

- LEGAL NOTICE -

This report was prepared as an account of Government sponsored work Neither the United States nor the Commission, nor any person acting on behalf of the Commission

A Makes any warranty or representation express or implied, with respect to the accuracy completeness or usefulness of the information contained in this report, or that the use of any information, apparatus method or process disclosed in this report may not infringe privately owned rights or

B Assumes any habilities with respect to the use of, or for damages resulting from the use of any information apparatus, method, or process disclosed in this report

As used in the above "person acting on behalf of the Commission" includes any employee or contractor of the Commission or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares disseminates or provides access to, any information pursuant to his employment or contract with the Commission or his employment with such contractor

IN-1376 NASA CR-72681 Issued May 1970 Limited Distribution

CRITICAL EXPERIMENTS

ON A

MODULAR CAVITY REACTOR

by

J F Kunze and P. L. Chase

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Contract C-67747-A

> Technical Management NASA-Lewis Research Center Cleveland, Ohio

Nuclear Systems Division Robert E Hyland, Project Manager

Space Nuclear Propulsion Office Capt C E Franklin, USAF

IDAHO NUCLEAR CORPORATION

A Jointly Owned Subsidiary of

AEROJET GENERAL CORPORATION ALLIED CHEMICAL CORPORATION PHILLIPS PETROLEUM COMPANY

U S Atomic Energy Commission Scientific and Technical Report Issued Under Contract AT(10-1)-1230 Idaho Operations Office

ABSTRACT

Two fundamental design concepts have been under consideration for the cavity nuclear rocket reactor One of these is the openfuel-cycle concept, in which the fuel is partially contained in the cavity by hydrodynamic forces of the surrounding propellant The other is the closed-fuel-cycle concept, in which the fuel is contained by a wall transparent to radiation. In the latter concept, the modular design of several small cavities with moderator in the interstices has been employed. This report describes the results of reactor physics measurements on the modular concept, and compares the results with previously reported data on the single large cavity design of the openfuel-cycle concept.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the work of G D. Pincock, C. G. Cooper, D H. Suckling, and R. R Jones in obtaining the data and performing much of the preliminary analysis.

CONTENTS

ABSTRAC	r	•• • •• •• •• •• •• •• • •• •• • •	11
ACKNOWL	EDGEMENT	5	11
1.0	SUMMARY	• • • • • • • • • • • • • • • • • • • •	l
2.0	INTRODU	CTION	2
3.0	REACTOR	DESCRIPTION	7
4.0	TEST PR	OCEDURES	11
5.0	0.55 RAI	DIUS RATIO CORE - 7 MODULE	14
	5.1	Initial Loading	15
	5.2	Reactivity Measurements	16
	5.2.1	Rod Worth	16
	5.2.2	Material Worths	17
	5.2.3	Simulated Exhaust Nozzle Measurements for the Module System	18
	5.3	Power Mapping (Catcher Foil Data)	18
	5.4	Flux Mapping (Gold Foil Data)	19
	5 4 . l	Bare Gold Data	19
	5.4.2	Cadmium Ratios	20
	5 4.3	Thermal Neutron Flux	21
6.0	0.72 RAI	DIUS RATIO CORE - 7 MODULE	79
	6.1	Initial Loading	79
	62	Reactivity Measurements	80
	63	Power Mapping - Catcher Foils	81
	64	Flux Mapping - Gold Foils	81
	64.1	Bare Gold Data	81
	6 4.2	Cadmium Ratios	82
	64.3	Thermal Neutron Flux	82

7.0	0.38) WITH 1	RADIUS RATIO CORE - 7 MODULE SYSTEM	110
	7.1	Initial Loading	110
	7.2	Reactivity Measurements	110
	7.3	Power Distribution	111
	7.4	Neutron Flux Distributions	
8.0	0.55	RADTUS RATTO WITTHOITT HYDROGEN	13h
	8.1	Tuitial Loading	13h
	82	Reactivity Measurements	+נ-ב וכר
	8 2	Porer Distributions	
	8.1		137
0.0		MODILE DEACHOD OF DADILIC DAMES CODE	132
9.0	WITH F	MODULE REACTOR - 0.55 RADIUS RATIO CORE HYDROGEN SIMULATION	157
	9.1	Initial loading	157
	9.2	Reactivity Measurements	158
	9.3	Power Distribution	159
	9.4	Thermal Flux and Gold Cadmium Ratios	160
10.0	DISCUS	SION OF RESULTS	209
	10.1	Effects on Cavity Reactor Operating Characteristics at Power	211
	10.2	Calculations	212
11.0	CONCLU	SIONS	219
REFER	INCES	•••••	221
INDEX.	• • • • • • • • •	**** * *** ** ** * *** ***** ** * * * *	222

TABLES

41	Effective Delayed Neutron Parameters	13
5.1	Initial Loading, 7-Module Reactor, 0.55 Radius Ratio	22
5.2	All Rods Worth Curve Data, 7 Actuators - 21 Rods 7-Module Reactor, 0 55 Radius Ratio	24
5.3	All Rods Worth Curve Data, 10 Actuators - 30 Rods Exhaust Nozzle Tank in Reactor	25
5.4	Fuel Worth Measurements	26
5.5	Miscellaneous Reactivity Measurements	27
56	Reactivity Measurements of Exhaust Nozzle Configurations	28
5.7	Catcher Foil Data, 0 55 Radius Ratio	29
5.8	Gold Foil Data, 0.55 Radius Ratio	3 6
5.9	Power Normalization Factors, 0 55 Radius Ratio	4 <u>1</u>
5.10	Gold Foil Cadmium Ratios, 0.55 Radius Ratio Exhaust Nozzle Removed.	42
5 11	Thermal Neutron Flux, 0 55 Radıus Ratıo Exhaust Nozzle Removed	<u>4</u> 4
6.1	Fuel Sheets on Fuel Stage Separation Disc, 7-Module Reactor, 0 72 Radius Ratio	83
6.2	Fuel Worth Measurements, 0.72 Radius Ratio	84
6.3	Catcher Foll Data, 0.72 Radius Ratio	85
6.4	Power Normalization, 0.72 Radius Ratio	88
6.5	Gold Foil Data, O 72 Radius Ratio	89
6.6	Gold Foil Cadmium Ratios, 0.72 Radius Ratio With Hydrogen	93
6.7	Thermal Neutron Flux, 0.72 Radius Ratio Exhaust Nozzle Removed	94
7.1	Fuel Element Loading Arrangement, 0.38 Radius Ratio	112
72	Material Worth Measurements, 7-Module Reactor, 0.38 Radius Ratio, Hydrogen in Reactor	113

7.3	Power Distribution, Catcher Foil Data, 7-Module Reactor - 0.38 Radius Ratio With Hydrogen	114
7.4	Bare Gold Foll Data, 0.38 Radius Ratio	117
7.5	Gold Foil Cadmium Ratios, 0.38 Radius Ratio	120
7.6	Thermal Neutron Flux, 0.38 Radius Ratio	121
8.1	Comparison of Loading With and Without Hydrogen 0.55 Radius Ratio	136
8.2	Uranium Worth Measurements, 7-Module Reactor, 0.55 Radius Ratio - No Hydrogen in Reactor	137
8.3	Aluminum Worth Measurements, 7-Module Reactor Without Hydrogen, Exhaust Nozzle in Reactor	138
8.4	Catcher Foil Data, 0.55 Radius Ratio, No Hydrogen	139
8.5	Gold Foil Data, 0.55 Radius Ratio, No Hydrogen	142
8.6	Thermal Neutron Flux, 0.55 Radius Ratio, No Hydrogen	145
9.1	Distribution of Fuel Sheets on the Fuel Rings, 3-Module Reactor - 0 55 Radius Ratio	162
9.2	8 Actuator Tabular Rod Worth Curve, 3-Module Reactor (12 Manual Rods in Reactor)	163
9.3	Fuel Worth, Longitudinally Averaged, Module 3	164
9.4	Catcher Foll Data, 3-Module Reactor	165
9.5	Gold Foil Data, 3-Module Cavity Reactor	173
9.6	Thermal Neutron Flux, 3-Module Reactor	180
9.7	Infinitely Dilute Gold Foil Cadmium Ratios	182
10.1	Principal Results from the Five Different Modular Configurations	214
10.2	Comparisons of 1-, 3-, and 7-Module Configurations	215

FIGURES

	21	Modular and Single Cavity Concepts	5
	2.2	Schematic Diagram of Reference Nuclear Light Bulb Engine	6
	3.1	Cavity reactor reflector tank .	9
	3.2	Two-dimensional reflector model	10
	51	End view of seven module tank	46
	5.2	End view of fuel element	47
	5.3	Side view of fuel element	48
	54	Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 0 55 radius ratio loading	49
	5.5	Inverse multiplication curve for 7-Module Reactor .	50
ر	56	Control rod shape curve - seven actuators (21 rods)	51
	5.7	Control rod shape curve - all actuators (30 rods)	52
	58	Uranium worth measurements, 7-module reactor with 0 55 fuel to module radius ratio	53
	5.9	Exhaust nozzle configurations for the 7-module reactor	54
	5 10	Relative axial power distribution in Module 1, 0° at the core centerline, 0.55 radius ratio	55
	5.11	Relative axial power distribution in Module 1, 90° at the core centerline, 0.55 radius ratio	56
	5,12	Relative axial power distribution in Module 3, 0° at the core centerline, 0.55 radius ratio	57
	5.13	Relative axial power distribution in Module 3, 90° at the core centerline, 0 55 radius ratio .	58
	5 14	Relative axial power distribution in Module 3, 270° at the core centerline, 0 55 radius ratio .	59
	5.15	Relative radial power distribution in Modules 1 & 3 based on axial average power distributions	60
	5.16	Circumferential power distribution on outside fuel ring, 0.55 radius ratio	61

5.17	Axial distribution of catcher foil cadmium ratios in modules 1 and 3, 0.55 radius ratio	62
5.18	Relative bare gold foil activity axial distribution in modules 1 and 3, 0.55 radius ratio	63
5.19	Relative bare gold foil activity circumferential distribution on inner and outer surfaces of the polystyrene in module 7, 0 55 radius ratio	64
5.20	Relative bare gold foil activity distribution in the regions between modules	65
5.21	Relative bare gold foil activity distribution across the end of the core at the separation plane from the center of module 1 across module 3, 0.55 radius ratio	66
5,22	Relative bare gold foil activity distribution in the radial reflector, 0.55 radius ratio	67
5.23	Relative bare gold foil activity distribution in the end reflector, 0.55 radius ratio	68
5.24	Infinitely dilute gold cadmium ratio in the region between fuel modules	69
5 25	Axial distribution of gold foil cadmium ratios in modules 1 and 3 at an angle of 90° cw from core centerline	70
5.26	Curcumferential distribution of gold foil cadmium ratio on inner and outer surface of CH in module 7	71
5.27	Infinite dilute gold cadmium ratios along center- lines of end and radial reflectors	72
5.28	Axial distribution of thermal neutron flux in modules 1 and 3 at 90° clockwise from core vertical centerline	73
5.29	Circumferential distribution of thermal neutron flux on the inner and outer surfaces of the poly- styrene in module 7	74
5.30	Thermal neutron flux distribution across the core at the separation plane from module 1 across module 3	75
5.31	Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 0.55 radius ratio	76

5.32	Radial distribution of thermal neutron flux from module 1 through the D_2O between modules 5 & 6 and into the radial reflector, 0.55 radius ratio	77
5.33	Axial distribution of thermal neutron flux through module 1 and into the end reflector	78
6.1	Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 0.72 radius ratio loading	95
6.2	Uranium worth measurement, 7 module reactor with 0.72 fuel to module radius ratio	96 -
6.3	Relative axial power distribution in module 1, 90° at the core centerline, 0.72 radius ratio	97
6.4	Relative axial power distribution in module 3, 90° at the core centerline, 0.72 radius ratio	98
6.5	Relative axial power distribution in module 3, 270° at the core centerline, 0.72 radius ratio	99
6.6	Relative radial power distribution in modules 1 and 3 based on axial average power distributions	100
6.7	Relative radial bare gold foil activity in modules 1 and 3 at axial locations of 163 3 and 166 8 cm	101
6.8	Relative bare gold foil activity distribution in the regions between modules, 0.72 radius ratio	102
6.9	Gold foil activity in the radial reflector	103
6.10	Gold foil activity in the end reflector	104
6.11	Gold foil cadmium ratio module 1 through module 3, 0.72 radius ratio	105
6.12	Gold foil cadmium ratio module 1 and between modules 5 & 6, 0 72 radius ratio	106
6.13	Infinite dilute gold cadmium ratios along centerlines of end and radial reflectors	107
6 14	Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 0 72 radius ratio	108
6.15	Radial distribution of thermal neutron flux from module 1 through the D ₂ O between modules 5 & 6 and into the radial reflector, 0.72 radius ratio	109

7.1	Fuel placement on discs, 7-module reactor fuel element with 0 388 radius ratio loading	122
72	Uranium worth measurements, 7-module reactor with 0.38 radius ratio	123
73	Relative axial power distribution in module 1, 90° at the core centerline, 0.38 radius ratio	124
7.4	Relative axial power distribution in module 3, 90° at the core centerline, 0.38 radius ratio	125
7.5	Relative axial power distribution in module 3, 270° at the core centerline, 0 38 radius ratio	126
7.6	Normalized power distribution vs radius and angle	127
7.7	Bare gold activity and thermal flux in radial reflector, 0.38 radius ratio	128
7.8	Bare gold activity and thermal flux in end reflector, 0.38 radius ratio	129
7.9	Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 0.38 radius ratio	130
7.10	Radial distribution of thermal neutron flux from module 1 through the D ₂ O between modules 5 & 6 and into the radial reflector, 0.38 radius ratio	131
7.11	Infinitely dilute gold cadmium ratios from module 1 between modules 5 & 6, 0.38 radius ratio	132
7.12	Gold foil cadmium ratios, module 1 through module 3 0.38 radius ratio	133
8.1	Fuel worth traverses in 0.55 radius ratio seven module reactor without hydrogen	146
8.2	Relative axial power distribution in module 1, 90° at the core centerline, 0.55 radius ratio	147
8.3	Relative axial power distribution in module 3, 90° at the core centerline, 0.55 radius ratio	148
8.4	Relative axial power distribution in module 3, 270° at the core centerline, 0.55 radius ratio	149
8.5	Relative radial power distribution in modules 1 and 3 based on axial average power distributions, 7-module reactor, 0.55 radius ratio without hydrogen	150

8.6	Relative bare gold foil activity distribution in the regions between modules, 0.55 fuel radius ratio	151
87	Relative radial bare gold foil activity in modules 1 and 3 at axial locations of 163.3 and 166.8 cm	152
8.8	Bare gold activity and thermal flux in end reflector 7-module reactor, 0 55 radius ratio without hydrogen	153
8.9	Bare gold activity and thermal flux in radial reflector 7-module reactor, 0.55 radius ratio without hydrogen	154
8.10	Radial distribution of thermal neutron flux from module 1 through D_2O between modules 5 & 6 and into the radial reflector, 0.55 radius ratio	155
8.11	Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 0.55 radius ratio	156
9.1	Cross section view at separation plane of 3 module tank insert	184
92	Side view of fuel element for 3 module reactor	185
9.3	Layout of fuel rings for 3 module reactor fuel element	186
9.4	Layout of fuel sheets on fuel stage separation discs of 3-module reactor fuel element	187
9•5	Control rod shape curve - eight actuators	188
9.6	Fuel worth measurements from module 3 of the three module cavity reactor	189
9.7	Relative axial power distribution in module 3, 30° at the core centerline, 0.55 radius ratio	190
9.8	Relative axial power distribution in module 3, 120° at the core centerline, 0.55 radius ratio	191
99	Relative axial power distribution in module 3, 300° at the core centerline, 0 55 radius ratio	192
9.10	Relative radial power distribution in module 3 based on axial average power distributions	193
9.11	Circumferential power distribution on outside fuel ring, stage 8, 0.55 radius ratio	194

ŝ

9.12	Circumferential catcher foil cadmium ratio on out- side fuel ring, stage 8, 0 55 radius ratio	195
9.13	Relative axial power distribution in the end reflector, 0.55 radius ratio	196
9.14	Relative axial power distribution in the radial reflector, 0.55 radius ratio	197
9.15	Relative axial power distribution across face of core through module 1 axis, 0.55 radius ratio	198
916	Relative axial power distribution across face of core with traverse between modules 1 and 2	199
9.17	Axial distribution of catcher foil cadmium ratios through module 3, 300°, 0 55 radius ratio	200
9.18	Axial distribution of catcher foil cadmium ratios through module 3, 120°, 0 55 radius ratio	201
9 19	Relative radial gold foil activity in a module	202
9.20	Circumferential relative gold foil activity on outside fuel ring, stage 9, 0.55 radius ratio	203
9.21	Relative radial bare gold foil activity traverse out through D ₂ 0 between modules 1 and 2	204
9.22	Relative bare gold foil activity in the end and radial reflectors, 0.55 radius ratio	205
9.23	Relative bare gold foil activity in module 3, 120°, 3-module reactor, 0 55 radius ratio	206
9.24	Relative bare gold foil activity in module 3, 300°, 3-module reactor, 0 55 radius ratio	207
9.25	Radial distribution of thermal neutron flux through core and radial reflector, 0.55 radius ratio	208
10 l	Experimental Relationship between fuel mass and fuel radius as fraction of cavity radius	216
10.2	Comparison of fuel worth vs fuel loading for two configurations	217
10.3	Flux-perturbation effect of $1/2$ -inch thick aluminum plate in D_2^0 reflector of cavity reactor	218

1 0 SUMMARY

Critical experiments have been conducted to measure the reactor physics parameters in a modular cavity reactor system Reactors containing three modules and seven modules in a core volume of 183 cm (6 ft) diameter by 122 cm (4 ft) length were constructed. Each of these systems had a 89 cm (3 ft) reflector. Both moderator and reflector were heavy water, with 0.25% H₂O impurity All fuel was highly enriched uranıum (93.2% U-235) The modules consisted of a central cylindrical fuel region within a cavity containing simulated hydrogen For the seven module core the fuel to cavity radius ratio was varied from 0 38 to 0.72. For the three module core only a radius ratio of 0.55 was Hydrogen coolant, simulated by low density polystyrene, surstudied rounded the fuel on four of the configurations One configuration was examined without any hydrogen in its cavities.

The modular concept places moderator between each fuel cell creating a benefit of additional moderation that cannot be obtained in the single cavity configurations. However, the nature of the modular design makes it extremely difficult to perform nuclear calculations of reasonable reliability, unless one has a base experiment with which to make a comparison Both three module and seven module configurations were measured, the latter with three different fuel radii. The 0.55 fuel to cavity radius ratio was measured both with and without hydrogen in the cavity No variations were made on the amount of moderation between the modules, e.g., by varying module size and spacing

Measured critical masses varied from 8 to 11 5 kg of uranium. These are significantly lower than critical masses obtained in the single large cavity system Also, these multiple cavities did not exhibit the large percentage increase in critical mass as was experienced in large single cavities as the fuel to cavity radius ratio became smaller. However, the pressure of the uranium, measured by its atom density, is the more fundamental characteristic for the design of cavity reactors. The pressure for criticality in the 7-module configuration would be 2/3 to 3/4 the pressure in the nominally "equivalent sized" single cavity system. However, this "equivalent" single cavity system had 2 1/2 times the hydrogen coolant-propellant volume, and hence a higher thrust level capability.

2.0 INTRODUCTION

The gas core nuclear rocket has been under investigation for over ten years as a propulsion engine for space applications Such an engine would have a specific impulse of about 1600 sec, approximately four times that obtainable with chemical rockets and twice that obtainable with the solid core nuclear rockets (NERVA). The fuel is allowed to vaporize in the cavity, thus imposing no fuel element temperature limitations as exist in the solid core nuclear reactor systems. However, the gaseous fuel of the gas core rocket must be at least partially contained for economic reasons. One cannot afford to allow nuclear fuel and propellant to flow with mass rates of the same order of magnitude, not only because it would be poor economics but also because the specific impulse advantage would be lost. Therefore, some containment of the fuel must occur. Two approaches are being investigated. One is the openfuel-cycle, which confines the fuel hydrodynamically through variable flow velocities and directions. The second, commonly referred to as the light bulb concept, is the closed-fuel-cycle which uses a radiationtransparent wall to confine the fuel. The open cycle, in order to be economically acceptable, should have a propellant-to-fuel mass-flow-rate ratio greater than 35 to 1. The closed-fuel-cycle eliminates all fuel loss, providing the transparency and integrity of the thin walls can be maintained.

The cavity nuclear reactor concept utilizes an external moderator and reflector in order to achieve criticality with the low density gaseous fuel. Many passes across the fueled region are required before a thermal neutron is likely to be absorbed in the fuel. The surrounding reflector must, therefore, have a long thermal migration length so as not to adversely affect the thermal neutron population before they are absorbed in the fuel. Under conditions of relatively long absorption mean free paths in both the fuel and moderator-reflector, the neutronics of the cavity reactor becomes one of geometric competition between the fuel volume and moderator volume. The effectiveness of the fuel volume can be enhanced by raising its density (reducing its absorption mean free path). But eventually increases in density involve diminishing returns because the fuel becomes self-shielded. The pressure of the fuel gas, however, continues to increase nominally proportional to the density, and eventually one may reach such high fuel densities for criticality that pressures are beyond the feasibility of engineering construction.

The alternative to increasing fuel density is to increase geometrically the fuel effectiveness with respect to the moderator. This can be done by dispersing a number of small fuel-containing modules throughout the moderator, rather than to use only a single large cavity. This approach involves smaller cavities with smaller fuel volumes in each. Oscillations (or waves) in the effective fuel boundary will now

more significantly affect the fuel to cavity volume ratio and adversely affect the stability of the open cycle concept In practice it will probably be necessary to provide a "glass" wall containment for a modular concept that employs modular cavities much smaller than 30 cm radius. Figure 2.1 schematically shows the concept of the two designs

Thus, the closed-cycle "light bulb" concept offers two principal advantages over the open cycle concept The closed cycle does not lose fuel and it allows a design utilizing small modules with interstitial moderator However, it does have disadvantages in addition to the problem of maintaining the integrity of the transparent walls An inert gas (neon)⁽¹⁾ must be circulated around the transparent walls of the fuel chambers to keep them cool The continual circulation removes some fuel from the core region to the downstream flow plenum. This fuel must then be separated from the neon before being recycled Also, the fission products are contained in the closed cycle rocket system, whereas they are lost in outer space in the open cycle system

The "glass" wall or "light bulb", closed cycle cavity concept has been under investigation at United Aircraft Research Laboratories and at the National Aeronautics and Space Administration The use of the closed cycle modular concept is discussed in Reference 1, and a conceptual design from that reference is shown in Figure 2.2. The design shown uses graphite and BeO as the moderator-reflector material, primarily for engineering convenience Heavy water is far superior, nuclearly, resulting in significantly lower critical masses and hence lower operating cavity pressures Heavy water was the reflectormoderator used in the critical experiments described in this report

Criticality calculations on the modular concept are more difficult than on the single cavity concept because of lack of symmetry in the polar angle direction Single cavity calculations are difficult enough (see Reference 5) without adding this additional complication For this reason, experiments are necessary to provide the base from which a workable calculational scheme can be developed. This is the commonly employed "benchmark" measurement technique, and is especially necessary for the modular cavity reactor concept design considerations

Critical experiments on the single cavity concept were first conducted about ten years ago at Los Alamos on a small cavity, 40 cm in diameter.⁽⁹⁾ Since 1966, experiments on a 183 cm (6-ft) diameter by 122 cm (4-ft) long cavity have been conducted in Idaho ^(2,3,4) on a variety of different configurations These included variations from the very basic, simple designs amenable to reactor physics calculations to complex designs that incorporate details of engineering construction and thermodynamic performance of the operating cavity reactor system^(11,12)

This same reflector-moderator tank (366 cm diameter by 305 cm length) has been used for the critical experiments described in this report on the modular, "light bulb" reactor concept. The cavity (183 cm diameter by 122 cm long) of the reflector tank contained the module tank, thus making the single cavity and the modular experiment equivalent in at least one respect, all had the same "reflector" thickness They did, however, differ in "equivalent" core diameters.

The experiments described in this report had the principal purpose of establishing reasonably simple geometric models of the modular cavity reactor that could be used as "benchmarks" for design calculations. Of secondary interest were measurements of some engineering design effects that can not conveniently be included in calculational models

Figure 2.1 Modular and Single Cavity Concepts

Figure 2.2 Schematic Diagram of Reference Nuclear Light Bulb Engine (from Reference 1, United Aircraft report, G-910375-3)

3.0 REACTOR DESCRIPTION

The main reactor tank was the same as that used for the cylindrical cavity critical experiments of the co-axial flow concept using a single large cavity. The outside dimensions of the heavy water in the tank were 363 8 cm in diameter by 300.8 cm long. The structure of the tank was aluminum, and included structural supports and stiffeners as well as the walls, which were 0.95 to 1 27 cm thick. The details of this structure are shown in Figure 3.1, with a two dimensional (cylindrical) nuclear model shown in Figure 3.2. As shown on this figure, the internal walls of the tank were 1.27 cm thick on the ends and 0 95 cm thick on the curcumference. The entire reflector consisted of two tanks that were brought together to achieve criticality. Where the tanks met, the heavy water was interrupted by the aluminum tank walls, 1 27 cm thick each The tanks were not allowed to contact each other, a safety precaution to prevent flooding of the core in the event that an inner wall should leak. The gap was nominally 1.22 cm thick, and all results are quoted with the gap. Its worth was nominally 0 58% Ak, and if it is desired to not include the gap in a calculational model, this amount of reactivity should be added.

The movable tank was essentially one of the end reflectors. It also contained a central hole 30.7 cm in diameter, which was used to simulate the effect of an exhaust nozzle. For some of the experiments this hole was plugged with a tank of heavy water, referred to as the "end plug" or nozzle plug This plug tank had 0.95 cm thick walls

The fixed reflector tank formed the main body and one end of the reflector It was this end that contained the control rods for the experiment. The control was provided by between 8 and 12 actuators driving groups of three boron-carbide control rods with outer diameters of 1.9 cm. These slid in aluminum guide tubes The net effect of the aluminum and the empty tubes was to add 0.684% aluminum (by volume) and 1.0% void to this region of the reflector, Region #14 of Figure 3.2.

Inside the single large cavity of the reflector tank was placed the module tank for the particular experiment. The seven-module tank had a mass of 216.8 kg, and the three-module tank 180 kg. The radial tank walls and module walls were 0.318 cm (1/8-inch) thick, and the end plates were 0.635 (1/4-inch) thick. The dimensions of these tanks are shown in Figures 5.1 and 9.1, respectively. It was difficult to assure that the module tank was completely filled with heavy water, the possibility existing of the top few millimeters containing void (entrapped air). The seven module tank was filled with 1913 kg of heavy water, and the three module tank with 1884 kg Their internal volumes were 1742 liters and 1714 liters, respectively, giving an effective heavy water density of 1.099 gm/cm³

The heavy water was nominally at a temperature of 22°C throughout the experiment (\pm 1°C variations) Its density at this temperature is 1.105 gm/cc. The H₂O impurity content was measured once during the experiment, and had been measured a number of times before and since these module experiments. During these experiments the H₂O content was (0.25 ± 0.02) molecular percent of the total water.

The fuel used in the experiment was thin sheet metallic uranium, nominally 0 0025 cm thick. All masses quoted throughout the report are uranium masses only. These sheets also contained impurities which were approximately 3 5% of the uranium mass. The impurities were a fluorocarbon coating material and some oxygen from surface oxidation (about 1.3% of the total mass was oxygen, 2% fluorocarbon). The uranium material is that usually referred to as "oralloy", with an isotopic composition of

93.2%	U-23 5
1.0%	U-23 4
0.4%	U-23 6
5.4%	U-23 8

The aluminum used in the reflector tanks was all type 6061 The module tanks were constructed of type 1100-H14 for the curved (radial and module) walls and type 5052 for the end walls. Note, the 1.27 cm thick outside reflector tank walls are not included in the nuclear model of Figure 3.2 because of their negligible effect on reactivity

Details as to the fuel and hydrogen locations within the modules will be found in the sections on the individual experimental configurations. The hydrogen was simulated with styrofoam, having a nominal density of 0.028 gm/cc. In some cases, the hydrogen atom density was increased by inserting thin sheets of polyethylene between the styrofoam blocks. The inner radius of the hydrogen annulus in these experiments was not varied, being 0.72 of the cavity radius for the seven-module configurations and 0.69 for the three-module configurations.

Fig. 3.1 Cavity reactor reflector tank

Figure 3 2 Two-dimensional reflector model

4.0 TEST PROCEDURES

The principal measurements made on these critical experiments were reactivity, power distributions and flux distribution. The achieving of criticality is considered to be only an intermediate step, and though subcritical data can yield information on reactivity, those results are usually less reliable than the measurements made from the critical configuration. When feasible, the measurements were made with the control rods nearly fully withdrawn so as to limit the amount of perturbation of the end reflector flux caused by the control rods.

Reactivity measurements were made using the delayed neutron parameters, either by means of asymptotic positive period measurements and the inhour equation or by means of the inverse kinetics method of computing reactivity from a flux trace Base conditions were established by measuring the asymptotic period rather than by establishing a level power position. The long-lived $(\gamma - n)$ reactions in the D₀ created a strong enough spurious neutron source that level power conditions were always subcritical, and by differing amounts depending on the past operating history and hence the strength of the source. Period measurements could be made over several decades, thus making possible a reliable extrapolation to the asymptotic, no-source value. The relatively small integrated power of a period measurement also minimized the spurious $(\gamma-n)$ source buildup. The delayed neutron parameters used for this reactor are given in Table 4.1, and include eight groups of neutrons from $(\gamma - n)$ reactions. The total delayed fraction (one dollar) was 0 765%* in the heavy water All results are reported in 1/2k instead of dollars and cents. Without considering uncertainties in the delayed neutron fraction, most period measurements of reactivity have associated with them an uncertainty of approximately ±0.0005%Ak. Table closure positions were reproducible to approximately ±0,02 cm, and control rod positions to ±0.01 cm The temperature coefficient of the system was approximately O Ol %Ak/C°, but the large heat capacity precluded temperature drifts larger than a few tenths of a degree during any eight-hour period Measurements of fuel worth or other material worths usually required opening the table to position the material to be measured into the core. The base measurement always included the effect of any structural material needed to secure the material being measured. Because such measurements involve not only the possibility of disturbing other materials in the reactor, but also an opening and closing of the table, a measurement of a reactivity difference probably involved a net uncertainty of ±0 001 %k

Leakage from this reactor gives $\beta/\beta_{eff}=0.985$. This 1 1/2% correction was not included because of the larger uncertainty in the $(\gamma-n)$ contributions and even in the value of β -direct (data of Keepin et al)

Power distribution measurements were routinely made using aluminum fission-product-catcher foils on cleaned uranium metal sheet. Reproducibility of results is better than $\pm 2\%$, and there is no detectable spectral dependence of this technique in the thermal or near thermal range. Decay of the foils was automatically included by counting all foils vs a normalizer foil from the same exposure. Absolute power levels were determined with a 2H beta counter (3.8 cm radius chamber) precalibrated with absolute fission chambers and gold foils. This counter (an NMC type PC-3) gives 56 fiss/gm of U-235 per count per minute 50 minutes after shutdown from a constant 20 minute exposure. Absolute power levels are believed to be accurate to $\pm 3\%$ standard deviation.

Thermal fluxes were determined by use of bare and cadmium covered gold foils. The gold was nominally 0.0012 cm thick, with an effective resonance integral of 680 barns (vs 1555 barns infinitely dilute) In computing cadmium ratios, each foil was corrected for its effective resonance integral (6) by its mass to give the infinitely dilute value. Thermal flux perturbation was negligible, nominally 2% (7). The cadmium covers employed were 0.05 cm thick, giving an effective cadmium cutoff energy of 0.55 ev (⁸).

Reference positions have been established for defining locations of flux measurements. The longitudinal "O" reference location is at the outside of the end reflector in the control-rod end (fixed table) of the reactor. The radial reference position is either the axis of the reactor or the axis of the fuel module, and the distinction is obvious depending on which portion of the reactor was being measured. When defining positions within a module, the angular positions refer to clockwise rotation from the vertical (12 o'clock) position, when viewing the module tank from the movable table Sketches of the module tanks are shown looking from the movable table, end-reflector tank

TABLE 4.1

Group	β ₁	λ_1
1	0.000210	0 012400
2	0 001410	0 030500
3	0 00127	0 111000
4	0 002550	0 301000
5	0 000740	1 100000
6	0 000270	3 000000
7	0.000780	0 277000
8	0.000240	0 016900
9	0 000084	0 004810
10	0.000040	0.001500
11	0.000025	0 000428
12	0 000028	0 000117
13	0 000004	0 000044
14	0 000001	0 000004
	0 007652	

Effective Delayed Neutron Parameters

5.0 0 55 RADIUS RATIO CORE - 7 MODULE

The seven module tank, which was placed in the central cavity region of the existing cavity reactor, is shown in Figure 5 1 The tank walls and module walls were made of 0 3175 cm (1/8 inch) thick, type 1100-H14 aluminum The end plates were 0 635 cm (1/4 inch) thick, type 5052 aluminum The empty tank weighed 216 8 kg

In order to measure the flux through the D_2O between the modules, two aluminum tubes were welded into the tank at the axial center of the core between modules 1 and 3 and from module 1 to the outer tank wall passing between modules 5 and 6 Foils could then be placed in these tubes at desired locations to record flux and power distributions

The fuel elements consisted of 17 spacer discs (fueled), up to eight fuel rings (depending on radius ratio), and four the rods which clamped the pieces together Figure 5.2 shows an end view of the fuel element with the hardware to hold the fuel rings (spacer tabs) and the slots in the disc through which foils could be inserted A side view of the assembled fuel element is seen in Figure 5.3. As noted here, there were 16 stages of fuel with each stage being 7 46 cm long There were 9.25 kg of aluminum in each fuel element

The fuel rings were made by folding a strip of 0 0127 cm thick aluminum together and sandwiching the fuel inside The fuel was equally spaced around the rings and the gaps on the rings were staggered Fuel sheets were also placed on each fuel stage spacer disc as shown in Figure 5 4 These sheets were numbered as shown Sheets 3 to 8 were full size sheets, being 7 30 cm on a side by 0 00254 cm thick Sheets 1,2,9, and 10 were 1/2 size sheets (3 65 x 7 30 cm²) This fuel arrangement placed fuel sheets normal to the radial and axial coordinates, thus reducing to a minimum neutron streaming along zero or very low absorption paths in the fuel elements The fuel rings were loaded as follows

Ring Number	Number of Size	Ring Diameter			
0	1 O Fuel Sheets	(em)			
1	l	61			
2	2	99			
3	3	13 7			
4	5	17.5			
5	6	21 3			
6	7	25 1			

Because of the dilute fuel loading, not all positions specified on the fuel stage spacer discs (Figure 5 4) were used Those positions which did contain fuel are as follows for each disc of the element.

	Positions Containing	Number of Fuel	Sheets
Disc Number	Fuel	Whole Sheets	Half Sheets
٦	1.2.3.4.7.8.9.10	Д	Ъ
2	1.2.4.5.6.7.9.10	4	4
3	1.2.3.5.6.7.8	5	2
ŭ	3,4,5,6,8,9,10	5	2
5	1,2,3,4,7,8,9,10	<u>í</u>	4
6	1,2,4,5,6,7,9,10	<u>1</u>	4
7	1,2,3,5,6,7,8	5	2
8	3,4,5,6,8,9,10	5	2
9	1,2,3,4,7,8,9,10	դ	4
10	1,2,4,5,6,7,9,10	4	4
11	1,2,3,5,6,7,8	5	2
12	3,4,5,6,8,9,10	5	2
13	1,2,3,4,7,8,9,10	4	4
14	1,2,4,5,6,7,9,10	4	4
15	1,2,3,5,6,7,8	5	2
16	3,4,5,6,8,9,10	5	ę
17	1,2,3,4,7,8,9,10	4	4

The total fuel loading was thus 486 equivalent size 1 0 (full size) fuel sheets per fuel element, or a total of 3402 fuel sheets with a mass of 8.91 kg of U in the seven modules of the reactor core.

Each fuel element contained an annulus of foamed polystyrene (CH) from a radius of 16.4 cm to 22 5 cm. The CH weighed 2411 grams. This gives a hydrogen density within the annulus of 1.23×10^{21} atoms/cc.

5.1 Initial Loading

Initial loading of the seven module reactor began with no D_2O in the module tank, but with the outer, main tank filled. The fuel elements were loaded in the core one at a time and multiplication data were taken each time an element was added. The D_2O was then transferred into the module tank in several increments and multiplication taken for each increment The data results are contained in Table 5.1 and Figure 5.5.

The reactor was loaded with the exhaust-nozzle plug-tank, full of D₂O, in the end reflector The reactor was first critical with 7.359 barrels of D₂O in the tank and k-excess was 0.85% A full 8 O barrels were then added and k-excess was 1.89% A or an increase of 1.04% At this point, it was necessary to add three more actuators, 12 control rods, in order to maintain the two dollar shutdown requirement while loading was continued It was also decided to increase the hydrogen density by adding some thin strips of polyethylene (CH₂) between the fuel stage spacer discs and the polystyrene over the annular region of hydrogen. There were 770 grams added to the reactor which increased the hydrogen density to 1.96×10^{21} atoms/cc within the annulus (from its initial value of 1.23×10^{21} atoms/cc). The increase in hydrogen reduced k-excess 0 312 ± 0.075 % thus giving a specific worth of 0.405 ± 0.097 % kg for polyethylene. This was effectively the average worth throughout the propellant region. Previous measurements on other configurations have shown the carbon component is less than 2% of the total worth (ie. p.251 of Vol 1, p.45 of Vol 3)

An additional ten gallons, 42.07 kg of D_20 were added to the module tank and k-excess increased 0 $435\pm0.078\%$ Excess reactivity was $1.896\pm0.062\%$ k and higher than desired for the experiments so the exhaust nozzle plug was removed reducing k-excess to $0.745\pm0.066\%$ k, thus giving a plug worth of $1 150\pm0.091\%$ k

The remaining D_20 was then added to fill the module tank. It took 58.06 kg and it increased k-excess to $1.012\pm0.033\%$ k which was the base excess reactivity for this reactor with the exhaust nozzle tank (end plug) removed from the reactor As will be shown later, the average fuel worth in the modules was 3 928\% k with an estimated error of less than 5%. If this is applied to the above k-excess of 1 012±0 033\% k, the critical mass would be 8.64 kg of uranium, with the exhaust nozzle open The total mass of D_20 in the seven-module tank was 1913 kg

5.2 Reactivity Measurements

5.2.1 Rod Worth

Rod worth curves were measured early in the experiment both before and after adding three additional actuators. Inverse kinetics were used to perform the measurements after reducing K to 1.00 by separating the table and withdrawing all actuators to their full out position. The rod worth curve thus obtained for 7 actuators (21 rods) is shown in Figure 5 6, and this was reduced to tabular form, the results of which are given in Table 5 2. The same data for the ten actuators (30 rods) are given in Figure 5.7 and Table 5.3 There was not a large difference between the two curves, but enough to measure These curves were used throughout the seven-module experiments

Rod worth measurements were minimal. A single measurement of seven actuators containing 21 rods gave a total worth of -2.801%Ak. Four separate measurements of ten actuators (30 rods) gave an average worth of -3 927±0.129%Ak. This standard deviation is 3.3% which is about normal for this type of measurement. The inverse kinetics calculations gave -2.907%Ak and -4.111%Ak for the worth of the seven actuator and ten actuator combination of rods, respectively. Both of these values are four to five percent above bump-period measurements, but this difference is considered to be of no real significance (within the expected accuracy of the measurements)

5.2.2 Material Worths

The worth of uranium was measured in Modules 1 and 3 to determine a core average worth as well as produce the radial profile across the fuel elements. A full core-length strip of uranium weighing 7.28 gm sandwiched between two aluminum straps was used to make the This sandwich was inserted into the measurement tubes or measurements. slots on the fuel elements (Figure 5.2) The base measurement contained the aluminum straps with no fuel. Period differences were used in all cases thus reducing the estimated error per measurement to about ±0.003% Table 5 4 and Figure 5.8 show the results. The data are relatively sparse from which to calculate an average fuel worth But, assuming that the fuel worth distribution in Module 1 is constant around the element and that half of Module 3 is typical of the 90° value and the other half is typical of the 270° value, the core average fuel worth is 3.93% k/kg of uranium.

Two measurements made during the initial loading and reported in Section 5.1 are the worth of polyethylene (CH₂) and the worth of the exhaust nozzle tank. The values measured are shown in Table 5 5. Although these were measured during the initial loading prior to having all the D_2O in the module tank, the results are considered to be generally applicable. The exhaust nozzle tank was worth more than earlier measurements, (Reference 2, p. 162) on the regular cylindrical cavity reactor. Conceptually the reason for the higher worth is evasive, but is considered to be caused by the internal moderation between the modules that creates a higher flux over the center module than over the outer modules, whereas the opposite was true at the center of the normal cavity reactor.

The worth for polyethylene and polystyrene shows a large difference, -0.405+0 097 % k/kg for polyethylene (a relatively small perturbation) compared to -0.111±0.019% k/kg for polystyrene (measured for entire quantity that was in a single module). One would expect a nominal factor of two difference between these two materials if most of the reactivity penalty were due to the effects of hydrogen without consideration of molecular-binding-energy effects. (Carbon is worth only a few percent of the worth of hydrogen) Part of the difference is undoubtedly caused by the fact that the polyethylene measurement was a small perturbation (the addition of 110 grams per fuel element six percent in the hydrogen mass) after all of the polystyrene or was in the reactor; whereas the polystyrene measurement was a major perturbation (100% removal from one of the modules). For a proper relative comparison, equal hydrogen mass should be used in identical positions in the reactor.

Aluminum worth measurements were made by placing core-length strips of aluminum in the measurement slots in the fuel elements. The mass of the aluminum varied proportional to the radius squared in order to obtain a fuel element structure average worth in a single measurement and so as to place sufficient mass in the reactor to obtain a meaningful measurement The values thus measured are given in Table 5.5. The aluminum was type 1100.

523 Simulated Exhaust Nozzle Measurements for the Module System

Reactivity measurements were also made in the exhaust nozzle hole and in the end reflector (30.5 cm diameter) to evaluate possible exhaust nozzle configurations for the "light bulb" reactor. Two tanks were assembled for the measurement as shown in Figure 5.9^{*} . Each tank configuration was measured in three steps as shown in Table 5.6 All materials were worth more with the annular tank configuration than with the central tank. Hydrogen at $4 \pm 1 \times 10^{20}$ atoms/cc in the form of polystyrene (foamed) has a positive effect on reactivity in the nozzle, indicating that its scattering cross section reduces neutron leakage through the nozzle opening and more than counteracts the absorptions

5.3 Power Mapping (Catcher Foil Data)

Power mapping was done in modules 1 and 3 at different angles As will be noted from Figure 5.2, there were four foil exposure tubes or slots in the measurement fuel elements into which foils could be inserted without disassembling the fuel element. These slots extended the full length of the fuel element. The foils were placed on aluminum straps and then the straps were inserted into the slots.

The catcher foil data are given in Table 5.7. The data were first normalized to the point nearest the center of the core and then the axial plots were plotted as shown in Figures 5 10 to 5.14. Each of these axial plots were then averaged using a planimeter and the averages plotted to show the radial profile as presented in Figure 5.15. It will be noted that the core center has the highest power and that the lowest power in the outer modules is on that part of their circumference nearest the radial reflector.

To further identify the detailed circumferential power distribution on the outside of the fuel elements, a strip of catcher foils was placed near the axial center of the core (stage 8) on the outer fuel ring of the fuel element in modules 1 and 4. The resulting profiles are shown in Figure 5 16 Module 4 had a rather smooth profile, with a 17% spread from the maximum to the minimum around the fuel element.

*Note: Unrelated to the experiment but of documentary interest, an unidentified chemical reaction occurred with the annular tank, creating sufficient gas pressure inside to buckle the inner wall. This event occurred during a prolonged storage period of three weeks at room temperature. Significant chemical reaction or decomposition products were not found in the remaining D₂O. Duplication of suspected conditions such as: 1) dis-similar types of Al; 2) residual machining flux; 3) residue from acetone wash; and 4) "perfectly" clean walls were made in separate experiments. All four experiments eventually developed 2 psi over-pressure in essentially full cans. The residual machining-flux experiment developed the overpressure most rapidly (~3 weeks vs~2 months for the others). The cause is believed to be normal aluminum corrosion, which evidently occurs for neutral or slightly basic water conditions, but is allegedly inhibited by slightly acidic conditions (pH = 5 to 6). Module 1, however, gave a very scattered profile which was hard to define so a second set of data were taken on module 1 with finer resolution (closer foil spacing) and with special attention given to the exact location of the fuel sheets on the outer fuel ring. These are shown in Figure 5.16 and it will be noted that flux peaks occur where there are gaps in the fuel and depressions result where the fuel sheets are The variation amounts to nominally 6%, which is equivalent to the self shielding factor for 0 0025 cm thick uranium metal The second exposure was on stage 11 of module 1 so a direct comparison with the first set of data was not made Module 4 did not show as large a fluctuation as In both cases, the catcher foils were was observed for module 1 mounted on the outside of the outer layer of fuel

Some U^{235} -fission cadmium ratios were also measured in modules 1 and 3 These are shown in Figure 5 17 The system is highly thermal and the center module is generally a little less thermal than the outer module. At the end of the core where the exhaust nozzle hole exists, the thermal component of the flux was significantly enhanced This effect has been noted on previous cavity reactor experiments, and is the result of inward streaming of neutrons from the peak flux regions of the surrounding reflector. The reflector flux peaks about 20 cm from the inner cavity wall

5.4 Flux Mapping (Gold Foil Data)

5.4.1 Bare Gold Data

The gold data were concentrated in the D_20 regions and areas outside the fuel although some data were obtained within the fuel Both bare and cadmium covered foils were exposed and the data are found in Table 5.8 All foils were from 0 001016 to 0 00127 cm thick and nominally 1.43 cm in diameter The cadmium covers were 0 0508 cm thick

Each foil exposure run contained power normalizer foils which were used to correct the gold data to the same reactor power The normalization foils consisted of seven catcher foils mounted between the two tables on the reflector tank. These data are given-in Table 5 9

The bare gold data were normalized to the same physical location as the catcher foils as will be noted from Table 5.8 The normalized values were then plotted to show various distributions Figure 5.18 shows the relative distribution in modules 1 and 3 for the inner and outer measurement slot of the fuel elements Gold foils were also exposed on the inner and outer surfaces of the polystyrene in module 7 and the relative distribution is given in Figure 5.19 As with the catcher foils, the peak occurs over the region pointing toward the center of the core and the low point is next to the radial reflector Bare gold was also exposed in the two special exposure tubes, one running from module 1 to module 3 and the other from module 1 to the module wall between modules 5 and 6 The data are plotted in Figure 5 20 The data from module 1 to module 3 were repeated as it was noted that the foil positions on the first run may have been altered because of displacement of the aluminum strap containing the foils as the element was slid into place This counts at least in part for the differences in the two sets of data. As would be expected, the peak flux occurs midway between the modules

A strip of gold foils was also placed along the separation plane over modules 1 and 3 as shown in Figure 5.21 There was no apparent peak at the center of the exhaust nozzle as was observed with the large single cavity configurations, but the catcher foil cadmium ratio was somewhat higher at the exhaust nozzle than elsewhere out to the edge of the outer modules

The relative distribution in the reflector regions is shown in Figures 5 22 and 5 23 Three sets of data are given and in general the last two runs show good agreement with Run 1168 being the odd set of data Excess reactivity was high on this run, requiring the rods to be quite a ways in the reactor On Run 1168 actuators 1,2,3, and 10 were fully withdrawn while actuators 4 to 9 were equally withdrawn 12.6 cm. Run 1173 was the same rod pattern but the six actuators which were equally withdrawn were out 15 2 cm The same rods on Run 1174 were withdrawn 13 3 cm These variations are caused by the foils placed in the reactor and slight changes in DoO temperature The rods were actually further in on Run 1168 which could account for at least part of the differences However, control rod effects would not normally be expected to exist in the radial reflector, other than as affected by an overall shift in the average core power distribution

542 Cadmium Ratios

Cadmium ratios were calculated for all points where both bare and cadmium covered foils were available These data are given in Table 5 10 Infinitely dilute activities were calculated for gold (Refer to Reference 5, p 69, or to Reference 6, on resonance selfshielding of gold and indium, for the procedure used in reducing the data For catcher foils, the cadmium ratio is essentially the infinitely dilute value, since only the surface activity of U-235 is seen) Some of these data are shown graphically in Figures 5.24 to 5.27 A peak cadmium ratio occurs about midway between the modules as noted from Figure 5.24 with the highest value where the D_2O thickness is the largest, the traverse from module 1 between modules 5 and 6. Module 1 shows a sizable increase in gold cadmium ratio at the end of the core next to the exhaust nozzle opening as observed from Figure 5 25 A similar increase was noted with catcher foils (Figure 5 17) This increase had been observed in previous measurements on the single large cavity over this region with the exhaust nozzle tank removed The extra high thermal flux component originates 10 to 20 cm inside the reflector and streams down the empty exhaust nozzle toward the core

The separation between the gold cadmium ratio plots in the end and radial reflectors (Figure 5.27) was larger than observed from other cavity reactor configurations. One cause for this is probably the position of the control rods in the end reflector, creating a thermal flux depression in the end of the reactor The radial reflector is not affected as much as the end reflector thus the cadmium ratios in the radial reflector are higher than in the end reflector Furthermore, in this module configuration, the effective thickness of the radial reflector is greater than it was in the single large cavity configuration, resulting in a higher thermal to epi-thermal flux ratio

5 4.3 Thermal Neutron Flux

At the same positions where gold cadmium ratio were obtained, thermal (equivalent 2200 m/sec) neutron fluxes were calculated These data are given in Table 5 11 normalized to a watt of reactor power Figure 5.28 shows the distribution in modules 1 and 3 and Figure 5.29 presents the circumferential distribution around module 7 on the inner and outer surfaces of the polystyrene. There was not much of a variation in flux around the outer modules, except for a slight peaking next to the center module with the minimum next to the radial reflector

Sufficient data were obtained to plot the thermal flux distribution at the axial centerline starting at the core center and progressing to the outside of the reflector Traverses were made from the center of module 1 through module 3 and into the radial reflector and from module 1 through the D₂O between modules 5 and 6 The resulting distributions are seen in Figures 5 31 and 5 32 The peak flux in the reactor appears to have occurred in the DoO between module 1 and the six surrounding modules An unusual dip in flux is evident in the region of the walls of the module and reflector tanks The total thickness of these two walls is 1 27 cm, and this amount of aluminum can be expected to create a flux perturbation in the D₀O The flux dips that appear at the edge of the fuel and at the cavity wall of module 1 are unexpected, and are attributed to spurious experimental error

TABLE 5 1

Initial Loading

7-Module Reactor

0 55 Radius Ratio

Increment	Fuel 1n <u>Reactor (kg)</u>	Channel No 1		Channe	Channel No 2	Channel No 3			Rođ
		CPM	CRo/CR	CPM	CRo/CR	CPM	CRo/CR	Average	Positions
0	0	638	1 000	531	1 000	494	1 000	1 000	In
0	0	886	1 000	755	1 000	687	1 000	1 000	Out
1	l 273	801	0 797	647	0 821	587	0 842	0 820	In
1	l 273	1170	0 757	923	0 818	844	0 814	0 796	Out
2	2 546	1041	0 613	824	0 644	752	0 657	0 638	In
2	2 546	1477	0 600	1189	0 635	1067	0.644	0 626	Out
3	3 819	1256	0 508	1022	0 520	979	0 505	0 511	In
3	3.819	1519	0 583	1271	0 594	1192	0 576	0 584	Out
իլ	5.092	1539	0 415	1317	0 403	1223	0 404	0 407	In
չլ	5 092	2397	0 370	1979	0 382	1853	0.371	0 374	Out
5	6 365	1940	0 329	1620	0 328	1449	0 341	0 333	In
5	6 365	3135	0 283	2524	0 299	2270	0,303	0 295	Out
6	7 638	2406	0 265	2006	0 265	1840	0 268	0 266	In
6	7 638	3904	0 227	3224	0 234	2904	0 237	0 233	Out
7	8 911	3089	0 207	2536	0 209	2308	0 214	0 210	In
7	8 911	5168	0 171	4230	0 178	3862	0 178	0 176	Out

.
(Continued)

	່ Fuel າກ	Chan	Channel No 1		el No 2	Channel No 3			Rod	
Increment	Reactor (kg)	CPM	CRo/CR	CPM_	CRo/CR	CPM	CRo/CR	Average	Positions	
	Barrels		Addition o	f D ₂ 0 to	Central 1	lank				
8	1	3051	0 209	2168	0 245	2247	0 220	0 225	In	
8	1	4047	0 218	2823	0 267	2905	0 236	0 240	Out	
9	2	3142	0 203	2348	0 226	2337	0 211	0 213	In	
9	2	5604	0 158	4145	0 182	4149	0 166	0 169	Out	
10	3	3543	0 180	2658	0 200	2575	0 192	0 191	In	
10	3	6447	0 137	5027	0 150	4709	0 146	0 144	Out	
11	5	5313	0 120	4159	0 128	3843	0 129	0 126	In	
11	5	11869	0 075	9608	0 079	7731	0 089	0 081	Out	
12	6	8569	0 074	6870	0 077	6305	0 078	0 076	In	
12	6	33378	0 027	27020	0 028	23867	0 029	0 028	Out	
13	6 694	12733	0 050	10235	0 052	9155	0 054	0 052	In	
13	6 694	193154	0 0046	150866	0 0050	125062	0 0055	0 0050	Out	
1 ⁴	7 359	18515	0 0346	14830	0 0358	13401	0 0369	0 0357	In	

All Rods Worth Curve Data

7 Actuators - 21 Rods

Rods In - 117

7-Module Reactor

Rods Out - 9784

·	% Worth	% Worth Inserted											
• -	0	100	200	300	400	500	600	<u>7</u> 00	800	900			
00 1000 2000 3000 4000 5000	100 00 72 54 47 10 28 92 16 72 9 34	100 00 69 71 44 97 27 45 15 79 8 78	96 80 66 94 42 91 26 04 14 91 8 24	93 63 64 22 40 93 24 68 14 07 7 73	90 49 61 56 39 02 23 38 13 28 7 24	87.40 58 95 37 18 22 14 12 54 6 77	84.34 56 42 35 40 20 95 11 84 6 32	81 32 53 97 33 69 19 81 11 17 5 88	78 35 51 60 32 04 18 73 10 53 5 46	75 42 49 31 30 45 17 70 9 92 5 06			
6000 7000 8000 <u>9000</u>	4 68 1 84 0 51 0 01	4 32 1 64 0 43 0 00	3 98 1 45 0 35	3 66 1 28 0 28	3 35 1 13 0 21	3 06 1 00 0 15	2 78 0 89 0.10	2 52 0 79 0 06	2 28 0 69 0 03	2 05 0 60 0 02			

D	lſ	f	er	en	c	е

••••••••••••••••••••••••••••••••••••••	0	100	200	300	400	<u>500</u>	600	700	800	900
00	0 00	0 00	3 20	3 17	3 14	3 09	3 06	3 02	2 97	2 93
1000	2 88	283	2 77	2 72	2 66	2 61	2 53	2 45	2 37	2 29
2000	2 21	2 13	2 06	1 98	191	1 84	1 78	1 71	1 65	1 59
3000	1 53	1 47	1 41	1 36	1 30	1 24	1 19	1 14	1 08	1 03
4000	0 98	0 93	0 88	0 84	0 79	0 74	0 70	0 67	0 64	0 61
5000	0 58	0 56	0 54	0 51	0 49	0 47	0 45	0 44	042	0 40
6000	0 38	0 36	0 34	0 32	0 3Í	0 29	0 28	0 26	0.24	0.23
7000	021	0 20	0 19	0 17	0 15	0 13	0 11	0 10	0 09	0 09
8000	0 08	0 08	0 07	0 07	0 06	0 05	0 04	0 03	0 02	
9000	0 00			- •		,			0.05	0.01

All Rods Worth Curve Data

10 Actuators - 30 Rods

Exhaust Nozzle Tank in Reactor

7-Module Reactor

	% Worth	Inserted								
	0	100	200	300	400	500	600	700	800	900
	100 00	100 00	97 20	93 10	89 14	85 32	81 63	78 08	74 67	71 39
1000	68 23	65 20	62 30	59 52	56 86	54 3l	51 86	49 53	47 29	45 16
2000	43 12	41 17	39 31	37 53	35 82	34 20	32 63	31 13	29 69	28 30
3000	26 96	25 67	24 43	23 23	22 08	20 98	19 92	18 90	1 7 91	16 96
4000	16 05	15 17	14 33	13 52	12 74	12 00	11 29	1 0 61	996	9 34
5000	8 75	8 19	766	7 16	6 68	622	578	537	498	4 61
6000	4 26	3 93	3 62	3 32	3 04	2 78	2 53	2 30	2 08	1 88
7000	169	151	1 34	1 1 8	1 03	089	076	0 64	0 54	0 45
8000	0 37	<u>0</u> 30	0 24	0 19	<u>014</u>	0 10	0_07	0_04	0 02	0 01
						• • •	<u>_</u>			
	0	100	200		400	500	600	700	800	900
00	0	0	2 80	4 10	3 96	3 82	3 69	3 55	3 41	3 28
1000	3 16	3 03	290	2 78	266	2 55	245	2 33	2 24	2 13
2000	2 04	195	186	l 78	1 70	1 63	1 57	1 50	1 44	1 39
3000	1 34	1 29	1 24	1 20	1 15	1 10	106	1 02	0 99	0.95
4000	091	0 88	0 84	081	0 78	074	071	0 68	0 65	0 62
5000	059	056	0 53	0 50	0 48	0 46	0 44	0 41	0 39	0 37
6000	0 35	0 33	0 31	0 30	0 28	0 26	0 25	0 23	0 22	0 20
7000	019	018	0 17	0 16	0 15	014	0 13	0 12	0 10	
8000	0 08	0 07	0 06	0 05	0 05	0 04	0 03	0 03	0 02	0 OT
9000	0 00									

Fuel Worth Measurements

7-Module Reactor - 0.55 Radius Ratio

Location

Module	Angle from Centerline (°cw)	Radıus _(cm)	Reactivity Worth of 7.28g (%Ak)	Specific Worth (%Ak/kg)
3	90	40	0.0202±0 003	2 78±0 41
3	90	78	0.0208±0 003	2 86±0 41
3	90	11.6	0 0228±0 003	3 13±0 41
3	270	40	0 0213±0 003	2 93±0 41
Ś	270	78	0 0231±0.003	3 17±0 41
3	270	11 6	0.0283±0 003	3 89±0 41
l	90	4 O	0 0362±0 003	4 97±0 41
l	90	78	0.0377±0 003	5 18±0 41
l	90	11.6	0 0442±0 003	6 07±0 41

Miscellaneous Reactivity Measurements

7-Module Reactor - 0 55 Radius Ratio

Material	Location	Mass (g)	Reactıvıty Change (%∆k)	Specific Worth (%∆k/kg)
Polyethylene	Hydrogen annulus	770	-0 312 ±0 075	-0 405±0 097
Exhaust Nozzle	End reflector	une and and and	1 150 ±0 066	
Polystyrene	Module 5	2411	-0 266 ±0 045	-0 111±0 019
Aluminum	Module 1, 90°1	540	-0 0422±0 003	-0 078±0 006
Alumanum	Module 4, 150°	540	-0 0065±0 003	-0 012±0 006
Aluminum	Module 4, 330°	540	-0 0176±0 003	-0 033±0 006

1. Angles are clockwise from core centerline

Material	Weight (gm)	Total Worth (%∆k)	Worth per kg (%Ak/kg)
21 3 cm O D tank (Aluminum)	4027	-0,0113±0 003	-(2.81±0 74) x 10 ⁻³
D ₂ 0	34587	+0 608 ±0 074	0 0176±0 0021
Rolystyrene (CH)	280*	+0 0268±0 003	0.0957±0 0107
Annular Tank 21 3 cm I D 29 8 cm O D (Aluminum)	7303	-0 0513±0 003	-(7 02±0 41) x 10 ⁻³
D ₂ 0	33000	+0 667 ±0 066	0 0202±0 0020
Polystyrene (CH)	280*	+0 0407±0 003	0 145 ±0 011
*Approximate hydrogen ator	n densıty	was 4 1 x 10 ²⁰	atoms/cc

Reactivity Measurements of Exhaust Nozzle Configurations

TABLE 57

Catcher Foil Data

7-Module Reactor - 0 55 Radius Ratio

Run 1168

				Locat	tion		
Foll Number	Foil Type	Module Number	Angle (°cw)	Radial (cm)	Axial (cm)	Normalızed Counts	Local to Foil (X)
1	Bare	1	90°	40	92 5	199359	0 977
2	Bare	l	90°	40	105 8	204783	1 003
3	Bare	l	90°	40	121 0	198881	0 975
4	Bare	l	90°	40	136 3	209585	1 027
5	Bare	l	90°	40	151 5	204007	1 000 (X)
6	Bare	l	90°	4 O	166 8	196146	0 961
7	Bare	1	90°	4 O	182 0	1921.09	0 941
8	Bare	1	90°	4 O	197 2	180404	0 884
9	Bare	1	90°	40	210 5	194350	0 952
10	Bare	l	90°	78	92 5	204182	l 000
11	Bare	l	90°	78	105 8	198871	0 974
12	Bare	l	90°	78	121 0	211748	1 038
13	Bare	l	90°	78	136 3	210262	l 030
14	Bare	1	90°	78	151 5	210274	l 030
15	Bare	l	90°	78	166 8	201064	0 985
16	Bare	1	90°	78	182 0	194713	0 954
17	Bare	1	90°	78	197 2	184216	0 903
18	Bare	1	90°	78	210 5	187474	0 919
19	Bare	1	90°	11 6	92 5	220544	1 081
20	Bare	1	90°	11 6	105 8	220552	1 081
21	Bare	1	90°	11 6	121 0	231184	1 133
22	Bare	1	900	11 6	136 3	232027	1 137
23	Bare	Ť	900	11 6	151 5	229153	1 123
24	Bare	1	900	11 6	166 8	229802	1 126
25	Bare	1 -	90°	11 6	182 0	220739	1 082
26	Bare	1	90*	11 6	197 2	210128	1 030
21	Bare	1 2	90*	11 b	210 5	202533	0 992
20	Bare	1	90°	15 4 25 h	925	240(29	1 219
29	Bare	4 7	90°	15 4 25 h	105 0	252601	1 238
3U 21	Bare	<u>_</u> 7	90°	15 4	121 0	2625()	1 207
20 21	Dare	<u>_</u> 7	90*	1,54 1,51	150 5	260240	1 215
22 22	Dare	⊥ 1	90*	154 151	101 0 266 0	200122	1 215
2) 22	Dare	L	90-	154 151	180 0	2524(5	1 23(
24	Dare	⊥ ۲	90*	15 4 25 h	102 U	244(03	1 199
27 26	Dare	4 7	90*	15 4	19/ 2	225509	1 105
20	Dare Para	1 2	90-	15 4 h 0	210 5	220050	
21 22	Dare	2	90°	4 U	92) 105 9	147113	
30 20	Bana	2	90	4 U } 0	0 101 0 0 COT	1)180000	0 091
<u>ро</u>	Baro	ר א	90 000	- 0 h 0	136 3	າມດາຮວ	0 100
		J	50	+ V	ι υιτ	T-2400	V 102

(Continued)

	Location									
Foil Number	Foll Type	Module <u>Number</u>	Angle 1 (°cw)	Radıal (cm)	Axıal (cm)	Normalızed <u>Counts</u>	Local to <u>Foil (X)</u>			
41 42 43 44 45 46 48 90 51 23 45 67 890 61 23 45 66 78 66 66 67 8	Type Bare Bare Bare Bare Bare Bare Bare Bar	Number 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$(^{\circ}c_{W})$ 90°	(cm) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	$\begin{array}{c} (em) \\ 151 & 5 \\ 166 & 8 \\ 182 & 0 \\ 197 & 2 \\ 210 & 5 \\ 92 & 5 \\ 105 & 8 \\ 121 & 0 \\ 136 & 3 \\ 151 & 5 \\ 166 & 8 \\ 197 & 2 \\ 210 & 5 \\ 166 & 8 \\ 197 & 2 \\ 105 & 8 \\ 121 & 0 \\ 136 & 3 \\ 151 & 5 \\ 166 & 8 \\ 182 & 0 \\ 197 & 2 \\ 5 & 8 \\ 121 & 0 \\ 136 & 3 \\ 151 & 5 \\ 166 & 8 \\ 182 & 0 \\ 197 & 2 \\ 5 & 8 \\ 121 & 0 \\ 136 & 3 \\ 151 & 5 \\ 166 & 8 \\ 182 & 0 \\ 197 & 2 \\ 105 & 8 \\ 100 & 10 \\ 100 & 10 \\ 100 & 10 \\ 100 & 10 \\ 100 & 10 \\ 100 & 10 \\ 100 & 100 \\ 100 &$	Counts 147853 146933 138596 135222 143518 148070 142007 152603 148342 153320 145260 145950 135089 145970 154993 161344 165848 166192 165872 152682 157619 145998 153556 172307 174870 181538 183857 18216b	Foll (X) 0 724 0 720* 0 679 0 663 0 703 0 726 0 726 0 726 0 727 0 727 0 712 0 712 0 715 0 715 0 715 0 715 0 715 0 715 0 715 0 715 0 715 0 715 0 715 0 757 0 844 0 857 0 901 0 901			
69 70 71	Bare Bare Bare	3 3 3	90° 90° 90°	15 4 15 4 15 4	166 8 182 0 197 2	180429 173053 164330	0 884 0 848 0 805			
72	Bare	3	90°	15 4	210 5	161451	0 791			
Run 1169)						Cd. Ratio			
1 2 3 4 5 6	Cđ Cđ Cđ Cđ Cđ Cđ	1 1 1 1 1	90° 90° 90° 90° 90°	40 40 40 154 154 154	92 5 151 5 210 5 92 5 151 5 210 5	5788 6482 4450 5737 6681 4669	34 4 31 5 43 7 43 4 38 9 47 1			
l Angle	is cloc	kwise fro	om the co	re cente	rline					

-

(Continued)

	~			Locat	tion		<u> </u>
Foıl <u>Number</u>	Foll Type	Module <u>Number</u>	Angle (°cw)	Radıal (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)
1 2 3 4 5 6 7	Bare Bare Bare Bare Bare Bare	1 1 1 1 1		14 O 14 O 14 O 14 O 14 O 14 O 14 O	92 5 105 8 121 0 136 3 151 5 166 8	197853 204919 206210 206017 209197 197195	0 969 1 004 1 010 1 009 1 025 0 966
8 9 10 11 12	Bare Bare Bare Bare Bare	1 1 1 1 1		40 40 78 78 78	$ \begin{array}{r} 102 & 0 \\ 197 & 2 \\ 210 & 5 \\ 92 & 5 \\ 105 & 8 \\ 121 & 0 \end{array} $	194507 183171 191370 213804 200724 216560	0.898 0.938 1.048 0.984
13 14 15 16 17	Bare Bare Bare Bare Bare	1 1 1 1		78 78 78 78 78	$ \begin{array}{c} 136 & 3 \\ 151 & 5 \\ 166 & 8 \\ 182 & 0 \\ 107 & 2 \end{array} $	216)00 216189 214002 203720 196101 285685	1 059 1 059 1 049 0 998 0 961
18 19 20 21	Bare Bare Bare Bare	1 1 1 1	0 0 0 0	78 16 116 116 116	$ \begin{array}{c} 197 & 2 \\ 210 & 5 \\ 92 & 5 \\ 105 & 8 \\ 121 & 0 \end{array} $	192661 229124 225467 235788	0 905 0 944 1 123 1 105 1 155
22 23 24 25 26	Bare Bare Bare Bare Bare	1 1 1 1 1	0 0 0 0	11 6 11 6 11 6 11 6 11 6 11 6	136 3 151 5 166 8 182 0 197 2	235116 233825 235591 224315 208158	1 152 1 146 1 154 1 099
27 28 29 30 31 32	Bare Bare Bare Bare Bare	1 1 1 1 1		11 6 15 4 15 4 15 4 15 4 15 4	210 5 92 5 105 8 121 0 136 3	210047 251161 256189 263006 266484 268805	1 029 1 231 1 255 1 289 1 306
33 34 35 36 37 38	Bare Bare Bare Bare Bare	1 1 1 3 3		15 15 15 15 15 15 15 15 1 0 1 0	166 8 182 0 197 2 210 5 92 5 105 8	256482 229735 233650 226913 158746 149850	1 257 1 126 1 145 1 112 0 778 0 734
२२ २०	Bare Bare	3 3	0	4 O 4 O	121 0 136 3	157506 154933	0 772 0 759

Run 1170

-

(Continued)

Run 1170								
				Loca	tion			
Foll <u>Number</u>	Foll Type	Module <u>Number</u>	Angle (°cw)	Radial	Axıal (cm)	Normalızed Counts	Local to Foil (X)	
4 <u>1</u>	Bare	3	0	40	151 5	157703	0 773	
42	Bare	3	0	4 O	166 8	145570	0 713	
·43	Bare	3	0	40	182 0	1454 <u>1</u> 4	0 713	
44	Bare	3	0	40	197 2	143335	0 702	
45	Bare	3	0	40	210 5	154602	0 758	
46	Bare	3	0	78	92.5	158974	0 779	
47	Bare	3	0	78	105 8	151312	0 741	
48	Bare	3	0	78	121 0	161004	0 789	
49	Bare	3	0	78	136 3	155542	0 762	
50	Bare	3	0	78	151 5	159497	0 782	
51	Bare	3	0	78	166 8	152183	0.746	
52	Bare	3	0	78	182.0	152361	0 747	
53	Bare	3	0	78	197 2	145662	0 714	
54	Bare	3	0	78	210 5	161657	0 792	
55	Bare	3	0	11 6	92 5	173962	0 852	
56	Bare	3	0	11 6	105 8	175618	0 861	
57	Bare	3	0	11 6	121 0	179454	0 879	
58	Bare	3	0	11 6	136 3	180558	0 885	
59	Bare	3	0	11 6	151 5	190910	0.005	
60	Bare	3	0		700 O	1/2305		
61	Bare	3	0		102 0	11242	0 041	
62	Bare	3	0		191 2	1012()		
03 61	Dare	3	0	15 b	210 J	177580	0 870	
65	Dare	2	0	15 h	76 J	10/02/	0 010	
66	Bane	2	0	194 15 h	107 0	108712	0 977	
67	Bare	2	0	15 h	136 3	203205	0.914	
68	Bare	2	0	ደጋ ዓ ገፍ ኩ	151 5	203297		
60	Bare	ר א	0	15 L	166 8	196155	0 961	
70	Bare	2	0	15.L	182 0	101LL7	0 938	
10 71	Bare	3	0	15.4	107 2	181130	0 888	
72	Bare	3	Ő	15 4	210 5	183812	0,901	
Run 117	L							
٦	Bare	3	270°	40	92 5	159617	0 782	
2	Bare	3	270°	40	105 8	148451	0 727	
3	Bare	3	270°	40	121 0	157258	0 771	
ŭ	Bare	3	270°	40	136 3	161261	0 790	
5	Bare	3	270°	40	151 5	155084	0 760	
É	Bare	3	270°	40	166 8	149372	0 732	
7	Bare	3	270°	40	182 0	143803	0 705	
8	Bare	3	270°	40	197 2	145242	0 712	
9	Bare	3	270°	4 0	210 5	156729	0 768	

•

(Continued)

<u>Run 1171</u>

	Location									
Foll Number	Foll Type	Module Number	Angle (°cw)	Radial (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)			
10 11 12	Bare Bare	3 3	270° 270° 2709	78 78 78	92 5 105 8	165328 158001 162580	0 810 0 774 0 707			
13	Bare	3	270°	78	136 3	165690	0 812			
14	Bare	3	270°	78	151 5	165615	0 812			
15	Bare	3	270°	78	166 8	156614	0 767			
17	bare Bare	3	270°	78	102 0	15103b	0 720			
18	Bare	3	270°	78	210 5	167173	0 819			
19	Bare	3	270°	11 6	92 5	181206	0 888			
20	Bare	3	270°	11.6	105 8	179944	0 882			
21	Bare	3 3	270° 270°	11 6 11 6	136 3 TST 0	185734	0 910			
23	Bare	3	270°	11 6	151 5	185652	0 910			
24	Bare	3	270°	11.6	166 8	175341	0 859			
25	Bare	3	270°	116	182 0	179268	0 878			
26	Bare	3	270°	11 6	197 2	166358	0 815			
21 28	Bare	3	270°	15 b	210 S	20µ108	1 001			
29	Bare	3	270°	15 4	105 8	210040	1 029			
30	Bare	3	270°	15 4	121 0	212972	1 04 <u>4</u>			
31	Bare	3	270°	154	136 3	213506	1 046			
32	Bare	3	270°	154 151	151 5	213272	1 045			
3JT 22	Bare	い ろ	210 270°	- 15 ዓ 15 ዓ	182 0	102300 180h15	0 094			
35	Bare	3	270°	15 4	197 2	174374	0 854			
36	Bare	3	270°	15 4	210 5	174139	0 853			
Run 1172	2						Cd Ratıo			
1	Cd	3	90°	40	92 5	4109	35 3			
2	Cd	3	900	40	151 5	4645	31 8			
ろ 互	Cd	3 3	90° 90°	40 15 հ	210 5 02 5	3787	37.9			
5	Cd	3	90°	154	151.5	2910 4635	44 U 39 5			
6	Cđ	3	90°	15 4	210 5	3521	459			
7	Bare	1	0	12 6	152 0	236142	1 157			
8	Bare	1	22 5°	12 6	152 0	231941	1 137			
9 10	Bare	1 1	45 0° 67 5°	12.6	152 0	245812	1 204			
11	Bare	ì	90 0°	12 6	152 0	245415	1 203			
12	Bare	1	112 5°	12 6	152 0	233623	1 145			
13	Bare	1	135 0°	12 6	152 0	246769	1 209			
14	Bare	1	157 5°	12 6	152 0	229931	1 127			

•

(Continued)

Run 1172									
				Loca	tion				
Foll <u>Number</u>	Foll Type	Module Number	Angle <u>(°cw)</u>	Radial (cm)	Axial (cm)	Normalized Counts	Local to Foil (X)		
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ \end{array} $	Bare Bare Bare Bare Bare Bare Bare Bare	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 180 & 0^{\circ} \\ 202 & 5^{\circ} \\ 225 & 0^{\circ} \\ 247 & 5^{\circ} \\ 270 & 0^{\circ} \\ 292 & 5^{\circ} \\ 315 & 0^{\circ} \\ 337 & 5^{\circ} \\ 0 & 22 & 5^{\circ} \\ 45 & 0^{\circ} \\ 225 & 0^{\circ} \\ 157 & 5^{\circ} \\ 180 & 0^{\circ} \\ 202 & 5^{\circ} \\ 247 & 5^{\circ} \\ 225 & 0^{\circ} \\ 247 & 5^{\circ} \\ 270 & 0^{\circ} \\ 292 & 5^{\circ} \\ 315 & 0^{\circ} \\ 337 & 5^{9} \end{array}$	$\begin{array}{c} 12 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \\ 12 \ 6 \ 6 \ 6 \\ 12 \ 6 \ 6 \ 6 \\ 12 \ 6 \ 6 \ 6 \\ 12 \ 6 \ 6 \ 6 \\ 12 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ $	$\begin{array}{c} 152 & 0 \\$	235231 248795 243443 254023 238120 250091 234388 240837 187237 187929 184109 174959 169232 170488 168750 174000 166432 171165 178351 179960 192916 190843 199133 190597	1 153 1 219 1 193 1 245 1 167 1 225 1 149 1 180 0 917 0 921 0 902 0 857 0 829 0 853 0 816 0 839 0 874 0 882 0 945 0 934		
Run 117 ¹	1								
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Bare Bare Bare Bare Bare Bare Bare Bare	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0\\ 15.0^{\circ}\\ 30 & 0^{\circ}\\ 45 & 0^{\circ}\\ 60 & 0^{\circ}\\ 75 & 0^{\circ}\\ 90 & 0^{\circ}\\ 105 & 0^{\circ}\\ 120 & 0^{\circ}\\ 135 & 0^{\circ}\\ 135 & 0^{\circ}\\ 150 & 0^{\circ}\\ 165 & 0^{\circ}\\ 180 & 0^{\circ}\\ 195 & 0^{\circ}\\ 210 & 0^{\circ}\end{array}$	12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6	168 5 168 5	231684 230561 243574 229355 234583 238825 229782 231636 238236 230883 227121 233746 241459 234050 226287	1 136 1 130 1 194 1 124 1 124 1 150 1 171 1 126 1 135 1 168 1 131 1 113 1 146 1 184 1 147 1 109		

(Continued)
۰.		,

Run 117	Run 1174 Location										
Foil Number	Foll Type	Module <u>Number</u>	Angle (°cw)	Radial (cm)	Axial (cm)	Normalızed Counts	Local to Foil (X)				
16 17 18 19 20 21 22 23 24	Bare Bare Bare Bare Bare Bare Bare Bare	1 1 1 1 1 1 1	225 0° 240 0° 255 0° 270 0° 285 0° 300 0° 315 0° 330 0° 345 0°	12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6	168 5 168 5 168 5 168 5 168 5 168 5 168 5 168 5 168 5 168 5	227838 241909 228115 234872 218792 230348 232827 243157 241349	1 117 1 186 1 118 1 151 1 072 1 129 1 141 1 192 1 183				

Gold Foil Data

7-Module Reactor - Exhaust Nozzle Removed

0 55 Radius Ratio

<u>Run 1168</u>

Location			Forl	Specific		
Foil	Foil	Radial	Axial	Weight	Activity	Local to
Number	<u>Type</u>	<u>(em)</u>	<u>(cm)</u>	<u>(g)</u>	<u>a/m-g x 10 °</u>	$\underline{FOIT}(X)$
1	Bare	0	89 4	0 0354	7 825	0 948
2	Bare	0	74 9	0 0381	9 824	1 190
3	Bare	0	59 6	0 0280	6 800	0 824
4	Bare	0	44 4	0 0380	4 609	0 558
5	Bare	0	29 1	0 0410	2 600	0 315
6	Bare	0	139	0 0379	1 244	0 151
7	Bare	0	0	0 0322	0 170	0 021
8	Bare	93 2	151 1	0 0389	8 204	0 994
9	Bare	107 7	151 1	0 0402	6 621	0 802
10	Bare	123 0	151 1	0 0333	4 756	0 576
11	Bare	138 2	151 1	0 0398	3 289	0 398
12	Bare	153 4	151 1	0 0408	1 887	0 229
13	Bare	168 7	151 1	0 0330	0 861	0 104
14	Bare	183 9	151 1	0 0350		0 016
15	Bare	23 61	151 1	0 0415	10 475	1 269
10	Bare	30 5	151 1	0 0335	13 514	1.637
14	Bare	30 I 1 - 7		0 0322	13 076	1.001
01 01	Bare	45 (151 1	0 0400	12 785	1 549
19	Bare	53 3 63 0	171 I 171 I		12 110	1 46(
20	Dare		171 1		10 351	1 255
21	Bare	00 0	157 1	0 0411 0 028b	10 522	1 2(5
22	Bare	10 2 82 8	ברבר 1 1	0 0304	9 090 <u>-</u> 8 1 28	
22 0h	Bare	05 0	151 1		U 100 7 002	0 900
24	Bare	90 f	151 1	0 0374	7 620	0 051
25	Bare	30 1	151 1	0 0338	10 60	1 206
20-	Bara	3h 0	151 1	0 0320	13 500	1 636
28	Baro	28 7	151 1	0 0304	10 350	1 107
20	Bare	23 6	151 1	0 0335	0 000	1 002
>	DOT C	250	1)1 I	0 0000	9 009	1 092
Run 1169						
1	Cđ	0	894	0 0343	2 038	
2	Cd	0	59 6	0 0363	0 241	
3	Cđ	0	29 1	0 0371	0 0077	
4	Cđ	93 2	151 1	0 0312	0 640	
5	Cd	123 0	151 1	0 0273	0.025	
6	Cđ	153 4	151 1	0 0385	0 0030	
	<u> </u>					

/

(Continued)

<u>Run 1169</u>	·	· · · · · · · · · · · · · · · · · · ·							
Location Foil Specific									
FOLL Number	f'01⊥ Trme	(am)	Axial	Weight	Activity	Local to			
MANDEL	<u> </u>			<u>_(g)</u>		TOTT (X)			
7	Module	3 at 90°	00 E	0.0200	F 3 F0				
l R	bare Baro	4 U 2 0	92) 101 0	0 0399	5 350	0 640			
a	Bare	40	151 5	0 0302	5 533	0 600			
10	Bare	40	182 0	0 0333	5 109				
11	Bare	4 0	210 5	0 0373	5 085	0 616			
12	Bare	15 4	92 5	0 0352	5 883	0.713			
13	Bare	15 4	121.0	0 0374	6 323	0 766			
14	Bare	15 4	151 5	0 0388	6 594	0 799			
15	Bare	15.4	182 0	0 0385	6 183	0 749			
16	Bare	15 4	210 5	0 0392	5 392	0 653			
18 18	Ud	30 5	151 1	0 0390	2 271				
10	Ca.	23 3 76 0	151 1 151 1	0 0397	1 901				
19	υu	10 2	171 1	0 0410	1 221				
Run 1170									
1	Bare	0	82 5	0 0369	10 005	1 212			
2	Bare	0	672	0 0410	8 563	1 037			
3	Bare	0	52 0	0 0432	5 832	0 707			
4	Bare	100 1	151 1	0 0323	7 938	0 962			
5	Bare	120 6		0 0386	5 959	0 722			
7	Bare	120 0	1)1 U	0 0402	4 110	0 499			
8	Bare	15 2	212 0	0 037	7 2hg	0 050			
9	Bare	30 5	212 0	0 0379	8 385	1 016			
10	Bare	45 T	212 0	0 0360	7 063	0 856			
11	Bare	61 0	212 0	0 0381	5 622	0 681			
12	Bare	762	212 0	0 0404	5 358	0 649			
13	Bare	91 4	212 0	0 0399	5 010	0 607			
14	Cd	30 5	212 0	0 0392	2 765				
15	Cd		212 0	0 0414	0 978				
Тр	UC Modulo	914 7 on Ton	212 0 	0 0368	1 444				
17	Bare	17 53	er Suria 153 K		ystyrene 6 h85	0 786			
18	Bare	175	153 6	0 0390	6700	0 813			
19	Bare	175	153 6	0 0376	7 229	0 876			
20	Bare	17 5	153 6	0 0361	7 273	0 881			
21	Bare	17 5	153 6	0 0356	7 246	0 878			
22	Bare	175	153 6	0 0418	6 802	0 824			
23	Bare	17 5	153 6	0 0380	6 644	0 805			
24	Bare	17 5	153 6	0 0420	6 339	0 768			

(Continued)

<u>Run 1170</u>

		Locat	lon		Foil	Specific			
Foll Number	Foll Type	Radıal (cm)	Axıa (cm)	al N	eight (g)	Activity d/m-g x 10 ⁻⁶	Local to Foil (X)		
	Module	7 on Out	er Su	rface	of Po	lystyrene			
25	Bare	22 5 ³	153	6 0	.0475	6 726	0.815		
26	Bare	22 5	153	6 0	0425	7 416	0 947		
27	Bare	22.5	153	6 0	0307	8 030	0.973		
28	Bare	22 5	153	6 0	0417	8 115	0 983		
29	Bare	22 5	153	6 0	0318	8 298	1 005		
30	Bare	22 5	153	6 0	0421	7 714	0 935		
31	Bare	22 5	153	6 0	0335	7 328	0.888		
32	Bare	22 5	153	6 0	0350	6 902	0 836		
	Module	4 on Inn	er Sı	rfac e	of Po	lystyrene			
33	Cđ.	17 54	153	6 C	0337	1 829			
34	Cđ	17 5	153	6 0	0416	1 566			
35	ርፈ	175	153	6 0	0348	1 674			
36	Cđ	175	153	6 0	0339	1 758			
Run 1171									
1	Cd	0	74	9 0	0338	1 151			
2	Cđ	0	44	4 C	0357	0 0433			
3	Cđ	107 7	151	1 0	0282	0 167			
4	Cđ	138 0		C	0338	0 0069			
	Module	1 at 90°			_				
5	Bare	40	92	5 C	0298	7 746	0939		
6	Bare	40	121	0 0	0328	8 049	0 975		
7	Bare	40	151	5 C	0302	8 253	1 000 (X)		
8	Bare	40	182	0 0	0483	7 111	0 862		
9	Bare	40	210	5 C	0409	6 873	0 833		
10	Bare	15 4	92	5 C	0426	8 738	L 059		
11	Bare	15 4	121	0 0	0364	9, 39T	T T38		
12	Bare	15 4	151	5 0	0325	9 806	1 188		
13	Bare	15 4	182	0 0	0319	8 951 R aha	1 085		
<u>1</u> 4	Bare	15 4	210	5 0	0308	7 943	0 962		
.	Module	4 on Out	er Su	rface		Lystyrene			
15 26	Cd	22 5	T23		0340 0107	1,044 J (J)			
Τρ	Ca	22 5	173		042L	1 014 1 7 5 h			
11	Ca	22 5	173		U345	⊥ ()4 1 790			
ΤQ	υα	22 5	722	0 0	0391	T (00			

-

(Continued)

Location Foll Specific Activity Local to Foll (X) Number Type (cm) (cm) (cm) $d/m-g$ $x 10^{-6}$ Local to Foll (X) Module 1 at 90° 1 Cd 4 0 92 5 0 0370 1 987 Local to Foll (X) Module 1 at 90° 1 Cd 4 0 215 5 0 0367 2 241 Foll (X) 3 Cd 4 0 215 5 0 0366 1 585 Foll (X) 4 Cd 15 4 151 5 0 0359 2 352 Foll (X) 6 Cd 15.4 210 5 0 0356 1 586 Foll (X) 8 Cd 0 74 4 0 00350 1 042 Second 8 Cd 0 74 4 0 0357 0 0064 Second Second 9 Cd 107 7 151 1 0 0357 10 69 305 3 Bare 0 74 9 0 0356 10 769 305 10 <th><u>Run 1172</u></th> <th></th> <th><u> </u></th> <th><u></u></th> <th></th> <th></th> <th></th>	<u>Run 1172</u>		<u> </u>	<u></u>			
FOIL POIL POIL Redial Axial Weight Activity Local to Number Type (cm) (cm) (g) $d/m=g$ x 10 ⁻⁶ Foil (X) Module 1 at 90° 1 Cd 4 0 92 5 0.0367 2 241 3 Cd 4 0 215 0.0361 1 585 4 Cd 15 4 92 5 0.0366 1 985 5 Cd 15 4 151 5 0.0396 1 586 6 Cd 15 4 151 5 0.0360 1 144 8 Cd 0 44 0 0.0428 134 10 Cd 138 0 151 1 0.0357 0.0064 Run 1173 1 Bare 0 59 6 0.0347 4.744 0.575 10 Cd 138 0 151 1 0.0357 10.064 313 0.379 1 Bare 0 59 6 0.0347 4.744 0.575 5 2 Bare 0 139 0.0350 7 438 0.9014			Locat	lon	Foll	Specific	
Manuber Type (Cm)	FOIL Number	‼'Ol⊥ Three a	Radial	Axial	Weight	Activity -6	Local to
Module 1 at 90° 1 Cd 4 0 92 5 0 0367 1 987 2 Cd 4 0 210 5 0.0367 2 241 3 Cd 4 0 210 5 0.0361 1 585 4 Cd 15 4 92 5 0 0366 1 985 5 Cd 15 4 92 5 0 0396 1 586 7 Cd 0 74 9 0 0360 1 144 8 Cd 0 44 4 0 0401 0 0338 9 Cd 107 7 151 1 0 0357 0 0064 Run 1173 1 Bare 0 84 0 0 0357 0 0064 Run 1173 1 Bare 0 44 4 0 0347 4 744 0 575 3 Bare 0 74.9 0 0352 3 131 0 379 6 Bare 0 29 1 0 0352 3 131 0 375 5 Bare 0 2151 1<	Number	<u>1ype</u>	(em)	(cm)	<u>(g)</u>	$d/m-g \ge 10$	Foil (X)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Module	1 at 90°			_	
2 Cd 4 0 151 5 0 0367 2 241 3 Cd 4 0 210 5 0.0361 1 585 4 Cd 15 4 92 5 0 0368 1 985 5 Cd 15 4 151 5 0 0359 2 352 6 Cd 15.4 210 5 0 0396 1 586 7 Cd 0 74 9 0 0360 1 144 8 Cd 0 44 4 0 0401 0 0338 9 Cd 107 7 151 1 0 0428 0 134 10 Cd 138 0 151 1 0 0357 0 0064 Fun 1173 1 Bare 0 89 4 0 0355 10 769 1 305 3 Bare 0 74.9 0 0355 10 769 1 305 3 Bare 0 74.9 0 0355 10 769 1 305 3 Bare 0 74.9 0 0352 3 131 0 379 6 Bare 0 13 9 0 0349 1 450 0 176 7 Bare 0 0 0 0 0357 0 116 0 014 8 Bare 93 2 151 1 0 0357 5 3759 0 176 7 Bare 10 7 7 151 1 0 0356 9 356 1 134 9 Bare 107 7 151 1 0 0356 9 356 1 134 9 Bare 107 7 151 1 0 0356 9 356 1 134 9 Bare 107 7 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0357 5 379 0 652 12 Bare 107 7 151 1 0 0357 5 379 0 652 13 Bare 168 7 151 1 0 0357 5 0 182 12 Bare 153 4 151 1 0 0357 5 0 182 13 Bare 168 7 151 1 0 0357 1 438 0 901 10 Bare 123 0 151 1 0 0357 5 0 182 13 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0355 1 50 0 182 13 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0355 1 50 0 182 13 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0355 1 50 0 182 13 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0355 1 505 0 182 13 Bare 168 7 151 1 0 0355 1 505 0 182 13 Bare 168 7 151 1 0 0355 1 505 0 182 13 Bare 168 7 151 1 0 0355 1 505 0 182 13 Bare 168 7 151 1 0 0355 1 505 0 182 13 Bare 168 7 151 1 0 0355 1 505 0 182 14 Bare 183 9 151 1 0 0355 1 2.295 15 Cd 4 0 210 5 0 0379 1 486 16 Cd 15 4 92 5 0 0348 1 826 20 Cd 15 4 151 5 0 0350 1 667 22 Cd 23 6 ¹ 151 1 0 0351 2.295 24 Cd 68 6 151 1 0 0354 2 682 23 Cd 45 7 151 1 0 0356 0 700 26 Cd 44 4 ² 151 1 0 0356 0 700 26 Cd 44 4 ² 151 1 0 0356 0 700 26 Cd 44 4 ² 151 1 0 0356 0 700 26 Cd 44 4 ² 151 1 0 0356 0 700 26 Cd 44 4 ² 151 1 0 0356 0 700 26 Cd 44 4 ² 151 1 0 0356 0 2521 27 Cd 34 0 151 1 0 0356 2 522 28 Cd 90 7 2 151 1 0 0356 0 250 29 Cd 90 7 2 151 1 0 0356 0 250 20 Cd 154 4 0 20 6 151 1 0 0356 0 250 20 Cd 154 4 0 20 6 1	1	Cd	40	92 5	0 0370	1 987	
3 Cd 4 0 210 5 0.0361 1 565 4 Cd 15 4 92 5 0 0359 2 352 6 Cd 15.4 210 5 0 0396 1 586 7 Cd 0 74 9 0 0360 1 144 8 Cd 0 44 4 0 00357 0 0064 10 Cd 138 0 151 1 0 0357 0 0064 Run 1173 1 Bare 0 89 4 0 0357 0 0064 2 Bare 0 74.9 0 0355 10 769 1 306 4 Bare 0 74.9 0 0352 3 131 0 379 6 Bare 0 13 0 0347 4 744 0 016 0146 7 Bare 0	2	Cd	40	151 5	0 0367	2 241	
4 Out 15 4 151 5 0<0359	3),	CQ.	4 U 15 b	210 5	0.0361	1 505	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5	Cd	15 ዓ 15 ሥ	92 2 151 5	0 0350	1 907	
7 Cd 0 74 9 0 0360 1 144 8 Cd 0 44 4 0 0401 0 0338 9 Cd 107 7 151 1 0 0428 0 134 10 Cd 138 0 151 1 0 0357 0 0064 Run 1173 1 Bare 0 89 4 0 0355 10 769 1 305 3 Bare 0 74.9 0 0355 10 769 1 305 4 Bare 0 44 4 0 0347 4 744 0 575 5 Bare 0 13 9 0356 9 356 1 134 9 Bare 107 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0351	6	Cđ	15.4	$\frac{1}{210}$ 5	0 0396	1 586	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	Cđ	0	74 9	0 0360	1 144	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	Cđ	0	44 4	0 0401	0 0338	
10 Cd 138 0 151 1 0 0357 0 0064 Run 1173 1 Bare 0 89 4 0 0350 8 602 1 042 2 Bare 0 74.9 0 0355 10 769 1 305 3 Bare 0 59 6 0 0346 8 547 1 036 4 Bare 0 44 4 0 0352 3 131 0 379 5 Bare 0 29 1 0 0356 9 356 1 134 9 Bare 107 7 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0353 1 505 0 182 12 Bare 153 151	9	Cđ	107 7	151 1	0 0428	0 134	
Run 1173 1 Bare 0 89 4 0 0350 8 602 1 042 2 Bare 0 74.9 0 0355 10 769 1 305 3 Bare 0 59 6 0 346 8 547 1 036 4 Bare 0 44 4 0 0347 4 744 0 575 5 Bare 0 29 1 0 0352 3 131 0 379 6 Bare 0 13 9 0 0347 0 116 0 014 8 Bare 93 2 151 1 0356 9356 1 134 9 Bare 107 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0353 1505 0 182	10	Cđ	138 0	1 51 1	0 0357	0 0064	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Run 1173						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l	Bare	0	894	0 0350	8 602	1 042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Bare	0	74.9	0 0355	10 769	l 305
4 Bare 0 44 4 0 0347 4 744 0 575 5 Bare 0 29 1 0 0352 3 131 0 379 6 Bare 0 13 9 0 0349 1 450 0 176 7 Bare 0 0 0 0347 0 116 0 014 8 Bare 93 2 151 1 0 0356 9 356 1 134 9 Bare 107 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0351 1 505 0 182 12 Bare 153 4 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0354 0 115 0 014	3	Bare	0	59 6	0 0346	8 547	1 036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Bare	0	44 4	0 0347	4 744	0 575
0 13 9 0 0349 1490 0 176 7 Bare 0 0 0347 0 116 0 014 8 Bare 93 2 151 1 0 0356 9 356 1 134 9 Bare 107 7 151 1 0 0350 7 438 0 901 10 Bare 123 0 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0353 1 505 0 182 12 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0354 0 115 0 014 Module 3 at 90° 151 5 0 0374 1 749 17 Cd 4 0 210 5 0 0379 1 486 18 Cd 15 4 92 5 0 <td>2</td> <td>Bare</td> <td>0</td> <td>29 I</td> <td>0 0352</td> <td>3 131</td> <td>0 379</td>	2	Bare	0	29 I	0 0352	3 131	0 379
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	Bare	0	0 72 A	0 0349	1 4 <u>7</u> 0 0 116	0 T 0
9 Bare 107 7 151 1 0 0350 7 438 0 901 10 Bare 123 0 151 1 0 0357 5 379 0 652 11 Bare 138 2 151 1 0 0361 2 821 0 342 12 Bare 153 4 151 1 0 0353 1 505 0 182 13 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0354 0 115 0 014 Module 3 at 90° 15 Cd 4 0 92 5 0 0347 1 640 16 Cd 4 0 151 5 0 0374 1 749 17 Cd 4 0 210 5 0 0379 1 486 18 Cd 15 4 92 5 0 0343 1 515 19 Cd 15 4 151 5 0 0350 1 380 21 Cd 0 212 0 0 0350 1 667 22 Cd 23 6 ¹ 151 1 0 0351 2.295 24 Cd 68 6 151 1 0 0358 0 700 26 Cd 44 44 2 151 1 0 0350 2 131 27 Cd 34 0 151 1 0 0360 2 552	8	Bare	93 2	151 1	0 0356	9 356	0014 บารโ
10Bare 123 0 151 1 0 0357 5 379 0 652 11Bare 138 2 151 1 0 0361 2 821 0 342 12Bare 153 4 151 1 0 0353 1 505 0 182 13Bare 168 7 151 1 0 0352 0 408 0 049 14Bare 183 9 151 1 0 0354 0 115 0 014 Module 3 at 90° 92 5 0 0347 1 640 16Cd 4 0 92 5 0 0374 1 749 17Cd 4 0 210 5 0 0379 1 486 18Cd 15 4 92 5 0 0343 1 515 19Cd 15 4 92 5 0 0350 1 380 21Cd 0 212 0 0351 2 2.295 24Cd 68 151 1 0 0350 2 131 25Cd 90 7 151 1 0 0350 2 131 27Cd 34 0 151 1 0 0350 2 131 27Cd 34	9	Bare	107 7	151 1	0 0350	7 438	0 901
11Bare138215110036128210 342 12Bare15341511003531505018213Bare16871511003520408004914Bare183915110035401150014Module3at 90°901640151500374164016Cd40151500374174917Cd40210500379148618Cd15492500343151519Cd154151500350138021Cd02120003512.2952422Cd236 ¹ 151100354268223Cd457151100354268223Cd457151100356070026Cd4442151100350213127Cd34015110035025522864641511003502552	10	Bare	123 0	151 1	0 0357	5 379	0 652
12 Bare 153 4 151 1 0 0353 1 505 0 182 13 Bare 168 7 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0352 0 408 0 049 14 Bare 183 9 151 1 0 0354 0 115 0 049 14 Bare 183 9 151 1 0 0354 0 115 0 014 Module 3 at 90° 92 5 0 0347 1 640 16 Cd 4 0 210 5 0 0379 1 486 18 Cd 15 4 92 5 0 0348 1 826 20 Cd 15 4 210 5 0 0350 1 667 22 Cd 23<	11	Bare	138 2	151 1	0 0361	2 821	0 342
13Bare 168 7 151 1003520408004914Bare 183 9 151 10035401150014Module3at 90°90°16400151500374174916Cd40151500374174917Cd40210500379148618Cd15492500343151519Cd154151500350138021Cd02120003512.29524Cd68151100354268223Cd4571511003512.29524Cd686151100350213125Cd907151100350213127Cd340151100360225228Cd3401511003602229Cd34015110036022	12	Bare	153 4	151 1	0 0353	1 505	0 182
14Bare 183 9 151 10 0354 0 115 0 014 Module3 at 90°15Cd409250 0347 1 640 16Cd4015150 0374 1 749 17Cd4021050 0379 1 486 18Cd1549250 0343 1 515 19Cd15415150 0350 1 380 21Cd021200 0350 1 667 22Cd236115110 0354 2 682 23Cd45715110 0354 2 185 25Cd90715110 0350 2 131 27Cd 340 15110 0360 2 552	13	Bare	168 7	151 1	0 0352	0 408	0 049
Module 3 at 90°15Cd4 092 50 03471 64016Cd4 0151 50 03741 74917Cd4 0210 50 03791 48618Cd15 492 50 03431 51519Cd15 4151 50 03501 38020Cd15 4210 50 03501 66722Cd23 61151 10 03542 68223Cd45 7151 10 03512.29524Cd68 6151 10 03580 70026Cd44 42151 10 03502 13127Cd34 0151 10 03602 552	⊥4	Bare	183 9	151 1	0 0354	0 115	0 014
19 Cd 4 0 92 9 0 0341 1 040 16 Cd 4 0 151 5 0 0374 1 749 17 Cd 4 0 210 5 0 0379 1 486 18 Cd 15 4 92 5 0 0343 1 515 19 Cd 15 4 151 5 0 0348 1 826 20 Cd 15 4 210 5 0 0350 1 380 21 Cd 0 212 0 0 0350 1 667 22 Cd 23 6 1 151 1 0 0354 2 682 23 Cd 45 7 151 1 0 0351 2.295 24 Cd 68 6 151 1 0 0358 0 700 26 Cd 44 4 42 151 1 0 0350 2 131 27 Cd 34 0 151 1 0 0360 2 552	זה	Module	3 at 90°	00 F	0 0217		
10 0 1	16	Cđ	4 O 4 O	92 5	0 0347	1 040 1 7h0	
18 Cd 15 4 92 5 0 0343 1 515 19 Cd 15 4 151 5 0 0348 1 826 20 Cd 15 4 151 5 0 0350 1 380 21 Cd 0 212 0 0350 1 667 22 Cd 23 6 ¹ 151 1 0 0354 2 682 23 Cd 45 7 151 1 0 0351 2.295 24 Cd 68 6 151 1 0 0358 0 700 26 Cd 44 4 151 1 0 0350 2 131 27 Cd 34 0 151 1 0 0360 2 552 28 Cd 34 0 151 1 0 0360 2 552	17	Cđ	40	2105	0 0379	1 49	
19 Ca 154151500348182620 Ca 154210500350138021 Ca 0212000350166722 Ca 23 6^{1} 151100354268223 Ca 4571511003512.29524 Ca 686151100358070026 Ca 4442151100350213127 Ca 3401511003602552	18	Cđ	15 4	92 5	0 0343	1 515	
20Cd 15 4 210 5 0 0350 1 380 21Cd 0 212 0 0350 1 667 22Cd 23 61 151 1 0 0354 2 682 23Cd 45 7 151 1 0 0351 2.295 24Cd 68 6 151 1 0 0358 0 700 26Cd 44 4^2 151 1 0 0350 2 131 27Cd 34 0 151 1 0 0360 2 552	19	Cđ	154	151 5	0 0348	1 826	
21Cd0 $212 0$ 00350166722Cd23 6^{1} 151 100354268223Cd45 7151 1003512.29524Cd686151 100344218525Cd90 7151 100358070026Cd44 42151 100350213127Cd34 0151 1003602552	20	Cđ	15 4	210 5	0 0350	1 380	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	Cd	0	212 0	0 0350	1 667	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Cd	23 6 [±]	151 1	0 0354	2 682	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 01	Cd	45 7 69 6	151 1	0 0351	2.295	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∠4 25	Ca Ca	00 0	ב)⊥ ⊥ י ו∋ו	U U344	2 105	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	Cd Cd	$\frac{90}{10}$ 12	בע⊥ ב בינקו	0 0350	00ן ט	
	27	Cđ	34 0		0 0350	2 IJI 2 552	
20 va 23 6 151 ± 0.0350 2.664	28	Cd	23 6	151 1	0 0350	2 664	

(Continued)

Run	1174
nшı	TT (4

Location]	Forl	Spe	ຈຕາປາຕ		
Foi Numbe	L Foll er Type	Radıal (cm)	Axial (cm)	W.	eight	Act d/m-g	$\frac{\text{tivity}}{x \ 10} - 6$	Local Foil (to X)
1	Bare	0	89`4	0	0349	7	970	1 041	
2	Bare	0	749	0	0349	9	795	1 280	
3	Bare	0	59 6	0	.0349	7	-146	0 933	
4	Bare	0	44 4	0	0350	4	617	0 603	
5	Bare	0	29 l	0	0350	2	767	0.361	
6	Bare	0	13 0	0	0348	l	336	0.175	
7	Bare	0	0	0	0349	0	174	0 023	
8	Bare	93 2	151 1	0	0350	8.	. 536	1 115	
9	Bare	107 7	151 1	0	0350	6	793	0.887	
10	Bare	123 0	151 1	0	0349	4	916	0 642	
11	Bare	138 2	151 l	0	0352	2	615	0 342	
12	Bare	153 4	151 1	0	0354	1	922	0 251	
13	Bare	168 7	151 1	0	0352	0	898	0 117	
14	Bare	183 9	151 1	0	0351	0	122	0 016	
	Modul	e 1, 90°							
15	Bare	40	151 1	0	0350	7	655	1 000	(X)
16	Bare	78	151 1	0	0348	7	951	1 039	
17	Bare	11 6	1 51 1	0	0350	8	591	1 122	
18	Bare	15 4	151 1	0	0353	9.	.366	1 223	
19	Bare	17 5	151 1	0	0362	9	188	1.200	
20	Bare	22 5	151 1	0	0353	11	703	1 529	
	Modul	e 3, 270°							
21	Bare	15 4	151 1	0	0356	7	364	0 962	
22	Bare	1 1 6	151 1	0	0351	6	725	0.878	
23	Bare	78	151 1	0	0352	6	159	0 805	
24	Bare	4 O	1 <i>5</i> 1 1	0	0358	5	866	0 766	
	Modul	e l, Equir	valent 90	0					
25	Cđ	175	151 1	0	0351	2	372		
26	Cd⊷	22 5	151 1	0	0349	2	370		
	Trave:	rse from N	Module 1	to	Module	3			
27	Bare	23 6	151 1	0	0351	10	891	1 423	
28	Bare	28 7	151 1	0	0350	12	676	1 656	
29	Bare	34 0	151 1	0	0350	13	073	1.708	
30	Bare	39 4	151 1	0	0349	11	686	1 527	
31	Bare	44 4	151 1	0	0351	8	947	1 169	
l	Traverse :	ın D ₂ 0 bet	ween mod	ule	es 5 an	d 6 (fo	oils 15 to	o 24)	
2	Traverse :	in D ₂ 0 fro	om module	l	to mod	ule 3 (foils 25	to 29)	
3	Circumfere at O ^o	ential tra	verse at	45	o inte	rvals g	oing cloo	ckwise st	tarting

 $4\,$ Circumferential traverse at 90° intervals going clockwise starting at 0°

TABLE 59

Power Normalization Factors

7-Module Reactor - 0 55 Radius Ratio

Run	Count Time	Dec Tım <u>(mı</u>	ay e n)	Corr Fa	rection	on (<u>PM</u>	Correcte CPM	ed No	rmalızatıon Factor
1168	1 	58 60 62	5 0 5	1 1 1	207 245 311	3! 31 32	55273 43880 26521	428815 428131 <u>428069</u> 428338		, 1 000
1169		25 27 29	5 0 0	0 0 0	496 523 559	88 81 78	32600 37570 31968	437770 438049 <u>437120</u> 437646		0 979
1170		67 69 71	0	1 1 1	420 473 527	30 29 28	07320 96811 86463	436394 437203 <u>437429</u> 437009		0 980
1171		34 36 37	5 0 5	0 0 0	665 695 725	61 62 59	49851 20744 95017	432151 431417 <u>431387</u> 431652		0 992
1172	1205 52 1207 02 1208 52	2 60 2 62 2 63	5 0 5	1 1 1	258 285 326	3) 3: 32	46652 37089 26996	436088 433159 <u>433597</u> 434281		0 986
1173	1541 72 1544 22 1546 22	2 37 2 39 2 41	48 98 98	0 0 0	725 777 820	5: 5: 48	50736 15822 89914	399284 400794 <u>401729</u> 400602		1 069
1174	1250 42 1252 42 1254 42	2 68 2 70 2 72	50 50 50 50	1 1 1	460 514 567	29 28 2'	98028 87488 77596	435121 435257 <u>434993</u> 435124		0 984
l Dı,	gıtal cl	.ock no	ot op	erat:	ıng	Decay	tıme	determined	from	stop watch

Gold Foil Cadmium Ratios

7-Module Reactor - Exhaust Nozzle Removed

0 55 Radius Ratio

Location				Infin	Infinitely Dilute Foil Activity							
Radial	Axial (cm)	Module Number	Angle (°cw)	63 60	wered Tol	A IU Bare	Foll	Cad	mium tio			
(01117	<u>(cm)</u>	Humber	(04)	<u>04 00</u>	VCICA IOII		1011					
0	894			4	700	10 90)	2	32			
0	74 9			2	2 639	11 82	2	4	48			
0	59 6			0	569	7 98	36	14	04			
0	44 4			0	1015	4 73	35	46	7			
0	29 I			0	0183	2 87	(6 _	157	- 1			
93 2				1	. 421	9 60	J5	6	76			
107 7	151 1			0	356	7 2	37	20	3			
123 0	151 1			0	0527	5 10	00	96	8			
130 2				0	0150	3 07	(9 _	195				
153 4		D 1	16.7.7		00(25	Т. ДС	0 2	235				
00 (Travers	se Between	Modules	5 & 0	000			~	07			
23 6				5	200	14 23	5	2	21			
30 5				2	521	16 62	-	3	01			
47 (171 1			うい	343 656	15 95	>	2	99			
23 3 68 6	151 1			4	0/0		-	3	10			
76 0	101 I 151 I			ン っ	043	13 77 13 61)	2	69 57			
10 2	151 1			כ י	52I	II 04	+ (3 1.	5⊥ 0-			
90 1	There are	o from Mo	anlo 1 +	~ ~ T	045	190	2	4	07 7			
23.6		e irom mo	uure r v	05 6	105	12 10)	2	02			
3h 0	י בעב ו ו הו			6	TAD 003	17 02	,)	2	82			
հի հ	151 1			։ հ	055	10 52	-	2	05 10			
	Tuside	CH on Mod	ນໄຂ 7	-	377	10 72	-	2	τc			
17 5	151 1	7	0	3	884	8 77	רי	2	26			
17 5	151 1	7	90 9	<u>ь</u>	035	9 57	~ `0	2	377			
175	151 1	7	180	4	188	9 64	6	2	30			
17 5	151 1	7	270	ר	911	8 92	20	2	28			
_1 >	Outside	CH on Mo	dule 7	0	/	-)-	· ·	-				
22 5	151 1	7	o.	4	055	9 24	-6	2	28			
22 5	151 1	7	90	4	332	10 40	F	2	40			
22 5	151 1	7	180	4	278	10 66)	2	49			
22 5	151 1	7	270	4	051	9 58	4	2	37			
40	92 0	l	90	4	727	10 30	i	2 :	18			
4 O	151 5	l	90	5	313	11 14		2	10			
4 о	210 5	1	90	3	733	9 10	0	2	կկ			
15 4	92 0	l	90	4	712	11 58	I	2	46			
15 4	151 5	l	90	5	526	12 88	,	2 :	33			
15 4	210 5	l	90	3	880	10 07		2	59			

TABLE	5	10
	-	

(Continued)

Location						
Radial	Axial	Module	Angle	d/m-g x	Cadmium	
(cm)	(cm)	Number	(° _{CW})	Cd Covered Foil	Bare Foil	Ratio
40	92 0	3	90	3 800	7 602	2 00
4 O	151 5	3	90	4 179	7 984	191
40	210 5	3	90	3 570	7 159	2 01
15 4	92 0	3	90	3 494	7 878	2 25
15 ¥	151 5	3	90	4 236	9 084	2 14
15 4	210 5	3	90	3 209	7 284	2 27
	Travers	se at Sepa	ration	Plane Across Module:	s 1 & 3	-
0	212 0			3 876	9 138	2 36
30 5	212 0			6 736	12 32	1 83
61 0	212 0			2 438	7 047	289
91 4	212 0			3 427	7 041	2 05

Thermal Neutron Flux

7-Module Reactor - Exhaust Nozzle Removed

0 55 Radius Ratio

Location Radial Axial Thermal Neutron Flux Additional Explanation of Location n/cm²-sec-watt x 10⁻⁶ (cm)(cm) 0 89 4 3 763 End Reflector 0 74 9 (Bare foil data from Run 1168) 5 650 0 59 6 (Bare foil data from Run 1168) 4 229 0 44 4 (Bare foil data from Run 1168) 2 956 0 29 1 (Bare foil data from Run 1168) 1 678 89,4 0 End Reflector 4 260 74 9 (Bare foil data from Run 1173) 0 6 241 0 59 6 (Bare foil data from Run 1173) 5 374 44 4 0 (Bare foil data from Run 1173) 3 043 0 29 1 (Bare foil data from Run 1173) 2 022 89 4 0 End Reflector 3 848 74 9 0 (Bare foil data from Run 1174) 5 604 0 59 6 (Bare foil data from Run 1174) 4 466 44 4 0 (Bare foil data from Run 1174) 2 960 0 29 1 (Bare foil data from Run 1174) 1 786 93 2 151 1 Radial Reflector 4 932 107 7 151 1 (Bare foil data from Run 1168) 4 192 123 0 151 1 (Bare foil data from Run 1168) 3 064 138 2 (Bare foil data from Run 1168) 151 1 2 125 153 4 151 1 (Bare foil data from Run 1168) 1 220 5 664 93 2 151 1 Radial Reflector 4 716 107 7 151 1 (Bare foil data from Run 1173) 123 0 151 1 (Bare foil data from Run 1173) 3 466 138 2 151 1 (Bare foil data from Run 1173) 1.822 153 4 151 1 (Bare foil data from Run 1173) 0 972 93 2 151 1 Radial Reflector 5 129 107 7 151 1 (Bare foil data from Run 1174) 4 297 123 0 151 1 (Bare foil data from Run 1174) 3 167 138 2 151 1 (Bare foil data from Run 1174) 1 688 151 1 153 4 (Bare foil data from Run 1174) 1 242 23 6 151 1 Between Modules 5 & 6 5 145 30 5 151 1 Between Modules 5 & 6 7 184 7 3541 38 l 151 1 Between Modules 5 & 6 45 7 Between Modules 5 & 6 6 869 151 1 151 1 Between Modules 5 & 6 53 3 6 578 61 0 151 1 Between Modules 5 & 6 5 483¹ 68 6 151 1 Between Modules 5 & 6 5.506 76 2 151 1 Between Modules 5 & 6 5 387 83 8 151 1 4 591¹ Between Modules 5 & 6 90 7 151 1 Between Modules 5 & 6 4 091

(Continued)

Radial Axial Ther	mal Neutron Flux
(cm) (cm) Additional Explanation of Location n/cm	² -sec-watt x 10 ⁻⁶
23 6 151 1 From Module 1 to Module 3	4 076
28 7 151 1 (Bare foil data from Run 1168)	6 274 ¹
34 0 151 1 (Bare foil data from Run 1168)	7 130
39 4 151 1 (Bare foil data from Run 1168)	5 312 ¹
44 4 151 1 (Bare foil data from Run 1168)	3 600
23 6 151 1 From Module 1 to Module 3	5 236
28 7 151 1 (Bare foil data from Run 1174)	6 501 ¹
34 0 151 1 (Bare foil data from Run 1174)	6 778
34 151 (Bare foil data from Run 1174) 39 4 151 (Bare foil data from Run 1174) 44 4 151 (Bare foil data from Run 1174)	5 975 ¹ 4 413
17 5 153 6 Inner Surface of CH, Module 1 at 90°	4 430
22.5 153 6 Outer Surface of CH, Module 1 at 90°	6 047
175 1536 Module 7,0° cw	3 164
175 1536 Module 7,90° cw	3 589
175 1536 Module 7,180° cw	3 533
17 5 153 6 Module 7, 270° cw	3 248
22 5 153 6 Module 7, 0° cw	3 361
22 5 153 6 Module 7,90° cw	3 927
22 5 153 6 Module 7,180° cw	4 134
22 5 153 6 Module 7,270° cw	3 577
4 0 92 5 Module 1, 90° cw	3 611
4 0 151 5 Module 1, 90° cw	3 773
40 2105 Module 1,90° cw	3 475
154 925 Module 1,90° cw	4 447
154 1515 Module 1,90° cw	4 763
15 4 210 5 Module 1, 90° cw	4 005
4 0 92 5 Module 3, 90° cw	2 461
40 151 5 Module 3, 90° cw	2 463
40 210 5 Module 3, 90° cw	2 323
15 h 92 5 Module 3 90° cw	2 838
15 4 151 5 Module 3, 90° cw	3 138
15 4 210 5 Module 3, 90° cw	2 638
0 212 0 Separation Plane from Module 1 to Module 3 30 5 212 0 Separation Plane from Module 1 to Module	3 3 406 3 3 613 3 2 984
91 4 212 0 Separation Plane from Module 1 to Module 1	3 2 339
4 0 151 1 Module 1 at 90° cw	3 466 ¹
15 4 151 1 (Bare foil data from Run 1174)	4 519 ¹
4 0 151 1 Module 3 at 270° cw	2 640 ¹
15 4 151 1 (Bare foil data from Run 1174)	3 652 ¹

1 Thermal flux calculation based on extrapolated cadmium covered foil activity

Figure 5.1 End view of seven module tank

There are 6 fuel rings for the 55 radius ratio and 8 rings for the 72 radius ratio, and 4 rings for the 38 radius ratio

Figure 5.2 End view of fuel element

Figure 5 3 Side view of fuel element

Figure 5 4 Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 0 55 radius ratio loading

Figure 5.5 Inverse multiplication curve for seven module reactor

Я

	100				비포	<u>h.</u> F				1.7.	11-1	+-+	iπ.			₩ ±	-+++	11	TE	<u>.</u>	
				+	<u>1</u>	μī		τt:	-1-1		=	Ψ,	\leq	11		Ē	++-	Ē	<u>IE </u>	ЕЦ	1-1-1-
			╘┷╧┟╧╧┞	╚╈╼╞╾┤	╢┅╧	<u>₽,</u> ≠	Ξ.	===	11 1			4	÷	Ë1	14	† †	밤	÷-ŀ	i di	ц	
			╞╫╴┠╾╴┼					<u>+</u>	i . 1			<u> </u>	╧┿	1:	<u>++-</u>		++	+ + +			
			╶╴┟╴╺┤	┟╁╧╠═	14-	1-11-	11	킨니	╓┙	<==	╘┾┙	臣	-	1:::		i i	- <u></u> -	1	₽₽₽₽	===+	± t‡lŤ
		╤╫╬┱╴			护다	H.	11	<u>н. </u>	\mathbf{Z}_{1}	l <u>t</u> i		甘甘		H	H^{-}	Ч		<u>' म</u>	井井	큐민	F-II-
	90	<u> </u>						<u><u></u><u>−</u><u>∕</u></u>			<u></u>			<u>ا`ــ</u> ـ	크루	I	<u></u>	프			1111-
	,-	╧┽╃╠╇┹╧╞			-	╞╧╦═	<u>i</u>	1	눈글	口				╈╈	##	t.Ħ	#		±₩	井井	╘╪╪╪╫┥╼┙
			┯╧┍		i irri		-/	t t	1	.T		++	TT.	1	11-+	i i i			र स्टो	-	
						<u>⊧∸</u> ≞	F. I	<u>н</u> .	÷ +	ή÷,	<u> </u>	++++		- 	<u>ب ت</u>	<u>+-</u>			1-11	╨┼	┍┷╢╾┙
		三戸五	╺┯╴╓╴ <u>╒</u>	┶╾╢╌╴		┝┦╤	;_ _	T-	Γ	招导	17.	井	<u> -</u>	╪╶╁Ĩ	1.1	<u>+</u> ++	14.	ĘĘ	+	╌╤┍╌┝╴	┱┹╵╪╾╹
			+ 1			1-1		+			1	Ē		· -	<u>+</u>				. tr		1 - 1
	00	<u></u>	╞┿┵┨┾╍╤	뿌ݷᅳ	파	ET-			<u></u> 1	FIE-	- 	ᠮ᠇ᠴᡰ		11	+++	+	<u>н</u> -			11	┇╪╧╏┼╌┼
	80			┟╁┊┤╤╡	1 + .	1-		Τ	£++		<u>-1</u>	ļ		Ч,	Ŧ.	빆	E	H.	гщ		$\frac{1}{1}$
						<u>}</u> ==	+		++ +			11		+++++++++++++++++++++++++++++++++++++++	+	<u>++</u>	<u>+</u>		<u>++</u> !	╧╧╧╪	+ + +
		고만드		<u> </u>	╢┽╱			╧╧╡	1-1	htte:	L-F-	÷	╞╧╪╴	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	中.	- #	<u>4</u>	-+#	대리	┿┿	╗╋
				I	-1;/-		1 ++1	-Ť-	++ 7	<u>F</u> -		Ŧ		гл	.		- ₁ -		-1-		
				<u> → +</u>	17-				11		-	<u>, '</u>		TH:	<u>-</u>	-	777	#		井	
			프린턴	世、佐		EE	<u> </u>	#	<u></u>	<u>F</u>		<u>L</u>	7 17-	┶┱╆	₽Ŧ	-Ŧ-	ΗŢ	ΙŦ		r f	
	70	r II r			1 ===	- ==		+		+		11		· · ·	17.1		- 1			нд	
	•••		╈╬╧	<u> </u>	44-			#	+	<u> </u>		╧╧	<u>-</u>	-+-	Η	: <u>-</u> .	+	1	i		
ત				13-4/	<u>-</u> _ <u>+</u> -	┝╶╤	H-F	+	1 =	+ +	모=			규규	臣王	-++	F'+	11-	<u></u>	┉	电1 中、
ş				1				H-		<u></u>											
с С		<u>1-1-1-</u>	╤╋╋	+-/			1-1	크_	±Ξ	ŦĒ.	L - L	<u><u> </u></u>			†=F	-#-	±+	Η - Γ		1	╡╤╝╤┽╺
Ę,		H-1-T	┺╺┶┟╎┤╴	<u> </u>	11-1-	┝╍╌┽		1	Ŧε		F	4-4-	-1-	+++-	+ ;:	. F	Fit	<u>+-</u>	Ŧ		+++++++++++++++++++++++++++++++++++++++
th th	(0				4 1			<u> </u>		F 1	Ξ÷		+ <u>+</u>				1 11	ш,	<u>+</u>	-	
ΓA.	60	тра		/ ⊦	피프	ŀŧ	F	뉵		₩	무귀	ŦŦ	<u>1</u>	#	<u>- ii</u>	ΞΞ		Ш	<u>-</u> 1	프	
д,		+++++++++++++++++++++++++++++++++++++++		7		Ì=,г		<u></u>	<u> </u>	<u>i</u>	탄교	-	بببا	<u> </u>		- <u></u>		1-1		<u>.</u>	
다 나		<u></u>	+	71		1+		<u></u>		,	<u> </u>	-1+-	## #	15	-	<u>.</u>	-++-	+ -	<u>† - † †</u>	-11	-++++++++++++++++++++++++++++++++++++++
8			F#	╎╌╌	╤╢╪╌┽	<u> +</u>	╞┲╘┥	Ē		1			1 2	++++	Ē	┿┯┯ ┿┯┿	TF	E	₽₩	<u>.</u>	┍╌╆╡╬╪╧╡
~						L.T.L.	-					=			-					<u></u>	-1-1
ŏ				++-+	41;-1	<u></u>			-1-	1. Ħ	E'E	1	1.1	Ξ.	<u>+</u>	ii	+;-		∓ न ा	干	╔╪╗╢╧╹
H	50			╘╈╧	1 - 1	1:4		+	=	1-11		=	1-1		++	<u>7</u> 77	T	न्ताः	<u>++</u>	+	╒╆╢╓╾╅
ä		<u>+-+++++++++++++++++++++++++++++++++++</u>	╞╤┊╎╻	╎╵ └──────────	+ +		-+!											· · · ·	+		
မီ			<u>□↓</u> +/→			1		÷		1	╠╤╢		E	<u></u>	1	14	F	i ii	<u>L</u> _	╧╧╧	· 4 ⊈ +
н 0		<u>∓</u> ∰		4.1.	HE!	<u> H</u>		 				Ξ.	i.i.	<u> </u>	+	1-1	#	T .F	Ē	br l	11-1-2-
Ь.			<u>⊨</u> _/_#			╞╧╧		+ ++		++ ++					-1	<u></u>	==	<u> </u>		프	
		╺╪╬╤╤	┝┥╼╽╶╤	┥ ╞═┖╤ ┠═╹┙ ┥┿╼╍┿╏═┿		<u>ш</u> ,			LË.	Ξ.	╘╼╧	÷		++	#	누년	+	크번	1		
	40		11./i+++				H-1		1. 1	TT I		1	-E	1+-			÷1		<u> </u>	<u></u>	
				╞═╧╬╧╪	╤╤╩	1	臣	<u>-</u> #						<u>+1</u> +	-+-		<u> </u>		<u> </u>	<u></u>	뽀뽀
			<u>₩</u> ₽₽	<u>- יין א</u>	= 	<u> </u> []		Ŧ	Ŀ			曰			╦╻╴	<u>,</u>	:11:	TH	<u>+-</u>	±t	<u>i li i</u>
		I I			ىتىران	li		<u>+</u>				1.1		+	++-		zt -			<u> </u>	
			11-11- <u>1</u>	1-1-1-1-1	1	1 <u></u>		╧╧┤	<u> </u>	يىيا	<u> </u>	÷±	- <u>-</u>	井井		<u>i </u>		<u> </u>	τË	<u> </u>	<u>1, मान</u>
			/⊐µ≟−	╞╼┱═╽╪╤	±	╆╧╈	╘╧╫	<u>-</u> 1	1-5	₩ T	-++-	17	h fr	# -‡	비는		11	1	;:4 ;	╧╪┽	
	30		<u> </u>			<u> </u>		#		1				++	+ +			<u></u>	1 1 1	-+	
	••			╞┅┲╒╴	╧┝╼┽╸		1-21		<u> </u>	Ηŀ	반	34	L.I	<u> </u>		<u>1</u>	+++-	┝╍╊┥	두두		문비단기
					‡ ‡F			Ľ.		1:+5	+			Ш	두	7-7			F. 1	1+-	
				<u> - '- </u> -	<u>1</u>			<u>_</u>		1.1		· · · ·		1	_1+-			+	1 1	<u> </u>	
				<u> </u> + - =	╡╪╧	Į≓‡	1	ㅋ는	==	┟╪╪	HT:	₩÷;	i ti		<u>π</u>	4-T	1.		<u> </u>	-17-1	╘╤╫┨╧┰╍
		二百十	┶╍┾╍╕		и. -	- 1-	보규	<u> </u>	ΞĒ	1					+		ᆍ			===	
	20	·			+ ''	1-11		-1-:		╁┯┨╼╼		· · ·	+	++		Ŀ			нн ,		
	20	世界日	<u> </u>	<u> </u> = =	╪┟╪╧╛	<u> </u> -tr		#	┢╧╋	H .		╬╌	╞╤╂┝	11-	<u>+</u>	ΕŢ			μų	<u>_</u>	귀개규는
		正拒		1	╡┍╸	Hi-	1 I I				-1.	<u>+ +</u>		1				÷.	1711	.	
		그같다	╧╎╼	11	비는크	1===		ΨŁ.	Η	₩	[:][11 -}	- 11	11.	H-	F	٦ ۱.		17	<u> </u>	<u>[1]</u>
		H	$ \underline{\overline{}} $		th:	İΠ.			ΙГ	lΓı		11.	L.T.	цЦ		<u>+</u> +	÷	+-+	<u>L</u> H	-74-74-	
				<u> </u>	╧╽╬╌╴	<u>!</u>		-''-	 	····					- I - H				+		
		┝┱╣╗┥	┝┽╤╞╧╤╡			╎╸╹╸	上耳	#	ᆣᇥ	l÷.		14	511	1	井	# +	<u>⊨</u> ₩.	12 H	╟╫	==	╒╫╬┷
	10					1 IF			<u></u>	1	H	17	TT.		+++	<u> </u>	-11-		TT-1		
			╙╧┖	P=h=		1415		1		μ	17.7	<u>+ +</u>	-#	11	11	<u> </u>			++-+	14	<u> </u>
			╞╬╌┇═╒╏	╔╍╢┥			[]]	 !-	μŢÌ	HI I		F.T	 	T,	The second	74	hŧ.	戸井	H는!	<u>-</u> +++	
					-1			بايايا		<u>г.</u>	<u> </u>	1.5	11	تسا			n.				
		<u> /:117</u>]	l <u>li t</u> f-fi	<u>┟╾</u> ┶┠╬	┝┢╧┿┩	آ ال	F+F-	<u>11</u> -	ĽŦ	11	HT.	- 11	ITE	ŦΪ	ШI	Ľ.	<u> </u>	[]]]	ĽЩ	_E	LT.F
				<u> []]</u>		h.		ц. т.с.		<u>l - i</u>	Ш	E	1	<u></u>	H	<u> </u>	<u> </u>	i	iiii]	구리	
	0	<u>u+</u>	11 <u>11111</u>	<u>14-4444</u>	┝╾┞┥	1++	<u>1 H]</u>	'T''	L 1'		<u>11. 1</u>		1_++_	<u>11' (</u>	1 1	1	11.2		느브		┝╾╧┠╍┨┷╾╽
		U	20	υU	~	40	00	4		600	0	1.1	4	_ /80	000			100	00		
					ĸ	atio	me	ter	r re	ead	ıng	۱aı	.git:	5)							

Figure 5 6 Control Rod Shape Curve - seven actuators (21 rods)

Figure 5.7 Control Rod Shape Curve - All Actuators (30 rods)

Figure 5 8 Uranium worth measurements - 7 module reactor with 0 55 fuel to module radius ratio

Figure 5 9 Exhaust nozzle configurations for the 7 module reactor

Figure 5.10 Relative axial power distribution in module 1, 0° at the core centerline, 7 module reactor with 0 55 fuel to module radius ratio

Figure 5 11 Relative axial power distribution in module 1, 90° at the core centerline, 7 module reactor with 0 55 fuel to module radius ratio

Figure 5 12 Relative axial power distribution in module 3, 0° at the core centerline, 7 module reactor with 0.55 fuel to module radius ratio

Relative axial power per unit fuel mass

Figure 5 13 Relative axial power distribution in module 3, 90° at the core centerline, 7 module reactor with 0.55 fuel to module radius ratio

Figure 5.14 Relative axial power distribution in module 3, 270° at the core center line, 7 module reactor with 0 55 fuel to module radius ratio

Figure 5.15 Relative radial power distribution in modules 1 and 3 based on axial average power distributions, 7 module reactor with 0 55 fuel to module radius ratio

Figure 5 16 Circumferential power distribution on outside fuel ring, 0 55 radius ratio, 7 module configuration

Figure 5.17 Axial distribution of catcher foil cadmium ratios in modules 1 and 3, 7 module reactor with 0 55 fuel to module radius ratio

Axial position - cm

Figure 5 18 Relative bare gold foil activity axial distribution in modules 1 and 3, 7 module reactor with 0 55 fuel to module radius ratio

Relative gold foil activity

Figure 5 19 Relative bare gold foil activity circumferential distribution on inner and outer surfaces of the polystyrene in module 7, 7 module reactor with 0 55 fuel to module radius ratio

,

Figure 5.20 Relative bare gold foil activity distribution in the regions between modules

Distance from center of core - cm

Figure 5 21 Relative bare gold foil activity distribution across the end of the core at the separation plane from the center of module 1 across module 3, 7 module reactor with 0.55 fuel to module radius ratio

Distance from cavity wall - cm

Figure 5 22 Relative bare gold foil activity distribution in the radial reflector, 7 module reactor with 0 55 fuel to module radius ratio

Figure 5.23 Relative bare gold foil activity distribution in the end reflector, 7 module reactor with 0 55 fuel to module radius ratio

Figure 5 24 Infinitely dilute gold cadmium ratio in region between fuel modules

Figure 5 25 Axial distribution of gold foil cadmium ratios in modules 1 and 3 at an angle of 90° cw from core centerline

Figure 5.26 Circumferential distribution of gold foil cadmium ratio on inner'and outer surface of CH in module 7

Figure 5.27 Infinitely dilute gold cadmium ratios along centerlines of end and radial reflectors

Thermal neutron flux-n/cm²-sec-watt x 10^{-6}

Figure 5 28 Axial distribution of thermal neutron flux in modules 1 and 3 at 90° clockwise from core vertical centerline

Figure 5 29 Circumferential distribution of thermal neutron flux on the inner and outer surfaces of the polystyrene in module 7

Figure 5.30 Thermal neutron flux distribution across the core at the separation plane from module 1 across module 3

Figure 5 31 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 7-module reactor with 0 55 fuel to module radius ratio

Figure 5 32 Radial distribution of thermal neutron flux from module 1 through the D₂O between modules 5 and 6 and into the radial reflector, 7-module reactor with 0 55 radius ratio

Figure 5 33 Axial distribution of thermal neutron flux through module 1 and into the reflector, 7-module reactor with 0 55 fuel to module radius ratio

6 0 0 72 RADIUS RATIO CORE - 7 MODULE

The change from the 0 55 to 0 72 radius ratio core was made by adding two more rings of fuel, as shown in Figure 5.2 The fuel sheet loading was adjusted on the rings to give a lower average fuel density. It was initially expected that slightly over 7 kg of uranium would be the critical mass but as the change from 0 55 to 0 72 radius ratio was gradually made, a heavier loading was needed The fuel stage separation discs were each loaded with four equivalent "size-one" sheets as shown in Figure 6.1 and specified in Table 6 1 Twenty sheets of fuel were placed on the fuel rings for each stage. The changes which followed as the initial loading progressed are explained in the following section

6.1 Initial Loading

Rather than completely unload the reactor and start with an empty core, the fuel elements were changed one at a time and after each change a k-excess measurement was made. The fuel element in Module 2 was changed first and k-excess decreased about 1 4% It was obvious of course, that the pre-selected 7 kg fuel loading was significantly deficient. No change was made to the separation discs but one extra sheet was placed on the sixth and seventh rings and two sheets were added to the eighth ring of fuel. The loading on the rings then was as follows

Ring Number	Number of Sıze	Ring Diameter
	1 0 Fuel Sheets	(cm)
l	l	61
2	l	99
3	2	13 7
4	2	17 5
5	3	21.3
6	4	25 1
7	5	28,9
8	_6_	32 7
TOTAL	24	

On this basis, each fuel element would contain 452 equivalent size 1.0 fuel sheets or 1 18 kg of uranium based on 2 62 grams per sheet

Prior to making any further changes, 48 sheets of fuel (126 grams) were placed on the outer ring of fuel in Module 2, making a total of 436 full size sheets in this module K-excess increased 0.532±0.29% k, which gives a fuel worth at this outer radius ring of 4.23±0.23% k/kg.

Module 5 fuel element was then changed so that it contained 452 equivalent full size fuel sheets at a radius ratio of 0 72 and k-excess decreased only 0.06 % . The remaining fuel element changes showed similar decreases in reactivity. Finally, with six elements having 452 and one having 436 equivalent size one sheets, excess reactivity was 0 627 % k with the exhaust nozzle tank removed from the reactor The total fuel loading was 3148 equivalent full-size sheets, or 8 24 kg of uranium

6.2 Reactivity Measurements

The worth of uranium was measured with the 0 72 radius ratio by using the same procedure as explained in Section 5.2.2 The data are given in Table 6.2 and Figure 6.2 The core volume-weighted average uranium worth was 4.08%k/kg This compares to 3.93%k/kg for the 0.55 radius ratio. The difference between these two numbers is of the order of the experimental error, and therefore is not considered significant

The worth of aluminum was also measured and the same procedure was used as for the 0.55 radius ratio core. The data are shown in Table 6.2. The same aluminum and the same locations were used as for the 0.55 radius ratio core but a comparison of the two sets of data shows quite large variations as follows:

		VECTO OF AT MOLOU
Module	Angle	for 0 55 to 0.72
	(degrees cw)	Radius Ratio Core
1	90	0 65
4	150	1.58
4	330	0 67

It appears that the value measured at 150 degrees on module 4 may have been in error, or that the aluminum worth measurements have a 30% uncertainty

Increasing the radius ratio required the addition of two fuel rings. This in turn increased the mass of aluminum 12 2 kg If it is assumed that the aluminum was worth 0.026 % k/kg, the additional aluminum would have been worth 0.317% k or equivalent to about 78 grams of uranium (aluminum negative, uranium positive)

As noted earlier, each fuel element contained 452 equivalent size 1.0 fuel sheets except for Module 2 fuel element which contained 436 sheets. The amount of fuel on the separation discs was the same for all fuel elements. The fuel rings on Module 2 fuel element, however, contained the following fuel:

Ring No.	Number of Fuel Sheets
1	l
2	l
3	2
4	2
5	3
,6	3
7	24
8	7

Thus the total equivalent size 1 0 fuel sheets on this fuel element amounted to 436 or 16 less than the other seven. Although the fuel mass on this element was slightly less than the other seven, the equivalent worth of the fuel element should have been about the same as the other six because the outer fuel ring was loaded heavier and the fuel at that location is worth more than it could have been had it been distributed over fuel rings nearer the center of the fuel element The total mass of uranium in the core was 8 24 kg and k-excess was 0 627. Uranium was worth 4.08% k/kg, and hence the critical mass was 8 09 kg This result includes no correction for the additional 12 2 kg of aluminum compared to the 0 55 radius ratio core This correction, based on 1 kg of Al being worth 0 025% h, is small, amounting to the equivalent of 78 grams of uranium. Thus, the critical mass with the same structure and hydrogen that existed in the 0 55 R/R reactor was 8.01 kg The 0 55 R/R_o reactor had a critical mass of 8.64 kg Both of these results are with the exhaust nozzle open.

6.3 Power Mapping - Catcher Foils

The catcher foil data obtained in this configuration are given in Table 6 3 It will be noted that mostly bare foils were used Only four cadmium covered catcher foils were measured The axial profiles in Modules 1 and 3 are given in Figures 6 3 to 6 5 along with the averages for each profile These averages were then plotted to give the radial profile shown in Figure 6.6. Each of these radial power distribution profiles was then volume averaged and these values are given in the figure. These volume weighted averages represent the average axial power at the given axial position, relative to a power of 1 0 at the axial center of the core, 4 0 cm from the radial centerline of the core.

The four cadmium ratios given at the end of Table 6 3 were also from Modules 1 and 3. Although duplicate positions were not available from the 0.55 radius ratio core, comparison with Table 5 7 indicates that the relative ratio of thermal to epi-thermal (epi-Cd) fissions was essentially the same in both cores

6.4 Flux Mapping - Gold Foils

6.4.1 Bare Gold Data

As explained earlier in this report, power normalization foils were exposed on each run so that the gold data could be normalized to a common power level. These data are shown in Table 6 4 There was a scram on Run 1175 so some gold foils were repeated on the subsequent run and the normalization factor was determined by comparing the two sets of data. The gold results are given in Table 6.5 and include both bare and cadmium covered foils The bare activities were normalized to a point near the center of Module 7 and these relative values were plotted to show the distributions within the reactor as seen from Figures 6.7 to 6.10 Everything appeared to be normal, following closely a smooth curve through the points. The dip in flux observed at the outer edge of Module 1 on the 0.55 radius ratio core (Figure 5.20) was barely evident here (Figure 6.8) but was more pronounced at the outer edge of module 3

6.4.2 Cadmium Ratios

Gold cadmium ratios (infinitely dilute) were obtained at several locations in the modules and the end and radial reflectors The radial distributions from near the center of the core through modules 1 and 3 and through module 1 and across the tank between modules 5 and 6 are given in Table 6.6 and plotted in Figures 6 11 and 6.12 The last point in each figure was just inside the radial reflector. The cadmium ratios in the reflector regions are shown in Figure 6.13 and compare very well with the same data from the 0.55 radius ratio core (Figure 5 27)

6.4.3 Thermal Neutron Flux

The thermal neutron flux obtained from the gold foil data are given in Table 6.7 Of primary interest were the radial profiles through the module region and into the radial reflector These are plotted in Figures 6.14 and 6 15 A flux dip occurs between the outer edge of the fuel and the inner surface of the polystyrene as was noted for the 0.55 radius ratio core (Figure 5 31) However, there was no observed dip at the outer surface of the polystyrene as was the case for the 0.55 radius ratio. The thermal flux in the reflector was generally lower per watt of power throughout the core for the 0 72 radius ratio compared to the 0.55 radius ratio. This appears paradoxical from customary fundamental considerations, since the fuel loading was less in the 0 72 radius ratio. However, between the modules, the 0 72 radius ratio had the higher thermal flux

Fuel Sheets on Fuel Stage Separation Disc

7-Module Reactor - 0 72 Radius Ratio Loading

Disc Number	Positions Containing Fuel	Number of Fuel Whole Sheets	Sheets 1/2 Sheets
1	1,2,9,10	14	
2	3,4,7,8,11,12	2	4
3	5,6,13,14	<u>)</u>	
4	1,2,9,10	<u>)</u>	
5	3,4,7,8,11,12	2	4
6	5,6,13,14	14	
7	1,2,9,10	<u>}</u>	
8	3,4,7,8,11,12	2	4
9	5,6,13,14	4	
10	1,2,9,10	4	
11	3,4,7,8,11,12	2	4
12	5,6,13,14	<u>}</u>	
13	1,2,9,10	<u>1</u>	
14	3,4,7,8,11,12	2	չ
15	5,6,13,14	<u>1</u>	
16	1,2,9,10	<u>)</u>	
17	3,4,7,8,11,12	2	4
		Total <u>56</u>	24

Fuel Worth Measurements

7-Module Reactor - 0 72 Radius Ratio

Loc	cation				
Module	Angle (degrees clockwise)	Radıus (cm)	U Mass _(g)	Reactivity Change (%∆k)	Uranıum Worth (%∆k/kg)
1 1 1 1	90 90 90 90	4 0 7 8 11 6 15 4	7 28 7 28 7 28 7 28 7 28	0 0405±0 003 0 0433±0.003 0 0440±0 003 0 0507±0 003	5 56±0 41 5 95±0 41 6 04±0 41 6 96±0 41
3 3 3 3 3 3	90 90 90 90 270 270	4 0 7 8 11 6 15 4 7 8 15 4	7 28 7 28 7 28 7 28 7 28 7 28 7 28 Al Mass (g)	0 0242±0 003 0 0247±0 003 0 0248±0 003 0 0258±0 003 0 0272±0 003 0 0313±0 003	3 32±0 41 3 39±0 41 3 41±0 41 3 54±0 41 3 74±0 41 4 30±0 41 Aluminum Worth (%∆k/kg)
፲ 4 4	90 150 330	Avg	540 540 540	0 0278±0 003 0 0105±0 003 0 0121±0 003	0 051±0 006 0 019±0 006 0 022±0 006

Ł

Catcher Foil Data

7-Module Reactor - 0 72 Radius Ratio Core

<u>Run 1175</u>

				Locat	Cion		
Foil Number	Foll Type	Module Number	Angle <u>(°cw)</u>	Radial (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)
1 2 3	Bare Bare Bare	1 1 1	90 90 90	40 40 40	92 5 105 8 121 0	226334 219714 227949	1 007 0 978 1 014
<u>ц</u>	Bare	1	90	40	151 5	224649	1 000 (X)
6	Bare Bare	1	90 90	4040	102 U 197 2	205035 197305	0 912
7 8 、	Bare Bare	1 1	90 90	40 78	210 5 92 5	203469 226600	0 906 1 008
9	Bare	1	90	7878	105 8	227671	1 013
<u>10</u>	Bare	1	90 90	78	151 0	242290	1 078
12 13	Bare Bare	1 1	90 90	78 78	182 0 197 2	214449 202414	0 954 0 901
14 15	Bare Bare	1 1	90 90	78 116	210 5 92 5	202240 234076	0900 1042
16 17	Bare	1	90	11 6	105 8	232481	1 035
18	bare Bare	1 1	90 90	11 6	151 5	231400	1 057 1 087
19 20	Bare Bare	1 1	90 90	11 6 11 6	182 0 197 2	218231 212359	0 971 0 945
21 22	Bare Bare	1	90	11 6 15 h	210 5 92 5	202000 2h3hh1	0 899
23 23	Bare	1	90 90	15 4	105 8	244753	1 089
24 25	Bare Bare	1	90 90	15 4 15.4	121 0 151 5	256822 250966	1 143 1 117
26 27	Bare Bare	1 1	90 90	15.4 15.4	182 0 197 2	236877 227759	1 054 1 014
28	Bare	1	90	15 4	210 5	215024	0 957 0 7h0
30	Bare	3	90 90	40	105 8	165033	0 734
31 32	Bare Bare	3	90 90	4.0 4 0	121 0 151 5	162244 169324	0 722 0 753
33 સ્રો	Bare Bare	3	90 90	40 40	182 0 197 2	163460 155842	0 727 0 693
35	Bare	3	90	40	210 5	158866	0 707
30 37	Bare Bare	3 3	90 90	7 8 7 8	92 5 105 8	158030 170390	0 703 0 758
38 39 40	Bare Bare Bare	3 3 3	90 90 90	78 78 78	121 0 151 5 182 0	164175 172809 159689	0 731 0 769 0 711
40	DOT C	J	20	10	104 0	T)2002	

(Continued)

<u>Run 117</u>	5									
	Location									
Foil Number	Foll Type	Module Number	Angle (°cw)	Radıal (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)			
<u> </u>		<u> </u>	00	7 8	107.0	157100	0.701			
4 <u>1</u> hO	Bare	2	90	78	197 Z	158016	0 702			
42 J13	Bare	ר ז	90	10	02 5	160013	0 756			
4.5 hh	Bare	ر ۲	90	11 6	105 8	120730	0 758			
<u>4</u> 5	Bare	ר מ	90	11 6	121 0	168733	0 751			
46	Bare	3	90	11 6	151 5	171289	0 762			
47	Bare	3	90	11 6	182 0	161984	0 721			
48	Bare	3	90	11 6	197 2	155039	0 690			
49	Bare	3	90	11 6	210 5	152414	0 678			
50	Bare	3	90	15 4	92 5	176127	o 784			
51	Bare	3	90	15 4	105 8	162904	0 725			
52	Bare	3	90	15 4	121 0	182217	0.811			
53	Bare	3	90	15 4	151 5	186512	0 830			
54	Bare	3	90	15 4	182 0	169581	0 755			
55	Bare	3	90	15 4	197 2	158910	0 707			
56	Bare	3	90	15 4	210.5	151581	0 675			
Run 117	6									
1	Bare	3	270	154	92 5	207646	0 924			
2	Bare	3	270	15 4	105 8	186690	0 861			
3	Bare	3	270	15 4	121 0	202542	0 901			
4	Bare	3	270	15 4	151 5	205524	0 915			
5	Bare	3	270	15 4	182 0	191865	0 854			
6	Bare	3	270	15 4	197 2	179356	0 798			
7	Bare	3	270	15 4	210 5	184518	0 821			
8	Bare	3	270	11 6	92 5	187196	0 833			
9	Bare	3	270	11 6	105 8	193520	0.831			
10	Bare	3	270	11 6	121 0	184803	0 822			
11	Bare	3	270		190 0	102019				
12	Bane	2	210 270		102 0	171025				
1) 1)	Bare	ר ג	270	11 6	191 C 210 5	171803	0 765			
15	Bare	ך א	270	78	02 5	180427	0 803			
16	Bare	ר א	270	78	105 8	180012	0.0000			
17	Bare	3	270	78	121 0	173652	0 773			
18	Bare	3	270	78	151 5	177323	0 789			
19	Bare	3	270	78	182 0	171411	0.763			
20	Bare	3	270	78	197 2	166390	0 740			
21	Bare	3	270	78	210 5	170880	0 760			

(Continued)

<u>Run 117</u>	6						
				Locat	tion		
Foll Number	Foll Type	Module Number	Angle (°cw)	Radıal (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)
22 23 24 25 26 27 28	Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3	270 270 270 270 270 270 270	4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	92 5 105 8 121 0 151 5 182 0 197 2 210 5	174455 170722 170162 172971 163387 163064 167506	0 776 0 760 0 757 0 770 0 727 0 726 0 745
Run 117	7						
1 2 3 4	Cd Cd Cd Cd	1 1 3 3	90 90 90 90	40 154 40 154	182 0 182 0 182 0 182 0	5797 5781 4420 4291	35 4 41 0 37 0 39 5

e

TABLE 6 4.

Power Normalization

7-Module Reactor - 0 72 Radius Ratio

Run	Time of Count	Decay Time	Correction Factor	Counts	Corrected Average	Normalization
1175	1158 08 1200 08 1201 58	66 00 68 00 69 50 Scramme	1 393 1 447 1.487 ed after 6 min	287979 277810 266871	401155 401991 <u>396837</u> 399994	0 996 ¹
1176	1114 85 1116 85 1118 85	43 50 45 50 47 50	0 852 0 897 0 942	501489 475391 452915	427269 426426 426646 426780	l 000
1177	1500 82 1503 32 1505 32	55 00 57 50 59 50	1 120 1 182 1 232	377551 358516 343986	422857 423766 <u>423791</u> 423471	0 992

1 Based on gold foil repeat data on Run 1176

Gold Foil Data

7-Module Reactor - 0 72 Radius Ratio

<u>Run 1175</u>

		Locat	Sion			
Foil Number	Foil Type	Radial (cm)	Axıal (em)	Foil Weight	Specific Activit <u>d/m-g x 10⁻⁶</u>	y Local to _* <u>Foil (X)</u>
1.	Bare	0	89 4	0 0343	8 318	1 019
2	Bare	Ō	749	0 0343	10 024	1 228
3	Bare	õ	59 6	0 0343	7 430	0 910
$\tilde{4}$	Bare	õ	<u>4</u> 4 4	0 0340	4 995	0 612
5	Bare	Ō	29 1	0 0340	3 061	0 375
б	Bare	0	13 9	0 0339	1 543	0 189
7	Bare	0	0	0 0340	0 196	0 024
8	Bare	93 2	151 1	0 0337	8.317	1 019
9	Bare	107 7	151 1	0 0338	6 772	0 830
10	Bare	123 0	151 1	0 0338	4 744	0 581
11	Bare	138 2	151 1	0 0339	3 201	0 392
12	Bare	153 4	151 1	0 0337	1 930	0 237
13	Bare	168 7	151 1	0 0338	0 871	0 107
14	Bare	183 7	151 1	0 0338	0 120	0 015
	Module	≥ 1, 90°				,
15	Bare	40	136 3	0 0337	8 278	1 014 (X)*
16	Bare	78	136 3	0 0338	8 452	1 036
17	Bare	11 6	136 3	0 0338	8 684	1 064
18	Bare	15 4	136 3	0 0338	9 111	1 116 🔍
19	Bare	4 O	166 8	0 0338	8 042	0 985 (X)^
20	Bare	78	166 8	0 0339	7 883	0 966
21	Bare	11 6	166 8	0 0338	8 032	0 984
22	Bare	15 4	166 8	0 0338	8 324	1 020
	Module	∋ 3, 90°			,	
23	Bare	40	136 3	0 0338	6 020	0 738
24	Bare	78	136 3	0 0338	5 985	0 733
25	Bare	1 1 6	136 3	0 0338	5 963	0 731
26	Bare	15 4	136 3	0 0338	6 386	0 783
27	Bare	4 O	166 8	0 0338	6 020	0 738
28	Bare	78	166 8	0 0338	5 805	0 711
29	Bare	11 6	166 8	0 0338	5 700	0 698
30	Bare	15 4	166 8	0 0338	6 138	0 752
	Traver	rse from N	Nodule 1	to 3		
31	Bare	23 6	151 1	0 0338	10 878	1 333
32	Bare	28 7	151 1	0 0338	12 979	l 590
33	Bare	34 0	151 1	0 0338	13 266	1 626
34	Bare	39 4	151 1	0 0338	ll 896	1 458
35	Bare	44 4	151 1	0 0338	8 973	1 100
* Note:	∏h⊝ et	anđarđ na	າຫາຊີ່ງອວາ	location ic	at 157 5 am eviel	nogition midemer
THO DG !	hetwee	n the t_{m}	vingitiger Villogi v	(1a ¹¹ aborn 15	ע דעד איז איז איז איז איז איז	Postoron intuway
	NC 04466	err orre AMC	> TOTT			

(Continued)

<u>Run 1175</u>

		Locatio	on			
Foll <u>Number</u>	Foil Type	Radial (cm)	Axial (cm)	Foll Weight	Specific Activity	Local to Foil (X)
	Trave	rse Betwen Mo	dules 5 &	6		
36	Bare	90 7	151 1	0 0338	8 688	1 065
37	Bare	83 8	151 1	0 0338	9.768	1 197
38	Bare	76 2	151 1	0 0338	10.752	1 318
39	Bare	68 6	151 1	0 0339	11 150	1 366
40	Bare	610	151 1	0 0339	11 488	1 408
<u>41</u>	Bare	53 3	151 1	0 0338	12 183	1 493
42	Bare	45 7	151 1	0 0338	13 241	1 623
43	Bare	38 l	151 1	0 0338	14 003	1 716
44	Bare	30 5	151 1	0 0337	13 484	1 652
45	Bare	23 6	151 1	0 0337	11 117	1 362
	Outer	Surface of CI	H in Modul	e 3		
46	Bare	22 4 (270°)	165 3	0 0337	8 133	0 997
47	Bare	22 4 (315°)	165 3	0 0337	8 038	0 985
48	Bare	22 4 (0°)	165 3	0 0337	7 741	0949
49	Bare	22 4 (45°)	165 3	0 0337	7 117	0 872
50	Bare	224 (90°)	165 3	0 0337	6 783	0 831
	Inner	Surface of CH	I in Modul	e 3		
51	Bare	17 5 (270°)	165 3	0 0338	6 812	0 835
52	Bare	17 5 (315°)	165 3	0 0338	6 867	0 841
53	Bare	17 5 (0°)	165 3	0 0338	6 534	0 801
54	Bare	17 5 (45°)	165 3	0 0338	6 539	0 801
55	Bare	17 5 (90°)	165 3	Losi	·	
- (Outer	Surface of CH	I in Modul	e l		
56	Bare	$22 4 (270^{\circ})$	165 3	0 0339	9 984	1 223
57	Bare	$224(315^{\circ})$	165 3	0 0337	10 058	1 233
58	Bare	22_4 (0°)	165 3	0 0337	9 945	1 219
	Inner	Surface of CE	I in Module	e 1		
59	Bare	$175(270^{\circ})$	165 3	0 0337	8 659	1 061
60 (7	Bare	$175(315^{\circ})$	165 3	0 0337	8 736	1 071
6T	Bare	17 5 (0°)	165 3	0 0337	8 891	1 090
Run 1176	5					
l	Cđ	0	89 J	0 0332	2,113	
2	Cđ	0	59 6	0 0333	0 245	
3	Cđ	0	29 1	0 0353	0 00829	
<u>Ļ</u>	Cđ	93 2	151 1	0 0341	0 627	
5	Cđ	123 0	151 1	0 0345	0 0221	
6	Cđ	153 4	151 1	0 0340	0 00333	
			-			

(vou van aca)	(С	on	tıı	nue	ed)
-----------------	---	---	----	-----	-----	-----

Run 1176										
Location										
Foll	Foll	Radial	Axial	Foil Weight	Specific Activity	Local to				
Number	Type	(cm)	<u>(cm)</u>	(g)	<u></u>	Foil (X)				
	Module 3 270°									
7	Bare	15 4	136 3	0 0293	7 061	0.865				
8	Bare	11 6	136 3	0 0312	6 669	0 817				
9	Bare	78	136 3	0 0350	6 274	0 769				
10	Bare	4 0	136 3	0 0340	6 138	0 752				
11	Cđ	15 4	166 8	0 0339	1 764					
12	Cđ	40	166 8	0 0340	1 699					
	Traver	se from Module	l to 3							
13	Cđ	23 6	151 1	0 0338	2 520					
14	Cđ	34 0	151 1	0.0340	2 302					
15	Cđ	44 4	151 1	0 0340	1 754					
	Traver	se Between Modu	iles 5 &	6						
16	Cđ	23 6	151.1	0 0337	2 532					
17	Cd	53 3	151.1	0 0339	2 183					
10	Cđ	030	T T T	0 033T	1 009					
30	Outer	Surface of CH :	n Modu⊥e	:⊥ 						
19	UQ.	$22.4(2(0^{\circ}))$	105 3	0 0334	2 345					
20	Tamara	$22.4(0^{\circ})$	⊥05 3 	2 0 0330	2 351					
FC.	ra	JULIACE OF CH J	n Moaure ועד ב	: D 0338	1 628					
21	Ca.	175(2 0)	165 2	0 0270	1 760					
23	Baro	107 7	151 1	0 035)	6 702	0 832				
24	Bare	138.2	151.1	0 0322	3 101	0.301				
	Pare	1)° 1		0 0922	5 191	0.391				
Run 11	77									
	Module	1,90°								
l	Cđ	4 0	163 3	0 0337	2 384					
2	Cđ	15 4	163 3	0 0332	2 323					
	Module	3,90°								
3	Cđ	4 O	163 3	0 0325	1 685					
4	Cd	15 4	163 3	0 0335	1 666					
	Traverse from Module 1 to 3									
5	Cđ	28 7	151 1	0 0335	2 533					
6	Cđ	39 4	151 1	0 0336	2 201					
	Traverse Between Modules 5 & 6									
7	Cđ	38 1	151 1	0 0334	2.248					
8	Cđ	68 6	151 1	0 0334	1 818					
9	Cđ	90 7	151 1	0 0335	0 706					

(Continued)

<u>Run 117</u>	7							
		Locatio	on					
Foll Number	Foll Type	Radıal (cm)	Axıal (cm)	F01]	Weight	Specific d/m-g	2 Activity x 10 ⁻⁶	Local to Foil (X)
	Inner S	urface of CH	ın Modu	le l				
10	Cđ	17 5 (270°)	165 3	(0341	2	221	
11	Cđ	17 5 (0°)	165 3	(0341	2	262	
	Outer Su	rface of CH 1	n Modul	е 3				
12	Cd	224 (270°)	165 3	(0341	1	797	
13	Cđ	224 (90°)	165 3	(0338	1	563	
	Traverse	Tube Betweer	n Module	s 5 8	: 6			
14	Bare	23 6	151 1	(0385	10	763	1 319
15	Bare	224	151 1	(0371	10	037	1 230
16	Bare	22 4	158 7	C	0379	9	.990	1 224

Gold Foil Cadmium Ratios

7-Module Cavity Reactor

0 72 Radius Ratio with Hydrogen

Location			·	Infı Fo	nitely	Dil	Lute	·· /·	
Radial	Axial		Angle	а/		107	-6	Cad	מו דרמי
(cm)	(cm)	Module Number	(°cw)	Bare	Gold	Cđ	Gold	Ra	atio
	80 1		- <u></u> .			 1.	900		006
0	09 4 50 6			17	04 716	4	009	2	296
0	ס ע כ ני מכ			(070	0	220	ک⊥ • - ۲	0
93.2	29 I 151 1			2	120	U r	019 019	120 2	209
102 0	י רפר ב			9	130	<u>т</u>	443	0	320).
152 1	1)1 I 151 I			4 7	112	0	0077	93	4
1))	126 2	٦	000	<u>ר</u> רר	934 25	U E	00((beo	252	080
40 15 h	1000		90	10	37	2	479	2	000
1) 4 h 0	126 2	<u>ナ</u> う	90	212	100	2	201	2	201
գ Մ 15 հ	136 3	ン マ	90	8	190	2	049 806	2	120 120
	136 3	3	2700	8	່ງງາວ	っ っ	000	2	242
יד ט אר אינ	136 3	3	2709	0	242 210	ւ - Դ	904 0h0	2	780 TOI
23 6	151 1	J Therefore from Module	~IU 1 +^ 3	יל ד ער	240 1)	4	777	2	202 hh7
28 7	151 1	Traverse from Module	1 +o 3	16	<u>つり</u>	ノ 5	786	2	441 807
3µ 0	151 1	Traverse from Module	1 +o 3	16	2m 05	5	200	2	071
30)	151 1	Traverse from Module	1 +o 3	10	-) 73		290 02h	ר ס	007
չյ _– հհ հ	151 1	Traverse from Module	1 ± 0	17	10 25	5	034	2 0	700
23 6	151 1	Traverse from Module	· 1 00 J	-6-1	2)	7	1001	2	190
23 0		Between Modules 5 &	6	ղ և	38	5	708	2).81
38 1	151]	Traverse from Module	Г	7	50)	190	2	401
50 1	<u> </u>	Between Modules 5 &	6	16	89	5	120	З	201
53 3	151 1	Traverse from Module		T 0	9	-	10	J	<i>L</i>) 4
/5 5	1/2 1	Between Modules 5 &	6	15	ດາ	5	611	2	005
68 6	151 1	Traverse from Module	. ́ Т	ш <i>у</i>	01	1	Υ Τ.Υ	<u>ب</u>	111
•	_/	Between Modules 5 &	6	13	49	4	1 4 8	3	252
83.8	151 1	Traverse from Module	. 1	±\$.,	•	1.0	2	
		Between Modules 5 &	6	11	06	2	294	4	822
90 7	151 1	Traverse from Module	- -			-	-2 .	-	
2 - 1	_,	Between Modules 5 &	6	9	597	ב	613	5	951
22 4	166 8	1	0°	12	97	5	377	ź	413
22 4	166 8	1 2	70°	13	00	5	350	2	431
175	166 8	l	0°	11	82	5	204	2	272
175	166 8	1 2	70°	11	54	5	110	2	258
22 4	166 8	3	90°	8	801	Ś	583	2	456
22 4	166 8	3 2	70°	10	37	Ū,	135	2	507
175	166 8	3	90°	8	804	4	018	2	191
17 5	166 8	3 2	70°	8	930	3	755	2	378

Thermal Neutron Flux

7-Module Reactor - Exhaust Nozzle Removed

0 72 Radius Ratio

Location

Radıal (cm)	Axıal <u>(cm)</u>	Module <u>Number</u>	Angle <u>(°cw)</u>	Thermal Neutron Flux n/cm^2 -sec-watt x 10
0	894	End reflector		3.495
0	596	End reflector		4 031
0	29 1	End reflector		1 712
93 2	151 1	Radial reflector		4 311
123 0	151 1	Radial reflector		2.648
153 4	151 1	Radial reflector		1 080
4 0	136 3	1	90°	3 305
15 4	136 3	1	90°	3 816
40	136 3	3	90°	2 435
15 4	136 3	3	90°	2 650
40	136 3	3	270°	2 489
15 4	136 3	3	270°	2.911
23 6	151 1	Traverse from Module	l to 3	4 679
28 7	151 l	Traverse from Module	l to 3	5.863
34 0	151 1	Traverse from Module	l to 3	6 146
394	151 l	Traverse from Module	l to 3	5 440
44 4	151 l	Traverse from Module	l to 3	4 046
23 6	151 l	Traverse between Modu	les 5 & 6	4 815
38 I	151 l	Traverse between Modu	les 5 & 6	6 598
53 3	151 1	Traverse between Modu	les 5 & 6	5 607
68 6	151 l	Traverse between Modu	les 5 & 6	5 240
83 8	151 1	Traverse between Modu	les 5 & 6	4 917
90 7	151 1	Traverse between Modu	les 5 & 6	4 478
22 4	151 .1	1	0°	4 260
22 4	- 1 51 l	1	270°	4 293
17 5	151 l	1	0°	3.712
175	151 1	1	270°	3 605
22 4	151 l	3	90°	2 926
22 4	151 1	3	270°	3 495
17 5	151 1	3	90°	2 684
17 5	151 1	3	270°	2 902

Figure 6.1 Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 0 72 radius ratio loading (Note, for locations actually occupied by fuel, see Table 6 1)

Distance from center of module - cm

Figure 6 2 Uranium worth measurement, 7-module reactor with 0 72 fuel to module radius ratio

Figure 6 3 Relative axial power distribution in Module 1, 90° at the core centerline, 7-module reactor with 0 72 fuel to module radius ratio

Figure 6 4 Relative axial power distribution in module 3, 90° at the core centerline, 7 module reactor with 0 72 fuel to module radius ratio

Figure 6 5 Relative axial power distribution in module 3, 270° at the core centerline, 7 module reactor with 0 72 fuel to module radius ratio

Figure 6.6 Relative radial power distribution in modules 1 and 3 based on axial average power distributions, 7-module reactor with 0 72 fuel to module radius ratio

Figure 6.7 Relative radial bare gold foil activity in modules 1 and 3 at axial locations of 163 3 and 166 8 cm, 0 72 fuel to module radius ratio

Figure 6.8 Relative bare gold foil activity distribution in the regions between modules, 0 72 fuel to module radius ratio

Figure 6 9 Gold foil activity in the radial reflector, 0 72 fuel to module radius ratio

Figure 6 10 Gold foil activity in the end reflector, 0 72 fuel to module radius ratio

Figure 6 11 Gold Foil Cadmium Ratio - module 1 through module 3, 0 72 fuel to module radius ratio

Figure 6 12 Gold Foil Cadmium Ratio - module 1 and between modules 5 & 6; 0 72 radius ratio

Figure 6 13 Infinite dilute gold cadmium ratios along centerlines of end and radial reflectors

Figure 6 14 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector; 7 module reactor with 0 72 fuel to module radius ratio

Figure 6.15 Radial distribution of thermal neutron flux from module 1 through the D₂O between modules 5 & 6 and into the radial reflector, 7-module reactor with 0 72 radius ratio

7.0 0 38 RADIUS RATIO CORE - 7 MODULE SYSTEM WITH HYDROGEN

A radius ratio of 0 388 for fuel to cavity dimensions was assembled in all seven of the modules The hydrogen simulation was still the same as for the 0.55 and 0.72 radius ratio systems, is hydrogen began at the 0 72 R_0 position, or a diameter of 32 8 cm The 7 6 cm annular space from the outer ring of fuel, having a diameter of 17 5 cm, to the hydrogen contained no fuel, only a very dilute concentration of aluminum.

71 Initial Loading

The anticipated loading for criticality was 12 kg of uranium. The loading commenced from the 0.55 radius ratio without hydrogen, Section 8. One module at a time was changed by increasing its loading to 1.71 kg within four rings and the corresponding 0 38 radius ratio on the spacer disks and by simultaneously adding the hydrogen. The worth of the change in each of the outer modules was averaging approximately 40 3% Ak Therefore, after changing five of the six outer modules, it was decided that the fuel loading needed to be reduced below the predicted 12 kg so as to attain a final loading that was not excessively poisoned by control rods inserted into the end reflector.

The final loading consisted of 10 51 kg (1 50 kg per module), distributed on the four rings and spacer disks as shown in Table 7 1 and Figure 7.1 The excess reactivity was 1 00% k, without the end plug in the exhaust nozzle, ie. nozzle open

7 2 <u>Reactivity Measurements</u>

The worth of fuel was measured as a function of radius in the center module and of radius and angle in a typical peripheral module. These measurements were made with wands containing fuel uniformly distributed along the length of the reactor The results are given in Table 7.2, and are graphically presented in Figure 7 2 From these results, the integrated fuel worth throughout the seven modules was deduced, from which an overall "core" average worth of 2 87 1/2 k per kg of uranium was obtained. Note, the measurement results shown in Figure 7.2 and Table 7 2 give fuel worths out beyond the 8 75 cm radius of the fuel. However, the "core" average fuel worth of 2 87 1/kg refers only to the region out to the 0 38 radius ratio. The above fuel worth can be used to obtain an exactly critical mass (k=1 00.) of 10.16 kg of uranuum, without the end plug in the exhaust nozzle

The average worth of aluminum in the center module from the center to the hydrogen (0.72 radius ratio) was measured to be 0 063%/k/kg. This is about 80% of the value measured in the 0 55 radius ratio configuration, where a seven module core-average value of 0.030%/k/kg was determined. Stainless steel, approximately 0 03 mean free absorption paths thick, was selectively placed on the module walls so as to give a representative measure of the average worth of stainless steel liner. The measurements gave 0.24%/kg SS liner 0.12 cm thick (0.03 mean free paths) on all the walls, both radial and end, on all seven modules would create a 28%/k penalty.

7.3 Power Distribution

The power distribution in the modules was measured using catcher foils. The same three typical radial traverses as employed for the fuel worth measurements were employed, but in each case detailed longitudinal traverses were made The average of the longitudinal; however, shows that the power distribution is a flatter function than the fuel worth function vs radius. The tabulated power distribution is given in Table 7.3, and is shown graphically in Figures 7 3 to 7 6 Total fission production rate in the reactor was computed from this data for referencing the thermal flux data of the next section.

7.4 Neutron Flux Distributions

Neutron fluxes were measured with gold foils, both bare and cadmium covered. The bare gold data is tabulated in Table 7 4, and presented graphically in Figures 7 7 and 7 8 These two figures also show the thermal (equivalent 2200 m/sec) per watt of reactor fission power Note, the traverse in the radial reflector starts along a line between two modules, and thus does not show the flux peak that usually occurs just outside the cavity region. The thermal flux was obtained by subtracting the epi-cadmium activity from the bare activity. The results of these measurements are given in Table 7 6, and are plotted in Figures 7 7 and 7 10 Note, all thermal flux values have been normalized to one watt of total reactor power. The infinitely dilute gold cadmium ratios (Total activity/Epi-cadmium activity) are shown in Table 7 5 and Figures 7 11 and 7 12

Fuel Element Loading Arrangement

0 38 Radius Ratio Configuration

<u>Ring</u> 1 2 3 4	Diameter (cm) 6 1 9 9 13 7 17 5	<u>Full</u> Total	Number <u>Sized</u> 3 6 9 <u>12</u> 30	of <u>Sheets</u>							
Total on 16 stages = 480											
<u>Dısks</u>											
Each of 17	dısks contaın	ed									
Single la Double la	yers at posit yers at posit	ions 1, 3, 1 ions 2,5	н,б	See	Figure '	71					
Full sıze Half sıze	ed sheets 4 ed sheets 3										
Total o Total o	of 68 full sız of 51 half sız	e									
Module	total - 573-1 or 1	/2 full-sıze 501 kg	ed equi	valent	sheets						

Material Worth Measurements

7-Module Reactor - 0 38 Radius Ratio

Hydrogen in Reactor

		Locat	lon										
	Module	Angle (°cw)	Radıus (cm)	Mate	erial (g)	Mass	Rea	ct	ıvıty (%∆k)	Change	Mat	erıal %∆k/kg	Worth
,	1 1 3 3 3 3 3 3	90 90 90 90 90 270 270	4 0 7 8 11 6 4 0 7 8 11 6 11 6 11 6	<u>Ura</u>	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	Worth 8 8 8 8 8 8 8 8 8 8 8 8 8			0268±0 0332±0 0570±0 0172±0 0208±0 0298±0 0158±0 0363±0	 003 	3 4 7 2 4 2 4 2 4	68±0 56±0 83±0 36±0 86±0 09±0 17±0 99±0	41 41 41 41 41 41 41 41 41
	"Core"	average	fuel w	orth	(7 m	odules	, 0	cm	to 8	75 cm)	= 2	87 %Ak	./kg
	l	Module	: l Aver	<u>Alum</u> age	1 <u>num</u> 540	Worth		0	0340±0	003	0 (0630±0	0056
	1,2,3,4	Module	<u>Sta</u> Wall	<u>inles</u> (4,	<u>ss St</u> 850 2 54	eel Wo 5 g cm st	<u>rth</u> rıps	0 :)	224±0	014	-0	263±0	016
	5,6,7	Module	Wall	(3,	637 2 54	0 g cm st	rıps	0 :)	141±0	015	-0	221±0	024
			Oveřal	l ave	erage	= -0	245 <u>+</u> (0 (014 %∆	k/kg			

Power Distribution

Catcher Foil Data

7-Module Reactor - 0 38 Radius Ratio

With Hydrogen

<u>Run 1181</u>

				Locat	:10n		
Foll Number	Foll Type	Module Number	Angle (°cw)	Radial (cm)	Axial (cm)	Normalızed Counts	Local to Foil (X)
]	Bare	1	90	40	92 5	183675	1 054
2	Bare	l	90	40	105 8	155738	0 893
3	Bare	1	90	40	121 0	152402	0 874
$\overline{\underline{1}}$	Bare	1	90	4 O	151 5	174285	1 000 (X)
5	Bare	1	90	4 O	166 8	170470	0 978
6	Bare	1	90	40	182 0	159598	0 916
7	Bare	1	90	4 O	197 2	156243	0 896
8	Bare	1	90	4 O	210 5	177867	1 020
9	Bare	l	90	78	92 5	209905	1 204
10	Bare	<u>1</u>	90	78	105 8	199126 `	1142
11	Bare	l	90	78	121 0	200897	1 152
12	Bare	1	90	78	151 5	214323	1 230
13	Bare	l	90	78	166 8	206889	1 187
14	Bare	1	90	78	182 0	195432	1 121
15	Bare	l	90	78	197 2	184282	1 057
16	Bare	1	90	78	210 5	200583	1 151
17	Bare	l	90	11 6	92 5	254166	1 458
18	Bare	l	90	11 6	105 8	254442	1 460
19	Bare	l	90	11 6	121 0	259455	1 488
20	Bare	l	90	11 6	151 5	264577	1 518
21	Bare	1	90	11 6	166 8	268522	1 541
22	Bare	l	90	11 6	182 0	248947	1 428
23	Bare	1	90	11 6	197 2	236899	1 359
24	Bare	1	90	11 6	210 5	240696	1 381
25	Bare	1	90	15 4	92 5	263888	1 514
26	Bare	1	90	15 4	105 8	261593	1 501
27	Bare	1	90	15 4	121 0		
28	Bare	1	90	15 4	151 5	282014	T 0TQ
29	Bare	Ţ	90	15 4	100 0	270015	1 507 2 sha
30	Bare	Ţ	90	15 4 5 5 1	102 0	200013	1 543
31	Bare	1	90	15 4 ar h	TAU 5	251199	1 4/9
32	Bare	1	90	15 4	210 5	240160	1 3 10
33	Bare	3	90	40	92 5	125735	0 121
34	Bare	3	90	40	T02 0	113203	
35	Bare	3	90	40	121 U	114(4)	
36	Bare	3	90	4 U 1. o	171 7 166 9	TT (STO	0 672
37	Bare	<u>ろ</u>	90	4 U	180 0 TOO O	112772	
30	pare	د	90	4 U	TOS 0	C) C + +	

,

(Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>Run 118</u>	Run 1181										
FollFollModuleAngleRadialAxialNormalizedLocal toNumberTypeNumber(°cw)(°cm)(°cm)CountsFoll (X)39Bare3904 0197 21077550 61840Bare3907 892 51425250 81842Bare3907 8105 81335660 79541Bare3907 8121 01379440 79144Bare3907 8155 51413010 80346Bare3907 8166 81400180 80346Bare3907 8197 21313430 75447Bare3907 8105 81702660 97551Bare39011 692 51666900 95850Bare39011 6151 51842741 05753Bare39011 6197 21635070 93856Bare39011 6197 21635070 93856Bare39015 4105 81776981 01957Bare39015 4105 81776981 01958Bare39015 4105 81776981 01957Bare39015 4105 81776981 01958Bare					Loca	tion						
Number Type Number (*ew) (cm) (cm) Counts Foil (x) 39 Bare 3 90 4 0 197 2 107755 0 618 40 Bare 3 90 7 8 92 14237 0 714 41 Bare 3 90 7 8 125 0 137944 0 791 44 Bare 3 90 7 8 151 141301 0 811 45 Bare 3 90 7 8 182 136823 0 765 46 Bare 3 90 7 8 197 2 131343 0 754 48 Bare 3 90 11.6 105 8 170026 0 975 51 Bare 3 90 11.6 105 16271 1074438 1001 <	Foll	Foil	Module	Angle	Radial	Axial	Normalızed	Local to				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number	<u>Type</u>	Number	<u>(°cw)</u>	(cm)	<u>(cm)</u>	<u>Counts</u>	Foll (X)				
	39	Bare	3	90	40	197 2	107755	0 618				
41Bare3907892 5 1422525 000 42 Bare39078 105 8 138566 0795 43 Bare39078 151 5 141301 000 44 Bare39078 151 5 141301 000 45 Bare39078 151 5 141301 000 46 Bare39078 197 2 13343 0 754 48 Bare39078 197 2 13343 0 754 48 Bare39078 120 5137438 0 788 49 Bare390116 1058 170026 0 975 51 Bare390116 121 0 173633 0 996 52 Bare390116 162 0 174433 1 1001 54 Bare390116 162 1744331 1001 54 Bare390116 162 174433 1 1001 55 Bare39015 4 92 5 163273 919 57 Bare39015 4 92	40	Bare	3	90	40	210 5	124437	0 714				
42Bare3907810581385660795 43 Bare3907812101379440791 44 Bare3907812101379440791 45 Bare3907816681400180803 46 Bare3907818201368230785 47 Bare3907821051374380788 49 Bare3907821051374380788 49 Bare3901161210173663099650Bare3901161210173663099651Bare3901161220174438100154Bare3901161620174438100155Bare390116197216307093856Bare390116197216327091957Bare39015410581776981<019	41	Bare	3	90	78	92 5	142525	0 818				
43Bare39078121013794400014Bare390781668140018080346Bare390781668140018080346Bare390781820136823078547Bare390781210137438078849Bare390781210137438078849Bare390116925166950095850Bare3901161058170026097551Bare3901161515184274105753Bare3901161668174438100154Bare3901161972163507093856Bare3901161972163507093856Bare3901541058177698101957Bare3901541058177698101958Bare3901541058177698101959Bare <td>42</td> <td>Bare</td> <td>3</td> <td>90</td> <td>78</td> <td>105 8</td> <td>138566</td> <td>0 795</td>	42	Bare	3	90	78	105 8	138566	0 795				
44 Bare 3 90 7 8 151 5 141301 0 811 45 Bare 3 90 7 8 166 8 140018 0 803 46 Bare 3 90 7 8 182 0 136823 0 785 47 Bare 3 90 7 8 197 2 131343 0 754 48 Bare 3 90 11 6 125 131343 0 754 49 Bare 3 90 11 6 105 8 170026 0 975 51 Bare 3 90 11 6 151 5 184274 1 057 53 Bare 3 90 11 6 182 174438 1 001 54 Bare 3 90 11 6 197 2 16315 1 041 55 Bare 3 90	43	Bare	3	90	78	121 0	137944	0 791				
45 Bare 3 90 7 8 166 8 140018 0 803 46 Bare 3 90 7 8 197 2 131343 0 754 48 Bare 3 90 7 8 197 2 131343 0 754 48 Bare 3 90 11 6 92 5 166950 958 50 Bare 3 90 11 6 105 170026 0 975 51 Bare 3 90 11 6 151 184274 1 057 53 Bare 3 90 11 6 182 0 174438 1 001 54 Bare 3 90 11.6 197 163507 0 938 56 Bare 3 90 15.4 105 8 1040 58 Bare 3 90 15.4 151 18421 1047	44	Bare	3	90	78	151 5	141301	0 811				
40 Bare 3 90 7 8 182 0 131343 0 754 47 Bare 3 90 7 8 197 2 131343 0 754 48 Bare 3 90 7 8 197 2 131343 0 754 49 Bare 3 90 11 6 92 5 166950 0 958 50 Bare 3 90 11 6 105 8 170266 0 975 51 Bare 3 90 11 6 166 174412 1 001 54 Bare 3 90 11 6 166 174438 1 001 55 Bare 3 90 11 6 162 16273 0 919 57 Bare 3 90 15 h 158 1815 1<040	45 NC	Bare	3	90	78	166 8	140018	0 803				
41 Bare 3 90 7 8 197 2 13143 0 754 48 Bare 3 90 7 8 210 5 137438 0 758 49 Bare 3 90 11 6 92 5 166950 0 958 50 Bare 3 90 11 6 105 8 170026 0 975 51 Bare 3 90 11 6 121 0 173663 0 996 52 Bare 3 90 11 6 151 5 184274 1 057 53 Bare 3 90 11 6 162 1 1438 1 001 54 Bare 3 90 11 6 120 160273 0 919 5 57 Bare 3 90 15 h 105 8 177698 1 0196 60 Bare	40	Bare	3	90	78	182 0	136823	0 785				
40Bare39076210513/438078849Bare390116925166950095850Bare3901161058170026097551Bare3901161210173663099652Bare390116166817412100154Bare390116182017443100155Bare390116182017443100156Bare3901161972163507093856Bare39015k105160273091957Bare39015k105163151104058Bare39015k105182421104761Bare39015k1210190976109660Bare39015k1821164752101263Bare39015k1972171216098264Bare3270401212142981<229	41 118	Bare	3	90	78	10.05	131343	0 754				
+y Dare 3 90 11 6 92 5 160590 0 975 50 Bare 3 90 11 6 105 8 170026 0 975 51 Bare 3 90 11 6 121 0 173663 0 996 52 Bare 3 90 11 6 151 5 184274 1 057 53 Bare 3 90 11 6 162 0 174438 1 001 54 Bare 3 90 11 6 182 0 174438 1 001 55 Bare 3 90 11 6 182 0 174438 1 001 55 Bare 3 90 15 4 92 5 181315 1 040 58 Bare 3 90 15 4 105 8 177698 1 019 59 Bare 3 90 15 4 166 8 189458 1 087 61 Bare 3 90 15 4 197 2 17216 0 982 64 Bare 3 270 4 0	40 ho	Dare	3	90	70	210 5	137438	0 788				
50hare3901161210170020099651Bare3901161210173663099652Bare39011615151842741105753Bare3901161668174412100154Bare3901161820174438100155Bare3901161972163507093856Bare390154925181315104058Bare3901541058177698101959Bare3901541210190976109660Bare3901541210190976109661Bare3901541210190976109662Bare390154197217216098264Bare390154197217216098264Bare327040121021h29812294Bare327040121021h29812294Bare <td< td=""><td>49 50</td><td>Bare</td><td>3</td><td>90</td><td></td><td>92 5 105 8</td><td>100950</td><td>0 958</td></td<>	49 50	Bare	3	90		92 5 105 8	100950	0 958				
j_2 j_3 j_4 j_1 j_1 j_1 j_1 j_1 j_1 j_1 j_1 j_1 j_2 j_1 j_1 j_1 j_1 j_1 j_2 j_1 j_2 j_1 j_1 j_1 j_2 j_1 j_2 j_1 j_1 j_1 j_1 j_1 j_2 j_2 j_1 <th< td=""><td>51</td><td>Bare</td><td>2</td><td>90</td><td>11 6</td><td>102 0</td><td>172662</td><td>0 975</td></th<>	51	Bare	2	90	11 6	102 0	172662	0 975				
53 Bare 3 90 11 6 171 104214 1051 53 Bare 3 90 11 6 166 171412 1001 54 Bare 3 90 11 6 182 174438 1001 55 Bare 3 90 11 6 197 163507 0 938 56 Bare 3 90 11 6 197 163507 0 938 57 Bare 3 90 15 4 92 5 181315 1040 58 Bare 3 90 15 k 105 8 177698 1019 59 Bare 3 90 15 k 182 176452 1012 61 Bare 3 90 15 k 182 171216 0 982 61 Bare 3 90 15 k 182 171216 0 982 62 Bare	52	Bare	2	90 00	11 0	151 5	18002	0 996				
54 Bare 3 90 11 6 180 0 11443 1 001 55 Bare 3 90 11 6 197 2 163507 0 938 56 Bare 3 90 11 6 210 5 160273 0 919 57 Bare 3 90 15 4 92 5 181315 1 040 58 Bare 3 90 15 k 105 8 177698 1 019 59 Bare 3 90 15 k 121 190976 1 096 60 Bare 3 90 15 k 121 190976 1 097 61 Bare 3 90 15 k 182 1 1047 61 Bare 3 90 15 k 197 2 171216 0 982 64 Bare 3 270 4 0	53	Bare	3	90		166 8	17)()(12)	1 001				
55 Bare 3 90 11 6 197 2 163507 0 938 56 Bare 3 90 11 6 210 5 160273 0 919 57 Bare 3 90 15 4 92 5 181315 1 040 58 Bare 3 90 15 4 105 8 177698 1 019 59 Bare 3 90 15 4 105 8 177698 1 047 61 Bare 3 90 15 4 166 8 189458 1 087 62 Bare 3 90 15 4 182 176452 1 012 63 Bare 3 90 15 4 197 2 171216 0 982 64 Bare 3 270 4 0 121 2 21428 1 229 4 Bare 3	54	Bare	3	90	11 6	182 0	174428	1 001				
56 Bare 3 90 11 6 210 5 160273 0 919 57 Bare 3 90 15 4 92 5 181315 1 040 58 Bare 3 90 15 k 105 8 177698 1 019 59 Bare 3 90 15 k 121 0 190976 1 096 60 Bare 3 90 15 k 151 5 182421 1 047 61 Bare 3 90 15 k 182 176452 1 012 63 Bare 3 90 15 k 182 171216 0 982 64 Bare 3 90 15 k 210 5 164896 0 946 Run 1182 1 Bare 3 270 4 0 121 2 124298 1 202 4	55	Bare	3	90	11 6	197 2	163507	0 038				
57 Bare 3 90 15 4 92 5 181315 1 040 58 Bare 3 90 15 k 105 8 177698 1 019 59 Bare 3 90 15 k 121 0 190976 1 096 60 Bare 3 90 15 k 151 5 182421 1 047 61 Bare 3 90 15 k 168 189458 1 087 62 Bare 3 90 15 k 182 1 1047 61 Bare 3 90 15 k 182 1 047 63 Bare 3 90 15 k 197 171216 0 982 64 Bare 3 270 k 0 105 8 208327 1 195 3 Bare 3 270 k 0 121 2	56	Bare	3	90	ii ő	210 5	160273	0 919				
58 Bare 3 90 15 h 105 8 177698 1019 59 Bare 3 90 15 h 121 0 190976 1096 60 Bare 3 90 15 h 151 5 182421 1047 61 Bare 3 90 15 h 166 8 189458 1087 62 Bare 3 90 15 h 182 0 176452 1012 63 Bare 3 90 15 h 197 2 171216 0982 64 Bare 3 90 15 h 210 5 164896 0946 Run 1182 1 Bare 3 270 4 0 105 8 208327 1 195 3 Bare 3 270 4 0 121 0 214298 1 2229 4 Bare 3 270 4 0 151 5 211242 1 212 5 Bare 3 270 4 0 182 0 211733 1 215 6 Bare <	57	Bare	3	90	15 4	92 5	181315	1040				
59 Bare 3 90 15 \ \ 121 0 190976 1 096 60 Bare 3 90 15 \ \ 151 5 182421 1 047 61 Bare 3 90 15 \ \ 166 8 189458 1 087 62 Bare 3 90 15 \ \ 182 0 176452 1 012 63 Bare 3 90 15 \ \ 197 2 171216 0 982 64 Bare 3 90 15 \ \ 210 5 164896 0 946 Run 1182 1 Bare 3 270 \ 4 0 92 5 209446 1 202 2 Bare 3 270 \ 4 0 105 8 208327 1 195 3 Bare 3 270 \ 4 0 151 5 211242 1 212 4 Bare 3 270 \ 4 0 151 5 211242 1 212 5 Bare 3 270 \ 4 0 197 2 203238 1 166 7 Bare 3 270 A 0 197 2<	58	Bare	3	90	15 4	105 8	177698	1 019				
	59	Bare	3	90	15 4	121 0	190976	1 096				
	60	Bare	3	90	15 4	151 5	182421	1 047				
62 Bare 3 90 15 182 0 176452 1012 63 Bare 3 90 15 197 2 171216 0982 64 Bare 3 90 15 4 197 2 171216 0982 64 Bare 3 90 15 4 210 5 164896 0946 Run 1182 1 Bare 3 270 4 0 92 5 209446 1 202 2 Bare 3 270 4 0 105 8 208327 1 195 3 Bare 3 270 4 0 121 214298 1 229 4 Bare 3 270 4 0 197 2 203238 1 166 7 Bare 3 270 7 8 92 5 194471 <td>61</td> <td>Bare</td> <td>3</td> <td>90</td> <td>15 4</td> <td>166 8</td> <td>189458</td> <td>1 087</td>	61	Bare	3	90	15 4	166 8	189458	1 087				
63 Bare 3 90 15 4 197 2 171216 0 982 64 Bare 3 90 15 4 210 5 164896 0 946 Run 1182 1 Bare 3 270 4 0 92 5 209446 1 202 2 Bare 3 270 4 0 105 8 208327 1 195 3 Bare 3 270 4 0 121 0 214298 1 229 4 Bare 3 270 4 0 151 5 211242 1 212 5 Bare 3 270 4 0 197 2 203238 1 166 7 Bare 3 270 4 0 197 2 203238 1 166 7 Bare 3 270 7 8 92 5 194471 1 116	62	Bare	3	90	15 4	182 0	176452	1 012				
64 Bare 3 90 15 4 210 5 164896 0 946 Run 1182 1 Bare 3 270 4 0 92 5 209446 1 202 2 Bare 3 270 4 0 105 8 208327 1 195 3 Bare 3 270 4 0 121 0 214298 1 229 4 Bare 3 270 4 0 151 5 211242 1 212 5 Bare 3 270 4 0 182 0 211733 1 215 6 Bare 3 270 4 0 197 2 203238 1 166 7 Bare 3 270 7 8 92 5 194471 1 116 9 Bare 3 270 7 8 105 8 194029 1 113 10	63	Bare	3	90	15 4	197 2	171216	0 982				
Run 11821Bare32704092520944612022Bare327040105820832711953Bare327040121021429812294Bare327040151521124212125Bare327040182021173312156Bare327040197220323811667Bare327040210520056111518Bare32707892519447111169Bare3270781058194029111310Bare3270781515211503121312Bare3270781515211503121312Bare3270781972185085106213Bare3270781972185085106214Bare32707821051927201106	64	Bare	3	90	15 4	210 5	164896	0 946				
1 Bare 3 270 4 0 92 5 209446 1 202 2 Bare 3 270 4 0 105 8 208327 1 195 3 Bare 3 270 4 0 121 0 214298 1 229 4 Bare 3 270 4 0 151 5 211242 1 212 5 Bare 3 270 4 0 182 0 211733 1 215 6 Bare 3 270 4 0 197 2 203238 1 166 7 Bare 3 270 4 0 197 2 203238 1 166 7 Bare 3 270 4 0 210 5 200561 1 151 8 Bare 3 270 7 8 92 5 194471 1 116 9 Bare 3 270 7 8 105 8 194029 1 113 10 Bare 3 270 7 8 151 5 211503 1 213 12 Bare 3 270 7 8 <t< td=""><td>Run 1182</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Run 1182	2										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l	Bare	3	270	4 O	92 5	209446	1 202				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Bare	3	270	40	105 8	208327	1 195				
4 Bare 3 270 40 151 5 211242 1 212 5 Bare 3 270 40 182 0 211733 1 215 6 Bare 3 270 40 197 2 203238 1 166 7 Bare 3 270 40 210 5 200561 1 151 8 Bare 3 270 7 8 92 5 194471 1 116 9 Bare 3 270 7 8 105 8 194029 1 113 10 Bare 3 270 7 8 121 0 205857 1 181 11 Bare 3 270 7 8 151 5 211503 1 213 12 Bare 3 270 7 8 182 0 189240 1 086 13 Baré 3 270 7 8	3	Bare	3	270	4 O	121 0	214298	1 229				
5 Bare 3 270 40 1820 211733 1215 6 Bare 3 270 40 1972 203238 1166 7 Bare 3 270 40 2105 200561 1151 8 Bare 3 270 78 925 194471 1116 9 Bare 3 270 78 1058 194029 1113 10 Bare 3 270 78 1210 205857 1181 11 Bare 3 270 78 1515 211503 1213 12 Bare 3 270 78 1515 211503 1213 12 Bare 3 270 78 1820 189240 1086 13 Baré 3 270 78 1972 185085 1062 14 Bare 3 270 78 1972 185085 1062	4	Bare	3	270	4 O	151 5	211242	1 212				
6 Bare 3 270 40 197 2 203238 1 166 7 Bare 3 270 40 210 5 200561 1 151 8 Bare 3 270 7 8 92 5 194471 1 116 9 Bare 3 270 7 8 105 8 194029 1 113 10 Bare 3 270 7 8 121 0 205857 1 181 11 Bare 3 270 7 8 151 5 211503 1 213 12 Bare 3 270 7 8 182 0 189240 1 086 13 Baré 3 270 7 8 197 2 185085 1 062 14 Bare 3 270 7 8 210 5 192720 1 106	5	Bare	3	270	4 O	182 0	211733	1 215				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Bare	3	270	4 O	197 2	203238	1 166				
8 Bare 3 270 7 8 92 5 194471 1 116 9 Bare 3 270 7 8 105 8 194029 1 113 10 Bare 3 270 7 8 121 0 205857 1 181 11 Bare 3 270 7 8 151 5 211503 1 213 12 Bare 3 270 7 8 182 0 189240 1 086 13 Bare 3 270 7 8 197 2 185085 1 062 14 Bare 3 270 7 8 210 5 192720 1 106	7	Bare	3	270	40	210 5	200561	1 151				
9 Bare 3 270 7 8 105 8 194029 1 113 10 Bare 3 270 7 8 121 0 205857 1 181 11 Bare 3 270 7 8 151 5 211503 1 213 12 Bare 3 270 7 8 182 0 189240 1 086 13 Baré 3 270 7 8 197 2 185085 1 062 14 Bare 3 270 7 8 210 5 192720 1 106	8	Bare	3	270	78	92 5	194471	1 11 6				
10 Bare 3 270 7 8 121 0 205857 1 181 11 Bare 3 270 7 8 151 5 211503 1 213 12 Bare 3 270 7 8 162 0 189240 1 086 13 Bare 3 270 7 8 197 2 185085 1 062 14 Bare 3 270 7 8 210 5 192720 1 106	9	Bare	3	270	78	105 8	194029	1 113				
11Bare3 270 781515 211503 1 213 12Bare3 270 781820189240108613Bare3 270 781972185085106214Bare3 270 7821051927201106	70 T0	Bare	3	270	78	121 0	205857	1 181				
12 Bare 3 210 18 182 0 189240 1 086 13 Bare 3 270 7 8 197 2 185085 1 062 14 Bare 3 270 7 8 210 5 192720 1 106	⊥⊥ 10	Bare	3	270	78	151 5	211503	1 213				
13 Bare 5 210 18 1972 185085 1 062 14 Bare 3 270 7 8 210 5 192720 1 106	12	Bare	ゴ	270	78	102 0	189240	1 086				
T4 Date 2 510 10 510 2 735150 T 100	ر تـ	bare Bare	2	21U 270	10	191 E	105005	T 062				
	<u>ـ</u> ++		د	210	10	5T0)	TACIEN	T T00				

(Continued)
(concrined)

				Loca	tion		
Foil Number	Foil Type	Module Number	Angle (°cw)	Radıal (cm)	Axıal (cm)	Normalızed Counts	Local Foil (X)
15 16 17 18 19 20 21 22 23 24 25 26 27 28	Bare Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	270 270 270 270 270 270 270 270 270 270	11 6 11 6 11 6 11 6 11 6 11 6 11 6 15 4 15 4 15 4 15 4 15 4 15 4	92 5 105 8 121 0 151 5 182 0 197 2 210 5 92 5 105 8 121 0 151 5 182 0 197 2 200 5	162716 153147 163614 158861 148729 143640 159290 130061 119911 121298 131828 117993 112231	0 934 0 879 0 939 0 911 0 853 0 824 0 914 0 746 0 688 0 696 0 756 0 677 0 644
20 Run 118;	Bare 3	2	210	17 4	210.2	133030	0 768
1 2 3 4	Cd Cov Cd Cov Cd Cov Cd Cov Cd Cov	1 1 3 3	90 90 90 90	4 0 15 4 4 0 15 4	182 0 182 0 182 0 182 0	6301 6349 4349 4407	25 3 42 3 26 2 40 0

Bare Gold Foil Data

7-Module Cavity Reactor - 0 38 Radius Ratio

With Hydrogen

<u>Run 1181</u>

		Locat	tion	Foil	Specific	
Foll Number	Foll Type	Radial (cm)	Axial (cm)	Weight (g)	Activity d/m-g x 10	Local to Foil (X)
l	Bare	0	894	0 0359	7 797	1 137
2	Bare	0	74 9	0 0396	10 233	1 492
3	Bare	0	596	0 0360	7 701	1 123
λţ	Bare	0	կկ կ	0 04006	5 090	0 742
5	Bare	0	29 1	0 04283	2 934	0 428
6	Bare	0	13 9	0 0357	1 508	0 220
7	Bare	0	0	-0 0360	0 199	0 029
8	Bare	93 2	151 1	0 0348	8 530	1 244
9	Bare	107 7	151 1	0 0343	6 830	0 996
10	Bare	123 0	151 1	0 0379	4 906	0 715
11	Bare	138 2	151 1	0 0374	3 254	0 474
12	Bare	153 4	151 1	0 0347	1 977	0 288
13	Bare	168 7	151 1	0 0352	0 893	0 130
14	Bare	183 7	151 1	0 0353	0 122	0 018
	Module	1, 90° cw			6 0	
15	Bare	40	136 3	0 0350	6 859	1 000(X)
16	Bare	·7 8	136 3	0 0358	7 923	1 155
17	Bare		136 3	0 0344	11 022	1 607
10	Bare	15 4 3 00° or	T30-3	0 0351	10 191	1 486
10	Bare	5,90 Cw	126 2	0 035)	1 035	0 710
20	Bare	78	136 3	0 0350	5 786	0 800
21	Bare	10	136 3	0 0350	6 556	0 044
22	Bare	15 4	136.3	0.0361	6 856	1 000
	Travers	se from Mod	hule l to	Module 3	/ -	
23	Bare	23 6	151 1	0 0357	11 400	1 662
24	Bare	28 7	151 1	0 0350	13 078	1 907
25	Bare	34 0	151 1	0 0356	13 290	1 938
26	Bare	39 4	151 1	0 0354	11 832	1 725
27	Bare	44 4	151 1	0 0347	8 922	1 301
	Travers	se Between	Modules	5 & 6	·	
28	Bare	90 7	151 1	0 0349	8 638	1 259
29	Bare	83 8	151 1	0 0352	9 946	1 450
30	Bare	762	151 1	0 0347	9 838	1 434
31	Bare	68 6	151 1	0 0346	12 061	1 758
32	Bare	61 0	151 1	0 0355	11 586	1 689
33	Bare	53 3	151 1	0 0350	12 172	1 775
34	Bare	457	151 1	0 0367	13 065	1 905
35	Bare	38 l	151 1	0 0367	14 121	2 059

(Continued)

<u>Run 1181</u>		. <u> </u>				
		Locat	lon	Forl	Specific	
Forl	Foll	Radial	Axial	Weight	Activity >	Local to
Number	Type	<u>(cm)</u>	(cm)	(g)	<u>d/m-g x 10⁻⁶</u>	Foil (X)
36	Bare	30.5	151 1	0 0369	13 037	2 032
37	Bare	23 6	151 1	0 0361	11 614	1 693
51		-0 -				/ 0
Run 1182						
l	Cd Cov	0	89 4	0 0349	2 029	
2	Cd Cov	0	59 6	0 0349	0 250	
3	Cả Cov	0	291	0 0349	0 007	
4	Cd Cov	93 2	1 51 1	0 0350	0 652	
5	Cd Cov	123 0	151 1	0 0350	0 025	
6	Cd Cov	153_4	151 1	0 0348	0 004	
	Module 3,	270° cw	_		_	
7	Bare	15 4	136 3	0 0349	7 693	1 122
8	Bare	11 6	136 3	0 0350	7 309	1 066
9	Bare	78	136 3	0 0350	6 155	0 897
10	Bare	40	136 3	0 0349	4 935	0 719
11	Cd Cov	40	166 8	0 0352	1 638	
12	Cd Cov	15 4	166 8	0 0354	1 597	
	Traverse	from Modu	le l to	Module 3		
13	Cd Cov	23 6	151 1	0 0352	2 559	
14	Cd Cov	34 0	151 1	0 0351	2 411	
15	Cd Cov	44 4	151 1	0 0350	1 935	
	Traverse	Between M	odules 5	5 & 6		
- 16	Cd Cov	83 8	151 1	0 0348	0 982	
17	Cd Cov	53 3	151 1	0 0350	2 040	
18	Cd Cov	23 6	151 1	0 0353	2 563	
Run 1183						
л	Powo	0	80 E	0.0262	10 017	
1 2	Bare	0	67.0	0 0302	10 280	1 490
2	Bare	0	52.0	0 0355	LU 209	0.800
ر ۱	Bare	100 1	151 1	0 0351	7 628	1 11)
4 5	Bare	115 h	151 I	0 0352	5 816	1 114 0 850
6	Bare	130.2	157 1	0 0358) 040 h 057	0 501
Ŭ	Modulal	1002	1)1 1	0 0300	4 001	0)91
7	Cd Corr	, 90	126 2	0.0210	a alia	
l g	Cd Cov	15 h	126 2	0 0349	2 242	
U	Modulo 2	100°	T20 2	0 03)1	2 392	
0	Cd Corr	, 90	126 2	0.0251	1 506	
9		4 U 1 E li	126 2	0 0351	1 520	
ΤŪ	UL UUV	エラ 4 from Mod	ک טכ <u>ד</u> - + ۱ مווי	U USOU Modulo O	T OTT	
7 7	Cd Com		עדה ד PC	N USEN	0 601	
10	Cd Cov	20 1	エノエ エ コ 5 1 コ	0 0250	2 001 2 005	
エピ	cu cov	J7 4	エノエーエ	0 0349	<i>2 22</i> 7	

(Continued)

<u>Run 1183</u>						
		Locat	tion	Foil	Specific	
Foil <u>Number</u>	Foll Type	Radial (cm)	Axial (cm)	Weight (g)	Activity_6 d/m-g_x_10	Local to Foil (X)
13 14 15	Traverse Cd Cov Cd Cov Cd Cov Cd Cov	Between 90 7 68 6 38 1	Modules 151 1 151 1 151 1	5 & 6 0 0351 0 0425 0 0475	0 656 1 674 1 985	

Gold Foil Cadmium Ratios

7-Module Cavity Reactor - 0 38 Radius Ratio

With Hydrogen

I	Locat	lon			Inf:	inite	ly D:	Llute	e Foil	Ac.	tivity		
Rad:	ıal	Axial	Module	Angle			d/m-	-g :	< 10 ⁻⁰			Cad	lmıum
<u>(cr</u>	n)	(cm)	Number	(°cw)	Bare	e Gol	<u>d</u>			Cd	Gold	Ra	<u>itio</u>
0		894	End Ret	flector	10	504				ų	713	2	229
0		596	End Ref	flector	8	035				0	581	13	838
0		29 1	End Rei	flector	2	944				0	016	180	855
93	2	151 1	Radial	Reflector	9	393				1	516	6	195
123	0	151 1	Radial	Reflector	4	940				0	058	84	976
153	4	151 1	Radial	Reflector	l	982				0	009	213	616
4	0	136 3	l	90	9	827				5	207	l	887
15	4	136 3	1	90	13	368				5	569	2	400
4	0	136 3	3	90	6	967				3	553	1	961
15	4	136 3	3	90	9	011				3	746	2	406
4	0	136 3	3	270	7	109				3	818	l	862
15	4	136 3	3	270	9	818				3	731	2	631
		Traverse	e from M	Module 1 to	Mođi	ıle 3							
23	6	151 1			14	820				5	964	2.	485
28	7	151 1			16	525				6	048	2	732
34	0	151 1			16	506				5	613	2	941
39	4	151 1			14	788				5	168	2	861
44	4	151 1			11	480				4	500	2	551
		Traverse	e From M	iodule 1 Be	tweer	15&	6						
23	6	151 1	•		15	055				5	980	2	517
38	1	151 1			17	154				5	245	3	271
53	3	151 1			14	876				4	744	3	136
68	6	151 1			14	457				4	219	3	427
83	8	151 1			11	247				2	278	4	937
90	7	151 1			9	508				l	527	6	226
~			······							<u> </u>			·

Thermal Neutron Flux

7-Module Reactor - 0 38 Radius Ratio

With Hydrogen

	Locat:	lon							
Radi	al	Axia	l	Module	Ang	le	Thermal	Neutron Flux	
(cn	n)	(cm)	_	Number	(°c	w)	(n/cm ² -se	c-watt x 10 ⁻⁶)_	
0		80)լ	Find Ref	Plector		3	8)15	
n n		50	 6	End Ref	Plector		հ	oho	
0 0		20	ט ז	End Ref	Plactor		1	0hh	
03	2	151		Badaal	Reflect	or	т Е	220	
103	0	151	ት ገ	Padral	Poflect	or	ר זי	229 201	
152	հ	151		Podrol	Dofloat		כ ר	210	
כרד א	4	126	- >	naurar	Nei Lect	01		210	
- 4 าธ	Ն հ	126	່າ	ב. ר	5 C		ے د	178	
エノ	4	106	ວ ວ	- -	2		ر د	10	
4 16	<u></u> ь	126	ວ າ	2	5	0	2	001 179	
エフ	4	120	3	2	ל סס	10	2		
4	0 1.	130	3	3	21	0	2	105	
72	4	130	3	3	27	0 .	4	041	
~ ~	/	Trav	erse	from Moo	iule I 'I	hrough	Module 3	0=0	
23	6	151 ·	_ _	3			5	879	
28	7	151	1	3			6	956	
34	0	151	1	3			7	232	
39	4	151 .	1	3			6	386	
44	4	151 .	1	3			4	634	
		Trav	erse	From Mod	lule 1 E	letween	5 & 6		
23	6	151	1	3			6	024	
38	l	151 .	1	3			7	906	
53	3	151	l	3			6	726	
68	6	151 .	1	3			6	797	
83	8	151	1	3			5	954	
90	7	151	1	3			5	298	

Figure 7 1 Fuel placement on disks Full sheets (2 and 5) will be double thickness Only three out of four half-size sheets (single thickness) will be on any given disk 7-module reactor with 0.388 radius ratio loading

Figure 7.2 Uranium worth measurements, 7-module reactor with 0 38 fuel to module radius ratio

Figure 7 3 Relative axial power distribution in module 1, 90° at the core centerline, 7-module reactor with 0 38 fuel to module radius ratio

Figure 7.4 Relative axial power distribution in module 3, 90° at the core centerline, 7-module reactor with 0 38 fuel to module radius ratio

Figure 7 5 Relative axial power distribution in module 3, 270° at the core centerline, 7-module reactor with 0 38 fuel to module radius ratio

Figure 7 6 Normalized power distribution vs radius and angle, the plotted points are longitudinally averaged over core length

Figure 7.7 Bare gold activity and thermal flux in radial reflector, 7-module cavity reactor 0 38 radius ratio

Figure 7.8 Bare gold activity and thermal flux in end reflector, 7-module cavity reactor 0.38 radius ratio

Figure 7.9 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 7-module reactor with 0 38 radius ratio

~

Figure 7.10 Radial distribution of thermal neutron flux from module 1 through the D₂O between modules 5 & 6 and into the radial reflector, 7-module reactor with 0 38 radius ratio

Figure 7.11 Infinitely dilute cadmium ratios from module 1 and between modules 5 & 6, 0.38 radius ratio

Figure 7.12 Gold foil cadmium ratio - module 1 through module 3, 0.38 fuel to module radius ratio

8.0 0 55 RADIUS RATIO WITHOUT HYDROGEN

Hydrogen coolant between the fuel regions and the heavy water reflector-moderator has a dual, deleterious effect on reactivity It both absorbs neutrons and acts as a diffusion barrier preventing the free migration of neutrons between the fuel and reflector Though the hydrogen does very effectively moderate the fast neutrons, this benefit is not very significant in a large reactor such as this, where fast leakage is not severe.

It is of value to know the reactivity penalty caused by the hydrogen, because there is some latitude available in engineering operating conditions of pressure, temperature, and annular thickness for this coolant. The hydrogen was removed from the 0 55 radius ratio configuration, which had a critical mass of 8 65 kg with hydrogen in the cavity.

8.1 Initial Loading

Loading of this configuration commenced with the 0.72 radius ratio configuration with hydrogen. One module at a time was converted by removing the hydrogen (styrofoam) and the outer two rings of fuel The net penalty was negative, averaging approximately -0 1%kk per module In order to obtain the needed reactivity to remain critical, the nozzle plug was installed. The apparent worth of the plug was 0 96%kk This plug was a complete cylinder, not the tank-inside-of-a-tank arrangement measured separately on the configuration with hydrogen and reported in Table 5.6. When the modification of all seven modules was completed, the mass of fuel in the reactor was 7.82 kg of uranium and

Kexcess was +0 36% Ak with the nozzle plug in or -0.60% Ak with the plug out.

The fuel loading on each of the rings and disks is tabulated in Table 81, where a comparison tabulation of the 0 55 radius ratio configuration with hydrogen is also shown. The configuration without hydrogen had a small proportion of its fuel on the disks (16%) compared to the configuration with hydrogen (21%), but the difference should have negligible effect on the critical mass comparisons.

8 2 Reactivity Measurements

Fuel worth was measured in this configuration by the methods used on the three previous configurations Three major traverses of longitudinally averaged fuel worth were made The results are tabulated in Table 8.2 and shown graphically in Figure 8 1. The average fuel worth in the core region (to 0 55 radius ratio) was 3 95% Ak/kg This is essentially the same value as obtained on the 0 55 radius ratio core without hydrogen, ie, the difference in loading and removal of hydrogen in combinations did not create a statistically significant different value for the fuel worth. Aluminum worths were measured along three characteristic planes in the fuel region. These results are tabulated in Table 8 3, and are about 25% larger (averaged) than the corresponding aluminum worths measured in the 0.55 radius ratio core with hydrogen. Using the fuel worth given above, the critical loading (k=1.00) without the nozzle plug would have been 7.97 kg (or 7.73 kg with the nozzle plug in place)

8.3 Power Distributions

Power distributions were determined along one major radial plane in the central module and along the two major planes in a typical outer module, as was done in the other three configurations. The relative fission power distributions are given in Table 8.4 and are graphically presented in Figures 8.2 to 8.4 as point values and in Figure 8.3 as the radial dependence of longitudinally averaged values

There are two different characteristics of the power distribution on this configuration compared to that on the similar configuration without hydrogen

- 1) The power near the outer edges of the fuel is slightly (2 to 5%) higher in the present configuration than in that with hydrogen. This is probably caused by the removal of the absorbing, diffusion barrier effect of hydrogen.
- 2) The power at the exit (nozzle) end of the center module is about 10% higher in this configuration This effect is simply because this reactor was power mapped with the nozzle plug inserted, and the hydrogen vs no hydrogen was not the cause of the power shift.

8 4 Flux Distribution

Gold, both bare and cadmium covered, was used to obtain cadmium ratios and hence thermal fluxes in various parts of the reactor. The direct gold data is given in Table 8 5 and Figures 8 6 to 8 9. The resulting thermal fluxes are in Table 8 6 and Figure 8.8 to 8.11.

Comparison of these thermal flux traverses with those on the 0.55 radius ratio configuration with hydrogen (Section 5 4) shows a slight indication of differences in the region where there was hydrogen. The flux shows slight peaking when the hydrogen is present. The anomalous dip in the flux between modules 5 and 6 as shown on Figure 5 32 has not appeared on any other configurations, and hence should not be considered relevant to the comparisons of the configurations with and without hydrogen.

table 8 1

Comparison of Loading

With and Without Hydrogen

0 55 Radius Ratio

A) Loading of Fuel Rings - 0 55 Radius Ratio

	Ring	Without Hydrogen	With Hydrogen	(Section 5)
	<u>No.</u>	No of Sheets	No of a	Sheets
	1 1		l	
	2 2		2	
	3 4		3	
	4 4 5 5		5	
	6 6 7	(on 4 elements) (on 3 elements)	8 7	
	Total on r: of 7 elemen	nts 2512	2688	
B)	Loading of	Fuel Disks (See Figu	re 5 4)	
	_	Without Hydrogen	<u>With Hydrogen</u>	
	50 21	6 full-sıze sheets 4 half-sıze sheets	72 full-size she 60 half-size she	eets eets
	Total equiv full-size :	valent sheets 476	ፖ፲ኳ	
C)	<u>Total Fuel</u>	Loading in Reactor		
		Without Hydrogen	With Hydrogen	
		7 82 kg	8 91 kg	

-

Uranium Worth Measurements

7-Module Reactor - 0 55 Radius Ratio

No Hydrogen in Reactor

	Loca	ation			
Module	Angle (°cw)	Radıus (cm)	U Mass (g)	Reactivity Change (%Δk)	Uranıum Worth %∆k/kg
1 1 1 3 3 3 3 3	90 90 90 90 90 90 90 90 90	4 0 7 8 11 6 15 4 4 0 7 8 11 6 15 4	7 28 7 28 7 28 7 28 7 28 7 28 7 28 7 28	0 0392±0 003 0 0444±0 003 0 0505±0 003 0 0637±0 003 0 0210±0 003 0 0240±0 003 0 0252±0 003 0 0320±0 003	$5 38\pm0 41 6 10\pm0 41 6 94\pm0 41 8 75\pm0 41 2 89\pm0 41 3 30\pm0 41 3 46\pm0 41 4 40\pm0 41$
Co	270 270 pre avera	78 154 age fuel t	worth = 3	0 0272±0 003 0 0404±0 003 95% Δk/kg	3 74±0 41 5 55±0 41

Aluminum Worth Measurements

7-Module Reactor Without Hydrogen

Exhaust Nozzle in Reactor

	Loca	ation					
Module	Angle	Radıus	Mass	Reactivity Change	Specific Worth		
	(°cw)	(cm)	(g)	(% <u>Ak</u>)	<u>%Ak/kg</u>		
1	90	Avg	540	-0 0337±0 003	(6 24±0 56)×10 ⁻²		
4	150	Avg	540	-0 0087±0 003	(1 61±0 56)×10 ⁻²		
4	330	Avg	540	-0 0217±0 003	(4 02±0 56)×10 ⁻²		

Catcher Foll Data

7-Module Reactor - 0 55 Radius Ratio

No Hydrogen

<u>Run 1178</u>

				Loca	tion		
Foll Number	Foil Type	Module Number	Angle (°cw)	Radial (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)
1	Bare	1	90	<u></u> 40	92 5	219582	1 050
2	Bare	ĩ	90	4 O	105 8	199585	0 954
3	Bare	1	90	4 O	121 0	216198	1 033
4	Bare	1	90	40	151 5	209032	1 000 (X)
5	Bare	1	90	4 O	182 0	205134	0 981 ``
6	Bare	l	90	4 O	1972	185945	0 889
7	Bare	l	90	4 O	210 5	217367	1 039
8	Bare	l	90	78	92 5	228872	1 094
9	Bare	1	90	78	105 8	214074	1 023
10	Bare	1	90	78	121 0	221946	1 061
11	Bare	l	90	78	151 5	226151	1 081
12	Bare	1	90	78	182 0	223993	1 071
13	Bare	1	90	78	197 2	204792	0 979
14	Bare	1	90	78	210 5	214152	1 024
15	Bare	1	90	11 6	92 5	231313	1 106
16	Bare	1	90	11 6	105 8	237738	1 136
17	Bare	1	90	11 6	121 0	244618	1 169
18	Bare	1	90	11 6	151 5	243123	1 162
19	Bare	1	90	11 6	182 0	236574	1 131
20	Bare	1	90	11 6	197 2	217682	1 041
21	Bare	1	90	11 6	210 5	235828	1 127
22	Bare	1	90	15 4	92 5	267116	1 277
23	Bare	1	90	15 4	105 8	272033	1 300
24	Bare	1	90	15 4	121 0	273704	1 308
25	Bare	1	90	15 4	151 5	282632	1 351
26	Bare	1	90	15 4 25 h	182 0	261306	1 249
21	Bare	1	90	15 4 25 h	197 2	254505	1 217
20	Bare	<u>т</u>	90	15 4	5T0 2	247991	1 185
29	,Bare	3	90	40	92 5	T03220	0 782
30 01	Bare	3	90	40	105 0	154273	0 737
21	Bare	3	90	40	121 0	156342	0'' 4''
32	Bare	2	90	40	151 5	156155	0 746
ゴゴ	Bare	3	90	40	195 0	147517	0 705
34 25	Bare	3	90	40	197 2	143137	0 684
ゴン	Bare	3	90	4 0	510-2	176898	0 750
						··	

(Continued)

<u>Run 1178</u>

Foil <u>Number</u>	Foil Type	Module Number	Angle <u>(°cw)</u>	Radıal (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)
36 37 38 39 40 41	Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	90 90 90 90 90 90	78 78 78 78 78 78 78 78	92 5 105 8 121 0 151 5 182 0 197 2 210 5	167400 147212 158888 158791 158749 141050 153448	0 800 0 704 0 759 0 759 0 759 0 674 0 733
43 44 45 46 47 48 49 50 51 52 53	Bare Bare Bare Bare Bare Bare Bare Bare	,	90 90 90 90 90 90 90 90 90 90	11 7 11 7 11 7 11 7 11 7 11 7 11 7 15 4 15 4 15 4 15 4 15 4	92 5 105 8 121 0 151 5 182 0 197 2 210 5 92 5 105 8 121 0 151 5	174279 165848 178521 170396 168103 153203 158697 184741 193376 195411 201681	0 833 0 793 0 853 0 814 0 804 0 732 0 759 0 883 0 924 0 934 0 964
54 55 56 Run 1179	Bare Bare Bare	3 3 3	90 90 90	15 4 15 4 15 4	182 0 197 2 210 5	187282 173724 162303	0 895 0 830 0 776
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29	Bare Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	270 270 270 270 270 270 270 270 270 270	15 4 15 4 15 4 15 4 15 4 15 4 15 4 11 5 4 11 6 6 11 6 6 11 6 11 6 11 6 11 7.8 7 8 7 8 7 8 7 8	$\begin{array}{c} 92 \\ 5\\ 105 \\ 8\\ 121 \\ 0\\ 151 \\ 5\\ 182 \\ 0\\ 197 \\ 2\\ 210 \\ 5\\ 92 \\ 5\\ 105 \\ 8\\ 121 \\ 0\\ 151 \\ 5\\ 182 \\ 0\\ 197 \\ 2\\ 210 \\ 5\\ 92 \\ 5\\ 105 \\ 8\\ 121 \\ 0\\ 151 \\ 5\\ 182 \\ 0\end{array}$	215956 209677 215892 217869 209922 205544 196548 188081 187744 196001 192690 179244 179932 182682 180514 167369 171830 167098 169964	1 032 1 002 1 032 1 041 1 003 0 982 0 939 0 899 0 897 0 937 0 921 0 857 0 860 0 873 0 863 0 863 0 863 0 863 0 821 0 799 0 812

(Continued)

Run 1179

				Locat	lon		
Foll <u>Number</u>	Foll Type	Module Number	Angle (°cw)	Radial (cm)	Axıal (cm)	Normalized _{Counts	Local to Foil (X)
20 21 22 23 24 25 26 27 28	Bare Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	270 270 270 270 270 270 270 270 270	78 78 40 40 40 40 40 40 40	197 2 210 5 92 5 105 8 121 0 151 5 182 0 197 2 210 5	146735 161241 169292 159763 156902 158905 153068 147607 162630	0 701 0 771 0 809 0 764 0 750 0 760 0 732 0 706 0 777
Run 1180)						
1 2 3 Կ	Cd Cd Cd Cd	1 1 3 3	90 90 90 90	40 154 40 154	182 0 182 0 182 0 182 0	6040 6141 4238 4170	34 0 42 6 34 8 44 9

Gold Foil Data

7-Module Cavity Reactor - 0 55 Radius Ratio

No Hydrogen

<u>Run 1178</u>

		Loca	ation	7	ດາ 1						
Number	Туре	Radial (cm)	Axial (cm)	We	eight	Specifi d/m-g	c Act:	1v1ty 0-6	Loca Fol	al to 1 (X)) *
l	Bare	0	894	0	0343	8	918		1	072	
2	Bare	0	749	0	0363	10	691		1	285	
3	Bare	0	59 6	0	0354	8	044		0	967	
4	Bare	0	44 4	0	0381	5	385		0	647	
5	Bare	0	29 1	0	0312	3	249		0	391	
6	Bare	0	13 9	0	0380	1	579		0	190	
7	Bare	0	0	0	0273	0	215		0	026	
8	Bare	93 2	151 1	0	0410	8	577		1	031	
9	Bare	107 7	151 1	0	0389	6	995		0	841	
10	Bare	123 0	151 1	0	0399	5	140		0	618	
11	Bare	138 2	151 1	0	0402	3	398		0	408	
12	Bare	153 4	151 1	0	0333	1	992		0	239	
13	Bare	168 7	151 1	0	0398	0	901		0	108	
14	Bare	183 7	151 1	0	0408	0	126		0	015	
	Module	1, 90°	ew								N-
15	Bare	4 0	136 J	0	0330	8	415		1	011	$(\mathbf{X})^{\star}$
16	Bare	78	136 3	0	0415	8	609		1	035	
17	Bare	11 6	136 3	0	0335	9	191		1	105	
18	Bare	15 4	136 3	0	0322	10	199		l	226	×
19	Bare	40	166 8	0	0400	8	223		0	988	(X)^
50	Bare	78	166 8	0-	0366	8	589		1	032	
21	Bare	11 6	166 8	0	0418	9	170		l	102	
22	Bare	15 ¥	166 8	0	0392	9	995		1	201	
	Module	3, 90°	CW								
23	Bare	40	136 3	0	0385	6	211		0	747	
24	Bare	78	136 3	0	0388	6	328		0	761	
25	Bare	11 6	136 3	0	0374	6	676		0	802	
26	Bare	15 4	136 3	0	0352	7	175		0	862	
27	Bare	40	166 8	0	0373	6	023		0	724	
28	Bare	78	166 8	0	0333	5	977		0	718	
29	Bare	11 6	166 8	0	0385	6	326		0	760	
30	Bare	15 4	166 8	0	0302	7	079		0	851	
	Traver	se from	Module 1	to	Modul	e 3					
31	Bare	23 6	151 1	0	0364	10	786		1	296	
32	Bare	28 7	151 1	0	0325	13	258		1	594	
33	Bare	34 0	151 l	0	0319	13	146		1	580	
34	Bare	394	151 1	0	0308	11	767		1	414	
35	Bare	44 4	151 1	0	0348	8	608		1	035	
* Note	the sta longıtu	ndard no dinal po	ormalızer osıtıon, r	pos nıdv	ation ay be	is at 4 tween the	0 cm) two '	radıus, "Foıl x	and 's"s	151. shown	5 cm

(Continued)

<u>Run 1178</u>

			Locat	lon		F	'oıl				
Foll	Foll		Radıal	Axıa	1	We	lght	Specific	e Activity	Loca	al to
Number	Туре		(cm)	<u>(cm)</u>	_	_(g)	d/m-g	<u>x 10⁻⁰</u>	<u>Foi</u>	<u>1 (X)</u>
	Trave	rse E	Setween Mod	ules	5 &	б					
36	Bare	90	7	151	1	0	0421	8	626	l	037
37	Bare	83	8	151	1	0	0345	9	876	1	187
38	Bare	76	2	151	1	0	0391	10	593	l	273
.39	Bare	68	6	151	1	0	0390	11	019	l	324
40	Bare	61	0	151	1	0	0397	11	040	l	327
41	Bare	53	3	151	1	0	0410	11	584	1	392
42	Bare	45	7	151	1	0	0369	12	963	l	558
43	Bare	38	1	151	1	0	0338	13	837	l	663
44	Bare	30	5	151	1	0	0357	13	752	l	653
45	Bare	23	6	151	1	0	0338	11	147	l	340
	Modul	el,	Outer Surf	ace of	f Mo	du	le				
46	Bare	22	4 (270°)	151	l	0	0328	10	513	1	264
47	Bare	22	4 (315°)	151	1	0	0302	10	583	l	272
48	Bare	22	4 (0°)	151	1	0	0483	10	039	1	207
	Modul	e 3,	Outer Surf	ace of	f Mo	du	le				
49	Bare	22	4 (270°)	151	1	0	0409	8	125	0	977
50	Bare	22	4 (315°)	151	1	0	0426	7	821	0	940
51	Bare	22	4 (0°)	151	1	0	0404	7	560	0	909
52	Bare	22	4 (90°)	151	1	0	0381	7	195	0	865
Run 117	9										
ı	са	Û		80	հ	Λ	0360	2	107		
2	Cđ	Ő		59	6	n	0300	0	222		
2	Cd	õ		29	ĩ	õ	ົ້ວມີ	ຄັ	0089		
ير آ	Cd	٥ž	2	151	- 1	ñ	0357	Ő	бор		
5	са Са	123	0	151	1	õ	0705	õ	0214		
6	60	153	ŭ	151	 ו	õ	0386	Õ	0046		
Ū	Modu	1e 3.	270°			0	0000	Ũ	0010		
7	Bare		4	136	3	0	0323	8	028	0	965
8	Bare	11	6	136	2 २	õ	0425	7	314	õ	879
ğ	Bare	7	8	136	२ २	0	0414	6	600	Ő	793
10	Bare	4	õ	136	2 २	0	0417	6	165	Ő	741
11	Cd). Li	õ	166	Ř	ñ	0384	1	758	Ŭ	1.17
12	Cđ	15	ŭ	166	8	0	0358	1	697		
	Trav	erse	from Modul	e 1 to	o Mo	du	1e 3	-	0,1		
13	Cd	23	6	151	1	0	0354	2	551		
14	Cd	34	0	151	1	0	0376	2	518		
15	Cd	44	4	151	_ 1	0	0338	1	945		
					-	-		-			

(Continued)

Run 1179

		Locat	lon	Foll			
Foll Number	Fоıl Туре	Radial	Axial	Weight (g)	Specific d/m-g	Activity x 10 ⁻⁶	Local to Foil (X)
	Traver	se Between Mod	ules 5 &	6			
16	Cd	83 8	151 1	0 0384	0	927	
17	Cd	53 3	151 1	0 0341	2	148	
18	Cd	23 6	151 1	0 0335	2	678	
	Module	1, Outer Surfa	ace of Mo	odule			
19	Cđ	22 4 (270°)	151 <u>1</u>	0 0418	2	388	
20	Cđ	22 4 (0°)	151 1	0 0356	2	535	
Run 118	0						
1	Bare	0	82 5	0 0339	10	876	1 307
2	Bare	0	67 2	0 0348	9	661	1 161
3	Bare	0	52 0	0 0416	6	811	0 819
4	Bare	100 1	151 1	0 0337	8	096	0 973
5	Bare	115 4	151 1	0 0361	6	088	0 732
6	Bare	130 2	151 1	0 0376	24	285	0 515
	Module	1,90°		_			
7	Cd	40	136 3	0 0367	2	413	
8	Cd	15 4	136 3	0 0380	2	423	
	Module	3,90°		10			
9	Cđ	40	136 3	0 0368	1	567	
10	Cd	15 4	136 3	0 0414	l	564	
	Traver	se from Module	l to Mod	lule 3	,		
11	Cđ	28 7	151 1	0 0392	4	110	
12	Cđ	39 4	151 1	0 0399	1	785	
	Traver	se Between Modu	ules 5 &	6	_	(
13	Cđ	90 7	151 1	0 0350	0	671	
14	Cd	68 6	151 1	0 0335	1	811	
15	Cđ	38 1	151 1	0 0421	2	052	
	Module	3					
16	Cđ	22 4 (270°)	151 1	0 0318	2	210	
17	Cđ	$22 4 (0^{\circ})$	151 1	0 0417	2	266	
18	Cđ	22 4 (90°)	151 1	0 0307	2	609	

Thermal Neutron Flux

7-Module Reactor - 0 55 Radius Ratio

No Hydrogen

	Locatio	on							
Radı ("cm	àl 7),	Axıa <u>(cm)</u>	1])	Module	Number	Angle (°cw)	Therma (n/cm ² -s	l Neutron I sec-watt x	Flux_6_10 ⁻⁶)
0		89	4	End Refle	ector			4 530	
0		59	6	End Refle	ector			5 302	
0		29	1	End Refle	ector			2 197	
93	2	151	1	Radial Re	eflector			5 374	
123	0	151	1	Radial Re	eflector			3 472	
153	4	151	l	Radial Re	eflector			1 348	
4	0	136	3	l		90		3 999	
15	4	136	3	1		90		5 160	
4	0	136	3	3		90		3 170	
15	4	136	3	3		90		3 733	
4	0	136	3	3		270		3 030	
15	4	136	3	3		270		4 246	
23	6	151	1	Traverse	from Mod	lule 1 to 3		5 606	
28	7	151	l	Traverse	from Mod	lule 1 to 3		5 984	
34	0	151	1	Traverse	from Mod	lule 1 to 3		7 092	
39	4	151	1	Traverse	from Mod	ule 1 to 3		6 637	
44	4	151	l	Traverse	from Mod	lule 1 to 3		4 536	
23	6	151	l	Traverse	Between	Modules 5 &	6	5 752	
38	1	151	1	Traverse	Between	Modules 5 &	6	7 863	
53	3	151	1	Traverse	Between	Modules 5 &	6	6 508	
68	6	151	l	Traverse	Between	Modules 5 &	6	6 321"	
83	8	151	l	Traverse	Between	Modules 5 &	6	6 043	
90	7	151	1	Traverse	Between	Modules 5 &	6	5 430	
22	4	151	l	l		0		5 296	
22	4	151	1	1		270		5 342	
22	4	151	1	3		0		3 571	
22	4	151	1	3		90		3 260	
22	4	151	l	3		270		3 971	

Figure 8.1 Fuel worth traverses (longitudinal averaged) in 0 55 radius ratio core without hydrogen

911

Figure 8.2 Relative axial power distribution in module 1, 90° at the core centerline, 7-module reactor with 0 55 fuel to module radius ratio without hydrogen

Figure 8 3 Relative axial power distribution in module 3, 90° at the core centerline, 7-module reactor with 0 55 fuel to module radius ratio without hydrogen

Figure 8.4 Relative axial power distribution in module 3, 270° at the core centerline, 7-module reactor with 0 55 fuel to module radius ratio without hydrogen

Figure 8.5 Relative radial power distribution in modules 1 and 3 based on axial average power distributions, 7-module reactor with 0 55 fuel to module radius ratio without hydrogen

Figure 8.6 Relative bare gold foil activity distribution in the regions between modules, 0.55 fuel to module radius ratio without hydrogen

Figure 8.7 Relative radial bare gold foil activity in modules 1 and 3 at axial locations of 163 3 and 166.8 cm, 0 55 fuel to module radius ratio without hydrogen

Figure 8.8 Bare gold activity and thermal flux in end reflector, 7-module cavity reactor, 0.55 radius ratio without hydrogen

Figure 8.9 Bare gold activity and thermal flux in radial reflector, 7-module cavity reactor, 0.55 radius ratio

Figure 8 10 Radial distribution of thermal neutron flux from module 1 through D₂O between modules 5 & 6 and into the radial reflector, 7-module reactor with 0 55 fuel to module radius ratio

ι

Figure 8.11 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 7-module reactor with 0 55 fuel to module radius ratio

9.0 <u>THREE MODULE REACTOR - 0 55 RADIUS RATIO WITH</u> HYDROGEN SIMULATION

A three module system, with the 70 5 cm 0.D modules occupying the same region as that occupied by the seven modules, was assembled so as to furnish a measure of the advantage of having more and smaller modules. These advantages are exclusively neutronic, giving better utilization of the fuel, smaller critical mass, and quite likely smaller effective pressures for the gaseous fuel (The pressure, of course, depends on the total fuel volume as well as the fuel mass) Other considerations, such as thermodynamic, fluid dynamic, and fuel loss effects, generally favor the fewer and larger modules, best exemplified by the single cavity. Some discussion of the relative advantages and disadvantages pertaining to these various factors vs the number of modules is given in Section 10

A cross section view of the three module tank is shown in Figure 9.1 The fuel element structure with its 16 stages, 17 stage dividing disks, and eight fuel rings is shown in Figures 9 2 and 9 3 The tank was constructed from type 1100-H14 aluminum, 0 318 cm thick, except for the 0 635 cm thick end plates that were type 5052 aluminum The empty tank weighed 180 kg

9.1 Initial Loading

Pre-analysis of the three module experiment using the same techniques that were quite successful on the 7-module experiment (simple one-dimensional diffusion code utilizing cell calculations) predicted a loading of 14 kg of uranium with an estimated ±15% uncertainty (Unfortunately, as will be seen, the technique was not nearly as successful in this case; the measured critical mass was 11 5 kg.) Accordingly, each of the three modules was loaded with fuel to a radius ratio of 0 55 according to the description given in Table 9.1 and Figure 9.4. The fuel element design was similar to that used on the 7-module reactor The fuel on the stage separation disks was one layer thick on all 22 positions shown. The total loading was 1780 equivalent full size sheets per element, or 4 66 kg, for a total of 13 98 kg of uranuum in the three modules of the reactor. The fuel element structure consisted of 16.2 kg of aluminum in each module, or 48 6 kg in the entire core.

Hydrogen was inserted in the form of foamed polystyrene and polyethylene sheet in an annulus between 0 69 radius ratio and the cavity wall, making an annulus that was 11 3 cm thick The annulus was loaded to a hydrogen atom density of 1 33 x 10^{21} atoms/cc These hydrogen values differ little from those used in the seven module experiment, which had 1.23 x 10^{21} atoms/cc between 0 72 radius ratio and the cavity wall. Loading commenced by first loading the fuel elements one at a time, and then gradually increasing the water level in the modular tank until criticality was reached After 6 5 out of 8 2 barrels total capacity of heavy water was added, the reactor had a k-effective of 1 0064, with the nozzle plug in the nozzle It was obvious that the critical mass was overpredicted, and steps had to be taken to reduce k-excess in order to fill the module tank completely. These were as follows.

> Nozzle plug removed -0 46%/k 12 fixed control rods added to end reflector Hydrogen atom density increased in two of the three modules from 1 33 to 1 64x10²¹ -0 52%/k (-0.26%/k per module)

The resulting k-excess was 0 73% when the module tank was completely filled with 1884 kg of heavy water With 1 33x10²¹ atoms of hydrogen/cc in the hydrogen annulus and 13 98 kg of fuel in the reactor, and with all control rods out,

k-effective = 1 0389 with nozzle plugged = 1 0343 with nozzle open

Note the small worth (-0 46%k) of the nozzle plug in this reactor This is half of the value obtained on the 7-module configuration and the lowest value obtained on any of the cavity configurations measured with this basic 366 cm diameter by 305 cm long reflector tank

9 2 Reactivity Measurements

The control system in the 3-module reactor consisted of the standard 8 actuators, a total of 24 rods, but they were working in an end reflector that contained 12 fixed control rods The latter depressed the flux in the end reflector and reduced the movable control rod worth to 2 9% Ak The shape curve of this control system is given in Table 9 2, and shown graphically in Figure 9.5 Fuel worth was measured in one of the modules All three modules were considered equivalent, with the 20% difference in hydrogen density not considered significant enough to affect the fuel worth. The measurements were taken in module 3 (which had 1.33×10^{21} H/cc) in three different radial directions:

30° a tangential traverse in the core tank 120° toward the tank center, radially inward 300° radially outward

All measurements were longitudinal averages at specific radial positions The results are shown graphically in Figure 9.6, and are tabulated in Table 9.3 The slot positions are indicated in Figure 9.3 Measurements on the outer ring of fuel were made both at the end and center of the module. All of this data was used to obtain a volume weighted average fuel worth of 1.65%k/kg of uranium Using the above fuel worth, the critical loading of the reactor with 1.33×10^{21} H/cc in the hydrogen annuli and no control rods in the end reflector is:

11.32 kg of U with the nozzle plugged or 11.70 kg of U with the nozzle open.

The aluminum worth measured in slot 4 (18.2 cm) was 0.030% k/kg This should nominally equal the cell average worth.

Hydrogen worth was evaluated when the density in the annulus in modules 1 and 2 was increased from 1 33 to 1.64×10^{21} H/cc This was done by adding polyethylene (CH₂) sheet, giving an average worth of 0 303%/k/kg, or 0 26%/k for the change per module (870 gm of CH₂ per module).

The effect of the gap between the aluminum tank walls of the fixed and movable tank was measured The gap was 1 89 cm on the 3-module configuration, 0.7 cm larger than the 1 2 cm gap of the 7-module configuration. A measurement was made over the next 1 40 cm and the gap worth was found to be essentially linear equal to 0 48%/k/cm Thus, the full 1.89 cm gap cost 0 91% k, or approximately 0 55 kg of uranium The extra 0.7 cm gap compared to the seven module configuration cost 0.34% k, or 0.21 kg of uranium. The critical mass would have been

> 11 1 kg with the nozzle plugged or 11.5 kg with the nozzle open

with the same 1 2 cm gap that existed on the 7-module configurations.

9.3 Power Distribution - 3-Module Configuration

The fission power distribution (specific power) was measured throughout the reactor as well as the fueled core sections of the modules. The cadmium ratio was measured at selected points to obtain the ratio of epi-thermal to total fissions. The various data are listed in Table 9.4. Most of the radial traverses were taken with respect to the axis of module 3. However, traverses along the separation plane and in the radial reflector all use the reactor axis as the radial reference point.

Figures 9 7, 9 8, and 9.9 show the axial profiles in module 3. Note that the edge of the active fuel region occurs at 19 4 cm. All ordinates have suppressed zeros The power peaking at the separation plane end of the module is probably the result of thermal neutron streaming along the 1 89 cm wide gap Figure 9.10 shows the composite radial power distributions in the module. The values shown are longitudinal averages Note that it is fortuitous that the longitudinal average

at 4 6 cm, 300° in module 3 is identical to the point normalization These curve shapes are very similar to the fuel worth reference value curve shapes in Figure 96 Figure 9.11 shows the circumferential power distribution on the outside of the fuel (19.4 cm) at the longitudinal center, and the U-235 fission response at the outside of the hydrogen around the module wall, also at the longitudinal center The cadmium ratio at these locations is shown in Figure 9 12. On the outside edge of the fuel, approximately 4 5% of the fissions are epi-thermal (above 0.43 ev cadmium cutoff), while at the outside of the module only 3% of the fission response is epi-thermal. The epi-thermal fractional response will drop even more as one penetrates into the reflector. Thus the fission response shown in the end and radial reflectors, Figure 9 13 and 9 1^4 respectively, are essentially relative thermal flux traverses A reflector peak was not observed in the radial flux traverse because the traverse originated from a radial line between modules 1 and 3. The end reflector peaking was much less than observed on the seven module system because on the latter a fuel element was situated on the axial centerline, whereas in this three module system the axial traverse originated from a region between modules Figure 9.15 is a traverse across the separation plane, the core face, and on a line through the end of module 1 The large flux peaking between the modules at the reactor center is apparent. Figure 9 16 shows the same type of traverse only going between the ends of modules 1 and 2 and on out through the reflector The peak flux occurs approximately at the circle of the module centerlines (54.6 cm), and a small dip occurs at 38 cm, the point of shortest chord length of moderator between modules

Cadmium ratios are shown in Figure 9.17 and 9 18 in the modules. These vary little axially. The 13 4 cm value of 20 (5% epi-thermal fissions) is probably characteristic of the average epithermal fission rate in the fuel

9.4 Thermal Flux and Gold Cadmium Ratios

Extensive gold foil measurements, both bare and cadmium covered, were taken throughout the 3-module assembly The foils were nominally 0 0013 cm thick, and the tabulated results are shown in Table 9.5.

A radial plot of the gold foil activity within a module is shown in Figure 9.19. The plotted values are point values from the axial midplane These bare gold foil curves are flatter than either the catcher foil (U-235) response or the fuel worth results. The difference is principally because of the high level of epithermal response to the foils, about 40% of the total at the edge of the fuel and 50% of the total at the center (The infinitely dilute response would be 60% epithermal at the edge and 70% epithermal at the center of the fuel) Other relative gold foil activity plots are shown in Figures 9.20 (circumferential on outside of fuel and at outside of hydrogen), 9.21 (traverse through moderator), 9.22 (traverse in reflectors), 9.23 and 9.24 (longitudinal traverses in the modules) From the bare and cadmium data, thermal fluxes were obtained A plot of the flux across the reactor at the axial midplane is shown in Figure 9.25, in equivalent 2200 m/sec "thermal" flux per watt of reactor power. Unfortunately there is insufficient detail in this data to show if any flux peaking occurs in the hydrogen. However, the traverse through the moderator region between modules shows the same details of a dip at shortest moderator chord length, and a peak at about the circle of centers for the modules as was observed with the catcher foils (Figure 9 16) Note the catcher foil traverse was across the end of the core, at the core separation plane, whereas the thermal flux traverse is at the axial midplane The thermal flux data is tabulated in Table 9.16 In Table 9 7 the cadmium ratios for infinitely dilute gold are tabulated to show results from 1 4 at the center of the fuel (30% thermal response) to 630 near the outside of the reflector (essentially all thermal response)

Distribution of Fuel Sheets on the Fuel Rings

3 Module Reactor - 0 55 Radius Ratio

Ring Number	Number of Fuel Sheets
1 2 3 4 5 6 7 8	3 5 8 10 12 15 17 20
	90
Total sheets on rings of 16 stages Sheets on disks 20 per disk	1440 <u>340</u>
Total sheets per element	1780
Total sheets in reactor	5340
Total uranium mass	13 98 kg
Uranium mass inside module (fuel element)=	4 66 kg/module

u

8 Actuator Tabular Rod Worth Curve

3-Module Reactor (12 Manual Rods in Reactor)

Position	00	100	200	300	400	500	600	700	800	900
00 1000 2000 3000 4000 5000 6000 7000	100 00 68 36 41.75 24 86 14 06 7 31 3.47 1 42	100 00 65 22 39 66 23 56 13 22 6 81 3 20 1 28	97 20 62 19 37 67 22 32 12 42 6 36 2 95 1 15	93 30 59 26 35 78 21 12 11 64 5 92 2 71 1 03	89.45 56 44 33 99 19 98 10 92 5 50 2 49 0.92	85 70 53 73 32 29 18 88 10 23 5.10 2 28 0 82	82 02 51 13 30 67 17 83 9 58 4.73 2 08 0 72	78.44 48 63 29 12 16 82 8 96 4 38 1 90 0 63	74 97 46 23 27 64 15 86 8 38 4 06 1.73 0 55	71 61 43 94 26 22 14 94 7 83 3 76 1 57 0 47
	0_39		0.2)	<u> </u>	<u> </u>	0.10	0_00	0 05	0 02	<u> </u>
<u></u>				Diffe	rence Tal	ple				····
Position	00	100	200	300	400	500	600	700	800	900
00 1000 2000 3000 4000 5000 6000 7000	0 0 3 25 2 19 1 36 0 88 0 52 0 29 0 15	0.0 3 14 2 09 1 30 0 84 0 50 0 27 0.14	2 80 3 03 1 99 1 24 0 80 0 45 0 25 0 13	3 90 2 93 1 89 1 20 0 78 0 44 0 24 0.12	3 85 2 82 1 79 1 14 0 72 0 42 0 22 0 11	3 75 2 71 1 70 1 10 0 69 0 40 0 21 0 10	3 68 2 60 1.62 1 05 0 65 0 37 0.20 0 10	3 58 2 50 1 55 1 01 0 62 0 35 0 18 0 09	3 47 2 40 1 48 0 96 0 58 0 32 0 17 0 08	3 36 2.29 1 42 0 92 0 55 0 30 0 16 0 08
8000	0 08	0 07	0 07	0 06	0 05	0.04	0 04	0 03	0 02	0 01

Position scale is a digital voltmeter reading

Units = 0 0155 cm/digit

Fuel Worth, Longitudinally Averaged

Module #	ŧ 3
----------	-----

	Radial	Circumferential Position in Module					
Position Slot in Module		30° (tangential)	120° (radially inward)	300° (radially outward)			
1	5 l cm		l 40 %∆k/kg				
2 3 4 5	13 8 18 2 22 6	 2 06 %Ak/kg	2 23 2 28 3 41	 1 54 %∆k/kg 2 86			
	194	Outer ring of Stage 8 (long: Stage 16 (nozz	fuel tudinal center) zle end)	2 27 %Δk/kg (3 60 %Δk/kg /			
Average fuel worth = 1 65 %Ak/kg							

Catcher Foil Data

3-Module Reactor

All Radial Locations are with Respect to the Module Axis Except as Noted

All Values are Normalized to Power Level of Run 1186

Run	1185
-----	------

	Location							
Foil Number	Foil Type	Module Number	Angle <u>(°cw)</u>	Radial (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)	
l	Bare	3	300	46	92 5	95438	1 159	
2	Bare	3	300	46	105 8	80763	0 980	
3	Bare	3	300	46	121 5	78941	0 958	
4	Bare	3	300	46	136 3	77323	0 938	
5	Bare	3	300	46	151 5	82378	1 000 (X)	
6	Bare	3	300	46	166 8	77873	0 946	
7	Bare	3	300	46	182 0	78339	0 950	
8	Bare	3	300	46	197 2	83260	1 001	
9	Bare	3	300	46	210 5	110061	1 335	
10	Bare	3	300	90	92 5	99145	1 203	
11	Bare	3	300	90	105 8	84727	1 028	
12	Bare	3	300	90	121 5	80203	0 973	
13	Bare	3	300	90	136 3	82025	0 995	
14	Bare	3	300	90	151 5	80432	0 976	
15	Bare	3	300	90	166 8	79572	0 965	
16	Bare	3	300	90	182 0	81007	0 983	
17	Bare	3	300	90	197 2	80314	0 974	
18	Bare	3	300	90	210 5	112167	1 361	
19	Bare	3	300	13 4	92 5	105171	12(6	
20	Bare	3	300	13 4	105 8	94673	1 148	
21	Bare	3	300	13 4	121 5	86957	1 055	
22	Bare	3	300	13 4	130 3	07004	1 055	
23	Bare	3	300	13 4	151 5	92351	1 120	
24	Bare	3	300	13 4 12 h	100 O	91152	1 100	
25	Bare	3	200	134 12h	102 0	80270	1 082	
20	Bare	2	200	12 1	191 C	110800	T 003	
21	Dare	2	200	178	210 2	105007	1 501	
20	Dare	2	200	17 8	92 J 105 8	118012	באל ב	
29	Bare	2	300	178	101 5	112550	1 365	
20	Dare	2	300	178	136 3	100808	1 332	
20 TC	Dare	2	200	רן 17 8	151 5	100060	1 33h	
33	Bare	2	200	178	166.8	112516	1 365	
2) 22	Bare	د د	300	יי 8 <u>א</u> יר	182 0	110550	1 341	
3E 24	Bara	רר	300	ייי ט זיז א	107 2	110680	- J→- 1 1150	
36	Bare	3	300	17 8	210 5	132787	1 611	

(Contin	nued)

<u>Run 118</u>	35		<u></u>						
		Location							
Foll Number	Foil Type	Modul Numbe	e Ang <u>r (°c</u>	;le :w)	Radıal (cm)	Axıal (cm)	Normalızed Counts	Local to Foil (X)	
37 38 39 40 41 42 43 44 45	Bare Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3	30 30 30 30 30 30 30 30	10 00 00 00 00 00 00	22 2 22 2 22 2 22 2 22 2 22 2 22 2 22	92 5 105 8 121 5 136 3 151 5 166 8 182 0 197 2 210 5	153205 136691 139716 137386 141899 135418 135140 132054 149857	1 858 1 658 1 695 1 666 1 721 1 643 1 639 1 602 1 818	
<u></u>				L	ocation	········			
Foll Number	Foll Type	Module Number	Stage	Rad: <u>Cen</u> t	ial From ter (cm)	Degrees <u>cw</u>	Normalızed Counts	Local to Foil (X)	
46 47 49 51 52 54 556 57 59 61	Bare Bare Bare Bare Bare Bare Bare Bare	а а а а а а а а а а а а а а а а а а а	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		19 4 19 4 19 4 19 4 19 4 19 4 19 4 19 4	$\begin{array}{c} 0\\ 22 \\ 5\\ 45 \\ 0\\ 67 \\ 5\\ 90 \\ 0\\ 112 \\ 5\\ 135 \\ 0\\ 157 \\ 5\\ 180 \\ 0\\ 202 \\ 5\\ 225 \\ 0\\ 247 \\ 5\\ 270 \\ 0\\ 292 \\ 5\\ 315 \\ 0\\ 337 \\ 5\end{array}$	113063 116115 121596 127937 136821 139115 142253 144806 134031 137056 124467 118043 118007 120373 117655 103584	1 371 1 408 1 475 1 552 1 660 1 687 1 726 1 726 1 726 1 626 1 662 1 510 1 432 1 431 1 460 1 427 1 256	
(Continued)

<u>Run 1186</u>	5						
				Loca	tion		
Foll Number	Foll Type	Module Number	Angle (°cw)	Radıal (cm)	Axıal (cm)	Normalızed Counts	Cadmium Ratio
1 2 3 4 5 6	Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov	3 3 3 3 3 3 3	300 300 300 300 300 300	13 4 13 4 13 4 22 2 22 2 22 2 22 2	92 5 151 5 210 5 92 5 151 5 210 5	5462 5252 5356 5233 5578 5009	19 255 17 585 22 367 29 277 25 439 29 917
Foil Number	Foil Type	Module Number	<u>Stage</u>	Radial (cm)	Degrees 	Normalızed Counts	Cadmium Ratio
7 8 9 10	Cad Cov Cad Cov Cad Cov Cad Cov	3 3 3 3	8 8 8 8	19 4 19 4 19 4 19 4 19 4	0 90 180 270	5455 5549 5631 5498	20 726 24 657 23 802 21 463
Run 118	7					· · · · · · · · · · · · · · · · · · ·	·
Foll Number	Foll Type	Module <u>Number</u>	Stage	Radıal (cm)	Degrees CW	Normalized Counts	Local to Foil (X)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Bare Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35 2 2 2 35 35 35 35 35 35 35 35 35 35 35 35 35	$\begin{array}{c} 0\\ 22 \\ 5\\ 45 \\ 0\\ 67 \\ 5\\ 90 \\ 0\\ 112 \\ 5\\ 135 \\ 0\\ 157 \\ 5\\ 180 \\ 0\\ 202 \\ 5\\ 225 \\ 0\\ 247 \\ 5\\ 270 \\ 0\\ 292 \\ 5\\ 315 \\ 0\\ 337 \\ 5 \end{array}$	184228 188391 203109 216157 228701 225596 233208 224540 217375 218397 199628 192808 179469 177880 178387 177692	2 235 2 285 2 464 2 622 2 774 2 736 2 829 2 724 2 637 2 649 2 421 2 339 2 177 2 158 2 164 2 155

(Continued)

<u>Run 1188-</u>

				Locat	tion		
Foil Number	Foll Type	Module Number	Angle (°cw)	Radial (cm)	Axial (cm)	Normalızed Counts	Local to Foil (X)
1 2 3	Bare Bare Bare	3 3 3	120 120 120	46 46 46	92 5 105 8 121 5	99760 84414 83250	1 210 1.024 1 010
4 5 6	Bare Bare Bare	3 3 3	120 120 120	46 46 46	136 3 151 5 166 8	82762 81460 80208	1 004 0 988 0 973
7 8 9	Bare Bare Bare	3 3 3	120 120 120	46 46 46	- 182 0 197 2 210 5	81312 86528 116108	0 986 1 050 1 408
10 11 12	Bare Bare Bare	3 3 3	120 120 120	90 90 90	92 5 105 8 121 5	90898 90156	1 103 1 094
13 14 15 16	Bare Bare Bare	3 3	120 120 120	90 90 90	130 3 151 5 166 8	90303 87433 89371 88661	1 095 1 061 1 084
17 18 10	Bare Bare Bare	າ ຕ ຕ	120 120 120	90 90 90	102 0 197 2 210 5 92 5	93260 121791	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 477 \\ 1 & 423 \end{array} $
20 21 22	Bare Bare Bare	3 3 3 3	120 120 120	134 134 134	105 8 121 5 136 3	104779 100503 97991	$ \begin{array}{c} 1 & 271 \\ 1 & 219 \\ 1 & 189 \\ \end{array} $
23 24 25	Bare Bare Bare	3 3 3	120 120 120	134 134 134	151 5 166 8 182 0	104424 104203 99200	1 267 1 264 1 203
26 27 28	Bare Bare Bare	333	120 120 120	13 4 13 4 13 4 17 8	197 2 210 5 92 5	101041 119531 149763	1 226 1 450 1 817
29 30 31	Bare Bare Bare	3 3 3	120 120 120	17 8 17 8 17.8	105 8 121 5 136 3	138200 134442 129930	1 676 1 631 1 576
32 33 34	Bare Bare Bare	3 3 3	120 120 120	178 178 178	151 5 166 8 182 0	126930 130152 130456	1 540 1 579 1 582
35 36 37 38	Bare Bare Bare Bare	3 3 3 3	120 120 120 120	178 178 222	197 2 210 5 92 5 105 8	125648 153695 180388 160374	1 524 1 864 2 188 1 945
39 40 41	Bare Bare Bare	3 3 3	120 120 120 120	22 2 22 2 22 2 22 2	121 5 136 3 151 5	165243 163781 169323	2 004 1 987 2 054

(Continued)

<u>Run 118</u>	8								
				Loca	tion				
Foll Number	Foil Type	Module <u>Number</u>	Angle <u>(°cw)</u>	Radial (cm)	Axial (cm)	Norma <u>Cou</u>	lızed nts	Local Foil	to (X)
42 43 44 45	Bare Bare Bare Bare	3 3 3 3	120 120 120 120	22 2 22 2 22 2 22 2 22 2	166 8 182 0 197 2 210 5	165 166 159 170	588 522 356 104	20 20 19 20	09 20 33 63
Run 119	0			······································				•	
Foil <u>Number</u>	Foil Type	Module Number	Angle (°cw)	Radıal (cm)	Axıal (cm)	Norma Cou	lızed nts	Cadmı <u>Ratı</u>	um 0
1 2 3 4 56	Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov	3 3 3 3 3 3	120 120 120 120 120 120	13 4 13 4 13 4 22 5 22 5 22 5 22 5	92 5 151 5 210 5 92 5 151 5 210 5	5 5 5 6 5	584 209 384 488 109 642	21 0 20 0 22 2 32 8 27 7 30 1	15 47 01 70 17 50
Run 119 Foil Number	0 Foll Type	Module <u>Number</u>	Stage	Radial (cm)	Degree cw	es Nor	malıze ounts	d Cad Ra	mium tio
7 8 9 10	Cad Cov Cad Cov Cad Cov Cad Cov	3 3 3 3	8 8 8 8	194 194 194 194	45 (135 (225 (315 ()))	5517 5803 5926 5664	22 24 21 20	040 514 004 772
Run 119 Foil <u>Number</u>	0 Foll Mod Type Nur Bare	lule nber Sta	R Re ge Thr	adıal Fr actor Ce ough Mod	om nter ule l	Axial (cm) 212 0	Norma Cou	lızed nts 088	Local to Foil (X)
12 13 14 15 16 17 18 19 20 21 22	Bare Bare Bare Bare Bare Bare Bare Bare			7 6 15 2 22 8 30 5 38 1 45 7 53 3 61 0 68 6 76 2 83 8		212 0 212 0	222 206 191 139 119 111 112 120 141 147	339 680 842 160 914 847 464 442 887 204 984	2 697 2 507 2 327 1 955 1 697 1 454 1 352 1 364 1 466 1 713 1 795

(Continued)

<u>Run 1190</u>

Foil <u>Number</u> 24 25 26 27	Foll Type Cad Cov Cad Cov Cad Cov Cad Cov	Module <u>Number</u> 3 3 3 3	<u>Stage</u> 9 9 9 9	Radia <u>Center</u> 3 3 3 3	l From of <u>Module</u> 5 2 5 2 5 2 5 2 5 2	Degrees cw 0 0 90 0 180 0 270 0	Normalızed Counts 6094 6113 6234 5853	Local to Foil (X) 30 231 37 412 34 869 30 663
Run 119	1			Loca	tion			
Foll <u>Number</u>	Foil Type	Module Number	Angle (°cw)	Radıal (cm)	Axıal (cm)	Normalized Counts	l Local to <u>Foil (X)</u>	
1 2 3 4	Bare Bare Bare Bare	3 3 3 3	30 30 30 30	46 46 46 46	92 5 121 5 151 5 182 0	93878 80225 79978 82691	1 139 0.973 0 970 1 003	
5 6 7 8	Bare Bare Bare	3 3 3 3	30 30 30 30	46 90 90	210 5 92 5 121 5	114555 99468 85136 86518	1 390 1 207 1 033	
9 10 11	Bare Bare Bare	3 3 3	30 30 30	90 90 134	182 0 210 5 92 5	86111 114011 107610	1 045 1 383 1 305	
12 13 14 15	Bare Bare Bare Bare	3 3 3 3	30 30 30 30	13 4 13 4 13 4 13 4 13 4	121 5 151 5 182 0 210 5	96285 97513 94780 126112	1 168 1 183 1 150 1 530	
16 17 18	Bare Bare Bare	3 3 3	30 30 30	178 178 178	92 5 121 5 151 5	127799 121939 123158	1 550 1 479 1 494	
19 20 21 22 23 24 25	Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3	30 30 30 30 30 30 30	17 8 17 8 22 2 22 2 22 2 22 2 22 2 22 2	182 0 210 5 92 5 121 5 151 5 182 0 210 5	114308 138584 152954 151053 144102 146436 161265	1 387 1.681 1 855 1 832 1 748 1 776 1 956	

(Continued)

-	77	0.7
Run	11	U I
TIMIT	للبيك	- 7

				Radial From			
				Reactor Center			
Foll	Foll	Module	Angle	120° Between	Axial	Normalized	Local to
Number	Type	Number	(°cw)	Modules 1 & 2	<u>(cm)</u>	<u>Counts</u>	Foll (X)
,26	Bare			0 0	212 0	221884	2 691
27	Bare			76	212 0	226369	2 746
28	Bare			15 2	212 0	224470	2 723
29	Bare			22 8	212.0	238862	2 897
30	Bare			30 5	212.0	244019	2 960
31	Bare			38 l	212 0	219551	2 663
32	Bare			45 7	212 0	249887	3.031
33	Bare			53 3	212 0	245591	2 979
34	Bare			61 O	212 0	225012	2 729
35	Bare			68 6	212 0	203410	2 467
36	Bare			76 2	212 0	170000	2 062
37	Bare			83 8	212 0	147966	1 795
38	Bare			91 4	212 0	119341	1.448
39	Bare			99 0	212 0	95875	1 163
40	Bare			106 6	212 0	81926	0.994
41	Bare			114 3	212 0	69747	0 846
42	Bare			121 9	212 0	58198	0 706
43	Bare			137 1	212 0	38445	0.466
44	Bare			152 4	212 0	23824	0 289
45	Bare			167 5	212 0	12397	0 150
46	Bare			182 9	212 0	2704	0 033
47	Bare			0 0	894	300691	3 647
48	Bare			0 0	749	314211	3 811
49	Bare			0 0	59 6	249079	3 021
50	Bare			0 0	44 4	157391	1 909
51	Bare			0*0	29 l	959 7 1	1 164
52	Bare			0 0	13 9	48690	0 591
53	Bare			0 0	0	7359	0 089

Run 1191

Location

Foil	Foll	Module	Angle	Radıal	Axial	Normalized	Local to
Number	Type	Number	(°cw)	(cm)	(cm)	Counts	Foil (X)
54 55 56 57 58 59 60	Bare Bare Bare Bare Bare Bare Bare			93 2 107 7 123 0 138 2 153.4 168 7 183 7	151 5 151 5 151 5 151 5 151 5 151 5 151.5 151 5	226323 169309 123644 83317 50480 23425 3266	2 745 2 054 1 500 1 011 0 612 0.284 0 040

TABLE 9⁴

(Continued)

Run 1191

Foll Number	Foil Type	Module <u>Number</u>	Angle <u>(°cw)</u>	Radial From Center of Element	Axıal (cm)	Normalızed Counts	Local to Foil (X)
61	Bare	1		0 0	212 0	111704	1 355
62	Bare	1		0 0	212 0	108279	1 313
63	Bare	2		0 0	212 0	115520	1 401
64	Bare	2		0 0	212 0	107092	1 299
65	Bare	3		0 0	212 0	116124	1 409
66	Bare	3		0 0	212 0	117216	1 422

Gold Foil Data

3-Module Cavity Reactor

(All Normalized to Power Level of Run 1186)

Run 1185

		Locat	tion	Foll		
Foil <u>Number</u>	Foıl Type	Radial (cm)	Axıal (cm)	Weight (gm)	Specific Activity 	Local to Foil (X)
1	Bare	0 0	89.4	0 0362	10 774	2 535
2	Bare	0 0	74 9	0 0360	10 461	2 461
3	Bare	0 0	596	0 0336	7 634	1 796
4	Bare	0 0	44 4	0 0359	5 021	1 181
5	Bare	0 0	29 1	0 0357	2 989	0 703
6	Bare	0 0	139	0 0349	1 478	0 348
7	Bare	0 0	0	0.0367	0 250	0 059
8	Bare	93 2	1 51 5	0.0366	6 887	1 620
9	Bare	107 7	151 5	0 0364	5 267	1 239
10	Bare	123 0	151 5	0 0373	3 677	0 865
11	Bare	138 2	151 5	0 0353	2 493	0 587
12	Bare	153 4	151 5	0 0356	1 521	0 357
13	Bare	168 7	151 5	0 0367	0 643	0 151
14	Bare	183.7	151 5	0 0370	0 098	0 023

				Radial		Foll	Specific	
Foll	Foil	Module		Distance	Degrees	Weight	Activity	Local to '
Number	Type	Number	Stage	From Center	CW	<u>(gm)</u>	<u>d/m/gm x 10⁻⁶</u>	Foll (X)
15	Bare	3	9	19 4	0	0 0362	5 670	1 33 ¹ 4
16	Bare	3	9	194	22 5	0 0360	5 746	1 352
17	Bare	3	9	194	45 0	0 0372	6 200	1 459
18	Bare	3	9	194	675	0 0358	6 443	1 516
19	Bare	ŝ	9	194	90 0	0 0357	6 929	1 630
20	Bare	3	9	194	112 5	0 0357	6 445	1 516
21	Bare	3	9	194	135 0	0 0377	6 331	1 490
22	Bare	ž	9	194	157 5	0 0359	6 329	1 489
23	Bare	3	9	19 4	180 0	0 0353	6 500	1 529
24	Bare	3	9	19 4	202 5	0 0364	6 344	1 493
25	Bare	ŝ	9	194	225 0	0 0364	5 998	1 411
26	Bare	3	9	194	247 5	0 0364	5 690	1 339
27	Bare	3	9	194 -	270 0	0 0353	5 612	1 320
28	Bare	3	9	194	292 5	0 0368	5 713	1 344
29	Bare	3	9	194	315 0	0 0359	5 679	1 336
30	Bare	3	9	194	337 5	0 0353	5 691	1 339

(Continued

	<u>Run 11</u>	85			·						
	Foil <u>Number</u>		oil Ype	Ra Dı <u>Mo</u>	dial Tra stance f dule Cer	avers From nter	se	Fc Wei _(g	oll.ght m)	Specific Activi 	Lty
	31 32 33 34 35 36	Cać Cać Cać Cać Cać	l Cov l Cov l Cov l Cov l Cov l Cov l Cov		35 : 57 - 79 : 101 : 123 : 145 :	3 4 5 5 5 7 8)358)360)364)361)346)356	3 493 2 942 3 545 2 575 0 759 0 119	
	Run 11 Foil <u>Number</u> 1 2 3 4	F01 F01 Cad (Cad (Cad (Cad (Cad (l F be Cov Cov l Cov l	Loca adial (cm) 0 0 0 0 0 0 .07 7 .38 2	tion Axial (cm) 74 9 44 4 151 5 151 5	Fc Wei (g 0 0 0 0 0 0)365)358)351)367	Sr Ac <u>d/m/</u>	ecific tivity <u>gm x 10⁻</u> 0 726 0 034 0 044 0 002	-6 Local to Foil (X)	
Foil Number	Foil Type	Module Number	Stage	Radı From	al Dista Center	ance	Deg: c	rees w	Foıl Weıght (gm)	Specific Activity d/m/gm x 10 ⁻⁶	Local to Foil (X)
5 6 7 8 9 10 11 12 13	Bare Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 9 9 9 9 9 9 9 9 9 9 9 9		35 2 35 2 35 2 35 2 35 2 35 2 35 2 35 2		24 4 6 11 13 15 18	0 2 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	0 0369 0 0353 0 0359 0 0368 0 0353 0 0337 0 0371 0 0355 0 0345	7 718 8 057 8 524 8 905 9 322 9 459 9 270 8 995 8 533	1 816 1 896 2 006 2 095 2 193 2 226 2 181 2 116 2 008
14 15 16 17 18 19 20	Bare Bare Bare Bare Bare Bare Bare	3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 9 9 9 9 9 9		35 2 35 2 35 2 35 2 35 2 35 2 35 2 35 2		20: 22: 24: 27: 29: 31: 33:	25 55 75 25 55 55 75	0 0363 0 0359 0 0363 0 0355 0 0369 0 0372 0 0349	8 175 7 828 7 550 7 413 7 322 7 468 7 557	1 923 1 842 1 776 1 744 1 723 1 757 1 778

(Continued)

Run 1187

		Locat	tion	Foil		
Foil Number	Fоıl Туре	Radial (cm)	Axıal (cm)	Weight (gm)	Specific Activity <u>d/m/gm x 10⁻⁶</u>	r Local to Foil (X)
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 20 21 22 3 24 5 26 7 8 9 20 21 22 24 25 6 27 8 9 20 12 23 24 5 26 7 8 9 20 12 23 24 5 26 7 8 9 20 12 23 24 5 26 7 8 9 20 12 23 24 5 26 7 8 9 20 12 23 24 5 26 7 28 9 20 12 23 24 5 26 27 8 9 30 31 2 2 3 24 5 26 7 28 9 30 31 2 2 3 2 4 5 26 7 28 9 30 31 2 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3	Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Bare Bare Cad Cov Bare Bare Bare Bare Bare Bare Bare Bare	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 93 & 2 \\ 123 & 0 \\ 153 & 4 \\ 4 & 4 \\ 4 & 4 \\ 4 & 4 \\ 9 & 9 \\ 9 & 9 \\ 9 & 9 \\ 9 & 9 \\ 13 & 13 \\ 13 & 4 \\ 17 & 28 \\ 2 & 8 \\ 2 & 8 \\ 2 & 8 \\ 2 & 2$	$\begin{array}{c} 89 & 4 \\ 59 & 6 \\ 29 & 1 \\ 151 & 5 \\ \end{array}$ $\begin{array}{c} 92 & 5 \\ 121 & 5 \\ 136 & 3 \\ 151 & 5 \\ 166 & 8 \\ 182 & 0 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 210 & 5 \\ 92 & 5 \\ 151 & 5 \\ 182 & 0 \\ 210 & 5 \\ 121 & 5 \\ 182 & 0 \\ 210 & 5 \\ 121 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 210 & 5 \\ 182 & 0 \\ 1$	0 0348 0 0364 0 0350 0 0360 0 0357 0 0360 0 0357 0 0369 0 0371 0 0348 0 0359 0 0359 0 0359 0 0350 0 0359 0 0350 0 0359 0 0350 0 0359 0 0360 0 0359 0 0368 0 0359 0 0368 0 0359 0 0368 0 0359 0 0368 0 0359 0 0359 0 0368 0 0359 0 0359 0 0359 0 0359 0 0355 0 0363 0 0359 0 0355 0 0363 0 0359 0 0363 0 0359 0 0363 0 0359 0 0365 0 0365 0 0365 0 0360	$ \begin{array}{c} 1 & 619 \\ 0 & 168 \\ 0 & 006 \\ 0 & 070 \\ 0 & 006 \\ 0 & 0001 \\ 4 & 823 \\ 4 & 339 \\ 2 & 064 \\ 4 & 250 \\ 2 & 108 \\ 4 & 324 \\ 5 & 338 \\ 4 & 956 \\ 4 & 398 \\ 4 & 477 \\ 4 & 444 \\ 5 & 229 \\ 4 & 988 \\ 4 & 618 \\ 4 & 764 \\ 4 & 670 \\ 5 & 565 \\ 5 & 644 \\ 5 & 288 \\ 2 & 212 \\ 2 & 249 \\ 5 & 244 \\ 6 & 002 \\ 6 & 495 \\ 6 & 211 \\ 6 & 418 \\ 6 & 066 \\ 6 & 450 \\ \end{array} $	$ \begin{array}{c} 1 & 135 \\ 1 & 021 \\ 1 & 000 & (X) \\ 1 & 017 \\ 1 & 256 \\ 1 & 166 \\ 1 & 035 \\ 1 & 053 \\ 1 & 046 \\ 1 & 230 \\ 1 & 174 \\ 1 & 087 \\ 1 & 121 \\ 1 & 087 \\ 1 & 121 \\ 1 & 099 \\ 1 & 309 \\ 1 & 328 \\ 1 & 244 \\ \end{array} $
Foil	Foil	Radial Tra Distance 1 Module Con	averse From	Foil Weight (am)	Specific Activity d/m/cm x 10-6	Local to
Number 36	<u>Type</u> Baro	MOGUTE CE	auer	<u>(gm)</u>		$\frac{rOlt}{\Delta}$
30 37	Bare	57. 46:	э 3	0 0361 0 0361	9 305	2 189
38	Bare	57	4	0 0350	<u>11</u> 744	2 763

TABL	Е	9	5

-

(Continued)	(Continue	d)	
-------------	---	----------	----	--

Run	1187						· · · · · ·	
Foi Numb	l Fo	oil Mpe	Radıal Dıstano Module	Traverse ce From <u>Center</u>	Foi Weig (gm	L S nt A) <u>d/m</u>	pecific ctivity /gm x 10	-6 Local to Foil (X)
39 40 41 42 43 44 45	Ba D Ba	are are are are are are are are	68 4 79 5 90 5 101 6 112 6 123 7 134 7 145 8		0 036 0 035 0 035 0 036 0 035 0 036 0 036	54 55 54 51 74 54 59 56	13 705 14 287 14 371 14 585 15 569 16 675 15 616 10 327	3 225 3 362 3 381 3 432 3 663 3 923 3 674 2 430
Run	1187				<u> </u>			
Foil <u>Number</u>	Foll Type	Module Number	Stage	Radıal D From Cen	ustance ter	Degrees 	Foll Weight (gm)	Specific Activity <u>d/m/gm x 10⁻</u>
47 48 49 50	Cad Cov Cad Cov Cad Cov Cad Cov	3 3 3 3	9 9 9 9	19 19 19 19	չ չ չ չ չ	0 90 180 270	0 0365 0 0356 0 0359 0 0368	2 149 2 357 2 256 2 179
Run Foı Numb	ll88 l Foil er Type	I . Radi	ocation al A	u Axial W cm)	Foil Teight (cm)	Specia Activi d/m/gm p	fic ity x 10-6	Local to Foil (X)
1 2 3 4 5 6	Bare Bare Bare Bare Bare Bare	0 0 100 115 130	0 0 0 1 1 4 1 6 1	82 5 0 67 2 0 52 0 0 51 5 0 51 5 0 51 5 0	0356 0372 0363 0367 0354 0354	11 65 9 29 6 21 6 38 4 61 3 23	54 94 49 37 10 30	2 742 2 187 1 470 1 503 1 085 0 760
Run	1188			·			Foil	Specific
Foil Number	Foil Type	Module <u>Number</u>	<u>Stage</u>	Radial D From Cen	ıstance ter	Degrees cw	Weight (gm)	Activity <u>d/m/gm x 10⁻</u>
7 8 9 10	Cad Cov Cad Cov Cad Cov Cad Cov	3 3 3 3	9 9 9 9	35 35 35 35	2 2 2 2	0 90 180 270	0 0363 0 0359 0 0362 0 0360	2 496 2 672 2 554 2 387

(Continued)

Foil Number	Foil Ty	1 <u>pe 1</u>	Distance Module Ce	From enter	Foll Weight (gm)	; _	Specif: d/m/į	1c Activity <u>3m x 10⁻⁶</u>
11	Cad Cov		46 3	3	0 0363	3		2 323
12	Cad Cov		68 4	-	0 0363	3	2	2 883
⊥.⊃ 1.h	Cad Cov		90 5) -	0 0350) -	2	2 102
Τ4	cau cov		115 0)	0 0346)	ι	J 591
Run 1190						·····		
		Radial 7	Fraverse	Foi	1	Specif	`ıc	
Foll	Foil	Distance	e From	Weig	ht	Actıvı	ty	Local to
Number	<u>Type</u>	Module (Center	<u>(gm</u>) <u> </u>	m/gm x	10-6	<u>Foll (X)</u>
1	Bare	57	4	0 03	56	17 2	42	4 057
2	Bare	79	5	0 03	48,	15 0	88	3 550
3	Bare	101	6	0 03	75	14 9	48	3 517
4	Bare	123	7	0 03	64	12 2	208	2 872
Run 1190	<u>.</u>	·						
		Locat	tion	Foil	Speci	fic		
Foll	Foil	Radial	Axial	Weight	Activ	ity /	Loca	al to
Number	<u>Type</u>	(cm)	<u>(cm</u>)	_(gm)_	d/m/gm	<u>x 10⁻⁶</u>	Forl	L (X)
5	Cad Cov	0.0	7h 0	0 0350	0	738		
6	Cad Cov	ññ	հե հ	0 0361	0	130		
7	Cad Cov	0 0	13.9	0 0360	Õ	002		
ė	Bare	93 2	151 5	0 0366	ě	569	1	546
9	Bare	107 7	151 5	0 0358	5	183	1	220
10	Bare	123 0	151 5	0 0351	-		-	220
11	Bare	138 2	151 5	0 0376	_			
12	Bare	153 4	151 5	0 0365	_			
13	Bare	168 7	151 5	0 0370	_	-		
14	Bare	183 7	151 5	0 0345	_			
15	Bare	99 0	212 0	0 0368	5	574	1	312
16	Bare	107 7	212 0	0 0364	ĺ4	886	1	150
17	Bare	115 3	212 0	0 0369	4	211	0	991
18	Bare	130 5	212 0	0 0361	2	718	0	640
19	Bare	145 7	212 0	0 0344	l	640	0	386
20	Bare	160 9	212 0	0 0370	0	890	0	209
Run 1191								
7	Bare	0.0	212 0	0 0351	7	շիհ	1	800
	DOT C	0.0	- - V	0 0JJT	1	1	T	062
Run 1192								
l	Bare	46	92 5	0 0356	5	245	l	234
2	Bare	46	121 5	0 0358	4	537	1	068

(Continued)

<u>Run 119</u>	2					
		Loca	tion	Foll	Specific	
Foll	Foll	Radial	Axial	Weight	Activity	Local to
Number	<u> Type </u>	(cm)	<u>(cm)</u>	<u>(gm)</u>	<u>d/m/gm x 10-6</u>	Foll (X)
3	Cad Cov	46	136 3	0 0360	2 264	
4	Bare	46	151 5	0 0361	4 644	1 093
5	Cad Cov	46	166 8	0 0346	2 259	- 0/0
6	Bare	46	182 0	0 0363	4 526	1 065
7	Bare	46	210 5	0 0352	5 528	1 301
8	Bare	90	92 5	0 0357	5 318	1 251
9	Bare	90	121 5	0 0351	4 727	1 112
10	Bare	90	151 5	0 0362	4 860	1 144
11	Bare	90	182 0	0 0372	4 604	1 083
12	Bare	90	210 5	0 0363	5 731	1 348
13	Bare	13 4	92 5	0 0363	5 551	1 306
<u>1</u> 4	Bare	13.4	121 5	0 0354	5 096	1 199
15	Bare	13 4	151 5	0 0358	5 259	1 237
16	Bare	13 4	182 0	0 0369	5 037	1 185
17	Bare	13.4	210 5	0 0360	5 979	1 407
18	Bare	178	92 5	0 0350	6 699	1 576
19	Bare	17 8	<u>1</u> 21 5	0 0352	6 173	1 452
20	Bare	17 8	151 5	0 0363	6 244	1 469
21	Bare	178	182 0	0 0365	6 196	1 458
22	Bare	178	210 5	0 0358	6 529	1 536
23	Bare	22 2	92 5	0 0366	7 470	1 758
24	Bare	22 2	121 5	0 0350	7 345	1 728
25	Cad Cov	22 2	136 3	0 0346	2 433	
20	Bare	22 2	151 5	0 0363	7 264	1 709
21	Cad Cov	22 2	100 0	0 0375	2 388	- (0)
20	Bare	22 2	T05 0	0 0358	Υ 149 Π αΠ ¹	1 682
29	Dare Cod Cor	22 2	210 5	0 0346	7 374	1 735
20	Cad Cov	128 0	151 5	0 0351	0 018	
30	Cad Cov	168 7	151 5	0 0319	0 003	
22	Bare	100 1	80 h	0 0359		0 550
37 27	Bare	0.0	74	0 0353	TO 012	2 559
35	Baro		14 9 50 6	0 0303	TO 222	2 429
36	Bare	0.0))	0 0305	(044 b 015	1 (99 1 156
37	Bare	0.0	20 1	0 0320	4 YI) 2 062	
38	Bare	0 0	13 0	0 0350	1 100 2 002	
39	Bare	0 0	0.0	0 0355	1 200 1 200	0 010
					0 209	0 049

(Continued)

Foll <u>Number</u>	Foll Type	Module <u>Number</u>	Stage	Radial Distance From Center	Degrees cw	Foll Weight (gm)	Specific Activity d/m/gm x 10 ⁻⁶
40 41 42 43 44 45 46 47	Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov	3 7 3 7 7 7 7 7 7	8 8 9 9 9 9	35 2 35 2 35 2 35 2 19 4 19 4 19 4 19 4 19 4	45 135 225 315 45 135 225 315	0 0360 0 0370 0 0365 0 0368 0 0365 0 0365 0 0375 0 0338	2 391 2 583 2 368 2 246 2 295 2 314 2 300 2 293
Run 119	2						
Foil Number	Foll Type	Radial	Axial	Radial Traverse Distance From <u>Module Center</u>	Degrees 	Foil Weight (gm)	Specific Activity <u>d/m/gm x 10⁻⁶</u>
48 49 51 52 53 54 55	Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov Cad Cov	100 1 115 3 130 5	210 5 210 5 210 5	57 4 79 5 101 6 123 7 145 7	·	0 0369 0 0342 0 0363 0 0367 0 0367 0 0367 0 0370 0 0355	2 35 2 878 2 124 0 586 0 092 1 023 0 340 0 093

<u>Run 1192</u>

Thermal Neutron Flux

3-Module Reactor

Locat	lon		
Radıal (cm)	Axıal (cm)	<u>(</u>	Thermal Neutron Flux (n/cm ² -sec-watt x 10 ⁻⁶)
0 0 0 0 93 2 107 7 123 0 138 2 153 4 168 7	89 4 74 9 59 6 44 4 29 1 13 9 151 5 151 5 151 5 151 5 151 5 151 5	-	5 528 5 855 4 492 3 004 1 796 0 889 4 046 3 161 2 210 1 499 0 916 0 386
	Radial Acros Distance Fr Module Cente 35 3 46 3 57 4 68 4 79 5 90 5 101 6 112 6 123 7 145 8	s Core com er (cm)	Thermal Neutron Flux (n/cm ² -sec-watt x 10 ⁻⁶) 4 201 5 279 6 518 6 470 7 393 7 231 9 030 9 593 6 146
Circumferent:	ial - Module	3, Stag	;e 9
Distance 1 Module Center	From I r (cm)	egrees cw	Thermal Neutron Flux $(n/cm^2-sec-watt \ge 10^{-6})$
19 4 19 4 19 4 19 4 19 4 19 4 19 4 19 4		0 45 90 135 180 225 270 315	2 116 2 362 2 755 2 437 2 546 2 210 2 045 2 072

180

TABLE	9	6
-------	---	---

(Continued)

Circumferential - Module 3, Stage 9									
Distance From <u>Module Center (cm)</u>				De,	grees cw	Thermal Neutron Flux $(n/cm^2-sec-watt \times 10^{-6})$			
35 2 35 2 35 2 35.2 35.2 35 2 35 2 35 2 35 2 35 2				0 45 90 135 180 225 270 315		3 154 3 876 3 993 4 028 3 570 3 278 3 018 3 150			
Location									
Rad: (cr	ual n)	Ахіа (cm)	al)	Module Number	Degre	tees Thermal Neutron Flux $(n/cm^2-sec-watt \times 10^{-6})$			
4 22 4 22	6 6 6	151 151 151 151	5 5 5 5	3 3 3 3	300 300 120 120	1 286 2 515 1 450 2 919			
19 35 19 35	և 2 4 2	151 151 151 151	5 5 5 5	3 3 3 3	120 120 300 300	2 716 2 716 2 658 2 071 2 071 3 044			
Across Face at Separation Plane									
99 114 144	1 3 8	212 212 212	0 0 0			2 741 2 331 1 581			

Infinitely Dilute

Gold Foil Cadmium Ratios

3-Module Cavity Reactor

Loca	ntion		Infinitely Dilute Foil Activity		
Radial	Axial		u/m/gm : Bare Cold		Cadmium
(cm) 0 0 0 0 93 2 107 7 123 0 138 2 153 4 168 7	$\begin{array}{c} (em) \\ 89 & 4 \\ 74 & 9 \\ 59 & 6 \\ 44 & 4 \\ 29 & 1 \\ 13 & 9 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \\ 151 & 5 \end{array}$		12 937 11 458 7 857 5 064 2 997 1 479 6 884 5 291 3 685 2 497 1 521 0 646	Ca Gola 3 756 1 734 0 397 0 075 0 014 0 002 0 165 0 042 0 014 0 007 0 005	Ratio 3 444 6 608 19 793 67 203 214 808 628 904 41 807 126 267 262 006 346 452 137 412
		Radial Across Core Distance From Module Center 35 3 46 3 57 4 68 4 79 5 90 5 101 6 112 6 123 7 145 8	11 356 12 460 15 688 17 630 19 123 17 167 18 074 16 364 17 688 10 487	5 483 6 920 6 805 8 377 4 888 6 064 1 368 1 757 0 279	2 272 2 267 2 591 2 283 3 512 2 981 11 964 10 069 37 635
Cırcumfe Dıstan <u>Module C</u>	rential - ce From enter (cm 19 4 19 4 19 4 19 4 19 4 19 4	Module 3, Stage 9 Degrees) 0 45 90 135 180 225	Infinitely Foil Act d/m/gm 3 Bare Gold 8 597 9 352 10 094 9 522 9 529 9 171	y Dilute tivity x 10-6 Cd Gold 5 084 5 429 5 519 5 474 5 301 5 502	Cadmium Ratio 1 691 1 723 1 829 1 739 1 798 1 667

(Continued)

OTICOULT		Nounte J?	<u> </u>				
	Infinitely Dilute Foil Activity				tely Dilute		
					Activity		
D				d/m/,	d/m/gm x 10 ⁻⁶		
Dista	nce from	Degre	es	D A D	Cadmium		
Module	Center (cm)	CW		<u>Bare Gol</u>	a <u>Ca</u> Gola	<u>_Ratio</u>	
	194	270		8 567	5 172	1 657	
	19 4	315		8 699	5 257	1 655	
	35 2	́0		11 130	5.891	1 889	
	35.2	45		11 755	5 624	2 090	
	35.2	90		12 910	6 278	2 056	
	35.2	135		12.835	6 145	2 089	
	35 2	180		11 950	6 021	1 985	
	35.2	225		11 046	5 602	1 071	
	35 2	270		10 627	5 615	1 803	
	35.2	215		10 563	5 331	1 081	
	57 2			TO)01		1 901	
				Tnfinit	elv Dilute		
Loc	ation			For Actavity			
ECC	avion			d/m/m			
Radial	Axial	Module	Degrees	a) 111/ B	m X TO	Cadmium	
<u>(cm)</u>	<u>(cm)</u>	Number	CW	Bare Gold	Cd Gold	<u>Ratio</u>	
46	151 5	З	300	7 050	jr 050	1 733	
22.6	151 5	۲ ۲	300	9 700	5 223	1 800	
<u>ь</u> б	151 5	2	120	7 674	5 267	1 157	
22 6	151 5	2	120	10 551	5 703	1 850	
		2	120	10 //1	7105	1 0)0	
194	151 5	3	120	10 021	5 511	1 818	
35 2	151 5	3	120	13 004	6 264	2 076	
194	151 5	3	300	8 527	5 086	1 676	
352	151 5	3	300	10 695	5 640	1 896	
		Across	Face at Se	paration Pla	ane		
00 1	212 0			6 078	2 1125	0 877	
ノラ エ コート つ	212 0			1 670		5 796	
1))) 8	212 0			4 U (7 0 R)-0		12 071	
744 U	CIC V			2 04J	0 210	TIO CT	

Circumferential - Module 3, Stage 9

Figure 9 1 Cross section view at separation plane of 3 module tank insert

Figure 9.2 Side view of fuel element for 3 module reactor

185

Figure 9 3 Layout of fuel rings for 3 module reactor fuel element

Figure 9.4 Layout of fuel sheets on fuel stage separation discs of 3 module reactor fuel element

Figure 9 5 Control rod shape curve - eight actuators

Figure 9.6 Fuel worth measurements from module 3 of the 3 module cavity reactor

Figure 9.7 Relative axial power distribution in module 3, 30° at the core centerline, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9 8 Relative axial power distribution in module 3, 120° at the core centerline, 3 module reactor with 0.55 fuel to module radius ratio

Figure 9 9 Relative axial power distribution in module 3, 300° at the core centerline, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9 10 Relative radial power distribution in module 3 based on axial average power distributions - 3 module reactor with 0.55 fuel to module radius ratio

Figure 9 11 Circumferential power distribution on outside fuel ring, stage 8, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9.12 Circumferential catcher foil cadmium ratio on outside fuel ring, stage 8, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9 13 Relative axial power distribution in the end reflector, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9.14 Relative axial power distribution in the radial reflector, 3 module reactor with 0.55 fuel to module radius ratio

Figure 9.15 Relative axial power distribution across face of the core through module 1 axis, 3 module reactor with 0 55 fuel to module radius ratio

198

Figure 9.16 Relative axial power distribution across face of core with traverse between modules 1 and 2

Figure 9.17 Axial distribution of catcher foil cadmium ratios through module 3, 300°, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9 18 Axial distribution of catcher foil cadmium ratios through module 3, 120°, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9 19 Relative radial gold foil activity in a module, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9 20 Circumferential relative gold foil activity on outside fuel ring, stage 9, 3-module reactor with 0 55 fuel to module radius ratio

Figure 9 21 Relative radial bare gold foil activity traverse out through D₂0 between modules 1 and 2, 3 module reactor with 0.55 fuel to module radius ratio

radius ratio

Figure 9.23 Relative bare gold foil activity in module 3, 120°, 3 module reactor with 0.55 fuel to module radius ratio

Figure 9 24 Relative bare gold foil activity in module 3, 300°, 3 module reactor with 0 55 fuel to module radius ratio

Figure 9.25 Radial distribution of thermal neutron flux through core and radial reflector, 3-module reactor with 0 55 fuel to module radius ratio

10 0 DISCUSSION OF RESULTS

The critical mass variations for the four different sevenmodule configurations were unexpectedly relatively insensitive to the radius ratio of the fuel within the modules These and other major results are summarized in Table 10 1. It is especially interesting to note the critical mass vs radius effects of these module configurations compared to that of a single large cavity. Figure 10 1 shows this variation for the three experimental cylindrical cavity reactors that have been measured:

- (1) this module experiment
- (2) the six foot single cavity experiment in Idaho, the reflector tank from which was used in the module experiment
- (3) the Los Alamos 40-inch cavity, measurements made about 1960 (9)

These curves show a striking difference between the limiting conditions for the two principal types of reactors, single and multiple cavities The minimum radius ratio for which the critical mass becomes excessive is lower for the module or multiple cavity system. The flatter curve of the module reactor is in part caused by the presence of hydrogen, which was not included in the two sets of single cavity experimental results shown.

The fuel worth of uniform changes in fuel density was measured on all configurations In Figure 10 2 these results are plotted vs fuel mass in the reactor and compared with the results obtained with the single large cavity configurations The results all lie virtually on the same curve Note the solid curve (Ref 4, page 50), actually has a spread of $\pm 10\%$ for some reactor configurations But the general applicability and hence usefulness of this curve on all cavity reactors of the same general overall size is readily apparent

The penalty for hydrogen in these modular systems is not significantly different from the penalty measured in the single cavity concept (Reference 2, p 252 and Reference 4) The hydrogen penalty is approximately 2 1%k/kg of hydrogen, averaged throughout the void region In the large single cavity experiments, hydrogen nearer the fuel had a worse penalty (factor of 2.5) than that near the cavity wall (Reference 2, p 252 and 358) The same variation of worth in the cavity might be anticipated in this module experiment The measurement was not made because the hydrogen thickness was so small as to make a reliable measurement very difficult if not impossible The variation is believed to be caused by molecular binding effects which allows the hydrogen to scatter isotropically at thermal energies, thus effectively scatter-returning those neutron traveling from the core to the reflector At operating temperatures of 4 or 5000°K, molecular binding would not exist, and such a position dependence is not expected to be as strong an effect as in this low temperature experiment.

The simulation of hydrogen with polyethylene and polystyrene is realistic, since the carbon content represents only about 10% of the total worth of CH₂ and 20% of CH (p 251 of Ref. 2) The materials used had adequate purity, containing no high cross section impurities in concentrations greater than a few ppm. A chlorine compound gas is used in some processes for expanding styrofoam, but the material was analyzed for residual trapped chlorine and none was found

The penalty of the exhaust nozzle opening was worse on the seven module configuration than on any of the other configurations, including the single large cavities The highly effective fuel of the center module was directly affected by this nozzle hole However, this penalty of 1 15% for the seven module configuration was not severe compared to the penalty of hydrogen or cavity wall lining material Therefore, the nozzle design need not be considered especially important for the nuclear characteristics provided the same considerations are given to material selections as are done for the cavity wall

The walls of the cavities present one of the most difficult design problems for the cavity reactor The walls must be able to withstand ultra-high temperatures, very high pressures, and also be nuclearly thin. The walls in the present module experiments are exceedingly thin, 0 32 cm of aluminum, only 0 005 thermal absorption mean free paths Such walls are quite unrealistic for the actual high temperature application For this reason the effect of thicker walls was evaluated on the 0 38 radius ratio, 7-module configuration. Stainless steel 0 125 cm thick, representing 0 038 thermal mean free paths was added to the aluminum walls Extrapolated to all seven modules, the penalty was 28%k With the use of Figure 10.2, it can readily be seen that this penalty would have required quadrupling the critical mass from 10 2 to 43 kg of uranium Stainless steel 0.125 cm thick is equivalent to 4 5 cm thickness of zircalloy, so this value of nuclear thickness (0 038 plus 0 005=0.043 mean free paths) is probably a pessimistic estimate of what would be required Nevertheless, the severe penalties paid for neutron absorption on the walls of the cavity show that the wall is one of the most important and sensitive areas of the reactor design.

Flux and power distributions were extensively measured on all configurations Very large thermal flux peaking occurs in the regions between modules and in the reflector surrounding the modules If structural supports are needed in the reactor, these areas should be avoided However, a thorough analysis of the optimum location for structural members requires knowledge of the adjoint flux Calculated shapes for the adjoint flux and statistical weight may be found in Ref. 5, page 61

Power distributions on the module reactors did not show a self-shielding effect large enough to be of great significance to thermo-

dynamic considerations on any but the 0 38 radius ratio configurations. The peak to minimum radial power ratio for the configurations is listed below:

	<u>3-Module</u>				
R/R _o	0.55 with H	0.72 with H	0.38 with H	<u>0 38 no H</u>	<u>0 55 with H</u>
Edge/Cer	nter			1	-
Power	1 20	1 1 2	1 50	1 24	1 17

The measured flux distributions on some of the configurations showed unusual dips at the cavity walls and at the outer wall of the module tank These were assumed to be the result of flux perturbation in the moderator by the aluminum Since adequate detail (resolution) was not obtained in these experiments, a supplementary flux perturbation experiment was performed later in an equivalent environment (heavy water reflector of a gas core reactor) The results are shown in Figure 10 3 Approximately a 10% flux perturbation resulted from 1/2-inch thick aluminum, which was the net thickness of the outer wall of the module tank plus the inner wall of the reflector tank The same magnitude of flux perturbation would have shown on Figures 5 32, 6 15, 7 10 and 8 10 if sufficient detail had been obtained on the curves.

10.1 Effects on Cavity Reactor Operating Characteristics at Power

The principal fuel loading and reactivity results measured on the five configurations of the module concept are summarized in the foregoing discussion Though critical mass results themselves are ostensibly the most significant piece of data, it should be cautioned that an even more important parameter to the cavity reactor concept is the cavity pressure. Thus low critical masses will have little merit if they are confined in so small a volume that the gas pressure would be excessive under operating conditions.

In order to view the relative advantages of the various module arrangements, it is appropriate to adjust them all to equivalent structural and hydrogen coolant configurations, and then to compare the results in terms of the relative cavity pressures created by that critical mass at operating temperatures of the order of 80,000°R for the fuel

In Table 10 2 are shown comparisons between the directly measured characteristics of the three principal configurations of this experiment, two 7-module cases and one 3-module case, and the nearest applicable single large cavity configuration, that performed with UF_6 fuel in a radius ratio core of 0 67 (Reference 3, page 119) To this configuration was added the effect of hydrogen (Reference 2, p 251 and Reference 4, p 76). All configurations were then corrected to the same amounts of structural aluminum within the core region, which, in the case of the module configurations included the mass of module tank as well as that of the fuel elements. The corrected critical masses for these configurations is then given at the bottom of Table 10.2. Note,

this is with 1.23×10^{21} atoms/cc of hydrogen in the hydrogen regions of each configuration However, the total quantities of hydrogen in these configurations differ significantly, amounting to a factor of 2 5 times more hydrogen in a single module configuration than is in the 7-module configuration

In order to make a better comparison, the 0 67 radius ratio of the single module configuration should be converted to 0 55 and 0 72 radius ratio This can be done using Figure 10 1, and yielding the following results.

	0 55 radius	<u>ratio</u> 0	<u>0 72 radius ratio</u>		
	Critical mass	(kg) U/cc Cri	tical mass	(kg) U/cc	
Single module	27	8 2x10 ¹⁹	21	3 8x10 ¹⁹	
3-module	12 2	7 3x10 ¹⁹			
7-module	8.6	5.3x10 ¹⁹	8.2	2 9x10 ¹⁹	

In the above configurations, for convenience the hydrogen in each was taken as occupying the volume from 0.72 to 1 O radius ratio If the hydrogen filled out the rest of the volume at 1.23×10^{21} H/cc in the 0.55 radius ratio cases, the critical masses would increase for these configurations. The changes would be approximately a 0.3 kg increase for the 7 module configuration and a 6 kg increase for the single module configuration. So as to provide approximate calibration points for the atom densities discussed above, atomic hydrogen at 5500°K, assumed not to be ionized and at an atom density of 1.23×10^{21} H/cc, is at approximately 900 atmospheres of pressure. Uranium gas at a temperature of 45,000°K is at 900 atmospheres when its atom density is approximately 4.5 $\times 10^{29}$ (10) Thus it appears that at 900 atmospheres, the stable operating configuration for either the single, 3-module, or 7-module systems is with a fuel radius ratio in the 0.60 to 0.70 range.

The above comparisons of the sheet fuel module configurations with the UFG gas-core single cavity configurations raises the question of how well the sheet fuel simulated a gas? The arrangement of the foils essentially eliminated all streaming paths that could not encounter fuel It is felt that the arrangement utilized in these module experiments was at least as valid a simulation of a gas as was Mockup #2 of the single cavity experiments ⁽³⁾ This latter sheet fuel configuration had a measured bias of a 4% higher critical mass than existed in the all-gas cores The same bias might be used as an expected bias value for the module experiments

10 2 Calculations

The difficulty of doing reliable calculations on the modular configurations limited the amount of analytical correlation performed with this experiment. Major compromises are required to even reduce the reactor configuration problem to two dimensions Because of these complexities, a synthesis approach was used to predict the critical mass so that the fuel elements could be preloaded to a value that would, hopefully, not require complete disassembly and reloading to complete the experiment A 19-energy group one dimensional diffusion code was used It had been extensively calibrated for bias using the single large cavity experiments Preliminary calculations were made using the mean-chord-length concept ($\frac{4y}{S}$) to obtain estimated thermal flux depression factors in the fuel modules. Then several calculations were performed to obtain an expected range for the critical loading Over this range, a number of cell calculations were performed, taking the radius of the 7-module cell as 38 cm and the 3-module cell as 50 cm These cell radii were chosen as the approximate mean radius at which the gradient of the flux was zero.

Using the cell calculations, the "cell correction factors" for fuel absorption relative to moderator flux were obtained and used in the overall reactor calculation. The critical masses predicted by this method were as follows and are compared with the measured critical masses with the exhaust nozzle plugged:

	7-Module 0.55 Radius Ratio with Hydrogen	3-Module 0.55 Radius Ratio with Hydrogen		
Predicted	7.7 kg	l3 kg		
Measured	8 3 kg	11 kg		

This method of calculating these reactors was more successful on the 7-module configuration, principally because it was more realistic to define a "cell "for this configuration than for the 3-module configuration No calculations were performed on the other configurations since preanalysis was obtained by extrapolation of measurements on the previous configuration(s).

TABLE 10 1

Principal Results from the Five Different Modular Configurations

	7-Modules O 55 R/R _o No Hydrogen	7-Modules O 55 R/R _o With Hydrogen	7-Modules O 72 R/R _O <u>With Hydrogen</u>	7-Modules O 38 R/R _O With Hydrogen	3-Modules O 55 R/R _o <u>With Hydrogen</u>
Critical Mass (nozzle plug out) kg of U	797	8 64	8 Ol	10 16	11 5
Worth of Fuel (core average) % ∆k/kg	3 95	3 93	4 08	2 87	1 65
Nozzle Plug Worth H Atom Density CH ₂ Worth % Ak/kg	 1 23 x 10 ²	$-1 15 \pm 0 09$ $\% \Delta k$ 21 atoms/cc from $-0 41 \pm 0 10$	 0 72 R/R ₀ 		-0 46 <u>+</u> 0 03 % Ak 1 33 x 10 ² 1
CH Worth (Complete Removal) Stainless Steel Liner Worth		-0 11 <u>+</u> 0 02 -0 096 <u>+</u> 0 011 (0 125 cm thic)	-	 -0 24% dk/k&	
Alumanum Worth		-0 03 % $\Delta k/kg$ in cores of all configurations			
Control Rod Worth		-2 80% Ak in 21 rods -3 93% Ak in 30 rods			

_ ..

TABLE 10 2

Comparisons of 1-, 3- and 7-Module Configurations

(All Use Same Reflector Bank)

	7-Module 0 55 R/R _O	7-Module 0 72 R/R _o	3-Module 0 55 R/R _o	l-Module 0 67 R/R _O
Measured Critical Mass (kg of U)	8 64	8 01	11 5	16 21
Uranium Atom Density U/cc	5.27 x 10 ¹⁹	2 84 x 10 ¹⁹	6 84 x 10 ¹⁹	3 27 x 10 ¹⁹
Volume Occupied by Hydrogen (cm^3) (From 0 72 to 1 0 R/R_0)	6 37 x 10 ⁵	6 37 x 10 ⁵	8 18 x 10 ⁵	15 44 x 10 ⁵
H Atom Density	1 23 x 10 ²¹	1 23 x 10 ²¹	1 33 x 10 ²¹	0
Total H Atoms	7 83 x 10 ²⁶	7 83 x 10 ²⁶	10 88 x 10 ²⁶	0
Correction to 1 23 x 10 ²¹ H/cc	0	0	+0 29% Δk	-5 4% ∆k
Aluminum Mass Inside Reflector (kg)	271 6	291 8	216 8	245
Correction to 272 kg	0	-0 60% ∆k	+l 7% Ak	-0 8% Ak
Total Correction (% ∆k) (kg of U)	0	-0 60% ∆k +0 15 kg	+2 0% ∆k -0 69 kg	-6 2% ∆k +6 2 kg
Corrected Critical Mass*	8 64 kg	8 24 kg	12 2 kg	22 4 kg
Corrected U Density/cc	5 3 x 10 ¹⁹	2 9 x 10 ¹⁹	73×10 ¹⁹	4 5 x 10 ¹⁹
Total Atoms of Hydrogen	78 x 10 ²⁶	78 x 10 ²⁶	10 l x 10 ²⁶	19 x 10 ²⁶
*Corrected to 271 6 kg of aluminum and 1	23 x 10 ²¹ H/cc			

-

Figure 10 1 Experimental Relationship between Fuel Mass and Fuel Radius as Fraction of Cavity Radius

Figure 10 2 Comparison of Fuel Worth vs Fuel Loading for Two Configurations

Figure 10 3 Flux-Perturbation Effect of 1/2-inch thick Aluminum Plate in D₂O Reflector of Cavity Reactor

11 0 CONCLUSIONS

*

The modular cavity reactor critical experiments showed substantially lower critical masses than obtained with single cavities built within the same sized reflector systems However, this "equivalent" single cavity contained 2 1/2 times as much propellant and had only a 35 to 50% higher plasma pressure (uranium atom density)^{*} The various conclusions are summarized below.

- Critical masses of 7-module configurations were approximately 1/3 to 1/2 of the critical masses of the "equivalent" single cavity system
- 2 Cavity pressures (uranium atom densities), however, did not show as large a difference They were only 2/3 to 3/4 of that of the equivalent single cavity system.
- 3 The 3-module results fell relatively uniformly between the results of the 7-module and single cavity systems
- 4. The 7-module system could be operated (as a thermal reactor) down to lower fuel to cavity radius ratios than could the single cavity system However, the lower limit of the radius ratio would be the practical limit of cavity pressure
- 5. The penalty paid for neutron absorption in the cavity walls is somewhat more severe in the seven module system than in the single module system, but then the smaller cavity size would not require as thick a wall to contain the pressure in the 7-module system
- 6 Except in the low fuel/cavity radius ratios (0 38), the module systems had very little fuel self shielding, and peak to minimum flux ratios (radially only) were usually 1 25 or less
- 7 The penalty paid per kg of hydrogen coolant appears to be essentially the same in the 7-module and the single cavity configurations.
- 8. The exhaust nozzle was worth the most when directly along the axis of one of the cavities Still, its reactivity penalty was not severe (~1%Ak).

As shown in Ref 10, the pressure of the uranium plasma is directly proportional to the density of the uranium in the range of interest and for constant temperature This implies a constant compressibility factor

These experiments did not investigate the effect of variations in interstitial moderator between modules, and thus it is not known if a more optimum module spacing can be achieved Neither was there an experiment on a single cavity of a size that would have nominally the same fuel and hydrogen volumes as that of the 7 and 3-module configurations The single cavity system used for comparison was the one that fit into the same sized external reflector It had 2 1/2 times the hydrogen volume and three times the fuel volume of the modular configurations The comparisons thus made are open to questions of interpretation The aluminum structure, though corrected to the same mass for all configurations, was generally in a slightly higher worth location in the modular configurations However, it is believed that the above listed conclusions are valid even when considering such uncertainties Future investigations should probably be concerned with as these optimizing the module size and spacing and obtaining data to make a comparison with a single cavity system of the same small hydrogen (and fuel) volumes

REFERENCES

- 1. Latham, T S., "Nuclear Studies of the Nuclear Light Bulb Rocket Engine," NASA Contractor Report G-910375-3, United Aircraft Corp, September, 1968.
- 2 Pincock, G D, Kunze, J F, "Cavity Reactor Critical Experiment, Volume I," General Electric Company, NMPO-ITS, September 6, 1967, (NASA-CR-72234)
- 3 Pincock, G D., Kunze, J F, "Cavity Reactor Critical Experiment, Volume II," General Electric Company, NSP-IIS, May 31, 1968, (NASA-CR-72415).
- 4 Pincock, G. D., Kunze, J F, "Cavity Reactor Critical Experiment, Volume III," General Electric Company, NSP-IIS, September, 1968, (NASA-CR-72384).
- 5 Henderson, W B, and Kunze, J F, "Analysis of Cavity Reactor Experiments," General Electric Company, NSP-IIS, January, 1969 (NASA-CR-72484)
- 6 Kelber, C. N, "Resonance Integrals for Gold and Indium Foils", <u>Nucleonics</u>, August 1962, p 162
- 7. Dalton, G. R. and Osborne, R K, "Flux Perturbations by Thermal Neutron Detectors", <u>Nuclear Science and Engineering</u>, Vol <u>9</u>, p 198 (February, 1961).
- 8. Brown, H L and Connolly, T J., "Cadmium Cutoff Energies", Nuclear Science and Engineering, Volume 24, p 6, (January 1966).
- 9 Mills, C. B., "Reflector Moderated Reactors", Nuclear Science and Engineering, Volume 13, p. 301, (1962)
- 10. Parks, D E., et al, "Optical Constants of Uranium Plasma", Gulf General Atomic, NASA-CR-72348, February, 1968 For a condensation of pertinent operating parameters for a gas core, see R G. Ragsdale, "Relationship Between Engine Parameters and the Fuel Mass Contained in an Open-Cycle Gas-Core Reactor," NASA TM X-52733, January, 1970
- 11. Pincock, G. D., Kunze, J. F., "Cavity Reactor Critical Experiment, Volume IV," Idaho Nuclear Corporation, October, 1969 (NASA-CR-72550)
- 12. Pincock, G. D., Chase, P. L., "Cavity Reactor Critical Experiment, Volume V," Idaho Nuclear Corporation, November, 1969 (NASA-CR-72577)

INDEX

Aluminum worth - 17, 80, 111, 135, 138, 159 Calculations (computer, reactor physics) - 212 Carbon, worth of - 16 Catcher foil method - 12 Cavity liner, worth of - 111 Delayed neutrons - 11, 13 DoO purity, density - 8 Dimensions - 7 Exhaust nozzle worth - 16 Flux perturbation - 211 Fuel Composition - 8 Worth (see also specific configurations) 17, 134, 137, 209, 217 Gamma-n reactions - 11 Gap between tables - 159 Hydrogen Simulation - 7, 209 Worth - 159 Nuclear model - 10 Pressures - effective pressure for criticality - 211 Reference positions - 12 Resonance self-shielding - 12 Structure - 7