

CRITICAL EXPERIMENTS ON A MODULAR CAVITY REACTOR

J F Kunze and PL Chase

national aeronautics and space administration

> Contract C-67747-A

IDAHO NUCLEAR CORPORATION
National Reactor Testing Station
Idaho Falls, 'Idaho

LEGAL NOTICE

This report was prepared as an account of Government sponsored work Nerther the United States nor the Commission, nor any person acting on behalf of the Commission

A Makes any warranty or representation express or implied, with respect to the accuracy completeness or usefulness of the information contaned in this report, or that the use of any information, apparatus method or process disclosed in this report may not infringe privately owned rights or

B Assumes any habilities with respect to the use of, or for damages resulting from the use of any information apparatus, method, or process disclosed in this report

As used in the above "person acting on behalf of the Commission" includes any employee or contractor of the Commssion or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares disseminates or provides access to, any information pursuant to his employment or contract with the Commission or his employment with such contractor

CRITICALEXPERIMENTS 0 N A MODULAR CAVITY REACTOR
 by
 J F Kunze and P. I. Chase

Prepared for
NATIONAL ABRONAUUTICS AND SPACE ADMINISTRATION Contract C-67747-A

Technical Management
NASA-Lewis Research Center
Cleveland, Ohio
Nuclear Systems Division
Robert E Fyland, Project Manager
Space Nuclear Propulsion Office
Capt C E Franklin, USAF

IDAHO NUCLEAR CORPORATION

A Jointry Owned Subsidiary of
AEROJET GENERAL CORPDRATION
ALLIED CHEMICAL CORPORATION
PHILLIPS PETROLEUH COMPANY

U S Atomic Energy Commission Scientafic and Technical Report Issued Under Contract AT(10-1)-1230

Idaho Operations Office

Abstract

ABSITRACT Two fundamental design concepts have been under consideration for the cavity nuclear rocket reactor One of these is the open-fuel-cycle concept, in which the fuel is partially contained in the cavity by hydrodynamic forces of the surrounding propellant The other is the closed-fuel-cycle concept, in which the fuel is contained by a wall transparent to radiation. In the latter concept, the modular design of several small cavaties with moderator in the interstices has been employed. This report describes the results of reactor physics measurements on the modular concept, and compares the results with previously reported data on the single large cavity design of the open-fuel-cycle concept.

ACKNOWLEDGEMERTIS

The authors wash to acknowledge the work of G D. Pincock, C. G. Cooper, D H. Suckling, and R. R Jones in obtaining the data and performing much of the preliminary analysis.
ABSIRACT ユ1
ACKNOWTEDGEMENTS. 11
1.0 SUMMARY 1
2.0 INTRODUCITION 2
3.0 RFACIOR DESCRIPTION 7
4.0 TEST PROCEDURES 11
5.0 O.55 RADIUS RATIO CORE - 7 MODUIP. 14
5.1 Inュtial Ioading 15
5.2 Reactuvity Measurements 16
5.2.1 Rod Worth 16
5.2.2 Materıal Worths 17
5.2.3 Simulated Exhaust Nozzle Measurements for the Module System 18
5.3 Power Mapping (Catcher Foil Data) 18
5.4 Flux Mapping (Gold Fonl Data) 19
5 4.1 Bare Gold Data 19
5.4.2 Cadmium Ratios 20
5 4.3 Thermal Neutron Flux 21
6.0 0.72 RADIUS RATIO CORE - 7 MODULE 79
6.1 Inıtial Ioading 79
62 Reactuvity Measurements 80
63 Power Mapping - Catcher Foils 81
64 Flux Mapping - Gold Fozls 81
6 4.1 Bare Gold Data 81
64.2 Cadmium Ratios 82
64.3 Thermal Neutron FIux. 82
7.0 0.38 RADIUS RATIO CORE - 7 MODULE SYSTIEM WITH HYDROGENT. 110
7.1 Inıtıal Ioadıng 110
7.2 Reactuvity Measurements 110
7.3 Power Distribution 111
7.4 Neutron Flux Distributions 111
8.0 0.55 RADIUS RATIO WITHOUT HYDROGEM 134
8.1 Inıtıal Ioading 134
82 Reactuvity Measurements 134
8.3 Power Distributions 135
8.4 Flux Distribution. 135
9.0 THREP MODUTE REACIOR - 0.55 RADIUS RATIO CORE WITH HYDROGER STMUTATION 157
9.1 Initial Ioading 157
9.2 Reactivity Measurements 158
9.3 Power Distribution 159
9.4 Thermal Flux and Gold Cadmium Ratios 160
10.0 DISCUSSION OF RESULIS 209
10.1 Effects on Cavity Reactor Operating Characteristics at Power 211
10.2 Calculations 212
11.0 CONCLUSIONS 219
REFERERCES 221
INDEX 222

TABLES

41 Effective Delayed Neutron Parameters 13
5.1 Inıtial Ioading, T-Module Reactor, 0.55 Radius Ratio 22
5.2 All Rods Worth Curve Data, 7 Actuators - 21 Rods 7-Module Reactor, 055 Radius Ratio 24
5.3 All Rods Worth Curve Data, 10 Actuators - 30 Rods Exhaust Nozzle Tank in Reactor 25
5.4 Fuel Worth Measurements 26
5.5 Miscellaneous Reactuvity Measurements 27
56 Reactuvity Measurements of Exhaust Nozzle Configurations. 28
5.7 Catcher Foıl Data, 055 Radıus Ratıo 29
5.8 Gold Foil Data, 0.55 Radıus Ratio 36
5.9 Power Normalization Factors, 055 Radius Ratio 41
5.10 Gold Foil Cadmıum Ratıos, 0.55 Radius Ratio Exhaust Nozzle Removed. 42
511 Thermal Neutron Flux, 055 Radius Ratio Exhaust Nozzle Removed. 44
6.1 Fuel Sheets on Fuel Stage Separation Disc, 7-Module Reactor, 072 Radıus Ratio 83
6.2 Fuel Worth Measurements, 0.72 Radius Ratio 84
6.3 Catcher Foil Data, 0.72 Radius Ratio. 85
6.4 Power Normalization, 0.72 Radıus Ratıo. 88
6.5 Gold Foil Data, 072 Radius Ratıo. 89
6.6 Gold Foil Cadmıum Ratios, 0.72 Radius Ratio Wath Hydrogen. 93
6.7 Thermal Neutron Flux, 0.72 Radius Ratio Exhaust Nozzle Removed 94
7.1 Fuel Ellement Loading Arrangement, 0.38 Radius Ratıo 112
72 Material Worth Measurements, 7-Module Reactor, 0.38 Radus Ratio, Hydrogen in Reactor 113
7.3 Power Distribution, Catcher Foil Data, 7-Module Reactor - 0.38 Radıus Ratıo Wıth Hydrogen 114
7.4 Bare Gold Foil Data, 0.38 Radius Ratio 117
7.5 Gold Foil Cadmıum Ratios, 0.38 Radıus Ratio 120
7.6 Thermal Neutron Flux, 0.38 Radius Ratio 121
8.1 Comparison of Ioading With and Without Hydrogen 0.55 Radius Ratio 136
8.2 Uranium Worth Measurements, 7-Module Reactor, 0.55 Radius Ratio - No Hydrogen in Reactor. 137
8.3 Aluminum Worth Measurements, 7-Module Reactor Without Hydrogen, Exhaust Nozzle in Reactor. 138
8.4 Catcher Foll Data, 0.55 Radius Ratıo, No Hydrogen 139
8.5 Gold Foll Data, 0.55 Radıus Ratıo, No Hydrogen 142
8.6 Thermal Neutron Flux, 0.55 Radıus Ratio, No Hydrogen.. 145
9.1 Distribution of Fuel Sheets on the Fuel Rangs, 3-Module Reactor - 055 Radius Ratio. 162
9.2 8 Actuator Tabular Rod Worth Curve, 3-Module Reactor (12 Manual Rods in Reactor) 163
9.3 Fuel Worth, Iongıtudinally Averaged, Module 3 164
9.4 Catcher Foil Data, 3-Module Reactor 165
9.5 Gold Foul Data, 3-Module Cavity Reactor 173
9.6 Thermal Neutron Flux, 3-Module Reactor 180
9.7 Infinntely Dilute Gold Foll Cadmium Ratios. 182
10.1 Principal Results from the Five Different Modular Configurations 214
10.2 Comparisons of I-, 3-, and 7-Module Configurations (All Use Same Reflector Bank) 215

FIGURES

21 Modular and Single Cavity Concepts 5
2.2 Schematic Diagram of Reference Nuclear Light Bulb Engine. 6
3.1 Cavıty reactor reflector tank 9
3.2 Two-dumensional reflector model 10
51 End view of seven module tank 46
5.2 End view of fuel element. 47
5.3 SIde view of fuel element 48
54 Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 055 raduus ratio loadıng 49
5.5 Inverse multiplication curve for 7-Module Reactor 50
56 Control rod shape curve - seven actuators (21 rods) 51
5.7 Control rod shape curve - all actuators (30 rods) 52
58 Uranium worth measurements, 7-module reactor with 055 fuel to module radius ratio. 53
5.9 Exhaust nozzle configurations for the 7-module reactor 54
510 Relative axial power distribution in Module 1, 0° at the core centerline, 0.55 radius ratio 55
5.11 Relatave axial power distribution in Module 1 , 90° at the core centerline, 0.55 radius ratio 56
5.12 Relative axial power distribution in Module 3, 0° at the core centerline, 0.55 radius ratio. 57
5.13 Relative axial power distribution in Module 3, 90° at the core centerline, 055 radius ratio 58
514 Relatave axial power distribution in Module 3, 270° at the core centerlıne, 055 radius ratio 59
5.15 Relatuve radial power distribution an Modules 1 \& 3 based on axial average power distributions 60
5.16 Cırcumferential power distribution on outsıde fuel ring, 0.55 radius ratio 61
5．17 Axıal distribution of catcher foil cadmıum ratios in modules 1 and $3,0.55$ raduus ratio． 62
5．18 Relatıve bare gold foll activity axial distribution in modules 1 and $3,0.55$ radius ratio． 63
5．19 Relatuve bare gold foll activity circumferential distribution on inner and outer surfaces of the polystyrene in module 7,055 radius ratio 64
5．20 Relatıve bare gold foll actuvity distrabution in the regions between modules 65
5．21 Relative bare gold foll activity distribution across the end of the core at the separation plane from the center of module 1 across module $3,0.55$ radius ratio 66
5．22 Relatuve bare gold foll actuvity distribution in the radial reflector， 0.55 radius ratio． 67
5.23 Relative bare gold foll activity distribution in the end reflector， 0.55 raduus ratio 68
5．24 Infinitely dilute gold cadmium ratio in the region between fuel modules． 69
525 Axial distribution of gold foll cadmium ratios in modules 1 and 3 at an angle of $90^{\circ} \mathrm{cw}$ from core centerline 70
5．26 Curcumferential distribution of gold foll cadmium ratio on inner and outer surface of CH in module 7 71
5．27 Infinite dilute gold cadmium ratios along center－ lines of end and radial reflectors． 72
5．28 Axial distribution of thermal neutron flux in modules 1 and 3 at 90° clockwise from core vertical centerline 73
5．29 Circumferential distribution of thermal neutron flux on the inner and outer surfaces of the poly－ styrene in module 7 ． 74
5．30 Thermal neutron flux distribution across the core at the separation plane from module 1 across module 3．．．． 75
5．31 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector， 0.55 radius ratio． 76
5.32 Radial distribution of thermal neutron flux from module 1 through the $D_{2} 0$ between modules $5 \& 6$ and anto the radial reflector, 0.55 radius ratio 77
5.33 Axial distribution of thermal neutron flux through module I and into the end reflector 78
6.1 Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 0.72 radius ratio loading 95
6.2 Urancum worth measurement, 7 module reactor wath 0.72 fuel to module radius ratio 96
6.3 Relative axial power distribution in module 1, 90° at the core centerline, 0.72 radius ratio. 97
6.4 Relative axial power distribution in module 3 , 90° at the core centerline, 0.72 radius ratio. 98
6.5 Relative axial power distribution in module 3, 270° at the core centerline, 0.72 radius ratio... 99
6.6 Relative radial power distribution in modules 1 and 3 based on axial average power distributions 100
6.7 Relative radial bare gold foll activity in modules 1 and 3 at axial locations of 1633 and 1668 cm 101
6.8 Relative bare gold foil activity distribution in the regions between modules, 0.72 radius ratio. 102
6.9 Gold foll activity in the radial reflector 103
6.10 Gold foll activity in the end reflector 104
6.11 Gold foil cadmium ratio module 1 through module $3,0.72$ radius ratio. 105
6.12 Gold foll cadmium ratio module 1 and between modules $5 \& 6,072$ radius ratio 106
6.13 Infinite dilute gold cadmium ratios along centerlines of end and radial reflectors 107
614 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 072 raduus ratio 108
6.15 Radial distribution of thermal neutron flux from module 1 through the $D_{2} 0$ between modules $5 \& 6$ and into the radial reflector, 0.72 radus ratio. 109
7.1 Fuel placement on discs, 7-module reactor fuel element with 0388 radius ratio loading 122
72 Uranium worth measurements, 7-module reactor with 0.38 raduus ratio 123
73 Relatıve axial power distribution in module l, 90° at the core centerline, 0.38 radius ratio 124
7.4 Relative axial power distribution in module 3, 90° at the core centerline, 0.38 raduus ratio 125
7.5 Relative axial power distribution in module 3, 270° at the core centerline, 038 radius ratio.. 126
7.6 Normalized power distribution vs radius and angle 127
7.7 Bare gold activity and thermal fiux in radial reflector, 0.38 radius ratio. 128
7.8 Bare gold activity and thermal flux in end reflector, 0.38 radıus ratıo 129
7.9 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 0.38 radıus ratio. 130
7.10 Radıal distribution of thermal neutron flux from module 1 through the $D_{2} 0$ between modules 5 \& 6 and into the radial reflector, 0.38 radius ratio 131
7.II Infinitely dilute gold cadmium ratios from module 1 between modules $5 \& 6,0.38$ radius ratio. 132
T. 12 Gold forl cadmıum ratios, module 1 through module 3 0.38 radıus ratio. 133
8.1 Fuel worth traverses in 0.55 radius ratio seven module reactor without hydrogen. 146
8.2 Relative axial power distribution in module l, 90° at the core centerline, 0.55 radius ratio 147
8.3 Relative axial power distribution in module 3, 90° at the core centerline, 0.55 radius ratio. 148
8.4 Relatuve axial power distribution in module 3, 270° at the core centerline, 0.55 radius ratio 149
8.5 Relative radial power distribution in modules 1 and 3 based on axial average power distributions, 7 -module reactor, 0.55 radius ratio without hydrogen 150
8.6 Relative bare gold foil activity distribution in the regions between modules, 0.55 fuel radius ratio 151
87 Relative radial bare gold foll activity in modules 1 and 3 at axial locations of 163.3 and 166.8 cm 152
8.8 Bare gold activity and thermal flux in end reflector 7 -module reactor, 055 radius ratio without hydrogen 153
8.9 Bare gold activity and thermal flux in radial reflector 7 -module reactor, 0.55 radius ratio without hydrogen 154
8.10 Radial distribution of thermal neutron flux from module 1 through $D_{2} 0$ between, modules $5 \& 6$ and into the radıal reflector, 0.55 radıus ratio. . .. 155
8.17 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 0.55 radius ratio .. 156
9.1 Cross section view at separation plane of 3 module tank insert 184
92 Sade view of fuel element for 3 module reactor 185
9.3 Iayout of fuel rings for 3 module reactor fuel element 186
9.4 Iayout of fuel sheets on fuel stage separation discs of 3 -module reactor fuel element. 187
9.5 Control rod shape curve - elght actuators 188
9.6 Fuel worth measurements from module 3 of the three module cavity reactor 189
9.7 Relative axial power distribution in module 3, 30° at the core centerline, 0.55 radius ratio 190
9.8 Relative axial power distribution in module 3, 120° at the core centerline, 0.55 radius ratio 191
99 Relative axial power distribution in module 3, 300° at the core centerline, 055 radius ratio 192
9.10 Relative radial power distribution in module 3 based on axial average power distributions 193
9.11 Carcumferential power distribution on outside fuel ring, stage $8,0.55$ radius ratio.. 194
9.12 Curcumferential catcher foll cadmum ratio on out- sade fuel ring, stage 8 , 055 radius ratio.. 195
9.13 Relatuve axial power distribution in the end reflector, 0.55 radıus ratio 196
9.14 Relative axial power distribution in the radial reflector, 0.55 radıus ratio 197
9.15 Relative axial power distribution across face of core through module 1 axis, 0.55 radıus ratio 198
916 Relative axial power distribution across face of core with traverse between modules 1 and 2. 199
9.17 Axial distribution of catcher foil cadmium ratios through module $3,300^{\circ}$, 055 radius ratio 200
9.18 Axial distribution of catcher foll cadmium ratios through module $3,120^{\circ}$, 055 raduus ratio. 201
919 Relative radial gold foll activity in a module 202
9.20 Circumferential relative gold foll activity on outside fuel ring, stage $9,0.55$ radius ratio. 203
9.21 Relatıve radial bare gold foll actuvity traverse out through $D_{2} O$ between modules I and 2 204
9.22 Relative bare gold foll activity in the end and radial reflectors, 0.55 radıus ratio 205
9.23 Relatuve bare gold foil activity in module 3, 120°, 3-module reactor, 055 radius ratio 206
9.24 Relative bare gold foll activity in module 3 , 300°, 3-module reactor, 055 radius ratio 207
9.25 Radial distribution of thermal neutron flux through core and radial reflector, 0.55 radius ratio 208
IO 1 Experimental Relationship between fuel mass and fuel radius as fraction of cavity radıus . . 216
10.2 Comparison of fuel worth vs fuel loading for two confingurations.. 217
10.3 Flux-perturbation effect of $1 / 2$-Inch thack aluminum plate in $\mathrm{D}_{2} \mathrm{O}$ reflector of cavaty reactor 218

Crıtical experıments have been conducted to measure the reactor physics parameters in a modular cavity reactor system Reactors containing three modules and seven modules in a core volume of 183 cm (6 ft) diameter by 122 cm (4 ft) length were constructed. Each of these systems had a 89 cm (3 ft) reflector. Both moderator and reflector were heavy water, with $0.25 \% \mathrm{H}_{2} \mathrm{O}$ mpurity All fuel was highly enriched uranium ($93.2 \% \mathrm{U}-235$) The modules consisted of a central cylindrical fuel region within a cavity containing simulated hydrogen for the seven module core the fuel to cavity radius ratio was varied from 038 to 0.72 . For the three module core only a radius ratio of 0.55 was studied Hydrogen coolant, simulated by low density polystyrene, surrounded the fuel on four of the configurations One configuration was examined without any hydrogen in its cavities.

The modular concept places moderator between each fuel cell creating a benefit of additional moderation that cannot be obtained in the single cavity configurations. However, the nature of the modular design makes it extremely difficult to perform nuclear calculations of reasonable relıabılıty, unless one has a base experiment with which to make a comparison Both three module and seven module configurations were measured, the latter with three different fuel radil. The 0.55 fuel to cavity radius ratio was measured both with and without hydrogen in the cavity No variations were made on the amount of moderation between the modules, e.g, by varying module size and spacing

Measured critical masses varıed from 8 to 115 kg of uranium. These are slgnıficantly lower than critical masses obtained in the single large cavity system Also, these multiple cavities did not exhibit the large percentage increase in critical mass as was experienced in large single cavities as the fuel to cavity radius ratio became smaller. However, the pressure of the uranium, measured by its atom density, is the more fundamental characteristic for the design of cavity reactors. The pressure for criticality in the 7 -module configuration would be $2 / 3$ to $3 / 4$ the pressure in the nominally "equivalent sazed" single cavity system. However, thas "equavalent" single cavity system had $21 / 2$ tumes the hydrogen coolant-propellant volume, and hence a hıgher thrust level capabılıty.

The gas core nuclear rocket has been under investigation for over ten years as a propulsion engine for space applications Such an engine would have a specific impulse of about 1600 sec , approximately four times that obtainable wath chemical rockets and twice that obtainable with the solid core nuclear rockets (NERVA). The fuel is allowed to vaporize in the cavity, thus mposing no fuel element temperature limitations as exist in the solid core nuclear reactor systems. However, the gaseous fuel of the gas core rocket must be at least partially contained for economic reasons. One cannot afford to allow nuclear fuel and propellant to flow with mass rates of the same order of magnitude, not only because it would be poor economics but also because the specific impulse advantage would be lost. Therefore, some containment of the fuel must occur. Two approaches are being investigated. One is the open-fuel-cycle, which confines the fuel hydrodynamically through variable flow velocities and directions. The second, commonly referred to as the light bulb concept, is the closed-fuel-cycle which uses a radiationtransparent wall to confine the fuel. The open cycle, in order to be economically acceptable, should have a propellant-to-fuel mass-flow-rate ratio greater than 35 to 1. The closed-fuel-cycle eliminates all fuel loss, providing the transparency and integrity of the thin walls can be maıntained.

The cavaty nuclear reactor concept utalızes an external moderator and reflector in order to achieve criticality with the low density gaseous fuel. Many passes across the fueled region are required before a thermal neutron is likely to be absorbed in the fuel. The surrounding reflector must, therefore, have a long thermal migration length so as not to adversely affect the thermal neutron population before they are absorbed in the fuel. Under conditions of relatively long absorption mean free paths in both the fuel and moderator-reflector, the neutronics of the cavity reactor becomes one of geometric competition between the fuel volume and moderator volume. The effectiveness of the fuel volume can be enhanced by raising its density (reducing its absorption mean free path). But eventually increases in density involve diminishing returns because the fuel becomes self-shlelded. The pressure of the fuel gas, however, continues to increase nominally proportional to the density, and eventually one may reach such high fuel densities for criticality that pressures are beyond the feasıbility of enganeering construction.

The alternative to increasing fuel density is to increase geometrically the fuel effectiveness with respect to the moderator. This can be done by dispersing a number of small fuel-containing, modules throughout the moderator, rather than to use only a single large cavity. This approach involves smaller cavities wath smaller fuel volumes in each. Oscillations (or waves) in the effective fuel boundary wall now
more significantly affect the fuel to cavity volume ratio and adversely affect the stabiluty of the open cycle concept In practice it will probably be necessary to provide a "glass" wall containment for a modular concept that employs modular cavities much smaller than 30 cm radius. Figure 2.1 schematically shows the concept of the two designs

Thus, the closed-cycle "light bulb" concept offers two principal advantages over the open cycle concept The closed cycle does not lose fuel and it allows a design utilizing small modules with interstitial moderator However, it does have disadvantages in addıtion to the problem of maintajning the integraty of the transparent walls An inert gas (neon) ${ }^{(1)}$ must be circulated around the transparent walls of the fuel chambers to keep them cool The continual circulation removes some fuel from the core region to the downstream flow plenum. This fuel must then be separated from the neon before being recycled Also, the fission products are contained in the closed cycle rocket system, whereas they are lost in outer space in the open cycle system

The "glass" wall or "light bulb", closed cycle cavity concept has been under Investigation at United Aurcraft Research Laboratories and at the National Aeronautics and Space Administration The use of the closed cycle modular concept is discussed in Reference 1, and a conceptual design from that reference is shown in Figure 2.2. The design shown uses graphite and BeO as the moderator-reflector material, primarily for engineering convenience Heavy water is far superior, nuclearly, resulting in significantly lower critical masses and hence lower operating cavity pressures Heavy water was the reflectormoderator used in the critical experiments described in this report

Crıtıcalıty calculations on the modular concept are more difficult than on the single cavity concept because of lack of symmetry in the polar angle direction Single cavity calculations are difficult enough (see Reference 5) without adding this addutional complication For this reason, experiments are necessary to provide the base from which a workable calculational scheme can be developed This is the commonly employed "benchmark" measurement technaque, and is especially necessary for the modular cavity reactor concept design considerations

Critical experiments on the single cavity concept were first conducted about ten years ago at Los Alamos on a small cavity, 40 cm in diameter. (9) Since 1966, experıments on a 183 cm ($6-\mathrm{ft}$) diameter by 122 cm (4-ft) long cavity have been conducted in Idaho $(2,3,4)$ on a varıety of different configurations These included variations from the very basic, simple designs amenable to reactor physics calculations to complex designs that incorporate details of engineering construction and thermodynamic performance of the operating cavity reactor system (11,12)

This same reflector-moderator tank (366 cm diameter by 305 cm length) has been used for the critical experiments described in this report on the modular, "lught bulb" reactor concept. The cavity (183 cm diameter by 122 cm long) of the reflector tank contanned the module tank, thus making the single cavity and the modular expermment equivalent in at least one respect, all had the same "reflector" thickness They did, however, differ in "equivalent" core diameters.

The experiments described in this report had the principal purpose of establishang reasonably simple geometric models of the modular cavity reactor that could be used as "benchmarks" for design calculations. Of secondary interest were measurements of some engineering design effects that can not conveniently be included in calculational models

Figure 2.1 Modular and Single Cavity Concepts

Figure 2.2 Schematic Diagram of Reference Nuclear Laght Bulb Engine (from Reference 1, United Aircraft report, G-910375-3)

The main reactor tank was the same as that used for the cylindrical cavity critical experiments of the co-axial flow concept using a single large cavity. The outside dimensions of the heavy water in the tank were 3638 cm in diameter by 300.8 cm long. The structure of the tank was aluminum, and included structural supports and staffeners as well as the walls, which were 0.95 to 127 cm thick. The details of this structure are shown in Figure 3.1, with a two dmensional (cylindrical) nuclear model shown in Figure 3.2. As shown on this figure, the internal walls of the tank were 1.27 cm thack on the ends and 095 cm thack on the curcumference. The enture reflector consisted of two tanks that were brought together to achieve criticality. Where the tanks met, the heavy water was interrupted by the alumınum tank walls, 127 cm thick each The tanks were not allowed to contact each other, a safety precaution to prevent flooding of the core in the event that an inner wall should leak. The gap was nominally 1.22 cm thick, and all results are quoted whth the gap. Its worth was nominally $058 \% \Delta k$, and if it is desured to not include the gap in a calculational model, this amount of reactivity should be added.

The movable tank was essentially one of the end reflectors. It also contained a central hole 30.7 cm in diameter, which was used to simulate the effect of an exhaust nozzle. For some of the experiments this hole was plugged with a tank of heavy water, referred to as the "end plug" or nozzle plug This plug tank had 0.95 cm thick walls

The fixed reflector tank formed the mann body and one end of the reflector It was thas end that contained the control rods for the experiment. The control was provided by between 8 and 12 actuators driving groups of three boron-carbide control rods wath outer diameters of 1.9 cm . These slid in aluminum guide tubes The net effect of the aluminum and the empty tubes was to add 0.684% aluminum (by volume) and 1. 0% void to this region of the reflector, Region \#14 of F'igure 3.2.

Tnside the single large cavity of the reflector tank was placed the module tank for the particular experiment. The seven-module tank had a mass of 216.8 kg , and the three-module tank 180 kg . The radıal tank walls and module walls were $0.318 \mathrm{~cm}(1 / 8$-inch) thick, and the end plates were 0.635 ($1 / 4$-inch) thick. The dimensions of these tanks are shown in Figures 5.1 and 9.1, respectively. It was difficult to assure that the module tank was completely filled wath heavy water, the possibility existing of the top few millimeters containing void (entrapped air). The seven module tank was filled with 1913 kg of heavy water, and the three module tank with 1884 kg Thear internal volumes were 1742 liters and 1714 liters, respectively, giving an effectuve heavy water density of $1.099 \mathrm{gm} / \mathrm{cm}^{3}$

The heavy water was nominally at a temperature of $22^{\circ} \mathrm{C}$ throughout the experiment ($\pm 1^{\circ} \mathrm{C}$ variations) Its density at this temperature is $1.105 \mathrm{gm} / \mathrm{cc}$. The $\mathrm{H}_{2} 0$ impurity content was measured once during the experiment, and had been measured a number of times before and since these module experiments. Druing these experaments the $\mathrm{H}_{2} \mathrm{O}$ content was (0.25 ± 0.02) molecular percent of the total water.

The fuel used in the experment was thin sheet metallic uranlum, nominally 00025 cm thick. All masses quoted throughout the report are uranıum masses only. These sheets also contained impurities which were approximately 35% of the uranıum mass. The impurities were a fluorocarbon coating material and some oxygen from surface oxidation (about 1.3% of the total mass was oxygen, 2% fluorocarbon). The uranlum material is that usually referred to as "orailoy", with an isotopic composition of

93.2%	$U-235$
1.0%	$U-234$
0.4%	$U-236$
5.4%	$U-238$

The aluminum used in the reflector tanks was all type 6061 The module tanks were constructed of type 1100-HI 4 for the curved (radial and module) walls and type 5052 for the end walls. Note, the 1.27 cm thick outside reflector tank walls are not included in the nuclear model of Figure 3.2 because of their negligible effect on reactivaty

Details as to the fuel and hydrogen locations within the modules will be found in the sections on the induvidual experimental configurations. The hydrogen was simulated with styrofoam, having a nominal density of $0.028 \mathrm{gm} / \mathrm{cc}$. In some cases, the hydrogen atom densuty was increased by inserting thin sheets of polyethylene between the styrofoam blocks The anner radius of the hydrogen annulus in these experiments was not varied, being 0.72 of the cavity radius for the seven-module configurations and 0.69 for the three-module configurations.

Fig. 3.1 Cavity reactor reflector tank

Figure 32 Two-dumensional reflector model

The prancipal measurements made on these critucal experiments were reactivity, power distributions and flux distribution The achieving of criticalıty is considered to be only an intermediate step, and though subcritical data can yield information on reactivity, those results are usually less reliable than the measurements made from the critical configuration When feasible, the measurements were made with the control rods nearly fully whthdrawn so as to limut the amount of perturbation of the end reflector flux caused by the control rods.

Reactivity measurements were made using the delayed neutron parameters, either by means of asymptotic positive period measurements and the inhour equation or by means of the inverse kinetics method of computing reactivity from a flux trace Base conditions were established by measuring the asymptotic period rather than by establishing a level power position. The long-lived $(\gamma-n)$ reactions in the $D, 0$ created a strong enough spurious neutron source that level power conditions were always subcritical, and by duffering amounts depending on the past operating history and hence the strength of the source. Period measurements could be made over several decades, thus making possible a reliable extrapolation to the asymptotic, no-source value. The relatavely small integrated power of a period measurement also minimized the spurious ($\gamma-n$) source bulldup. The delayed neutron parameters used for this reactor are given In Table 4.1, and include eaght groups of neutrons from ($\gamma-\mathrm{n}$) reactions in the heavy water The total delayed fraction (one dollar) was $0765 \%^{*}$ AII results are reported in $\% \Delta k$ instead of dollars and cents. Without considering uncertainties in the delayed neutron fraction, most period measurements of reactivity have associated with them an uncertainty of approximately $\pm 0.0005 \% / \Delta k$. Table closure positions were reproducible to approximately $\pm 0.02 \mathrm{~cm}$, and control rod positions to $\pm 0.01 \mathrm{~cm}$ The temperature coefficient of the system was approximately $001 \% \Delta k / \mathrm{C}^{\circ}$, but the large heat capacity precluded temperature drafts larger than a few tenths of a degree during any eaght-hour period Measurements of fuel worth or other material worths usually required opening the table to position the material to be measured into the core. The base measurement always included the effect of any structural material needed to secure the material being measured. Because such measurements involve not only the possibility of disturbing other materials in the reactor, but also an opening and closing of the table, a measurement of a reactivity difference probably involved a net uncertainty of $\pm 0001 \% \Delta k$

* Leakage from this reactor gives $\beta / \beta_{\text {eff }}=0.985$. This $11 / 2 \%$ correction was not included because of the larger uncertainty in the ($\gamma-n$) contributions and even in the vaiue of β-direct (data of Keepin et al)

Power distribution measurements were routinely made using aluminum fission-product-catcher folls on cleaned uranzum metal sheet. Reproducibility of results is better than $\pm 2 \%$, and there is no detectable spectral dependence of this technique in the thermal or near thermal range. Decay of the foils was automatically included by counting all folls vs a normalizer foll from the same exposure. Absolute power levels were determined with a 2II beta counter (3.8 cm radius chamber) precalibrated with absolute fission chambers and gold folls. This counter (an INMC type PC-3) gives 56 fiss/gm of U-235 per count per minute 50 minutes after shutdown from a constant 20 minute exposure. Absolute power levels are believed to be ac̀curate to $\pm 3 \%$ standard deviation.

Thermal fluxes were determined by use of bare and cadmum covered gold fouls. The gold was nominally 0.0012 cm thick, whth an effectuve resonance integral of 680 barns (vs 1555 barns infinitely dilute) In computing cadmıum fatios, each foul was corrected for its effective resonance integral (6) by its mass to give the infinitely dilute value. Thermal flux perturbation was negligible, nomanally $2 \%(7)$. The cadmum covers employed werf 0.05 cm thick, gaving an effective cadmium cutorf energy of 0.55 ev (8).

Reference positions have been established for defining locations of flux measurements. The longitudinal " 0 " reference location is at the outside of the end reflector in the control-rod end (fixed table) of the reactor. The radial reference position is either the axis of the reactor or the axis of the fuel module, and the distinction is obvious depending on which portion of the reactor was being measured. When defining positions wathin a module, the angular positions refer to clockwise rotation from the vertical ($120^{\circ} \mathrm{c}$ lock) position, when viewing the module tank from the movable table Sketches of the module tanks are shown looking from the movable table, end-reflector tank

TABLE 4.1
Effective Delayed Neutron Parameters

Group	β_{1}	λ_{1}
1	0.000210	0012400
2	0001410	0030500
3	000127	0111000
4	0002550	0301000
5	0000740	1100000
6	0000270	3000000
7	0.000780	0277000
8	0.000240	0016900
9	0000084	0004810
10	0.000040	0.001500
11	0.000025	0000428
12	0000028	0000117
13	0000004	0000044
14	0000001	0000004
	0007652	

5.0

The seven module tank, which was placed in the central cavity region of the existing cavity reactor, is shown in Figure 51 The tank walls and module walls were made of 03175 cm ($1 / 8$ inch) thick, type 1100-H14 aluminum The end plates were 0635 cm ($1 / 4$ inch) thick, type 5052 aluminum The empty tank weighed 2168 kg

In order to measure the flux through the $D_{2} O$ between the modules, two alumınum tubes were welded into the tank at the axial center of the core between modules 1 and 3 and from module 1 to the outer tank wall passing between modules 5 and 6 Foils could then be placed in these tubes at desired locations to record flux and power distributions

The fuel elements consisted of 17 spacer discs (fueled), up to eaght fuel rings (depending on radius ratio), and four tie rods which clamped the pleces together Figure 52 shows an end view of the fuel element with the hardware to hold the fuel rings (spacer tabs) and the slots in the disc through which foils could be inserted A side view of the assembled fuel element is seen in Figure 5 3. As noted here, there were 16 stages of fuel with each stage being 746 cm long There were 925 kg of alumnum in each fuel element

The fuel rings were made by folding a strip of 00127 cm thick aluminum together and sandwiching the fuel inside The fuel was equally spaced around the rings and the gaps on the rings were staggered Fuel sheets were also placed on each fuel stage spacer disc as shown in Figure 54 These sheets were numbered as shown Sheets 3 to 8 were full size sheets, being 730 cm on a sade by 000254 cm thick Sheets $1,2,9$, and 10 were $1 / 2$ size sheets ($365 \times 730 \mathrm{~cm}^{2}$) Thas fuel arrangement placed fuel sheets normal to the radial and axial coordinates, thus reducing to a minimum neutron streaming along zero or very low absorption paths in the fuel elements The fuel rings were loaded as follows

Ring Number	Number of Size I O Fuel Sheets	Rang Diameter
	1	$(\mathrm{~cm})$
1	1	61
2	2	99
3	3	137
4	5	17.5
5	6	213
6	7	251

Because of the dilute fuel loading, not all positions specified on the fuel stage spacer discs (Figure 54) were used Those positions which did contain fuel are as follows for each disc of the element.

Dasc Number	Positions Containing Fuel	Number of Fuel Whole Sheets	Sheets Half Sheets
	$1,2,3,4,7,8,9,10$	4	4
2	$1,2,4,5,6,7,9,10$	4	4
3	$1,2,3,5,6,7,8$	5	2
4	$3,4,5,6,8,9,10$	5	2
5	$1,2,3,4,7,8,9,10$	4	4
6	$1,2,4,5,6,7,9,10$	4	4
7	$1,2,3,5,6,7,8$	5	2
8	$3,4,5,6,8,9,10$	4	2
9	$1,2,3,4,7,8,9,10$	4	4
10	$1,2,4,5,6,7,9,10$	5	4
11	$1,2,3,6,7,8$	5	2
12	$3,4,5,6,8,9,10$	4	2
13	$1,2,3,4,7,9,10$	4	4
14	$1,2,4,6,7,9,10$	5	4
15	$1,2,3,6,7,8$	5	2
16	$3,4,5,6,8,9,10$	4	2
17	$1,2,3,4,7,8,9,10$		4

The total fuel loading was thus 486 equavalent saze 10 (full size) fuel sheets per fuel element, or a total of 3402 fuel sheets with a mass of 8.91 kg of U in the seven modules of the reactor core.

Each fuel element contained an annulus of foamed polystyrene (CH) from a radius of 16.4 cm to 225 cm . The CH welghed 2411 grams, This gives a hydrogen density within the annulus of 1.23×10^{21} atoms $/ \mathrm{cc}$.

5.1
 Inıtial Ioading

Inltal loading of the seven module reactor began with no $\mathrm{D}_{2} \mathrm{O}$ in the module tank, but with the outer, mann tank filled. The fuel elements were loaded in the core one at a time and multiplication data were taken each time an element was added. The $D_{2} 0$ was then transferred into the module tank in several increments and muItiplication taken for each increment The data results are contained in Table 5.1 and Figure 5.5.

The reactor was loaded with the exhaust-nozzle plug-tank, full of $\mathrm{D}_{2} \mathrm{O}$, in the end reflector The reactor was first critical with 7.359 barrels of $D_{2} 0$ in the tank and k-excess was $085 \% \Delta k$ A full 80 barrels were then added and k-excess was $189 \% \Delta k$ or an increase of I $04 \% \Delta k$. At this point, it was necessary to add three more actuators, 12 control rods, in order to maintain the two dollar shutdown requirement while loadıng was continued It was also decided to increase the hydrogen densıty by addıng some thin strips of polyethylene
(CH_{2}) between the fuel stage spacer discs and the polystyrene over the annular region of hydrogen. There were 770 grams added to the reactor which increased the hydrogen density to 196×10^{21} atoms/cc within the annulus (from its inıtial value of 1.23×10^{21} atoms $/ \mathrm{cc}$). The increase in hydrogen reduced k mexcess $0312 \pm 0.075 \% \Delta k$ thus givang a specific worth of $0.405 \pm 0097 \% \mathrm{k} / \mathrm{kg}$ for polyethylene. This was effectively the average worth throughout the propellant region. Previous measurements on other configurations have shown the carbon component is less than 2% of the total worth (1e. p. 251 of VoI 1, p. 45 of Vol 3)

An additional ten gallons, 42.07 kg of $D_{2} 0$ were added to the module tank and k-excess increased $0 \quad 435 \pm 0.078 \% \Delta k$ Excess reactuvity was $1.896 \pm 0.062 \% / \Delta k$ and higher than desired for the experiments so the exhaust nozzle plug was removed reducing k-excess to $0.745 \pm 0.066 \% \Delta k$, thus gaving a plug worth of $1150 \pm 0.091 \% \Delta k$

The remaining $D_{2} 0$ was then added to fill the module tank. It took 58.06 kg and it increased k-excess to $1.012 \pm 0.033 \% \mathrm{k}$ which was the base excess reactivity for this reactor whth the exhaust nozzle tank (end plug) removed from the reactor As will be shown later, the average fuel worth in the modules was $3928 \% \Delta k$ with an estimated error of less than 5%. If this 1s applied to the above k-excess of $1012 \ddagger 0033 \% \Delta k$, the critical mass would be 8.64 kg of uranium, with the exhaust nozzle open The total mass of $\mathrm{D}_{2} \mathrm{O}$ in the seven-module tank was 1913 kg
5.2 Reactivity Measurements
5.2.1 Rod Worth

Rod worth curves were measured early in the experiment both before and after adding three additional actuators. Inverse kinetics were used to perform the measurements after reducing K to 1.00 by separating the table and withdrawing 2.11 actuators to their full out position. The rod worth curve thus obtained for 7 actuators (21 rods) is shown in Figure 56 , and this was reduced to tabular form, the results of which are given in Table 52 . The same data for the ten actuators (30 rods) are given in Figure 5.7 and Table 53 There was not a large difference between the two curves, but enough to measure These curves were used throughout the seven-module experiments

Rod worth measurements were minimal. A single measurement of seven actuators containing 21 rods gave a total worth of $-2.801 \% \Delta k$. Four separate measurements of ten actuators (30 rods) gave an average worth of $-3927 \pm 0.129 \% / \Delta k$. This standard deviation is 3.3% which is about normal for this type of measurement. The inverse kinetics calculations gave $-2.907 \% \mathrm{k}$ and $-4.111 \% / \mathrm{k}$ for the worth of the seven actuator and ten actuator combination of rods, respectively. Both of these values are four to five percent above bump-period measurements, but this difference is considered to be of no real significance (within the expected accuracy of the measurements)

5.2.2 Material Worths

The worth of uranium was measured in Modules 1 and 3 to determine a core average worth as well as produce the radial profile across the fuel elements. A full core-length strip of uranium weighing 7.28 gm sandwiched between two aluminum straps was used to make the measurements. This sandwach was inserted into the measurement tubes or slots on the fuel elements (Figure 5.2) The base measurement contained the aluminum straps with no fuel. Period differences were used in all cases thus reducing the estimated error per measurement to about $\pm 0.003 \%$ Table 54 and Figure 5.8 show the results. The data are relatively sparse from which to calculate an average fuel worth But, assuming that the fuel worth distribution in Module I is constant around the element and that half of Module 3 is typical of the 90° value and the other half is typical of the 270° value, the core average fuel worth is $3.93 \% \Delta \mathrm{k} / \mathrm{kg}$ of uranium.

Two measurements made during the initial loading and reported in Section 5.1 are the worth of polyethylene (CH_{2}) and the worth of the exhaust nozzle tank. The values measured are shown in Table 5 5. Although these were measured during the inltial loading prior to having all the $\mathrm{D}_{2} \mathrm{O}$ in the module tank, the results are considered to be generally applicable. The exhaust nozzle tank was worth more than earlier measurements, (Reference 2, p. 162) on the regular cylindrical cavity reactor. Conceptually the reason for the higher worth is evasive, but is considered to be caused by the internal moderation between the modules that creates a higher flux over the center module than over the outer modules, whereas the opposite was true at the center of the nomal cavity reactor.

The worth for polyethylene and polystyrene shows a large difference, $-0.405 \pm 0097 \% \Delta k / \mathrm{kg}$ for polyethylene (a relatively small perturbation) compared to $-0.111 \pm 0.019 \% / \Delta k / k g$ for polystyrene (measured for entire quantity that was in a single module). One would expect a nominal factor of two dufference between these two materials uf most of the reactivity penalty were due to the effects of hydrogen without consideration of molecular-binding-energy effects. (Carbon is worth only a few percent of the worth of hydrogen) part of the difference is undoubtedly caused by the fact that the polyethylene measurement was a small perturbation (the addıtion of llo grams per fuel element or six percent in the hydrogen mass) after all of the polystyrene was in the reactor; whereas the polystyrene measurement was a major perturbation (100% removal from one of the modules). For a proper relative comparison, equal hydrogen mass should be used in identical positions in the reactor.

Aluminum worth measurements were made by placing core-length strips of aluminum in the measurement slots in the fuel elements. The mass of the aluminum varied proportional to the radius squared in order to obtain a fuel element structure average worth in a single measurement and so as to place sufficient mass in the reactor to obtain a meaningful measurement The values thus measured are given in Table 5.5. The aluminum was type 1100.

Reactivity measurements were also made in the exhaust nozzle hole and in the end reflector (30.5 cm diameter) to evaluate possible exhaust nozzle configurations for the "light bulb" reactor. Two tanks were assembled for the measurement as shown in Figure 5.9*. Each tank configuration was measured in three steps as shown in trable 56 All materials were worth more with the annular tank configuration than with the central tank. Hydrogen at $4 \mathrm{I} \times 10^{20}$ atoms/cc in the form of polystyrene (foamed) has a positive effect on reactivity in the nozzle, inducating that its scattering cross section reduces neutron leakage through the nozzle opening and more than counteracts the absorptions

5.3

Power Mapping (Catcher Foil Data)
Power mapping was done in modules 1 and 3 at different angles As will be noted from Figure 5.2, there were four foll exposure tubes or slots in the measurement fuel elements into which fouls could be inserted Whthout disassembling the fuel element These slots extended the full length of the fuel element. The foils were placed on aluminum straps and then the straps were inserted into the slots.

The catcher foil data are given in table 5.7. The data were first normalized to the point nearest the center of the core and then the axial plots were plotted as shown in Figures 510 to 5.14. Each of these axial plots were then averaged using a planmeter and the averages plotted to show the radial profile as presented in Figure 5.15. It will be noted that the core center has the highest power and that the lowest power in the outer modules is on that part of their carcumference nearest the radial reflector.

To further identafy the detailed curcumferential power distribution on the outside of the fuel elements, a strip of catcher foils was placed near the axial center of the core (stage 8) on the outer fuel ring of the fuel element in modules 1 and 4. The resulting profiles are shown in Figure 516 Module 4 had a rather smooth profile, with a 17% spread from the maximum to the minimum around the fuel element.

[^0]Module 1, however, gave a very scattered profile yhach was hard to define so a second set of data were taken on module 1 with finer resolution (closer foll spacing) and with special attention given to the exact location of the fuel sheets on the outer fuel ring. These are shown in F'igure 5.16 and it whil be noted that flux peaks occur where there are gaps in the fuel and depressions result where the fuel sheets are The variation amounts to nominally 6%, which is equivalent to the self shielding factor for $000 \angle 5 \mathrm{~cm}$ thick uranıum metal The second exposure was on stage 11 of module 1 so a durect comparison with the first set of data was not made Module 4 did not show as large a fluctuation as was observed for module I In both cases, the catcher folls were mounted on the outside of the outer layer of fuel

Some $U^{235-f i s s i o n ~ c a d m i u m ~ r a t i o s ~ w e r e ~ a i s o ~ m e a s u r e d ~ i n ~}$ modules 1 and 3 These are shown in Figure 517 The system is highly thermal and the center module is generally a little less thermal than the outer module. At the end of the core where the exhaust nozzle hole exists, the thermal component of the flux was significantly enhanced This effect has been noted on previous cavity reactor experiments, and Is the result of inward streaming of neutrons from the peak flux regions of the surrounding reflector. The reflector flux peaks about 20 cm from the inner cavity wall
5.4 Flux Mapping (Gold Foll Data)
5.4.1 Bare Gold Data

The gold data were concentrated in the $D_{2} O$ regions and areas outside the fuel although some data were obtanned within the fuel Both bare and cadmium covered folls were exposed and the data are found In Table 5.8 All folls were from 0001016 to 000127 cm thack and nominally 1.43 cm in diameter The cadmium covers were 00508 cm thick

Hach foll exposure run contaned power normalizer folls which were used to correct the gold data to the same reactor power The normalization fouls consusted of seven catcher folls mounted between the two tables on the reflector tank. These data are glven-In Table 59

The bare gold data were normalized to the same physical location as the catcher folls as will be noted from table 58 The normalized values were then plotted to show various distributions Figure 5.18 shows the relative distribution in modules 1 and 3 for the inner and outer measurement slot of the fuel elements Gold folls were also exposed on the inner and outer surfaces of the polystyrene in module 7 and the relative distribution is given in Figure 519 As wath the catcher foils, the peak occurs over the region pointing toward the center of the core and the low poant is next to the radial reflector

Bare gold was also exposed in the two special exposure tubes, one running from module 1 to module 3 and the other from module 1 to the module wall between modules 5 and 6 The data are plotted in Figure 520 The data from module 1 to module 3 were repeated as it was noted that the foil positions on the first run may have been altered because of displacement of the aluminum strap containing the foils as the element was slid into place This counts at least in part for the differences in the two sets of data. As would be expected, the peak flux occurs midway between the modules

A strip of gold foils was also placed along the separation plane over modules 1 and 3 as shown in Figure 5.21 There was no apparent peak at the center of the exhaust nozzle as was observed with the large single cavity conflgurations, but the catcher foil cadmium ratio was somewhat higher at the exhaust nozzle than elsewhere out to the edge of the outer modules

The relative distribution in the reflector regions is shown in Figures 522 and 523 Three sets of data are given and in general the last two runs show good agreement whth Run 1168 being the odd set of data Excess reactivity was high on this run, requiring the rods to be quate a ways in the reactor On Run 1168 actuators 1,2,3, and 10 were fully withdrawn while actuators 4 to 9 were equally withdrawn 12.6 cm . Run 1173 was the same rod pattern but the sax actuators whach were equally withdrawn were out 152 cm The same rods on Run 1174 were whthdrawn 133 cm These variations are caused by the foils placed in the reactor and slight changes in $D_{2} O$ temperature The rods were actually further in on kun 1168 which could account for at least part of the dafferences However, control rod eifects would not normally be expected to exist in the radial reflector, other than as affected by an overall shift in the average core power distribution

542 Cadmium Ratios

Cadmium ratios were calculated for all points where both bare and cadmıum covered folls were avallable These data are given in Thable 510 Infinntely dılute activities were calculated for gold (Refer to Reference 5, p 69, or to Reference 6, on resonance selfshielding of gold and indium, for the procedure used in reducing the data For catcher folls, the cadmum ratio is essentially the infinately dilute value, sance only the surface actuvaty of U-235 is seen) Some of these data are shown graphically in Figures 524 to 5.27 A peak cadmium ratio occurs about midway between the modules as noted from Figure 524 whth the highest value where the $D_{2} 0$ thickness is the largest, the traverse from module 1 between modules 5 and 6.

Module 1 shows a sizable increase in gold cadmupm ratio at the end of the core next to the exhaust nozzle opening as observed from Figure 525 A similar increase was noted with catcher folls (Figure 5 17) This increase had been observed in previous measurements on the single large cavity over thas region with the exhaust nozzle tank removed The extra high thermal flux component originates 10 to 20 cm Inside the reflector and streams dow the empty exhaust nozzle toward the core

The separation between the gold cadmum ratio plots in the end and radial reflectors (Frgure 5.27) was larger than observed from other cavity reactor configurations. One cause for this is probably the position of the control rods in the end reflector, creating a thermal flux depression in the end of the reactor The radial reflector is not affected as much as the end reflector thus the cadmıum ratios in the radial reflector are higher than in the end reflector Furthermore, in this module configuration, the effective thickness of the radial reflector is greater than it was in the single large cavity configuration, resultang in a higher thermal to epi-thermal flux ratio

54.3 Thermal Neutron Flux

At the same positions where gold cadmulum ratio were obtained, thermal (equivalent $2200 \mathrm{~m} / \mathrm{sec}$) neutron fluxes were calculated These data are given in Table 517 normalized to a watt of reactor power Figure 5.28 shows the distribution in modules 1 and 3 and Figure 5.29 presents the curcumferential distribution around module 7 on the inner and outer surfaces of the polystyrene. There was not much of a variation In flux around the outer modules, except for a slight peaking next to the center module whth the minumum next to the radial reflector

Sufficient data were obtanned to plot the thermal flux distribution at the axial centerline starting at the core center and progressing to the outside of the reflector Traverses were made from the center of module 1 through module 3 and into the radial reflector and from module 1 through the $D_{2} 0$ between modules 5 and 6 The resulting dustributions are seen in Figures 531 and 532 The peak flux in the reactor appears to have occurred in the $D_{2} O$ between module 1 and the six surrounding modules An unusual dip in fiux is evident in the region of the walls of the module and reflector tanks The total thlckness of these two walls is 127 cm , and this amount of aluminum can be expected to create a flux perturbation in the $D_{2} O$ The flux dips that appear at the edge of the fuel and at the cavity wall of module 1 are unexpected, and are attributed to spurious experimental error

TABLE 51
Initial Loading
7-Module Reactor
055 Radıus Ratıo

Increment	Fuel in Reactor (kg)	Chann CPM	$\begin{aligned} & 1 \text { No } 1 \\ & \text { CRO/CR } \end{aligned}$	Chann CPM	$\begin{aligned} & 1 \text { No } 2 \\ & \text { CRo/CR } \end{aligned}$	Chann CPM	$\begin{aligned} & 1 \text { No } 3 \\ & \text { CRO/CR } \\ & \hline \end{aligned}$	Average	Rod Positions
0	0	638	1000	531	1000	494	1000	1000	In
0	0	886	1000	755	1000	687	1000	1000	Out
1	1273	801	0797	647	0821	587	0842	0820	In
1	1273	1170	0757	923	0818	844	0814	0796	Out
2	2546	1041	0613	824	0644	752	0657	0638	In
2	2546	1477	0600	1189	0635	1067	0.644	0626	Out
3	3819	1256	0508	1022	0520	979	0505	0511	In
3	3.819	1519	0583	1271	0594	1192	0576	0584	Out
4	5.092	1539	0415	1317	0403	1223	0404	0407	In
4	5092	2397	0370	1979	0382	1853	0.371	0374	Out
5	6365	1940	0329	1620	0328	1449	0341	0333	In
5	6365	3135	0283	2524	0299	2270	0.303	0295	Out
6	7638	2406	0265	2006	0265	1840	0268	0266	In
6	7638	3904	0227	3224	0234	2904	0237	0233	Out
7	8911	3089	0207	2536	0209	2308	0214	0210	In
7	8911	5168	0171	4230	0178	3862	0178	0176	Out

\qquad

TABLE 51
(Continued)

Increment	$\begin{gathered} \text { Fuel in } \\ \text { Reactor (kg) } \end{gathered}$	Channel No 1		Chan CPM	No 2 CRo/CR	Chan CPM	$\begin{aligned} & 1 \mathrm{No} 3 \\ & \mathrm{CRo} / \mathrm{CR} \\ & \hline \end{aligned}$	Average	$\begin{gathered} \text { Rod } \\ \text { Positions } \end{gathered}$
Barrels Addition of $\mathrm{D}_{2} \mathrm{O}$ to Central Tank									
8	1	3051	0209	2168	0245	2247	220	0225	In
8	1	4047	0218	2823	0267	2905	0236	0240	Out
9	2	3142	0203	2348	0226	2337	0211	0213	In
9	2	5604	0158	4145	0182	4149	0166	0169	Out
10	3	3543	0180	2658	0200	2575	0192	0191	In
10	3	6447	0137	5027	0150	4709	0146	0144	Out
11	5	5313	0120	4159	0128	3843	0129	0126	In
11	5	11869	0075	9608	0079	7731	0089	0081	Out
12	6	8569	0074	6870	0077	6305	0078	0076	In
12	6	33378	0027	27020	0028	23867	0029	0028	Out
13	6694	12733	0050	10235	0052	9155	0054	0052	In
13	6694	193154	00046	150866	00050	125062	00055	00050	Out
14	7359	18515	00346	14830	00358	13401	00369	00357	In

\qquad

TABLE 52

All Rods Worth Curve Data

7 Actuators - 21 Rods
Rods In - 117
7-Module Reactor
Rods Out - 9784
\% Worth Inserted

	0	100	200	300	400	500	600	700	800	900
00	10000	10000	9680	9363	9049	87.40	84.34	8132	$78 \quad 35$	7542
1000	7254	6971	6694	6422	6156	5895	5642	5397	5160	4931
2000	4710	4497	4291	4093	3902	3718	3540	3369	3204	3045
3000	2892	2745	2604	2468	2338	2214	2095	1981	1873	1770
4000	1672	1579	1491	1407	1328	1254	1184	1117	1053	992
5000	934	878	824	773	724	677	632	588	546	506
6000	468	432	398	366	335	306	278	252	228	205
7000	184	164	145	128	113	100	089	079	069	060
8000	051	043	035	028	021	015	0.10	006	003	002
9000	001	000								

Difference

	0	100	200	300	400	500	600	700	800	900
00	000	000	320	317	314	309	306	302	297	293
1000	288	283	277	272	266	261	253	245	237	229
2000	221	213	206	198	191	184	178	171	165	159
3000	153	147	141	136	130	124	119	114	108	1.03
4000	098	093	088	084	079	074	070	067	064	061
5000	058	056	054	051	049	047	045	044	042	040
6000	038	036	034	032	031	029	028	026	024	023
7000	021	020	019	017	015	013	011	010	009	009
8000	008	008	007	007	006	005	004	003	002	001
9000	000									

TABLE 5.3
All Rods Worth Curve Data
10 Actuators - 30 Rods
Exhaust Nozzle Tank in Reactor
7-Module Reactor
\% Worth Inserted

	0	100	200	300	400	500	600	700	800	900
00	10000	10000	9720	9310	8914	8532	8163	7808	7467	7139
1000	6823	6520	6230	5952	5686	5431	5186	4953	4729	4516
2000	4312	4117	3931	3753	3582	3420	3263	3113	2969	2830
3000	2696	2567	2443	2323	2208	2098	1992	1890	1791	1696
4000	1605	1517	1433	1352	1274	1200	1129	1061	996	934
5000	875	819	766	716	668	622	578	537	498	461
6000	426	393	362	332	304	278	253	230	208	188
7000	169	151	134	128	103	089	076	064	054	045
8000	037	030	024	019	014	010	007	004	002	001

	0	100	200	300	400	500	600	700	800	900
00	0	0	280	410	396	382	369	355	341	328
1000	316	303	290	278	266	255	245	233	224	213
2000	204	195	186	178	170	163	157	150	144	139
3000	134	129	124	120	115	110	106	102	099	095
4000	091	088	084	081	078	074	071	068	065	062
5000	059	056	053	050	048	046	044	041	039	037
6000	035	033	031	030	028	026	025	023	022	020
7000	019	018	017	016	015	014	013	012	010	009
8000	008	007	006	005	005	004	003	003	002	001
9000	000									

TABLE 54

Fuel Worth Measurements
7-Module Reactor - 0.55 Radıus Ratıo

Location

Module	Angle from Centerline $\left({ }^{\circ} \mathrm{cw}\right)$	Radıus (cm)	Reactivity Worth of $7.28 \mathrm{~g}(\% \Delta \mathrm{k})$	Specific Worth $(\% \Delta k / k g)$	
3	90	40		0.0202 ± 0003	278 ± 041
3	90	78		0.0208 ± 0003	286 ± 041
3	90	11.6	00228 ± 0003	313 ± 041	
3	270	40	00213 ± 0003	293 ± 041	
3	270	78	00231 ± 0.003	317 ± 041	
3	270	116	0.0283 ± 0003	389 ± 041	
1	90	40	00362 ± 0003	497 ± 041	
1	90	78	0.0377 ± 0003	518 ± 041	
1	90	11.6	00442 ± 0003	607 ± 041	

TABLE 55
Miscellaneous Reactivity Measurements
7-Module Reactor - 055 Radıus Ratio

Material	Location	$\begin{aligned} & \text { Mass } \\ & (\mathrm{g}) \end{aligned}$	Reactuvity Change ($\% \Delta \mathrm{k}$)	Specific Worth ($\% \Delta \mathrm{k} / \mathrm{kg}$)
Polyethylene	Hydrogen annulus	770	-0312 ± 0075	-0 405さ0 097
Exhaust Nozzle	End reflector	----	1. 150 ± 0066	---
Polystyrene	Module 5	2411	-0266 ± 0045	-0 111 ± 0019
Aluminum	Module $1,90{ }^{\text {cl }}$	540	-0 0422 ± 0003	-0 078 ± 0006
Alumanum	Module 4, 150°	540	-0 0065 ± 003	-0 012 ± 006
Aluminum	Module 4, 330°	540	-0 0176 ± 0003	-0 033 ± 0006

1. Angles are clockwise from core centerline

TABLE 56
Reactivity Measurements of Exhaust Nozzle Configurations

Materıal	Welght (gm)	Total Worth ($\% \Delta \mathrm{k}$)	Worth per kg (\% $\% \mathrm{k} / \mathrm{kg}$)
213 cm 0 D tank (Aluminum)	4027	$-0^{\prime} 0113 \pm 0003$	$-(2.81 \pm 074) \times 10^{-3}$
$\mathrm{D}_{2} \mathrm{O}$	34587	+0 608 ± 0074	- 0176 ± 00021
Rolystyrene (CH)	280*	+0 0268 ± 0003	0.0957 ± 00107
Annular Tank 213 cm I D $298 \mathrm{~cm} O \mathrm{D}$ (Alumınum)	7303	-0 0513 ± 003	$-(702 \pm 041) \times 10^{-3}$
$\mathrm{D}_{2} \mathrm{O}$	33000	+0 667 ± 0066	00202 ± 00020
Polystyrene (CH)	280*	+0 0407 ± 0003	0145 ± 0011
*Approximate hydrogen ato	densıty	was 41×10^{20}	atoms/ce

TABLE 57
Catcher Foil Data
7-Module Reactor-0 55 Radıus Ratio

Run 1168
Location

Foil Number	Foll Type	Module Number	Angle (${ }^{\circ} \mathrm{CW}$)	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Normalzzed Counts	Local to Foil (X)
1	Bare	1	90°	40	925	199359	0977
2	Bare	1	90°	40	1058	204783	1003
3	Bare	1	90°	40	1210	198881	0975
4	Bare	1	90°	40	1363	209585	1027
5	Bare	1	90°	40	1515	204007	1000 (X)
6	Bare	1	90°	40	1668	196146	0961
7	Bare	1	90°	40	1820	192109	0941
8	Bare	1	90°	40	1972	180404	0884
9	Bare	1	90°	40	2105	194350	0952
10	Bare	1	90°	78	925	204182	1000
11	Bare	1	90°	78	1058	198871	0974
12	Bare	1	90°	78	1210	211748	1038
13	Bare	1	90°	78	1363	210262	1030
14	Bare	1	90°	78	1515	210274	I 030
15	Bare	1	90°	78	1668	201064	0985
16	Bare	1	90°	78	1820	194713	0954
17	Bare	1	90°	78	1972	184216	0903
18	Bare	1	90°	78	2105	187474	0919
19	Bare	1	90°	116	925	220544	1081
20	Bare	1	90°	116	1058	220552	1081
21	Bare	1	90°	116	1210	231184	1133
22	Bare	1	90°	116	1363	232027	1137
23	Bare	1	90°	116	1515	229153	1123
24	Bare	1	90°	116	1668	229802	1126
25	Bare	1	90°	116	1820	220739	1082
26	Bare	1	90°	116	1972	210128	1030
27	Bare	1	90°	116	2105	202533	0992
28	Bare	1	90°	154	925	248729	1219
29	Bare	1	90°	154	1058	252601	1238
30	Bare	1	90°	154	1210	262577	1287
31	Bare	1	90°	154	1363	260240	1275
32	Bare	1	90°	154	1515	260122	1275
33	Bare	1	90°	154	1668	252475	1237
34	Bare	1	90°	154	1820	244783	1199
35	Bare	1	90°	154	1972	225509	1105
36	Bare	1	90°	154	2105	220056	1078
37	Bare	3	90°	40	925	145113	0711
38	Bare	3	90°	40	1058	142166	0697
39	Bare	3	90°	40	1210	148993	0730
40	Bare	3	90°	40	1363	149483	0732

TABLE 57
(Continued)

Run 1168
Location

Foil Number	Foil Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left(\begin{array}{l} \left.{ }^{\circ} \mathrm{CW}\right) \end{array}\right. \end{aligned}$	Radıal (cm)	$\begin{aligned} & \text { Axial } \\ & (\mathrm{em}) \\ & \hline \end{aligned}$	Normalızed Counts	Local to Foil (x)
41	Bare	3	90°	4.0	1515	147853	0724
42	Bare	3	90°	40	1668	146933	$0720 \times$
43	Bare	3	90°	40	1820	138596	0679
44	Bare	3	90°	40	197. 2	135222	0663
45	Bare	3	90°	40	2105	143518	0703
46	Bare	3	20°	78	925	148070	0726
47	Bare	3	90°	78	1058	142007	0696
48	Bare	3	90°	78	1210	152603	0748
49	Bare	3	90°	78	1363	148342	0727
50	Bare	3	90°	78	1515	153320	0751
51	Bare	3	90°	78	1668	145260	0712
52	Bare	3	90°	78	1820	142950	0700
53	Bare	3	90°	78	1972	135089	0662
54	Bare	3	90°	78	210.5	145970	0715
55	Bare	3	90°	116	925	154993	0759
56	Bare	3.	90°	116	1058	161344	0791
57	Bare	3	90°	116	1210	165848	0813
58	Bare	3	90°	116	1363	166192	0814
59	Bare	3	90°	116	1515	165872	0813
60	Bare	3	90°	116	1668	152682	0748
61	Bare	3	90°	116	1820	157619	0772
62	Bare	3	90°	116	1972	145998	0715
63	Bare	3	90°	116	2105	153556	0757
64	Bare	3	90°	154	925	172307	0844
65	Bare	3	90°	154	1058	174870	0857
66	Bare	3	90°	154	1210	181538	0890
67	Bare	3	90°	154	1363	183857	0901
68	Bare	3	90°	154	1515	183164	0898
69	Bare	3	90°	154	1668	180429	- 884
70	Bare	3	90°	154	1820	173053	0848
71	Bare	3	90°	154	1972	164330	0805
72	Bare	3	90°	154	2105	161451	0791

Run 1169

1	$C d$	1
2	$C d$	1
3	$C d$	1
4	$C d$	1
5	$C d$	1
6	$C d$	1

90°	4	0	92	5
90°	4	0	151	5
90°	4	0	210	5
90°	15	4	92	5
90°	15	4	151	5
90°	15	4	210	5

5788
6482315
$4450 \quad 437$
$5737 \quad 434$
$6681 \quad 389$ $4669 \quad 471$

1 Angle is clockwise from the core centerline

TABLE 57
(Continued)

Run 1170

FOIl Number	Foil Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \end{aligned}$	Normalized Counts	Local to Foil (X)
1	Bare	1	0	40	925	197853	0969
2	Bare	1	0	40	1058	204919	1004
3	Bare	1	0	40	1210	206210	1010
4	Bare	1	0	40	1363	206017	1009
5	Bare	1	0	40	1515	209197	1025
6	Bare	1	0	40	1668	197195	0966
7	Bare	1	0	40	1820	194307	0952
8	Bare	1	0	40	1972	183171	0.898
9	Bare	1	0	40	2105	191370	0938
10	Bare	1	0	78	925	213804	1048
11	Bare	1	0	78	1058	200724	0984
12	Bare	1	0	78	1210	216560	1061
13	Bare	1	0	78	1363	216189	1059
14	Bare	1	0	78	1515	214002	1049
15	Bare	1	0	78	1668	203720	0998
16	Bare	1	0	78	1820	196101	0961
17	Bare	1	0	78	1972	184684	0905
18	Bare	1	0	78	2105	192661	0944
19	Bare	1	0	116	925	229124	1123
20	Bare	1	0	116	1058	225467	1105
21	Bare	1	0	116	1210	235788	1155
22	Bare	1	0	116	1363	235116	1152
23	Bare	1	0	116	1515	233825	1146
24	Bare	1	0	116	1668	235591	1154
25	Bare	1	0	116	1820	224315	1099
26	Bare	1	0	116	1972	208158	1020
27	Bare	1	0	116	2105	210047	1029
28	Bare	1	0	154	925	251161	1231
29	Bare	1	0	154	1058	256189	1255
30	Bare	1	0	154	1210	263006	1289
31	Bare	1	0	154	1363	266484	1306
32	Bare	1	0	154	1515	268895	1318
33	Bare	1	0	154	1668	256482	1257
34	Bare	1	0	154	1820	229735	1126
35	Bare	1	0	154	1972	233650	1145
36	Bare	1	0	154	2105	226913	$1 \mathrm{ll2}$
37	Bare	3	0	40	925	158746	0778
38	Bare	3	0	40	1058	149850	0734
39	Bare	3	0	40	1210	157506	0772
40	Bare	3	0	40	1363	154933	0759

TABLE 57
(Contınued)

Run 1170

Location

Foll Number	Foil Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Radial (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalızed Counts	Local to FOII (X)
41	Bare	3	0	40	1515	157703	0773
42	Bare	3	0	40	1668	145570	0713
, 43	Bare	3	0	40	1820	145414	0713
44	Bare	3	0	40	1972	143335	0702
45	Bare	3	0	40	2105	154602	0758
46	Bare	3	0	78	92.5	158974	0779
47	Bare	3	0	78	1058	151312	0741
48	Bare	3	0	78	1210	161004	0789
49	Bare	3	0	78	1363	155542	0762
50	Bare	3	0	78	1515	159497	0782
51	Bare	3	0	78	1668	152183	0.746
52	Bare	3	0	78	182.0	152361	0747
53	Bare	3	0	78	1972	145662	0714
54	Bare	3	0	78	2105	161657	0792
55	Bare	3	0	116	925	173962	0852
56	Bare	3	0	116	1058	175618	0861
57	Bare	3	0	116	1210	179454	0879
58	Bare	3	0	116	1363	180558	0885
59	Bare	3	0	116	1515	180610	0.885
60	Bare	3	0	116	1668	172365	0846
61	Bare	3	0	116	1820	171542	0841
62	Bare	3	0	116	1972	161275	0790
63	Bare	3	0	116	2105	171579	0841
64	Bare	3	0	154	925	177589	0870
65	Bare	3	0	154	1058	194924	0955
66	Bare	3	0	154	121.0	198712	0.974
67	Bare	3	0	154	1363	203295	0996
68	Bare	3	0	154	1515	204366	1001
69	Bare	3	0	154	1668	196155	0961
70	Bare	3	0	15.4	1820	191447	0938
71	Bare	3	0	15.4	1972	181130	0888
72	Bare	3	0	154	2105	183812	0.901

Run lifl

| 1 | Bare | 3 | 270° | 40 | 925 | 159617 | 0782 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Bare | 3 | 270° | 40 | 1058 | 148451 | 0727 |
| 3 | Bare | 3 | 270° | 40 | 1210 | 157258 | 0771 |
| 4 | Bare | 3 | 270° | 40 | 1363 | 161261 | 0790 |
| 5 | Bare | 3 | 270° | 40 | 1515 | 155084 | 0760 |
| 6 | Bare | 3 | 270° | 40 | 1668 | 149372 | 0732 |
| 7 | Bare | 3 | 270° | 40 | 1820 | 143803 | 0705 |
| 8 | Bare | 3 | 270° | 40 | 1972 | 145242 | 0712 |
| 9 | Bare | 3 | 270° | 40 | 2105 | 156729 | 0768 |

TABLE 57
(Continued)

Run 2171

Location

Foll Number	Foll Type	Module Number	Angle $\left({ }^{\circ}{ }_{\mathrm{CW}}\right)$	Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalized Counts	Local to FOII (X)
10	Bare	3	270°	78	925	165328	0810
11	Bare	3	270°	78	1058	158001	0774
12	Bare	3	270°	78	1210	162589	0797
13	Bare	3	270°	78	1363	165690	0812
14	Bare	3	270°	78	1515	165615	0812
15	Bare	3	270°	78	1668	156614	0767
16	Bare	3	270°	78	1820	154010	0755
17	Bare	3	270°	78	1972	151034	0740
18	Bare	3	270°	78	2105	167173	0819
19	Bare	3	270°	116	925	181206	0888
20	Bare	3	270°	116	1058	179944	0882
21	Bare	3	270°	116	1210	185734	0910
22	Bare	3	270°	116	1363	185658	0910
23	Bare	3	270°	116	1515	185652	0910
24	Bare	3	270°	11.6	1668	175341	0859
25	Bare	3	270°	116	1820	179268	0878
26	Bare	3	270°	116	1972	166358	0815
27	Bare	3	270°	116	2105	177860	0872
28	Bare	3	270°	154	925	204198	1001
29	Bare	3	270°	154	1058	210040	1029
30	Bare	3	270°	154	1210	212972	1044
31	Bare	3	270°	154	1363	213506	1046
32	Bare	3	270°	154	1515	213272	1045
33	Bare	3	270°	154	1668	182388	0894
34	Bare	3	270°	154	1820	189415	0928
35	Bare	3	270°	154	1972	174374	0854
36	Bare	3	270°	154	2105	174139	0853
Run 1172							Cd Ratio
1	cd	3	90°	40	925	4109	353
2	C ${ }^{\text {d }}$	3	90°	40	1515	4645	318
3	Cd	3	90°	40	2105	3787	379
4	Cd	3	90°	154	925	3918	440
5	Cd	3	90°	154	1515	4635	395
6	Cd	3	90°	154	2105	3521	459
7	Bare	1	0	126	1520	236142	1157
8	Bare	1	225°	126	1520	231941	1137
9	Bare	1	450°	126	1520	245812	1204
10	Bare	1	675°	126	1520	237453	1164
11	Bare	1	900°	126	1520	245415	1203
12	Bare	1	1125°	126	1520	233623	1145
13	Bare	1	1350°	126	1520	246769	1209
14	Bare	1	1575°	126	1520	229931	1127

```
TABLE \(\stackrel{1}{5} 7\)
(Continued)
```

Run 1172
Location

$\begin{aligned} & \text { Foil } \\ & \text { Number } \end{aligned}$	FOII Type	Module Number	Angle (${ }^{\circ} \mathrm{CW}$)	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Normalızed Counts	Local to FOII (X)
15	Bare	1	1800°	126	1520	235231	1153
16	Bare	1	2025°	126	1520	248795	1219
17	Bare	1	2250°	12.6	1520	243443	1193
18	Bare	1	2475°	126	152.0	254023	1245
19	Bare	1	2700°	126	1520	238120	1167
20	Bare	1	2925°	126	1520	250091	1225
21	Bare	1	3150°	126	1520	234388	1149
22	Bare	1	3375°	126	1520	240837	1180
23	Bare	4	0	126	1520	187237	0917
24	Bare	4	225°	126	152.0	187929	0921
25	Bare	4	450°	126	1520	184109	0902
26	Bare	4	675°	126	1520	174959	0857
27	Bare	4	900°	126	1520	169232	0829
28	Bare	4	1125°	126	1520	170488	0835
29	Bare	4	1350°	126	1520	168750	0827
30	Bare	4	1575°	126	152.0	174000	0853
31	Bare	4	1800°	126	1520	166432	0816
32	Bare	4	2025°	126	1520	171165	- 839
33	Bare	4	2250°	126	1520	178351	0874
34	Bare	4	2475°	126	1520	179960	0882
35	Bare	4	2700°	126	1520	192916	0945
36	Bare	4	2925°	126	1520	190843	0.935
37	Bare	4	315.0°	126	1520	199133	0976
38	Bare	4	3375°	126	1520	190597	0934

Run 1174

| 1 | Bare | 1 | 0 | 126 | 168 | 5 | 231684 | 1136 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Bare | 1 | 15.0° | 126 | 168 | 5 | 230561 | 1130 |
| 3 | Bare | 1 | 300° | 126 | 168 | 5 | 243574 | 1194 |
| 4 | Bare | 1 | 450° | 126 | 168 | 5 | 229355 | 1124 |
| 5 | Bare | 1 | 600° | 126 | 168 | 5 | 234583 | 1150 |
| 6 | Bare | 1 | 750° | 126 | 168 | 5 | 238825 | 1171 |
| 7 | Bare | 1 | 900° | 12.6 | 168 | 5 | 229782 | 1126 |
| 8 | Bare | 1 | 1050° | 126 | 168.5 | 231636 | 1135 | |
| 9 | Bare | 1 | 1200° | 126 | 1685 | 238236 | 1168 | |
| 10 | Bare | 1 | 1350° | 126 | 168 | 5 | 230883 | 1131 |
| 11 | Bare | 1 | 1500° | 126 | 1685 | 227121 | 1113 | |
| 12 | Bare | 1 | 1650° | 12.6 | 168.5 | 233746 | 1146 | |
| 13 | Bare | 1 | 1800° | 12.6 | 1685 | 241459 | 1184 | |
| 14 | Bare | 1 | 1950° | 126 | 1685 | 234050 | 1147 | |
| 15 | Bare | 1 | 2100° | 126 | 168 | 5 | 226287 | 1109 |

TABLE 57
(Continued)

Run 117^{4}

Foil Number	Location						
	FOII Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalızed Counts	Local to Foil (X)
16	Bare	1	$2250{ }^{\circ}$	126	1685	227838	1117
17	Bare	1	2400°	126	1685	241909	1186
18	Bare	1	$2550{ }^{\circ}$	126	1685	228115	1118
19	Bare	1	2700°	126	1685	234872	1151
20	Bare	1	2850°	126	1685	218792	1072
21	Bare	1	3000°	126	1685	230348	1129
22	Bare	1	3150°	126	1685	232827	1141
23	Bare	1	3300°	126	1685	243157	1192
24	Bare	1	$3450{ }^{\circ}$	126	1685	241349	1183

TABLE 58
Gold Foll Data
7-Module Reactor - Exhaust Nozzle Removed
0×55 Radıus Ratıo

Run 1168

Foll Number	Location			Foil Weight (g)	Specific Activity $\mathrm{d} / \mathrm{m}-\mathrm{g} \quad \times 10^{-6}$	Local to Foil (X)
	Forl Type	Radial (cm)	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$			
1	Bare	0	894	00354	7825	0948
2	Bare	0	749	00381	9824	1190
3	Bare	0	596	00280	6800	0824
4	Bare	0	444	00380	4609	0558
5	Bare	0	291	00410	2600	0315
6	Bare	0	139	00379	1244	0151
7	Bare	0	0	00322	0170	0021
8	Bare	932	1511	00389	8204	0994
9	Bare	1077	1511	00402	6621	0802
10	Bare	1230	1511	00333	4756	0576
11	Bare	1382	1511	00398	3289	0398
12	Bare	1534	1511	00408	1887	0229
13	Bare	1687	1511	00330	0861	0104
14	Bare	1839	1511	00350	0130	0016
15	Bare	236^{1}	1511	00415	10475	1269
16	Bare	305	1511	00335	13514	1.637
17	Bare	381	1511	00322	13876	1.681
18	Bare	457	1511	00400	12785	1549
19	Bare	533	1511	00366	12110	1467
20	Bare	610	1511	00414	10357	1255
21	Bare	686	1511	00417	10522	1275
22	Bare	762	151.1	00384	9697	1175
23	Bare	838	1511	00358	8138	0986
24	Bare	907	1511	00354	7023	0851
25	Bare	444^{2}	1511	00376	7630	0924
26.	Bare	394	1511	00338	10694	1296
27	Bare	340	1511	00384	13500	I 636
28	Bare	287	1511	00341	12354	1497
29	Bare	236	1511	00335	9009	1092

Run 1169

1	Cd	0	89	4	00343	2038
2	Cd	0	59	6	00363	0241
3	Cd	0	29	1	00371	00077
4	Cd	93	2	1511	00312	0640
5	Cd	123	0	1511	00073	0.025
6	Cd	1534	1511	000385	00030	

TABLE 58
(Contınued)

Run 1169

$\begin{gathered} \text { Foll } \\ \text { Number } \end{gathered}$	Foll Bype	Location		Fozl Weight (g)	Specıfıc	Local to FOII (X)
		Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \end{aligned}$		$\begin{array}{r} \text { Activity } \\ \mathrm{a} / \mathrm{m}-\mathrm{g} \times 10^{-6} \\ \hline \end{array}$	
	Module	3 at 90°				
7	Bare	40	925	00399	5350	0648
8	Bare	40	1210	00302	5497	0666
9	Bare	40	1515	00385	5533	0670
10	Bare	40	1820	00333	5109	0619
11	Bare	40	2105	00373	5085	0616
12	Bare	154	925	00352	5883	0.713
13	Bare	154	121.0	00374	6323	0766
14	Bare	154	1515	00388	6594	0799
15	Bare	15.4	1820	00385	6183	0749
16	Bare	154	2105	00392	5392	0653
17	Cd	305	1511	$0{ }^{7} 0390$	2271	
18	Cd	533	1511	00397	1901	
19	Cd	762	1511	00418	1327	

Run 2170

1	Bare	0	825	00369	10005	1212
2	Bare	0	672	00410	8563	1037
3	Bare	0	520	00432	5832	0707
4	Bare	1001	1511	00323	7938	0962
5	Bare	1154	1511	00386	5959	0722
6	Bare	1306	1511	00402	4118	0499
7	Bare	0	2120	00357	6915	0838
8	Bare	152	2120	00411	7249	0878
9	Bare	305	2120	00379	8385	1016
10	Bare	457	2120	00360	7063	0856
11	Bare	610	2120	0 0381	5622	0681
12	Bare	762	2120	00404	5358	0649
13	Bare	914	2120	00399	5010	0607
14	Cd	305	2120	00392	2765	
15	ca	610	2120	00414	0978	
16	Cd	914	2120	00368	1444	
	Module 7 on Inner Surface of Polystyrene					
17	Bare	175^{3}	1536	00390	6485	0786
18	Bare	175	1536	00367	6709	0813
19	Bare	175	1536	00376	7229	0876
20	Bare	175	1536	00361	7273	0881
21	Bare	175	1536	00356	7246	0878
22	Bare	175	1536	00418	6802	0824
23	Bare	175	1536	00380	6644	0805
24	Bare	175	1536	00420	6339	0768

TABLE 58
(Continued)

Run 1170

FOII Number	Location			Forl	Specific	
	Foll Type	Radial (cm)	Axial (cm)	Weight (g)	$\begin{gathered} \text { Activaly } \\ \text { a/m-g } \times 10^{-6} \\ \hline \end{gathered}$	Local to Foil (X)
Module 7 on Outer Surface of Polystyrene						
25	Bare	225^{3}	1536	0.0475	6726	0.815
26	Bare	225	1536	00425	7416	0947
27	Bare	22.5	1536	00307	8030	0.973
28	Bare	225	1536	00417	8115	0983
29	Bare	225	1536	00318	8298	1005
30	Bare	225	1536	00421	7714	0935
31	Bare	225	1536	00335	7328	0.888
32	Bare	225	1536	00350	6902	0836
Module 4 on Inner Surface of Polystyrene						
33	Cd	175^{4}	1536	00337	1829	
34	cd	175	1536	00416	1566	
35	Cd	175	1536	00348	1674	
36	Cd	175	1536	00339	1758	
Run 1171						
1	Cd	0	749	00338	1151	
2	Cd	0	444	00357	00433	
3	cd	1077	1511	00282	0167	
4	Cd	1380		00338	00069	
Module 1 at 90°						
5	Bare	40	925	00298	7746	0939
6	Bare	40	1210	00328	8049	0975
7	Bare	40	1515	00302	8253	1000 (X)
8	Bare	40	1820	00483	7111	0862
9	Bare	40	2105	00409	6873	0833
10	Bare	154	925	00426	8738	1. 059
11	Bare	154	1210	00364	9'391	1138
12	Bare	154	1515	00325	9806	1188
13	Bare	154	1820	00319	8951	1085
14	Bare	154	2105	00308	7943	0962
Module 4 on Outer Surface of Polystyrene						
15	cd	225^{4}	1536	00348	I. 844	
16	ca	225	1536	00421	1614	
17	cd	225	1536	00345	1754	
18	cd	225	1536	00391	1780	

TABLE 58
(Continued)

Run 1172

FOIl Number	Iocation			FOll Weaght (g)	Specific Actavaty $\mathrm{d} / \mathrm{m}-\mathrm{g} \quad \times 10^{-6}$	Local to FOIl (X)
	FOZl Type	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \\ \hline \end{gathered}$	Axial (cm)			
	Modul	1 at 90°				
1	Cd	40	925	00370	1987	
2	cd	40	1515	00367	2241	
3	Cd	40	2105	0.0361	1585	
4	cd	154	925	00368	1985	
5	Cd	154	1515	00359	2352	
6	Cd	15.4	2105	00396	1586	
7	Cd	0	749	00360	1.144	
8	Cd	0	444	00401	00338	
9	Cd	1077	1511	00428	0134	
10	cd	1380	151 I	00357	00064	
Run 1173						
1	Bare	0	894	00350	8602	1042
2	Bare	0	74.9	00355	10769	1305
3	Bare	0	596	00346	8547	1036
4	Bare	0	444	00347	4744	0575
5	Bare	0	291	00352	3131	0379
6	Bare	0	139	00349	1450	0176
7	Bare	0	0	00347	0116	0014
8	Bare	932	1511	00356	9356	1134
9	Bare	1077	1511	00350	7438	0901
10	Bare	1230	1511	00357	5379	0652
11	Bare	1382	1511	00361	2821	0342
12	Bare	1534	1511	00353	1505	0182
13	Bare	1687	1511	00352	0408	0049
14	Bare	1839	1511	00354	0115	0014
	Module 3 at 90°					
15	Cd	40	925	00347	1640	
16	Cd	40	1515	00374	1749	
17	Cd	40	2105	00379	1486	
18	cd	154	925	00343	1515	
19	Cd	154	1515	00348	1826	
20	cd	154	2105	00350	1380	
21	ca	0	2120	00350	1667	
22	Ca	236^{1}	1511	00354	2682	
23	Cd	457	1511	00351	2.295	
24	Cd	686	1511	00344	2185	
25	Cd	907	1511	00358	0700	
26	Cd	444^{2}	1511	00350	2131	
27	Cd	340	1511	00360	2552	
28	Cd	236	1511	00350	2664	

FOII Number	Location			FOII Welght (g)	Specific Activity 6 $\mathrm{d} / \mathrm{m}-\mathrm{g} \times 10^{-6}$	Local to$\text { Foil }(X)$
	Foll Type	$\begin{array}{r} \text { Radıal } \\ (\mathrm{cm}) \end{array}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$			
1	Bare	0	894	00349	7970	1041
2	Bare	0	749	00349	9795	1280
3	Bare	0	596	0.0349	7.146	0933
4	Bare	0	444	00350	4617	0603
5	Bare	0	291	00350	2767	0.361
6	Bare	0	130	00348	1336	0.175
7	Bare	0	0	00349	0174	0023
8	Bare	932	1511	00350	8.536	1115
9	Bare	1077	1511	00350	6793	0.887
10	Bare	1230	1511	00349	4916	0642
11	Bare	1382	1511	00352	2615	0342
12	Bare	1534	1511	00354	I 922	0251
13	Bare	1687	151 I	00352	0898	0117
14	Bare	1839	1511	00351	0122	0016
	Modul	I, 90°				
15	Bare	40	1511	00350	7655	1000 (X)
16	Bare	78	1511	00348	7951	1039
17	Bare	11.6	1511	00350	8591	I 122
18	Bare	154	1511	00353	9.366	1223
19	Bare	175	1511	00362	9188	1.200
20	Bare	225	1511	00353	11703	1529
	Module	3, 270°				
21	Bare	154	1511	- 0356	7364	0962
22	Bare	116	1511	00351	6725	0.878
23	Bare	78	1511	00352	6159	0805
24	Bare	40	-511	00358	5866	0766
	Module	1, Equi	lent 9			
25	Ca	175	1511	00351	2372	-----
26	Cd.	225	1511	00349	2370	-----
	Traver	from	dule 1	to Modul	3	
27	Bare	236	1511	00351	10891	1423
28	Bare	287	1511	00350	12676	1656
29	Bare	340	1511	00350	13073	1.708
30	Bare	394	1511	00349	11686	1527
31	Bare	444	1511	00351	8947	1169
1 Traverse in $\mathrm{D}_{2} \mathrm{O}$ between modules 5 and 6 (forls 15 to 24)						
2 Traverse in $\mathrm{D}_{2} 0$ from module 1 to module 3 (foils 25 to 29)						
3 Circumferential traverse at 45° intervals going clockwise startin at 0°						
$\begin{array}{ll} 4 \mathrm{C} \\ & \end{array}$	Curcumferential traverse at 90° intervals going clockwise startin at 0°					

Power Normalization Factors
7-Module Reactor - 055 Radıus Ratıo

Run	Count Tame	Decay Time (mın)	Correction Factor	CPM	$\begin{gathered} \text { Corrected } \\ \text { CPM } \\ \hline \end{gathered}$	Normalization Factor
1168	---.-.-_1	585	1207	355273	428815	
	-	600	1245	343880	428131	
	------	625	1311	326521	428069	
					428338	1. 000
1169	----	255	0496	882600	437770	
		270	0523	837570	438049	
	-	290	0559	781968	437120	
					437646	0979
1170	--	670	1420	307320	436394	
	-------	690	1473	296811	437203	
	------	710	1527	286463	437429	
					437009	0980
1171	---	345	0665	649851	432151	
	------	360	0695	620744	431417	
	------	375	0725	595017	431387	
					431652	0992
1172	120552	605	1258	346652	436088	
	120702	620	1285	337089	433159	
	120852	635	1326	326996	433597	
					434281	0986
1173		3748	0725	550736	399284	
	154422	3998	0777	515822	400794	
	154622	4198	0820	489914	401729	
					400602	1069
1174	125042	6850	1460	298028	435121	
	125242	7050	1514	287488	435257	
	125442	7250	1567	277596	434993	
					435124	0984

1 Digital clock not operating Decay time determined from stop watch

TABLE 510
Gold Foil Cadmıum Ratios
7-Module Reactor - Exhaust Nozzle Removed
055 Radius Ratio

Location				Infinitely Dilute Foil Actavaty $\mathrm{d} / \mathrm{m}-\mathrm{g} \times 10^{-6}$		
$\begin{gathered} \text { Radıal } \\ \text { (cmí) } \\ \hline \end{gathered}$	Axial(cm)	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \\ & \hline \end{aligned}$			
				Ca Covered Foil	Bare Foil	Cadmıum Ratıo
0	894			4700	1090	232
0	749			2639	1182	448
0	596			0569	7986	1404
0	444			01015	4735	467
0	291			00183	2876	157
932	1511			1421	9605	676
1077	1511			0356	7237	203
1230	1511			00527	5100	968
1382	1511			00158	3079	195
1534	1511			000725	1700	235
	Traverse Between Modules 5 \& 6					
236	1511			6266	1423	227
305	1511			5521	1662	301
457	1511			5343	1595	299
533	1511			4656	1480	318
686	1511			5043	1355	269
762	1511			3321	1164	351
907	1511			1643	7963	485
	Traverse from Module 1 to 3					
236	1511			6195	1249	202
340	1511			6003	1702	283
444	1511			4955	1052	212
	Inside	H on Mod	le 7			
175	1511	7	0	3884	8771	226
175	1511	7	90	4035	9579	237
175	151 I	7	180	4188	9646	230
175	1511	7	270	3911	8929	228
	Outside CH On Module 7					
225	1511	7	0	4055	9246	228
225	1511	7	90	4332	1040	240
225	1511	7	180	4278	1066	249
225	1511	7	270	4051	9584	237
40	920	1	90	4727	1030	218
40	1515	1	90	5313	1114	210
40	2105	1	90	3733	9100	244
154	920	1	90	4712	1158	246
154	1515	1	90	5526	1288	233
154	2105	1	90	3880	1007	259

TABLE 510
(Continued)

Location			Infinitely Dilute Foil Activity			
$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \end{gathered}$	Axial	Module	Angle	$\mathrm{d} / \mathrm{m}-\mathrm{g}$		Cadmıum Ratio
	(cm)	Number	$\left({ }^{\left({ }^{\text {CW }} \text {) }\right.}\right.$	Cd Covered Fozl	Bare FOIL	
40	920	3	90	3800	7602	200
40	1515	3	90	4179	7984	191
40	2105	3	90	3570	7159	201
154	920	3	90	3494	7878	225
154	1515	3	90	4236	9084	214
154	2105	3	90	3209	7284	227
	Traver	at Sep	ation	lane Across Modul	3	
0	2120			3876	9138	236
305	2120			6736	1232	183
610	2120			2438	7047	289
914	2120			3427	7041	205

Thermal Neutron Flux

7-Module Reactor - Exhaust Nozzle Removed
055 Radius Ratio

Location			
Radial (cm)	$\begin{aligned} & \text { Ax_al } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Additional Explanation of Location	Thermal Neutron Flux $\mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}-$ watt $\times 10^{-6}$
0	894	End Reflector	3763
0	749	(Bare foll data from Run 1168)	5650
0	596	(Bare foll data from Run 1168)	4229
0	444	(Bare foll data from Run 1168)	2956
0	291	(Bare foll data from Run 1168)	1678
0	89.4	End Reflector . -	4260
0	749	(Bare foil data" from Run 1173)	6241
0	596	(Bare foll data from Run 1173)	5374
0	444	(Bare forl data from Run 1173)	3043
0	291	(Bare foll data from Run 1173)	2022
0	894	End Reflector	3848
0	749	(Bare fozl data from Run 1174)	5604
0	596	(Bare foll data from Run 1174)	4466
0	444	(Bare foll data from Run 1174)	2960
0	29 1	(Bare foil data from Run 1174)	1786
932	1511	Radial Reflector	4932
1077	1511	(Bare foll data from Run 1168)	4192
1230	1511	(Bare foll data from Run 1168)	3064
1382	1511	(Bare foll data from Run 1168)	2125
1534	1511	(Bare foll data from Run 1168)	1220
932	1511	Radial Reflector	5664
1077	1511	(Bare foll data from Run 1173)	4716
1230	151. 1	(Bare foll data from Run 1173)	3466
1382	1511	(Bare foll data from Run 1173)	1.822
1534	1511	(Bare foll data from Run 1173)	0972
932	1511	Radial Reflector	5129
1077	1511	(Bare foll data from Run 1174)	4297
1230	1511	(Bare foll data from Run 1174)	3167
1382	1511	(Bare foll data from Run 1174)	1688
1534	1511	(Bare foll data from Run 1174)	1242
236	1511	Between Modules 5 \& 6	5145
305	1511	Between Modules $5 \& 6$	7184
381	1511	Between Modules $5: 6$	$7354{ }^{1}$
457	1511	Between Modules $5 \& 6$	6869
533	1511	Between Modules $5 \& 6$	6578
610	1511	Between Modules $5 \& 6$	$5483{ }^{1}$
586	1511	Between Modules $5 \& 6$	5.506
762	1511	Between Modules 5 \& 6	5387
838	1511	Between Modules $5 \& 6$	$4591{ }^{1}$
907	1511	Between Modules $5 \& 6$	4091

Location		
$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Additional Explanation of Location $\quad \begin{aligned} & \text { Thermal Neutron Flux } \\ & \mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec} \text {-watt } \times 10^{-6}\end{aligned}$
236	1511	From Module 1 to Module 304076
287	1511	(Bare foll data from Run 1168) 62741
340	1511	(Bare foll data from Run ll68) 7130
394	1511	(Bare foll data from Run ll68) 5312^{1}
444	1511	(Bare foll data from Run ll68) 3600
236	1511	From Module 1 to Module 315236
287	1511	(Bare foil data from Run 1174) $6501{ }^{1}$
340	1511	(Bare foll data from Run 1174) 6778
394	1511	(Bare foll data from Run 1174) 5975^{1}
444	1511	(Bare foll data from Run 1174) 4413
175	1536	Inner Surface of CH, Module I at 90 0° (4430
22.5	1536	Outer Surface of CH, Module l at 90 ${ }^{\circ}$
175	1536	Module 7, $0^{\circ} \mathrm{cw}$
175	1536	Module 7, $90^{\circ} \mathrm{cw}$
175	1536	Module 7, $180^{\circ} \mathrm{cw}$
175	1536	Module 7, $270^{\circ} \mathrm{cw}$
225	1536	Module 7, $0^{\circ} \mathrm{cw}$
225	1536	Module 7, $90^{\circ} \mathrm{cw}$
225	1536	Module 7, $180^{\circ} \mathrm{cw}$
225	1536	Module 7, $270^{\circ} \mathrm{cw}$
40	925	Module I, $90^{\circ} \mathrm{cw} 3611$
40	1515	Module I, $90^{\circ} \mathrm{cw}$
40	2105	Module 1, $90^{\circ} \mathrm{cw}$
154	925	Module 1, $90^{\circ} \mathrm{cw}$
154	1515	Module I, $90^{\circ} \mathrm{cw}$
154	2105	Module 1, $90^{\circ} \mathrm{cw}$
40	925	Module 3, $90^{\circ} \mathrm{cw}$
40	1515	Module 3, $90^{\circ} \mathrm{cw} 2463$
40	2105	Module 3, $90^{\circ} \mathrm{cw}$
154	925	Module 3, $90^{\circ} \mathrm{cw}$ (2838
154	1515	Module 3, $90^{\circ} \mathrm{cw}$
154	2105	Module 3, $90^{\circ} \mathrm{cw}$
0	2120	Separation Flane from Module I to Module 3 3 406
305	2120	Separation Plane from Module 1 to Module 33613
610	2120	Separation Plane from Module 1 to Module 32984
914	2120	Separation Plane from Module 1 to Module 32339
40	1511	Module l at $90^{\circ} \mathrm{cw}$
154	1511	(Bare foll data from Run 1174) $4519{ }^{1}$
40	1511	Module 3 at $270^{\circ} \mathrm{cw} \quad 2640^{1}$
154	1511	(Bare foll data from Run 1174) 3652^{1}

I Thermal flux calculation based on extrapolated cadmium covered foll actuvity

Figure 5.1 End view of seven module tank

There are 6 fuel rings for the 55 radius ratio and 8 rings for the 72 radius ratio, and 4 rings for the 38 raduus ratio

Figure 52 Find view of fuel element

Figure 53 Sade view of fuel element

Figure 54 Layout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 055 radius ratio loading

Figure 5.5 Inverse multiplication curve for seven module reactor
Percent rod worth wathdrawn

6 0
6 0

Figure 56 Control Rod Shape Curve - seven actuators (21 rods)

Figure 5.7 Control Rod Shape Curve - All Actuators (30 rods)

60

50

45

2
le

Figure 58 Uranlum worth measurements - 7 module reactor with 055 fuel to module radius ratio

Figure 59 Exhaust nozzle configurations for the 7 module reactor

Figure 5.10 Relatıve axial power distribution in module $1,0^{\circ}$ at the core centerline, 7 module reactor whth 055 fuel to module radius ratio

Figure 511 Relatıve axial power dastribution in module $1,90^{\circ}$ at the core centerline, 7 module reactor with 055 fuel to module radius ratio

Figure 512 Relative axial power distribution in module $3,0^{\circ}$ at the core centerline, 7 module reactor with 0.55 fuel to module radus ratio

Figure 513 Relatıve axial power distribution in module 3, 90° at the core centerline, 7 module reactor with 0.55 fuel to module radius ratio
Relative axial power pex unit fuel mass

Figure 5.14 Relative axial power distribution in module 3, 270° at the core center line, 7 module reactor with 055 fuel to module radius ratio

Flgure 5.15 Relatıve radial power distribution in modules 1 and 3 based on axıal average power distributions, 7 module reactor with 055 fuel to module radius ratio

Figure 516 Carcumferential power dastribution on outside fuel ring, 0 55 radius ratio, 7 module configuration

Figure 5.17 Axial distribution of catcher foll cadmium ratios in modules 1 and 3,7 module reactor wath 055 fuel to module radius ratio

Figure 518 Relatıve bare gold foıl activity axial distribution in modules 1 and 3, 7 module reactor with 055 fuel to module radius ratio

Figure 519 Relatave bare gold foll activity circumferential distribution on innex and outer surfaces of the polystyrene in module 7 , 7 module reactor with 0 fuel to module radius ratio

Figure 5.20 Relative bare gold foll actavity distribution in the regions between modules

$$
11
$$

Figure 521 Relative bare gold foll activity distribution across the end of the core at the separation plane from the center of module 1 across module 3 , 7 module reactor with 0.55 fuel to module radius ratio

Figure 522 Relative bare gold foll actuvity distribution in the radial reflector, 7 module reactor with 055 fuel to module radıus ratio

Figure 5.23 Relatave bare gold foll activity distribution an the end reflector, 7 module reactor with 055 fuel to module radius ratio

Figure 524 Infinately dilute gold cadmum ratio in region between fuel modules

Figure 525 Axial distribution of gold foll cadmaum ratios in modules 1 and 3 at an angle of $90^{\circ} \mathrm{cw}$ from core centerline

Figure 5.26 Gircumferential distribution of gold foll cadmıum ratio on anner and outer surface of CH in module 7

Figure 5.27 Infinitely dilute gold cadmium ratios along centerlines of end and radial reflectors
Thermal neutron flux-n/ cm^{2}-sec-watt $\times 10^{-6}$

Figure 528 Axial distribution of thermal neutron flux in modules 1 and 3 at 90° clockwise from core vertical centerline

Figure 529 Circumferential distribution of thermal neutron flux on the anner and outer surfaces of the polystyrene in module 7

Figure 5.30 Thermal neutron flux distribution across the core at the separation plane from module 1 across module 3

Figure 531 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 7 -module reactor wath 055 fuel to module radius ratio

7

Figure 532 Radial distribution of thermal neutron flux from module 1 through the $D_{2} 0$ between modules 5 and 6 and into the radial reflector, 7 -module reactor whth 055 radius ratio

;
Figure 533 Axıal distribution of thermal neutron flux through module 1 and into the reflector, 7 -module reactor with 055 fuel to module radius ratio

The change from the 055 to 072 radius ratio core was made by adding two more rings of fuel, as shown an Figure 5.2 The fuel sheet loading was adjusted on the rings to give a lower average fuel densıty. It was inıtially expected that slightly over 7 kg of uranium would be the critical mass but as the change from 055 to 072 radius ratio was gradually made, a heavier loading was needed The fuel stage separation discs were each loaded with four equivalent "size-one" sheets as shown in Figure 6.1 and specified in Table 61 Twenty sheets of fuel were placed on the fuel rings for each stage. The changes which followed as the initial loading progressed are explained in the following section

6.1 Initial Ioading

Rather than completely unload the reactor and start whth an empty core, the fuel elements were changed one at a time and after each change a k-excess measurement was made. The fuel element in Module 2 was changed first and k-excess decreased about $14 \% \mathrm{k}$ It was obvious of course, that the pre-selected 7 kg fuel loading was signıficantly deficient. No change was made to the separation discs but one extra sheet was placed on the sixth and seventh rings and two sheets were added to the elghth ring of fuel. The loading on the rings then was as follows

Ring Number	Number of Size 10 Fuel Sheets	Ring Diameter (cm)
1	1	61
2	1	99
3	2	137
4	2	175
5	3	21.3
6	4	251
7	5	28.9
8	6	327
TOTAI,	24	

On this basis, each fuel element would contain 452 equivalent size 1.0 fuel sheets or 118 kg of uranuum based on 262 grams per sheet

Prior to making any further changes, 48 sheets of fuel (126 grams) were placed on the outer ring of fuel in Module 2 , making a total of 436 full size sheets in this module K-excess increased $0.532 \pm 0.29 \% \mathrm{k}$, which gives a fuel worth at this outer radius ring of $4.23 \pm 0.23 \% / \mathrm{Nk} / \mathrm{kg}$.

Module 5 fuel element was then changed so that it contanned 452 equivalent full size fuel sheets at a radius ratio of 072 and k-excess decreased only $0.06 \% \Delta \mathrm{k}$. The remaining fuel element changes showed similar decreases in reactivity. Finally, with six elements having 452 and one having 436 equavalent size one sheets, excess reactavity was $0627 \% / \Delta k$ with the exhaust nozzle tank removed from the reactor The total fuel loading was 3148 equivalent full-size sheets, or 824 kg of uranium

6.2 Reactuvity Measurements

The worth of uranıum was measured wath the 072 radius ratio by using the same procedure as explained in Section 5.22 The data are given in Table 6.2 and Figure 62 The core volume-weighted average uranıum worth was $4.08 \% \Delta \mathrm{k} / \mathrm{kg}$ This compares to $3.93 \% / \Delta \mathrm{k} / \mathrm{kg}$ for the 0.55 radius ratio. The difference between these two numbers is of the order of the experimental error, and therefore is not considered significant

The worth of aluminum was also measured and the same procedure was used as for the 0.55 radius ratio core. The data are shown in Table 6.2. The same aluminum and the same locations were used as for the 0.55 radius ratio core but a comparison of the two sets of data shows quite large variations as follows:

Module	Angle (degrees cw)
7	90
4	150
4	330

Ratio of AI worth
for 055 to 0.72
Radius Ratio Core
065
1.58

067

It appears that the value measured at 150 degrees on module 4 may have been in error, or that the aluminum worth measurements have a 30% uncertainty

Increasing the radius ratio required the addition of two fuel rangs. Thas in turn increased the mass of aluminum 122 kg If It is assumed that the aluminum was worth $0026 \% / \Delta \mathrm{k} / \mathrm{kg}$, the addıtional alumanum would have been worth ' $0.317 \% \Delta k$ or equivalent to about 78 grams of uranium (aluminum negative, uranium positive)

As noted earlier, each fuel element contained 452 equivalent suze 1.0 fuel sheets except for Module 2 fuel element which contained 436 sheets. The amount of fuel on the separation discs was the same, for all fuel elements. The fuel rings on Module 2 fuel element, however, contanned the followng fuel:

Ring No.	Number of Fuel Sheets
1	1
2	1
3	2
4	2
5	3
6	3
7	4
8	7

Thus the total equivalent size 10 fuel sheets on this fuel element amounted to 436 or 16 less than the other seven. Although the fuel mass on this element was slughtly less than the other seven, the equivalent worth of the fuel element should have been about the same as the other six because the outer fuel ring was loaded heavier and the fuel at that location is worth more than it could have been had it been distrabuted over fuel rangs nearer the center of the fuel element The total mass of uranium in the core was 824 kg and k-excess was 0627 . Uranıum was worth $4.08 \% \Delta \mathrm{k} / \mathrm{kg}$, and hence the critical mass was 809 kg This result ancludes no correction for the additional 122 kg of aluminum compared to the 055 radius ratio core This correction, based on 1 kg of AI being worth $0025 \% \Delta k$, is small, amounting to the equivalent of 78 grams of uranium. Thus, the critical mass with the same structure and hydrogen that existed in the $055 \mathrm{R} / \mathrm{R}_{0}$ reactor was 8.01 kg The $055 \mathrm{R} / \mathrm{R}_{\mathrm{o}}$ reactor had a critical mass of 8.64 kg Both of these results are with the exhaust nozzle open.

6.3 Power Mapping - Catcher Foils

The catcher foil data obtained in this configuration are given in Table 63 It wall be noted that mostly bare folls were used Only four cadmium covered catcher folls were measured the axial profiles in Modules 1 and 3 are given in Figures 63 to 65 along with the averages for each profile These averages were then plotted to give the radial profile shown in Figure 6.6. Each of these radial power distribution profiles was then volume averaged and these values are given in the figure. These volume weighted averages represent the average axial power at the given axial position, relative to a power of 10 at the axial center of the core, 40 cm from the radial centerline of the core.

The four cadmium ratios given at the end of Table 63 were also from Modules 1 and 3. Although duplicate positions were not available from the 0.55 radius ratio core, comparison with Table 57 indicates that the relative ratio of thermal to epi-thermal (epi-Cd) fissions was essentially the same in both cores

6.4	Flux Mapping - Gold Foils
6.4.1	Bare Gold Data

As explained earlier in this report, power normalization folls were exposed on each run so that the gold data could be normalized to a comon power level. These data are shown in Table 64 There was a scram on Run 1175 so some gold folls were repeated on the subsequent run and the normalization factor was determined by comparing the two sets of data.

The gold results are given in Table 6.5 and include both bare and cadmum covered foils The bare activities were normalized to a point near the center of Module 7 and these relative values were plotted to show the distributions within the reactor as seen from Figures 6.7 to 6.10 Everything appeared to be normal, following closely a smooth curve through the points. The dap in flux observed at the outer edge of Module 1 on the 0.55 radıus ratio core (Figure 5.20) was barely evident here (Figure 6.8) but was more pronounced at the outer edge of module 3

6.4.2 Cadmum Ratios

Gold cadmium ratios (infinitely dilute) were obtained at several locations in the modules and the end and radial reflectors The radial distributions from near the center of the core through modules 1 and 3 and through module 1 and across the tank between modules 5 and 6 are given in table 6.6 and plotted in Figures 611 and 6.12 The last point in each figure was just inside the radial reflector. The cadmium ratios in the reflector regions are shown in Figure 6.13 and compare very well wath the same data from the 0.55 radius ratio core (Figure 5 27)

6.43 Thermal Neutron Flux

The thermal neutron flux obtanned from the gold foll data are given in Table 6.7 Of primary interest were the radial profiles through the module region and into the radial reflector These are plotted in Figures 6.14 and 615 A flux dip occurs between the outer edge of the fuel and the mner surface of the polystyrene as was noted for the 0.55 radius ratio core (Figure 5 31) However, there was no observed dip at the outer surface of the polystyrene as was the case for the 0.55 radius ratio. The thermal flux in the reflector was generally lower per watt of power throughout the core for the 078 radius ratio compared to the 0.55 radius ratio This appears paradoxical from customary fundamental considerations, since the fuel loading was less in the 072 radius ratio However, between the modules, the 072 radius ratio had the higher thermal flux

TABLE 61

Fuel Sheets on Fuel Stage Separation Disc
7-Module Reactor - 072 Radıus Ratıo Loading

Disc Number	Positions Containing Fuel	Number of Fuel Whole Sheets	Sheets 1/2 Sheets
1	1,2,9,10	4	
2	3,4,7,8,11,12	2	4
3	5,6,13,14	4	
4	1,2,9,10	4	
5	3,4,7,8,11,12	2	4
6	5,6,13,14	4	
7	1,2,9,10	4	
8	3,4,7,8,11,12	2	4
9	5,6,13,14	4	
10	1,2,9,10	4	
11	3,4,7,8,11,12	2	4
12	5,6,13,14	4	
13	1,2,9,10	4	
14	3,4,7,8,11,12	2	4
15	5,6,13,14	4	
16	1,2,9,10	4	
17	$3,4,7,8,11,12$	2	4
	Total	$\overline{56}$	24

TABLE 62
Fuel Worth Measurements
7-Module Reactor - 072 Radıus Ratio

Location						
Module	Angle (degrees clockwise)	Radıus (cm)	U Mass (g)	$\begin{array}{r} \text { Reactivity } \\ (\% \Delta \mathrm{k}) \end{array}$	Change	Uranzum Worth $(\% \Delta \mathrm{k} / \mathrm{kg})$
1	90	40	728	0 0405 ± 0	003	556 ± 041
1	90	78	728	00433 ± 0	003	595 ± 041
1	90	116	728	00440 ± 0	003	604 ± 041
1	90	154	728	00507 ± 0		696 ± 041
3	90	40	728	00242 ± 0	003	332 ± 041
3	90	78	728	00247 ± 0		339 ± 041
3	90	116	728	00248 ± 0		341 ± 041
3	90	154	728	00258 ± 0	003	354 ± 041
3	270	78	728	00272 ± 0		374 ± 041
3	270	154	728	00313 ± 0		430 ± 041
			Al Mass (g)			Alumnnum Worth ($\% / \Delta \mathrm{k} / \mathrm{kg}$)
1	90	Avg	540	00278 ± 0		0051 ± 0006
4	150		540	00105 ± 0		0019 ± 0006
4	330		540	00121 ± 0		0022 ± 0006

TABLE 63
Catcher Foil Data
7-Module Reactor - 072 Radıus Ratio Core

Run 1175

Foil Number	Location						
	Foll Type	Module Number	Angle (${ }^{\circ} \mathrm{CW}$)	Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalized Counts	Local to Fonl (X)
1	Bare	1	90	40	925	226334	1007
2	Bare	1	90	40	1058	219714	0978
3	Bare	1	90	40	1210	227949	1014
4	Bare	1	90	40	1515	224649	1000 (X)
5	Bare	1	90	40	1820	205035	0912
6	Bare	1	90	40	1972	197305	0878
7	Bare	1	90	40	2105	203469	0906
8	Bare	1	90	78	925	226600	1008
9	Bare	1	90	78	1058	227671	1013
10	Bare	1	90	78	1210	227779	1014
11	Bare	1	90	78	1515	242290	1078
12	Bare	1	90	78	1820	214449	0954
13	Bare	1	90	78	1972	202414	0901
14	Bare	1	90	78	2105	202240	0900
15	Bare	1	90	116	925	234076	1042
16	Bare	1	90	116	1058	232481	1035
17	Bare	1	90	116	1210	237486	1057
18	Bare	1	90	116	1515	244226	1087
19	Bare	1	90	116	1820	218231	0971
20	Bare	1	90	116	1972	212359	0945
21	Bare	1	90	116	2105	202000	0899
22	Bare	1	90	154	925	243441	1083
23	Bare	1	90	154	1058	244753	I 089
24	Bare	1	90	154	1210	256822	1143
25	Bare	1	90	15.4	1515	250966	1117
26	Bare	1	90	15.4	1820	236877	1054
27	Bare	1	90	154	1972	227759	1014
28	Bare	1	90	154	2105	215024	0957
29	Bare	3	90	40	925	168345	0749
30	Bare	3	90	40	1058	165033	0734
31	Bare	3	90	4.0	1210	162244	0722
32	Bare	3	90	40	1515	169324	0753
33	Bare	3	90	40	1820	163460	0727
34	Bare	3	90	40	1972	155842	0.693
35	Bare	3	90	40	2105	158866	0707
36	Bare	3	90	78	925	158030	0703
37	Bare	3	90	78	1058	170390	0758
38	Bare	3	90	78	1210	164175	0731
39	Bare	3	90	78	1515	172809	0769
40	Bare	3	90	78	1820	159689	0711

TABLE 63
(Continued)

Run 1175

	Location						
FOII Number	FOII Type	Module Number	$\begin{gathered} \text { Angle } \\ \left(\mathrm{O}_{\mathrm{cW}}\right) \end{gathered}$	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalized Counts	Local to Foll (X)
41	Bare	3	90	78	1972	157429	0701
42	Bare	3	90	78	.2105	158046	0703
43	Bare	3	90	11.6	925	169913	0756
44	Bare	3	90	116	1058	170430	0758
45	Bare	3	90	116	1210	168733	0751
46	Bare	3	90	116	1515	171289	0762
47	Baxe	3	90	116	1820	161984	0721
48	Bare	3	90	116	1972	155039	0690
49	Bare	3	90	116	2105	152414	0678
50	Bare	3	90	154	925	176127	0784
51	Bare	3	90	154	1058	162904	0725
52	Bare	3	90	154	1210	182217	0.811
53	Bare	3	90	154	1515	186512	0830
54	Bare	3	90	154	1820	169581	0755
55	Bare	3	90	154	1972	158910	0707
56	Bare	3	90	154	210.5	151581	0675
Run 1176							
1	Bare	3	270	154	925	207646	0924
2	Bare	3	270	154	1058	186690	0861
3	Bare	3	270	154	1210	202542	0901
4	Bare	3	270	154	1515	205524	0915
5	Bare	3	270	154	1820	191865	0854
6	Bare	3	270	154	1972	179356	0798
7	Bare	3	270	154	2105	184518	0821
8	Bare	3	270	116	925	187196	0833
9	Bare	3	270	116	1058	193520	0.837
10	Bare	3	270	116	1210	184803	0822
11	Bare	3	270	116	1515	182879	0814
12	Bare	3	270	116	1820	176486	0785
13	Bare	3	270	116	1972	171025	0761
14	Bare	3	270	116	2105	171823	0765
15	Bare	3	270	78	92.5	180427	0.803
16	Bare	3	270	78	1058	180012	0801
17	Bare	3	270	78	1210	173652	0773
18	Bare	3	270	78	1515	177323	0789
19	Bare	3	270	78	1820	171411	0.763
20	Bare	3	270	78	1972	166390	0740
21	Bare	3	270	78	2105	170880	0760

TABLIE 63
(Contınued)

Run 1176
Location
Foll Foll Module Angle Radial Axıal Normalızed Local to Number Type Number ($\left.{ }^{\circ} \mathrm{CW}\right)$ (cm) (cm) Counts Foll (X)

| 22 | Bare | 3 | 270 | 40 | 92 | 5 | 174455 | 0776 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 23 | Bare | 3 | 270 | 40 | 1058 | 170722 | 0760 | |
| 24 | Bare | 3 | 270 | 4 | 0 | 1210 | 170162 | 0757 |
| 25 | Bare | 3 | 270 | 400 | 1515 | 172971 | 0770 | |
| 26 | Bare | 3 | 270 | 40 | 1820 | 163387 | 0727 | |
| 27 | Bare | 3 | 270 | 4.0 | 1972 | 163064 | 0726 | |
| 28 | Bare | 3 | 270 | 40 | 2105 | 167506 | 0745 | |

Run 1177

1	$C d$	1	90	4	0	182	0	5797	35	4
2	Cd	1	90	15	4	182	0	5781	41	0
3	$C d$	3	90	4	0	182	0	4420	37	0
4	$C d$	3	90	15	4	182	0	4291	39	5

```
                    'TABLE 6 4.
    Power Normalization
    7-Module Reactor - 0 72 Radıus Ratıo
```

Run	Time of Count	Decay Tlme	Correction Factor	Counts	Corrected Average Counts/min	Normalization Factor
1175	115808	6600	1393	287979	401155	
	120008	6800	1447	277810	401991	
	120158	6950	1.487	266871	396837	
		Scrammed	after 6 min		399994	09961
1176	111485	4350	0852	501489	427269	
	111685	4550	0897	475391	426426	
	111885	4750	0942	452915	426646	
					426780	1000
1177	150082	5500	1120	377551	422857	
	150332	5750	1182	358516	423766	
	150532	5950	1232	343986	423791	
					423471	0992

1 Based on gold foll repeat data on Run 1176

TABLE 65
Gold Foil Data
7-Module Reactor - 072 Radius Ratio

Run 1175

TABLE 65
(Contınued)

Run 1175
Location

Run 1176

1	Cd	0	89	4	0	0332
2	Cd	0	59	6	0	0333
3	Cd	0	291	0	0353	0.113
4	Cd	93	2	1511	0	0341
5	Cd	123	0	1511	00345	000829
6	Cd	153	4	1511	00340	0.627

TABLE 65
(Continued)

Run 1176
Location

Foll Number	Foil Type	Radıal (cm)	Axial (cm)	Foll Welght (g)	Specific Actavity $\mathrm{d} / \mathrm{m}-\mathrm{g} \times 10^{-6}$	Local to Foil. (X)
Module 3, 270°						
7	Bare	154	1363	00293	7061	0865
8	Bare	116	1363	00312	6669	0817
9	Bare	78	1363	00350	6274	0769
10	Bare	40	1363	00340	6138	0752
11	cd	154	1668	00339	1764	
12	Ca	40	1668	00340	1699	
Traverse from Module 1 to 3						
13	Cd	236	1511	00338	2520	
14	Cd	340	1511	0.0340	2302	
15	ca	444	1511	00340	1754	
Traverse Between Modules 5 \& 6						
16	Cd	236	151.1	00337	2532	
17	Cd	533	151.1	00339	2183	
18	cd	838	1511	00331	1009	
Outer Surface of CH In Module 1						
19	cd	224 (270 ${ }^{\circ}$)	1653	00334	2345	
20	Cd	224 (00)	1653	00336	2351	
Inner Surface of CH in Module 3						
21	cd	175 (270 ${ }^{\circ}$)	1653	00338	1638	
22	cd	175 (90 ${ }^{\circ}$)	1653	00343	1.742	
23	Bare	1077	1511	00354	6792	0832
24	Bare	1382	151.1	00322	3191	0.391

Run 1177

Module $1,90^{\circ}$						
1	cd	40	1633	0	0337	2384
2	Cd	154	1633	0	0332	2323
Module 3, 90°						
3	cd	40	1633	0	0325	1685
4	cd	154	1633	0	0335	1. 666
Traverse from Module 1 to 3						
5	Cd	287	1511	0	0335	2533
6	Cd	394	1511	0	0336	2201
Traverse Between Modules 5 \& 6						
7	Cd	381	1511	0	0334	2.248
8	cd	686	1511	0	0334	1818
9	cd	907	1511		0335	0706

TABLE 65
 (Continued)

Run 1177
Location
Foil Foil Radial Axial Foil Weight Specıfac Activity Local to Number Type $\quad(\mathrm{cm}) \quad(\mathrm{cm}) \quad(\mathrm{g}) \quad \mathrm{d} / \mathrm{m}-\mathrm{g} \times 10^{-6}$ Foil (X) Inner Surface of CH in Module 1
$10 \quad \mathrm{Cd} \quad 175\left(270^{\circ}\right) 165300341 \quad 2221$
$11 \mathrm{Cd} \quad 175\left(0^{\circ}\right) \quad 1653 \quad 00341 \quad 2262$ Outer Surface of CH in Module 3
$12 \mathrm{Cd} \quad 224\left(270^{\circ}\right) 165300341$ I 797
13 Cd $224\left(90^{\circ}\right) \quad 165300338$ 1 563

14	Bare	236	1511	0	0385	10763	1319
15	Bare	224	1511	0	0371	10037	1230
16	Bare	224	1587	0	0379	9.990	1224

TABLE 66
Gold Foil Cadmıum Ratıos
7-Module Cavity Reactor
072 Radıus Ratio with Hydrogen

Location		Module Number		Infinately Dilute Foil Activaty $\mathrm{d} / \mathrm{m}-\mathrm{g} \times 10^{-6}$ Bare Gold Cd Gold		Cadmium Ratıo
Radial (cm)	Axial (cm)		$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$			
0	894			1104	4809	2296
0	596			7746	0558	1387
0	291			3072	0019	1588
932	1511			9130	1443	6328
1230	1511			4773	0051	934
1534	1511			1934	00077	2528
40	1363	1	90°	1135	5459	2080
154	1363	1	90°	1209	5287	2287
40	1363	3	90°	8190	3849	2128
154	1363	3	90°	8532	3806	2242
40	1363	3	270°	8343	3904	2137
154	1363	3	270°	9240	4049	2282
236	1511	Traverse from M	le 1 to 3	1414	5777	2447
287	1511	Traverse from M	le 1 to 3	1624	5786	2807
340	1511	Traverse from M	le 1 to 3	1625	5290	3071
394	1511	Traverse from M	le 1 to 3	1473	5034	2927
444	1511	Traverse from Mo	le 1 to 3	1125	4031	2790
236	1511	Traverse from M	le 1			
		Between Modules	\& 6	1438	5798	2481
381	1511	Traverse from M	le 1			
		Between Modules	\& 6	1689	5129	3294
533	1511	Traverse from M	le 1			
		Between Modules	\& 6	1501	5017	2995
686	1511	Traverse from M	1 l			
		Between Modules	\& 6	1349	4148	3252
838	1511	Traverse from M	le 1			
		Between Modules	\& 6	1106	2294	4822
907	1511	Traverse from M	le 1			
		Between Modules	\& 6	9597	1613	5951
224	1668	1	0°	1297	5377	2413
224	1668	1	270°	1300	5350	2431
175	1668	1	0°	1182	5204	2272
175	1668	1	270°	1154	5110	2258
224	1668	3	90°	8801	3583	2456
224	1668	3	270°	1037	4135	2507
175	1668	3	90°	8804	4018	2191
175	1668		270°	8930	3755	2378

TABLE 67
Thermal Neutron Flux
7-Module Reactor - Exhaust Nozzle Removed
072 Radıus Ratio

Location				
Radıal (cm)	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Thermal Neutron Flux $\mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{watt} \times 10^{-6}$
0	894	End reflector		3.495
0	596	End reflector		4031
0	291	End reflector		1712
932	1511	Radıal reflector		4311
1230	1511	Radıal reflector		2.648
1534	1511	Radıal reflector		1080
40	1363	1	90°	3305
154	1363	1	90°	3816
40	1363	3	90°	2435
154	1363	3	90°	2650
40	1363	3	270°	2489
154	1363	3	270°	2.911
236	1511	Traverse from Module 1 to	3	4679
287	1511	Traverse from Module 1 to	3	5.863
340	1511	Traverse from Module I to	3	6146
394	1511	Traverse from Module 1 to	3	5440
444	1511	Traverse from Module 1 to	3	4046
236	1511	Traverse between Modules 5	$5 \& 6$	4815
381	1511	Traverse between Modules 5	$5 \& 6$	6598
533	1511	Traverse between Modules 5	$5 \& 6$	5607
686	1511	Traverse between Modules 5	$5 \& 6$	5240
838	1511	Traverse between Modules 5	$5 \& 6$	4917
907	151 I	Traverse between Modules 5	$5 \& 6$	4478
224	151.1	1	0°	4260
224	-151 1	1	270°	4293
175	1511	1	0°	3.712
175	1511	1	270°	3605
224	1511	3	90°	2926
224	1511	3	270°	3495
175	1511	3	90°	2684
175	1511	3	270°	2902

Figure 6.1 Iayout of fuel sheets on fuel stage separation disc on the 7 module reactor fuel element with the 072 radius ratio loading (Note, for locations actually occupied by fuel, see Table 6 I)

Figure 62 Uranıum worth measurement, Tmodule reactor with 0 T2 fuel to module radius ratio

F'igure 63 Relative axial power distribution in Module $1,90^{\circ}$ at the core centerline, 7 -module reactor wath 072 fuel to module radius ratio

Figure 64 Relative axial power distribution in module $3,90^{\circ}$ at the core centerline, 7 module reactor wath 072 fuel to module radius ratio

Figure 65 Relative axial power distribution in module 3, 270° at the core centerline, 7 module reactor whth 072 fuel to module radius ratio

Figure 6.6 Relative radial power distribution in modules 1 and 3 based òn axial avèrage power distributions, 7 -module reactor with 072 fuel to module radius ratio

Figure 6.7 Relative radial bare gold foll activity in modules 1 and 3 at axial locations of 1633 and $1668 \mathrm{~cm}, 072$ fuel to module radus ratıo

Figure 6.8 Relative bare gold foll activity distribution in the regions between modules, 072 fuel to module raduus ratio

Figure 69 Gold foll activity in the radial reflector, 072 fuel to module radius ratio

Figure 610 Gold foll activity $1 n$ the end reflector, 072 fuel to module radius ratio

Figure 6 Il Gold Foil Cadmıum Ratio - module 1 through module 3, 072 fuel to module radius ratio

Figure 612 Gold Foil Cadmium Ratio - module 1 and between modules $5 \& 6 ; 0$ 72 radius ratio

Figure 613 Infinite dilute gold cadmium ratios along centerlines of end and radial reflectors

Figure 614 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and anto the radial reflector; 7 module reactor with 072 fuel to module radius ratio

Figure 6.15 Radial distribution of thermal neutron flux from module 1 through the $D_{2} 0$ between modules 5 \& 6 and into the radial reflector, 7 -module reactor $w i t h 072$ radius ratio

A radus ratio of 0388 for fuel to cavity dumensions was assembled in all seven of the modules The hydrogen simulation was still the same as for the 0.55 and 0.72 radius ratio systems, le hydrogen began at the $072 R_{0}$ position, or a diameter of 328 cm The 76 cm annular space from the outer ring of fuel, having a diameter of 175 cm , to the hydrogen contained no fuel, only a very dilute concentration of aluminum.

$71 \quad$ Inıtıal Ioading

The anticupated loading for criticality was 12 kg of uranium. The loading commenced from the 0.55 radius ratio without hydrogen, Section 8. One module at a tume was changed by increasing Its loading to 1.71 kg within four rings and the corresponding 038 radius ratio on the spacer disks and by simultaneously adding the hydrogen. The worth of the change in each of the outer modules was averaging approximately to $3 \% \Delta k$ Therefore, after changing five of the sux outer modules, it was decided that the fuel loading needed to be reduced below the predicted 12 kg so as to attain a final loading that was not excessively poisoned by control rods inserted into the end reflector.

The final loadıng consisted of 1051 kg (150 kg per module), distributed on the four rings and spacer disks as show in Table 71 and Figure 7.1 The excess reactivity was $100 \% \wedge k$, without the end plug in the exhaust nozzle, ie. nozzle open

72 Reactivity Measurements
The worth of fuel was measured as a function of radius in the center module and of radius and angle in a typical peripheral module. These measurements were made with wands containing fuel uniformly distributed along the length of the reactor The results are given in Table 7.2, and are graphically presented in Figure 72 From these results, the integrated fuel worth throughout the seven modules was deduced, from which an overall "core" average worth of $287 \% \Delta k$ per kg of uranium was obtained. Note, the measurement results shown in Figure 7.2 and table 72 give fuel worths out beyond the 875 cm radius of the fuel. However, the "core" average fuel worth of $287 \% \Delta \mathrm{k} / \mathrm{kg}$ refers only to the region out to the 038 radius ratio. The above fuel worth can be used to obtain an exactly critical mass ($k=100$.) of 10.16 kg of uranium, without the end plug in the exhaust nozzile

The average worth of alumnum in the center module from the center to the hydrogen (0.72 radius ratio) was measured to be $0063 \% \Delta k / \mathrm{kg}$. This is about 80% of the value measured in the 055 radius ratio configuration, where a seven module core-average value of $0.030 \% / \Delta \mathrm{k} / \mathrm{kg}$ was determined. Stainless steel, approximately 003 mean free absorption paths thick, was selectively placed on the module walls so as to give a representative measure of the average worth of stainless steel liner. The measurements gave $0.24 \% \Delta \mathrm{k} / \mathrm{kg}$ SS liner 0.12 cm thrck (0.03 mean free paths) on all the walls, both radial and end, on all seven modules would create a $28 \% \Delta k$ penalty.

7.3 Power Dastribution

The power distribution in the modules was measured using catcher foils. The same three typical radial traverses as employed for the fuel worth measurements were employed, but in each case detalled longıtudinal traverses were made The average of the longitudinal. however, shows that the power distribution is a flatter function than the fuel worth function vs raduus. The tabulated power distribution is given in table 7.3, and is shown graphically in Figures 73 to 76 Total fission production rate in the reactor was computed from this data for referencing the thermal flux data of the next section.

7.4 Neutron Flux Distributions

Neutron fluxes were measured with gold folls, both bare and cadmaum covered. The bare gold data is tabulated in Table 74 , and presented graphically in Figures 77 and 78 These two figures also show the thermal (equivalent $2200 \mathrm{~m} / \mathrm{sec}$) per watt of reactor fission power Note, the traverse in the radial reflector starts along a line between two modules, and thus does not show the flux peak that usually occurs just outside the cavity region The thermal flux was obtanned by subtracting the epi-cadmium activity from the bare actavity The results of these measurements are given in Table 76 , and are plotted in Figures 77 and 710 Note, all thermal flux values have been normalized to one watt of total reactor power The infinitely dilute gold cadmium ratios (Total activity/Epl-cadmium activity) are shown in Table 75 and Figures 711 and 712

TABLE 7 I
Fuel Element Loading Arrangement
038 Radius Ratio Configuration

Each of 17 disks contained
Single layers at positions 1, 3, 4, $6 \quad$ See Figure 71
Double layers at positions 2,5
Full sized sheets 4 Half sized sheets 3

Total of 68 full size
Total of 51 half slze
Module total - 573-1/2 full-sized equavalent sheets or 1501 kg

TABLE 72
Material Worth Measurements

7-Module Reactor - 038 Radıus Ratıo
 Hydrogen in Reactor

Location
Angle Radıus Material Mass Reactivity Change Material Worth

Module	Angle $\left({ }^{\circ} \mathrm{Cw}\right)$	$\begin{aligned} & \text { Radıus } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Material Mass (g)	Reactivity Change (\% $\% \mathrm{k}$)	Material Wort $\% \Delta \mathrm{k} / \mathrm{kg}$
Uranıum Worth					
1	90	40	728	00268 ± 0003	368 ± 041
1	90	78	728	00332 ± 0003	456 ± 041
1	90	116	728	00570 ± 0003	783 ± 041
3	90	40	728	00172 ± 0003	236 ± 041
3	90	78	728	00208 ± 0003	286 ± 041
3	90	116	728	00298 ± 0003	409 ± 041
3	270	40	728	00158 ± 0003	217 ± 041
3	270	116	728	00363 ± 0003	499 ± 041

"Core" average fuel worth (7 modules, 0 cm to 875 cm) $=287 \% \Delta \mathrm{k} / \mathrm{kg}$ Aluminum Worth
1 Module I Average $540 \quad-00340 \pm 000300630 \pm 00056$
Stainless Steel Worth
$1,2,3,4$ Module Wall $02505 \mathrm{~g} 024 \pm 0014 \quad-0263 \pm 0016$

$$
(4,254 \mathrm{~cm} \text { strips })
$$

$5,6,7$ Module Wall $\quad 6370 \mathrm{~g} \quad 0141 \pm 0015 \quad-0221 \pm 0024$
(3, 254 cm strıps)
Overall average $=-0245 \pm 0014 \% \Delta \mathrm{k} / \mathrm{kg}$

TABLE 73

Power Distribution

Catcher Foil Data
7-Module Reactor - 038 Radıus Ratio
With Hydrogen
Run 2181

FOII Number	Foll Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left(\mathrm{O}_{\mathrm{CW}}\right) \end{aligned}$	Radial (cm)	$\begin{array}{r} \text { Ax_al } \\ (\mathrm{cm}) \\ \hline \end{array}$	Normalized Counts	Local to Fozl (X)
1	Bare	1	90	40	925	183675	1054
2	Bare	1	90	40	1058	155738	0893
3	Bare	1	90	40	1210	152402	0874
4	Bare	1	90	40	1515	174285	1000 (X)
5	Bare	1	90	40	1668	170470	0978
6	Bare	1	90	40	1820	159598	0916
7	Bare	1	90	40	1972	156243	0896
8	Bare	1	90	40	2105	177867	1020
9	Bare	1	90	78	925	209905	1204
10	Bare	1	90	78	1058	199126	1142
11	Bare	1	90	78	1210	200897	1152
12	Bare	1	90	78	1515	214323	1230
13	Bare	1	90	78	1668	206889	1187
14	Bare	1	90	78	1820	195432	1121
15	Bare	1	90	78	1972	184282	1057
16	Bare	1	90	78	2105	200583	1151
17	Bare	1	90	116	925	254166	1458
18	Bare	1	90	116	1058	254442	1460
19	Bare	1	90	116	1210	259455	1488
20	Bare	1	90	116	1515	264577	1518
21	Bare	1	90	116	1668	268522	1541
22	Bare	1	90	116	1820	248947	1428
23	Bare	1	90	116	1972	236899	1359
24	Bare	1	90	116	2105	240696	1381
25	Bare	1	90	154	925	263888	1514
26	Bare	1	90	154	1058	261593	1501
27	Bare	1	90	154	1210		---
28	Bare	1	90	154	1515	282014	1618
29	Bare	1	90	154	1668	276615	1587
30	Bare	1	90	154	1820	268873	1543
31	Bare	1	90	154	1972	257799	1479
32	Bare	1	90	154	2105	240168	1378
33	Bare	3	90	40	925	125735	0721
34	Bare	3	90	40	1058	113203	0649
35	Bare	3	90	40	1210	114747	0658
36	Bare	3	90	40	1515	117210	0672
37	Bare	3	90	40	1668	117378	0673
38	Bare	3	90	40	1820	113773	0653

TABLE 73
(Continued)
Run 1181

FOIl Number	Location						
	FOII Type	Module Number	Angle $\left({ }^{\circ} \mathrm{CW}\right)$	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \\ \hline \end{gathered}$	Axial (cm)	Normallzed \qquad	Local to Foll (X)
39	Bare	3	90	40	1972	107755	0618
40	Bare	3	90	40	2105	124437	0714
41	Bare	3	90	78	925	142525	0818
42	Bare	3	90	78	1058	138566	0795
43	Bare	3	90	78	1210	137944	0791
44	Bare	3	90	78	1515	141301	0811
45	Bare	3	90	78	1668	140018	0803
46	Bare	3	90	78	1820	136823	0785
47	Bare	3	90	78	1972	131343	0754
48	Bare	3	90	78	2105	137438	0788
49	Bare	3	90	116	925	166950	0958
50	Bare	3	90	116	1058	170026	0975
51	Bare	3	90	116	1210	173663	0996
52	Bare	3	90	116	1515	184274	1057
53	Bare	3	90	116	1668	174412	1001
54	Bare	3	90	116	1820	174438	1001
55	Bare	3	90	116	1972	163507	0938
56	Bare	3	90	116	2105	160273	0919
57	Bare	3	90	154	925	181315	1040
58	Bare	3	90	154	1058	177698	1019
59	Bare	3	90	154	1210	190976	1096
60	Bare	3	90	154	1515	182421	I 047
61	Bare	3	90	154	1668	189458	1087
62	Bare	3	90	154	1820	176452	1012
63	Bare	3	90	154	1972	171216	0982
64	Bare	3	90	154	2105	164896	0946

Run 1182

1	Bare	3	270	40	92	5	209446	11202	
2	Bare	3	270	40	1058	208327	1195		
3	Bare	3	270	4	0	121	0	214298	11229
4	Bare	3	270	40	1515	211242	112		
5	Bare	3	270	40	1820	211733	11215		
6	Bare	3	270	40	1972	203238	1166		
7	Bare	3	270	40	2105	200561	1151		
8	Bare	3	270	78	925	194471	1116		
9	Bare	3	270	78	1058	194029	1113		
10	Bare	3	270	78	1210	205857	1181		
11	Bare	3	270	78	1515	211503	11213		
12	Bare	3	270	78	1820	189240	11086		
13	Bare	3	270	78	1972	185085	11062		
14	Bare	3	270	78	2105	192720	1106		

TABLE 73
(Continued)

$\begin{aligned} & \text { Foll } \\ & \text { Number } \end{aligned}$	Location						
	Foil Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Radial (cm)	Axial (cm)	Normalized Counts	Local FOII (X)
15	Bare	3	270	116	925	162716	0934
16	Bare	3	-270	116	1058	153147	0879
17	Bare	3	270	116	1210	163614	0939
18	Bare	3	270	116	1515	158861	0911
19	Bare	3	270	116	1820	148729	0853
20	Bare	3	270	116	1972	143640	0824
21	Bare	3	270	116	2105	159290	0914
22	Bare	3	270	154	925	130061	0746
23	Bare	3	270	154	1058	119911	0688
24	Bare	3	270	154	1210	121298	0696
25	Bare	3	270	154	1515	131828	0756
26	Bare	3.	270	154	1820	117993	0677
27	Bare	3	270	154	1972	112231	0644
28	Bare	3	270	154	2105	133838	0768
Run 1183							
1	Cd Cov	1	90	40	1820	6301	253
2	Cd Cov	1	90	154	1820	6349	423
3	Cd Cov	3	90	40	1820	4349	262
4	Cd Cov	3	90	154	1820	4407	400

TABLE 74
Bare Gold Foil Data
7-Module Cavıty Reactor - 038 Radıus Ratıo
With Hydrogen

Run 1181

TABLE 74
(Continued)

Run 1181

FOIl Numbex	Location			Foil	Specrfic	
	FOII Type	$\underset{(\mathrm{cm})}{\text { Radıal }}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Welght (g)	$\begin{gathered} \text { Activity } \\ \mathrm{d} / \mathrm{m}-\mathrm{g} \quad \times 10^{-6} \\ \hline \end{gathered}$	Local to Foil (X)
36	Bare	305	1511	00369	13937	2032
37	Bare	236	1511	00361	11614	1693

Run 1182

Run 1183


```
TABLE 74
(ContInued)
```

Run 1183

FOIl Number	Foil Type	Location		Foil	Specafic	
		Radıal (cm)	Axial (cm)	Weight (g)	$\begin{gathered} \text { Actıvity } \\ \mathrm{d} / \mathrm{m}-\mathrm{g} \quad \times \quad 10^{-6} \\ \hline \end{gathered}$	Local to Foil (X)
	Traverse	Between	Modules	$5: 6$		
13	Cd Cov	907	1511	00351	0656	
14	Cd Cov	686	1511	00425	1674	
15	Cd Cov	381	1511	00475	1985	

table 75
Gold Foil Cadmium Ratios
7-Module Cavity Reactor - 038 Radıus Ratio
Wıth Hydrogen

Location				Infinately Dilute Foll Actavaty$\mathrm{d} / \mathrm{m}-\mathrm{g} \quad \times 10^{-6}$		
Radıal (cm)	Axial	Module	Angle			
	(cm)	Number	$\left({ }^{\circ} \mathrm{Cw}\right)$	Bare Gold	Cd Gold	Ratio
0	894	End Ref	lector	10504	4713	2229
0	596	End Ref	lector	8035	0581	13838
0	291	End Ref	lector	2944	0016	180855
932	1511	Radial	Reflector	9393	1516	6195
1230	1511	Radıal	Reflector	4940	0058	84976
1534	1511	Radıal	Reflector	1982	0009	213616
40	1363	1	90	9827	5207	1887
154	1363	1	90	13368	5569	2400
40	1363	3	90	6967	3553	1961
154	1363	3	90	9011	3746	2406
40	1363	3	270	7109	3818	1862
154	1363	3	270	9818	3731	2631
	Traver	from M	odule 1 to	Module 3		
236	1511			14820	5964	2.485
287	1511			16525	6048	2732
340	1511			16506	5613	2941
394	1511			14788	51.68	2861
444	1511			11480	4500	2551
	Traver	From M	odule I B	ween 5 \& 6		
236	1511			15055	5980	2517
381	1511			17154	5245	3271
533	1511			14876	4744	3136
686	1511			14457	4219	3427
838	1511			11247	2278	4937
907	1511			9508	1527	6226

TABLE 76

Thermal Neutron Flux
7-Module Reactor - 038 Radius Ratio
With Hydrogen

Location				
Radial (cm)	Axial (cm)	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Thermal Neutron Flux } \\ & \left(\mathrm{n} / \mathrm{cm}^{2} \text {-sec-watt } \times 10^{-6}\right. \text {) } \end{aligned}$
0	894	End Ref	tor	3845
0	596	End Ref	tor	4949
0	291	End Ref	tor	1944
932	1511	Radıal	lector	5229
1230	1511	Radial	lector	3241
1534	1511	Radıal	lector	1310
40	1363	1	90	3067
154	1363	1	90	5178
40	1363	3	90	3067
154	1363	3	90	5178
40	1363	3	270	2185
154	1363	3	270	4041
	Traverse from Module 1 Through Module 3			
236	1511	3		5879
287	1511	3		6956
340	1511	3		7232
394	1511	3		6386
444	1511	3		4634
	Traverse From Module 1 Between 5 \& 6			
236	1511	3		6024
381	1511	3		7906
533	1511	3		6726
686	1511	3		6797
838	1511	3		5954
907	1511	3		5298

Figure 71 Fuel placement on dasks Full sheets (2 and 5) will be double thickness Only three out of four half-size sheets (sungle thickness) will be on any gaven disk 7 -module reactor with 0.388 raduus ratio loading

Figure 7.2 Uranzum worth measurements, 7 -module reactor whth 0 38 fuel to module radius ratio

Figure 73 Relative axial power distribution in module l, 90° at the core centerline, 7 -module reactor wath 038 fuel to module radius ratio

Figure 7.4 Relative axial power distribution in module $3,90^{\circ}$ at the core centerline, 7 -module reactor with 038 fuel to module raduus ratio

Figure 75 Relative axial power distribution in module $3,270^{\circ}$ at the core centerline, 7 -module reactor with 038 fuel to module radius ratio

Figure 76 Normalized power distribution vs radius and angle, the plotted points are longitudinally averaged over core length

Figure 7.7 Bare gold activity and thermal flux in radial reflector, 7 -module cavaty reactor 038 radius ratıo

Figure 7.8 Bare gold activity and thermal flux in end reflector, 7-module cavity reactor 0.38 radius ratio

Figure 7.9 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 7 -module reactor with 038 radius ratio

Figure 7.10 Radial distribution of thermal neutron flux from module 1 through the $D_{2} 0$ between modules 5 \& 6 and into the radial reflector, 7 -module reactor with 038 radius ratio

Figure 7.11 Infinitely dilute cadmium ratios from module 1 and between modules $5 \& 6$, 0.38 radius ratio

Figure 7.12 Gold foll cadmium ratio - nodule 1 through module $3,0.38$ fuel to module radius ratio

Hydrogen coolant between the fuel regions and the heavy water reflector-moderator has a dual, deleterious effect on reactivity It both absorbs neutrons and acts as a difffusion barrier preventing the free migration of neutrons between the fuel and reflector Though the hydrogen does very effectively moderate the fast neutrons, this benefit is not very signıficant in a large reactor such as this, where fast leakage is not severe.

It is of value to know the reactuvity penalty caused by the hydrogen, because there is some latitude available in engineering operating conditions of pressure, temperature, and annular thickness for this coolant. The hydrogen was removed from the 055 radius ratio configuration, which had a critical mass of 865 kg with hydrogen in the cavity.

8.1 Inltial Ioadıng

Ioading of this configuration commenced with the 0.72 radius ratio configuration with hydrogen. One module at a time was converted by removing the hydrogen (styrofoam) and the outer two rings of fuel The net penalty was negative, averaging approximately -0 l $\% \Delta k$ per module In order to obtain the needed reactivity to remain critical, the nozzle plug was installed. The apparent worth of the plug was $096 \% \mathrm{dk}$ This plug was a complete cylinder, not the tank-inside-of-a-tank arrangement measured separately on the configuration wath hydrogen and reported In Table 5.6. When the modrication of all seven modules was completed, the mass of fuel in the reactor was 7.82 kg of uranium and

> Kexcess was to $36 \% \mathrm{k}$ with the nozzle plug in or $-0.60 \% \Delta k$ whth the plug out.

The fuel loading on each of the rings and disks is tabulated in table 8 1, where a comparison tabulation of the 055 raduus ratio configuration with hydrogen is also shown. The configuration without hydrogen had a small proportion of its fuel on the disks (16%) compared to the configuration with hydrogen (21%), but the difference should have negligible effect on the cratical mass comparisons.

82

Reactivaty Measurements
Fuel worth was measured in this configuration by the methods used on the three previous configgurations Three major traverses of longitudinally averaged fuel worth were made The results are tabulated in Thable 8.2 and shown graphically in Figure 81 . The average fuel worth in the core region (to 055 radius ratio) was $395 \% \Delta \mathrm{k} / \mathrm{kg}$ This is essentially the same value as obtained on the 055 radius ratio core without hydrogen, ie, the difference in loading and removal of hydrogen in combinations did not create a statistically significant different value for the
fuel worth. Aluminum worths were measured along three characteristic planes in the fuel region. These results are tabulated in Table 8 3, and are about 25% larger (averaged) than the corresponding aluminum worths measured in the 055 radius ratio core with hydrogen Using the fuel worth given above, the critical loading ($k=100$) without the nozzle plug would have been 7.97 kg (or 7.73 kg with the nozzle plug in place)

8.3 Power Distributions

Power distributions were determined along one major radial plane in the central module and along the two major planes in a typical outer module, as was done in the other three configurations. The relative fission power :distributions are given in Table 8.4 and are graphically presented in Figures 8.2 to 8.4 as point values and in Figure 8.3 as the radial dependence of longıtudinally averaged values

TThere are two different characternstics of the power dustribution on this configuration compared to that on the similar configuration wathout hydrogen

1) The power near the outer edges of the fuel is slightly (2 to 5%) higher in the present configuration than in that with hydrogen. This as probably caused by the removal of the absorbing, diffusion barrier ef'fect of hydrogen.
2) The power at the exit (nozzle) end of the center module is about 10% higher in this configuration This effect is simply because this reactor was power mapped whth the nozzle plug inserted, and the hydrogen vs no hydrogen was not the cause of the power shift.

Flux Distribution
Gold, both bare and cadmium covered, was used to obtain cadmium ratios and hence thermal fluxes in various parts of the reactor. The direct gold data is given in Table 85 and Figures 86 to 89 . The resulting thermal fluxes are in Table 86 and Figure 8.8 to 8.11 .

Comparison of these thermal flux traverses with those on the 0.55 radius ratio configuration with hydrogen (Section 5 4) shows a slight indication of differences in the region where there was hydrogen. The flux shows slight speaking when the hydrogen is present. The anomalous dip in the flux between modules 5 and 6 as shown on Figure 532 has not appeared on any other configurations, and hence should not be considered relevant to the comparisons of the configurations with and without hydrogen.

TABLIS 8 I
 Comparison of Ioading

With and Wathout Hydrogen
055 Radıus Ratıo
A) Loading of Fuel Rings - 055 Radıus Ratıo

Ring	Wzthout Hydrogen	Wıth Hydrogen (Section 5)
No.	No of Sheets	No of Sheets
1	1	1
2	2	2
3	4	3
4	4	5
5	5	6
6	6 (on 4 elements)	7
	7 (on 3 elements)	

Total on rings
of 7 elements 2512
2688
B) Loading of Fuel Disks (See Figure 5 4)

$\frac{\text { Without Hydrogen }}{56}$ full-size sheets	
24 half-size sheets	
20 full-size sheets	

Total equivalent
full-size sheets $476 \quad 714$
C) Total Fuel Loading in Reactor
$\frac{\text { Without Hydrogen }}{782 \mathrm{~kg}} \quad \frac{\text { With Hydrogen }}{891 \mathrm{~kg}}$

TABLE 82
 Uranium Worth Measurements

7-Module Reactor - 055 Radıus Ratıo

No Hydrogen in Reactor

Module	Location		U Mass(g)	$\begin{gathered} \text { Reactivity Change } \\ (\% \Delta \mathrm{k}) \end{gathered}$	Uranium Worth $\% \Delta \mathrm{k} / \mathrm{kg}$
	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Radius (cm)			
1	90	40	728	00392 ± 0003	538 ± 041
1	90	78	728	00444 ± 0003	610 ± 041
1	90	116	728	-0505士0 003	694 ± 041
1	90	154	728	00637 ± 0003	875 ± 041
3	90	40	728	00210 ± 0003	289 ± 041
3	90	78	728	00240 ± 0003	330 ± 041
3	90	116	728	00252 ± 0003	346 ± 041
3	90	154	728	00320 ± 0003	440 ± 041
	270	78		00272 ± 0003	374 ± 041
	270	154		00404 ± 0003	555 ± 041
Core average fuel worth $=395 \% \Delta \mathrm{k} / \mathrm{kg}$					

TABLE 83
Aluminum Worth Measurements
7-Module Reactor Without Hydrogen
Exhaust Nozzle in Reactor

Module	Location			Reactivity Change\qquad	Specific Worth $\% \Delta \mathrm{k} / \mathrm{kg}$
	$\begin{aligned} & \text { Angle } \\ & \left(\mathrm{O}_{\mathrm{cW}}\right) \end{aligned}$	Radius (cm)	Mass (g)		
1	90	Avg	540	-0 0337さ0 003	(6 24 ± 056) $\times 10^{-2}$
4	150	Avg	540	-0 0087士0 003	(1 61 $\pm 056) \times 10^{-2}$
4	330	Avg	540	-0 0217 ± 0003	(402 ± 056) $\times 10^{-2}$

TABLE 84

Catcher Foll Data

7-Module Reactor - 055 Radıus Ratio
No Hydrogen

Run 1178

$\begin{gathered} \text { Foul } \\ \text { Number } \\ \hline \end{gathered}$	Location						
	Foll Type	Module Number	Angle $\left({ }^{\circ}{ }^{\mathrm{CW}}\right.$)	Radial (cm)	Axial (cm)	Normalized Counts	Local to Foil (X)
1	Bare	1	90	40	925	219582	1050
2	Bare	1	90	40	1058	199585	0954
3	Bare	1	90	40	1210	216198	1033
4	Bare	1	90	40	1515	209032	1000
5	Bare	1	90	40	1820	205134	0981
6	Bare	1	90	40	1972	185945	0889
7	Bare	1	90	40	2105	217367	1039
8	Bare	1	90	78	925	228872	1094
9	Bare	1	90	78	1058	214074	1023
10	Bare	1	90	78	1210	221946	1061
11	Bare	1	90	78	1515	226151	1081
12	Bare	1	90	78	1820	223993	1071
13	Bare	1	90	78	1972	204792	0979
14	Bare	1	90	78	2105	214152	1024
15	Bare	1	90	116	925	231313	1106
16	Bare	1	90	116	1058	237738	1136
17	Bare	1	90	116	1210	244618	1169
18	Bare	1	90	116	1515	243123	1162
19	Bare	1	90	116	1820	236574	1131
20	Bare	1	90	116	1972	217682	1041
21	Bare	1	90	116	2105	235828	1127
22	Bare	1	90	154	925	267116	1277
23	Bare	1	90	154	1058	272033	1300
24	Bare	1	90	154	1210	273704	I 308
25	Bare	1	90	154	1515	282632	1351
26	Bare	1	90	254	1820	261306	1249
27	Bare	1	90	154	1972	254505	1217
28	Bare	1	90	154	2105	247991	I 185
29	Bare	3	90	40	925	163590	0782
30	Bare	3	90	40	1058	154273	0737
31	Bare	3	90	40	1210	156342	0747
32	Bare	3	90	40	1515	156155	0746
33	Bare	3	90	40	1820	147517	0705
34	Bare	3	90	40	1972	143137	0684
35	Bare	3	90	40	2105	156898	0750

(Continued)

Run 1178

FOII Number	Foil Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left(\mathrm{o}_{\mathrm{CW}}\right) \end{aligned}$	Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \end{aligned}$	Normalized Counts	Local to Foil (X)
36	Bare	3	90	78	925	167400	0800
37	Bare	3	90	78	1058	147212	0704
38	Bare	3	90	78	1210	158888	0759
39	Bare	3	90	78	1515	158791	0759
40	Bare	3	90	78	1820	158749	0759
41	Bare	3	90	78	1972	141050	0674
42	Bare	3	90	78	2105	153448	0733
43	Bare	3	90	117	925	174279	0833
44	Bare	3	90	117	1058	165848	0793
45	Bare	3	90	117	1210	178521	0853
46	Bare	3	90	117	1515	170396	0814
47	Bare	3	90	117	1820	168103	0804
48	Bare	3	90	117	1972	153203	0732
49	Bare	3	90	117	2105	158697	0759
50	Bare	3	90	154	925	184741	0883
51	Bare	3	90	154	1058	193376	0924
52	Bare	3	90	154	1210	195411	0934
53	Bare	3	90	154	1515	201681	0964
54	Bare	3	90	154	1820	187282	0895
55	Bare	3	90	154	1972	173724	0830
56	Bare	3	90	154	2105	162303	0776

Run 1179

1	Bare	3	270	15	4	92	5	215956	1032
2	Bare	3	270	15	4	105	8	209677	10002
3	Bare	3	270	15	4	121	0	215892	1032
4	Bare	3	270	15	4	151	5	217869	1041
5	Bare	3	270	15	4	182	0	209922	1003
6	Bare	3	270	15	4	197	2	205544	0982
7	Bare	3	270	15	4	210	5	196548	0939
8	Bare	3	270	116	925	188081	0899		
9	Bare	3	270	116	1058	187744	0897		
10	Bare	3	270	116	1210	196001	0937		
11	Bare	3	270	116	1515	192690	0921		
12	Bare	3	270	116	1820	179244	0857		
13	Bare	3	270	116	1972	179932	0860		
14	Bare	3	270	116	2105	182682	0873		
15	Bare	3	270	7.8	925	180514	0863		
16	Bare	3	270	78	1058	167369	0880		
17	Bare	3	270	78	1210	171830	0821		
18	Bare	3	270	78	1515	167098	0799		
19	Bare	3	270	78	1820	169964	0812		

TABLE 84
(Continued)

Run 1179
Location

FOIl Number	Foll Type	Module Number	Angle (${ }^{\circ} \mathrm{CW}$)	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \end{gathered}$	Axial (cm)	Normalızed © Counts	Local to Foul (X)
20	Bare	3	270	78	1972	146735	0701
21	Bare	3	270	78	2105	161241	0771
-22	Bare	3	270	40	925	169292	0809
23	Bare	3	270	40	1058	159763	0764
24	Bare	3	270	40	1210	156902	0750
25	Bare	3	270	40	1515	158905	0760
26	Bare	3	270	40	1820	153068	0732
27	Bare	3	270	40	1972	147607	0706
28	Bare	3	270	40	2105	162630	0777

Run 1180

1	$C d$
2	$C d$
3	$C d$
4	$C d$

90	4	0	182	0
90	15	4	182	0
90	4	0	182	0
90	15	4	182	0

6040	34	0
6141	42	6
4238	34	8
4170	44	9

TABLE 85
Gold Foll Data
7-Module Cavity Reactor - 055 Radıus Ratıo
No Hydrogen

Run 1178

Number	Location			Foil	Specific Activity$\mathrm{d} / \mathrm{m}-\mathrm{g} \quad \times 10^{-6}$	$\begin{aligned} & \text { Local to } \\ & \text { FozI }(\mathrm{X})^{*} \end{aligned}$
	Type	Radıal (cm)	$\underset{(\mathrm{cm})}{\text { Axıal }}$	Weight (g) \qquad		
1	Bare	0	894	00343	8918	1072
2	Bare	0	749	00363	10691	1285
3	Bare	0	596	00354	8044	0967
4	Bare	0	444	00381	5385	0647
5	Bare	0	291	00312	3249	0391
6	Bare	0	139	00380	1579	0190
7	Bare	0	0	00273	0215	0026
8	Bare	932	1511	00410	8577	1. 031
9	Bare	1077	1511	00389	6995	0841
10	Bare	1230	1511	00399	5140	0618
11	Bare	1382	1511	00402	3398	0408
12	Bare	1534	1511	00333	1992	0239
13	Bare	1687	1511	00398	0901	0108
14	Bare	1837	1511	00408	0126	0015
	Module	1, 90°				
15	Bare	40	1363	00330	8415	1011 (x)*
16	Bare	78	1363	0041.5	8609	1035
17	Bare	116	1363	00335	9191	1105
18	Bare	154	1363	00322	10199	1226
19	Bare	40	1668	00400	8223	0988 (X)*
20	Bare	78	1668	0-0366	8589	1032
21	Bare	116	1668	00418	9170	1102
22	Bare	154	1668	00392	9995	1201
	Module	3, 90°				
23	Bare	40	1363	00385	6211	0747
24	Bare	78	1363	00388	6328	0761
25	Bare	116	1363	0 0374	6676	0802
26	Bare	154	1363	00352	7175	0862
27	Bare	40	1668	00373	6023	0724
28	Bare	78	1668	00333	5977	0718
29	Bare	116	1668	00385	6326	0760
30	Bare	154	1668	00302	7079	0851
	Traver	from	dule 1	to Module	3	
31	Bare	236	1511	00364	10786	1296
32	Bare	287	1511	00325	13258	1594
33	Bare	340	1511	00319	13146	1580
34	Bare	394	1511	00308	11767	1414
35	Bare	444	1511	00348	8608	1035
* Note	the standard normalizer position is at 40 cm radius, and 151.5 cm longatudinal position, midway between the two "Foal x's"show					

TABLE 85
(Continued)

Run 1178

$\begin{gathered} \text { Foil } \\ \text { Number } \end{gathered}$	FOII Type	Location		Foil	Specifac Actuvzty $\mathrm{d} / \mathrm{m}-\mathrm{g} \times 10^{-6}$	Local toFoIl (X)
		$\begin{gathered} \text { Radial } \\ (\mathrm{cm}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Weight (g)		
Traverse Between Modules 5 \& 6						
36	Bare	907	1511	00421	8626	1037
37	Bare	838	1511	00345	9876	1187
38	Bare	762	1511	00391	10593	1273
39	Bare	686	1511	00390	11019	1324
40	Bare	610	1511	00397	11040	1327
41	Bare	533	1511	00410	11584	1392
42	Bare	457	1511	00369	12963	1558
43	Bare	381	1511	00338	13837	1663
44	Bare	305	1511	00357	13752	1653
45	Bare	236	1511	00338	11147	1340
	Module	1, Outer Sur	ace of	Module		
46	Bare	224 (270 ${ }^{\circ}$)	1511	00328	10513	1264
47	Bare	224 (315 ${ }^{\circ}$)	1511	00302	10583	1272
48	Bare	224 (00)	1511	00483	10039	1207
	Module	3, Outer Sur	ace of	Module		
49	Bare	224 (270 ${ }^{\circ}$)	1511	00409	8125	0977
50	Bare	224 (315 ${ }^{\circ}$)	1511	00426	7821	0940
51	Bare	224 (00)	1511	00404	7560	0909
52	Bare	224 (900)	1511	00381	7195	- 865

Run 1179

1	Cd	0	894		0360	2197	
2	cd	0	596	0	0379	0222	
3	Cd	0	291	0	0411	00089	
4	cd	932	1511	0	0357	0694	
5	ca	1230	1511	0	0402	00214	
6	Cd	1534	1511	0	0386	00046	
Module 3, 270°							
7	Bare	154	1363	0	0323	8028	0965
8	Bare	116	1363	0	0425	7314	0879
9	Bare	78	1363	0	0414	6600	0793
10	Bare	40	1363	0	0417	6165	0741
11	Cd	40	1668	0	0384	1 758	
12	Cd	154	1668	0	0358	1697	
Traverse from Module 1 to Module 3							
13	Cd	236	1511	0	0354	2551	
14	Cd	340	1511	0	0376	2518	
15	Cd	444	1511	0	0338	1945	

TABLE 85
(Contınued)

Run 1179

Location
FOII FOII
\qquad

Axial (cm) (cm)

FOII

Traverse Between Modules 5 \& 6
16
17
Cd
838
1511
00384
0927
18
こd
533
151100341
2148
Cd 236
151100335
2678
Module l, Outer Surface of Module

19	Cd	$224\left(270^{\circ}\right)$	1511	0	0418	2388	
20	Cd	$224\left(0^{\circ}\right)$	1511	0	0356	2	535

Run 1180

TABLE 86

Thermal Neutron Flux
7-Module Reactor - 055 Radius Ratio
No Hydrogen

Figure 8.1 Fuel worth traverses (Iongrtudinal averaged) in 0 55 radius ratio core wathout hydrogen

Figure 8.2 Relative axial power distribution in module $1,90^{\circ}$ at the core centerline, 7 -module reactor with 055 fuel to module radius ratio whthout hydrogen

Figure 83 Relative axial power distribution in module 3 , 90° at the core centerline, 7 -module reactor with 055 fuel to module raduus ratio without hydrogen

Figure 8.4 Relative axial power distribution in module 3 , 270° at the core centerline, 7 -module reactor with 055 fuel to module radius ratio whthout hydrogen

Figure 8.5 Relative radial power distribution in modules 1 and 3 based on axial average power distributions, 7 -module reactor with 055 fuel to module radius ratio without hydrogen

Figure 8.6 Relative bare gold foil activity distribution in the regions between modules, 0.55 fuel to module raduus ratio without hydrogen

Figure 8.7 Relatıve radial bare gold foil activity in modules 1 and 3 at axial locations of 1633 and $166.8 \mathrm{~cm}, 055$ fuel to module radius ratio without hydrogen

Figure 8.8 Bare gold activity and thermal flux in end reflector, 7 -module cavity reactor, 0.55 radus ratio wathout hydrogen

Figure 8.9 Bare gold activity and thermal flux in radial reflector, 7 -module cavity reactor, 0.55 radıus ratıo

Figure 810 Radial distribution of thermal neutron flux from module 1 through $D_{2} 0$ between modules 5 \& 6 and into the radial reflector, 7 -module reactor with 055 fuel to module radius ratio

Figure 8.11 Radial distribution of thermal neutron flux from the center of the reactor across module 3 and into the radial reflector, 7 module reactor with 055 fuel to module radius ratio

9.0 THREE MODUIF REACTOR - 055 RADIUS RATIO WITTH HYDROGEN STMULAATIONX

A three module system, with the $705 \mathrm{~cm} 0 . D$ modules occupying the same region as that occupied by the seven modules, was assembled so as to furnish a measure of the advantage of having more and smaller modules. These advantages are exclusively neutronic, giving better utalızation of the fuel, smaller critical mass, and quite likely smaller effectIve pressures for the gaseous fuel (The pressure, of course, depends on the total fuel volume as well as the fuel mass) Other considerations, such as thermodynamic, fluid dynamic, and fuel loss effects, generally favor the fewer and larger modules, best exemplified by the single cavity. Some discussion of the relative advantages and disadvantages pertaining to. these various factors vs the number of modules as given in Section 10

A cross section view of the three module tank is shown in Figure 9.1 The fuel element structure whth its 16 stages, 17 stage dividing disks, and elght fuel rings is shown in Figures 9 ed and 93 The tank was constructed from type 1100-H14 alumınum, 0318 cm thack, except for the 0635 cm thack end plates that were type 505° aluminum The empty tank werghed 180 kg

9.1 Inıtıal Ioading

Pre-analysis of the three module expermment using the same techniques that were quate successful on the 7 -module experiment (simple one-dimensional diffusion code utilizing cell calculations) predicted a loading of 14 kg of uranium with an estimated $\pm 15 \%$ uncertainty (Unfortunately, as will be seen, the technique was not nearly as successful in this case; the measured critical mass was 115 kg .) Accordingly, each of the three modules was loaded whth fuel to a radius ratio of 055 according to the description given in Table 9.1 and Figure 9.4. The fuel element design was similar to that used on the 7 -module reactor The fuel on the stage separation disks was one layer thick on all č2 positions shown. The total loading was 1780 equivalent full size sheets per element, or 466 kg , for a total of 1398 kg of uranium in the three modules of the reactor. The fuel element structure consisted of 16.2 kg of aluminum in each module, or 486 kg in the entire core.

Hydrogen was inserted in the form of foamed polystyrene and polyethylene sheet in an annulus between 069 radius ratio and the cavity wall, making an annulus that was 113 cm thick The annulus was loaded to a hydrogen atom density of 133×10^{21} atoms/cc These hydrogen values differ little from those used in the seven module experament, which had 1.23×10^{21} atoms/cc between 072 radius ratio and the cavity wail.

Loading commenced by first loading the fuel elements one at a time, and then gradualily increasing the water level in the modular tank until criticalıty was reached After 65 out of 82 barrels total capacity of heavy water was added, the reactor had a k-effective of I 0064, with the nozzle plug in the nozzle It was obvious that the cratical mass was overpredicted, and steps had to be taken to reduce k-excess in order to fill the module tank completely. These were as follows.

$$
\begin{array}{ll}
\text { Nozzle plug removed } & -046 \% \Delta k \\
12 \text { fixed control rods added to end reflector } & -218 \% \Delta k \\
\text { Hydrogen atom density increased in two of the } \\
\text { three modules from } 133 \text { to } 164 \times 1021 & -052 \% \Delta k \\
\quad(-0.26 \% \Delta k \text { per module })
\end{array}
$$

The resulting k-excess was $073 \% \Delta k$ when the module tank was completely filled with 1884 kg of heavy water With 133×10^{21} atoms of hydrogen/cc in the hydrogen annulus and 1398 kg of fuel in the reactor, and with all control rods out,

$$
\begin{aligned}
\mathrm{k} \text {-effective } & =10389 \text { with nozzle plugged } \\
& =10343 \text { with nozzle open }
\end{aligned}
$$

Note the small worth ($-046 \% \Delta k$) of the nozzle plug in this reactor This is half of the value obtained on the 7 -module configuration and the lowest value obtained on any of the cavity configurations measured with this basic 366 cm diameter by 305 cm long reflector tank

92 Reactivity Measurements

The control system in the 3 -module reactor consusted of the standard 8 actuators, a total of 24 rods, but they were working in an end reflector that contaned 12 faxed control rods The latter depressed the flux in the end reflector and reduced the movable control rod worth to $29 \% \Delta k$ The shape curve of this control system is given in Table 92 , and shown graphically in Figure 9.5 Fuel worth was measured in one of the modules All three modules were considered equivalent, with the 20% difference in hydrogen density not considered significant enough to affect the fuel worth. The measurements were taken in module 3 (which had $1.33 \times 10^{21} \mathrm{H} / \mathrm{cc}$) in three dafferent radial directions:
30° a tangential traverse in the core tank
120° toward the tank center, radially inward
300° radially outward
All measurements were longitudinal averages at specific radial positions The results are shown graphically in Figure 9.6, and are tabulated in Table 93 The slot positions are indicated in Figure 93 Measurements on the outer ring of fuel were made both at the end and center of
the module. All of this data was used to obtain a volume weighted average fuel worth of $165 \% / \mathrm{k} / \mathrm{kg}$ of uranium Using the above fuel worth, the critical loading of the reactor with $133 \times 10^{21} \mathrm{H} / \mathrm{cc}$ in the hydrogen annuli and no control rods in the end reflector is:
11.32 kg of U with the nozzle plugged or
11.70 kg of U with the nozzle open.

The aluminum worth measured in slot 4 (18.2 cm) was $0.030 \% \Delta \mathrm{k} / \mathrm{kg}$ This should nominally equal the cell average worth.

Hydrogen worth was evaluated when the density in the annulus in modules 1 and 2 was increased from 133 to $164 \times 10^{21} \mathrm{H} / \mathrm{cc}$ This was done by adding polyethylene (CH_{2}) sheet, giving an average worth of $0303 \% / \mathrm{k} / \mathrm{kg}$, or $026 \% \Delta \mathrm{k}$ for the change per module (870 gm of CH_{2} per module).

The effect of the gap between the aluminum tank walls of the fixed and movable tank was measured The gap was 189 cm on the 3 -module configuration, 0.7 cm larger than the 12 cm gap of the 7 -module configuration. A measurement was made over the next 140 cm and the gap worth was found to be essentially linear equal to $048 \% / \Delta \mathrm{k} / \mathrm{cm}$ Thus, the full 1.89 cm gap cost $091 \% \Delta k$, or approximately 055 kg of uranium The extra 0.7 cm gap compared to the seven module configuration cost $0.34 \% \Delta \mathrm{k}$, or 0.21 kg of uranium. The critical mass would have been

111 kg with the nozzle plugged or
17.5 kg with the nozzle open
with the same 12 cm gap that existed on the 7 -module configurations.

9.3 Power Distribution - 3-Module Configuration

The fission power distribution (specific power) was measured throughout the reactor as well as the fueled core sections of the modules. The cadmium ratio was measured at selected points to obtain the ratio of epı-thermal to total ficssions. The various data are listed in Table 9.4. Most of the radial traverses were taken with respect to the axis of module 3. However, traverses along the separation plane and in the radial reflector all use the reactor axis as the radial reference point.

Figures 97,98 , and 9.9 show the axial profiles in module 3. Note that the edge of the actave fuel region occurs at 194 cm . All ordinates have suppressed zeros The power peaking at the separation plane end of the module is probably the result of thermal neutron streaming along the 189 cm wade gap Figure 9.10 shows the composite radial power distributions in the module. The values shown are longıtudinal averages Note that it is fortuitous that the longitudinal average
at $46 \mathrm{~cm}, 300^{\circ}$ in module 3 is identical to the point normalization reference value These curve shapes are very similar to the fuel worth curve shapes in Figure 96 Figure 9.11 shows the circumferential power distribution on the outside of the fuel (19.4 cm) at the longitudinal center, and the U-235 f'ission response at the outside of the hydrogen around the module wall, also at the longitudinal center The cadmium ratio at these locations is shown in Figure 9 12. On the outside edge of the fuel, approximately 45% of the fissions are epi-thermal (above 0.43 ev cadmium cutoff), while at the outside of the module only 3% of the fission response is epi-thermal. The epi-thermal fractional response will drop even more as one penetrates into the reflector. Thus the fission response shown in the end and radial reflectors, Figure 913 and 914 respectively, are essentially relative thermal flux traverses A reflector peak was not observed in the radual flux traverse because the traverse originated from a radial line between modules 1 and 3. The end reflector peaking was much less than observed on the seven module system because on the latter a fuel element was situated on the axial centerline, whereas in this three module system the axial traverse originated from a region between modules Figure 9.15 is a traverse across the separation plane, the core face, and on a line through the end of module l The large flux peaking between the modules at the reactor center is apparent. Figure 916 shows the same type of traverse only going between the ends of modules 1 and 2 and on out through the reflector The peak flux occurs approximately at the curcle of the module centerlines (54.6 cm), and a small dip occurs at 38 cm , the point of shortest chord length of moderator between modules

Cadmium ratios are shown in Figure 9.17 and 918 in the modules. These vary little axially. The 134 cm value of 20 (5% eplthermal fissions) is probably characteristic of the average epithermal fission rate in the fuel

9.4 Thermal Flux and Gold Cadmum Ratios

Extensive gold forl measurements, both bare and cadmum covered, were taken throughout the 3 -module assembly The folls were nominally 00013 cm thick, and the tabulated results are shown in Iable 9.5 .

A radial plot of the gold forl actuvity whthin a module is shown in Figure 9.19. The plotted values are point values from the axial midplane These bare gold foll curves are flatter than elther the catcher foll (U-235) response or the fuel worth results. The difference is principally because of the high level of epithermal response to the folls, about 40% of the total at the edge of the fuel and 50% of the total at the center (The infinitely dilute response woula be 60% epıthermal at the edge and 70% epithermal at the center of the fuel) Other relative gold foll activity plots are shown in Figures 9.20 (circumferential on outside of fuel and at outside of hydrogen), 9.21 (traverse through moderator), 9.22 (traverse in reflectors), 9.23 and 924 (longitudinal traverses in the modules)

From the bare and cadmuun data, thermal fluxes were obtamed A plot of the flux across the reactor at the axial midplane is shown in Figure 9.25 , in equivalent $2200 \mathrm{~m} / \mathrm{sec}$ "thermal" flux per watt of reactor power. Unfortunately there is insufficient detail in this data to show If any flux peaking occurs in the hydrogen. However, the traverse through the moderator region between modules shows the same detalls of a dip at shortest moderator chord length, and a peak at about the carcle of centers for the modules as was observed with the catcher foils (Figure 916) Mote the catcher foll traverse was across the end of the core, at the core separation plane, whereas the thermal flux traverse is at the axial madplane The thermal flux data is tabulated in Table 9.16 In Table 97 the cadmium ratios for infinitely dilute gold are tabulated to show results from 14 at the center of the fuel (30% thermal response) to 630 near the outside of the reflector (essentially all thermal response)

TABLE 9 1

Distribution of Fuel Sheets on the Fuel Rings

$$
3 \text { Module Reactor - } 055 \text { Raduus Ratio }
$$

Ring Number	Number of Fuel Sheets
1	3
2	5
3	8
4	10
5	12
6	15
7	17
8	20
	90
Total sheets on rings of 16 stages	1440
Sheets on disks -- 20 per disk	340
Total sheets per element	1780
Total sheets in reactor	5340
Total uranium mass	1398 kg
Uranlum mass inside module (fuel element)=	$466 \mathrm{~kg} / \mathrm{module}$

TABLE 92
8 Actuator Tabular Rod Worth Curve
3-Module Reactor (12 Manual Rods in Reactor)

Positaon	00	100	200	300	400	500	600	700	800	900
00	10000	10000	9720	9330	89.45	8570	8202	78.44	7497	7161
1000	6836	6522	6219	5926	5644	5373	5113	4863	4623	4394
2000	41.75	3966	3767	3578	3399	3229	3067	2912	2764	2622
3000	2486	2356	2232	21.12	1998	1888	1783	1682	1586	1494
4000	1406	1322	1242	1164	1092	1023	958	896	838	783
5000	731	681	636	592	550	5.10	4.73	438	406	376
6000	3.47	320	295	271	249	228	208	190	1.73	157
7000	142	128	115	103	0.92	082	072	063	055	047
8000	039	032	0.25	019	014	0.10	006	003	002	001

Difference Table

Position	00	100	200	300	400	500	600	700	800	900		
00	0	0	0.0	280	390	3	85	375	368	3	58	3

Position scale $1 s$ a digital voltmeter reading
Unıts $=00155 \mathrm{~cm} /$ digıt

TABLE 93
Fuel Worth, Longıtudinally Averaged
Module \# 3

TABLE 94
Catcher Foll Data
3-Module Reactor
All Radial Locations axe with Respect to the Module Axis Except as Noted
All Values are Normalized to Power Level of Run 1186

Run 1185

FOIl Number	FOIl Type	Module Number	Angle $\left({ }^{\circ} \mathrm{cw}\right)$	Radıal (cm)	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Normalızed Counts	Local to Forl (X)
1	Bare	3	300	46	925	95438	1159
2	Bare	3	300	46	1058	80763	0980
3	Bare	3	300	46	1215	78941	0958
4	Bare	3	300	46	1363	77323	0938
5	Bare	3	300	46	1515	82378	1000 (X)
6	Bare	3	300	46	1668	77873	0946
7	Bare	3	300	46	1820	78339	- 950
8	Bare	3	300	46	1972	83260	1001
9	Bare	3	300	46	2105	110061	1335
10	Bare	3	300	90	925	99145	1203
11	Bare	3	300	90	1058	84727	1028
12	Bare	3	300	90	1215	80203	0973
13	Bare	3	300	90	1363	82025	0995
14	Bare	3	300	90	1515	80432	0976
15	Bare	3	300	90	1668	79572	0965
16	Bare	3	300	90	1820	81007	0983
17	Bare	3	300	90	1972	80314	0974
18	Bare	3	300	90	2105	112167	1361
19	Bare	3	300	134	925	105171	1276
20	Bare	3	300	134	1058	94673	1148
21	Bare	3	300	134	1215	86957	1055
22	Bare	3	300	134	1363	87004	1055
23	Bare	3	300	134	1515	92357	1120
24	Bare	3	300	134	1668	91752	1106
25	Bare	3	300	134	1820	91057	1105
26	Bare	3	300	134	1972	89270	1083
27	Bare	3	300	134	2105	119800	I 453
28	Bare	3	300	178	925	125427	1521
29	Bare	3	300	178	1058	118012	1431
30	Bare	3	300	178	1215	112559	1365
31	Bare	3	300	178	1363	109808	1332
32	Bare	3	300	178	1515	109960	1334
33	Bare	3	300	178	1668	112516	1365
34	Bare	3	300	178	1820	110550	1341
35	Bare	3	300	178	1972	119680	1452
36	Bare	3	300	178	2105	132787	1611

TABLE 94
(Continued)

Run 1185
Location

Foll Number	$\begin{aligned} & \text { Foil } \\ & \text { Type } \end{aligned}$	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \end{aligned}$	Radıal (cm)	$\begin{aligned} & \text { Ax_al } \\ & (\mathrm{cm}) \end{aligned}$	Normalızed Counts	Local to Foil (X)
37	Bare	3	300	222	925	153205	1858
38	Bare	3	300	222	1058	136691	1658
39	Bare	3	300	222	1215	139716	1695
40	Bare	3	300	222	1363	137386	1666
41	Bare	3	300	222	1515	141899	1721
42	Bare	3	300	222	1668	135418	1643
43	Bare	3	300	222	1820	135140	1639
44	Bare	3	300	222	1972	132054	1602
45	Bare	3	300	222	2105	149857	1818

Location							
Foll Number	FOII Type	Module Number	Stage	Radial From Center (cm)	Degrees	Normalized Counts	Local to Foil (X)
46	Bare	3	8	194	0	113063	1371
47	Bare	3	8	194	22	116115	1408
48	Bare	3	8	194	450	121596	1475
49	Bare	3	8	194	675	127937	1552
50	Bare	3	8	194	90	136821	1660
51	Bare	3	8	194	1125	139115	1687
52	Bare	3	8	194	1350	142253	1726
53	Bare	3	8	194	1575	144806	1756
54	Bare	3	8	194	1800	134031	1626
55	Bare	3	8	194	2025	137056	1 662
56	Bare	3	8	194	2250	124467	1510
57	Bare	3	8	194	2475	118043	1432
58	Bare	3	8	194	2700	118007	1431
59	Bare	3	8	194	2925	120373	1460
60	Bare	3	8	194	3150	117655	1 427
61	Bare	3	8	194	3375	103584	1256

TABLE 94
(Continued)

Run 1186
Location

FOII Number	FOII Type	Module Number	Angle $\left(\mathrm{O}_{\mathrm{cW}}\right)$	Radıal (cm)	$\begin{aligned} & \text { Axzal } \\ & (\mathrm{cm}) \end{aligned}$	Normallzed Counts	Cadmium Ratio
1	Cad Cov	3	300	134	925	5462	19255
2	Cad Cov	3	300	134	1515	5252	17585
3	Cad Cov	3	300	134	2105	5356	22367
4	Cad Cov	3	300	222	925	5233	29277
5	Cad Cov	3	300	222	1515	5578	25439
6	Cad Cov	3	300	222	2105	5009	29917

Foll Number	Foll Type	Module Number	Stage	Radıal (cm)	$\begin{gathered} \text { Degrees } \\ \text { cw } \\ \hline \end{gathered}$	Normalızed Counts	Cadmıum Ratıo
7	Cad Cov	3	8	194	0	5455	20726
8	Cad Cov	3	8	194	90	5549	24657
9	Cad Cov	3	8	194	180	5631	23802
10	Cad Cov	3	8	194	270	5498	21463

Run 1187

Foll Number	$\begin{aligned} & \text { Foul } \\ & \text { Type } \end{aligned}$	Module Number	Stage	Radıal (cm)	$\begin{gathered} \text { Degrees } \\ \quad \mathrm{cW} \\ \hline \end{gathered}$	Normalized Counts	Local to Foil (X)
1	Bare	3	8	352	0	184228	2235
2	Bare	3	8	352	225	188391	2285
3	Bare	3	8	352	450	203109	2464
4	Bare	3	8	352	675	216157	2622
5	Bare	3	8	352	900	228701	2774
6	Bare	3	8	352	1125	225596	2736
7	Bare	3	8	352	1350	233208	2829
8	Bare	3	8	352	1575	224540	2724
9	Bare	3	8	352	1800	217375	2637
10	Bare	3	8	352	2025	218397	2649
11	Bare	3	8	352	2250	199628	2421
12	Bare	3	8	352	2475	192808	2339
13	Bare	3	8	352	2700	179469	2177
14	Bare	3	8	352	2925	177880	2158
15	Bare	3	8	352	3150.	178387	2164
16	Bare	3	8	352	3375	177692	2155

TABLE 94
(Continued)

Run 1188

$\begin{gathered} \text { Foil } \\ \text { Number } \end{gathered}$	Location						
	Foz I Type	Module Number	Angle (${ }^{\circ} \mathrm{CW}$)	$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Normalızed Counts	Local to Foil (X)
1	Bare	3	120	46	925	99760	1210
2	Bare	3	120	46	1058	84414	1.024
3	Bare	3	120	46	1215	83250	1010
4	Bare	3	120	46	1363	82762	1004
5	Bare	3	120	46	1515	81460	0988
6	Bare	3	120	46	1668	80208	0973
7	Bare	3	120	46	- 1820	81312	0986
8	Bare	3	120	46	1972	86528	1050
9	Bare	3	120	46	2105	116108	1408
10	Bare	3	120	90	925	----	---
11	Bare	3	120	90	1058	90898	1103
12	Bare	3	120	90	1215	90156	1094
13	Bare	3	120	90	1363	90303	1095
14	Bare	3	120	90	1515	87433	1061
15	Bare	3	120	90	1668	89371	1084
16	Bare	3	120	90	1820	88661	1075
17	Bare	3	120	90	1972	93260	1131
18	Bare	3	120	90	2105	121791	1477
19	Bare	3	120	134	925	117345	1423
20	Bare	3	120	134	1058	104779	1271
21	Bare	3	120	134	1215	100503	1219
22	Bare	3	120	134	1363	97991	1189
23	Bare	3	120	134	1515	104424	1267
24	Bare	3	120	134	1668	104203	1264
25	Bare	3	120	134	1820	99200	1203
26	Bare	3	120	134	1972	101041	1226
27	Bare	3	120	134	2105	119531	1450
28	Bare	3	120	178	925	149763	1817
29	Bare	3	120	178	1058	138200	1 676
30	Bare	3	120	178	1215	134442	1631
31	Bare	3	120	17.8	1363	129930	1576
32	Bare	3	120	178	1515	126930	1540
33	Bare	3	120	178	1668	130152	1579
34	Bare	3	120	178	1820	130456	1582
35	Bare	3	120	178	1972	125648	1524
36	Bare	3	120	178	2105	153695	1. 864
37	Bare	3	120	222	925	180388	2188
38	Bare	3	120	222	1058	160374	1945
39	Bare	3	120	222	1215	165243	2004
40	Bare	3	120	222	1363	163781	1987
41	Bare	3	120	222	1515	169323	2054

TABLE 94
(Continued)

Run 1188
Location

Foll Number	FOII Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left(\mathrm{O}_{\mathrm{cw}}\right) \end{aligned}$	$\begin{aligned} & \text { Radıal } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Normalızed Counts	Local to Foll (X)
42	Bare	3	120	222	1668	165588	2009
43	Bare	3	120	222	1820	166522	2020
44	Bare	3	120	222	1972	159356	1933
45	Baxe	3	120	222	2105	170104	2063

Run 1190

FOIl Number	Foll Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \\ & \hline \end{aligned}$	Radıal (cm)	$\begin{aligned} & \text { Axıal } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalızed \qquad	Cadmium Ratio
1	Cad Cov	3	120	134	925	5584	21015
2	Cad Cov	3	120	134	1515	5209	20047
3	Cad Cov	3	120	134	2105	5384	22201
4	Cad Cov	3	120	225	925	5488	32870
5	Cad Cov	3	120	225	1515	6109	27717
6	Cad Cov	3	120	225	2105	5642	30150

Run 1190							
FOIl Number	FOII Type	Module Number	Stage	Radıal (cm)	$\begin{aligned} & \text { Degrees } \\ & \quad \mathrm{CW} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Normalized } \\ \text { Counts } \\ \hline \end{gathered}$	Cadmium Ratio
7	Cad Cov	3	8	194	450	5517	22040
8	Cad Cov	3	8	194	1350	5803	24514
9	Cad Cov	3	8	194	2250	5926	21004
10	Cad Cov	3	8	194	3150	5664	20772

Run 1190

Foil Foil Module
Number Type Number

11	Bare
12	Bare
13	Bare
14	Bare
15	Bare
16	Bare
17	Bare
18	Bare
19	Bare
20	Bare
21	Bare
22	Bare
23	Bare

Radıal From
Reactor Center Axial Normalized Local to Stage Through Module 1

(cm)	Counts	Foil (X)
2120	222988	2705
2120	222339	2697
2120	206680	2507
2120	191842	2327
2120	161160	1955
2120	139914	1697
2120	119847	1454
2120	111464	1352
2120	112442	1364
2120	120887	1466
2120	141204	1713
2120	147984	1795
2120	150031	1820

TABLE 94
(Continued)

Run 1190

$\begin{gathered} \text { Foil } \\ \text { Number } \end{gathered}$	Foil Type	Module Number	Stage	Radial From Center of Module	$\begin{gathered} \text { Degrees } \\ \text { CW } \\ \hline \end{gathered}$	Normalızed Counts	Local to Foil (X)
24	Cad Cov	3	9	352	00	6094	30231
25	Cad Cov	3	9	352	900	6113	37412
26	Cad Cov	3	9	352	1800	6234	34869
27	Cad Cov	3	9	352	2700	5853	30663

Run 1191				Location		Normalized Counts	Local to Foll (X)
FOIl Number	FOII Type	Module Number	Angle (${ }^{\circ} \mathrm{CW}$)	Radıal (cm)	Axial (cm)		
1	Bare	3	30	46	925	93878	1139
2	Bare	3	30	46	1215	80225	0.973
3	Bare	3	30	46	1515	79978	0970
4	Bare	3	30	46	1820	82691	1003
5	Bare	3	30	46	2105	114555	1390
6	Bare	3	30	90	925	99468	1207
7	Bare	3	30	90	1215	85136	1033
8	Bare	3	30	90	1515	86548	1050
9	Bare	3	30	90	1820	86111	1045
10	Bare	3	30	90	2105	114011	1383
11	Bare	3	30	134	925	107610	1305
12	Bare	3	30	134	1215	96285	1168
13	Bare	3	30	134	1515	97513	1183
14	Bare	3	30	134	1820	94780	1150
15	Bare	3	30	134	2105	126112	1530
16	Bare	3	30	178	925	127799	1550
17	Bare	3	30	178	1215	121939	1479
18	Bare	3	30	178	1515	123158	1494
19	Bare	3	30	178	1820	114308	1387
20	Bare	3	30	178	2105	138584	1.681
21	Bare	3	30	222	925	152954	1855
22	Bare	3	30	222	1215	151053	1832
23	Bare	3	30	222	1515	144102	1748
24	Bare	3	30	222	1820	146436	1776
25	Bare	3	30	222	2105	161265	1956

TABLE 94
(Continued)

Run 1191

FOIl Number	Foll Type	Module Angle Number (${ }^{\circ} \mathrm{CW}$)	Radıal From Reactor Center 120° Between Modules 1 \& 2	Axial (cm)	Normalızed Counts	Local to Foil (X)
. 26	Bare		00	2120	221884	2691
27	Bare		76	2120	226369	2746
28	Bare		152	2120	224470	2723
29	Bare		228	212.0	238862	2897
30	Bare		305	212.0	244019	2960
31	Bare		381	2120	219551	2663
32	Bare		457	2120	249887	3.031
33	Bare		533	2120	245591	2979
34	Bare		610	2120	225012	2729
35	Bare		686	2120	203410	2467
36	Bare		762	2120	170000	2062
37	Bare		838	2120	147966	1795
38	Bare		914	2120	119341	1.448
39	Bare		990	2120	95875	1163
40	Bare		1066	2120	81926	0.994
41	Bare		1143	2120	69747	0846
42	Bare		1219	2120	58198	0706
43	Bare		1371	2120	38445	0.466
44	Bare		1524	2120	23824	0289
45	Bare		1675	2120	12397	0150
46	Bare		1829	2120	2704	0033
47	Bare		00	894	300691	3647
48	Bare		00	749	314211	3811
49	Bare		00	596	249079	3021
50	Bare		00	444	157391	1909
51	Bare		0%	291	95971	1164
52	Bare		00	139	48690	0591
53	Bare		00	0	7359	0089

Run 1191
Location

FOII Number	Foil Type	Module Number	Angle	Radial (cm)	$\begin{aligned} & \text { Axyal } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Normalızed \qquad	Local to Foil (X)
54	Bare			932	1515	226323	2745
55	Bare			1077	1515	169309	2054
56	Bare			1230	1515	123644	1500
57	Bare			1382	1515	83317	1011
58	Bare			153.4	1515	50480	0612
59	Bare			168 7	151.5	23425	0.284
60	Bare			1837	1515	3266	0040

```
TABLE 94
(Continued)
```

Run 1191

$\begin{aligned} & \text { Foll } \\ & \text { Number } \end{aligned}$	Fozl Type	Module Number	$\begin{aligned} & \text { Angle } \\ & \left({ }^{\circ} \mathrm{CW}\right) \\ & \hline \end{aligned}$	Radial From Center of Element	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$	Normalized Counts	Local to Fozl (X)
61	Bare	1		00	2120	111704	1355
62	Bare	1		00	2120	108279	1313
63	Bare	2		00	2120	115520	1401
64	Bare	2		00	2120	107092	1299
65	Bare	3		00	2120	116124	1409
66	Bare	3		00	2120	117216	1422

TABLE 95
Gold Foll Data
3-Module Cavity Reactor
(All Normalızed to ${ }^{\text {PPower Level of Run 1186) }}$

Run 1185

Foll Number	Location			Foll Weight (gm)	$\begin{aligned} & \text { Specific Activalty } \\ & d / \mathrm{m} / \mathrm{gm} \times 10^{-6} \end{aligned}$	Local toFoil (X)
	FOII Type	Radıal (cm)	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$			
1	Bare	00	89.4	00362	10774	2535
2	Bare	00	749	00360	10461	2461
3	Bare	00	596	00336	7634	1796
4	Bare	00	444	00359	5021	1181
5	Bare	00	291	00357	2989	0703
6	Bare	00	139	00349	1478	0348
7	Bare	00	0	0.0367	0250	0059
8	Bare	932	1515	0.0366	6887	1620
9	Bare	1077	1515	00364	5267	1239
10	Bare	1230	1515	00373	3677	0865
11	Bare	1382	1515	00353	2493	0587
12	Bare	1534	1515	00356	1521	0357
13	Bare	1687	1515	00367	0643	0151
14	Bare	183.7	1515	00370	0098	0023

Foll Number	Foil Type	Module Numbex	Stage	Radial Distance From Center	Degrees cw	FOIl Weight (gm)	Specıfic Activaty $\mathrm{d} / \mathrm{m} / \mathrm{gm} \times 10^{-6}$	Local to Fonl (X)
15	Bare	3	9	194	0	00362	5670	1334
16	Bare	3	9	194	225	00360	5746	1352
17	Bare	3	9	194	450	00372	6200	1459
18	Bare	3	9	194	675	00358	6443	1516
19	Bare	3	9	194	900	00357	6929	1630
20	Bare	3	9	194	1125	00357	6445	1516
21	Bare	3	9	194	1350	00377	6331	1490
22	Bare	3	9	194	1575	00359	6329	1489
23	Bare	3	9	194	1800	00353	6500	1529
24	-Bare	3	9	194	2025	00364	6344	1493
25	Bare	3	9	194	2250	00364	5998	1411
26	Bare	3	9	194	2475	00364	5690	1339
27	Bare	3	9	194	2700	00353	5612	1320
28	Bare	3	9	194	2925	00368	5713	1344
29	Bare	3	9	194	3150	00359	5679	1336
30	Bare	3	9	194	3375	00353	5691	1339

TABLE 95
(Continued)

Run 1185

FOIl Number	Foil Type	Radıal Traverse Distance From Module Center			Foll Weaght (gm)	Specific Actuvzty $\mathrm{d} / \mathrm{m} / \mathrm{gm} \times 10^{-6}$
31	Cad Cov		35		00358	3493
32	Cad Cov		57		00360	2942
33	Cad Cov		79		00364	3545
34	Cad Cov		101		00361	2575
35	Cad Cov		123		00346	0759
36	Cad Cov		145		00356	0119
Run 1186	Location				$\begin{gathered} \text { Specıfic } \\ \text { Actıvıty } \\ \text { a/m/gm } \times 10^{-6} \\ \hline \end{gathered}$	Local to 6 Foil (X)
$\begin{gathered} \text { Foil } \\ \text { Number } \\ \hline \end{gathered}$	Foil Type	Radıal (cm)	Axial (cm)	FOII Weaght (gm)		
1	Cad Cov	00	749	00365	0726	
2	Cad Cov	00	444	00358	0034	
3	Cad Cov	1077	1515	00351	0044	
4	Cad Cov	1382	1515	00367	0002	

FOIl Number	FOII Type	Module Number	Stage	Radıal Distance From Center	$\begin{gathered} \text { Degrees } \\ \text { cw } \\ \hline \end{gathered}$	Weaght (gm)	$\begin{aligned} & \text { Actavity } \\ & \mathrm{a} / \mathrm{m} / \mathrm{gm} \times 10^{-6} \end{aligned}$	Local to Foil (X)
5	Bare	3	9	352	0	00369	7718	1816
6	Bare	3	9	352	225	00353	8057	1896
7	Bare	3	9	352	450	00359	8524	2006
8	Bare	3	9	352	675	00368	8905	2095
9	Bare	3	9	352	900	00353	9322	2193
10	Bare	3	9	352	1125	00337	9459	2226
11	Bare	3	9	352	1350	00371	9270	2181
12	Bare	3	9	352	1575	00355	8995	2116
13	Bare	3	9	352	1800	00345	8533	2008
14	Bare	3	9	352	2025	00363	8175	1923
15	Bare	3	9	352	2250	- 0359	7828	1842
16	Bare	3	9	352	2475	00363	7550	1776
17	Bare	3	9	352	2700	00355	7413	1744
18	Bare	3	9	352	2925	00369	7322	1723
19	Bare	3	9	352	3150	00372	7468	1757
20	Bare	3	9	352	3375	00349	7557	1778

(Contınued)

Run 1187

TABLE 95
(ContInued)
Run 1187

$\begin{gathered} \text { Foul } \\ \text { Number } \end{gathered}$	Foil Type	Radial Traverse Distance From Module Center	Foll Weaght $\underline{(\mathrm{gm})}$	$\begin{gathered} \text { Specıfic } \\ \text { Actıvity } \\ \mathrm{a} / \mathrm{m} / \mathrm{gm} \times 10^{-6} \\ \hline \end{gathered}$	Local to Foil (X)
39	Bare	684	00364	13705	3225
40	Bare	795	00365	14287	3362
41	Bare	905	00354	14371	3381
42	Bare	1016	00361	14585	3432
43	Bare	1126	00374	15569	3663
44	Bare	1237	00364	16675	3923
45	Bare	1347	00369	15616	3674
46	Bare	1458	00356	10327	2430

Run 1187

Run 1188

Foll Number	Foil Type	Module Number	Stage	Radial Distance From Center	$\begin{aligned} & \text { Degrees } \\ & \text { CW } \\ & \hline \end{aligned}$	Foil Welght (gm)	Specific Activity $\mathrm{a} / \mathrm{m} / \mathrm{gm} \times 10^{-6}$
7	Cad Cov	3	9	352	0	00363	2496
8	Cad Cov	3	9	352	90	00359	2672
9	Cad Cov	3	9	352	180	00362	2554
10	Cad Cov	3	9	352	270	00360	2387

TABLE 95
(Contınued)

Run 1188

Run 1191
$1 \begin{array}{llllllll}1 & \text { Bar̀e } & 0 & 0 & 212 & 0 & 0 & 0351\end{array}$
Run 1192

1	Bare	46	92	5	0	0356	5	245
2	Bare	46	121	5	0	0358	4	537

TABLE 95
(Continued)

Run 1192

$\begin{gathered} \text { Foil } \\ \text { Number } \end{gathered}$	Foil Type	Location		Foll Weight (gm)	Specıfic Actavity $\mathrm{d} / \mathrm{m} / \mathrm{gm} \times 10^{-6}$	Local to Foil (X)
		$\begin{gathered} \text { Radıal } \\ (\mathrm{cm}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Axial } \\ & (\mathrm{cm}) \end{aligned}$			
3	Cad Cov	46	1363	00360	2264	
4	Bare	46	1515	00361	4644	1093
5	Cad Cov	46	1668	00346	2259	
6	Bare	46	1820	00363	4526	1065
7	Bare	46	2105	00352	5528	1301
8	Bare	90	925	00357	5318	1251
9	Bare	90	1215	00351	4727	1112
10	Bare	90	1515	00362	4860	1144
11	Bare	90	1820	00372	4604	1083
12	Bare	90	2105	00363	5731	1348
13	Bare	134	925	00363	5551	I 306
14	Bare	13.4	1215	00354	5096	1 199
15	Bare	134	1515	00358	5259	1237
16	Bare	134	1820	00369	5037	1185
17	Bare	13.4	2105	00360	5979	1407
18	Bare	178	925	00350	6699	1576
19	Bare	178	1215	00352	6173	1452
20	Bare	178	1515	00363	6244	1469
21	Bare	178	1820	00365	6196	1458
22	Bare	178	2105	00358	6529	1536
23	Bare	222	925	00366	7470	1758
24	Bare	222	1215	00350	7345	1728
25	Cad Cov	222	1363	00346	2433	
26	Bare	222	1515	00363	7264	1709
27	Cad Cov	222	1668	00375	2388	
28	Bare	222	1820	00358	7149	1682
29	Bare	222	2105	00346	7374	1735
30	Cad Cov	1077	1515	00351	0018	
31	Cad Cov	1382	1515	00379	0003	
32	Cad Cov	1687	1515	00359	0002	
33	Bare	00	894	00353	10875	2559
34	Bare	00	749	00363	10325	2429
35	Bare	00	596	00365	7644	1799
36	Bare	00	444	00328	4915	1156
37	Bare	00	291	00358	3063	0721
38	Bare	00	139	00359	1499	0353
39	Bare	00	00	00355	0209	0049

TABLE 95
(Continued)

Run 1192

$\begin{gathered} \text { Foıl } \\ \text { Number } \\ \hline \end{gathered}$	Foil Type	Module Number	Stage	Radıal Distance From Center	$\begin{aligned} & \text { Degrees } \\ & \quad \mathrm{CW} \\ & \hline \end{aligned}$	Foll Weaght (gm)	Specific Actuvity $\mathrm{a} / \mathrm{m} / \mathrm{gm} \times 10^{-6}$
40	Cad Cov	3	8	352	45	00360	2391
41	Cad Cov	3	8	352	135	00370	2583
42	Cad Cov	3	8	352	225	00365	2368
43	Cad Cov	3	8	352	315	00368	2246
44	Cad Cov	3	9	194	45	00365	2295
45	Cad Cov	3	9	194	135	00365	2314
46	Cad Cov	3	9	194	225	00375	2300
47	Cad Cov	3	9	194	315	00338	2293

Run 1192							
$\begin{gathered} \text { Foul } \\ \text { Number } \end{gathered}$	- Fonl Type	Radial	Axial	Radial Traverse Distance From Module Center	Degrees cw	Foll Weight (gm)	Specific Activity $\mathrm{d} / \mathrm{m} / \mathrm{gm} \times 10^{-6}$
48	Cad Cov			574		00369	235
49	Cad Cov			795		00342	2878
50	Cad Cov			1016		00363	2124
51	Cad Cov			1237		00367	0586
52	Cad Cov			1457		00367	0092
53	Cad Cor	1001	2105			00367	1023
54	Cad Cov	1153	2105			00370	0340
55	Cad Cov	1305	2105			00355	0093

TABLE 96
Thermal Neutron Flux
3-Module Reactor

TABLE 96
(Contınued)

TABLE 97
Infinctely Dilute
Gold Foil Cadmıum Ratios
3-Module Cavity Reactor

TABLE 97
(Continued)

Carcumferential - Module 3, Stage 9

Figure 91 Cross section view at separation plane of 3 module tank insert

FIgure 9.2 Side view of fuel element for 3 module reactor
Φ

Figure 93 Layout of fuel rings for 3 module reactor fuel element

Figure 9.4 Layout of fuel sheets on fuel stage separation dises of 3 module reactor fuel element

Figure 95 Control rod shape curve - elght actuators

Figure 9.6 Fuel worth measurements from module 3 of the 3 module cavity reactor

Figure 9.7 Relative axial power distrabution an module 3, 30° at the core centerline, 3 module reactor with 055 fuel to module radius ratio

Figure 98 Relative axial power distribution in module 3, 120° at the core centerline, 3 module reactor with 0.55 fuel to module radius ratio

Figure 99 Relative axial power distribution an module $3,300^{\circ}$ at the core centerline, 3 module reactor with 055 fuel to module radius ratio
Relative radial power distrabution

Figure 910 Relative radial power distribution in module 3 based on axial average power distributions - 3 module reactor with 0.55 fuel to module radius ratio

Figure 911 Carcumferential power distribution on outside fuel ring, stage 8,3 module reactor with 055 fuel to module radius ratio

Figure 9.12 Circumferential catcher foil cadmum ratio on outside fuel ring, stage 8,3 module reactor wath 055 fuel to module radus ratio

Figure 913 Relatıve axial power distribution in the end reflector, 3 module reactor with 055 fuel to module radius ratio

Figure 9.14 Relative axial power distribution in the radial reflector, 3 module reactor with 0.55 fuel to module radius ratzo

Figure 9.15 Relative axial power distribution across face of the core through module 1 axis, 3 module reactor with 055 fuel to module radius ratio

Figure 9.16 Relative axial power distribution across face of core with traverse between modules 1 and 2

Figure 9.17 Axial distribution of catcher foll cadmium ratios through module $3,300^{\circ}$, 3 module reactor wath 055 fuel to module radius ratio

Figure 918 Axial distribution of catcher forl cadmum ratios through module $3,120^{\circ}, 3$ module reactor with 055 fuel to module radius ratio

Figure 919 Relative radial gold foll activity in a module, 3 module reactor with 055 fuel to module raduus ratio

Figure 920 Circumferential relative gold foll activity on outside fuel rang, stage 9, 3-module reactor whth 055 fuel to module raduus ratio

F'igure 921 Relatıve radial bare gold foll activity traverse out through $D_{2} 0$ between modules 1 and 2, 3 module reactor with $0.55^{\text {full }}$ to module radius ratio

Figure 9.22 Relative bare gold foil activity in the end and radial reflectors, 3 module reactor with 055 fuel to module radius ratio

Figure 9.23 Relative bare gold foll actuvity in module $3,120^{\circ}$, 3 module reactor whth 0.55 fuel to module radius ratio

Figure 924 Relative bare gold foll actuvity in module $3,300^{\circ}$, 3 module reactor with 055 fuel to module radius ratio

Figure 9.25 Radial distribution of thermal neutron flux through core and radial reflector, 3 -module reactor with 055 fuel to module radius ratio

The critical mass variations for the fow dafferent sevenmodule configurations were unexpectedly relatively insensitive to the radius ratio of the fuel wathin the modules These and other major results are summarized in Table 10 1. It is especially interesting to note the critical mass vs radius effects of these module configurations compared to that of a single large cavity. Flgure 101 shows thas variation for the three experimental cylundrical cavity reactors that have been measured:
(1) this module experiment
(2) the sux foot sungle cavity experament in Idaho, the reflector tank from which was used in the module experıment
(3) the Ios Alamos 40minch cavity, measurements made about 1960 (9)

These curves show a straking difference between the limiting conditions for the two principal types of reactors, single and multiple cavities The minumum radıus ratio for which the critıcal mass becomes excessive is lower for the module or multiple cavity system The flatter curve of the module reactor is in part caused by the presence of hydrogen, which was not included in the two sets of single cavity experimental results shown.

The fuel worth of unaform changes in fuel density was measured on all configurations In Figure 102 these results are plotted vs fuel mass in the reactor and compared with the results obtained with the single large cavity configurations The results all lie virtually on the same curve Note the solid curve (Ref 4, page 50), actually has a spread of $\pm 10 \%$ for some reactor configurations But the general applicability and hence usefulness of this curve on all cavity reactors of the same general overall size is readuly apparent

The penalty for hydrogen in these modular systems is not signuficantly different from the penalty measured in the single cavity concept (Reference 2, p 252 and Reference 4) The hydrogen penalty is approxımately $21 \% \Delta k / \mathrm{kg}$ of hydrogen, averaged throughout the vold region In the large single cavity experiments, hydrogen nearer the fuel had a worse penalty (factor of 2.5) than that near the cavity wall (Reference 2, p 252 and 358) The same variation of worth in the cavity might be anticipated in this module experiment The measurement was not made because the hydrogen thickness was so small as to make a reliable measurement very difficult if not imposisible The varıation is believed to be caused by molecular binding effects which allows the hydrogen to scatter isotropically at thermal energies, thus effectively scatter-returning those neutron traveling from the core to the reflector At operating temperatures of 4 or $5000^{\circ} \mathrm{K}$, molecular binding would not exist, and such a position dependence is not expected to be as strong an effect as in this low temperature experament.

The simulation of hydrogen wath polyethylene and polystyrene is realistic, since the carbon content represents only about 10% of the total worth of CH_{2} and 20% of CH (p 251 of Ref. 2) The materials used had adequate purity, containıng no high cross section impurities in concentratıons greater than a few ppm. A chlorine compound gas is used in some processes for expanding styrofoam, but the materıal was analyzed for residual trapped chlorine and none was found

The penalty of the exhaust nozzle opening was worse on the seven module configuration than on any of the other configurations, ancluding the single large cavitues The highly effective fuel of the center module was durectly affected by this nozzle hole However, this penalty of $175 \% \mathrm{k}$ for the seven module configuration was not severe compared to the penalty of hydrogen or cavity wall linıng material Therefore, the nozzle design need not be considered especially important for the nuclear characterıstıcs provided the same considerations are gaven to material selections as are done for the cavity wall

The walls of the cavities present one of the most difficult design problems for the cavity reactor The walls must be able to withstand ultra-high temperatures, very high pressures, and also be nuclearly thin. The walls in the present module experiments are exceedingly thin, 032 cm of aluminum, only 0005 thermal absorption mean free paths such walls are quite unrealistic for the actual high temperature application For this reason the effect of thicker walls was evaluated on the 038 radıus ratıo, 7 -module confıguration. Staınless steel 0125 cm thick, representing 0038 thermal mean free paths was added to the aluminum walls Extrapolated to all seven modules, the penalty was $28 \% \mathrm{k}$ With the use of Figure 10.2 , it can readily be seen that this penalty would have required quadrupling the critical mass from 102 to 43 kg of uranıum Stannless steel 0.125 cm thick is equavalent to 45 cm thlckness of zarcalloy, so this value of nuclear thickness (0038 plus $0005=0.043$ mean free paths) is probably a pessimistic estimate of what would be required Nevertheless, the severe penalties pald for neutron absorption on the walls of the cavity show that the wall is one of the most amportant and sensituve areas of the reactor design.

Flux and power distributions were extensively measured on all configurations Very large thermal flux peaking occurs in the regions between modules and in the reflector surrounding the modules If stmuctural supports are needed in the reactor, these areas should be avolded However, a thorough analysis of the optimum location for structural members requires knowledge of the adjoint flux Calculated shapes for the adjoint flux and statistical weight may be found in Ref. 5, page 61

Power distributions on the module reactors did not show a self-shielding effect large enough to be of great significance to thermo-
dynamic considerations on any but the 038 radius ratio configurations. The peak to minımum radial power ratio for the configurations is listed below:
 Edge/Center
Power
I 20
1.13
150
124
117

The measured flux distributions on some of the configuratlons showed unusual daps at the cavity walls and at the outer wall of the module tank These were assumed to be the result of flux perturbation In the moderator by the aluminum Since adequate detail (resolution) was not obtained in these experiments, a supplementary flux perturbation experiment was performed later in an equivalent environment (heavy water reflector of a gas core reactor) The results are shown in Figure 103 Approximately a 10% flux perturbation resulted from $1 / 2$-anch thack aluminum, which was the net thickness of the outer wall of the modile tank plus the inner wall of the reflector tank The same magnitude of flux perturbation would have shown on Figures 5 32, 6 I5, 710 and 810 uf sufficient detail had been obtanned on the curves.
10.1 Effects on Cavity Reactor Operating Characteristics at Power

The principal fuel loading and reactavity results measured on the five configurations of the module concept are summarized in the foregoing discussion Though critical mass results themselves are ostensıbly the most signıficant piece of data, it should be cautioned that an even more amportant parameter to the cavity reactor concept is the cavity pressure. Thus low cratical masses will have little merıt if they are confined in so small a volume that the gas pressure would be excessive under operating conditions.

In order to vaew the relatuve advantages of the various module arrangements, it is appropriate to adjust them all to equivalent structural and hydrogen coolant configurations, and then to compare the results in terms of the relative cavaty pressures created by that critical mass at operating temperatures of the order of $80,000^{\circ} \mathrm{R}$ for the fuel

In table 102 are show comparisons between the directly measured characteristics of the three principal configurations of this experiment, twó 7 -module cases and one 3 -module case, and the nearest applicable single large cavity configuration, that performed with UF 6 fuel in a radus ratio core of 067 (Reference 3, page 119) to this configuration was added the effect of hydrogen (Reference 2, p 251 and Reference 4, p 76). All configurations were then corrected to the same amounts of structural alumanum whthin the core region, which, in the case of the module configurations included the mass of module tank as well as that of the fuel elements. The corrected critical masses for these configurations is then given at the bottom of Table 10.2. Note,
this is with 1.23×10^{21} atoms/cc of hydrogen in the hydrogen regions of each configuration However, the total quantities of hydrogen in these configurations differ significantly, amounting to a factor of 25 times more hydrogen in a single module configuration than is in the 7 -module configuration

In order to make a better comparison, the 067 radius ratio of the single module configuration should be converted to 055 and 072 radius ratio This can be done using Figure 101 , and yielding the following results.

	055 radius ratio		072 radius ratio	
	1 mas	$\mathrm{U} / \mathrm{cc} \mathrm{Cr}$	1 ma	
Single module	27	82×10^{19}	21	
3-module	122	73×10^{19}	--	
7-module	8.6	5.3×10^{19}	8.2	

In the above configurations, for convenience the hydrogen in each was taken as occupying the volume from 0.72 to 10 radius ratio If the hydrogen filled out the rest of the volume at $123 \times 10^{21} \mathrm{H} / \mathrm{cc}$ in the 055 radius ratio cases, the critical masses would increase for these configurations The changes would be approximately a 03 kg increase for the 7 module configuration and a 6 kg nncrease for the single module configuration. So as to provide approximate calibration points for the atom densıties discussed above, atomic hydrogen at $5500^{\circ} \mathrm{K}$, assumed not to be lonized and at an atom density of $123 \times 10^{21} \mathrm{H} / \mathrm{cc}$, is at approximately 900 atmospheres of pressure Uranıum gas at a temperature of $45,000^{\circ} \mathrm{K}$ is at 900 atmospheres when its atom density 1 s approxmately 45×10^{19} (10) Thus it appears that at 900 atmospheres, the stable operating configuration for either the single, 3 -module, or 7 -module systems is with a fuel radius ratio in the 060 to 0.70 range.

The above comparisons of the sheet fuel module configurations wath the UF6 gas-core single cavity configurations raises the question of how well the sheet fuel simulated a gas? The arrangement of the folls essentially eliminated all streaming paths that could not encounter fuel It is felt that the arrangement utiluzed in these module experiments was at least as valid a simulation of a gas as was Mockup \#2 of the single cavity experiments (3) This latter sheet fuel configuration had a measured bias of a 4% higher critical mass than existed in the all-gas cores The same bias maght be used as an expected bias value for the module experiments

102 Calculations
The difficulty of doing reliable calculations on the modular configurations limited the amount of analytical correlation performed with this experiment. Major compromises are required to even reduce the reactor configuration problem to two dımensions Because of these complexities, a synthesis approach was used to predict the critical mass so that the fuel elements could be preloaded to a value that would, hopefully, not require complete disassembly and reloading to complete the experiment

A 19-energy group one dimensional diffusion code was used It had been extensively calibrated for bias using the single large cavity experiments Preliminary calculations were made using the mean-chord-length concept ($\frac{4 y}{5}$) to obtain estimated thermal flux depression factors in the fuel modules. Then several calculations were performed to obtain an expected range for the critical loading Over this range, a number of cell calculatıons were performed, taking the radius of the 7 -module cell as 38 cm and the 3 -module cell as 50 cm These cell radil were chosen as the approximate mean radius at which the gradient of the flux was zero.

Using the cell calculations, the "cell correction factors" for fuel absorption relative to moderator flux were obtained and used in the overall reactor calculation. The critical masses predicted by this method were as follows and are compared whth the measured critical masses with the exhaust nozzle plugged:

	7-Module 0.55 Radıus Ratıo wath Hydrogen	3-Module 0.55 Raduus Ratio with Hydrogen
Predicted	7.7 kg	13 kg
Measured	83 kg	11 kg

This method of calculating these reactors was more successful on the 7-module configuration, principally because it was more realistic to define a cell "for this configuration than for the 3-module configuration No calculations were performed on the other configurations since preanalysis was obtained by extrapolation of measurements on the previous configuration(s).

TABL 101

Prancipal Results from the Five Different Modular Configgurations

TABLE 102

Comparisons of 1-, 3- and 7-Module Configurations
(All Use Same Reflector Bank)

	$\begin{aligned} & \text { 7-Module } \\ & 0 \quad 55 \mathrm{R} / \mathrm{Ro} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 7-Module } \\ & 0 \quad 72 \mathrm{R} / \mathrm{Ro} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \text {-Module } \\ & 0 \quad 55 \mathrm{R} / \mathrm{R}_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ImModule } \\ & 067 \mathrm{R} / \mathrm{R}_{0} \end{aligned}$
Measured Critıcal Mass (kg of U)	864	801	115	1621
Uranıum Atom Density U/cc	5.27×10^{19}	284×10^{19}	684×10^{19}	327×10^{19}
Volume Occupled by Hydrogen (cm^{3}) (From 072 to $10 \mathrm{R} / \mathrm{R}_{0}$)	637×10^{5}	637×10^{5}	818×10^{5}	1544×10^{5}
H Atom Density	123×10^{21}	123×10^{21}	133×10^{21}	0
Total H Atoms	783×10^{26}	783×10^{26}	1088×10^{26}	0
Correction to $123 \times 10^{21} \mathrm{H} / \mathrm{cc}$	0	0	+0 29\% $\mathrm{\Delta k}$	-5 4\% 4 k
Aluminum Mass Inside Reflector (kg)	2716	2918	2168	245
Correction to 272 kg	0	-0 60\% $\Delta \mathrm{k}$	$+17 \% \Delta k$	-0 8\% $\Delta \mathrm{k}$
Total Correction ($\% \Delta \mathrm{k}$) (kg of U)	0	$\begin{aligned} & -0 \quad 60 \% \mathrm{k} \\ & +0 \mathrm{l} 5 \mathrm{~kg} \end{aligned}$	$\begin{array}{lll} +2 & 0 \% & \Delta k \\ -0 & 69 & \mathrm{~kg} \end{array}$	$\begin{aligned} & -62 \% \Delta \mathrm{k} \\ & +62 \mathrm{~kg} \end{aligned}$
Corrected Crıtical Mass*	864 kg	824 kg	122 kg	224 kg
Corrected U Densıty/cc	53×10^{19}	29×10^{19}	73×10^{19}	45×10^{19}
Total Atoms of Hydrogen	78×10^{26}	78×10^{26}	101×10^{26}	19×10^{26}
*Corrected to 271.6 kg of alumınum	$10^{21} \mathrm{H} / \mathrm{cc}$			

Figure 101 Experimental Relationship between Fuel Mass and Fuel Radius as Fraction of Cavity Radius

Figure 102 Comparison of Fuel Worth vs Fuel Ioading for Two Configurations

Figure 103 Flux-Perturbation Fifect of $1 / 2$-anch thick Aluminum Plate in $\mathrm{D}_{2} 0$ Reflector of Cavity Reactor

The modular cavity reactor critical experiments showed substantially lower critical masses than obtained with single cavities bunlt within the same slzed reflector systems However, this "equivalent" single cavity contained $21 / 2$ times as much propellant and had only a 35 to 50% higher plasma pressure (uranium atom density)* The various conclusions are summarized below-

1 Critical masses of 7 -module configurations were approximately $1 / 3$ to $1 / 2$ of the critical masses of the "equavalent" single cavity system

2 Cavaty pressures (uranium atom densities), however, did not show as large a difference They were only $2 / 3$ to $3 / 4$ of that of the equivalent single cavaty system.

3 The 3-module results fell relatively unaformly between the results of the 7 -module and single cavity systems
4. The 7 -module system could be operated (as a thermal reactor) dow to lower fuel to cavity radius ratios than could the single cavity system However, the lower limit of the radıus ratio would be the practical limit of cavity pressure
5. The penalty paid for neutron absorption in the cavity walls is somewhat more severe in the seven module system than in the single module system, but then the smaller cavity size would not require as thick a wall to contain the pressure in the 7 -module system

6 Except in the low fuel/cavity radius ratios (038), the module systems had very little fuel self shielding, and peak to minimum flux ratios (radially only) were usually 125 or less

7 The penalty paid per kg of hydrogen coolant appears to be essentially the same in the 7 -module and the single cavity conflgurations.
8. The exhaust nozzle was worth the most when durectly along the axis of one of the cavitues Stull, its reactuvity penalty was not severe ($\sim 1 \% \Delta k$).

As shown in Ref 10, the pressure of the uranaum plasma is durectly proportional to the density of the uranium in the range of interest and for constant temperature Thas implies a constant compressibility factor

These expermments dud not investıgate the effect of variations in interstatial moderator between modules, and thus it is not known if a more optimum module spacing can be achueved Neither was there an experument on a single cavity of a size that would have nominally the same fuel and hydrogen volumes as that of the 7 and 3-module configurations The single cavity system used for comparison was the one that fit into the same sized external reflector It had $21 / 2$ times the hydrogen volume and three times the fuel volume of the modular configurations The comparisons thus made are open to questions of interpretation The aluminum structure, though corrected to the same mass for all configuratıons, was generally in a slıghtly higher worth location in the modular configurations However, it is belleved that the above listed conclusions are valid even when considering such uncertainties as these Future anvestigations should probably be concerned with optimizing the module size and spacing and obtaining data to make a comparison with a single cavity system of the same small hydrogen (and fuel) volumes

REPERENCES

1. Latham, "T S., "Nuclear Studies of the Nuclear Light Bulb Rocket Engine, " NASA Contractor Report G-910375-3, Unıted Aırcraft Corp , September, 1968.

2 Pincock, G D , Kunze, J F , "Cavity Reactor Critical Experiment, Volume I," General Electric Company, NMPO-ITS, September 6, 1967, (NASA-CR-72234)

3 Pincock, G D., Kunze, J F , "Cavıty Reactor Crıtıcal Expermment, Volume II, " General Electric Company, NSP-ITS, May 31, 1968, (NASA-CR-72415).

4 Pincock, G. D., Kunze, JF, "Cavity Reactor Critical Experiment, Volume III, "General Electric Company, NSP-ITS, September, 1968, (NASA-CR-72384).

5 Henderson, W B , and Kunze, J F , "Analysis of Cavity Reactor Experiments," General Electric Company, NSP-ITS, January, 1969 (NASA-CR-72484)

6 Kelber, C. N , "Resonance Integrals for Gold and Induum Foils", Nucleonics, August 1962, p 162
7. Dalton, G. R. and Osborne, R K , "Flux Perturbations by Thermal Neutron Detectors", Nuclear Scıence and Engıneering, Vol 9, p 198 (February, 1961).
8. Brown, H I and Connolly, T J., "Cadmaum Cutoff Energaes", Nuclear Science and Bngineering, Volume 24, p 6, (January 1966).

9 Mills, C. B., "Reflector Moderated Reactors", Nuclear Science and Engineering, Volume 13, p. 301, (1962)
10. Parks, D E., et al, "Optical Constants of Uranıum Plasma", Gulf General Atomic, NASA-CR-72348, February, 1968 For a condensation of pertinent operating parameters for a gas core, see R G. Ragsdale, "Relationship Between Bagine Farameters and the Fuel Mass Contained in an Open-Cycle Gas-Core Reactor, " IVASA TM X-52733, January, 1970
11. Pincock, G. D., Kunze, J. F., "Cavity Reactor Crıtıcal Experıment, Volume IV, " Idaho Nuclear Corporation, October, 1969 (NASA-CR-72550)
12. Pincock, G. D., Chase, P. I., "Cavity Reactor Critical Experiment, Volume V," Idaho Nuclear Corporation, November, 1969 (NASA-CR-72577)

INDEX
Aluminum worth - 17, 80, 111, 135, 138, 159
Calculations (computer, reactor physics) - 212
Carbon, worth of - 16
Catcher foll method - 12
Cavity liner, worth of - 111
Delayed neutrons - 11, 13
$\mathrm{D}_{2} 0$ puraty, density - 8
Dimensions - 7
Exhaust nozzle worth - 16
Flux perturbation - 211
Fuel
Composition - 8
Worth (see also specific configurations) 17, 134, 137, 209, 217
Gamma-n reactions - 11
Gap between tables - 159
Hydrogen
Sumulation - 7, 209
Worth - 159
Nuclear model - 10
Pressures - effective pressure for criticalıty - 211
Reference positions - 12
Resonance self-shielding - 12
structure - 7

[^0]: Fote: Unrelated to the experiment but of documentary interest, an unidentufied chemical reaction occurred with the annular tank, creating sufficient gas pressure inside to buckle the inner wall This event occurred during a prolonged storage period of three weeks at room temperature. Significant chemical reaction or decomposition products were not found in the remaining $\mathrm{D}_{2} 0$. Duplication of suspected conditions such as: 1) dis-similar types of Al; 2) residual machining flux; 3) residue from acetone wash; and 4) "perfectly" clean walls were made in separate experments. All four experiments eventually developed 2 psi over-pressure in essentially full cans. The residual machining-flux experiment developed the overpressure most rapidly (~ 3 weeks vs ~ 2 months for the others). The cause is believed to be normal aluminum corrosion, which evadently occurs for neutral or slightly basic water conditions, but is allegedly inhibited by slightily acidic conditions ($\mathrm{pH}=5$ to 6).

