.7.2).

By the definitions of IRT] and R, in (9.7), [P/x]og— [P/x]y, € IRné .

Since B Q = @ implies that
[P/x)oy = [P/x)(Q/m) = ¢, /m

while [P/x]y, = ¥ by definition, this proves (2).
By Lemma 5.8, some T ¢ IF has S, ;%» T and S, =>T. Let T€E
with T € 7.

Case 2.3 (nl- (1) anc nz) . Similar to Case 2.2, but easier. Letting M
be r(nz/n) in (9.10.3). we show that ¢ — g{/l is pseudoclosed at
(nz/nl,M) with respect to (IRB]R), using @ = wz now. We then have

S @T and S ——§>T for some T ¢ IF byLemma58

2

4-22

Case 3 (n2 anc nl). By the restriction (9.7.5) on IR& » Qg — ([/2 c IRYI

and so some x € X has

(pz =)\(X,‘Y(wz:x)) & waz = ¢ .

Case 3.1 (nz-(l) = nl). There are y € X and Q € IF such that

Uy =M(y,Q) and ¢, = [x/y]Q. Therefore
S; = R(ny «+— N (x, [x/y]Q) & 8, = R(n, «— My, Q).

Since Q_l(x) = @, it is easy to show that Mx, [x/7]Q) & My, Q) and hence

that S1 ~ S Let T € IE with 81,82 e 7.

9 -

Case 3.2 (n2- (1,0) anc n Letting M = r(nl/hz) in (9.10.2), we check

1)'
that Py — zpz is pseudoclosed at (nl/nz, M) with respect to (]Rn, IRB)’

using ¢ = ¢, in Definition 5.7. By Lemma 5.8, there isa Te IF such that

s M s =T
2 B 1 n~ 77

* .
- By IMl=1 we have SlﬁT and SZ:’T' Let TeIE with Te 7.1

™

We cannot show that {B’B is Church-Rosser as simply as in
Lemma 10.2 because QZB is not closed. Instead we analyze fBB as a
combination of ''requests' for substitutions and "performances'' of
substitutions. Rather than apply a rule from]RB to a tree in IF in one
step, we first apply a rule of the form 'y()\(x, S), R) — o (R, x, S) where
o is a new symbol. The set of such rules will be called]R’Y and will be
defined later. These requests for substitutions forrr.1 trees in a larger
forest ™ that includes IF as well as trees of the. form o(R, x, S) with

R,Se H and xe X. Substitutions will be performed by a set]Ra of

4-23

rules that move o downward. A single step R ——B—> S will be simulated by
a sequence of steps R(_‘Y—_> %>) S with the intermediate trees in H — IF.

Let o be a new symbol (pronounced '"substitute'’) and let
(10.4.1) W =V U{o}.
Assign rank 3 to o and define H C W# inductively:

(10.4.2) (CuU X)# CH
(Vx € XIVS € H)(\ (x,S) € H)
(VR,S € H)(v(R, S) € H)

(Vx € X(VR,S € H)(0(R, x,S) € H).

We expect o(R, x,S) to have nor.mal form [R/x]S whenever R,S ¢ IF.

Let IRO_ be the set of rules defined by

(10.4.3) o(R,x,v(S5,T)) — v(c(R, x,9),0(R, x, T))
o (R, x, M (x,S)) — \(x,S)
(R, x,\(y,S)) — \(y,o(R, x,S))

o(R,x,x) — R o(R,x,a) — a

whenever R,S, T e H; x,ye X; ace CUX with x#y and x# a. The
SRS Q;G = (W, H, —G——> , IRG) will perform substitutions. The actual letters
R,S, T and a letter a= a_ for each choice of x above may be con-

sidered as parameters with domains

(10.4.4) Dgp=Dg=Dy=-H & DaX=(CUX—{x})#.

Then (10.4.3) defines an infinite set of rule-schemata as x and y vary.

The substitution [R/x] of R for the free occurrences of x in S was

defined by (9.2.6):

[R/x]S = S(FXS«-—R) .

4-24

The following lemma shows that @G can compute substitutions by
finding normal forms for trees in H. It also establishes useful inductive

properties of these normal form computations.

(10.5) Lemma.

(1) (vx € X)VR,S € F)o (R, x,5) —> [R/x]S)
(2) Each P € H has a unique normal form P I under G:G
(3) (Vx € X)(VR,S € H)(ZXN(x,S) =X (x,2S) &

Zv(R,S) = v(ZR,2S) & Zo(R,x,5) = [ZR/x]ZS) .

Proof: Comparing [R/x]S from (9.2.6) with the rules from (10.4.3)
léads to a proof of .(1) by induction on the size of S. By the inductive
definition of H in (10.4.2), we can show thét each Pc H has at least
one normal form in IF, where (1) is used in the only nontrivial case
[P()=0] in the induction. To show that each P € H has at most one
normal form, we will show that GG is Church-Rosser. The rules in
(10.4.3) form a partial function on trees, so G',o is unequivocal. By the
Rule-Schemata Theorem (6.5), (S;G 1s closed. Therefore GG is
Church-Rosser by.the: Main Theorem (5.6). This proves (2), and (3)

follows from (2) and the -definition of]RG in (10.4.3).®
Let]R‘Y be the set of rules defined by

(10.6.1) v(r(x,9),R) — o (R, x, S)

whenever‘ xe X; R,Se H. The SRS G'Y = (W, H, ?,]Ry) will request
substitutions. The actual letters R, S above may be considered as

parameters with domains

4-25

Do=H.

(10.6.2) DR S

In order to relate C-!:o and .G’Y to BB we set

(10.6.3) (=) = (&> &) "\ F_XF,.
1 0% c 0 0

We will show that (IFO, -=1>) is a Church-Rosser GRS and that
this implies the Church-Rosser property for SBB . The first two steps

are easy lemmas.

(10.7) Lemma. Let Sc IF; Se H. Suppose S =}>_S— Then

BVbl £S c BVbl S and FVbl =S C FVbl S.

Proof: We prove both assertions simultaneously by induction on the
size of S. The oniy nontrivial case is 'vﬂ‘xen S’() = v and S() =o.
Suppose this happens. Then some‘4xc—: X and P,Qe IF have S=v(\x,Q),P)
while some P,Q<c H have S = o(P, x,Q) and P =*,)? P and Q %> Q By
the induction hypothesis and (3) in Lemma 10.5,
BVb1 =5 = BVbl [£P/x]ZQ C BVbl P U BVbL 2Q
. CBVbl PUBVDBLQ C BVbL S .

Also by the induction hypothesis,

FVbl £S CFVbl 2P U (FVbl 2Q- {x})
| C FVbl P U(FVbl Q—{x}) = FVbl S . B

(10.8) Lemma. (=1>) c (

_ -mllee
EZ/

Proof: It suffices to show that each R & IFO has the property

(1) (VSGH)(R%S implies R%ZS),

since (=—;—> ~) = (£ =) when the map Z:H — IF is viewed as a relation.

4-26

Suppose that (1) holds for all trees smaller than R and that R % S.
The proof that_ R % LS is straightforward, us_ing (3) in Lemma. 10.5,
except in the case where R() = yand S() = 0. Suppose this happens,

so that R has the form ¥(Mx,Q),P) with FVbl PN (BVbl QU {x}) = @.
There are P,Q € H such that S = ¢(P, x, Q) and P % P and Q ;,;} Q.

By the induction hypothesis, P %> ZP and Q % Q. By (3) in

Lemma 10.5 and FVbl P M (BVbl 3Q U {x}) = @ from Lemma 10.7,
R = v(A (x,Q), P) % 0%, 32Q),2P) 5> 2 F/x]2Q - 550

Suppose R,Sc IF: R,S H; R =;=> _ﬁ; S ,;=> S. It is reasonable to
expect that [R/x]S % % [ER/x]ZS, at least when appropriate
restrictions on, variables being both bound and freé_.are imposed. The
next lemma ca_rri_es QutAthi._sidlea and allows a different choice of R at

eachA node in FXS'. ’

(10.9) Lemma. Let S € IF; S € H. Let (mg,...,my_,) be a listing of
F_S for some x € X and K € N." Let Rk_é IF and ﬁke H for each

k <K. Suppose -

(1) B,S =@ & (Vk <K(FVbl R,_NBVbL S = @)
(2) S 7>S & '(vk<K)(Rk7:~ R,).
Then there are mutually independent sets NO’ L., NK—1 of independent

nodes in £S such that

(3) F_zS = U N,

X

: - %k
(4) S(mg ——Rg)...(m_; —R_)(=> =)

ES(Ny+—zRg)...(N_; —3:R_)) .

4-27

Proof: For some J € N there are trees SO’ e Sj with

S=SO?51...?SJ=S.

For each j <J, let a rule goj — (//J. be applied at a node nj to derive

Sj+1 from Sj‘ Each g’)j — g,"j is an instance of a rule-schema in the

definitions (10.6.1) and (10.6.2). Let r:j be the residue map assigned

0 J

to <pj — wj by Lemma 6.3. For each k < K define M .o Mk by

k*
0
Mk = {mk} and

i+l _ — .
Mk —{mCMklmlnj}U

{nj-pl (dm € Mii{)(nj ancm & p €& r‘j(m/nj))}.

By induction on j, we can show that Sj-l(x) = U M , and no
. k<K
m € M%{ has the form q-(0) with qu =X or q-(1) with qu = 0. By

Lemma 6.4 we can then show that each j<J has
). .. (M

0 -1

o o
S, (M) Rg) .- (il R_,) .

b —
(5) S (Mp — R R =>

In (2) we have

e
b

(6) Stmge—Ry)...(m_—R_)Z> Zo)SMI 3R ..M —3R) .

For some J € N there are trees S .,S_ with

0 7
?Sl...—dﬁ’ST=ZS.

S = SO
For each j <J, let a rule ?oj — Ej € R be applied at a node ﬁj to
derive -gj+1 from -Sj . Each g_oj — Ej is an instance of a rule-schema

in the definitions (10.4.3) and (10.4.4). Let ?j be the residue map

assigned to ¢. — ¥. by Lemma 6.3. For each k < K define

4-28

M0, ... by MO

. |
K’ k M; and

k k

—j+1] =

Mf{ ={m€M*}{|minj}U

{n;-pl(3m € M{{)(ﬁj ancm & p € F(m/a)}.

By induction on j, we show that §j_1(x) = U M and no m e W

B ' k<K K k
has the form q-(0) with qu=x or q-(1) with qu = 0. Setting
(7) (Vk < K)(N, =Ty)

yields (3). Now we will show that each j<J has

S (FH — & M ——35R)=
(8) sj(M0 ZR). . t(M_1 ZR_;) =>

(Mi|+1 —IRy).. (MJH SR

3+1 -1) ’

‘In all but one case we can prove (8) by means of Lemma 6.4, as in (5).
- The odd case occurs when Ej — Zj is of the form o(P, y, x) — x for

y € X with y # x. Assume this happens. There is no rule

o(P,y, ZRk) — IR,
in]Ro’ but several steps can achieve the same effect. We claim that

o(P,y, ZRk) —0—4/ ZRk .

By S € IF we have y € BVblS, so Fyzﬁk = @ by (1).

Therefore [P/y]ZR, = ZR,, and we do have o(P,y, IR)) = [zP/y]zR

k)
by (3) in Lemma 10.5. This completes the proof of (8). Combining (8)

k

with (6) and (7) yields (4).®

4-29

The next lemma will show that the assertion diagrammed by
Figure 4-1 is correct. The reason for proving this complicated state-
ment is simply that we wish to use it as a stencil later, in verifying a
diagram by the technique introduced in the proof of the Commutativity
Lemma (3.6). We discuss the content of Figure 4-1 before proceeding
with the proof.

Suppose we have R &]F0 and we apply some gamma rules to
derive a tree R’ € H. We can now apply more gamma rules to form
R" € H, but we can also perform the substitutions presently requested
in R’ instead. By applying sigma rules to R’ we can derive the normal
form S R’, which is actually in IF' and is therefore strongly alphaequiva-
lent to some S € IFO. Can we apply gamma rules to S so as to parallel
the derivation of R from R'? Can we obtain S ;> S’ where S’ is

Y
essentially the same as R'’, at least after we perform the substitutions

and allow for changes of bound variables? Figure 4-1 asserts that

this is always possible.

(10.10) Lemma. let R,S € IF.; R',R" € H. Suppose R ;% R! % R"

0,
. b3 b3
and R’ = S. Then S(? = =) ZR".

Proof: Consider three statements involving indeterminate trees

R.R',R",S,S':

() R=>R' —> R" & TR'=S
Y v
(2) S ny=>s' & ZR' = 3S'

(3y (Vy,z e X)(FyZR" = F_28'# @ implies FyZR' =F,S).

Figure 4.1. Stencil for use in the proof that (IF

0’1

Church-Rossér. Small circles represent members of .

H; 1large circles represent members of T

=) is

0-

4-30

4-31
It will suffice to prove that each RcIF_ satisfies

0
(4) (VSeTF) (VR',R"€ H)((1) implies (35" €H) [(2) &(3)]) .

Suppose (4) holds for all trees smaller than R in IF, and suppose

R, S,R',R" satisfy (1). We will show there is an S’ € H such that (2)
and (3) hold. There are three basic cases: R() € CU X or R()%x

or R() = 9. The case where R() = ¥ has two subcases: R'"()=v or
R"() = 0. When R'() = 0 there are also two subcases to consider:
R'() = yor R'() = 0. Except for the trivial case [R() € C U X], all
the cases are treated by applying the induction hypothesis to various
subtrees of R. Various trees play the role of S’ in (4) for each of these
subtrees of R, and we must coﬁbine them into a tree S’ that satisfies
(2) and (3). The leaves [R()=1v; R"()=0; R'()=1+] and [R() = 7;
R"()=o0; R' () = o] in the hierarchy of cases require some extremely
tedious verifications, but the strategy is exactly the same for them as
for [R() = \]. The leaves in the hierarchy of cases are doubly under-

lined in the detailed argument below.
Case 1 (R() e CU X). Then some a € CU X has
R=R'=R"=ZR'"=ZR" =a

and some be CU X has S=b. (Ifa e Cthenb=a. If a € X then
b € X but perhaps b # a, since only weak alphaequivalence is assumed‘

in (1).) Let S’ =S, so that £S' = b and (2) and (3) are trivial.

Case 2 (R()=\). There are x,x c Xand Q,Q e F, and Q',Q"" ¢ H

0
with

R = Mx,Q & R = Mx,Q") & R" = \Mx,Q") & S =Mx,Q) .

4-32

>

By the definition of IR‘Y in (10.6) and the inductive lemma (9.5.1) for =

*_ r X " r~0 r - In}
Q?Q ?Q & ZQ Q &FXZQ F)_{Q.

By the induction hypothesis, some Q'c H has
Q> Q & Q3R &

Vy,z € X)(FyZQ" = F_3Q' # @ implies F3Q’ = F,Q)

Setting S' = M (x,Q'), we find that (2) is trivial and (3) follows from

direct calculations based on equations like

Fy)\(x,Q) =if y=x then @ else (1)-FyQ.
Case 3 (R()=17).

Case 3.1 (R"() = v). Similar to Case 2.

Case 3.2 (R'"() =0). Thereare xc€ X and P,Q € IF, and P",Q" ¢ H

0
- with

R=9Mx,Q),P) & R"=0(P",x,Q") .

Case 3.2.1 (RY) = v). There are xc X and TD,QEIFO and P',Q'eH
with

R'=7(Mx,Q),P') & S=v(\N(x,Q),P) .

k]

By the definition of]R'y in (10.6) and the inductive lemma (9.5) for =

* * —
(5) P?P'?P"&ZP'D‘-P .

(6) Q*,Y=>Q' =>Q" & 3Q' ~ B

(vVy. 2 €XNF Mx, IQ') = F, Mx, Q) # @ implies F 2P’ - Fz?).

We will show that this last fact and (6) imply
(1) (Vy.z e X)(FyZP' =F_P # @ implies F Q' = F Q.
Suppose FyZP' =F P#@, sothaty # xand z # x. Consider two cases.

Case a (FyZQ' # @) By (6), some w € X has FyZQ' = FWQ # Q. We
have w # x because y # %X, so Fy\(x,2Q') = FW)\(i, Q) # O. Therefore
FyZP’ =F_P. But Fsz' =F P # @, soz=w. The equation Fy):Q' =

- T]
FWQ becomes FyZ_Q FZQ, as desired.

Case b (FyZQ’ = .¢) Suppose F_Q # ¢. By (6), some w € X has F_3Q' =
FZQ # @. We have w # x because z # X, SO FW)\(X, QN = F\ (x,Q) £ 0.
Therefore F_sP' = F_P. But FyZP' =F, P # @, soy=w. The equation
.FWZQ' = FZQ;G @ becomes FyZQ' = FZ_Q # . But this contradicts

FyZQ' = (§, so the supposition is false and FZ_Q =@ = FyZQ'. This proves

(7.
By (5) apd the induction hypothesis, some P' € H has
(8) P =y> B’ & TP ~ 5P
(9) (vy.z e X)(FyZP" = FZzTD' # @ implies Fsz' = inﬁ).
By (6) and the induction hypothesis, some Q' € H has
(100 Q@ =7> Q' & Q" =~ 3R
(11) (Vy,z € X)(FyZQ" =F_ Q' # @ implies FyZQ' =F Q.

Let S! be o(P', x,Q'), so that (8) and (10) imply S —7-> S'. To

. complete the proof of (2), we will use Lemma 9.6 to show that

IR = [ZP"/x]2Q" = [ZP'/x]=ZQ’ = =S'.

We must verify (9.6.1)-~(9.6.3) and (9.6.5)--(9.6.7). For (9.6.1) we
must show that FXZQ" = F)—{ZQ' . There are two cases to consider.
Case a (FXZQ" # @) By (10), some we X has

" — aYi
(12) F Q' =F 3Q' # Q.
By (11) and Lemma 10.7, this implies that

r — O

FJIQ =F Q+#9Q.

But F_IQ' = F}_(-Qby the inductive lemma (9.5) for ~ and IR’ =~ S, so

this yields w = x. In (12) we have F_3Q" = F_3Q'.

Case b (F_2Q' = @) Suppose F)_(ZQ' # . Reasoning as in Case a, we
find that some w € X has FWZQ" = FiZC_Q' # O and then that w = x.
Therefore FXZQ" # @, a contradiction. We must actually have F}-{ZQ' =
= 1

@ = F_2Q".

The only other condition!notftrivial to verify is (9.6.6):

(Vy,z € X)FZQ" = F,2Q' # ¢ implies Fsz'* = F,IP).
Suppose FyZQ" = FZZ_Q' # @, so that (11) and Lemma 10.7 imply

(13) FyZQ' =F,Q+#Q.

Case a (FyZP" # 0) By (8), some w € X has
" — D!
(14) Fsz F ZP'# Q.
To this we apply (9), then Lemma 10.7, and then (7), so that
r — O
FyZQ FWQ.
Comparing with (13), we find that w = z and so (14) implies that FyZP"

= FZZ?', as desired.

4-35

2

Case b (FyZP" = (). Suppose that FZZf" # . Reasoning as in Case a
we find that some w € X has F_>P" = F_ZP' # { and then that w = y.
Therefore FyZP" # @, a contradiction. We must actually have Fzzf"

=0 = FyZP". This completes the proof of (2).

To show that our S! = o(P', x, Q') satisfies (3), we suppose that
FyZR" = F, 38’ # @ and show that FyZR' = F,S. By Lemma 10.7 and
R,S e IE‘O

F. ZR" = F_3Q"-F_zP"U (F_zQ"—F Q"
y o9 y (y Q < Q')
! = F_S0! - P! O'—F_SO)!
FZZS FXZQ F IP U (FZZQ F-2Q"),
so that our supposition implies
”". " — 0O’ . §51;
(15) FXZQ FyZP F}-{ZQ FZZP
1" " — O — .50
(16) FyZQ B XZQ -FZZQ FXZQ s
where both equations cannot be @ = Q.
Case a (F Q- FyZP" = @) Then (16) cannot be @ = 0, soy # x and
z # x. By (16), (11), and Lemma 10.7:
r — e <
FyZQ FQ#Q &y+#x&z#x,

By ZR' = S, this implies that FyZR' = FZS.

Case b (FXZQ"- FyZP" # @) Then (15) implies that
1" — DI
FyZP F_ZP' # Q.

By (9) and Lemma 10.7 we have Fsz' =F,P #@. By IR’ =3, this

implies that FyZR' = FZS. The proof of (3) is complete.

4-36

Case 3.2.2 (R'() =0) There are P',Q' € H such that

(17) R’ = o(P', x,Q") & ZR' = [ZP'/x]ZQ!
% % * *

18 P=P =P'&Q=>Q =>Q.

(18) ~ ~ Q >y Q ~ Q

By Frame IR’ = Frame S we have FXZQ' C Dom S in (17). Set
Q= S(F 2Q' — Xx) where X is any new variable.

Let (mg, ..., my _,) for K = IFXZQ' | be any listing of F_ZQ' and 1§t 'I_Dk

be S/mk for each k < K, so that (17) and the definition of Q imply

(19) SR’ = 3Q(m, — IP) ... (m_; «— ZP")

$=Q(mg~—7Ppy) ... (m_; —P_,).

By Lemma 9.6, R’ = S implies that

(20) Q' ¥ Q & (Vk < K)(ZP' =~ 'Pk)
(21) (Vy,z X)[FyZQ' =F Q% @ implies (Vk < K)(FyZP' = FZPk)]
(22) (Vy,z € XNVj, k < K)(FyZP' =FZT>J. # @ implies Fsz' = sz’k).

From (20) and (21) it follows that

(23)~ (Vy.,z e X)(Vk < K)(FyZP’ = Fz_f’k # @ implies FyZQ' = F.ZQ).
Applying the induction hypothesis to Q in (18) and (20), we find

that some @' € H has |

(24 . @ ——f;—> Q' &IQ" = Q'

(25) (Vy,z e X)(FyZQ" = FZZQ' # ¢ implies FyZQ' = FZQ). '

Applying the induction hypothesis to P in (18) and (20), we find

K

that some (P., ... ,_f”_l) € H ™ has

D _:*_ D! 1 ” ~ D!
(26) Pk ? Pk & ZP ZPk
" — D! : s r - P
(27) (Vy.ze X)(FyZP F_IP] # @ implies FyZP F_P,)
for all k < K.

The listing (mg, ..., My _;) of F_ZQ' is also a listing of F-Q.
By (24) and (26), Lemma 10.9 is applicable with Q in the role of S

and P, in the role of Rk in Lemma 10.9. Therefore there are

k

mutually independent sets NO’ coes NK-—I of independent nodes in

¥@' such that

(28) F)—(ZC_Q' = U N

and

’ Q(mo*—PO).. .(m_1 <—P_1) = =

SQ'(N, <—32Pp)... (N_; «—IP!)).

-1

Comparing this last fact with (19), we find that some S' ¢ H has

* = SONN . «— TP — P!
(29) S?S'&ZS' ZQ'(Ny«—ZPp) ... (N_, ZP!).

We must show that SR'" =~ £S’ to complete the proof of (2). First

we will show that F_ZQ'" = FRZ‘Q' .
Case a (FXZQ" # @) By (24), some w € X has

" — 'al
(30) F 3Q"=F IQ'# Q.
By (25) and Lemma 10.7, this implies that

r — 0O

FIQ' =F Q+# Q.

But F_IQ' = F}_{Q by definition of @, so this yields w = x. In (30) we

" - =r
have FXZQ F}_{ZQ .

4-38

Case b (FXZQ" = (@) Suppose FiZQ’ # @. Reasoning as in Case a, we
find that some w € X has F_¥Q"" = F_ZQ' £ @ and then that w = x.
Therefore FXZ‘,Q" # @, a contradiction. We must actually have F)-{Z'Q' =
— rn
@ =F Q.
By F_IQ" = Fiz@‘ and (28):

~— TP,

ZR" = [SP"/x]3Q" = 2Q"(N)— EP™) ... (N_,

Comparing this with (29), we find that we have most of the conditions

needed to establish ZR' =~ ZS' with the help of Lemma 9.6. The

conditions still to be verified are (9.6.6) and (9.6.7):

(31) (Vy.ze X[F 2Q" =F Q' # @ implies (Vk <K)(F zP" = F zP})]
- 3 " — D : ; " — D!
(32) (Vy,z € X)(Vj, k< K)(Fyz:P FZZPJ. # @ implies FyZP F, ZP})
Suppose FyZQ" = FZzQ' # @, so that (25) and Lemma 10.7 imply
(33) FyZQ' =F,Q#@.

For any k <K there are two cases to consider.

Case a (FyZP" # @) By (26), some w € X has -

rn — D! .
F IP" = F 3P| # 0.

To this we apply (27), then Lemma 10.7, and then (23), so that
r — a'
FyZQ FWQ.

But then w = z by (33), so FyZP" = FZZ?

’

k

Case b (FyZP" = @) Suppose FZZFI'{ # @. Reasoning as in-Case a, we
find that some w € X has F_IP'" = F_$P! # @ and then that w = y.
Therefore F.YZP_" # @, a contradiction. We must actually ha‘ve FZZ-I_Di{ =
Q= FyZP". This completes the proof of (31). ’

Now suppose that FyZP" = Fzzf’J! # 0. To this we apply (27), then
Lemma 10.7, and then (22), so that

r =~ D
(34) FyEP FZPk'

By FyZP" # @ and IP" ~ 3P/, some w € X has

"n - 3514
FyZP FIP] # Q.

By (27) and Lemma 10.7, this implies F_3P' = FWT’k # @. Comparison

y
with (34) yields w = z, so FyZP" = FZZf’i{. This proves (32).

Finally, we must prove (3). Suppose that FyZR" = F_ZS'. For any
k < K we have
F SR" =F _5Q"-F_IP"U (F_3Q'"—F_3Q"
v =@ Fy (42" —F 2Q")

! - 0/ . D! a1 0!
FZZS F}-{ZQ FZZPkU (FZZQ F}_{ZQ),

and so
", "= F_SO!. DI
(35) FXZQ FyZP FXZQ FZZPk
" " — Q! —F_SO'
(36) FyZQ FXZQ FZZQ FXZQ s

where both equations cannot be @ = Q.
Casea (F_ZQ"- FyZP" = @) Then (36) cannot be ¢ = @, so y # x and
z # x. Applying (25) and Lemma 10.7 to (36) yields

FyZQ' =FQ+#Q&y#x&z # X

By ZR’ =~ S and the equations (19), this implies FyZR’ = FzS'

Case b (FXZQ" . FyZP" # @) Then K # 0 and (35) implies that

n — D!
F IP"=F, 3Py # }.

4-40

By (27) and Lemma 10.7 we have
! = P
FyZP F, P, # Q.

By TR’ = S and K # 0 in (19), this implies FyZR’ =F,S.u

(10.11) Theorem. The GRS {BB is Church-Rosser.

Proof: First we will show that (IF;, =) is Church-Rosser, where =>
is from (10.6.3):
* %
(“T>) = (7—> o)NF) XTF,.

By Lemma 3.4 and transitivity of =, it will suffice to verify Figure 4-2.

The SRS @’Y defined by (10.6) is unequivocal and is closed because
of the Rule-Schemata Theorem (6.5). By the Main Theorem (5.6), Q:’Y is
Church-Rosser. Therefore we fill in (D1). Figure 4-1 is available as a
stencil because of Lemma 10.10, so we fill in (D2) and (D3). Finally,'
we fill in (D4) because normal forms are unique in @;G and any treev in
IF can be alphanormalized by changing bound variables. -

Now suppose R, 4, 4' € E with & iﬁi and ﬂ>:><B A We will
show there is a T ¢ E such that { *;B T and 4’ q>B T. Let R ‘lB 4 and
@ 5 4. ForJ=0orK=0 the choice of T is trivial, so we may

B
assume J # 0 and K # 0. Let

_(?) = (? ~)N FyXF,.

By 1+(J-1)+(K-1) applications of Lemma 10.1, there are R € and

Sc 4 and S’ € &' with

K
(1) R—%#S&R?S'.

4-41

Figure 4-2, Diagram for the proof that (11'-‘0,=1=->) is

Chruch-Rosser. Small circles represent members of

H; large circles represent members of }FO.

By the definition of @"Y in (10.6) and the ability of @0 to perform
substitutions (established by (1) in Lemma 10.5), we have
(?) C (? %), so that (?) - (1:). By (1) and the Church-Rosser
property for (]FO, ~——1>), there is a T € IF) such that S % T and S’ %T.
By Lemma 10.8, this implies that 4 iB T and 4’ ";B T for T e E with
Te 7.1 o

(10.12) Theorem. The GRS :'B)\ is Church-Rosser.

Proof: We use the Commutative Union Theorem (3.5). .By Lemma 10.2,
Lemma 10.3, and Theorem 10.11, {#_|aec {8,n6}} is a family of
Church-Rosser GRSs {Ba =(IE, .>a) that commute with each other.

Therefore the union (IE, §BU >T75) ig Church-Rosser. But

By = (B) = (@, >B"_J > 5)

because (—X_—>) = (——B->) U (n—T>)- and each >, is induced by the corresponding

"i———> in Definition 9.8. Therefore 3)\ is Church-Rosser. #

Curry and Feys [14, §4S] review the early Wo"x;"k on the Church-
Rosser theorem. Theirs is the first proof that 3B>\ is Church-Rosser
and the first correct proof that ,‘BB is Church-R;)sser. They show that
a complex array of abstract postulates implies the Church-Rosser
property [14, §4C2 (Thm. 2), §4A4 (Thm. 5), §4A3 (Thm. 4)] and that
these postulates hold for fEB [14, §4B3 (Thm. 3), §4C1 (Thm. 1)].
Hindley [21] and Schroer [48] also proved that fB’B is Church-Rosser by
arguments of this form. Hindley's br‘oof that his postulates imply the
Church-Rosser property appears in [22] and his proof that ‘BB satisfies

his postulates will appear in [23]. The three arguments are all quite

4-43

difficult and dissimilar to our proof.

Mitschke [36, §§2-4] independently proved that jBB is Church-
Rosser with a coﬁstruction similar to our Q"Y' Aside from minor nota-
tional differences, the only difference between the constructions is that
he defines substitution for free variables and]RB [36, §2] in the manner
of Curry and Feys. As was remarked at the end of §9, we have almost
returned to Church's original formulation of these notions.

Mitschke's argument relating his G"Y to %B is organized differ-
ently but resembles ours in that both are shallow analyses of '!B’B and
(&;7, in contrast to the deep analyses of :‘BB alone in earlier proofs. We
have been completely scrupulous about alphabetic changes. A similarly
detailed exposition would lengthen Mitschke's argument (particularly in
Claim II in the proof of [36, §4, Thm. 4.2]), but it could still be some-
what shorter than ours.

The idea of applying the Commutative Union Theorem (3.5) to 33
and :Bm'i was discovered by Hindley [21] and independently by the author
[41, §5]. Hindley's exposition of the idea will appear in [23]. Curry
and Feys used a complicated special argument {14, §4D].

The proofs of Theorems 10.11 and 10.12 use general theorems
about SRSs to establish intermediate results such as the Church-Rosser
property for 6776 and G:’Y and (3.6.1) in the proof that fB’B and 3775
- commute (Lemma 10.3). In this respect, our treatment appears to be

unique. For us the classical Church-Rosser theorem is an example,

not a goal.

CHAPTER 5

APPLICATIONS TO TREE TRANSDUCERS

This chapter studies tree transducers in terms of subtree
replacement systems. We develop basic mathematical properties of
tree transducers and explain how these properties can assist in con-
structing syntax-directed compﬂers.

In §11 we review some well-known topics in formal language
theory that are clearly relevant to compiler construction. We also note
some practical difficulties-which prevent these ideas themselves from
being a satisfactory theory of compilers. A model for syntax-directed
compilation that permits the use of formal language theory without
ignoring these difficulties is described in §12. The modell consisté of
five devices connected in sequence. The first device reads in a source
program and the last device writes out machine code. For each of the
five abstract machines used, there is a significant body of theoretical
results or practical experience (or both) to assist in designing and
implementing the specific device to be used in each particular compiler.
The use of coroutine linkages to compress the five stages into a single
pass process is discussed. |

One of the five componénts of our model for compilers is a tree
transducer: a device that maps trees to trees in a fnanner reminiscent
of the operation of finite transdﬁcers on strings. The basic theory of
tree transducers is developed in §13. This section is mostly exegesis
on the work of Rounds [45][46] and Thatcher [51][52]. We obtain some

very modest extensions of some of their results and we indicate the

5-2

significance of this work for compiler ‘construction.

One of the problems in this area is complex enough to be discussed
in a section by itself. In §14 we consider the: question of whether the
composition of two maps, both definable by a certain type of transducer,’
is also definable by a transducer of the same type. After explaining how
such closure-under-composition theorems could be helpful in construct-
ing compilers, we elaborate slightly upon theorems of Rounds [46] and
Thatcher [52] to the effect that certain important classes of trans-
ductions are closed under composition. (A transduction is the map
defined by a transducer.) We also present a negative result: . there is a
pair of "linear" and "partial deterministic" transductions whose compo-
sition is not computable by any finite tree transducgr, determinisﬁc or
nondeterministic, that reads inp,ut‘trees from the top down.

i

11. Formal Languagé Theorj} and Compiling

In this section we review some well-known topics from formal
language theory in the context of compiling. We consider con’text-free
grammars, finite transducers, syntax-directed transductions, and

generalized syntax-directed translations.

Consider arithmetic expressions of the form a+(a+a)Xa, where
the four a's represent arbitrary qonstanfs or variables. Such
expressions may be evaluated by perfo,frriing an addition, then a multi-
plication, and then another addition, as shown in the operator-operand
structure displayed in Figure 5-1, It seems rather easy to produce

machine code that evaluates a+(a+a)Xa if the tree structure is available.

Figure 5-1,

Operator-operand structure for a+(a+a)Xa.

5-3

9-4

But how is the operator-operand structure to be recovered from the
string of characters that constitutes a computer program? Many
constructions in programming languages do not even have an obvious
meaning in terms of operator-operand structurés. For example, the
sequence of operations performed on the data by an ALGOL 60 for
statement [38, §4.6] is only determined at run time.

Context-free grammars provide a convenient way to define sets
of strings and assign tree structures to the strings in such a way that
the structure of a string can often be recovered from the string itself.
They can assign structures to for statements as naturally as to arith-

metic expressions.

(11.1) Definition. A context-free grammar is any 4-tuple G =(N,T,P,X),
where N and T are disjoint finite nonempty sets, X €N, and P is a finite

subset of
{{A,)| AEN & we(NU T)* &w # () }.

Members of N are call_ed nonterminals while members of T are

called terminals. The designated member X of N is the initial symbol.
Members of P are called productions and are written A — © rather
than (A, w) (just as ruies are written ¢ — ¢ rather than {gp, ¥)).

There are several variants of this definition in use. We have
followed Hopcroft and Ullman [24, §2.3] because this is a very ac-
cessible source with references to many of the others. The main differ-
ence between this definition and several others is that we require w # ()
in each production A — w. Programming languages never include the

null string as a complete program, and there is a systematic procedure

5-5

for eliminating all productions of the form A — () from context-free
grammars for such languages [24, §4.6]. Since the problem of finding
structures of strings is less cofhplicated when no productions have the
form A — (), we prefer the narrower definition.

In order to explain how a context-free grammar assigns tree
structures to strings we first define a function yield that maps trees to
strings. The yield of a tree is the stying formed b& the labels on the
leaves x‘;vhen listed in the natural left-to-right order. Using the alge-

braic nomenclature defined in (4.10), we define yield as follows.

(11.2) Definition. Let V be any set and let IP be the set of all positive

) *
integers. Then yield : V, — V is the unique total function such that
(1) (Ve V)(yield(a) = (a)

(2) (Va€ VIIVKeP)VR (V)5

(yield(dRy, ..., R_y)) = yield(Ry)- yield(R,) - ... yield(R_,)).

(Existence and uniqueness may be demonstrated by induction on sizes of
trees.) |

A context-free gramfnar G =(N,T,P,X) defines a forest of ''phrase
structure" trees: each tree R displéys one way to derive a string of

terminals from the initial nonterminal X by applying productions.

(11.3) Definition. Let G=(N,T,P,X) be a context-free grammar and let

V=NUT. AtreeR € V, is a phrase structure generated by G iff R() =
X, each leaf in Dom R is labelled by a terminal, and, whenever n €
Dom R and n has sons n-(0),...n-(J-1) with J # 0 in Dom R, then there

is a product A — w € P such that

A=Rn&lwl =J &(Vj< J)(wj = R(n- ().

Phrase structures are the "derivation trees" of [24, §2.6]. We
prefer the term borrowed from linguisticé {8, §3][9, Chap. 4] because
it prevents confusion between phrase structures and another type of
tree structure to be considered later in this section.

The language generated by a grammar is the set of all yields of
phrase strﬁctures generated by the grammar. If each string generated
is the yield of just one phrase structure, then the grammar is said to

be unambiguous.

(11.4) Definition. Let G=(N,T,P,X) be a context-free grammar and let
£(G) be the set of all phrase structures generated by G. The language
generated by G is o

1(G) = {yield(R) | R€ £(@®}.
If
(Vwe LIG)E! Re LG = yieldR) |

then G is unambiguous.

A grammar for a programming language should be unambiguous.
Unfortunafely, there is no decision procedure for this property [24,
Thm. 14.7]. -

For an example of a context-free grammar we return to a+(a+a)Xa

and similar forms for arithmetic expressions. Let

N={etf}&T={(),+Xa}

f — (e) }.

The grammar GO=(N,T,P,e) assigns to at+(a+a)Xa the phrase structure
shown in Figure 5-2. A direct proof that G0 is unambiguous would be
too laborious for consideration here. A more practical Way to demon-
strate unambiguity is to verify a stronger but aecidable prope;rty, such
as the LR(K) property [24, §12.5].

Suppose G =(N,T,P,X) is an unambiguous grammar and w € L(QG).
To parse w is to find the one tree R e £(G) such that w = yield(R). There
are several algorithms, each correct for a broad class of grammars, that
read w from left to right and construct R with little or no backtracking.
Some build R from the top down (i.e., from the root to the leaves), as in
[16] or [44], while others build R from the botfom up, as in [15] or [19].
Rather than survey this area here, we will simply note that there are |

efficient methods for context-free parsing.

Unfortunately, many programming languages cannot be generated
by context-free grammars. Floyd [17] has shown that certain very
natural constraints, such as the requirement that all identifiers used be
declared, will remove a language from the context-free family. On the
other hand, a programming Ianguagé rha:}? be "almost" context-free in

that it can be specified by a context-free grammar G together with an

f f
a (/
N
N
+
1 f
f a
a

Figure 5-2, Phrase structure for a+(a;&-a)Xa.

5-8

informal discussion of the restrictions on allowable members of L(G),

as in the definition of ALGOL 60 [38]. Since the theory and practice of
context-free parsing are much more advanced than parsing techniques
for more complex forms of grammar, there is good reason to use
context-free grammars even for languages that are not quite context-
free. There is even a systematic way to do this with a two-stage gener-
ative process consisting of a context-free grammar and a device that we
will call a "lexical synthesizer." Using ALGOL 60 as an example, we
will now sketch the two-stage method. (For the sake of simplicity, we
delete the production {label) — (unsigned integer), so that (label) —
(identifier) is the only production for (label) that remains in [38, §3.5.1].)
The following discussion is based on remarks by Cheatham [7, pp.III.B.11,
1II.B.12, IX.A.1, IX.A.2].

Reserved words like ggg;gare single terminal symbols in the
ALGOL 60 grammar [38, §2, fn. 6], so some additional device that con-
verts the symbol p'gg.i,pvto. the string of five characters BEGIN is needed.
By simplifying the grammar and complicating this spelling device, we
can specify the ALGOL 60 character strings formally. First we replace

the productions for the nonterminal (identifier) by a new production
(identifier) — {identifier}

where {identifier} is a new terminal. Unlike the terminals begin, +, and
so on, this new terminal can be spelled as a character string in more

than one way. We call it a lexical variable. In general, a programming

language might need several lexical variables, as in {real identifier}

and {integer idehtifier} in FORTRAN.

5-10

Let G be the modified ALGOL 60 grammar.' In order to generate
a program we first generate a phrase structure R € £(G). The lexical
synthesizer assigns a string Sk of characters to each position k <|w| in
w = yﬂi(R). The concatenation §,-§, - ... SIWl -1 of all these strings
of characters is then a well-formed ALGOL 60 program. The way each
k <|w| is treated depends on the terminal W, at that positidn. If Wy is
an ordinary terminal like begin, then Sk is simply the spelling of W In
this case the lexical synthesizer acts like a homomorphism from strings
of terminals to strings of characters. If w, is a lexical variable like
{identifier}) , however, then §) is one of the character strings that the old
grammar could generate from the nonterminal corresponding to wy. In
‘choosing Sk the lexical synthesizer does not 'inerely apply the old rules.
It also inspects relevant portions of the tree R and relevant ‘g"j's for j # k,
so as »to obey the restrictiohs that prevent ALGOL 60 from being context-
free. For example, actual label identifiers cannot be assigne-d to occur-
rences of {identifier} in such a way that a jump statement transfers into
a block [38; §4.3.4]. The restriction on jumps, the requiremerit that each
identifier used be declared, and several othe_r indislputébly well-motivated
restrictions can be formalized readily because the leii'cal synthesizer has
access to the tree R as well as the string w. o \

In order to invert the two-stage generative procéss with the help of
context-free parsing techniques, we consider three processes’ iﬁ sequence:
lexical analysis, context-free barsing, and lexical fﬂtration.

The input to the lexical analyzer is a string = of characters that is

presumably a source program. The analyzer finds a.strin'g w of termi-

nals and a string Sk of characters for each k < lw| such that

5-11

B=8p 8y Sy

and each Ek is a possible Speliing for the terminal Wy . The output of
the lexical analyzer is w together with spelling information for each
k <|w| such that Wi is a lexical variable. One natural format for this

output is the augmented terminal string
(<W0: Bo> [<W1: Bl> Y0y (W_lx B_1>)

where each Bk is a pointer. If Wy is‘an ordinary terminal then Bk can be
any ''don't care' pointer. If W, is a lexical variable then §, is a true
pointer to a symbol tablé location where the aqtual spelling 'g"k used in
the program may be found. (Other data, such as which block an identi-
fier belongs to, may be accumulated in the symbol table later.)

The input to the context-free parser is the augmented terminal

string produced by the lexical analyzer. The parser treats each {a,)
like the terminal a, ignoring the pointer B8, and finds the phrase
structure R € £(G) of we L(QG). (Aﬁ error message results if w¢ L(G).)
Each leaf in R is actuaily labelled by a pair {a, 8): the pdiﬁfers are
ignored but not erased. To be more precise, we say that the parser
produces an augmented phrase sfructﬁre. |

Finally, the lexical filter determines whether the lexical variables

at leaves of R could be generated by the synthesizer in accord with the
way they are actuallly spelled in the program =, as indicated by the
symbol table entries pointed to by the augmented terminals. The output
of the filter is R if the actual spellings cbuld be generated by the syn-
thesizer and an error message otherwise. This is the stage that detects

undeclared identifiers and similar faults in prdgrams that are well-formed

5-12

in terms of the context-free portion of the syntax. The lexical filter
inspects structures that the lexical analyzer and context-free parser
have already provided. This is not a very difficult task, so we will not

consider formal models for lexical filtration.

We have sketched a three-stage method for context-free parsing
of languages that are not quite context-free. Lexical filtration is not
very difficult and several efficient context-free parsing methods are
available, as in [15] [16] [19] [44], but we have sdid nothing about how
lexical analysis is to be pérformed. Our next task is to define a concept
from formal language theory that is useful as a mathematical model for
the most difficult part of llexical an.alysis. '

The source program = must be analyzed as EO ... Slwl-—l for
some string w of terminals such that w, can be spelled as gk for each
k<K. As E is read from left to right, the analyzer should sometimes
decide that the end of a Sk has_ been reached and should output the appro-
priate (Wk, Bk> as the next symbol of the augmented terminal string. The
symbol table pointers Bk can be assigned by well-;known methods for
searching and updating tables (suéh as hash coding), so we will only con-
cern ourselves with the mapping fror_h = to w. We wish to define a class
of abstract devices that are easy. to ifnpierhent and that can map strings

to strings efficiently.
(11.5) Definition. Let M be any T-tuple
M=(K,Z,A,6,\,8,F)

where K, Z, A are finite sets, s€ K, F C K, and

5-13.

6: KXZ—K

A K X3 — A¥,

Then M is a deterministic finite string transducer with set K of states,

input vocabulary X, output vocabulary A, transition map 6, output map A\,

starting state s, and set F of final states.

' not "'string."

The adjective ''finite'" modifies "transducer,’
Strings are defined to be finite already. The deterministic finite string
transducers are often called "generalized sequential machines with final

states' or '"deterministic a-transducers."

(11.6) Definition. Let M = (K,Z,A,d,\, s, F) be a deterministic finite

string transducer. The extended transition map §: K X 2* — K is

defined by

(1) Ha () =gq

and
(2) 6(q, (a)-x) = 8(8(q, a), x)

for all g€ K; x€ £*; ac X. The extended output map : K X £¥ —» A™

is defined by

3 Ma,(M=0

and

(4) Naq, (a)-x) = Mq, a) - X(6(q, a), x)

for all q€ K; x€ T*; a € £. The transduction computed by M is the

partial function (M): £* — A* defined by

(5) (M) ={{(x,X(s,%) | x€z*&d(s,x) € F}.

5-14

In our intended application to compiling, the input vocabulary ¥ is
the set of characters available for writing programs. The output
vocabulary A is the set T of terminals in a context-free grammar
(N, T,P,X). The set F of final states may be used to reJect certain
vcharacter strings without the expense of an attempt at parsing. If M is
not in a final state after processing the input string then an error
message results. If no such test seems to be appropriate, we may let
F = K, so that all character strings are transduced to terminal strings
and sent to the parser. In this case it is customary to omit the refer-
ence to F and call the 6-tuple (K, =, A, 6,\,5) a ""generalized sequential

machine."

(Hopcroft and Ullman ca11 M a generahzed sequential .
machine' even When F+K [24 §9.3], but this is a departure from the
more usual nomenclature.) i

Many mathematical properties of finite transducers have been
established, as ean be seen by consulting [24] and the references cited
there. In §14 we will consider the us‘es of one of these properties: the
class of transductions defined by deterministic finite string transducers
is closed under composition. These transducers also appear as parts
of an 1mportant LR(k) parsing system [15].

Finite transducers are reasonably straightforward to implement.
Whenever a character is read the 1eXica1 analyzer consults a [K| by =]
matrix of entries (6(q, a), Mq, a)) for;‘qu and a€ZX. Unless a matrix
with K| IZ| entries is unmanageably large implementation of a finite
transducer is quite easy. Finally, the determlmstlc finite string trans-

ducers appear to be powerful enough to perform lexical analysis without

unreasonably restricting the programming language designer [7, Chap. IX].

5-15

We have sketched the role of context-free grammars and finite
transducers in assigning tree structures to computer programs. After
lexical analysis, parsing, and lexical filtration, a source program has
been transformed to a phrase structure tree augmented by pointers to
symbol table entries at leaves labelled by lexical variables: Concepts
and results from formal language theory are helpful in designing and
evaluating lexical analyzers and context-free parsers, while lexical
filters are rather straightforward to design because of‘ the explicitly
structured data available to them. But how can augmented tree structures
be used to generate machine code?

Before sketching two relatively well-known mathematical proposals
for generating code from augmented tree structures and the practical
shortcomings of these proposals, we must introduce a slight compli-
cation. Phrase structufes are simple to define and intuitively natural,
but a somewhat less tranSparent‘ class of trees has several technical
advantages in the detailed consideration of parsing or code generating
algorithms. The "ranked parse trees' defined below have nodes labelled
by productions rather than by terminals and nonterminals. Recall the

definition of ranked trees (4.11).

(11.7) Definition. Let G = (N, T, P, X) be a context-free grammar. For

each 7€ P let p(7) be the unique K € IN such that 7 has the form

'(41) A— x5 (Bg)eooxp - (Bp) %

- where A, B B €EN and x , X €T*, so that p: P — IN.

0>+ B 0t XK
A tree S€ P# is a ranked parse tree generated by G iff S() is a pro-

- duction X — x for the initial symbol X and, whenever n€Dom S and

59-16

k < K for K = p(Sn), then S(n-(k)) is a production Bk — for the non-

terminal Bk when Sn is expreésed in the form (1).

Aho and Ullman call such structures ''parse trees' [2, §2]. We
have added the word "ranked' to prevent confusion between these trees
and phrase structures, which are also called "parse trees' by some
authors.

For an example, we return to the grammar G0 =(N, T, P, e) for
forms of arithmetic expressions. We have N = {e,t,f} and T¥{(»), X, a}.

The productions are

Ty =e—1 ~ with p(7r0)=1
7r1=e—>e+t with p(ﬂ1)=2
772=t—>f | with p(?rz)=1‘
Ty = t — ‘t>‘_<_f with p(7r3) =2
Ty = f —a with p(\1r4) =0
Ty = f — (e) with p(7r5) =1,

The ranked parse tree shown in Figure 5-3 conveys the same infor-

- mation about a+(a+a) Xa as the phrase structure tree shown in Figure 5-4.
By comparing the definition of phrase structures in (11.3) with the

definition of ranked parse trees in (11.7), we can show that there is a

bijection between the two forests for any context—ffee grammar., A

ranked parse tree is essentially a phrase structure tree where each

node labelled by a nontérminal A has been replaced with a node labelled

by the appropriate production A — w.

9-17

m

N
T, ™ QA
774 7T5

HE
TN
~~ ~
Ty P

Figure 5-3., Ranked parse tree for a+(ata)Xa.

o-18

/// \ '
e/ + i t‘\
i t/),< f
f f |)
a (/ \)
e
e// \t
I
; P
: 2

Figure 5.4, Phrase structure for a+(ata)Xa.

5-19

In the intended application to compilers, lexical variables will

only occur in productions of the form
(syntactic category) — {syntactic category),

so that each w in a production A — is free of lexical variables or is

of the form (a) for some lexical variable a. Corresponding to augmented
phrase structures, we have augmented ranked parse trees whose leaves
are labelled by pairs {7,) where 7 is a production of rank zero and f is
a pointer. If 7 is A — © with v free of lexical variables then Bis a
"don't care' pointer, but if 7 is A —» (a) for some lexical variable a
then B points to a symbol table entry.

We will assume that the code to be generated from an augmented
ranked parse tree depends mainly on the basic tree, without the pointers.
The symbol table is consulted for the actual address fields of machine
instructions and perhaps for some details such as the choice between
real number and integer arithmetic. The basic ranked parse tree should
suffice to determine the machine language program except for some blank
spaces to be filled in by following pointers to the symbol table in a
straightforward way. This is the semantic aspect of the idea that pro-
gramming languages are almost context-free. Therefore we consider
the problem of generating code fro?n a ranked parse tree without regard

to the pointers that are attached to the leaves in practice.

Let MLR be the set of all machine language routines definable by
phrases in programs in the language being compiled, where a phrase is
a segment of a program that can be traced back to a single node in the

phrase structure or ranked parse tree. Let P be the set of productions

5-20

in the grammar, with a rank function p in Definition 11.7. We might

assign to each 7 € P an operation
I : MLRP{™ —. MLR

so that, if a tree in P# has the form 7r(R0, cens R-l) and each Rk

determines a machine language routine ’Rk € MLR, then 7r(R0, e, R—l)
determines the routine Iﬂ('ﬁo, .-, ®_4). By interpreting = as the oper-
ation I” on machine code, we can assign a machine language program to
each ranked parse tree. This is exactly the same process we used for
Lemma 8.2 in Chapter 3, Where each operator-operand tree could be
assigned a value in the extended data Space ID after each operator had
been interpreted as an Operafion on D. In the nomenclature of Brooker
and Morris [43, §§1, 4, 6], each’l is a "format routine' macro-
instruction. In the nomeﬁclature of Knuth [27], we are using a single
"synthesized attribute'' whose range of values is MLR.

The scheme just sketched is too flexible, rather as if we had
allowed an arbitrary Turing machine to perform lexical analysis. There
do not appear to be many theorems that could assist someone who wishes
to construct a compiler al‘ong these lines. We will now consider some
restrictions on MLR and the Iﬂ's that lead to a richer theory.

In defining "syntax—direéted transductions," Lewis and Stearns [30]

*
assume that MLR is a subset of I' for some finite set I and that each

Iﬂ has the form
(1) (Vyo, e Yg1 € MLR)(IW(yO, vees yK-l) =X0'Yg(0)" XK1 VE(K-1) ° xK)

where K = p(7) and x4, ..., X 4 E_l">:< and f: {0,...,K-1}— {0, ...,K~1} is

5-21

a bijection. These assump‘cions hold in their example [30, p. 466], where
the source language consists of simple arithmetic expressions and the
target machine has a hardware stack, but not in some other important
situations. As Aho and Ullman point out in the case of for statements
[2, p. 94], the routine Iﬂ(yo, ""yK—l) might require several copies of
some of the yk‘s. The desired flexibility can be obtained by replacing (1)

with
(@) (V3o g EMLRII, (g, -0 ¥k) = X0 Yg(0) -+ ¥y1 " Ye(g-1) ")

where K = p(7) and J €N and Xy eees X4 €T and f: {0, ...,J—l}——»

{O, cees K-l}. We simply or‘riit the assumption that J =K and { is a bijection.
The "generalized syntax-directed translations' proposed in [2] are yet
more flexible than this. A tree in P# may define several machine
language routines, one for each of several ''translation symbols" [2, §3]
associated with the left half of the production at the root. To simplify

the notation we suppose t.hat all nonterminals have the same number H# 0
of translation symbols, so that a tree in P# determines a sequence of H

machine language routines. The code defined by a ranked parse tree is

H

defined to be the first component of the member of MLR"™~ determined by

the tree as a member of P#. Instead of (2) we have I7r: (MLRH)K —_—

MLRH, and each h < H has

0 K-1

3) &Y% ..., v lemLrl)

£(0)

£(J-1)
g0) XY)

0 K-1y; _
(LY, ... Y) =% Y -1 %

for some X, ..., X; eT" and £:{0,...,3-1} — {0, ..., K-1} and g:{0,...,3-1}

— {0, ...,H-1}. The choices of J, X(s +ees X35 £, and g depend on h.

9-22

The concept of ''generalized syntax-directed translations" summa-
rized by (3) shares a fundamental réstriction_with narrower theory of
"syntax-directed transductions" summarizéd by (1): machine code
consists of strings of symbols and the only way to combine several
machine language routines is to concatenate them.

To concatenate routines is to link them in a linear sequence. This
is not a sufficiently powerful way to manipulate code, since it proh1b1ts
many common uses of branch instructions. For example, suppose a

statement in an ALLGOL 60 program has the form
IF # THEN & ELSE 8

and that the character strings P, @, 8 determine fnachine language
routines B, A, B. Suppose that executmg T would place the value of

P in some register X whose contents can be tested by a branch
instruction. Then B, Y, B, and the branch 1nstruct10n should be linked
as shown in Figure 5-5. ‘ |

Fortunately, the results in [2] deal with the size of the compiled »

program as a function of the size of the source pfogram, without really
~using the linear linkage assumption. It iAsAA;en'ough to assume thaf size is
measured in such a way that the size of each combination of machine
language routines is a constant plus the suon"f the sizes of the com- .
ponents. For example, suppose that the Size of a routine is the number
of machine instructions in it, and that the hofméllflow of control is from
each instruction to its successor in a sequeﬁce of instructions. Then the

size of the routine shown in Figure 5-5 is

2 + size(R) + size(Y) + size(V),

5-23

Figure 5.5, Nonlinear linkage in the code for a conditional statément,'

5-24

where the branch instruction and one transfer instruction (the bend in
the link down from U) account for the 2.

For further sfudy of context-free semantics we wish to avoid the
unrealistic linear linkage éssumption, but we also wish to assume
somewhat more about machine code than do Aho, Hopcroft‘,. and Ullman
[1] or Knuth [27]. We seek a model that allows nonlinear linkage but
still has enough structure to support a theory comparable to that of
finite transducers or context-free parsers. Such a model is proposed

in the next section.

12. Tree Transducers and Compiling

In this section we sketch a model fo;‘ syntax-directed compilation
that allows the use of formal 1aﬁguage theory without requiri'n'gturireal—
istic assumptions about the method of generating code from ranked
parse trees. The model presupposes the existence of ''deterministic
finite tree transducers' similar to deterministic finite string trans-
ducers such that all states are final states. (The basic theory of such
tree transducers will be presented in the next section.) This section
concludes with remarks on the use of coroutine linkages to implement
the five processing stages of our model without impractically large inter-

mediate storage requirements.

We return to the problem of nonlinear linkage that arose in the

previous section. Consider an ALGOL 60 conditional statement

IF # THEN @ ELSE @8

5-25

where the character strings ®, @, 8 determine machine language
routines B, A, B. Suppose that executing P would place the value of
® in some register X whose contents can be tested by a branch
instruction.

Two binary operations on machine language routines are of inter-
est here. For all routines & and &, let SEQ(R,S) be the result of
linking B and & sequentially, so that the exit from B becomes the
entry to & . For all routines B and &, let TESTX(R,&) be the result
of merging the exits from ‘B and & and forming a branch instruction
that tests X and branches to ®# on true and to & on false. Thus
TESTX(¥%,3) is the routine displayed below the dotted line in Figure 5-6

while

(1) SEQ(P, TESTX(YU,B))

is the entire réutine displayed in Figure 5-6. In (1) we have a de-
scription of the code for IF # THEN @ ELSE 8 in terms of given
routines> and 4e1evmentary operations on code that could easily be pro-
gramrhed in assembly language, AMBIT/G [11] [20], or any other
language at all suitable for compiler writing. The routines B, Y , and
‘g may be quit.e ébmplex, -but they are also built up from smaller

routines by basic code-building operations. The set Q of available oper-

ations is a ranked alphabet including SEQ and TESTX (both with rank
two). The routines P, U, and B can be described by trees B, ¥, and
B in Q#. The code for IF # THEN @ ELSE 8 in (1) can then be

described by the tree

(2) SEQ(® TESTX(L, B))

9-26

Figure 5-6. The conditional IF @ THEN @& ELSE 8 is coded as
SEQ(P ,TESTX(2L,B)) when ¢, &, 8 are coded as

"3,‘11,‘)3.

9-27

where SEQ and TESTX are the operations on Q# defined by (4.10).
By hypothesis, Q consists of names for readily programmed

operations on machine code. To pass from the tree (2) to the routine

(1) is simply to perform the indicated operations. More generally, we

may assume that there is a code generator which converis ranked trees

to machine code. (The actual input to the code generator will, of
course, be an augmented tree, with pointers attached to the leaves as
in the previous section.) The code generator may perform ordinary
bottom-up evaluations as in (1). It may also perform-operations with
side effects on an environment that includes the symbol table, which
must eventually be expanded to inélude addresses as well as spellings.
We will not attempt to model code generation in detail. In each specific
application Q is to be a selection from operations that are already well

understood and hence not in urgent need of a mathematical model.

In order to avoid dubious assumptions about the mathematical -
structure of machine code, we have postulated a code generator that
maps trees to machine language routines. The input to the code gener-
ator is a coding tree: a ranked tree augmented by pointers to symbol
table entries as well as ordi_nary labels at the leaves. The ranked
alphabet Q represents Whatevér basic code-building operations are
availéble ; it has no simple relation to the ranked alphabet P defined by
the context-free grammar G=(N, T, P, X) used in generating the source
language. (Recall that ranks are assigned to productions by Definition
11.7.)

There is a gap in the rhethod of compiler construction we have

developed. Lexical analysis, context-free parsing, and lexical filtration

5-28

map a character string to an augmented ranked parse tree, as we indi-
cated in the previous section. Code generation maps a coding tree to
machine code. A fifth process is needed to map augmented ranked parse

trees to coding trees. We will call this process semantic analysis.

The semantic analysis of an augmented parse tree is to be de-
termined mainly by the corfeéponding ranked parse tree without the |
pointers: the source language is almost context-free semantically as
well as syntaétically. We will assume that the semantic analyzer can
map trees labelled by productions to trees labelled by code-buildingv
operations with the help of a '"deterministic finite tree transducer" analo-
gous to the type of string transd_uc?r defined in (11.5). The semantic
analyzer ignores but does not erase ;c.he pointers on leaves of the aug-
mented ranked parse tree. The pointers are simply carried along so as
to appear where needed in the codirié.treé.

The practical significance 6f 1e'xica1 analysis as a first stage in ‘
compilation is enhanced by the exisfénée of a fruitful mathematical |
model for string transduction. There vis é similarly fruitful model fpr
tree transduction in semantic analysis, but the greater complexity of
trees as opposed to stfings forces us to postpone formaliiation until the
next section. For the moment, it will suffice to anticipate that tree
transducers will be generalizations of. string transducers and that they
can perform the macroexpansions for "format routine" macro-

_instfuctions [43, §§1, 4, 6].

Our model for compilation is summarized in Figure 5-7, where
the boxes represent processes and the arrows represent data flow. As

the two-headed arrow indicates, the lexical filter might modify the

5-29

character
string
CONTEXT -
LEXICAL L augmentefﬂ > FREE
ANALYZER ter‘mmalnstr‘mg PARSER
augmented |

ranked parse tree

Y
symbol) LEXICAL
table FILTER

augmented
ranked parse tree
v v
CODE | _ coding SEMANTIC
GENERATOR | tree ANALYZER
machine
code

Figure 5-7,

A model for syntax-directed compilation,

5-30

symbol table as well as consult it. For exampie, spelling of identifiers
might be supplemented by pairs (j, k) where j indicates the block where
the identifier is declared and k indicates where the identifier falls in a
list of that block's identifiers. The code generator might also modify
the symbol table, perhaps by adding addresses that will be needed later
in the generative process.

This view of syntax-directed compiling is the natural result of
combining two traditions in cofnputer science, Forma_l language theory
(if understood in a broad sense thst includes the recent introduction of
tree transducers) provides the mathematical background, More coherete '
discussions of compiler design problems [7] [43] 154] provide the general
shape of Figure v5-7A and the specific practical techniques for table
searching, linking routines, and so on that we take for gran‘t‘ed here.
Without proceeding to a complete mathematical formalization, we have
separated some of the general ideas stated or implied in these dis-
cussions from each other and from considerations of more specific

problems.

In contrast with tﬁe stterhﬁt. to medel the entire compiler formally
by a single abstract automaton as pfOpOSed by Lewis and Stearns [30,
p. 467], we have attempted >to divide and conquer in Figure 5~7. We con-
sider syntax-directed compilation to be a complex task; different formal
models are appropriate to different'aspeets of the task. As we suggested
in the previous section, deterministic finite string transducers are
appropriate for lexical analysis, several algorithms in the formal

language theory literature are appropriate for context-free parsing, and

5-31

lexical filtration is a fairly straightforward inspection of structures
already available. We claim that deterministic finite tree transducers
are appropriate for semantic analysis, and some evidence will be pre-
sented in the next two sections. By definition, the coding tree can be
readily transformed to code by the code generator.

Dividing the task of compilaﬁon into several stages has two other
advantages regardless of the availability of theoretical models. The
algorithms to be used at each stage can be specified and implemented
separately, and this will facilitate debugging and documentation.
Another advantage is that transportability is enhanced: a compiler for
a language on one target machine can be converted to a compiler for the
same language on another machine with a minimum of reprogramming.
The code generator may need extensive changes, but the other stages
should be useable with hardly any changes if written in a higher level

compiler writing language such as AMBIT/G [11] [20].

Any model of compilation that involves several stages faces a
severe practical difficulty when large programs are considered: there
may not be enough primary storage to hold the entire ranked parse tree
or coding tree. Even the augmented terminal string may be too large in
some situations. Fortunately, there is a programming technique that
often permits us to have the advantages of a multistage process without
excessive intermediate storage requirements. We conclude this section

with a discussion of this '

'coroutine linkage' [28, §1,4.2] technique and
the constraints it imposes on the separate stages.
Suppose that the five stages in Figure 5-7 have been implemented

by programs LA, CFP, LF, SA, and CG in an appropriate language, so

5-32

that the compiler is the sequentially linked program
(1) LA; CFP; LF; SA; CG

with burdensome intermediate storage requirements. We modify the
five programs slightly to form coroutines LA'’, CFG’, LF’, SA’, and

CG' that can transfer control back and forth as shown below:
(2) LA'<CFP'<LF'<SA'&CG’.

Whenever control passes from one coroutine C to another coroutine D,
C pauses until control returns from D. Then C continues from whatever
place in C's control sequence ‘transferred to D. Except for this linkage
mechanism, LA’ is just like LA, CFP' is just like CFP, and so on.

The general idea of coroutine linkage is applied here in order to
save intermediate storage. The rules by which the coroﬁtines call on

each other are simple:

(a) Each of LA, CFP!, LF’', and SA' computes only as long as is
necessary to determine some further portion of the string or tree’
that it should output. It then passes control and the new portion of

its output to its successor in the sequence (2).

(b) Whenever one of CFP’, LF’, SA'’, and CG' must examine some
further portion of its input in order to continue, it passes control

to its predecessor in the sequence (2).

(c) Whenever LA’ must examine some further portion of its input in
order to continue, it reads in more characters from the input

buffer for the whole system.

5-33

This is the mode of operation used by Cheatham [7] and Wirth
and Weber [54]. If transfers of type (a) are fairly frequent compared
to transfers of types (b) or (c), then only fairly small portions of the
augmented terminal string, augmented ranked parse tree, and coding
tree must be retained in primary storage at any one time. The time
saved by avoiding secondary storage may well be more than enough to
compensate for the time spent in transferring control back and forth
among the coroutines.

Coroutine linkage is only useful here if the original routines
LA, ..., CG are such thét transfers of type (a) are fairly frequent
compared to transfers of types (b) or (c). Since LA can only produce
a prefix of the augmented terminal string after reading a prefix of the
character string, CFP should read its input from left to right,
remembering only what it might need to know later about previous
portions of the terminal string. Furthermore, CFP should be able to
output part of the augmented ranked pafse tree after reading only part
of the augmented terminal string. If CFP builds the tree from the top
down, then LF and SA should read it from the top down, and so on.
The intended use of coroutine linkages puts constraints on the design of
LA, ..., CG. In particular, SA should read the augmented ranked parse
tree in the order that CFP builds it and should output the coding tree in
the order that CG reads it. Once the compiler designer has chosen the
order in which some chains of events occur, he must follow suit with
other chains or risk exhausting the available primary storage. As we
will see in §14, this practical consideration leads to many open

questions in the theory of tree transducers.

5-34

13. Finite Tree Transducers

In this section we define several types of tree transducers in
terms of subtree replacement systems. By expressing each type of
transducer as a special case of a general model, we hope to facilitate
the development of a unified theory with applications to tree trans-
duction in linguistics as well as compiler design. The actual results
presented here are only very modest extensions of results of Rounds
[45] [46] and Thatcher [51] [52]. ‘In addition to establishing some basic
properties of finite tree transducers, we indicate the significance of

these properties for compiler construction.

First we set up some notation that will be used throughout this

section and the next.

(13.1) Notation. Let 7 and U be disjoint infinite sets. Members of

m are markers; members of U are parameters. The letters r,s and
the symbols @, $, ¢ are used as variables ranging over 7. The parame-
ters are listed in a sequence ug,u;, Uy, - .. and subscripted u's always

refer to this sequence.

Parameters will be used to form rule-schemata, as in §6.
Markers carry two kinds of information. Intuitively, if a tree R has a
node n with Rne 7, then a tape head of an automaton is positioned at
node n and can read the labels on n and some neérby nodes. (Imagine
an automaton for strings whose heads can read all of several adjacent
tape squéres at once.) In addition to this information about a tape head's

position, a node labelled in 7 encodes a partial record of previous

5-35

computations in the specific marker chosen. A member of 7 acts like
a state of an automaton's control unit, but here there is a separate con-
trol unit for each head and the units are only partially synchronized.
Another anomaly is that tape heads will often split into several heads,
especially when moving down from a ncde with more than one son.

They will coalesce into one when moving back up. Sometimes tape heads
will even vanish. Such activities are extremely awkward to formalize in
the usual style of describing automata (as in [24]), but they can be
obtained easily from an SRS. After two definitions we will be able to
give examples.

Our transducers will manipulate trees whose nodes are labelled by
markers, parameters, and the actual labels occurring on nodes of input
and output trees. (To avoid confusion, these labels should be distinct
from the markers and parameters.) We will deal with ranked input and
output trees because this is techmically convenient and because the aug-
mented ranked parse trees and coding trees considered in the previous |
section actually are ranked trees. It will be convenient to assume that
any symbols shared by the input and output vocabularies have the same

ranks in both vocabularies.

(13.2) Definition. Let £ and A be finite sets with rank functions
0:2— IN and 6:A — IN. Then (£, A) is a proper pair of ranked
alphabets iff

(1) cEUuaNmuUuuU) =9

and

(2) ~ (Va€e £M A)o(a) =6(a)).

5-36

If (Z,4) is proper, then the transducer vocabulary

'

3y v=zUaUmUu
is assigned the rank function

(4) p=0U6U{(r,1>lre‘”Z}U{(w,O}IWEU}.

For the rest of this chapter, the letters V and p will be used as
in (3) and (4) above. The relevant proper pair (Z, A) will be clear in
context, as in the following definition of SRS transducers. We omit the

overlines in the algebraic nomenclature defined in (4.10).

(13.3) Definition. Let II be any '4-'tup1e (z,A,@,8), where @€ 7,
(Z, A) is a proper pair of ranked alphabets, and € is an SRS of the

form (V,F, =>, R) with
(1) F=-{sev,/@rReEUV,NCR) = 5)}.

Then II is an SRS transducer with input Vocabulzgy Z, output vocabulary -

A, and root marker @. The map (II) from 22# into ZA# defined by .

(2) (MR ={Te A#I(ERER N@(R) = T)}

for all R C Z# is the transduction specified by II.

The root marker @ is analogous to the léft endmarker | in work
with strings. We do not need an analog for the right endmarker -
because the subtree of a tree at a node already includes everything at
or below the node. |

The condition (1) in Definition 13.3 means that € is determined

by IR alone, since the transducer vocabulary was already fixed as

5-37

s UAU M U U in (13.2.3). The forest IF consists of all trees derivable
in € from trees of the form @(R) where @ is the root marker and R is
labelled by input symbols and parameters.

By using 2Z4 and 2°# in (2) above, we made the transduction (II) a

total function even though the relation
%) {(R.8) e z,x 84| @R) => s}

may be neither total nor singlevalued. Conditions under which (%) is a
total function will be considered later. Theorem 13.16 asserts that (II)

is a total function if II is a "'deterministic finite tree transducer."

For an example we return to the grammar GO =(N, T, P,e) from
§11 for forms of arithmetic expressions. We have N = {e, t, f} and

T = {(,),+,X,a}. The productions are

Ty =€—> t with p(7r0) =1

Ty = e—> e+t wij:h p(7r1) =2

Ty = t — f with p(7r2) =1)
Ty = t — tXf{ with p(ﬂg) =2

7r4=f—>a with p(7r4)=0

Ty = f — (e) with p(7r5) =1,

The ranked parse tree shown in Figure 5-8 conveys the same infor-
mation about a+(a+a)Xa as the operator-operand structure shown in
Figure 5-9. We can map the tree in Figure 5-8 to the tree in Figure 5-9

by means of an SRS transducer with input vocabulary £ =P and output

5-38

/ _"-‘ \
K s

o Up)
Ty

Figure 5.8, Ranked parse tree for a+(a+a)Xa.

5-39

2N

a

Figure 5-9. Operator-operand structure for a+(a+a)xa.

5-40

vocabulary A ={+,X,a}. We choose any @ € M as the root marker and
consider the set L of pairs of trees shown in Figure 5-10. Let each

w € U be assigned the domain

so that L is a set of rule-schemata in the sense of Definition 6.1.
Let]RL be the set of all instances of members of L, as in
Definition 6.2. Then there is a unique SRS
C=(V,F,=, R)
such that

F={rev,|@ReGUV,ER) =T}

Thus we have specified an SRS transducer

m, = (2,4,8,E).

If R is the tree in Figure 5-8 and S is the tree in Figure 5-9, then it is

easy to verify that
(my R} = {5}

Once %, A, and @ have been specified, an SRS transducer may
always be defined by assigning domains to the parameters and defining
a set L of rule-schemata in the sense-of Definition 6.1. The rules of
the transducer's SRS are the instances of members of L (in the sense

of Definition 6.2).

(13.4) Definition. A (finite) presentation of an SRS transducer

I=(2A,@¢C), with € =(V,IF,=>, R), is any pair {ID, L) such that

5-41

@ @ X
@ /\
T, - Tq — @ @
u \
u u v v
@ +
@
™ __. @ e — a
N "
u v u v
@ @
@ @
T, T s
u u
u u

Figure 5-10, Rule-schemata for an SRS transducer. The parameters

ug and uy are written as u and v for legibility.

5-42

D C V# and L is a (finite) set of rule schemata such that R = IRL when

each w € U is assigned the domain DW = ID.

We will be concerned with finite presentations using very simple

domains:

D=(UU), or D=(AUU),.

A finitely presented SRS transducer is still only finite in a very weak
sehse: it takes only finitely muqh information to specify exactly which
transducer we are considering. (Note that Turing machines are finite
in this sense.) The definitions givén so far allow markers to move up
or down as freely as a Turing machine's heads move left or right. We
wish to restrict such motions so as to obtain the stronger finiteness
associated with "finite automaton' and similajr.phfases. By requiring
that tape headsvalways move downward or always move upward, we will
obtain the desired strong finiteness prop'ertie's in Lemma 13.13. Down-

ward motion will be considered first.

Our transducer 1'10 that maps ranked parse trees to operator-
operand ‘structure's_ is defined by a set L of rule-schemata in Figure 5-10.
Imagining that nodes labelled by markers are positions of tape heads, we -

consider how tape head motion is restricted by the forms of the rule-

schemata. For any @ — ¥ &€ L, @ has the form

s(a(u, ..., u_y))

where s€ M and a€ %, so that the tape head reads only the label
immediately below it. The list (uo, ...,u_l) of the first p(a) parameters

T_, in any instance ¢ —> ¢

indicates that the trees T, ..., T_;

5-43

(1) 8(a(Tg, ..., T_) == w(¥ Hug)—To) ... (¥ Mu_)) «—T_))

of & — ¥ will vanish or be carried over to ¢ without change. Further-
more, the tape head will move down‘ward. (perhaps splitting into several
heads) so as to be able to read the root labels of TO’ cees T__1 next. The
tree ¥ is ranked and is labelled by output symbols, markers, and
parameters. Each node labelled by a marker has its one son labelled 4
by a parameter uJ.: the tape-evhead will move dowh to Tj in (1). Each node
labelled by a parameter is the one son of a node labelled by a marker:
no Tj can be simply written out having' a tape head pass over it. The out-
put symbols occur above the tape.heads and are not processed further.

The schemata in Figure 5-10 satisfy many other interesting
restrictions, but the ones already mentioned suffice to make the tape
heads rhove down from the root in trees @(R) with Re (z U U)#. The
downward moving tape heads may change markers (although not in this
example) and may split into several heads at each node read. The heads
will always have output symbols above them and input symbols or

parameters below them.

(13.5) Definition. An SRS transducer II = (3,A, @,) is a top-down

finite tree transducer (TDFTT) iff there is a finite presentation

((z U Uy, L) for I such that
() (vo—veL)3seMmM)3Bac Z)‘[<I> = s(a(uQ, "”up(a)—l))]

(2 (ve—veL)[re(aUmUu), & v (m)-(0) = ¢ (W],

5-44

(13.6) Lemma. LetIl =(Z,A,@,8) be a TDFTT. There is a unique
set L of rule-schemata such that {((z U U)#, L) is a presentation for II

satisfying conditions (1) and (2) in Definition 13.5.

Proof: Let £ be the class of all sets L of rule-schemata such that
((z\J U)#, L) is a presentation for Il satisfying (13.5.1) and (13.5.2).
We must show that £ is a singleton: (FL)(C = {L}.

Suppose L,L'e £ and ¢—V¥ € L We will show that
& — ¥ & L'. Note that & —»\If is an instance of itself, so that
¢ — YE R;. But R =-]R

L L L'
are both presentations for II, so & — ¥ is an instance of some

because ((zU U)#, L) and {(z U U)#, L')

d' —» ¥' e L. For s = &() and a = &(0), (13.5.1) for L and L' implies
that
- = = &

@ = s(a(ug,...,u_y)) = @'.

Let N, = \If'_l(uk)vfor each k < p(a). Then -

k

= TN, — — =
¥ =¥'(N, ug) o AN_j—u_;) =¥

0).

Therefore ® — ¥ = &' — ¥ and & — ¥ L’.
We have shown that L C L.’ whenever L, L’ € £. Therefore £ is
empty or a singleton. But £ # @ because II is a TDFTT, so £ is a

singleton. i

The earlier definitions by Rounds and Thatcher will not be re-
produced here, but we note that transducers équivalent to TDFTTs have
been called '"'nondeterministic finite state transformations' and abbrevi-
ated "NDFST' [46, §II.1] or "NFST" [52, §8]. They have also been

called '""nondeterministic root-to-frontier automata with output" and

5-45

abbreviated ''nondeterministic RFAO" [51, Def. 7', p. 272]. The next
paragraph explains why we introduced "TDFTT" rather thah choose
among the names previously used.

"Transformation'' could lead to confusion between the transducer
and the transduction, while ""automaton with output” is awkward and
suggests more similarity to ordinary (string) automata (as in [24]) than
is actually present. The word ''tree' should be included because string
transducers and tree -transducérs must be discussed together but not
confused under the model for syntax-directed compilation sketched in

§12. Hence we say ''tree tfansducer.’ Finiteness is important while

the word "state'' after "finite" would add nothing, so we say ''finite tree

transducer."

Some indication of how the markers move is necessary
because other directions of movement will be considered shortly.
"Top-down' is more common (and more graceful) than "root-to-
frontier," so the result is '"top-down finite tree transducer” as a concise

and natural way to name the class of transducers in Definition 13.5 with-

out inviting confusion later.

As we remarked at the end of §12, the tree transducer in a
semantic analyzer should read the rankedbparse tree in the same
direction that the parsing algorithm builds it. The TDFTTs are appro-
priate when a top-down parsing algorithm is used, bﬁt several major
parsing algorithms are bottom-up, as in [15] or [19]. We therefore
wishto define tree transducers that move markers upward from the
leaves toward the root.

For an example, we return to the grammar G0 = (N, T, P, e) for

forms of arithmetic expressions. We have N = {e, t,f} and

5-46

T = {(,), +, X, a}. The productions are

Ty =€ —*lt with p(7r0) = :1
T =e—>e+t with p(1r1) = 2'
Ty=t—f with p(1r2) =1
7r3' =t — tXf . with 'p(7r3) =2
7r4=f——>a Wlth ;;(7r4)=0
Ty = f\l———»A(e) ~with p(rg) = 1.

We can map the ranked 'parse tree for a+(a+a)Xé shown in
Figure 5-11 to the operator-operand structure shown in Figure 5-12,
using an SRS transducer that moves markers upward. -

Let the input vocabulary ¥ be P and let the output vocabulary A be
{+,X,a}. We éhobse any @ € M as the root marker and any $ € 7 with
$+@asa mafker to be moved ubpward'.v C’onéider the set L of péirs of -
trees shown in Figure 5-13. Letting D =(A U U) 4> We have a finite
presentation (]D,»L) for an SRS transducer IIO"= ():,.A, @,C) with € of -
the form (V, IF, =>,]RL). (Becall the defihit_ion of presentations (13.4).)

This transducer meets the requirements of the following definition.

(13.7) Definition. An SRS transducer II = (,A,@,C) is a bottom-up

finite tree transducer (BUFTT) iff £()'A = @ and there is a finite .

presentation { (A Uy, L) for I such that L # ¢ and

(1) (ve— ve L@EaczU{eh@se (m—{eh*®)

[@=alsylug),....s_;(u_)]

5-47

/ ! \
i ‘. / " \
‘ T,
, T 4
T s
~Th \\

Ty

Figure 5-11, Ranked parse tree for a+(a+a)Xa.

59-49

|

o

u v u v u
1r2 @
$ I ~
$ B $. ! u
u
u u
/ ’ T
$ $ — /x\
u v u ‘ v

Figure 5-13. Rule-schemata for an SRS transducer. The parameters

Uy and u, are written as u and v for legibility.

5-50

(2) (Ve— T L)&()E X implies
[v()em —{@} & ¥/(0) € (a Uy,

(3) (Ve— veL)®()=@ implies ¥={((),uy)}.

The rootmarker is only usea to mark the root here, while other
markers may be interpreted as states for tape heads that move upward.
The requirements () A =@ and L # @ are technical conveniences. -
Condition (1) says that a head can oﬁly move upward from a node n if
there are heads at all the brpthers of n alsé. The label ac€ £ U {@}
on Fa(n) and the actual string s€ (M — {@})p(a) of markers involved
are scanned in choosing the upward'moti‘_on. As the use of parameters
indicates, the trees in (A U U) 4 below the tape heads must vanish or be
carried along without being procesée'd further. Conditions (2) and (3)
specify just how the tape heads can coalesce and move upv;/ard. If
®() € T then ¥ has the form r(\If/(Q)) whe.re rem — {@}: the heads
have coalesced to a single head in the_staté r. The: subtre‘e ¥ /(0) speci-
fieé the output prodﬁced at this stage ahd where the previous output trees
are to be attached. Thus ¥/(0) € (.A), U)# . On the other hand, 'if &()=@,
then @ has the form @(s(uo')) with s E n — { @}. The tape heads have
travelled all the way up to the root and whatever is below the one
remaining head is the complete output tfeé, Thus ¥ consists ‘of one ﬁod'e
labelled by Uy the markers vanish and.the compieteI output tree is left.

Réasoﬁing just as in the'proof of Lemma 13.6, we can demonstrate

the following fact.

59-51

(13.8) Lemma. Let Il =(Z,4,@,8) be a BUFTT. Then there is a
unique nonempty set L of rule-schemata such that {(a U Uy, L) is a

presentation for Il satisfying conditions (1)--(3) in Definition 13.7. 8

Transducers equivalent to BUFTTs have been called '"nondetermi- ,
nistic frontier-to-root automata with output' and abbreviated
"nondeterministic FRAQ" [51, Def. 8, p. 270]. The reasons for our
nomenclature are similar to the reasons already advanced for "TDFTT."

An SRS transducer thet is either a TDFTT or a BUFTT is a finite

tree transducer (FTT). A map form,ZZ# to ZA# express’ible as (II) for

some transducer II is a transduction of the same kind: top-down finite

tree transduction, bottom-up finite tree transduction, and so on.
In general an SRS transducer may have many presentations, but

an FTT has just one natural presentation (D, L) which exhibits the fact

that the transducer is an FTT by satisfying conditiens (1) and (2) in
Definitions 13.5 or conditions (1) -- (3) in Definition 13.7. Indeed,
suppose II is an FTT with a set]R of rliles..: If II is top~-down, then each
¢o— YER has ¢(0)€ 2. If I is bottom- -up, then R # @ and each

¢ — Y€ R has ¢(0)e M if (0) € Dom 0. Therefore I cannot be both
top-down and bot’com—up.‘ The uniquéness of (ID, L) now follows from
Lemmas 13.6 and 13.8, -

The definitions of TDFTTs and BUFTTs.given by Rounds [45] [46]
and Thatcher [51] [52] are esserﬁially definitions of the natural presen-
tations of such transducers. ’Repeated ad hoc for each class of trans-
ducers are definitions equivalent to our delfi’nitions of instances of rule-

schemata (6.2.1), of = in an SRS (5.1.3), and of transductions (13.3.2).

5-52

An important property that FTTs may have is linearity [46, p. 272].
Linear transducers do not make extra copies of portions of their inputs

or outputs.

(13.9) Definition. Let II be an FTT with natural presentation (DD, L).

Then NI is linear iff
(Ve— ve L)Wue U) (v Yw|< 1.

In languages with linked 'storage manipulation facilities (such as
AMBIT/G), it is especially easy to implement linear FTTs. Each rule-
schema can be represented by a simple local operatibri'oﬁ the data graph.
There is no need to use an expensive copying process or an ingenious
trick that avoids copying but may be difficult to debug or applicable only

in special cases.

There is another important property' of FTTs that can be formally
defined for TDFTTs and BUFTTS simultaneously. Recall that a determi-:
nistic automaton has exactly one response to each combination of control
state and currently scanned input and étorage symbols. Rounds
[46, p. 264] has considered the weaker n;)tion of ''partial determinism'':
there is at most one response to each combination of control state and
currently scanned input and storage symbols. The discussion in [46] is

limited to TDFTTs, but the same definition applies to BUFTTSs.

(13.10) Definition. Let Il be an FTT with natural presentation {(ID,L).

Then II is partial deterministic iff L is a partial function on V#: no two

rule-schemata have the same left half.

5-53

(13.11) Lemma. LetIl =(Z,A,@,&) be a partial deterministic FTT.

Then (II) represents a partial function from Z# into A#:
(1) (VRe Z,([{m{R}| < 1).

Proof: Let (ID,L) be the natural presentation for I, so that

C =(V,F,=,R We will show that @ is Church-Rosser and that

L)
this implies (1).
We claim that & is unequivocal: no two rules have the same left

half. Suppose ¢ — ¥, ¢' — ' € R, with ¢ = ¢'. Then there are

L
® — ¥, &' — ¥’ c L such that ¢ —> ¢ is an instance of & = ¥ and
¢' — ¢' is an instance of &' — ¥'. By the restrictions (13.5.1) and
(13.7.1) on the left halves of schemata in FTTs, ¢ = ¢' implies that
& = ®'. Therefore ¥ = ¥’ by partial determinism. Since ¢ = ¢!, the
tree substituted for each parameter in ¥ to fofm ¢ is the same tree
substituted fof that parameter in ¥’ to form ¢ ', so ¥ = ¥’ implies ¢ =y¢'.
This proves that € is uneqﬁivocal. , | B |

We ciaim that € is closéd in the sense 6f‘ Definition 5.4. Let each

¢ — Y€ R; be assigned the trivial residue map: no residues for each

L
n in Dom ¢. The conditions in Definition 5.4 will be trivially true if,
whenever ¢, — ¥5 € Ry aﬁ_d n€ Dom ¢, with n # (), then goo/n is not
the left half of a rule. To show this we consider two cases. If II is top-
down, then gyn ¢ M and so ('qzo/n)() ¢ M . If I is bottom-up, then

oon ¢ (U {@}) and so (9o/m) ¢ (£ U {@}). In both cases the label at
the root of gao/n is outside the set of possible labels ¢() for ¢—y € IRL,
so <p0/n is not the left half of a rule.

By the Main Theorem 5.6, & is Church-Rosser. For all R€ Zy

and T€E A#, we have

5-54

Te(m{R} iff @R) = TinC

iff T is a normal form for @R) in €

because trees in A#are irreplaceable in TDFTTs 6r BUFTTs. This
implies (1) because normal forms are unique in Church-Rosser

systems.
If Il is partial deterministic, then the relation

{(R,T)lRe Zy & Te(ﬁ){R}}

is a partial function from Zy into By Tt is convenient to denote this

function (II) also, using an expression like

(My:z,— a4,

to remove ambiguity.

The definitions of linearity (13.9) and partial determinism (13.10)
are the same for TDFTTs and BUFTTs.- :T}h‘e other FTT concepts
require slightly different definitions for top-down and bottom-up
transducers. Perhaps a more unified formulation will emerge in the.
course of further investigation. The tréatment given below is as unified

as is feasible at present.

Although the set M of markers is infinite, only finitely many
markers can actually be used as statés’ of tape heads in each FTT. In a
TDFTT the root marker acts as the initial stat'e-for the tape head that
begins reading the input tree at the root. Ina BUFTT the root marker

merely marks the root for tape heads that use other markers as states.

5-55

(13.12) Definition. Let Il = (Z,A,@,C) be an FTT with natural presen-

tation {ID, L). The set Q of states of II is defined by

() Q={sem|@e— veLv Xs) P} U{e}
if 1 is top-down and by. | |

(2) Q={sem —{e@}|l@e— ve L)(\If'l(s) +0)}

if I is bottom-up. When |Q| = K, then II is said to be a K-state trans-

ducer.

An FTT has only finitély many states because the natural presen-
tation is finite. Finiteness of the state sef is not by itself very helpful:
even Turing machines have only finitely many control states. The
reason we consider FTTs to be "finite" is that important questions
about them can be ganswered effectively from the finite amount of infor-
mation in their natural presentations. The following lemma illustrates .

this idea.

(13.13) Lemma. LetIl =(Z,A,@,&) be an FTT with € = (V, IF, =>, R).
Let (ID, L) be the riatural presentation for II. For any R &€]F, the set of
normal forms of R under @ is a finite nonempty subset of IF that is

effectively computable from R and L.
Proof: Let R € IF. Consider the sequence of subsets of IF defined by
®, = {R}

Ripp =R, U {TI(ESE RS =>T)}.

5-56

For eachi€ N and Se Ri, the finiteness of S and L. implies that
{T|S = T} is finite and effectively computable from S and L. By
induction on i, each d{i is therefore finite and effectively computable

from R and L.

Suppose that some K€ N has R, = & . Then
R ={Te]FIR_—'——>VT}
and every normal form for R is in RK. By computing ﬁo, R 1+---and

checking whether Ki = ﬂi+1 at each step, we can find ﬂK’ Since L is
finite, we can test each member of K for irreplaceability, and the ir-
replaceable members of K K are exactly the normal forms for R. Thus
the set of normal forms for R is finite and effectively computable from
R and L. |

We must show that RK+1 = R for some K€ IN and that the set of

normal forms for R is nonempty. It will suffice to show that a "weight"

w(S) € N can be assigned to each-S € IF in such a way that
(VS, T€ IFXS = T implies w(S) > w(T)).
Case 1 (II is top~-down) Define the _kig_i_gb_t
h(T) = Max {In| | n€ Dom T}

for any tree T. Using the natural presentation (ID, L) and the set Q of

states for II, set
M = Max {I¥"/Q) | (32 € V(2 — ve L)}

and

5-517

wi$) = Y uephS/n)

nes Q)

for allSE€ IF. If S=> T by application of a rule at a node n in Dom S,

let h = h(S/n) and note that

>

w(T) - w(s) < MM+ - ()P = - ()Pt <o
so w(S) > w(T).

Case 2 (I is bottom-up) Set w(S) = |S™Hz U {@})| for all Se FF. I

S => T then w(T) = w(S) - 1, s0 W(S) > w(T).

If I=(%,A,@,C) is an SRS transducer in Definition 13,3, then

has the form (V, IF,=>, R) with

v=zUAaAaUMUU
and

F={seV,/@Re UV, @R = 9}

If II is an FTT then the restrictions on the forms of the rules lead to
restrictions on the for.ms of trees in IF. These restrictions formalize
the idea of one-way tape motion. .F;or example, suppose that II is a
TDFTT in Definition 13.5 with a set Q of states from Definition 13.12,
Let S€ IF. Then S™1(Q) is the set of all positions of tape heads on S, |
and Dom S M (S™1(Q)-(0)-IN*) is the set of nodes in S that have yet to be
scanned by tape heads. These nodes must be labelled by input symbols

or parameters:

Dom S N (S"HQ)-(0)-v*) c s Lz U).

5-58

On the other hand, Dom S - (S—I(Q)-IN*) is the set of nodes in S that

have already been formed by the actions of downward moving tape heads:

-1

Dom S - (S™1Q)-IN*) c S~ L(a).

We also have

S—I(Q) =@ iff all tape'heads have vanished
iff processing is complete

iff Se A#;

Similar remarks apply to BUFTTs from Definition 13.7, but now the
nodes below tape heads display previously formed portions of the output

and the nodes above tape heads have yet to be réad. The 'fol'loIWin'g’ -

lemma formalizes these considerations.

(13.14) Lemma. LetIl =(3,A,@,E) be an FTT with € = (V, F, =, R).
Let (ID, L) be the natural presentation and 1et Q be the set of states. .If

II is top -down then, for all Se€ IF,

(1) Dom $ M (s7(@)-(0)) c s"Hz U v)
(2) Dom § — (s"1(@)- %) ¢ s74(a)
(3) s~ 1 Q) =@ iff Sea,.

If II is bottom-up then, for all S€ IF,

(4) Dom S N (5~ 1Q)-(0)- %) ¢ s™1(A)
(5) S()# @ or Dom S — (s"1Q)-N*) c s}z U {@} U U)
(6) S() #+ @ iff SCA

#°

9-59

Proof: The forest IF' is defined to be:
{sev,j@re U, @R) 59}

by (13.3.1), so it will suffice to show that trees of the form @(R) for
Re(zU U)# have the desired properties and that these prOpérties are
preserved by applications Qf rules. For S = @(R) withRe (2 U U)# ,
(1)--(3) (if II is top-down) or (4)--.(6) (if I is bottom-up) are trivial.
Now let S€IF with the Adesir.eci properties. Suppose S => S'! by appli-

cation of a rule ¢ — ¥ at n€ Dom S.

Case 1 (II is top-down) The restrictions (13.5.1) and (13.5.2) on the
rule-schemata in L assure that S’ inherits (1) and (2) from S. Since (2)
implies that

s7HQ) = ¢ iff Doms cs™Na) iff Se Ay,

(3) follows from (2).

Case 2 (II is bottom-up) The restrictions (13.7.1)--(13.7.3) on the rule-
schemata in L assure that S’ inherits (4) from S. Now we prove (5).

Suppose first that ¢ — ¢ is of the form
-1, N :
alsy(Ty), ..., s_((T_) — LT (ug) =Ty ... (¥ (u_)—T_))
with a € ¥ and
a(so(uo), cees S_ 1(u_l)) — ¥ e L.

Then S ¢ A, because a ¢ A and so S() = @ by (6) for S. By (5) for S,

Dom $ — (8"HQ)-N¥) c s”Iz U {@} U v).

5-60

By ¥() € Q in the restriction (13.7.2) on members of L, S’ inherits this

property from S. On the other hand, suppose ¢ — ¢ is of the form
@(s(T)) — T with Te (A U U)# .

Then S = @(s(T)) and S’ = T. We have T() # @ and so (5) holds for S’ in
any case.
Finally, we prove (6) by showing that both sides have the same

truth value. Suppose first that ¢ — ¢ is an instance of a schema
a(so(uo), vees s_l(u_l)) — VEL

with a€ . Then S’() = @ because S() = @ while S’ & A# because
¥() e M. Both sides of (6) are false. On the other hand, suppose ¢ — ¢

is of the form
@(s(T))— T with Te (AU U)#.

By (4) for S, T is actually in A# and so S’ A#. Both sides of (6) are

true. &

The state set of an FTT perfnits us to complete the definition of
determinism for FTTs. The idea that there is at most one response to
every combination of control state and currently scanned input symbol
has been formalized in the definition of partial determinism (13.10). The
idea that there is at least one response to each such combination can now

be formalized.

(13.15) Definition. Let II = (£,A,@,€) be an FTT with natural presen-
tation (ID, L) and set Q of states. Then II is total iff either I is top-down

and

5-61
(1) (vse Qvae DEVE V)
[s(alug, ..cu_y)) — ve L]
or II is bottom-up and

(2) (Vae s U {@hivse gy e Vy)

[alsyup),....s_j(u_j)) — we L].

An FTT that is both partial deterministic and total is determmlstlc.

This agrees with the concepts of determinism used by Rounds [45] [46]

and Thatcher [51] [52].

(13.16) Theorem. LetIl =(Z,A,@,8) be a deterministic FTT. Then

(II) represents a total function from Zy into A, :

(VR € 2,)(3 Te A#)(<ﬁ> {R} = {T}h.
Proof: Us‘ing the assuglption that II is total, we will show that
(1 (vSeF)[sHU) = ¢ implies @TE A,)(S <> T)],

where @€ = (V,IF,=>, R). Assume this for the moment.
LetR€E Z#. Condition (2) in the definition of SRS transducers

(13.3) specifies that
(T {f?} - {Te s, @R) = T}

By (1) with S = @R), this implies that
@Te a)NTe(mR}.

But [{T){R}| < 1 by Lemma 13.10 and the partial determinism of II, so

5-62

this implies that some T € A, has {T} = (m) {AR}, as desired. We must
prove (1).

By Lemma 13.13, each S€ IF has at least one normal form T € IF,
and S"I(U)A = () implies that T'I(U,) = @ since applications of rules cannot

introduce parameters. It will therefore suffice to prove

VT € IF)((T @rreplacgable & T-I(U) = () implies T € A#) s

which is implied by

(2 (VTEF)[(T¢ A, & T (V) = @) implies

@ne€ Dom T)@¢ — ¢y€ R{(T/n = a].
Suppose T ¢ A# and T_l(U)‘ = Q)

Case 1 (I is top-down) By Dom T — (T_I(Q).]Nl*)i ¢ 7Xa) (from (2) in

Lemma 13.4) and T 1(A)# Dom'T, there is a node n€ Dom T with Tn € Q.
By Dom T M (T”HQ)-(0)-I*) ¢ T~ (= U U) (from (1) in Lemma 13.14) and
THU) = @, T(n.(0)) €%. Let s be Tn and let a be;‘r(n-(o')). Since I is

total there is a rule-schema -
s(a(uo, ...,u_l)) — v e L
with an instance
1))

-1 -1 |
() sa(Pg,...,P_)) — ¥(¥ (u0)+——P0)..._(\If (u_j) —P_

in R for any PO’ P_1 ez U)#; In particular, let Pk= T /(n-(0, k))
for all k < p(a), so that Dom T M (T~ Q)-(0)-IN¥) c T"Yz U U) (from
(1) in Lemma 13.14) implies P ey U)#. ' The rule (3) is applicable

atn in T.

5-63

Case 2 (I is bottom=-up) By T ¢ A# and part (6) of Lemma 13.14,
T() = @.

Case 2.1 (T(0)€ Q) Leét s be T(0). Since I is total there is a rule-

schema

@(s(uo)) — uo_e L
with an instance
(4) @(s(P)) — P

in R for any P€ (A U U),. In particular, let P = T/(0,0), so that
Dom T M (T-I(Q)-(O)-]N.*) - T_l(A) (from (4) in Lemma 13.14) implies

Pe A#. The rule (4) is applicable at () in T.

Case 2.2 (T(0)¢ Q). By T() = @ and part (5) of Lemma 13.14, T(0) €

z U {@}U U. By induction on J in @(R) 25 T for some R € (U, we
can show that T (@) C {()}. Therefore T(0)€ £ U U. By T_X(U) = ¢,
T(0) € £. Therefore T~ X(z)+ Q.

Let n€ T"1(z) with In| maximal. Let a be Tn. We claim that
.T(n-(k)) € Q for each k < p(a). By X (VA = @ and Dom T N
(T™HQ)-(0)- %) ¢ T X(A) (from (4) in Lemma 13.14), n¢ T™1Q).(0)-N*,
Butn ¢ T 1Q) byZMQ=0Q, son¢ T~ }Q)-N*. Therefore n-(k) ¢
1. NN, so |

n-(k) € T~ 1Q) U (Dom T—(T~1(Q)-Iv*)).

But n-(k) € Dom T—(T~ 1(Q).IN*) would imply T(n-(k)) € = by the same

argument that showed T(0) € £, so n-(k) € T_l(Q), as desired.

5-64

Let s, be T(n-(k)) for each k < p(a). Since II is total there is a

k

rule-schema
a(sy(ug), ..., s_ju_j)— veL
with an instance

(5) alsy(Py), .., s_y(P_1)) — ¥(¥ Hug) «—P) ... (¥ u_) «—P_

0 1)

in R for any P,...,P_; € (A U)#. In particular, let P, = T /(n-(0, k))

0’- _ .
for all k < p(a), so that Dom T M (T~ 1Q)-(0)-N*) ¢ T~1(A) (from (4) in
Lemma 13.14) implies LS A#. ‘The rule (5) is applicable at n in T.

This completes the proof of (2). 8

The semantic analyzer in a compiler should assign exactly one
éoding.tree to each augmented ranked parse tree; we have just shown
‘that deterministic FTTs can do this. The 1-state deterministic FTTs
have an additional convenient property: they can be considered to be
either top~-down or bottom-up, whichever is appropriate for the use of
coroutine linkages as described at the end of §12. As Thatcher
[51, p. 271} points out, 1-state TDFTTS can be effectively transformed
into 1-state BUFTTs (and vice versa) without changing the transductions
they compute. Unfortunately, multi_state FTTs appear to have no similar
theorem, and Thatcher has shown that some deterministic TDFTT
transductions cannot be computed by 1-state deterministic TDFTTs

[52, Thm. 6.13].

' 5-65

14. Closure Under Composition

Several kinds of tree transducer are now available: 1-state FTTs,
linear TDFTTs, and so on. These transducers define classes of trans-
ductions which map sets of tr‘ees to seté of trees. In this section we
show that some df the ciésses are closed under composition of functions.
Only top-down transducers are considered here, but we conjecture that
bottom-up transducer_s'have similar closure properties. We also éhow
that the class of partial deterministic linear TDFTT transductions is
not closed under composition.

Closure under composition is a natural méthematical question to
raise about any class of maps, and positive answers are both common
and valuable. Continuous maps, recursive functions, algebraic
morphisms, and many other major classes are closed. When proven
constructively, closure theorems.can have direct practical significance
as well. We begin by discussing the computational uses of constructive

closure theorems.

Suppose we are given a class ¥ of objects and that to each X € ¥

we can assigh two sets, In(X) and Out(X), and a (partial) map
(1) (X) : In(X) — Out(X).

In particular, In(X) could be 22# and Out(X) could be ZA# if X is a tree
transducer with input vocabulary ¥ and output vocabulary A. Now sup-
pose that to each X€ ¥ we can assign a computer program Prog(X) that

computes (X). One strategy for computing a map

(2) h:A— C

5-66

would be to seek an object Z € ¥ such that
(3) In(Z) = A & Out(Z) = C &{(Z) = h.

If such a Z can be found, then Prog(Z) is a program for h with no bugs.
In complicated situations, however, it will not be obvious how to choose
Z. We could attempt to divide and conquer by expfessing h as a compo-

sition of simpler maps, say

(4) h=gef where f:A— B & g: B— C.

It might then be relatively easy to find objects X and Y such that
(5) In(X) =A & Out(X) =B & (X) = £
(6) I(Y) =B & Out(Y) =C & (Y) =g. .

One way to compute h would be to link Prog(X) and then Prog(¥) in
sequence, but this could require a great déal of intefmédiéte storagé.
A'fno_ré efficient way would be to form a third program Prog(Y) +Prog(X)
in which Prog(Y) calls upon Prog(X) for input and Prog(X) returns control
to Prog(Y) whenever it outputs a portion of Prog(Y)'s input. We sketched
the use of coroutine linkages for fhis pﬁrpose at the end of §12. Note
that adding these linkages to Prog(Y) and Prog(X) so as to form Prog(Y)
+ Prog(X) is not an automatic operation at present: thé new. program
must be written by hand from the texts of Prog(Y) and. Prog(X). This
process may introduce bugs.

If a cloé_@re theorem can be proven constructivéiy, then there is

another method with moderate intermediate storage requirements.

This method cannot introduce bugs and will generally lead to a program
faster than Prog(Y) + Prog(X).

From (5) and (6) it follows that
(*) Out(X) = In(Y).

An effective closure theorem would construct a "'product' object Y A X

on the basis of this fact such that
() In(Y AX) =In(X) & Out(Y AX) =Out(¥) & (¥ AX) - (¥} (X).
In (5) and (6) this implies that

In(YAX) = A & Out(YAX) = C & (Y AX) = gof.

By (4), choosing Z =Y A~X will make (3) true. Assuming, of course, that
the closure theorem is correct, then‘ Prog(Z) will compute h in one stage
with no bugs. In effect we form the'coro-utine linkages between the objects
X ahd Y themselves, then pass to a program. :The product operation

A: X 2 _. ¥ is a precise mathematical function, while the linkage oper-
ation + is only a programming heuristic.

We claim that Prog(Y AX) will generally be faster than Prog(Y) +
Prog(X). To support this assertion in the abstract would require a more
formal treatment of coroutines operating on structured dat;a than was
given in §12. It will be simpler here to consider an example that supports
the claim adequately for present purposes and that displays the general

principle clearly.

- Let X be the class of all deterministic finite string transducers

as defined in (11.5). For any M = (K, Z, A, 6, \, s,F) in ¥ , we have

In(M) = £* and Out(M) = &*. The transduction (M) defined by (11.6.5) is
a partial map from In(M) to Out(M). To mimic the action of M when
reading symbol a in state r, Prog(M) finds (6(r, a), Mr, a)) in a |K| by
|2| matrix, updates the row pointer of the matrix to 6(r,a), and writes
Mr,a). This takes k + |Mr, a)| units of time, where k represents the
accessing and updating time for the matrix. Unless |K||Z| is so large
that the matrix must be stored in an unusual way, k does not depend
on M.

The well-known Cartesian product construction defines a new
transducer M2 A M1 whenever the output vocabulary of M1 is the input
vocabulary of Mz.' Recall the definitions of the extehded output and

transition maps in (11.6).

(14.1) Definition. For i=1,2 let Mi ='(Ki, Z_i’ Ai, 61,)‘i’ 8, Fi) be a
‘deterministic finite string transducer. Suppose Al = Zy. "Then

(1) My AM, = (Ky XK, 2,8, 65,0q,(s,, sl}, FyXF,)

ecK,, r.eK,, and ac 3

where, for all r 90 Tq 1’

2 1’

(2) 63((r2, r1>, a) = (Ez(rz,)‘l(rl’ a)), 61(1*1', a))
(3))\3((rz, rl), a) = Kz(rz,)\l(rl, a)) .

By induction on lengths of strings, we can show that all r, € K

2 2’

= =5 %
ry S Kl’ and x€ Zl have
85((rg,r1), %) = {B,(ry, N (r, %)), 5,(r . %))

and

5-69

>\3(<r2, r1>, X) =)\z(r2>)"l(rl: X))o
By the definition of (M) in (11.6.5), we therefore have

(Mg AM) =-‘{(x, A3((sg,8), XN [x€ 2, * &

63y, 510, M € Fy X F, }
= Il ¥ N — < % o T ~
= {(x, No(ss,)‘l(sl’)N |xe ,*& 61(s1, XNEF, &

62(52, xl(sl, x)),E F

9)
= (Mo (M) .

Thus the prodﬁct A prdvides an effective closure theorem for determi-
nistic finite string transducers. |

~ Assuming that a [K2| |K1| by lzll matrix is not too large, we com-
pare the time required b‘y.Pro;-g(M- AM) to process input a from state
(rz,) with the time requlred by Prog(MZ) + Prog(Ml) to process a
from state ryon M If

and then process N (r a) from state r, on M

1 2

T is the time spent in coroutine transfers, then the times are

9°

Prog(M,) + Prog(M,) : k +(1+k) | A (r , a)| + [Xyrg, N(r,a) | + 7

Pro‘g‘(M2 AM,) ik + | Ny(rg, A (ry,a)]

Difference : (1+«) | Ny (ry.a) |+ 7

A similar saving will be apparent in our product construction for
TDFTTs. The construction itself will be similar to the one just given,

but the inductive verification will no longer be trivial.

Recall from Definition 13.3 that an SRS transducer is a 4-tuple

I =(z,A,@,C) where € is an SRS of the form (V,IF,=>, R) and

v=z:zUAUUU

F={seV,|[(@Rec U (@R 5]},

so that € is actually determined by IR. If there is a finite set L of rule-
schemata such that R =]RL when each parameter is assigned the domain
zVU U)#, and such that each @ — ¥ e L satisfies two constraints, then

Il is a TDFTT. The constraints are (13.5.1):

(Jae Z)(ESCWZ)[@ = s(a(uo, oo _1))],

and (13.5.2):

_1(

ve(aUMU Uy & vl m) (0) = _U)f'

As a preAlude to the diécussion of the produqt construction for FTDFTYTs,’
we consider a formal sfatement of the idea that TDFTTs generalize =
finite string transducers. The set m of markers is 1nf1n1te SO we may
assume that the state set K of any strmg transducer is a subset of M.
We may also assume that the input and output vocabularles contain no .

markers or parameters, since this can always be achieved by renaming.

(14.2) Theorem. LetM = (K, 2.1", Al’ 6,\,@,F) be any deterministic
finite string transducer with K ¢ # and (=, U AN (MU U) = Q.

There exist a proper pair (£, A) of ranked alphabets, bijections

u:Zl"‘-——>2# &v:Af‘——»A#,é

and a linear partial deterministic TDFTT IIM =(Z,4A,@,¢) such that the

tree transduction (HM) 12y — Ay corresponds to the string transduction

(M):Zl"‘ — A%

_ -1

(T = vo(uyen™ .
Proof: Let - be a new symbol and set T = 2‘.1) {—l} and A = A) {—l }
Let - have rank zero and let members of }_‘,1 U Al have rank one, so
that (2, A) is a proper pair of ranked alphabets in Definition 13.2. The

bijection u is defined by induction on lengths of strings: each x& Zl* has

ux = u(xo, ee, X-l) = XO(xl_('“ x_l(—l))

(Thus u() is the tree with one node labelled -4.) The definition of v is
similar.

Let L1 be the set of all rule-schemata
I‘(a(uo)) — bo(bl(... b_l(s(uo))...))

such that (bO, ""b—l) = \r,a) and s = 6(r,a). Let L. be the set of all

2

rule-schemata

r(H4) —H

such that r€ F. Let Ly, =L, UL,, so that {((zU Uy, LM) is the

natural presentation of a TDFTT HM =(Z,4A,@,C) with ¢ =(V,IF,=,R)
whose root marker is the starting state @ of M. This transducer is linear
in the sense of Definition 13.9 and partial deterministic in the sense of
Definition 13.10. By Lemma 13.11, (HM) may be treated as a partial
function (HM) Py — Ay o
To -show that (HM) =y o (M) o u_l is to show that

9-72

(1) (Vxez *Nvye o™

[@ux) => vy iff (M@, %) =y &5(@, e F)].

To facilitate an inductive argument we will replace IF by a larger forest

H. Let Q be the set of states of II Let H be the set of all trees of the

M-
form
}’0(}'1(--. y_l(S(xo(... x_l(e)...)))...)) or
Yol (oy_q(e)..))

where x€ 2%, s€Q, ye A%, and e€ UU {4}, so that F C H. Trees
in H need not be derived from trees of the form @(R) with R e (3 U U)# .

The relation on V# defined by

R » S iff (REH&H(p—»we IR)(3In € Dom R)
[R/n=¢ &S =R(n—y)])

is actually a relation on H, so we have an SRS
+ .
C =(V,H,», R).

Note that (=>) = (») M) (IF X H). By induction on lengths of strings we
will show that each x& £,* has '
(2) (Vr€Q)UVy € A*)(Vie Q)

[rwx) > yoley_q (). iff Kr, 0=y &3(r,x) =1)].
For x = () we wish to show that

<r(—i) ;tyo(...y_l(t(—l N..) iff (() =y &r - t).

By the construction of the sets L, and L2 of rule—schematé, the only
rules of the form r{d)— ¥ have v Q) = @. Therefore r(—{) % S with

s7lQ) # @ can only be true if S = r(4). We have

r(A4) » yoley_gE(A)0) i y oy (G400 = 1(H)
iff (y=()&t=r),

as desired.
To pass from x to (3a)-x for x€ % * letr€ Q, ye Al*, tE Q.

We wish to show that

r(ax) > yol...y_ (t(4)..) iff
(Mr, a)-Mé(r,a), %) =y &8(s(r,a),x) = t).
Let (bO’ ey b 1) = Mr, a) and let s = 6(r,a). By the construétion of the
sets L1 and L2 of rule-schemata, we have
r(aux) > yoloy_ (t(4))..) iff
r(a(ux)) » bol..b_(s@wx)...) 5 yoleoy_y(t(-))...)

iff

INr, a)] < Iyl & (Vj <IMr, a)i b = y)) &

SR > S ay(Y- g ()

By the induction hypothesis we therefore have

5-74

r(@(un) > yol...y_q(t(4)..) , iff

IX(x,a)| < lyl & (Vj <IM(r, a)l)(b —y) &

X5, %) = (g)oY &FE 0 =t
iff
Mr,a)Ns,x) =y & (s, x) =t
as desired.

We have shown that each X € Zl* satisfies (2). By the construction

of the sets L1 and L2 of rule-schemata, (2) implies

(3) (YreQ)vyea®)

[r(ux)> Yolowy_q(-)..0) iff (Mr;x) =y & 8(r,x) € F)].
Applying (3) with r = @ to every x€ Zl*‘yields (1).m

Following Thatcher [52, §6], we hat/e p}trased' 1nduct1ons on lengths
of strings in terms of passing from x to (a)-x rather than in terms of
passing from x to x- (a) as is more common in formal language theory.
This change is an attempt to smooth the transition from string trans-
ducers to tree transducers. Arguments by induction on sizes of trees
pass from R

LR . to a(R ,...,R_'l).

0 -1
Another feature of the precedmg proof that will appear agam later

is the use of a forest H that 1nc1udes IF but is better sulted to inductive

arguments. The relation => on IF in each TDFTT is extended to the

relation » on H defined by applications of the same set of rules. In the

general case, H is defined by two formal properties: nodes properly

descended from nodes labelled by states are labelled by input symbols
or parameters, while nodes not descended from nodes labelled by states
are labelled by output symbols. The ad hoc introduction of H in the

previous proof is a specific example. .

(14.3) Definition. LetII = (3,A,@,8) with € = (V,IF,=>,R) be a
TDFTT. Let @ be the set of states. Define H to be the set of all

Se V# such that

(1) Dom $ N (s™1@)-(0) %) csTHz U v
and

(2) Dom S—(s™1Q)- V%) ¢ s™X(a).
Let » be the set of all (R,S) € Vy XV, such that

REH&(Fo—yE€ R)@neDomR)[R/n =0 &S = R(n «——y)]

and set

+
(3) " =(V,H,» R).
‘Define (1'[)+: oH __, oM by

4 (M'R ={TeH|@ERcRIR}D & T"}@).(0) = T }»)}.

By parts (1) and (2) of Lemma 13.14, we do have IF < H. By the
afguments used for the induction steps in parts (1) and (2) of Lemma
13.14, » is actually a relation on H: the: result of applying a rule at a
node in a tree S € H is another tree S’ € H. Thus (3) above defines an

SRS that is essentially the same as € but is somewhat more amenable

5-76

to inductive proofs. Note that (=>) = (») M (IF X H). The definition of

()" in (4) above resembles the definition of (I in (13.3.2):
(M& ={Te a,/(3IRER)@R) Z> T}

In (13.3.2) we consider normal forms T for @(R) that are irreplaceable:
because T € A#. In (4) above we considgr normal forms T for R that
are irreplaceable because the set T_I(Q) of tape head positions corre-
sponds to the set of all fathers of nodes labelled by parameters. The
heads have moved downward as far as the& can before specific input
trees are substituted for the parameters.

| | The -string transduction equation (M)x =\(s, x) for x € ¥* with

(s, %) € F has the analogue (II) {R}; (my*{@R)} for RE€ 2,. The

e
following lemma establishes this and other useful technical properties

of (II>+.

(14.4) Lemma. LetIl =(Z,A,@,8) be a TDFTT with natural presen-

tation {((z U U) p L)

() (YRe (M {R} = (m* {@R)})

(2) (VRe B(m" {R} is finite and effectively computable from R and L)
(3) (1 partial deterministic) implies (VR € IH)(I(II)+{R}| < 1)

(4 (I total) implies (VR e H)((m?'{R}+ 9).

Finally, suppose II is linear and set

L ={seH|(vwe UX|s"}w)|< 1}.

5-T17

Then
(5) (VReL)(m){R} c IL).
Proof: For any Re Z, Qe have
(MR} ={Te 8,leR) = T}
-{TeH|Te s, & @R) > T}
={TeH|T Q) =‘<p & @R) > T},

where T™Y(Q) = @ implies T€ A, by (2) in Definition 14.3.. Since no
parameters appear in R, each T with @R) » T has T 1(U) = ® and so
T_l(Q) = @ iff T-I(Q).(O) = ’iI‘_l(U)l. The éqﬁation becomes

M{r}={Tec H|T Y0 = T"LV) & @R)} T} = (T§*{@®)}.

This proves (1). _

- "By repeatiﬁg the proof of Lemma 13.13 for TDFTTs with H in
place-of IF' and-with » in place of =>, we can show that each R € H has
a finite nonempty set 7 of normal forms in @+ and that this set is
effectively computable from R and L. To compute.,(n)-l—{ R} we have but
to select out {T eEn IT_'I(Q)-(O) = TTI(U)}. This proves (2).

'Now suppose II is partial deterministic. By the same argument
used in proving Lemma 13.11 for TDFTTs, (§,+ is Church-Rosser. Each
R € H has (H)+{R} cn .Wit'h [|-~S 1, where 7 is the set of normal
forms for R in @7. This proves (3)'.

Now suppose II is total. The set % of normal forms for R in @+

is nonempty, so (4) will follow from

5-178

vTe 7T HQ-(0) = T"Lv)).

| Suppose T € 7 but T HQ)-(0) # T" (V). By (2) in Definition 14.3,
T_l(U) C T_l(Q)-]N*, so that this supposition implies that some

ne T-I(Q) has T(n-(0)) ¢ U and therefore T(n:(0)) € T by (_1} in Definition
14.3. Let s = Tn and a = T(n-(0)). Since II is total théré 1s a rule-

schema
s(a(uy, ...,u_j)) — ¥e L

with an instance

(6) s(a(Py, ...,‘P_l))—-» \IJ(\If‘l(uo) - P_"O).-';(‘I{'l(u'_.’l) “—.P‘_l)‘

in R for any P ,P_j€ (=Y U)# In partlcular 1et P, = T/(n (0 k))

0" k

for all k < p(a) SO that Dom T N (T (Q) (0)]N“‘) - T (2 U U) (from

(1) in Definition 14.3) implies P E (z U U__)#. The rule (6) is applicable

at n in T, contradicting irreplaceability. | This.cbmpletes the proof of (4).
Now suppose II is linear. To prove (5) it 'will suffice to show that,

whenever S» T and S &]L, then T € I, Let S » T by application of a

rule ¢ — ¢ at a node n in S. .

By ¢ =S/n, 9 .. From ¢ € IL and the definition of linearity -

(13.9), it.follows that ¢ € IL. For any w € U we show-that | T 1(w)| < 1

Case 1 (y Nw) # @). Then ¢ (w)¢¢ so {pcs (W)Ipln} @by

Se L and n-g¢ (W)C S 1(W) Therefore

ney Yw) U {pe T-l(w)lip 1 n}
n-y lw) U {pe s w |p L n}
=n-y 7k

T,'l(w)

w)

5-79

and |T_1(W)| =l¢/-1(w)| < 1.
Case 2 (x//-l(w) = Q). Then

T} w) = {p€ T"Hw)|p L n}

={pes i w |pLn} csiw
and IT—l(W)l < IS-l(W)l < 1.8

The basic apparatus for studying closure under composition for
classes of TDFTT transductions is now at hand.” The next step is to
generalize Definition 14.1 to a product construction for TDFTTs. To
.simplify the statement of the following definitivon,. 1ef us suppose we are

given TDFTTs II, and II, where

1 2

Let these transducers have state sets Qi and natural presentations

<]Di’ Li> . Suppose also that A, = I,, so that o2 1# — 9Zo# and it 1s

2:

reasonable to try to define a product transducer II, A .. Since the

2 1

states of II2 A II1 must be markers in our formalism, but they should
correspond to pairs of states by analogy with Definition 14.1, we < hoose

any bijection
Codepair: M XM — 7

and abbreviate Codepair((sz, sl)) as [sz,'sl] . Thus [52’ s;] is a marker
that represents the pair (sz, sl> of markers.
For ry € Q2 and r € Q1 and a & 21, we must define rule-schemata

with the left half [rz, rl](a(uo, ey u__l)). As with string transducers, we

9-80

first apply I, with state r, to a(uo, -+-su_;), getting the set of all ¥ such
thgt rl(a(uo, ...,u_l))——> ve Ll' This set can be succinctly described
as (H1)+{r1(a(u0, ...,u_l))}. Given any ¥ in this set, we apply I, with
state ry to ¥. Since ¥ may include nodes labelled in Q1 as well as 29
and U, this is not strictly possible. But if we simply relabel ¥ by
replacing each s; € Q1 by a new symbol E;l of rank 1, then the resulting
tree ¥ can be processed by ﬁz,~ a transducer similar to II2 whose input

vocabulary consists of 22 together with all the new symbols. In addition

to the rule-schemata in Lz, we let ﬁ2 have all schemata
Sz(sl(uo)) _— [Sz: s1] (uo)

A \+ A . ' A
for s, €Q, and 5, €Q, so that (i,) {ro(#)} is a set of trees @ € H,

Where_]f{2 is assigned to ﬁz by Definition 14.3. Each
[rz, rl] (a(uo, cee, u_l)) —_Q

formed in this way is a rule-schema because parameters occur only at

leaves in Q2 and the only parameters that mighjc occur are u The

0o U_yge
set L3 of all such schemata specifies an SRS transducer H3, which will

prove to be a TDFTT. We will define H2 A H1 to be this TDFTT.

(14.5) Definition. Letting %1 be a new symbol of rank 1 for each

s, € Ql_' and Q; = {8,]s; Q,}, set
(1) Ly =1L, U {s,(s;,(up) — [s5,811(ug) |55 € Q, & s;€Q,}
and let ﬁz be the unique TDFTT of the form

5-81

with natural presentation ((z, UQ, U Oy, Ly) . For any
ve(a, U U U),, let ¥ result from replacing each label in Q, by

the corresponding label in Ql‘ Now set

(3) Lg={[ry.r;l@luy,...,u_})) —Q lry€Q,&r,€Q &acz &
@ve (H1)+{r1(a(u0, ou_ D@ € () (0h}

and let II, A II, be the SRS transducer

2 1
(4) I, AT =(2,,4,,(@,,@],C,)
where the set of rules specifying @3 is the set of all instances of

members of L3 (with domain DW = (Zlu U)# for each w € U).

(14.6) Example. Let = ={a,b,c}be a ranked alphabet with p(a) = 2;
p(b) = 1; p(c) = 0. Let @,8$, ¢ be three markers. Writingug,u, asu,v.

for legibility, set

Ly ={ @afu,v)) — a($(w), ¢(v) ,
© $lalu, v)) — a($(u), $(v)) ,

$(b(u)).— b($(u)) ,
$(c) — ¢)
¢(C) —> Cc }
and
L, ={ @a(u, v)) — $(u) ,
$(alu, v)) — a($(u), $(v)) ,

$(b(u)) — b($(u)))
$(c) — ¢ ' }

f ' 5-82
For i=1, 2 let l'Ii =(3,Z,@, @1.), with G‘,i =(V, IFi’ —T">,]Ri)’ be the TDFTT
with natural presentation { (T U U)#, Li> .

We apply Definition 14.5 to this 'example. The new input symbols

for ﬁz are @, %, a, so that (14.5.1) becomes

s

5= L, U{@@w) — [e,e]w)),
$(@w) — [$, @],

$(3 (W) — [$,¢]@ }.
The TDFTT from (14.5.2) is
i, =EU{e5¢.5e¢,)

with natural presentation { (£ U {@, @, E}U U)#, I:z)

In (14.5.3) the set L3 is the union of 18 sets of schemata, one set
for each [ry, r [(f(ug, ...,u_;)) with ry€ {@,$}; r € {@, $,¢};
fe {a,b,c}. For [$,@](alu,v)) the set of all relevant Q is

U (MY 3(0)} = <ﬁ2>f{$<ak§;(u>, oM}

v & (I, f{ @latu, v}
= () {2 @), $(¢vN}
={a([$, 81, [$, ¢] (D}

Thus we have a rule-schema

(3. @] (alu, v)) — a([$, $](w), [$, ¢] (v))

in L3. As in this examp;le, each [rz, rl] (f(uo, ...4, u_l)) leads to at most

5-83

one schema. The complete list follows.

[@ @](a(u,v)) — [3,3$](w ‘
[$.@](alu, v)) — a([$,$](w),[$, ¢] (V)
[@ $](a(u, v)) — [$,8](w
[$.$](a(u,v)) — a([$,$](w,[$,$]()
[$.$](b(w) — b([$,$](w)
[$,$](c) — ¢

[$, ¢](c) —

The set Q3 of I, AT, is defined by (13.12.1) as

Qy={sem|(ze — \I;E L)z (s)# @)} U {[@, @]}
={[8.8].[8.¢].[@, @]}. |

Thus Q3 corresponds to a proper subset of Q2 X Q1 in this example.

The SRS transducer II2 A Hl inherits many properties from II2
and Hl' It is a TDFTT, is imear, and is partial deterministic. Although
one may be tempted to add that (HZ,A'HI)‘ = (Hé}& <H1> ""by the obvious
induction," that temptation must be resisted. As the following theorem

shows, (H2> 0 (II1> is not computable by I, A I, or any other TDFTT!

1

(14.7) Theorem. Let I be the ranked alphabet {a,b, c} with p(a) = 2;

p(b) = 1; p(c) = 0. For.i=1,2 there are linear partial deterministic

TDFTTs Hi= (z,z,@, Gi) such that, for each R & 2#,
(1) () (M) {R}P) = if R() = a &R(1) = ¢ then {R/(0)} else @.

However,_ there is no TDFTT II3 such that, for each R & Z# s

. 5-84

(2) (Hg){R} = if R() =a & R(1) = c then {R/(0)} else @.

Proof: Let Hl and H2 be as in Example 14.6. For all Re Z# ,

(I){R} = i R() =a & R(1) = ¢ then {R} else @.

(H2>{R} = if R() = a then {R/(0)} else Q.

Combining these two equations yieldé (1).

Now suppose'n3 is a TDFTT with root marker @3 that satisfies
(2) for all R€ Zy. Let {(z U Uy, L3) be the natural presentation. Since
{b, c}# is infinite and L3 is finite, it is possible to choose T, T' e {b, c}#

and a rule-schema @q(a(u, v)) — Q& L, such that T # T! and
(3) (W {a(T, o)} = {T} = (H3>+{9(Q-1(u) *—— TR L (v) — o)}
as well as | |
(n3) {a(T?, 0)} = {17} = <n3)+-{sz(sz'1(u) — T L (v) ~—c)}.
Therefore (2 1(u) — T) # (@ Y(u) — T7) and so
(4) o lw o,
On the other hand,
() {a(T, beN} = @ = () {e@ w) — 1)@ Hv) — ble)}.
Comparing this with (3) leads to
(5) v # 9.

By (4) and (5) and u # v, some node n€ Dom 2 has at least two sons.

5-85

But then ne Dom T in (3), and this contradicts T &€ {b, c}# N |

Rounds [46, p. 267] discusses an example by Ogden of two linear
partial deterministic TDFTT transductions Whose composition is not a
partial deterministic TDFT’P fransductlon He suggests that thls
composition is not even computable by a nondetermlmstlc TDFTT
[46, p. 272], but a proof would require much deeper insight than is
presently available. Osr 1'[1 and II o Were mSpired by Ogden's example
but were chosen in such a way that a sirﬁple argument v&ould show that
(H2~) ° (Hl)' is not a TDFTT transduction.’

Definition 14.5 defines an 'S'R‘S.t.ransdﬁcer I, A ‘H‘1 whenever T, and
H2 are TDFTTs and the input vocabulary‘of iIz is the output vocabulary

of II,. Theorem 14.7 shows that this product.construction does not lead

1
to closure under composition for linear partial deterministic TDFTT
transductions, although linear partial deterministic TDFTTS are a
natural generalization of deterrninistic finite s'tring transducers, as was
shown in Theorem 14, 2 Fortunately, several other important classes
of TDFTT transductlons are closed under comp051t10n Elaborating
slightly upon [52, Lemma 6.9] and [46, pp. 266, 275], we have the

following theorem.

(14.8) Composition Theorem. For i=1, 2 let IIi = (Ei, Ai, @i’ Ci) be

TDFTTs with state sets Qi' Suppose Ai = Z,, so that there is a product
transducer H2 A Hl' Then II2 A H'.l is-a TDFTT with a state set Q3 such
that

(1) |Q3|S IQz”QlI

5-86 -

and
(2) (Hl, 1'[2 linear) implies (II2 A II1 linear) 7

(3) (I, I, partial deterministic) implies
1272

(H2 A I, partial deterministic) a

(4) (Hl, II2 total) implies (H2 A II. total)

1
(5) (I , I, deterministic) implies (H2 A Hl)’= (H2> ° (H1> .

Proof: To show that I, All, isa TDFTT we will show that the set L,

of rule-schemata in part (3) of Definition 14.5 is finite and satisfies the

conditions (1) and (2) in Definition 13.5. For (13.5.1) we need
ve — QE I;.’B:)(Es € '771)‘(.'-.la.e.; Z_l)':[@ = sf?{uo, .'..,1:_1'_1‘),)].:

But L, is a set of schemata

(6) ~[r2’ rl] (g(ub, , u_ 1.)) — Q

for rZEQz, rlte, and a € ;- Each [rz,rl] is a marker, so
(13.5.1) holds.)

For (13.5.2) we must show that each Q vin (6) has
(0 Qe@,Un U, & a0 =2v).

Let r, € Qz, r, € Ql’ "and a€ 21. By the definition of L3 (14.5.3), we

must show that (7) holds for any £ such that

(8) @we(m){r (aluy,...,u_ N} (@ e AN {ry®}).

5-87

Suppose 2 satisfies (8). Let]fiz be the subset of

(22 U él U A, JmYU U)# assigned to-II, by Definition 14.3, so that
(8) and (14.3.4) imply 2 € H,. By the condition (14.3.2) on H,,
(9 Dom 2-(@ '@y)-N)cala,)

where Qz is the state set for ﬁ2' But (8) and (14.3.4) also imply that
2 1@, (0) =2 }(U). Therefore (9) implies that @ € @, QUU),,

while
-1 -1, -1
Q (M)-(0) =Q (Qz)-(O)—Q (U).

This proves (7). The product transducer is indeed a TDFTT.
Suppose @ satisfies (8). From \I/_I(Ql)-(O) = v }(U) and
Q—l(‘?/l)-(o) = Q_I(U), it follows that, whenever a node 1. - Dom has

2n = we& U, then a rule of the form -
must have been applied at Fa(n)_in deriving Q from i‘z(:lf), Therefore
-1 : . o |
(Vsg e M@ (s5) # @ implies (3 89 €QyAs, EQl)(s3 = sy, s:P1.

This proves (1).
Suppose II1 and II2 are linear, so that fIz is linear also. For each

2 that satisfies (8), we have
Vwe U)(ltlf_l(w)l < 1)

by linearity of II, and then

1

Wwe U) (|2 tw] < 1)

5-88

by linearity of ﬁz and (5) in Lemma 14.4. This proves (2).

Suppose o, and II2 are partial deterministic, so that ﬁz is partial
deterministic also. For each choice of Tos Ty, and a, part (3) in
Lemma 14.4 implies that there is at most one ¥ in (H1)+{r1(a(u0,...,u_l))}
and then that there is at most one in (ﬁ2)+ {rz(A\I/)}. Therefore at most

one 2 has
[rz, rl] (a(uo, ...,u-_' 1))—> Qe L3 .

This proves (3). Similarly, part (4) in Lemma 14.4 implies (4).
The crux of the matter is (5), which is Lemma 6.9 of [52] expressed
in our terminology. There is no need to repeat the very clear inductive

proof in [52] here.®

We noted in §13 that linear or 1-state deterministic TDFTTs are
especially easy to implement. Thus the following special case of this

theorem is of interest:

(14.9) Corollary. Let H1 and 1'[2 be determiﬁistic TDFTTs such that

the output vocabulary of II1 is the input vocabulary of Hz_. Then I, ATL 1

is a deterministic TDFTT with <H2 A 111) = <H2> ° (Hl) and

(1) (Hl’ I, are 1-state TDFTTs) implies (II2 A I, is a 1-state TDFTT)

2 1

(2) (Hl’ II2 linear) implies (II2 A 1'[1 linear).

The Composition Theorem (14.8) and its corollary (14.9) are
restricted to top-down transducers. We conjecture that the product
construction (14.5) can be turned upside down for bottom-up transducers

in such a Wéy that analogues of these results will hold.

5-89

Thé restriction to deterministic FTTs in (II2 ATL) = (I,) o (I
does not appear serious for the application to compiling that we
described in §12. Once an augmented ranked'parse tree has passed
through the lexical filter, it ého’uld be converted into juét one coding'
tree by the semantic analyzer, with no further testing. The tree trans-
ducer 'should act like a string transducer in which every state is a final
state. There appears to be no need to use a nontotal transducer in
order to reject certain inputs. |

Since the input to the semantic analyizer's‘FT"I.“ is é ranked parse
tree, not an arbitrary ranked tree with nodes labelled by productions,
there may well be many (state, symbol) cib‘mbinéﬁ'ons that never arise
in semantic analysis. The cofre‘spohd'ihg schemata may be 'deleted
from a deterministic FTT in‘ordtlér to replace it by a more compactly
presented FTT without altering the transduction it spécifiés.: Compar-
ison of the negative theore'mf(14i7) ‘with the Composition ’_I‘heorerh(l4.8)
suggests that such optimization should be postponed until the ver):r'end
of the FTT design process. |

Although the Compositiori\ Théorem '(14.8) (and“ its coﬂjectﬁréd
bottom-up analogue) suffice for compiler design purposes, additional
closure results would be of mathematical interest and might have appli-
cations to more complex tree~manipulating systems implicit in the use
of natural language. Total linear TDFTT transductions appear to be

closed under composition, regardless of determinism.

(14.10) Conjecture. If II1 and H2 are total linear TDFTTs and the out-

put vocabulary of II1 is the inpﬁt vocabuldfy of II,, then

2,

5-90

ATy ATL) = (Ty) o () . B

The author has written a proof of this conjecture similar to the
feasoning in [52, Lemma 6.9] or [46, p. 275], but the argument in its
present form is more tedious than the result Wafrants. The proof is
most naturally written in the elegant algebraic style of Thatcher [52].
Unfortunately, his formalism seems essentially limited t'o,, FTTs, per-
haps even to TDFTTs. As the definition of "production systems' [52, §9]
illustrates, it is extremely difficult to deal with SRSs and rule-schemata
in general without switching ‘tc_) our formalism. Our more explicit and
intui_tive notation from §4 can deal with all the SRSs discussed in this
report and with the infinite ;cr.ansducers ihtro’duce.d by Rounds [45, p. 112]
[46, §II.5], as well as with TDFTTs, but tﬁe résulting treatment of
TDFTTs becomes 'awkward in the detailed proofs for theorems like the
above or part (5) in the Composition Theorem (14.8). It should be p'oss.ible
to mix the arithmetic of trees and substitution in [52] with our §4; at
’présent we can only say that anyone .interested . in the mathematics of -

trees would do well to learn both systems.

CHAPTER 6

EPILOGUE
15. Summary

Subtree replacement systems form a broad class of tree-
manipulating systems that includes many éf the special cases from
logic, linguistics, and autoﬁata théory. Systems with the Church-
Rosser property are appropriate fdr evaluation or translation
processes: the end result of a complete sequencé of appliéatlons of
the rules does not depend on the.order i‘n-which the rules were used.
We derived sufficient conditions for the Church-Rosser property and
app.lied them to two important tree-manipulating systems: the
McCarthy calculus for recursive definitions and the full lambda
calculus. .

In Chapter 2 we defined two classeé of abstréct mathematical
systems: géneral replacement systems and subtree replacement
systems. We defined normal forms and indicate-d ys}hy uniqueness of
normal forms is desirable in sysfemé intended to define "‘values' or
."meanings" for the objects they manipulaté. We defined the Church-
Rosser property and remarked thatv no‘rr‘n.al forms are unique in
Church-Rosser systems. The th;eorems in Chapter 2 established
sufficient conditioné for the Church—.Rqsser property. In particular,
the Main Theorem (5.6) asserted that every unequivocal closed sub-
tree replacement system is Church;Rosser. The abstract approach

in Chapter 2 avoided assﬁmptions about the specific forms (or syntax)

6-2

of the rules, so that the results were not restricted to one system or
to a narrow class of systems.

In Chapter 3 we applied the theory of subtree replacement
systems to recursive definitions. We proved that recursively defined
functions are singlevalued despite the nondeterminism of the evalu-
ation algorithm. The Evaluation Theorem (7.5) asserted that any two
successful attempts to evaluatg an expression must produce the same
result, and that this result is-invariant under replacement of sub-
expressions by new expressions that evaluate the same way as the
subexpressions they replace. The Validity Theorem (8.4) asserted
that the function specified by a recursive definition solves.the defi-
nition (consideréd as a set of equaiions) and is the canonical solution:
the solution that agrees with evéry other .solution wherever it is finite.
By using the tlﬁeory from Chapter 2; we were able to derive these
results without the severe restric_tiohs on call-by-name that were
imposed in the previously known épeéial cases.

The classical Church-Rossef theorem for the full lambda calcu-
lus was proven in Chapter 4. We defined a subtree replacement
system e, that manipulated (tr:ee structures of) lambda expressions.
By lifting the replacement relation T‘» from 6)\ to a relation >y
between equivalence classes of 1ainbda expressions, we defined a
general replacement system fB)\ thai performed lambda reductions
without distinguishing between lambda expressions that are strongly |
alphaequivalent: alike except for the choices of bound variables. We
expressed :‘B)\ as the union of two systems, iBB and ’Bné . We used the

Commutativity Lemma (3.6) to show that 33 commutes with an 5

6-3

Once B and ,‘B’B had beén shown to be Church-Rosser, we concluded

noé
that ’B)\ was Church-Rosser by the Commutative Union Theorem (3.5).
That 5Bn 5 was Church-Rosser followed almost immediately from the
Main Theorem (5.6). That :BB was Church-Rosser could not be shown
so easily. We introduced a new symbol o and new subtree replacement
systems <, €. We used the Main Theorem (5.6) to show that G"Y
and (50 were Church-—Rosser. Then we showed that @‘Y and C-I,'(J could
interact to simulate -;‘B’B. o

In Chapter 5 we applied the theory of snbtree replacement
systems to tree transducers and descr1bed the role of these trans-
ducers in syntax-d1rected complhng We analyzed comp11at1on as a
:sequence of processes 1ex1cal analys1s context free parsmg,
lexical filtration, semantlc analyms and code generatlon Finite tree
transducers were defined in order to perform semantic analys1s by
converting trees with nodes labelled by context-free productions to
trees with nodes labelled:by codeA—l)uildin-gﬁOperations We showed that
a deterministic finite tree transducer maps each 1nput tree to exactly
one output tree. We descrlbed the practlcal 51gn1f1cance of closure-
under-composition theorems and elaborated slightly upon the known
‘theorem that the maps defined by deterministic top-down finite tree
transducers are closed under composition. | Finally, we proved that

the maps defined by partial deterministic linear top-down finite tree

transducers are not closed under composition. .

6-4

16. Further Research

This section surveys some possible directtons forT further
research in the study of general and subtree replacement systems and
their applications. We begin with problems. that are stated or implied
in the previous chapters. We conclnde- with a discussion of possible

applications in the study of asynchronous parallel proce ssing.

We have studied the Church-‘Rosser property as a rne'ans of
obtammg uniqueness of normal forms As we remarked in §1 another
des1rable property of general replacement systems is the f1n1teness of
every sequence RO, Rl’ e such that R => R for all i, Are there
any helpful abstract suff1c1ent condltlons for th1s property" In systems
Wlthout thls property, are there theorems that help ascertam whether a
sequencmg mechamsm om1ts any normal forms" »

Another problem in the general theory 1s to weaken the def1n1t10ns
of res1due maps and closed subtree replacement systems As we |
remarked in §5, some of the restrlctlons in the def1n1t1ons are mot1—
vated less by the 1ntu1t1ve 1deas than by techmcal cons1derat10ns in the
proof of the Main Theorem (5 6). Can the definit_ions- be Weakened 1n
such a way that unequivocal closed systems vlv'illls_til‘ll be .Church-Rosser,

yet more systems will be closed?

The recursive definitions considered in Chapter 3 suggest many
questions for further investigation. As is usual in the theory of com-

puting, our study of recursion has no provision for "'side effects' or

1

for self—modifying" programs where the data at one stage become the

instructions executed at another stage. Side effects and self-modifying
programs are so common in the practice of computing that it would
surely be worthwhile to introduce them here. With or without these
complications, there are several promising direct.ions for further work.
Efficient evaluation of the fun'ct'ions specified by recursive defi-
nitions requires more than‘ random application of r:ules when some

parameters are called by name. For example, consider the rule-

schemata

(1) @ — CCEG, 0, T, R@ @))
and

(2) C(yes,u,v) — 7

C(o, 0, 9) — v.
The recursive definition formed by (1) gna (2) is almost the same as
our example, the natural definition of the fa.ctor'ial, but we have used
a call-by-name parameter.in (1). . This is obviously a poor choice,
and an analysis of just why it is & poor choice may assist in making
better choices in more complicated situations. In general one should
evaluate subexpressions beforé passing them toAprocedulres if the
whole expression being evaluated will not have a finite value unless the
subexpressions do. On the other hand, the branches of conditionals
should be passed unevaluated, as in (2). A multitude of schemes for
computing recursively defined functions can be imagined; further
development of the theory in Chapter 3 should assist in formulating

such schemes, establishing their validity, and analyzing their compu-

tational complexity.

6-6

The abstract theory of computational complexity for recursive
functions may also have fruitful interactions with Chapter 3, at least
in the case where the data space is the nonnegative integers and the
given functions are successor and the test for equality. If we identify
recursive definitions that differ only in the function letters and
parameters used (just as we might identify ALGOL 60 programs that
differ only in the names chosen for the identifiers and labels), then a
model for the axioms of M. Blum [4] can be obtained. We measure
the size of a recursi\}e definiti;n L by the number of nodes that appear
in it:

LI = Y, (IRl +1IS]).

R—SeL

Under our convention of il'd'e'hti'fyihg" definitiéris fhét ar;e- alphabetic
variants of each other, there are ohiy f'inifély rhany recursive defi- |
nitions of each size, and théy can be -effective’ly enu;nerz;ted. These
‘are the axioms on sizes of machines [.4,- p.. 258] . By er'lumer"a"cingv
pairs of thé form (L, f) where L 1s a i‘écursiVé' defiﬁition and f is a
function letter of rank 1 involved in L, we can define aﬁ v"ac‘cgz_ptable”
Gb‘del indexing (pO,'goi, Con 'of"the'}partiél re‘cu'r's.ive functions, in the
sense of [4, p. 258]. If (L,f) is :the‘l'{-—th pair in the ehumération, let
<I>k(§) be n whenever An is the s.maﬁllles.t ip’tegc—?r -su-ch t}-lat_

7@ L 500
in the subtree replacement system GZL Wé now hav.e a Blgm,complexity

measure [4, p. 261]. What other properties do these size and complexity

measures have?

6-17

In Chapter 4 we sho'wéd that beta reduction in the lambda calculus
is Church-Rosser with the help of fwo subtree replacement systems G"Y
and GG. For both of these systems it is quite easy to show that every
sequence of applicatidns of rules is finite and to compute normal forms.
For any tree R in the:férest]H-of lambda expressions augmented by o,
let 'R be the normal form of R in @"Y and let IR be the normal form
of R in (Eo_. For any ‘Free R in the forest I of lambda expressions, let
AR be an alphanormai tree that is strongly equivalent to R. The

following algorithm seeks the‘normal form 6f any tree R under beta

reduction:

(1) ~ R:= AR

(2) S:=TR

(3) if R ='S then HALT elgse go to (4)
(49 R:=3S |

(5) go to (1).

(We omit various time-saving tficks, sﬁch as checking Whether R =TR
while computing 'R, in _6rder to keep the basic strategy clear.) The
results of Chapter 4 imply that the finél value of R is the unique (up to
" strong alphaequivalence)‘beta n‘or‘mal form of the initial value of R
whenever the algorithfn does halt. We cdnjécture that the algorithrﬁ
omits no normal forms: it does halt eventually whenever the initial

tree has a beta normal form.

6-8

In Chapter 5 we defined both top-down and bottom-up tree trans-
ducers, but the major theorems here and in our references were
restricted to top-down transducers. This is unfortunate for the appli-
cation to syntax-directed compilers, since parsers and code generators
aré frequently bottom-up. Do the properties of f‘op-‘do‘wn- transducers
have bottom-up analogs?

By rélaxing some of the restrictions on the -forms of rules in finite
tree transducers, it may be possible to build useful models for tree-
manipulating processes in natural iénguages. We will remark on two
such processes: transformational grammars and semantic interpreters.

Transformational grammars have been described informally by
Chomsky [8] [9] [10] and fofmally by Ginsburg and Partee [18], who
also present an extensive bibliography on the subjecf. A‘transfor-
mational grammar assigns two tree. sffﬁctﬁr’eé“’to eéc‘il sentence it
generates: a ''deep structure' and a ''surface structure':derived from
the deep structure by "transformations'’ that map trees.to trees. Some
generalizations of top-down finite tree transducers :thaf could be rele-
vant to the study of transformational grammars have been discussed by
Rounds [46, pp: 280-281]."

Woods [55] [56] has proposed a theory of computational semantics
wherein the deep structures of natural lan'guage Vséh{énc‘es are translated
into a '"query language'' whose sentences. have bpier'ué’cér‘—operand :
structures. The operators represent whatever subroutines are available
for changing the system's data base, applying various functions and
predicates to portions of the data base, and reporting the results of such
computations. The '"semantic ‘rules” in this theory specify a transducer
mapping natural 1anguage deep structures to query lénguage operator-

operand structures. The tree transducer used here is somewhat more

6-9

complex than the transducers implicit in syntax-directed compilers for
programming languages, but the intuitive ideas are similar. The theory
of tree transducers sketched in Chapter 5 should eventually be extended

to deal with Woods' tree transducer as well,

The whole-part theorems in §3 may be useful in showing the
singlevaluedness of functions defined by algorithms or computer
systems that allow asynchronous parallel processing. These systems
appear to be representable by the "'parallel program schemata' of
Karp and Miller [25, §1]. After sketching this model for parallel
computation, we will indicate how the theorems of §3 may be useful.

A parallel program schema consists of a "memory' M, a set A
‘ M

of "operators" together with functions D : A — oM anda R:A — 2
called ""domain' and "range' maps, an "alphabet" %, and a "control
automaton" ® . The memory M is a finite ‘s:et of "cells" imagined to
contain data being manipulated. No assumptions about the size or
shape of cells are made — anything from a f11p flop to a d1sk file might.
be involved. The set A of operators represents the processors that
have access to the data stored in the memory For each a € A, the
domain Da is the set of cells from wh1ch a fetches data and the range

Ra is the set of cells where a stores results. The alphabet ¥ has

symbols 2 g, enes aK (with Ka 2 1) for each operator a. We say that
a _ ,
a has initiator a, and K_ terminators a,,...,a, . The control
—_— 0 a - 1 Ky _—

automaton £ is a set Q of states together with a special starting state

s € Q and a transition function

6: QXTI —— Q (partial)

such that é(q, ai) is defined whenever a; is a terminator. Intuitively,

the operators a such that 6(q, ao) is defined are the ones permitted

6-10

to begin computing when control is in state q. Any process that has
been initiated previously may terminate (unpredictably) at any time
and send a terminator to the control. The terminator chosen permits
the process to give the control a little information about the compu-
tation just completed.

An interpreted schema is a parallel program schema together
with interpretations for the operators. We consider a set ID of possible
data to be stored in cells. To each a € A We.assign a map Fa from
possible assignments ¢ : Da — ID of values to the domain cells for a
to possible assignments d : Ré — D of values to the range cells for é.
To each a € A we also a331gn a map G from possible ass1gnments

c : Da — DD of values to the domam cells for a to termlnators for a.

A configuration for an 1nterpreted schema is any triple o =(c,q,u)
where ¢ : M — ID (the current céntents of the memory cells), q € Q
(the current state of the control), and u is é map assigning to each
a € A an input queue: a string of maps frofn Da into ID. An initial
configuration is one where q is the starting étate ‘s _and u(a) is the
empty queue for each a € A. Computations are sequences of transitions
from one configuration to énother. | |

Let IB be the set of all possiblé configﬁrations for an interpreted
schema. We will set up a gerierél replacemeﬁf system B = (1B, =) to
represent the transitions between configur_atibns. Karp and Miller
define a partial function mapping IB X I into B (whose value at {a, o)
is denoted a-+0). Restating the definition [25, Def. 1.5] here, we define
«a- 0 to be the unique 8 € B, if any, suchvthat the following conditions

hold:

6-11

Case 1l (o= a, for some a € A) Then o = (c', q,u) with 6(q, ao) defined.
We have 8 = (c, é(q, ao), V), where the queue map v has w(b) = u(b) for
all b € A with b# a and

(a) = u(a)-(c » Da),

so that the current contents of a's domain cells are added to the tail of

a's previous input queue u (a).

Case 2 (o = a, for some'a-€ A and k >0) Then a=(c,q,u) with
u(a) = (k)-n.for some « : Da — D (a nonempty queue headed by k)
and a, = Ga(x). We have B = (d, é(q, ak), v) where d(m) = ¢(m) for all
m € M—Ra and d #Ra = F_(x), while u(b) = u(b) for all b € A with
b # a and v(a) = n, so that the head of a's previous input queue u (a)

has been serviced and is now deleted.

(Various restrictions on the model are of interest in practical sitﬁations.
For example, if |ID| is large then only configurations with very short
queues are reasonable. The general model is a convenient framework
for expressing and comparing more restricted models_.)
Each o € Z defines a relation ? on IB by

a=>f iff a-c=8,
and so each o € £ defines a general replacement system (IB, =>). One
way to show that the final configuration after a halting computation is
determined by the initial configuration is to show that the general
replacement system

(B, =)=(B, U =)

ge

is Church-Rosser, since there is a computation that starts at « and

6-12

halts at 8 iff @ has normal form S in (IB, =>). The Church-Rosser
property for (IB, =>) is much weaker than "determinacy'" as defined
in [25, Def. 1.9], but it is enough o insure unio_ueness of normal forms.

Since each ? is a' partial function'b on lB, each.-(lB, ?) is a
Church-Rosser system. The union process is associattye and com-
mutative, so there is a multitude of ways to analyze (1B, =>) as a
hierarchy of'si:mple_r systems, with the systems on each level being
unions of systems on the level below. For each such analysis,-
Theorems 3.5 and 3.8 tell us that appropriately connected Church-
Rosser parts form Church Rosser wholes Whl].e Lemmas 3.6 and 3.9
assist in showing that the parts are 1ndeed approprlately connected

We can therefore approach each spec1f1c 1nterpreted schema
with general tools app11cable to any union of general replacement
systems Perhaps we can also use the general tools to show that any
interpreted schema satlsfylng certaln condltlons leads to a Church-
Rosser system, . where the cond1t1ons are reasonably easy-to verify in.

many practlcal s1tuat1ons . No such r_esultsvare known ‘at present.

APPENDIX A

Elementary Properties of the Lambda Calculus

By straightforward applications of the definitions in §9 and use
of the basic algebraic identities from §4, we can verify a multitude of

obvious properties of bound and free variables. For example,

"]

F My,S) = if x =y then @ else (1)-F_S,
. :
m-B_(R/m) C BRMm-N,
and so on. This appendix establishes some less obvious but still quite
elementary properties of the lambda calculus.
First we verify the assertion (9.3.2) with
(A.1) Lemma. LetR e IF; m,n,p € Dom R; m anc n; m anc p. Then

n g p iff n/m W p/m.

R

Proof: Suppose that n <5 p and let x = Rn = Rp.
Case 1 (n,pe F_R) Thenn/m, p/me FX‘R/m), so n/m mp/m.

Case 2 (n,p are bound to some q € Dom R)

Case 2.1 (manc q) Thenn/m and p/m are bound to g/m in R/m, so

n/m «mp/m.

Case 2.2 (NOT m anc q). If n/m were bound to a node £ in R/m, then
n would be bound to m-£ in R rather than to q. Therefore n/me

F_(R/m). Simjlariy, p/@e F (R/m), and so n/m R/m p/m.

Now suppose that n/m m p/m. Let x = (R/m)(n/m)=(R/m)(p/m),

so that x = Rn = Rp also.
Case 1 (n/m, p/m ¢ FX(R/m))

Case 1.1 ((3 £ anc m)(RL =\ & R(£-(0)) = x)) Let £ with £ anc m and
R£ =\ and R(£:(0)) = x be chosen with {£] maximal. Then n and p are

bound to £ in R and so n “RP-

Case 1.2 ((V£ anc m)(RL # X or R(£-(0)) # x)) Thenn,p € FXR and so

n <—=— p.

R

Case 2 (n/m and p/m are bound to some q in R/m) Then n and p are

bound to m-q in R and son R P i

Next we verify Lemma 9.5.

(A.2) Lemma.» Lét‘R,R',S,S' eF; x,x' eX. Then
(1) Mx, S) = Mx!, 8") iff (S~8S'& F S=F_S"

(2) YR, S) ~ A(R’,S") iff
[R~R'&S~8"&

(Vy,y'e X)(FyR = FyR' # @ implies F,S=F,,S")].

Proof: Suppose \(x, S) =)\(X',.SY'),' so that

(1)'F S = {d € Dom \(x, S)| q is bound to () in X, S)}

={q‘€l\1a\lqm(0)}
* '
={qeN IQW(O)} = (1)-F_,S".

Therefore Fxs = Fx'S" We also have Frame S = Frame S’ beéause

Frame \(x,S) = Frame \(x',S’). We must show that (S) = (g7).

A-3

Let m,ne N . By Mx,S) = M(x',S’) and two applications of Lemma A.1:

m g~ n iff (1)-m W (1.)-n
iff (1)-m m (1)-1’1
iff m «——— n.
g

Now suppose that S =~ S’ and FXS = FX,S'. We have Frame \(x, S) =
Frame \x',S') because Frame S = Frame S’. We must show that

w5 " Soosn

). By symmetry, it will suffice to show that

‘n.

()

Nx, S) (x, S)

h(x',S'))° Suppoge m

Case 1l (m,n ¢ Fy)\(x, S) for some y € X) Theny # x and m/(1),n/(1)

e FyS. By S =~ S' and two applications of Lemma A.1 we have
m x(x', S n.
Case 2 (m,n are bound to some p in \x,S))

Case 2.1 (p=()) Thenm/(1), n/(1) F_S and so m/(1), n/(1) €F_,S".

Therefore m,n are bound to () in Mx',S’) and m «~—————— n.
. . .))\(X', Sr)

Case 2.2 (p#()) Then'.(l) gr_fgp and m/(1),n/(1) are bound to p/(l)

in S. By S =~ S’ and two applications of Lemma A.1 we have
m <———-——»MX,, D n.
This proves (1).
Now suppose ¥R, S) = y(R’,S'), so that Frame R = Frame R’ and

Frame S = Frame S' because Frame (R, S) = Frame v(R',S'). Using

) =(

Lemma A.1 and (S’5)’ we can show that («—) = (?*)

7(R, S) 7(R' R
and () = («z7) just as in the proof of (1). We now have R ~ R’ and
_ S 5

S =~ S', Suppose y,y’'ec X with FyR = Fy,R' # Q. Letm-¢ FyR. Then

FyS ={n € Dom s|(1)n S (0)-m}

={n € Dom S | (1) -n (d)-m} = Fy,S' .

<—_—>
v(R',S")
Now suppose that R * R’, S ~ S', and FyS = Fy,S’ whenever
FyR = Fy,R’ # @. Then Frame ¥(R,S) = Frame y(R’,S!) because
Frame R = Frame R/ and Frame S = Frame S'. We must show that

(7R S)) = ('y‘(R’ S’S)' By ,symmqtfy, (it will suffice.jco show :

(#

(0) anc m or (1) anc m, and s1m11arly for n.

7R, S)') C (Q(R’ S’)} Suppose m, ne N* with m ﬁ—v Then

Case 1 ((0) an_cm)

Case 1.1 ((0)_ anc n) By R =~ R’ and two applications of Lemma A:1,

R

Case 1.2 ((1) anc n) Slnce () is the only common ancestor of m and n

and y(R, S}) #)\ we must have m,n & F y(R S) for some y e X. Let
y' = R"(m/(0)). Then m/(O) € Fy R' by R =~ R' and m/(0) ¢ & FyR Since

FyR = Fy,R’ # @, we have FyS. = F-y,S' and so n/(1)-g Fy,S,’ because

n/(1) e FyS. Thus
-m/(0) Fy,R' & n/(1) Fy,S'

m e Fy,‘y(R’,S') & n e Fy,'y(R',S’)
P y®RSH

Case 2 ((1) anc m)

Case 2.1 ((0) anc n) We have m m,—s,; n by Case 1.2 and the sym-

metry of both «——— relations.

Case 2.2 ((1) ancn) By S =~ S’ and two applications of Lemma A.1,

m <—_)'y(R',S') n.
Finally, we must prove Lemma 9.9.
(A.3) Lemma. Letie{B,né}; op—vye R.; o= ¢ Ifi=8. let
¢' € IFj also. Then there is §' € F such that ¢ > ¢ and ~
(1) — Y eR,
(2) (Vy,y e XNF y=F_,' # @ implies F_o=F_,¢' # Q).
y y Yy Yy
Proof: Suppose first that i = 6. Recall that -]R‘5 satisfies restrictions
(4) and (5) in Definition 9.7. Then ¢ = ¢' because FVbl ¢ = @ in (9.7.4).
Letting ¥’ = ¢, we have (1) by (9.7.5). Since FVbl Y =0 in (9.7.4), (2)
is trivial. | '
Now suppose that i = n, so that some.R ¢ IF andvx € X have
C@=Mx,7(R,¥) &y =R & F R =0
by the definition of R, (9.7.3). By ¢ ~ ¢ there are R’ ¢ IF and x' ¢ X
with
o' = Mx', ¥(R!, x")),
while Lemma A.2 implies that
R ~R'&F R’ = F.R = P.

Letting ¢' = R’ yields ¢ =~ ¢’ and (1). Now lety,y’e X and suppose

wa = Fy'W # ¢ Thenhy # x and Y' # x', so

A-6

F =(1,0)-F. R=(1,0)-F ,R'=F ' .
yt = L OER=(1L,0F R =F o0 2 |
Finally, suppose i = f8, so that some R,S ¢ If aﬁ;i x € X have
¢ = v(Mx,8),R) &y = [R/x]S & FVbl RN (BVbl SU {x}) = ¢

by the definition of]RB (9.7.2). By ¢ = ¢’ there are R',S' € IF and

x! € X such that
o' = v(Mx',S"),R")).

Set y' = [R'/x']S!. By ¢' € F, we have FVbl R’ M (BVbl §' U {x}) = @
and- (1) follows. Lety.y' € X and suppose wa = Fy,w’ # @. We must
show that Fyqo = Fy,w' # @. Since FVbl R/ BVbl S = FVb1R' N BVb1S'

= (@, we have-
F ¢ =(F S-F _S)UF_S-F R
y Yy X X Yy

Fou'=(F, S -F SHUF 8 F R

Combining these with wa = Fy,x// ' ‘yields

-— j . = r_ 4 r, r
(3) (FyS FXS)U FXS FyR) (_F:‘y{,‘S :”:FX,S YU FX,S Fy,R .

Since FXS = FX,S' while S—I(X) and S'_l'(X)-are both independent,
-— ’ ! ! . .

FyS FXS ._L FX,S & Fy,S - FX,S 1 FXS.:

Therefore
. - ’. ' - — r i r .

(FyS FSNF_,S Fy,R »(p (Fy,S F SN F_S FyR,
and (3) becomes
4 FS-FS=F_,S'-F_,'" &F_SF.R=F_S"F_,R',
- y X y X Xy X y'
where both equations cannot be @ = (Dbecause Fy(// # @. There are two

cases to consider.

Case 1 (FXS-FyR = @) Then (4) implies that FyS -F S-= Fy,S’—FX,S’
@. Applying this to
F ¢=(0,1)(F_S~F_S)U(1):'F_R
0= (0, 1)(F S~F S)U (1)F
and to the corresponding equation for Fy,cp', we find that some

p € Dom S has
0, 1 'p(— F Qom F (p'.
(0. 1) 4 y'

But this implies that Fygo = Fy,<p';é QD by ¢ = ¢'.

Case 2 (FX-S-FyR # @) Then FXS is a nonempty independent $et of nodes
with F_S = F_,S'.. Any equation M-N = M-P for M,N,P C N with M
nonempty and independent implies N = P, so (4) implies that
FR=F_,R'. ByF_SF R 5
Sy Ty yFESERQ
F.R=F_,R'# Q.
. yR 7P
Applying this and (4) to
F_o=(0, 1)(F_S—F_S) U (1)-F_R
g0 = (0, D-(F S=F 8 U (1)F,
and to the corresponding equation for Fy,cp_',, we find that Fy<p=Fy,<p' # Q.
This proves (2). ,
We must still show that ¢ = ¢’ in the first place! LetK = IFXS|

and let (mo, mK-l) be a listing of FXS. We will use Lemma 9.6 to

prove

(5) S(my<~—R)...(m_; —R) = 8"(my «—R")...(m_; — R").

1

Comparing (5) with (9.6.4), we see that it suffices to show

FS=F_S

X X
FVbIR 7 (BVbl SU {x}) = @
FVblR' "1 (BVbl S' U {x'}) = @
S=~S" & R=~R'

(6) (Vy.y'e X)(FyS = Fy,S' # @ implies FyR = Fy‘,R')

Vy,y'e X)(FyR =lefR' #@ implies FJR=F R".

Only (6) is neither trivial nor already proven. Suppose FyS = Fyk,Sf # Q.
If x =y then _Fy.,S’ = FX,‘S' # @, and so X'.=__Y-',. . We have Fy-R =@ =
Fy,R'. If x # y then x' £y’ too'and-FyR = Fy,R,',by Lemma A.2 and -

¢ = ¢'. This proves (6).8

APPENDIX B

Equivalence of Two Versions of the Lambda Calculus

As we noted at the end of §9, our formalization of the lambda
calculus differs somewhat from that of Curry and Feys. Even after
setting up the obvious correspondence between "obs' [14, Chap. 3]
and trees in our forest IFF, it may not be completely obvious that our
fB)\ is the same GRS that Curry and Feys show is Church-Rosser
[14, Chap. 4]. This appendix defines a GRS {B“ such that the statement

| %u is Church-Rosser

is obviously equivalent to the classical Church-Rosser theorem
[14, Chap. 4]. Next §ve show that :’Bu = :B')\,, so that Theorem 10.12
does cover the classical theorem.

First we define a substitution operation that corresponds to

{14, §3E1]:

(B.1) Definition. Choose any map..Ne_‘/VVbl : PR —{X} — X such
that |

(1) | (VY . X)(NeW\{bl(Y) ¢Y).

For all R g IF and x € X, define

(2) {R/x}: F —TF

inductively by setting

(3) {R/x}v(5,T) = v{R/x}S,{R/x} T)

(4) {R/xIN(x,8) = M (x,8)

(3 {R/x{My.S) =i F S=@ or FyR =@ then My,{R/x}S)
| Mz, {R/x}{z/y}S)

1s

o
o

(6) {R/x}x=R & {R/xfa=a.
forallS, TeIF; y,z € X; aeCUXsuchthaty;éxand a # x and
z = Newvbl(FVbl RU FVblSU {x}).

Note the similarity to the definition of]Ro (10.4.3), except in (5)
above, where occurrences of -y are changed to occurrences of z as
needed to prevent captu‘resAof free variables. This complication in the
definition of substitution for free variables permits a simple definit;’o'n

of beta-reduction [14, §3D3]:

(B.2.1) Ry ={v(Mx,8),R) — {R/x}S|R,S ¢ F & x ¢ X},

where we use ''8'' rather than "B" to prevent confusion between this set

of rules and our own]RB. Letting’
(B.2.2)]Rl—t =]R9U IRnU IR(S"
we have an SRS of the form
(B.2.4) e =(V,IF,=>,R)

v u U

that carries out 'reductions' just as in [14, Chap. 3].
The Church-Rosser property is >on1y sought modulo an equivalence

relation defined by yet another set of rules [14, §3D3]:
(B.3.1) R_={Mx,8) — My, {y/¥9) [ScFaxyecX& F.S = 9}.
These rules define an SRS of the form

(B.3.2) e _=(V,F,=,R)
a a a

e

where ? corresponds to the relation of alpha-convertibility among

"obs." Curry and Feys assert that —:;> is an equivalence relation
because lRa is symmetric [1_4, §§D3] . This isan error. If x,yec X

with x # y and if z = Newij"l {x,y}, then

Mx, My, x) — My, Mz, y) € R
but

My, Mz, 9)— Mx, My, x) ¢ R .

"“The relation % is symmetric, as we will soon show by proving thét it
is actually the same as our strong alphaequivalence relation =, Thus
the assertion in [‘14] is ¢orrect although the reaéon given for it is not.
Using the fact that :;-—? is an equivalence, we define Curry and Feys'

GRS:

(B.4) Definition. Let ‘Ea be the set of all equivalence classes of
*
trees in IF under the relation = Define a GRS ﬁu = (]Ea’ ﬁ) by .

setting, for all® , 4 € E

R 5}, iff 3R cR)(é's c A)(R =u=> S).
(B75) Lemma. (%) = (),

Proof: First we will show
(1) (=) C (=),
Suppose R = S. For some Q ¢ IF; x,y € X; m € Dom R We have
F = @ and
YQ ? :
(2) R/m = Mx,Q)
S = R(m «—)\(y,{y/x}Q).

By a straightforward induction on [Q'i in the definition (B.1) for {y/x}Q,

we can show that Q =~ {y/x}Q and that

y) or
z)"_]

(Vz € X}(Vn FZQ) (z=x& g{y-/X}Q)n

(z # x & {y/<}Qmn

By the definitions of =~ and = (9.4) and by(l) in Lemma 9.5, these facts
imply that '
Mz, Q) = My, {y/x}Q).

Applying this to (2) and using LLemma 9.5 |Im| times, we find that R = S,
This proves (1). . B o |

) ! . N I .) ; :

In order to show that (=) .C (%—>), we will show that every Pec I

satisfieé | -'
(3) (VP! e F)(P = P’ implies P —;—a> P").
Let P e IF and suppose all smaller trees in IF satisfy (3). Suppose

P’_—‘:P'.'
Case 1l (P()e CUZX) ThenP =P’ and P*;Z:,}P"’.

Case 2 (P()=X\) Then P =\ (x,S) ‘for"some SelF; x eX
Since Frame P = Frame P', we have P"% NMx’!, S') for some S' € F;
x' € X. Lety e X with s'l(y) ="S".1(y) = @, so that P.= P’ implies
that _ | _

[y/x]8 = [y/x']s’
by the definition of = (9.4.2) and by (1) in Lemma 9.5. By the induction '_

hypothesis and the definition of @',a as an SRS,

@) My [y/x]9) =\ [y/x)sn.

By S—l(y) = @ we have [y/x]S ={y/x}S and FyS =, so that
(5) \zx, S) ? My, [y/x]19).
Now consider any subtree of the form Mz, T) in [y/x']S'. If
z = x' then T_l(_y) = @ because S’_l(y) =@ and [y/x']S" = S(F_,S'—y).
Therefore either F_x' = @ or FyT = @ and so
{x'/y}Mz, T) = Mz, {x'/y} T)

in (5) from Definition B.1. ‘Since this is true for all subtrees of the

form N(z, T) in [y/x']-S'- and since replacing (B.1.5) with
{R/x}\y. 8) = My, {R/x}S)

would turn (B.1) into a characterization of our [R/x] substitution, we

have
(6) {x'/yHy/x']8" = [x'[y]ly/x']8".

But F_,[y/x']S' =@ while [x'/y][y/x']S' = §' by " z) = 9,

so (6) yields
My, [y/x']S" =;> Mx!, ST).
Combining this with (4) and (5), we get

P

Ax, S) ? Mx!', S = P!,

Case 3 (P()=+v) ThenP = v{(R,S) and P'"'= y(R',S') for some R,R',S,
S'e IF with R=R' and S = S’ by (2) in Lemma 9.5. We apply the

induction hypothesis twice to get P ? P'.a

Lemma B.5 implies that the set IEQ in the definition (B.4) of :'Su

is the same set IE used to define fB}\. To complete the proof that

= . >) = (2 i .
:'Bu B, we must show that (u) (x) on _-thls set B

(B.6) Theorem. ‘B'u = ;R)\.

Proof: The proof of Lemma 9.6 can be adapted to show that
{R/x}S ~{R'/x'}S'
whenever R @ R/, S = S/, F’}'{S = FX,S', and
Vy,y' € X'F.S=F_,S' # @ implies F_R = F_,R").
vVy.y WF S =F S # @ imp g = FyRY

Therefore the proof of Lemma 9.9 given in (A.3) can be carried out
with 6 in place of . .Using Lemma 9'.91 with 6 in place of 8, we may

prove Lemma 10.1 with 6 in place of 8. Thus the corollary

(1) (VR,4 cE)R34 iff GRe RN F)AEScL)R = 9)]
of Lemma 10.1 has the analog |

(2 (VR.4cE)R > 4 iff (SVR"e.' ROTFNESe LR => 9]

for %u.
For allR,S € IF and x € X with FVbl RMN(BVbl SU{x}) = 9,
[R/x]S = {R/x}S,
and therefore |
(59 N I, XT) = () N (F; X F).

Combining this with the definitions of]R)\ (9‘.7.1) and]Ru (B.2.2) yields

(=) N (TG XTF) = () N (F X TF).

.Therefore (1) and (2) imply that (>) = (i).l
. ¥

10.

11.

12.

13.

14.

REFERENCES

. Aho, A.V, Hopcroft, J.E., and Ullman, J.D. A general theory of

translation. Math, Svstems Theory 3 (1969), 193-221.

Aho, A.V., and Ullman, J.D. Translations on a context~free
grammar. ACM Symp. on Theory of Computing (1969),
93-112.

Blum, E.K. Towards a theory of semantics and compilers for
programming languages. J. Computer and System Sci. 3
(1969), 248-275. :

Blum, M. On the size of machines. Inform. and Control 11
(1967), 257-265.

Bourbaki, N. Theorjr of Sets. Addiéon-Wesley, Reading, Mass.,
’ 1968. B ‘

Brainerd, W.S. Tree generating regular systems. Inform. and
Control 14 (1969), 217-231.

Cheatham, T.E., Jr. Theory and Construction of Compilérs,
Second ed. Massachusetts Computer Associates, Inc.,
Wakefield, Mass., 1967. :

Chomsky, N. Three models for the description of language.
IRE Trans. on Inform. Theory IT-2 (1956), 113-124.

. mmm———— . Syntactic Structures. Moutori, The Hague, 1957.

——————— . Aspects of the Theory of Syntax. M.L.T. Press,
Cambridge, Mass., 1965.

Christensen, C. An example of the manipulation of directed graphs
in the AMBIT/G programming language. In Klerer, M., and
Reinfelds, J. (Eds.), Interactive Systems for Experimental
Applied Mathematics. Academic Press, New York, 1968,
pp. 423-435.

Church, A. A set of postulates for the foundation of logic.
Ann. of Math. (2) 33 (1932), 346-366.

——————— and Rosser, J.B. Some properties of conversion.
Trans. Amer. Math. Soc. 39 (1936), 472-482.

Curry, H.B., and Feys, R. Combinatory Logic. North-Holland,
Amsterdam, 1958. '

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29,

R2

De Rerher, F.L. Practical translators for LR(k) languages.
MAC-TR-65, M.I.T. Project MAC, Cambridge, Mass.,
1969.

Earley, J. An efficient context-free parsing algorithm.
Comm. ACM 13 (1970), 94-102.

Floyd, R.W. On the nonexistence of a phrase-structure grammar
for ALGOL 60. Comm. ACM 5 (1962), 483-484,

Ginsburg, S., and Partee, B.H. A mathematical model of trans-
formational grammars. Inform. and Control 15 (1969),
297-334.

Gray, J.N., and Harrison, M.A. Single pass precedence analysis.
Tenth Annual IEEE Symp. on Switching and Automata
Theory (1969), 106-117.

Henderéon, D.A. Desdription and definition of simple AMBIT/G.
- Report CA-6904-2811, Massachusetts Computer
Associates, Inc., Wakefield, Mass.; 1969.

Hindley, R. The Church-Rosser property aﬁd a result in com-
binatory logic. PhD. Thesis, U. of Newcastle-upon-Tyne,
-1964. o

————ee . An abstract form of the Church-Rosser theorem,
PartI. J. Symbolic Logic 34 (1969), 545-560.

——————— . An abstract form of the Church-Rosser theorem,
Part II. In preparation. :

Hopcroft, J.E., and Ullman, J.D. Formal Laflguages-and Their
Relation to Automata. Addison-Wesley, Reading, Mass.,
1969, S o

Karp, R.M., and Miller, R.E. Parallel program schemata.
J. Computer and System Seci. 3 (1969), 147-195.

Kleene, S.C. Introduction to Metamathematics. .‘ Van Nostrand,
New York, 1952.

Knuth, D.E. Semantics of context-free languages. Math. Systems
Theory 2 (1968), 127-145. _

——————— . The Art of Computer Programming, Vol. 1: Funda-
mental Algorithms. Addison-Wesley, Reading, Mass.,
1968. '

Landin, P.J. A formal description of ALGOL 60. - In Steel, T.B., Jr.
(Ed.), Formal Language Description Languages for :
Computer Programming. North-Holland, Amsterdam, 1966,
pp. 266-204. ' Lo

30.

31.

32.

33.

34.

35.

36.

317.

38.

39.

R3

Lewis, P.M., II, and Stearns, R.E. Syntax-directed transduction.
J. ACM _1_5_ (1968), 465-488.

Manna, Z., and McCarthy, J. Properties of programs and
partial function logic. In Meltzer, B., and Michie, D.
(Eds.), Machine Intelligence 5. American Elsevier,
New York, 1970, pp. 27-38.

Manna, Z., and Pneuli, A. Formalization of properties of
functional programs. J. ACM 17 (1970), 555-590.

McCarthy, J. Recursive functions of symbolic expressions and
their computatlon by machine. Comm. ACM 3 (1960),
184-195. B

——————— . Basis for a mathematical theory of computation.
In Braffort, P., and Hirschberg, D. (Eds.), Computer
Programmmg and Formal Systems North-Holland,
1963, pp. 33-70.

Minsky, M. Form and content in computer science. J. ACM 17
(1970), 197-215. o

Mitschke, G. Eine algebraische Behandlung von A-K-Kalkil und
Kombinatorischer Logik. PhD. Thesis, Rheinischen
Friedrich-Wilhelms Universitdt, Bonn, 1970.

Morris, J.H., Jr. Lambda-calculus models of programming
languages. MAC-TR-57, M.IL.T. Project MAC,
Cambridge, Mass., 1968.

Naur, P. (Ed.) Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6 (1963), 1-17.

Rosen, B.K. Context-sensitive syntax analysis, Part II:
Generative power. Math. Ling. and Autom. Translation
NSF-18 (1967), VI-1 — VI-59. Harvard Computation
Laboratory, Cambridge, Mass.

——————— . Syntactic complexity and finite automata. Computer
Res. Lab. Memo. RC-T-068, NASA Electronics Research
Center, Cambridge, Mass., 1969. Submitted for publi-
cation.

------- . Tree-manipulating systems and Church-Rosser
theorems. Second Annual ACM Symp. on Theory of

Computing (1970), 117-127.

——————— . Tree- manlpulatmg systems and Church-Rosser theorems.
To appear in J. ACM.

R4

43. Rosen, S. A compiler-building system developed by Brooker and
Morris. In Rosen, S. (Ed.), Programming Systems and
Languages. McGraw-Hill, New York, 1967, pp. 306-331.

44. Rosencrantz, D.J., and Stearns, R.E. Properties of determi-
' nistic top-down grammars. Inform. and Control 17 (1970),
226-256.

45, Rounds, W.C. Tree-oriented proofs of some theorems on context-
free and indexed languages. Second Annual ACM Symp. on
Theory of Computing (1970), 109-116.

46, ------- . ‘Mappings and grammars on trees. Math. Systems
Theory 4 (1970), 257-287,

47. Sanchis, L.E. Functionals defined by recursion. Notre Dame J.
Formal Logic 8 (1967), 161-174.

48, Schroer, D.E. The Church-Rosser theorem. PhD. Thesis,
Cornell U., Ithaca, N.Y., 11965. '

49, Strong, H.R., Jr. Translating recursion equations into flowcharts.
Second Annual ACM Symp. on Theory of Computing (1970),
184-197. '

50. Thatcher, J.W. Characterizing derivation trees of context-free
grammars through a generalization of finite automata
theory. J. Computer and System Sci. 1 (1967), 317-322.

51. ------- . There's a lot more to finite automata theovry than you
would have thought. Fourth Annual Princeton Conf. on
Inform. Sci. and Systems (1970), 263-276.

52, rmm=m-- . Genera.lized2 sequential machine maps. J. Computer
and System Sci. 4 (1970), 339-367.

53. Wegbreit, B. Studies in extensible programming languages.
: PhD. Thesis, Harvard U., Cambridge, Mass., 1970.

54, Wirth, N., and Webei',.H. EULER: a generalization of ALGOL,
and its formal definition. Comm. ACM 9 (1966), 13-25
and 89-99. o ' K

55. Woods, W.A. Semantics for a question-answering system.
Math. Ling. and Autom. Translation NSF-19 (1967).
Harvard Computation Laboratory, Cambridge, Mass.

56, ==-==-- . Procedurai semantics for a question-answering
machine. Proc. AFIPS 1968 FJCC, Vol. 33, Pt. 1.
MDI Publications, Wayne, Penn., 1968, pp. 457-4171,

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288

