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SECTION 1.0
INTRODUCTION TO THE
NONAME ORBIT DETERMINATION SYSTEM

- Thé NONAME Orbit Determination and Geodetic Para-
meter Estimation System consists of a set of computer
programs designed to determinc and analyze definitive
satcllite orbits and their associated geodetic and
measurcment parameters,

The heart of the system is the NONAME program
itself, which possesses the capability of estimating
that set of orbital elements, station positions, measure-
ment biases, and a set of force model paramofers such that
the orbital tracking data from multiple arcs of multiple
satellites best fits the entirc set of estimated para-
meters. In any glven run, little or all of this capabi- -
11ty may be ex cercised according te the typc of orbit, the
amount and type of data available, and the purpose for
which the run is being made.

NONAME ancillary analysis programs .may be groupéd

into threce different categories according to the [unctlon
which they perform.

1; Orbit Comparisons
The DELTA program performs the function of
differencing satellite orbits and trans-
forming the differences in position and
velocity into the more physically meaning-
ful along track, cross track, and radial

components. This program is useful for

L0-1



comparing orbits generated using different .
data sets, using different. pravity models,
using different modes of data reduction, etc.

Data Analysis using Refercnce Orbits -

The GEORGE program is used to analyze resi-
duals from measurcments not used in an orbita
solution, but computed on the basis of a
reference orbit determined by measurements of
known quality. Measurement biases and timing
exrors are computed on a pass by pass basis.
The results of this analysis may be given
different interprctations, depending upon

the quality of the unweighted data and the .
quality of, the refercence orbit.

Pass Geometry Computation
The GROUND TRACK program plots the sub-

" satellite points of orbits at station mea-
surcment times. A graph is produced for each
station giving the total geometric coverage
ach}eved'during d specified data period.

All the above three programs use onc or morc-tapes
written by the NONAME program in either a data reduction
or orbit generator run. Although it is not necessary,
these programs are generally run immediately following

. the associated NONAME run, thus ninimizing tape handling

problems.

In. addition all three programs usc the WRDC

- PLOT PACKAGE and can produce a graphical depiction of

their results both on printer plots and on SC4020 micro-'
film or hardcopy plots.
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In addition to the above -analysis programs, the
NONAME System contains thrcc data management routines:

1. SORT-MERGE Programs
a. NGSP Format

b. DODS Tormat

There are two programs for merging multiple
data tapeb, which may not be in time order,
and producing a single tape with the data
in time order. These two programs differ
only in the format of the data tapes.

2. 9-7 TRACK Conversion Program
This program converts a 9-track ORB1 tape
written by thc IBM System 360 computers into

a 7-track tape which can be rcad by the
GSFC 7094 computer.

1&0_3
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SECTION 2.0
THE NONAME PROGRAM

The original version of the NONAME Propram was
written for GSFC Ey WOLF in 1967. Since that time
NONAME has undecrgonc.extensive development to enhance
its capability, accuracy, and versatility.

NONAME has become one of the most widely used
orbit and geodetic parameter estimation programs in
the world. It is currently operational at GSFC on
the IBM 360 '95, '91, and '75; at the Goddard Institute
for Space Studies in New York on an IBM 360 '95; at
~Wallops Island on the GE 625; and at the Tnstitut fur

Physik und Plasmaphysik, Garching, West Germany on an
IBM 360 '91. '

NONAME has been used for

2]

determination of definitive orbits

-tracking instrument calibration

satellite operational predictions

geodetic parameter estimation

and many other items relating to applied research in

satellite geodesy using virtually all types of satellite
tracking data.

2.0-1



) SECTION 2.1
INTRODUCTTON. TO THE NONAME PROGRAM

4

The NONAME Rfcgram—is an orbit and geodetic
parameter estimation program utilizing the Bayesian
least squares process for determining the set of param-
eters which makes the measurements most consistent
with the satellite orbits. Multiple arcs of multiple
satellites may be used in d simultaneous solution when
adjustments are desired for gcodetic parameters.

The NONAME Program is designed around the concept-
that the determination of definitive satellite orbits
~will be affected by small errors.from three different
"sources: measurcment errors (biases, ctc.), stationm
position errors, and force model errors. Accordingly,
the program has the capability of adjusting these types
of parameters along with the satellite orbital elements.
In general, this process lcads to an improvedxorbit and

improved values for the measurement and geodetic
parameters. ‘

The parameter adjustment featurcs of NONAME
provide a large number of options and thus great
flexibility in the use of the program. The manner
in which independent parameters are assigned is based
upon the physical and statistical independence expected,
with some latitude lcft to the user for certain parame-
ters. The types of parameters;, along with limitations

(through program -dimensioning) on the number of each
are:
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- Individual arc paramcters.

Orbit elements - one set of six for cach arc
which must always be adjusted (a priori
information can be used to clfectively con-
strain them if no adjustment js desired).

Measurement biases - Iimit of 50, optionally
applied with assignments normally madec on a
pPass by pass basis. The same bias may be
applied for any period of time up to the
length of the arc.

=

Station timing errors - samec as for neasure-
ment biases. The limit of 50 applies to the

sum of measurcment and timing biases.

Atmospheric drag coefficient - optionally,

one drag cocfficient pPer arc may be adjusted

Solar radiation pressure reflectivity -
optionally, one reflectivity paramoter may
be adjusted.

Parameters common to all arcs

Station.positions - optionally, up to 21
independent stations may be adjusted. In
addition, any numbher of stations in the
tracking complement may be constrained to
move with a fixed relative location to one
of the independent stations.

2.1-1



2. Geopotential coefficients - limit of 20, with
the adjustment of any coefficicnt whose degrce
is less than or equal to the maximum dcgrce

coefficient used in the orbit intcgration.

In addition to the above restrictions, the follow-
ing overall paramcter limitations must be observed:

1, The total number of adjusted paramcters
affecting any onc arc may not cxcced 70.

2. The total number of force modcl parameters

affecting any one arc may not exceed 20.

The NONAME program is configured to iterate on
the adjustment of orbital clements with Ffixed station
positions and geopotential model. After this iteration
process has converged, the common parameters of station
positions and geopotential paramcters are adjusted and
the process is repcated. -

Many features are designed into NONAME to facili-
tate ease of usage and to assist in interpretation of
the results. These features are discussed as a part of

the detailed program description in this volume and in
the Operations Manual.
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SLECTLIUN £.%
THE ORBIT AND GEODETIC PARAMETLR LESTTMATION PROBLEM

The' purpose of this scction is to provide an undex-
standing of the relationship betwecn the various clements
in the solution to the orbit and geodetic parameter csti-
mation problem. As such, it is a general statement of
the problem and serves to.coordinate the detailed solutions
to each element in the problem presented in the sections

which follow.

The problem is divided into two parts:

e the orbit prediction problem, and

o the parameter estrimation problem.
The solution to the first of these problems corresponds to
NONAME's orbit generation mode. The solution to the
~latter corresponds to NONAME's data reduction mode and

of course is based on the solution to -the former.

- The reader should note that therc are two key choices
~ which dramatically affect the NONAME solution structure:

o Cowell's method for integrating the orbit, and

e a Bayesian least squares statistical estimation
procedure for the parameter estimation problem.
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2.2.1 The Orbit Prediction Problem -

There are a number of approaches to orbit pre-
diction. The NONAME approach is to use Cowell's mcthod,
which is the dircct numerical integration of the satcllite
equations of motion in rectangular coordinates, The
initial conditions for thesc dJdiffcrential cquations arc
the epoch position and velocity; the accelerations of
the satellite must be cvaluated.

The acceleration producing forces which are cur-
rently modelled in NONAME are the cflfeccts of

8 the geopotential,

& the luni-solar potentials,
° radiation pressure, and

& atmospheric drag

Perhaps the most outstanding common featurc of thesc
forces is that they are functions of the position of the
satellite relative to either the Earth, Sun, or Moon.
Only atmospheric drag is a function of any additional
quantity,”® specifically, the relative velocity of the
satellite with respect to the atmosphere.

The accurate evaluation of the accelcration of
a satellite therefore involves the solution to two
concomitant problems:

*Not to be confused with the "fixed" parameters in the
models.
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o the accurate modeling of each Force on the

satellite - Larth - Sun - Moon rclationship,
and
e - the prccisce modeling of the motions of the

Earth, Sun, and Moon.

The specific details for each model Ln thesc solutions
are given clsewhere in Sections 2.3, 2.4, and 2.8. The
question of how these models fit together is in effect

the question of appropriate coordinate systems.

The key factor in the sclection of coordinate
systems for the satellite orbit prediction problem is -

the motion of the Earth. For the purposcs of NONAME,
this-motion consists of: )

e precession and nutation, and

e rotation.

We are considering here the motion of the solid body of
the Larth, as versus the slippage in the Earth's crust

(polar motion) which just affccts the position of the
observer.

- The precession and nutation define the variation
in

¢ the direction of the spin axis of the Earth

f+ Zj, and
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° the direction of the true cquinox of date
(+ X).

These directions define the (geocentric) true of date
coordinate system.

' The Totation rate of the Farth is the time rate
of change of the Crecnvich hour angle 0_ between the
Greenwich meridian and the truc equinox of date. Thus
the Earth-fixed system differs [rom the truc of date
system according to the-rotation angle Gg.

The equations of motion for the satcllite must be
integrated in an inertial coordinate system. The NONAME
inertial system is defined as the true of date system

corresponding to 0@0 of the day of epoch.

The coordinate systems in which the accelerations
due to each physical effect are cvaluated should be
noted. The geopotential effeccts are evaluated in the
Earth-fixed system, and then transformed to true of
date to be conbined with the other effects. The othexs
are evaluated in the true of date system, The total
acceleration is then transformed to the inertial system
for use in the integration procedure.

The integration procedure used in NONAME is a
predictor-corrector type with a fixed time step. " There
is an optional variable step procedure which will halve
or double the step size. As the integration algorithms
used provide for output on an even step, an interpolation
procedure is required.
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2.2.2 The Parameter Estimation Problem

Let us consider the relationships between the
observations Oj, their corresponding computed values (2i
and P, the vector of paramcters to be determined. ‘These
relationsﬁips arc given by

acj .
- = ) -
0, C; E - dlj do; (1}
— 3P.
J ]
where
i denotes the ith observﬁtion or association
with it,
dP. is the correction to the jth parameter, and

dO.l is the error of observation associated with
the ith observation.

The basic problem of parameter cstimation is to determine

a solution to these equations.

The role of data preprocessing is quite apparent
from these equations. First, the observation and its
computed equivalent must be in a common time and spatial
reference system. Second, there are certain physical
effects such as atmospheric refraction which do not
significantly vary by any likely change in the parameters
represented by P.

These computations and corrections may equally
well be applicd to the observations as to their computed
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values. ﬁurthermore, the relationship. between the computed
value and the modecl paramcters P is, in gencral, nonlincar,
and hence the computed values may have to be evaluated
several times in the estimation procedurce. Thus a con-
51dcrablc Ancreasc in computational cfficiency may be.
attained by applying thesc computations and corrections

to the observations; i.c., to preprocess the data.

The preprocesscd observations used by NONAME are
directly related to the position and/or velocity of the
.satellite relative to the obscrver at the given obscrﬁa-_
tion time. These relationships are geometric, hence
computed equivalents for thesc observations are obtained
by applying thesc geometric relationships-to the computed
values for the positions and velocities of the satcllite
and the observer at the desircd time. )

Associated with each measurcment from each ob-
_serving station is a (known) statistical uncertainty.
This uncertainty is a statistical property of the noise
on. the observations. This uncertainty is the reason

a statistical estimation procedure is required for the
NONAME paramcter determination.

It should be noted that dOi, the measurement
error, is not the same as the .noise on the observations.
The dOi account for-all of the discrepancy (Oi-Ci) wh;ch
is not accounted for by the corrections to the parameters
dP. These d0; represent both

o ‘the contribution from the noise on the
observation, and

8 the incompleteness of the mathematical model
" represented by the paramcters D.
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By this last we mcan cither that the paramcter sct
being determined is insufficient or that the functional
form of the model is inadequate.

NONAME has two different ways of dcaling with

. thecse errors of observation:

1. The measurement model includes both a
constant bias and a timing bias which may
be determined.

2, There is an automatic cditing procedure
to delete bad (statistically unlikely)

measurementis.

The naturc of the parameters to be determined has
a significant effect on the functional structure of the
solution. - In NONAME, these paramcters arc:

o the position and velocity of the satcllite
at epoch. These are the initial conditions
for the equations of motion.

o force model paramcters, These affect the

motion of the satcllite.

° station positions and biases for station
measurement types. Theése do not affect the

motion of the satellite.

Thus, the parameters to be determined are implicitly
partitioned into a set o, which are not concerned with
the dynamics of the satellite motion and a set § which
are.
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The computed value C& for cach obscrvatlion Oi is a

function, of ;

on- the Earth-fixed position vector of the
station, and

P
¢ the true of date position and velocity voctor

of the satellite {x,y,z,x,y,z}

ol

at the desired observation time. When mcasurcement biascs
]
are used, C, is also a function of - T, the biases assocliated

with the particular station measurcment type.

Let us consider the effcct of the given partitioning
on the requircd partial derivatives in the observational

equations. The iii become
3P
‘BCi aci °C; '
— i T — (2)
'Ba 9T 3B
3C 3C, 93X
M1, i Tt (3)
8B ox, 0B
3X
The partial derivatives 3 are calleéed the variational

partials. While the other partial derivatives on the
right-hand side of the equations above arc computed from

_ the measurement model at the given time, the variational
partials must be obtained by integrating the variational
equations. As will be shown in Section 2.8, these equations
are similar to the equations of motion.
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The need for the above mentioned varitational
partials obviously has a dramatic el fect on any solution
to the observational equations. 1n addition to integrat-
ing the. equations of motion to gencratce an orbit, the
solution requires that the variational cquations be
integ?amcd.

We have hcretofore discusscd the clements of the
observational cquations; we shall now discuss the solution
of these equations; i.e.,” the statistical estimation

scheme. -

There are a nuhber of cstimation &chemes that
can be used. -The method used in NONAME ig-a. batch
scheme that uses all observations simultancously to
estimate thec parameter set. The altcrnative would be
a sequential scheme that uses the obscrvations se-
quentially to calculate an updated sct of paramcters
from each additional obsecrvation. Although batch and
sequential schemes are essentially cquivalent, practical
‘numerical problems often occur with sequential schemes,
especially when processing highly accuratec observations.
Therefore, a batch scheme was choéen.

The- particular method sclected for NONAME iIs a
partitioned Bayesian least squares'mcthod as detalled
in Section 2.10. A -Bayesian method was selected because
such a scheme utilizes meaningful a priori information.
The partitioning is such that the arrays which must be
simultaneously in core:are arrays associated with
parameters common to all satellite arcs, and arrays
pertaining. to the arc being processed. Its purpose is
to dramatically reduce the core storage requirements of
the program without any significant cost in computation

time.
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There is an intercsting aside related to the use
of a priori information in practice. The usc of a priori
information for the parameters guarantceces that the esti-
mation procedurc will mechanically operate (but not
necessarily converge). The user must cnsurc thuat his
data contains information rclating to the paramcters

he wishes determined.
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SECTION 2.3
THE MOTION QF THE EARTH AND RELATED COORDINATE SYSTLMS

The major factor in satellite dynamics is the
gravitational attraction of the Earth. Because of the
(usual) closencss of the satellite and its primary,
the Larth cannot be considered a point mass, and hence .
any model for the dynamics must contain at lcust an
implicit mass distribution. The concern of this scction
is the motion of this mass distribution and its relation

to coordinate systems.

We will first consider the meaning :of this motion
of -the Barth in terms of the rcquisite coordinate systems

for the orbit prediction problem:

The choice of appropriate coordinate systems 1is

controlled by several factors:

e  In the case of a satcllite moving in the-
Earth's gravitational field, the mostL
suitable reference system for orbit com-
putation is a system with its origin at
the Earth's center of mass:, referred to

as a geocentric reference system.

® The satellite equations of motion must be
integrated in an inertial coordinate systen.

e The Earth is rotating at a rate 6 , which is
the time rate of change of the Greenwich hour
angle. This angle is the hour angle of the
true equinox of date with respect to the
Greenwich meridian as measured in the equatorial

planc.
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] The Earth both precessces and nutates, thus
changing the dircctions of both the Earth's
spin axis and thc truc cquinox of datc in
inertial space.

The motions of the Larth referrcd to here arc of course
those of the '"solid body" of the Earth, the motion of
the primary mass distribution. The slippage ol the
Earth's crust is considercd clsewhere in Scction Z.5.4
(polar motion).

2.3.1 The True of Date Coordinate Sysicm

Let us consider that at any given time, the spin
axis of the Earth (+ Z) and the direction of the true
equinox of date (+ X) may be used tuv define a right-handed
geocentric coordinate system. This system is known as
the true of date coordinate system. 7The coordinate
systems of NONAME will bec defined in terms of this systom.

2.3.2 The Tnertial Coordinatc System

The inertial coordinate system of NONAME is the
true of date coordinate system defined at 0%0 of the
epoch day for each satellite. This is the system in
which the satellite equations of motion are integrated.

This is a right-handed, Cartesian, geocentric
coordinate system with the X axis directed along the true

h

equinox of 0.0 of the epoch day and with the Z axis direct
ed along the Earth's spin axis toward noth at the same
time. The Y axis is of course defined so that the co-

ordinate system is orthogonal. -
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Tt should be noted that the inertial system difflers
from the true of date system by the variation in time ol
the directions of the LKarth's spin axis and the true
equinox of date. This variation is desceribed by the

effects of. precession and nutation.

2.3.3 The Barth-fixed Coordinate Systom

The Larth-fixecd coordinatc systom is geocentric,
with the Z axis pointing north along the axis ol rotation
and with the X axis in the cquatorial planc pointing
toward the Grecenwich meridian. The system is orthogonal

and right-handed; thus thc Y axis 1is automatically defined.

This system is rotating with rcspect to the true

of date coordinate system. The Z axis, thc spin axis of
the Farth, is common to both systems. The rotation rate

is equal to the Earth's angular velocity. Consequently,
the hour angle eg of the true equinox ol date with respect
to the Greenwich meridian (measured westward in the equa-
torial plane) 1s changing at a rate ég cqual to the angular
velocity of the Earth.

2.3.4 Transformation RBetween Earth-fixed and True of
NDate Coordlnates

The transformation between Earth-fixed and true of XEFIX
date coordinates is a simple rotation. The Z axis is YEFIX
common to both systems. The angle between X., the true XINERT
of date X component vector, and Xe, the Earth-[ixed YINERT
component vector, 1is Bg, the Greenwich hour angle. The GRIRAN

Y component vectors are similarly related. These trans-

formations for X, Y., X;, Yy which are accomplished in

e

H

2.3-3



H
NONAME by the functions XLEFI1X, YEFIX, XINLRT, and YINLRT

are:

7] X
c
® Y
o]
o X.
i
4] Y.
i

cos O
T

sin 0

cos 6O

sin 0O

+.Y. sin 0
g.
Y. cos O

- Y sin ©

-+ Y  ¢cos 0

The transformation of velocities requires taking

into account the Totational velocity, Op, of the Barth-

fixed system with respect to the true ol date reference

frame.

oY,
—_— = Ye
96 _ |

g
BXi
_—= =Y,
a6

g

The following reclationghips should be noted:

3y
—2 = -x (1)
26 €

g
2y,
-2 - x, (2)
20 1

g

GRHRAN

NEFEX

YLEEIX

XINERT

YINERT



The velocity transformations arc then ORSHOT

PREDCT
X = [X. cos 8_ + ¥, sin 0 ] + Y O
e 1 g 1 g c g
Y = [-X., sin 0 + Y. cos 0.1 - X 0
e i g i 2 cp
Xi = [Xe cos Og - Yc sin Gg] - Y, 0g
Y. = [X sin 0+ Y «cos 8 ] + X. ©
1 e g C g .8
The brackets denote the part of each transform which is
a transformation identical to its coordinatc cquivalent.
These same transformations arc uscd in the PREDCT

. transformation of partial derivatives from the Barth-
fixed system to txue of date. For the kth measurcment,
Cy, the partial derivative transformations arc ex-

plicitly:
aC aC 8 C
K . k cOos Bg - —= sin eg (3)
X axe aYe
2C ac
+ .k sin 6 _ - HTE cos B 3
aX & oy g4y 8



PREDCT
clo 3C) 1C,

— sin Gg + cos Og ‘ (1)
BYi akc aYc
aC 2@ .
+ X cos 0_ - HTE sin og—}ag
9X, 9y, ]
aC oC aC,.
.k = .k cos eg - —vb-sin ﬂg (5]
X BXe BYC
5C 3C aC '
—-.—li = —_— S1in Og + —.—k— CcCOo5s Og - (6)
BYi dXe BYC
The brackets have the same meaning as before. RLFRIX
' YEFLX
These above transforms are uscd or computed ] XINERT
using the functions XEFIX, YEFIX, XINERT, or YINERT YINERT
in three NONAME subroutines: CRIRAN, OBSLOT, and GRIIRAN
PREDCT. . OBSDOT
PREVDCT

2.3.5 Computation of Og

The computation of the Greenwich hour anglc is quite GRIHRAN
important because it providcs the orientation of the Earth F
relative to the true of date system. The additional effects;

l.e,, to transform from true of date to inertial, of pre-
cession and nutation are sufficiently small that early orbit
analysis programs neglected them. Thus, this angle is the
major variable in relating the Larth-fixed system to the
inertial reference frame in which the satellitc equations

of motion are integrated.
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The cevaluation of Ug 1s discussed tn detail in

GREIRAN

the Explanatory Supplement, Ro[orcncF 1. UL s computed I
i i !

in subroutincs GRIRAN and F from the expression:

where

Atl is the integer number of days since

January 0.0 of the rcference ycar,

bt, is the fractional part of a day for the
time of interest,

§ is the Greenwich hour anglc on

January 0.0 of the refercnce year,

81 is the mean advance of the CGrecenwich
hour angle per mean solar day,

6, is the mean daily rate of advance of
Greenwich hour angle [2ﬂ+91), and

Ao is the equation of equinoxes {nutation in
right ascension).

The initial eg is obtained from a table of
values containing the® Greenwich houx angle
on January 0.0 for each year. This table is in
Common Block CGE®S and is accessed in JANTHG.

(1)

JANTHG



The cquation of equinoxes, Aa, is obtainced Lrom GRIIRAN

subroutine EPHIM, which calculates the quantity [(rom ¥
the cphemeris tape data according to the livercett [ifth- LPHER

order intcrpolation scheme uscd for the Tunar and solar

ephemerides.
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2.3.6 DPreccssion and Nutation

The inertial coordinate system of NONAME, In
which the eqﬁations of motion are integrated, is de-
fined by the truc equator and cquinox of date for
UbU of the day of epoch. However, the harth-[ixed

coordinate system i1s relatcd to the truec cquator

and cquinox of date at any given instsnt. Thus, it is -’

necessary to consider the cffccts which change the
orientation in space of the equatorial plane and the
ecliptic plane.

These phenomcna are

e the combined gravitational cffect of the
moon and the sun on the Larth'’s equatorial

bulge, and

© the effect of the gravitational pulls of

the various planets on the Harth's orbit.

The first of these affects the orientation of the
equatorial plane; the second affects the orientation
of the ecliptic plane. Both affect the relationship

between the inertial and Earth-fixed reference systems
of NONAME.

The effect of these phenomena is to cause pre-
cession and nutation, both for the spin axis of the
Earth and for the ecliptic pole. This precession and
nutation provides the relationship between the inertial
system defined by the true equator and equinox of date
for epoch and the "instantaneous" inertial system de-

fined by the truc equator and cquinox of date at any
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given instant. Lect us consider the clfect of each of EQN

these phenomena in grcater detail. = LEQUATR
NUTATE

The luni-solar cffects causc the.Barth's axis PRECES

of rotation to precess and nutate ahout the ecliptic REFCOR

pole. This preccssion will not affect the angle be-
tween the equatorial planc and the ecliptic (the
"obliquity of the ecliptic') but will affect the
position of the cquinox in the ecliptic planc. Thus
the effect of luni-solar precession is entirely in
celestial longitude. The nutation will affect both,
consequently we have nutation in longitude and nuta-
tion in obliquity.

!

The cffect of the plancis on the Barth's orhit
will cause both secular and periodic deviations.,
However, the ‘ecliptic is defined to be the mean plance
of the Earth's orbit. Periodic cffects arc not con-
sidered to be a change in the oricntation of the
ecliptic; they are considered to be a perturbation

of the Earth's celestial latitude. (See Reflercnce 1.)

The secular effect-of the planets on the
ecliptic plane is separated into two parts: planetary
precession and a secular change in obliquity. The
effect of planetary precession is entirely in right
ascension.

In summary, the secular effects on thc orienta-
tions of the equatorial planc are:
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-

o lupi-solar preccssion,

e planctary precession, and
»

W'

e a secular change in obliquity.
As is the convention, all of thesce secular ce(fects arce
considered under the hcading, "precession.™ The

periodic effects are
& nutation in longitude, and
e nutation in obliquity.

In terms of the NONAMI system, subroutine PRUCES
determines the secular cffects; i.c., the rotation
matrix which will transform coordinates from the mean
equator and equinox of date to the mean cquator and
equinox of 1650.0.

Subroutine NUTATE dectermincs the rotation matrix
to transform from true equator and equinox of date to
mean equator and equinox of date, This accounts for
the periodic effects,

NONAME has two different routines for transform-
ing from one epoch to another. These are EQUATR and
REFCOR. Both will take either mean or true coordinate
input and output in mean or true coordinatcs as ro-

quested. The same general algorithm is used in both:

o Rotate from true tc mean equator and

equinox of input date if required.
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¢ Rotate from mcan of input date Lo wmean of
1950..0,

L) Rotate from mean of 1050.0 to mean of

output datc.

e Rotate from mcan to true of output date

if required.

A1l of thcese rotations are of course donce with rotation
matrices.

Subroutine REFCOR will ftransform between any
time of day and oho on a given reference day. This
refercnce day and time are the epoch of the inertial
coordinate system of NONAMLE. It performs this trans-
form by interpolating linearly betwecen the rotation
matrices for the day of the input and that day plus
one.

2.3.6.1 Precession

The precession of coordinates fLrom the mecan
equator and equinox of one epoch ty to the mean cquator
and equinox of tq is accomplished very simply. Ex-
amine Figure 1 and consider a position described by

the vector X in the Xl’XZ’XS coordinate system which is
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Fig.1: Rotation Between Mean Equator & Equnox of Epoch i
and

¢

Mean Equator & Equinox of Epoch t
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defined by the mecan equator and cquinox of tO. Like- PRECES
wise, consider the same position as described by the

vector Y in the Y],YZ,Y3'systcm defined by the mean

equator and cguinox of t]. The expression relating

these vectors,

Y = R3 ("Z) RZ (O) R3 ('C-) K_: (1)

follows directly from inspection of Figure 1.

It should be observed that 90° - ¢ is the
right ascension of the ascending node ol the equator
of epoch ty reckoned from the cquinox of ty> 00° = 2
is the right ascension of the node reckoned from the
equinox of tl and 0 is the inclination of the cquator
of t; to the epoch of tye

Numerical expressions for these rotation angles
2,9,z were derived by Simon Newcomb, bascd partly upon
theoretical considerations but primarily upon actual
observation., (Sce References for the derivations.)
The formulae used in NONAME are relative to an initial
epoch of 1950.0:

r = Rz205 953 204 65 x 10 % + R1oo 749 2 x 107342 (2)
+ Ri78 097 x 1072033
z = %305 953 204 65 x 107% + R397 204 9 x 107*%a®  (3)
R

+ Ryg3 031 x 1074047
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6 = 52661039 997 54 x 107% - R1sa 831 8 x 10712 M) aces

-20,3

- Ryiz 902 x 10720

The angles are in radians., The quantity d is the

number of elapsed days since 1950.0.
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2.3.6.2 Nutation

The nutation of coordinates between mcan and
truc equator and equinox of datc is readily accomplished
using rotation matrices. lLixamine Jigure 1 and comnsider
a positionidcscrjbcd by the vector X in the XL’XZ’XS
system which is described by the mcan cquator antd cqui-
nox of datc. Likewisc, consider the same position as
described by the vectof 7 in the Zl,ZZ,Z3 system de-
fined by the true cquator and cquinox of date. The

expression relating these vectors,
1

7 = Ry (-eq) Ry (-89) Ry (g) X,

follows dircctly from inspection of Figurec 1.

The definition of thesc angles are:

Ep - true obliquity of date

e, -~ mean obliqulty of date

Ap - nutation in longitude
Note that e, - € 1s the nutation in obliquity.

The remaining problem 1s to compute the nutations
in longitude and obliquity. The algorithm used in

NONAME was developed by Woolard and is coded in sub-
routine EQN.
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NUTATION

I3

Mean Obliquity of Date

<
M
er = True 0Obliquity of Date
Yy = Dircction of Mean Equinox of Date
Y7 = Direction of Time Equinox of Date

Figure 1: Rotation Between Mean Equator & Equinox of Date
and
True Equator & Equinox of Date
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Woolard's solution as it appears in rcferences J
through 4 is reproduced in Tables Pa, 1b, and 1c. The
periodic terms have been rearranged in descending order
of magnitudec. The subprogram EQN computes the nutation
in longitude and obliquity by using the algoerithm in
Tables 2a, 2b, and 2c. In Table 2a tﬁc angular units
of the fundamental arpguments have becn charged to
radians and the time units have been charged to days.
Tables 2b and 2c are identical éo Tables 1b and lc
often neglecting all periodic terms with cocfficicents
less than V001 and all secular portions of the co-
efficient which are less than “001. The expressions
for true obliquity of date and nutation in right as-
cension appear in Table 2d.

The definitions of the variables used in thesc
spolutions and additional notation arc as follows:

J = Julian Iphemcris Datc of desired calculation

J. = 241 5020.5 (Julian Ephemeris Date corresponding

to 1900 January 0.5 Ephemeris Time)

T = (J-JO)/SGSZS = Julian ephemeris centuries of
36525 Ephemeris Days elapsed from J, to J

d = J-JO = Ephemeris Days elapsed from J to Jo

QN



COORDINATE SYSTEM: Geocentric, ecliptic and
mcan cqguinoyx of date:

g = mean anomaly - Moon

g' = mean anomaly - Sun

F = mean angular distancc of the Moén From its
ascending node

D = mean elongation of the Moon from the Sun

@ = Jlongitude of the mean ascending node of the
Moon's orbit

€y =~ mean obliquit% of datc

Ep 7 true obliquity of date

Ae = nutation in obliquity

Ap = nutation in longiltude

Ao = nutation in right ascension

(equation of the equinoxcs)
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TABLYE la

FUNDAMENTAL ARGUMENTS

13257198°50'56779 1 + 3300 T2

g = 296°06"1G"59 -+ + 0518 T
¢'=3358°28'33000 + 997350°02'50010 T - 50 12 - ve120 O
F o= 11°15'03U20 + 13427 82°01730U54 T - 11%56 7T - o012 T2
D = 350°44114795 + 12367307°06'51018 T - 5917 1% - upoes 17
Q = 259°10'59v79 - 5Y134°081'31v23 T + 7048 T2 + w0080 17
e~ 23°27'0826 - ' 461845T - "0050TZ + woogo TS
TABLE 1b  NUTATION 1N ORLIQUITY

Scries No,

Ae = + (4000081 T + 92100} cos (: + Q) ]
+ (-0700029 T + 0.5522) cos ( +2F - 2D 4 20) 2

+ (+0.00004 T - 0.0904) cos ( +20) 3

+ (-0.00005 T + 0.0884) cos + 20 £ 20) 4

+ (-0.00006 T + 0.0216) cos (  + g' + 2F - 2D + 20) §

# 0.0183 cos ( + 2R £ Q) 6

+ (-0.00001 T + 0.0113) cos (+ g + 27 +20) 7

+ (+0.00003 T - 0.0093) cos ( - g' + 2F - 2D + 20) 8

- 0.00606 cos ( + 2 - 2D + Q) 9

- 0.0050 cos (- g + 2T +20) 10

- 0.0031 <cos (*+ g + Q) 11

+ 0.0030 <cos (- g + Q) 12

- 0.0024 cos (-2g + 2F + Q) 13

+ 0.0023 cos (+ g + 2F + Q) 14

+ 0.0022 cos (- g + 2 - 2D + 2Q) 15

+0.0014 cos ( £ 2B 4 2D 4 20) 16

- 0.0011 cos (+ g # 21 - 2D + 29) 17

£ 0.0011 cos (+2g + 2F + 20) 18

- 0.0010 cos (- g + 2T £ Q) 19

+ 0.0008 cos ( + g! + Q) 20

- 0.0007 cos (- g + D+ Q) 21




TABLE 1b (Cont.)

Sceries No,

- 0.0007 cos (- g - 2+ Q) 22

+ 0.0007 cos (+ g + Z2g' + 2F - 2D + 20) 23

+ 0.0005 cos ( - g 1 Q) 24

+ 0.0005 cos (- ¢ + 2F + 2D+ Q) 25

- 0.0003 cos ( + g' + 2F + 20} 206

+ 0.0003 cos ( - g' + 2F + 28) 27

+ 0.0003 cos (+ g + 2F + 2D + 2Q) 28

+ 0.0003 cos ( + 2D + Q) 29

+ 0.0003 cos (-2¢g + 2D+ Q) 30

+ 0.0003 cos ( - g' 4 2F - 20+ Q) 3l

- 0.0003 cos (+ g + 2F - 2D + Q) 32

+ 00,0003 cos ( - - 2D+ Q) 33

+ 00,0003 cos ( + 27+ 2D+ Q) 34

- 0.00062 cos (+2g + 2F - 2D + 28) 35

+ 0.0002 cos ( - 2gt o+ 21 - 2b o+ Q) 36

- 0.0002 cos (+2g - 2D+ Q) 37

+ 0.0002 cos (+2g + 2F r Q) 38

- 0.0002 cos ( # g' + 2F - 2D + Q) 39

+ 0.0002 cos (-2g + 2F + 2Q) 40

TABLE 1lc NUTATION IN LONGITUDE )

Series No

(-0001737 T - 17YV2327) sin ( + Q) 1
(-0.00013 T - 1.2729}) sin ( + 2F - 2D + 29) 2
(+0.00002 T + 0.2008) sin ( + 20) 3
(-0.00002 T - 0.2037) sin ( + 2F + 29) 4
(-0.00031 T + 0.1261) sin ( + g ) 5
(#0.00001 T + 0.0675) sin (+ g ) 6
(#0.,00012 T - 0.0497) sin ( g' + 2F - 2D + 28) 7
(-0.00004 T - 0.0342) sin ( + 2F + 20) 8

2.3-21




TABLYE lc (Cont.)

Scries No.

- 0.0261 sin (+ g Q) 3]
+ (-0.00005 T + 0.0214) sin ( - g' v 2EF - 2D+ 2Q) 10
- 0.0149 sin (+ ¢ - 2h } 11
+ (+#0.00001 T + 0.0124) sin ( + 25 .- 20+ Q) 12
+  0.0114 sin (- g + 20 + 20) 13
+  0.0000 sin ( + 2N } 14
+ 0.0058 sin (+ g + Q) 15
- 0.0057 sin (- g + f) 16
- 0.0052 sin (- g + 2F + 2D + 2Q) 17
+ 0,0045 sin (-2g + 2F + Q) 18
+ 0,0045 sin (+2g - 2D ) 19
- 0.6044 sin (+ g + 2F + Q) 20
- 0.0032 sin ( + 20 0+ 2D+ 2Q) 21
+ 0.0028 sin (+2g ) 22
+ 0.0026 sin (+ g + 21 - I+ 2Q) 23
- 0.0026 sin (+2g + 2 + 2Q) 24
+ 0.0025 sin ( + 2F ) 25
- 0.0021 sin ( + 210 - 2D Y 26
+ 0,0019 sin (- g + 2F ) + Q) 27
+ (-0.00001 T + 0.0016) sin ( + 2g7 ) 28
+ (#0.00001 T - 0.0015) sin ( + 2g' + 2 - 2D + 2Q) 29
- 0.,0015 sin ( + g + Q) 30
+ 0.0014 sin (- g + 2D+ Q) 31
- 0.0013 sin (+ g - 2D + Q) 32
- 0.0010 sin ( - g’ + Q) 33
+ 0.0010 sin (+2g - 2F } 34
- 0.0009 sin (- g + 2F + 2D + Q) 35
+ 0.0007 sin ( + g' + 2F + 2Q) 36
- 0.0007 sin (+ g + g - 2D Y 37
* 0.0006 sin (+ g + 2D } 38
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TABLE 1c (Cont.)

.0006
.0006
0006
.0006
0005
.0005
.0005
.0005
.0005
0.0004

o o O O o O D o o

sin
S in
sin
sin
$in
S1n
Sin
sin
sin
sin

(+ g
(+2g

£

len T an T an T an T S S

AL
2T

/AL
25

2L
yAN

Z0

- 2D

2D

21

2D
2D

AV

- 28)
Zh o+

260)
20)
Q)
Q)
Q)
Q)
Q)
)
Q)

46
A7
48

2.3-23




vZ-9°¢C

TABLE 2a

FUNDAMENTAL ARGUMENTS

g

57168
6256

Y196
6121
47523

. 409

000

583

365

523

601

345

580

054

942

514

755

745

497

837

807

8§52

205

T228 027 134

o1y

T230

Y212

To00

To00

201

895

768

969

723

006

939 576 4 + 1120 251 689

766

235

075

217

646

372

140

225

959

Too1

T

To18

027

Too00

042

966

009

788

182

021

037

958

191

914

441

X

5¥153

1.

195

2119

T

. 3

076

~J
1te)
(93]

.180

571

965

087

x




TABLE 2b

NUTATIOHN

IN OBLIQUITY

Ae

912100
0.5522
0.0904
0.0884
0.0216
0.0183
0.0113
0.0093
0.0066
0.0050
0.0031
0.0030
0.0024
0.0023
0.0022
0.0014
0.0011
0.0011
0.0010

Cos
cos
Ccos
Ccos
cos
cos
cos
cos
cos
cCos
cos
cos
Cos
cos
cos
Cos
cos
cos

CO5

Ve N e T st T e N o T i T e T s T e T 2 W e T 2 W e, Y e W o WS e ¥

)
..!.
s o]

(+2g

(e}

aa

At

VAL

2F

FAK

- 20

2T
2F

21
2%

- 2F

2T
2F
2F

Serics No,

+ ) 1

- 2D o+ 22) 2
+ 20 3

+ 29) 4

- 2D+ 2Q) 5
o 9) 6

+ 282) 7

- 2D+ 29) 8
- 2D + Q) o
+ 2Q) i0
Q) 11

+ Q) 12

+ Q) 13

+ Q) 14

+ 2D+ 2Q) 15
+ 2D + 20) 16
- 2D + Z28) 17
+ 28) 18

+ Q) 19
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TABLE Zc¢ NUTATTON TN LONGITUNE

Series Mo,

A = + (-0Y01737 T - 17%2%27) sin ( 0y
) - 1.2729) sin ( + 27 - 2D 4 28 z
+ 0.2008) sin ( +2) 3
- 0.2037) sin ( i 2] + 28 4
+ 0.,1201) sin (° +oop! ) 0§
+ 0.0675) sin (+ g ) 6
- 0.0497) sin ( g'toF ZF - 2D o+ 20) 7
- 0.0342) sin ( vt + 28) 8§
- 0.02061 sin (4 g + 21 ) 9
+  0.0274) sin ( S optow 20 - 2D 4+ 20) 10
- 0.0149 sin (4 ¢ - 2D )N
+0.0024) sin.( 2K - 2D Q) 12
Fo0.0314 sin (- g UL +Z280) 13
1+ 0.,0060 sin ( + 2D ) 14
+ 0.0058 sin (+ g + Q) 1§
- 0.0057 sin (- g + Q) 16
- 0.0052 sin (- g 21+ 2D+ 2Q) 17
+ 0.0045 sin (-2g + 2% + Q) 18
+ 0.0045 sin (n12g - 2D ) a8
- 0.0044 sin (+ g - 2) + Q)Y 20
- 0.0032 sin ( 42F + 20+ 2Q) 21
+ 0.0028 sin (+2g ) 22
+  0.0026 sin (+ g + 28 - 2D+ 20) 23
~ 0.0026 sin (+2g AL + 20) 24
+ 0.0025 sin ( IVt ) 25
- 0.0021 sin ( + 217 - 2D 3} 26
+ 00,0019 sin (- g + 2L + Q) 27
+  0,0016) sin ( + 2p! } 28
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TABLE 2c¢ (Cont.)

- 0.0015) sin ( + 2t v 2F - 2h 4+ 2Q) T4
- 0.0015 sin ( gt + Q) 30
+ 0.0014 sin (- g + 2D+ Q) 3]
- 0.0013 sin (*» g - 2D+ Q) 32
- 0.0010 sin ( -t + Q) 33 -
+ 0.0010 sin (+2¢g - 2F ; } 34

Note: To change time units for coefficicent of lIst term, use
475 565 x 107°%4 = .01737 ¥

Table Zd: True obliquity of Date and Nutation in right ascension

Ao = AP cos €
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SECTION 2.4
LUNI-SOLAR EPHEMERTDIS

! NONAMIE uscs precomputed cqui-spaced cphemeris data
in true of date coordinates for both the Sun and the Moon.
The actual cphemerides are computed using Lverett's fifth-
order .dnterpolation formula. The interval betweén
ephemerides; i.c., the tabular interval h, is 0.5 days.

|
The NONAME ephemeris tape contains the lunmar and
solar ephemerides in true of date coordinates and the
equation of equinox. The Fformat of this tape is presented

in Volume III of the NONAME System Documentation.

This ephemeris tape was prepared from a JPL planetary
ephemeris tape corresponding to '"JPi Developwent lphemeris
Number 19,'" Refcrence 1. JPL provided subroutines READL
and GETTAP which obtain the cphemerides Lrom the JPL tape.
NONAME subroutine EQUATR was usecd to precess and nutate
the ephemerides to the truc of date system. The inter-
polation differences dj were also recompulced, using the

equations given on page 6 of thec above rcport.

2.4-1
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The formulation for Lverctt's {ilth-oxrder interpo-
latioh is

] 2 .
y(tj+shj = Y; Po(l—s)+dj bzfl-s) (1

+ d.4

5 1:11 {(1-3)

- 2. .
* Yj'*'l ]'0(.5)"'(13'.,_1 1'2(5)

4

tdiyg Fa(s)

where LEPHEM

Fqo(s)

Il
n

s

E,(s) = [(s-1) (s) (s5+12}/6

H

Fy(s) = [(s-2) (s-2) (s-1) (s) (s+1) (s42)]/120

The quantity s is of course the fractiomal interval for
the interpolation. The quantities dj are obtained from
the ephemeris tape.
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SHCTION 2.5
THE OBSLERVER

This scction is concerned with the position and

. : [ . .
coordinate systems of the obscrver. Thus it will cover

<Y geodetic statlion positjion; coordinates,
o topocentric coordin?te_systoms,

8 time rcference systems, and

o polar motion.

The geodctic station positicn coordinates are a
convenient and quite common way of describing station
positions. Conscquentiy, NONAME contains provisions for
converting to and from thesc coordinates, including the
transformation of the covariance matrix for the deter-

mined Cartesian station positions.

The topocentric coordinate systems are coordinate

systems tc which the obsexrver refercnces his observations.

The time reference systems arc the time systems in
which the observer specifies his observations. The
transformations between time relerence systems arc also
giveq. These latter are used both to convert the ob-
servation times to Al time, which is the independent
variable in the equations of motion, and to convert the
NONAME output to UTC time, which is the generally recognize
system for output.



The positions of the observers in NONAME arce reflerred
to an Larth-fixed system deflined by the mean pole of 1900.5
and Greenwich. They are rotated into the Barth<lixed svstoem
of date at cach obscrvation time by applying "polar motion',

which is considered to be slippage of the Earth's c¢rust,

2.5.1 Geodetic Coordinates

t
Frequently, it is more convenicnt to deline the
station positions in a spherical coordinate system.
The spherical coordinate system uses an oblate spheroid
or an ellipsoid of revolution as a model for the geo-
metric shape of the Earth. The BRarth is flattencd
slightly at thec poles and hulges a littlc at the
equator; thus, a cross scction of the Harth is approxi-
mately an c¢llipse. Rotating an ellipsc aboutl its
shorter axis forms an oblatce sphercid.

An oblate spheroid is uniquely defined by, specify-
ing two dimensions, conventionally, the semi-major axis
and the flattening, f, where f = Eéhu (See Tigure 1)

This model is used in the NONAME system. The
spherical coordinates utilized are termed géodetic co-
ordinates and are defined as Follows:

o ¢ is geodetic latitude, the acute angle
between the semi-major axis and a line
through the observer perpendicular to
the spheroid.
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¢ A is east longitude, the angle mcasured
castward in the cquatorial planc between
the CGreenwich meridian and the observer's

meridian.

e h is spheroid height, the perpendicular
height of thc obscrver above the reler-
ence spheroid.

Consider the problem of converting from ¢, A, and SQUANT
h to Xe, Ye’ and Ze’ the larth-fixed Cartesian coordinates.

The geometry for an X-Z planc is illustrated in

* Figure 1. The equation for this ellipsc is

A
Z
X2 + - aZ

— , 1)
(o) (1)

where the eccentricity has been determined from the
flattening by the familiar reclationship

e = 1 - (1-8)°%. (21
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The ecquation for the normal to the surface of the
elipse yiclds

dX

dz

By taking diffcrentials on equation (1) and applying

the result in cquation (3), we arrive at

Z 2
— = (1-¢7) tan ¢
X

The simultaneous solution of cquations (1) and (4) for

X yields

a cos ¢

Ji-ez sin2 ¢

From inspecction of Figure 1 wc have:

(3)

(4)

(5)

(6)

(7)

SUUANT



For an observer at a distance h lrom the refer- SQUANT

ence ellipsoid, the observer's coordinates (X,Z) become

N cos ¢ + h cos ¢ (81

X ) =
and
2 . .
Z = N {(J-¢”) sin ¢ + h sin &. (9)
The conversion of ¢, A, and h to Xc, Yc’ and Zo
is then

X, F(N+h) cos ¢ cos A
Y, = {(N+h)} cos ¢ sin A (10}
Z (N+h-cZ N) sin ¢

In the NONAME system this conversion is performed in
subroutine SQUANT,

The problem of converting from Xgs ¥ and Z_ to

e’
¢, A, and h is more complex as we cannot start with a
point on the reference ellipsoid. For this rcason the
determination of accurate values for ¢ and h recquires

an iterative technique.
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Conversion to Geodetic Coordinates

For the problem of converting station coordinates PLOOUT
in Xe’ Ye’ and Z, to ¢, X, and h we know that N is on the
order of magnitude of an Earth radius, and h is a few

meters. lence

h << N {(11)
The Earth is approximately a sp?crc, hence

e << 1. (1)
Therefore, again working in our X-Z planc (scc Figure 1),

N sin ¢ = Z. (13)
From Figure 1 (see also cquation (9)) wec have

t = Nez s%n ¢, (14)
6r, for an initial approximation,

t Z'e Z. (15)



The serics of calculations to be performed on
cach iteration 1s:

Zt = Z + t (16)
1/2
_ 2 2 2
N+h = (}(e YD zt) (73
sin ¢ = Z, (18}
(N+h)
N = a . (19)
/Zl-cz sin2 ¢ )1/2
t = Ne” sin ¢. (20)
When t converges, ¢ and h are computed from sin ¢ and
(N+h). The computation of A is obvious; it being simply
A = tan L Y, (21)
/x,

This procedure for determining ¢, A, and h is that coded
in subroutine PLHOUT.

PO



] H . - . ER N A .
There is a different procedure in subroutine HRAG
. . . eyt NPT
PREDCT for computing ¢, A, and h for o satellite. This PRI-BC
1s because the accuracy requircments are lass siringent.

+
]

This different procedure is also used in subrout ine
DRAG to cvaluate the satellite height for subroutine DENSTY.

Because ¢ << 1, we may write an approximation
to cquation (9):

Z = (N+h) (1-e2) sin ¢ . Z, o (22)
From Figure 1,

X = (N+h) cos ¢ = Vgg + Yé | (23)

and by remembering equation (2},

(24)
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ellipsoid:

The equation for the ellipsc, equation (1),
yields thc following formula for the radius ol the

DRAG
_JeZ . 2
Tellipsoid ~ Y& % 2

PREDCT

a (L-1)
,/ T e T T
vl - (27-17) (l-sin

where ¢~ is the gcocentric latitude.
Binomial Theorem, we arrive at

e (27}
2 47)

After applying the
rellipsoid -

a {1 - (E+% fz] sin® ¢~ +

o} Lt

£2 sin’ ¢'} 28)
wherein terms on the order of f3 have been neglected,
(spheroid) height may -then be calculated [yrom r, the geo-
centric radius of the satellite:
h

The
T - Tellipsoid, or (29)
2 L2, 3 2 .4, =
h = Q/Xe+yc+ze - a + (af+zal”) sin"¢”-zaf sin’¢ (30)
The sin% of the geocentric latitude, sin ¢°, is of
course ——.
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Subroutine VIVAL also requires the partial

VEVAL
derivatives of h with respect to position for the drag
variational partials computations:

ah T, 3 2

— = —— + 2 sin ¢ af + — af ) (31)

aT - T 2

1 — -

YA o 1 902

-3 afz 51n2 ¢! L. 8

' 3 r 3T,
l L

where the
r, are the Earth-fixed components of T; i.c.,
Xy, Yo, Z}.

In addition to the conversion of the coordinatoes INOUPT
themselves, NONAME also converts covariance matrices for SQUANT
the station positions to either the ¢, i, h system or PLHOUT
the Earth-fixed rectangular system, This is accomplished  VCONV
in INOUPT, SQUANT, and PLHOUT by calling VCONV to compute
k)

- ol 27 VCONY

Vour = P VP . (32)

N is the.

input covariance matrix, and P is the matrix of partials

where VOUT is the output covariance matrix, V

relating the coordinates in the output system to the

coordinates in the input systen.
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These partial derivatives (ih P) which NONAME PLUQUT
requircs arc for Ke, YO, 2c with respect to ¢, A, h and

vice versa. These partials arc:

. 1
3¢ 25 N Zen2 2,2 2 4242
X, Xczo(l ¢“)Y/ ((1-c ) (kc+}0)izc) (X, Y3)

- 1
5h _ .2 23202, 24,2 2 G227
3 = Vo2 (10T (- 0Dy (x5l

]

36 _ 2.2 2.2 2,2 2 2.2,
9z,” (XS+YSI (1-e)7 (Xg+YS) + Z0) (Xg+Y()
X _ 2.2 _ 73
3%, " =Y,/ (X+Y L) (33)
X _ 2.2
9Y, " X/ (X +Ye)
oA
=y = 0
da}
. 3
ko3 2
%% = %% (-eza(l—ez)sin¢ cos¢/(1—czsin2 ¢)2 -Zecos¢/sin“¢)
e €
3
%% = %% (—eza[l-cz)sin¢ cos¢/(1—325jn2 ¢)2 -Zecos¢/éin2¢)
e e
3 .
%% = %% (—eza(l-SZ)sin¢ cos¢/(]-3251n2 ¢)2 —Zecos¢/sin ¢)
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aX
a¢

X
A

X
oh

3Y
9¢
Y
A
aY

oh

97
3

97

oA

3L

oh

I

Ne™ cos ¢

-sing cosx § N+h - 5 5
l1-e” sin” ¢

-(N+h) cos¢d sinX

CoS¢ COSsA

-sing sini |N+h - 5
1-¢” sin™ &

(N+I) cos¢ cosh

COSd Sina

-

2_:.2
2 e"sin’ ¢
cosd h+N (1-e¢®) t 1+

]-Ozslﬂz ]

sing

The partials for converting from Xc’Ye’Z “to

o

%, A, h are computed in subroutine PLIOUT. Those for

converting from ¢, A, h to Xe’Yc’z

o are computed in

subroutine SQUANT.

3 K13

SQUANT

(34)



2.5.2 Topocentric Coordinate Systoems

The observations of a spacccraft are usually
refecrenced to the observer, and thereflore an additional
set of referecnce systems is usced for this purposc. The
origin of thesc systems, referred to as topocentric
coordinate systems, is the observer on the surface of
the earth.

Topocentric right ascension and declination arce
measurcd in an inertial system whose Z axis and {Tunda-
mental planc arc parallel to those of the geocentric
inertial-system. ‘The X axis in this case also points

toward the vernal cquinox.

The other major topocentric system is the Larth-
fixed system dctermined by the zenith and the observer's
horizog planc. This is an orthonormal system delined
by N, E, and E, which are unit vectors which point in
the same directions as vectors [rom the obscrver
pointing north, ecast, and toward the zenith. Their
definitions are:

- sin ¢ cos A

N = - sin ¢ sin A (1)
cos ¢
- sin
E = cos A (2)
0

cos ¢ coes A

[l
il

cos ¢ sin A (3)

sin ¢

2.5-14
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where ¢qf§ the geodetic Tatitude and A is the cast
tA
longitude of the obscrver (scc Scction 2.5.1).

F
s ’

;y/l These N, B, and iZ vectors are computed in
;;S?QUANT for use in PREDCT and OBSHOT.

This latter system is the one to which such
measuyements as azimuth and elevation, X and Y anglces,

and direction cosines arc rclated.

It should be noted that the rclerence systems for
range and range rate must be llarth-fixed, but the cholice of
origin is arbitrary. In NONAME, range and range rate arc

not considered to be topocentric, but rather geocentric,

2.5.3 Time Referencc Systems

Three principal time systems are currently in

use: ephemeris time, atomic time, and univcrsal time.

Ephemeris time is the independent variable in
the equations of motion of the sun; this time is the
uniform mathematical time. The corrections that must
be applicd to universal time to obtain cphemeris time
are published in the American Ephemeris and Nautical
Almanac or alternatively by BIH, the "Burcau Inter-
national de 1'Heure."

Atomic time is a time based on the oscillations
of cesium at zero field. In practice AL timc 1s based
on the mean frequency of osciliation of several cesium

standards as compared with the frequency of ephemeris
time. This is the time system in which the satellite

equations of motion are integrated in NONAME.
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H

Universal time is determined by the rotation of
the Barth. UT1, the time reference system usced in
NONAMI: to position the BRartih, is universal time that
has been correctdéd for polar motion. UTC is the time
of the transmitting clock of any of the synchronized
transmitting time signals. The [requency of a UTC
cloci is pre-set to a predicted [requency of UT2 time,
where UTZ time is universal time corrccted [or ob-
served polar motion and cxtrapolated scasdnal variation
in the speed of the carth's rotation.

The reader who is unfamiliar with thcsc time
systems should refer to one of the annual reports of
BIH.
2.5.3.1 Timc System Transformations

The time system transformations are betwecn any TDIF
combination of the Al, UT1, UT2, or UTC rcfcrence sys-
tems. These trdnsformations are computed in the
NONAME system by subroutine TDIF.

The time transformation between any input time
system and any output timec system is formed by simple
addition and subtraction or the following sct of time
differences:

6 UT2 - uUTl

o Al - UTI1

e Al - UTC
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The following equation 1s used to calculate
(UT2-UT1) for any ycar:

(UT2-UT1) = + 7022 sin 2wt-2012 cos 2wt (1) -

- ?006 sin 4ﬂt+%007 cos 4ut-‘

1 = fraction of the tropical ycar
clapsed from the beginning of the
Bessclian ycar for which the
calculation is madc.

(1 tropical year = 3065.2422 days)

This difference, (UT2-UTL}, 1is also known by the name

"seasonal variation.'

The time difference (AL-UTL) is computed by
linear intecrpolation from a table of values.
The spacing for the table is every 10 days, which
matches the increment for the "final time of cmission"
data published by the U.S. Naval Observatory in the
bulletin, "Time Signals.'™ The diffcrences Ffor this
table are determined by

(Al - UT1) = (AL - UTG) - (UT1t - UTC)

The values for (UTL1 - UTC) are obtained from "Circular D",
BIH, The differences (Al - UTC) are determined according

to the following procedure.
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The computation of (A1-UTC) 1is simple, but not
so straightforward. UTC contains discontinuitics bhoth
in epoch and in frequency because ap attemptl 1s wmade
to keep the diffcrence between a UTC clock and a UTZ
clock less than >J1. When adjustmeuts are made, by
international agrcement they are made in steps of 71
and only at the beginning of the month; i.c., at oﬁo Ul
of the first day of the month. The genceral lormula which
is uscd to computc (AL-UTC) s

(AL-UTC) = a, + aq (t—toj (2)
Both a, and a, are recovercd from tables. The valucs
in the table for ay are the values of (AL-UTC) at. the
time of cach particular step adjustment. The values

in the table for a; are the values for the ncw rates
of change betwecen the two systems alter cach step
adjustment.

Values for aq and a; are published bhoth by the
U.S. Naval Observatory and BIH.

2.5.4 Polar Motion

Consider the point P which is defined by the POLE
intersection of the Larth's axis of rotation at some
time t with the surface of the Earth. At some time t+At,
the intersection will be at some point P' which is different
that P. Thus the axis of rotation appcars to be moving rela-
tive to a fixed position on the Earth; hence the term "motion
of the pole."”
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Let us establish a rectangular coordinate system
cpntcréﬂ at a point F [ixed on the surface of the Earth
with F ncar the point P around 1900, and take measurc-
ments of the rectangular coordinates of the point P
during the period 1900.0 - 1906.0. 1t is obscrved that
the point P moves in voughly circular motion in this
coordinate system with two distinct periods, one period
of approximately 12 months and one period of 14 months.
We definc the mean position of P during this period to
be the point PO , the mecan pole of 1900.0 - 19006.0.

The average is taken over a six ycar peviod in
order to average out botbh the 12 month period and the
14 month period simultancously (since ¢ times 12 months
72 months and 72/14 = 5 periods approximately of the
14 month term). The radius of this observed circle
varies between 15-35 feet. ‘

In addition to the periocdic motion of P about PO’
by taking six ycar mecans of P in the yecars after 1900 -
1906, called Pm, there is seen to be a secular wmotion

of the mcan position of the polc away from its original

mean position Py in the years 1900 - 1906 at the rate of
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approximately 0V003Z/ycar in the direction of the
meridan 60° W, and a libration motion of a period of
approximately 24 ycars with a cocfficient of about
0V022. The short pcriodic motions over a period ol

six years average about 0VZ - 0V3.

Effect on the Position of a Station

This motion of the pole mecans that the observing
stations are moving with respect to our "Earth-[ixed"
coordinate system used in NONAME., The station positions
must be corrected for this cficct. '

The position of the instantaneous or true pple
is computed by linear interpolation in a table of ob-
served values for the true pole relative to the mean
pole of 1900 - 1905. The table increment is 10 days;
the current range of data is from BDecember 1, 1960 to
August 1, 1970. The user should be awarc of the fact
that this table is expanded as new information becomes
available. If the requested time is not in the range of
the table, the value for the closcst time is uscd.

The data in the tablce is in the form of the co-
ordinates of the true pole relative to the mean pole
measured in scconds of arc. This data was obtaincd fLrom
"Circular D' which is published by BLU. The appropriate

coordinate system and rotation are illustrated in Flgures

1 and 2.
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PA = Center of Coordinale Systiem
= Adopted Mean Pole
Xy = Direction of 1St Principal Axis (along meridian
directed to Greenwich)
X, = Direction of pNd Principal Axis (along 90°
West meridian) .
Pr = Instantaneous Axis of Rotation
X,y = Coordinates of PT Relative to PA Measured

in seconds of arc

Figure 1: Coordinates of the Instantaneous Axis of Rotation
" X3
Y3y x_LPa
N/
%
\
\
i
\
)
1
l‘ Yz
) )
r-*Xz
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Y
X,y = Rectangular Coordinates of Py Relative to P
X]X2 Plane = Mean Adopted Equator Defined by
Direction of Adopted Pole PA
Y]Yé Plane = Instantaneous Equator Defined by
Direction of Instantaneous Pole PT
‘igure 2: Rotation of Coordinate System from Adopted Mean Pole

System to Instantaneous Pole System
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Consider the station vector X in a system attached TRULY
to the Earth of the mean pole and the samc vector Y
in the "Barth-fixed" system of NONAME., The transforma-
tion between Y and X consists of a rotation of x ahout
the X, axis and a rotation of y about the Xl axis;
that 1s

Y = R, O Ry ()X : (1)
1 0 0 cos X 0 -sin X
= }0 cosy siny 0 1 0 X
0 -siny cos vy sin x 0 cos x

Because x and y arec small angles, their cosines
are set to 1 and their sines cqual to their values in
radians. Consequently,

1 0 - X
Y = ixy 1 y § X (2)
X 1
In the NONAME system, the position of the true POLE
pole is computed by subroutinc POLE. The station vec- TRUEP

tors are referenced to the truc pole by subroutine
TRUEP.
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SECTION 2.6
MEASUREMENT MOBDELING ANU RELATED DERTIVATIVES

The observations in NONAME are geocentric in mature.
The computed values for the observations arc obtatned by
applying these geometric rc]u%@onshﬁps to the computed
values for the relative positions and velocities of the
satellite and the observer at the desired time.

In addition to the geomctric relationships, NONAME
allows for a timing bias and for a constant bias to be
associated with a measurement type [rom a given statlon.

Both of these biases are optional.

The measurement model For NONAME is thercfore

Cowpg = Fp. (F, T, Tgp) * b+ Fy (r, v, T ) st (1)

where

Ct+At is the computed equivalent of the ob-
servation taken at time t+At,

T is the Tarth-Ffixed position vector of
the satellite,
?ob is the Larth-fixed position vector of

the station,
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) is the gcometiric rclationship delined

by the particular obscrvation type at

time t,

b is a constant bias on the measurement,
and

At is the timing bias associuatled with the

measurcment.

The functional dependence of ft was cxplicitly stated for
the general casc. Many of the mecasurcments are [unctions
only of the position vectors and arc hence not functions

of the satellite velocity vector T. We will herealter veler
to £, without the explicit functional dependence for rota-
tional convenience.

As was indicated carlier in Section 2.2.2, we require
the partial derivatives ol the computed valucs for the
measurements with respect to the parameters being determined

(sce also Section 2.10.1). These parametcrs are:

o the truc of date position and velocity of the
satellite at epoch. Thesc correspond to the
incrtial position and velocity which are the

initial conditions for the equations of motion,

© force model parameters,
o the Earth-{ixed station positions,
® measurement biases.
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These paramcters arc implicilly divided into a sct
o which are not concerned with the dynamics of satellite

motion, and a set B which are.

¢

i, The pa}tial derivatives associated with the param-

eters @) 1.c., station posjtions'and measurement hiascs
arc computed dircctly at the given observation times. The
partial derivatives with respect to the paramcters B; 1.e.,
%he{bpoch position and velocity and the force model param-
eters, must be determined according to a chain rule:

! L
Capt _ Crape X - (2)
3B ax, OB
where
ft is the vector which describes the satellite
position and veclocity in true of date co-
ordinates.
9Ceeat
The partial derivatives ——— arc computed dircctly at the
IX ¢ X
. . . t i . . :
given obscryation times, but the partial derivatives _:;
B

may not be so obtained. These lattcr rclate the true of
date position and velocity of the satellitc at the given
time to the parameters at epoch through the satcllite
dynamics.
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The partial derivatives Tl arce called the varia-
o
tional partials and arc obtaincd by direct numerical
integration of the variationul cquations. As will be
shown in Section 2.8.2, these qquqth?ns arc anialogous
1

i

to the cquations of motion.

Let us first consider the partial derivatives of
the computed values associated with the parameters in R.
We have

act+At ) aft th (3)

Note that we have dropped the partial derivative with
respect to B of the differential product ftAt. This 1is
because we use first order Taylor serics approximation
in our error model and hence higher order terms are
assumed negligible. This linearization is also com-
pletely consistent with the linearization assumptions
made in thc solution to the estimation equations
{(Section 2.10.1).

of
The partial derivatives —— are computed by
aX :
t odf . aft
transforming the partial dexivatives = and s
T oY

from the Earth-[ixed system to the true of datc system
(see Section 2.3.4). These last are the partial deriva-
tives of the geometric relationships given later in this
section (2.6.2). -
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In summary, the partial derivatives requirod for
3C L At '
computing the 5?7——;, the partial dervivatives ol the

4
computed value {or a given measurcment, arc the variational

partials and the Larth-fixed geometric partial derivatives.

The partial derivatives of the computed values with
respect to the station positions arc simply vclated to
the partial derivatives with respéct to the satellite
position at time t:

8C 3 F 8f.
t+At _ t _ °tt (1)

arob arob oT

where 7 is of course the satellite position vector in
Earth-fixed coordinates. This simple relationship is a
direct result of the symmetry in position coordinates.
The function £ is a geometric function of the relative
position; i.e., the differences in position coordinates
which will be the same in any coordinatc system.

The partial derivatives with respect to the biases
are obvious:

aC,

__Liéi 1 (5)
db

aC

8 (At)



In the remainder of this section, we will be con-
cerned with the calculation of the géomctric function
£, and its derivatives. These derivatives have been
shown zbhove to be the partial derivatives with respect
to satellite position énd velocity at time t and the
time rate of change of the function, %L‘

The subroutine brcakdown [or the calculation of
thesc quantitics in NONAME is as follows: 'The geometric
relationships and the gcometric partial derivatives arc
implementcd in subroutine PREDCT. The time rates of

1

change are coded in subroutinc O0BSIOT. ’

The data preprocessing also requires some use
of these formulas for computing measurcment cquiva-

lents. These are then alsce implemcnted in subroutine
PROCES.
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2.6.1 The Geomectric Relationships

The current types of observation in NONAME arc:

6 right ascension and declination
© range

0. range rate

e 2 and m direction cosincs

© X and Y angles
® azimuth and elevation.
@ altimeter height and ratce®

The geometric relationship which corresponds to each of
these observations is presented below. It should be noted
that in addition to the Earth-fixed or incrtial coordinate
systems, some of these utilize topocentric coordinate
systems. Thesc last are presented in Scction 2.5.2.

% There is currently no input format set for these

measurement types.
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Range: -

Consider the station-satellite vector: GRIIRAN
= = ¥ - 7 (1
p . T T ok }
where
¥ is the satellite position vector (x,y,z) in

the geocentric Barth-Lixed system, and
¥5b is the station vector in the same systom.

The magnitude of this vector, p, is the (slant)

range, which is one of the mecasurcments.

Range rate:

The time rate of change of this vector D is GRHRAN
PREDCT
P = T (2)  omshot

as the velocity of the obscrver in the Earth-fixed sys-
tem is zero. Let us consider that

~

p = pu (3)

where

4l

u is the unit vector in the direction of 7.
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Thus we have

5 = ou+ pu (4)

e

The qﬁantity p in the above cquation is the computed valug

for the range rate and is determined by

b

o = u- T (5)

Altimetey height:

The altimeter height and ratc are uniquc in that the
satellitc is making fthe obscrvation. While these are
actually measurements from the satellite to the surface
of the Earth, they arc taken to be mecasurements of the
spheroid height and the time rate of change of that
guantity for cbvious reasons. Using the formula {or
spheroid height previously determined in Section 2.5.1,

we have:
3 2 (z 4 6)
H = v -a_ - —a_ &£ —) :
alt e 7 e r
3 5 Z 2
+ (a_ £+ —a_ 1I7) (—)
2 T
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where |, - PRENCT

2 is the Earth's mean equatorial radius,
f is the Larth's {lattening, and
A Jis r., the z component of the Larth-Ffixad

satcllite VCCtGYi

Altimeter rate:

The altimeter ratce is determined by a chain rule: PREDCT

-

(7)

=i

Halt = VHalt

The required partial derivatives arce given in the scction
on geometric partials.
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Right ascension and declination: PRENCT

The topocentric right ascension o and declination
8§ are inertial coordinatc system measurcements as illus-
trated in Figurc 1. NONAME computcs these angles [rom
the components of the Earth-fixed station-satellite vec-

tor and the Greenwich hour angle Og‘

P
o = tanul (_&) + Og (8)

§ = sin ] (Eé) ' (9)
p .

The remaining measurements arc in the topocentric
. . ) ~oon
horizon coordinate system. These all require the N, Z,

and E (north, zenith, and cast basc line) unit vectors
which describe the coordinate system.
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FIGURE 1. Topocentric right ascension § declination angles
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Direction cosines:

There arce thrce direcction cosines associated with PREDCT
the station-satcllite vector in the topocentric system.

These arc:

>
M

9 = u + E n
m = u . N
n = 1.1 . Z

The % and m dircction cosines are observation types {or
NONAME |

X and Y angles:

The X and Y angles are illustrated in Tigure 2.
They are computed by

L
X = tan'1 (_) (11)

Y = sin ™ (m) (12)
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FIGURE 2. X and Y Angles
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Figure 3 illustirates the measurcements ol aztmuth PREDCT

and elevation. Thesce angles arc computed by:
-1 %
AZ = tan —_ (13)
mn
B = . -1
g = sin (n) (14)
2.6.2 The Geometric Partial Derivatives PREDCT

The partial derivatives for cach of the calculated
geometric equivalents with respect to the satellite positions
and velocity arc given here. All arc in the geocentric,
Earth-fixed system. (The TS refer to the larth-fixed
components of 7.)

Range:
oT. o)
A
Range rate:
3p 1 [, op s
— = -, - (2)
E}Ti P : P
3¢ .
? = 33 (3)
Bri 8]

2.0-15



Zenith

,\Spaceaﬂ

South

North . ; i
Observer//) \\\*::Z\XM//////
West

—-—ﬂ-"‘.—."-

FIGURE 3. Azimuth and Elevation Angles

2.6-10



Altimeter rangc.

a”a]t 1

P WL -
= = (Z.ac fo3a,f ) (; (4)
i

oT T T

Bﬁ - 3 -
alt . VH,lt)- T (5)
3T . 9T &
1
32 1 1 | ar. r. T,
_elt TV s 2] (6)
3r. 9T. TioT. rZ
J J
;
2 Z 2 [2 \
+ 2a f+3a ¢f -] - 6a_ f[7 |- X
& &
T T
-1 . T A 2 Z7T1T. T
R Bk s W i
rz r or T Brj r3

PREDCT



9 PREDCT

A o2 ;
iGﬁa £+ 3 a, I ) 18 a, I (T) X i
1 3z Z T. 1 23z Z X
— - 1 - - J
r or r3 r arj r3
My gy
Bri 8T1
Right Ascension:
o ‘pz '
T 7
T 7 .
RS
da P
1
—c = @
9xy VP14 P2
96
—= 0 (9)
8T3
Declination:
28 - p1 P
o0 173 (10)

5T 7
1 02 p 2+p
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Direction Cosines:

9L

T

Jdm

Brj

an

or .

Fre———

Z. - nu.]
1 i
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X and Y Angles:

aXa _ nhi-RZi

oy o (1-1n")

Ya ) Ni-mu:i
E)Ti p\/_l"mé_-l
Azimuth and Elevation:
A mB. - 4N.
__?'_. = _._._:5'.._....._.'......?.'.
T pv/1-nZ "

aEg ] Zi—nui

Bri p(l-nZ)
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2.6.3 The Time Derivatives

The derivatives of each measurement type with
respect to time is presented below. A1l are in the
Earth-fixed system.

Range:

©
]

(o]

=

(1)

Range Rate:

The range rate derivative deserves special atten-

tion. Remembering that

5 = T, (2)
We write

o= u-p - (3)
Thus

o= d.F+d .5 (4)
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Because

‘A

p = — (pu) = pu + pu (5)

we may substitute in Equation 4 above' for a:

- 1 M : * oA -~ ~ 2
p= —~f(p - -p-pu - p)*+up (6)
p
0T, as
p.—. u‘r—‘-)- '(7]

we may write

©p) (8)

In order to obtdain p, we use the limited gravity potential
(see Section 2.8.3): '

2;

—

GM C a
(1 20 e

I‘.
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The'gradient of this potentiai with -respect to the Earth- ORSDOT
fixed position coordinates of the satellite is the part of
p due to the geopotential:

: 2
aU GM 3a C z
——= - [1 - “__E_?Egﬂ.(s sin2¢— 1-2 — )| 75
T, T 2T, Ty

{10}

" We must add to this the effect of the rotation of the
coordinate system., (The Earth-fixed coordinate system
rotates with respect to the true of date coordinates with

a rate Bg, the time rate of change of the Creenwich hour
angle.)

The components of p are then

. Ll Ll S 1

Py - g;“ [x cos Gg y sin eg] Gg T, eg {11)
1

" U . . . . .

Py = - + [~x sin Bg + y cos eg] Bg - Ty eg (12)
2 .

. ol alu -

93 = —_— T e (13)

The bracketted quantities above correspond to the coordinate OBSDOT
transformations coded in subroutines XEFIX and YEFIX. These XEFIX
transforms are used on the true of date satellite velocity  YEPIX
components £ and }. The interested reader should refer to

Section 2.3.4 for further information on transformations

between Earth-fixed and true of date coordinates.

2.6-23



it should be noted that all quantities in this

formula, with the exception of these quantities bracket-

ted, are Barth-fixed values.

(The magnitude v is in-

variant with respect to the coordinate system translorma-

The remaining time derivatives are tabulated

tions.)

here:
Right ascension: 6 =
Declination: .8 =

Direction Cosines: & =
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X and Y angles:

Azimuth:

Elevation:
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SECTION 2.7
DATA PREPROCESSING

The function of data preprocessing is to convert
and corre¢t the data. These corrections and convarsions
relate the data to the physical model and to the co-
ordinate and time rcference systems used in NONAMIL.

The data corrections and conversions implcemented in
NONAME are to

e transform all observation times to Al time
at the satellite

@ refer right ascension and declination ob-
servations to the true equator and equinox
of date.

0 correct range measurements for transponder

delay and gating effects

) correct SAO right ascension and declination
observations for diurnal aberration

o correct for refraction

e convert TRANET Doppler observations into
range rate measurements.

These conversions and corrections are applied to the data
on the first iteration of each arc. BEach of these pre-

processing items is considered in greater detail in the
subsections which follow.



2.7.1 Time Preprocessing

The timec refercnce system uscd to specify the
time of each observation is determincd by a time
identifier on the data record. This identifier also
specifies whether the time rccorded was the time at
the satellite or at the observing station.

The preprocessing in NONAME transforms all DODSRD
observations to Al time in either GLOSRD or DODSRD, GLEOSRD
If the time rccorded is the time at the station, it PROCES

is converted to time at the satellitc. This con-
version is applied in subroutine PROCLS using a cor-
rection equal to the propagation time between the
spacecraft and the observing station. The station-
satellite distance used for this correction is computed

from the initial estimate of the trajectory.

There is special preprocessing Ffor right GROSRD
ascension and declination measurements from the GLOS
satellites when input in National Spacé Science Data
Center format. If the observation is passive, the
image recorded is an observation of light rcflected
from the satcllite and the times are adjusted for
propagation delay as above. If the observation 1s ]
active, the image recorded 1s an observation of light
transmitted from the optical beacon on the satellite.
The beacons on the GEOS satcllites are programmed to
produce a sequence of seven flashes at four second
intervals starting on an even minute. For the active
observations, the times are sct equal to the programmed
flash time with a correction applied for known clock

errors {Reference 1), . plus half a millisecond, the time
allowed for flash buildup.
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The. corrections for tﬁe active observations are
applied in GEOSRD, which calls SATCLC and SATCL2 to
evaluate the corrections for GEOS 1 and CEOS 2, re-
spectively. These routines compute the correction by
simple linear interpolation in a table of known errors
in the satellite on-board clock.
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2.7.2 Reference Systen Conversion to True of Date DODSRD
LEQUATK
GEOSRD

The camera observations, ripht ascension and.
declination, may be input referred to the mean cquator
and cqvinok'of date, to the true cquator and cquinox
of date, or to the meanm cquator and cquinox of somc
standard epoch. Thce NONAME system transforms these
observations to the true cquator and cquinox of date
in subroutines GEOSRD and DODSRD. The nccessary
precession ‘and nutation is performed by subroutine
EQUATR.

2.7.3 Transponder Delay and Gating Effccts

The range observations may be correcied for . PROCES
transponder delay ox gating errors. If requested, the

NONAME subroutine PROCES applics the corrections.
The transponder delay correction is computed as
a polynomial in the range rate:
Ap = a, + a é + a (5)2 (1)
0 1 P
where ag, 2y, and a, depend -on the characteristics of

the particular satellite.

A gating error is due to the fact that actual
range measurements are either time delays between
transmitted and received radar pulses or the phase
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shifts in the modulation of a rTcceived signal with PROCES
respect to a coherent transmitted signal. Thus there

is the possibility of incorrcctly identifying the

returned pulsc or the number of integral phasc shifts.

The difference between the observed range and the com-

puted range on thc first iteration of the arc is used

to determine the appropriate correction. The correction

is such that there is less than half a gate, where the

gate is the range equivalent of the pulse spacing or

phase shift. The appropriate gatc of coursc depends

on the particular station.

2.7.4 Diurnal Aberration

Right ascension and declination may be corrected PROCES
for diurnal aberration, which is an effect duc to the
rotation of the Earth. The correcctions for thesc are

given by
s .
Ao = 070213 r , cos ¢' cos h  sec § (1)
Aé = 0V320 Top COS ¢' sin hs sin § (2)
where
Tob is the geocentric distance in units of

Earth radius (assumed to be 1).

o' is the geocentric latitude of the station,
and
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h is the hour angle PROCES’

8 as shown in the formula is the observed
declination.

This and related topics are discussed in great detail
in the Explanatory Supplement.

This corrcction is appliced in subroutine PROCES.

It should be noted that this applies only to SAO
network stations. '

2.7.5 Refraction Corrcctions

The NONAME system can apply corrections to all PROCLS
of the observational types significantly afifccted by
refraction. The corrections requested arc applicd by
subroutine PROCES. '

Right Ascension and Declination:

The right ascension and declination measurements

for SAQ stations may require correction for parallactic
refraction:

¢ = o' - AR sec &' sin P (1)
k23

[rg)
il

§' - AR cos Pa (2)

2.7-6



where ' PROCLES
AR is the differential refraction;

Pa is the parallactic angle; i.e., the angle
at the object in the pole - objecct -

zenith; and

a' and &' are the observed values ol the right
ascension and declination.

The differcntial refraction AR is computed by (Reference 2)

tan Zo '
AR = 435%(0 ——— . 1 - exp (-0.1385 p cos ZO) (3)
p cos Z
o)
where
Z is the observed zenith angle,
p is the topocentric range in kilometers, and

AR is the differential refraction in minutes
of arc
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Range: ' PROCES

The refraction corrcctions Ap applied to range
observations is computed as follows:

2.77n, .
Ap = (4)
328.5(0.026+sin L)

where
E£ is the clevation angle computed from the
initial estimate of the trajectory
and
ng is the surface index of refraction; iFf this
value is not specified, it is assumed to
be 1.
Range Rate:

For range-rate, the correction Ap is derived from
the range correction:

. 2.77n_ cos Eg .
Ap = 2 E, (5)
328.5(0.026+sin Egjz
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where PROCES
E£ is the computed rate of change of clevation.

For observations of range or range rate from RERTON
certain stations, there is a correction to account for
the mean daily variation of the surfacc index of re-

fraction. This correction, which is a correcction to

the product(%ﬁ%zg-ns), is computed by subroutine RETFION

by linear interpolation in an hourly table.

Elevation:

For elevation observations the corrcection Aﬁﬁ PROCES
is computed as follows:

3
n. 10

_ s ‘
AE£ = (6)

16.44+930 tan E2

Azimuth is not affected by refraction.

Direction Cosines:

The corrections AL and Am are derived from the
elevation correction:

AL

n

-sin A sin (E,) AE, (7)

Am

-cos A,sin (Ez) AEQ (8)



where A, is the azimuth angle computed from the initial PROCHS
estimate of thc trajectory.

X and Y Angles:

For X and Y angles the corrections AX and AY are
computed as follows:

sin A, AE
774
AXa - .2 s 2 2 1 (9)
(sin Eg + sin ﬁzbos hg)

R cos A,sin E, AE , .
AY, = - z LR | (10)

_ 2 2
V 1-cos Azcos E£

Note that these are also derived from the clevation correction.

2.7.6 Tranet Doppler Observations

TRANET Doppler observations are reccived as a GEOSRD
series of measured frequencies with an associated base
frequency for each station pass. Using the following
relationship, the NONAME system converts thesc obscrva-
tions to range rate measurements in subroutine GEOSRD:

. c(FB—FM)
p = (1)
Fy
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where
Fy
F
and
C

is the measured frequency,

is the base frequency,

is the velocity of light.
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SECTION 2.3
FORCE MOBDLEL AND VARTATTONAL LEQUATIONS

A fundamental part of the NONAME system requires
computing ﬁositions and velocities of the spacecraft
at each observation time. The dynamics of the situa-
tion are exprecssed by the equations of motion, which
provide a relationship between the orbital elements
at any given instant and the initial conditions of
epoch. There is an additional requiremcnt for varia-
tional partials, which are the partial derivatives of
the instantaneous orbital elements with respect to the
parameters at epoch. These partials are gencrated
using the variational equations, which are analogous

to the equations of motion.

2.8.1 Eguations of Motion

] In a geocentric inertial rectangular coordinate
system, the equations of motion for a spacecraft are of
the form

SE
1

+

3]

(1)

where

sl

is the position vector of the
satellite.
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U is GM, where G is the grévitational constant
and M is the mass of the Earth.

=

is the acceleration causcd by the
asphericity of the lLarth, extra-
terrestrial gravitational [orces, atmos-

pheric drag, and solar radiation.

This providés a system of second order cquations
which, given the cpoch position and velocity components,
may be intcgratod to obtain the position and velocity
at any other time. This direct integration of thesc
accelerations in Cartesian coordinates is known as
Cowell's method and is the technique used in NONAME's
orbit generator. This method was selected for its
simplicity and its capacity for easily incorporating
additional perturbative forces.

There is an alternative way of exprcssing the
above equations of motion:

T = VU + Ay + Ay (2)

where
U is the potential field due to gravity,

_AD contains the accelerations due to drag,
and

KR contains the accelerations due to solar
radiation pressure,.
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This is, of coursc, just a regrouping of terms coupled
with a recognition of thec ecxistence of a potential ficld,
This 1s the form uscd 1In NONAME.

_ The inertial coordinate system in which these
equations of motion arc intcgrated in NONAMI is that
system corresponding to the truc of date system of ovo
of the epoch day. The complete definitions for these
coordinate systems (and the Harth-fixed system) arc
presented in Section Z.3. '

The evaluation of the accclerations for % is * F
controlled by subroutine F. This cvaluation is perférmed REFCOR
in the truc of date system. Thus there is a requirement
that the inertial position and velocity output from the
integrator be transformed to the true of date system Ffor
the evaluation of the accelerations, and a requircment to
transform the computed accelerations from the true of date
'system to the inertial system. These transformations are
performed by subroutine REFCOR ({(which controls the pre-
cession and nutation routines, PRECES and NUTATI) and is
controlled by subroutine F.

\

2.8.2 The Variational Equations

The variational equations have the same relationship  VEVAL
to the variational partials as the satellite position vector
does to the equations of motion. The variational partials

are defined as the th where E{

.. . 9B ) . . .
position and velocity of the satellite at a given time; i.e.,

spans the true of date
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Xy = {x,y,z,x,y,2} ; ) VEVAL

and B spans the epoch paramcters; i.c.,

X 5¥ s 2q the satellite position vector at
epoch
X 3Y o2 the satellite velocity vector at
epoch
CD the satellite drag factor
Cr the satellitc emissivity factor
Cnm’snm gravitational harmonic coefficicnts ;

for each n, m pair being deter-
mined.

Let us first realize that the variational partials
may be partitioned according to the satellite position
and velocity vectors at the given time. Thus the re-

quired partials are

3% oF
—_, — (1)
5 9B
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where | VEVAL

T is the satecllite position vector (X,y,z)
in the true of date system, and
T is the satellite velocity vector (x,y,z)

in the samc system.

The first of these,

integration of

a* (3?) 2
at’ \3%

or rather, since the order of differentiation may be

ﬂ%’ can be obtained by the double

exchanged,

(3)

@ | @
m” M1:

Note that the second set of partials, %2, may be obtained
. B
by a first order integration of az. Hence we recognize
o B = :
that the quantity to be integrated is i%. Using the second
08

form given for the equations of motion in the previous
subsection, the variational equations are given by
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35T 9 ' VIIVAL
— = — (VU + K, + R.) (4)
38 oF R )]
where
U is the potential Fficld due to gravitatlonal
gffects

H

AR is the acceleration due to radiation pressure

A is the acceleration due to drag

The similarity to the equations of motiom 1s now obvious.
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At this point we must consider a few items: VEVAL

) The potential field is a function only of
position. Thus we have !
? 5U 5 22y ar
_ - E ;’ m (5)
N 3 .
o 9T; m=1 \%Ti ¥y %k
¢ The partials of solar 'radiation pressure

with respect to the geopotential co-
efficients, the drag cocfficient, and the
satellite velocity are zero, and the par-
tials, with respect to satellite position,
are negligible.

o Drag is a function of position, velocity,
and the drag coefficient, The partials,
with respect to the geopotential cdcfficients
and satellite emissivity, are zero, but we

have
BA, A X, ok
t
2 - _:2 — 2 (6)
3B NI TN ‘
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Let us write our variational cquations in matriX VEVAL

notation.

2c

We definc

to be the number of epoch parameters in B8

. . - T ‘
is a 3 x n matrix whose j h column vectors

arc 91
8.
BJ

is a 3 x 6 matrix whose last 3 columns are

zero and whose first 3 columns are such

that the i, jth element is given by

2 u -
gri al"j

is a 3 x 6 matrix whose jth column is defined
A
by D
th’
J

is a 6 x n_matrix whose iLh TOW 18§
axt
9B
L] - J -
variational partials.

given by Note. that X, contains the

is a 3 x n matrix whose first six columns

are zero and whose last n-06 columns are

such that the i, jth

—gﬂr(VU + A, + A,). Note that the first six
BBj D R

element is given by

columns correspond to the first six elements. .
of B which are the epoch position and velocity.
(This matrix contains the direct partials of

E£ with respect to §.)
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We may now write

F

it

[UZC N Dr] Xm * £ (7)

This is a matrix form of the variational equations.

Note. that UZC’ Dr’ and [ are cvaluated at the
current time, whereas Xm is the output of the integra-
tion. Imnitially, the first six columns ol X, Plus
the six rows form an identity matrix; the rest ol the
matrix is zero(for i=j,Xm. =1; for i#j, X _=O).

1,] 1,]

Because ecach force enters into the varlational
equations in a manner which depends directly on its
model, the specific contribution of cach force is dis-
cussed in the section with the force model. We shall,

however, note a few clerical details here.
3

The task of computing these variational equations
in the NONAME system is largely accomplished by sub-
routine VEVAL. The matrix dimensions given were for
notational convenience; empty rows and columns are not
programmed.

The_above equation is also applied in subroutine
PREDCT to ‘''chain the partials back to cpoch," that is, to
relate the partials at the time of each set of measure-
ments back to epoch.

2.8-9
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The matrix for Eig_, X, above, is initialized in ORBIT
3B
subroutine ORBIT.
The contributions of subroutines DENSTY, DRAG, | DENSTY
EGRAV, F, and RESPAR will be discussed as part of the DRAG
following subscctions. The matrices UZC and [ will B
be referred to in each subscction as though the par- RESPAR

ticular force being discusscd had the only contribution.
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2.8.3 The Earth's Potential’

The Earth's potential is most conveniently ex- EGRAV
pressed in a spherical coordinatc system as is shown
in Figure 1. By inspection:

) ¢, the geocentric latitude, is the angle
measurcd from OA, the projection of OF in
the X-Y plane, to the vector OP.

& A, the east Jongitude, is the angle measured
from the positive direction of the X axis
to OA.
o r is the magnitude of the vector OP.
Let us consider the point P to be the satellite RGRAV

position. Thus, OP is the gcoceontric Barth-fixed satellite
vector corresponding to T, the true of date satellite
vector, whose components ave (X,y,z). The relationship
between the spherical coordinates (Earth-fixed) and the

satellite position coordinates (true of date) is then
g¢iven by

T = V&Z + yz v 2% (1)
z

¢ = sint (~) (2)
T

(32

>
It
ct+
e
[
1
l-—l
s
o=
e
:
O
1e]
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Figure 1: Spherical Coordinates
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where

IPAVY
& is the Totation angle between the true of date EGRAY

system and the Tarth- fixed system {sce Scction 2.5.4).

The Earth's gravity ficld is represented by the

normal potcntial of an cllipsoid of revolution and

small irregular variations, expressed by a sum of

spherical harmonics. This formulation, used in the

NONAMLE system,

n .
U - 1 T ]11 sIn ¢) (”nncns,inl + Sﬂﬂl $1n mi S

whera

M

nmax

is

nmax

n=72

is

is

is

is

the

the

the

m={}

(4)

universal gravitational constant,

mass of the earth,

geocentric satellite distance,

upper Limit for the summation (highest degree),

Earth's mecan equatorial radius,
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é! is the satellite gcocentric latitude,
A is the satellite east longitude,

Pﬁ(sin é#) indicate the associated six Legendre
' functions, and

i '

Cam and Sam are the denormalized gravitational

coefficients.
|
The relationships between the normalized co-
efficients (C §hm) and the denormalized coefficients

nm?
are as follows:

(n-m) ! (2n+1) (2-8 ) } /2
C - om -C- (5)
nm (n+m) ! nm
where
8 is the Kronecker delta,

om

60m=1 for m=0 and 6om=0 for m#0.

A similar expression is valid for the relationship
between §hm and Snm’ This conversion factor is cCom-

puted by the NONAME system function DENORM.
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The gravitational accelerations in true of date co- LEGRAV
ordinates (%X,¥,%Z) are conputed from the geopotential,
U(r,$,1), by the chain rule; e.g.,

al 3T 3y 3¢’ AU a9

X = —_ e e e b e (6)
3r  3x 349X  dA 3xX -

The accelerations y and z are detcermined likewise. The
partial derivatives of U with respect to r, ¢, and X arc
given by '

50 aM { pnax (aen n :
— = — |1+ :i: ,"9 2{: (C,,, cos mi (7}

ar T L n=2 Wy

\ 3 oM “ng %ﬁn n
— = — (S, cos mr - C_ sin mA) (8)
o R (r Lt nm nm
m Pﬁ (sin ¢"
- gy Tmax aen n
_— = ji: — ji: (C,, cos ma + S__ sin md) (9)
t
36 o n=2 ‘% m=0



The partial derivatives of r, &', and X with respect to BURAV
the true of date satellite position components arc

— = _1 _ (10)
ar. T

1
2 1 zri 3z
—_ = —_— - ——— (11)
Brl ?&2+y2' T arl
3 A 1 Yy y X
—_—— = —— — e e— (12)
arl X +y ari X Bri

i
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The Legendre functlons arc computed via recursion FGRAV
formulae:

Zonals: m=0
PO (sin @) = 3 (2n-1) sin ¢' P® . (sin ¢) - (13)
n in ¢ ; sin ¢ n-1 in ¢ S
(n-1) Po_, (sin ¢)
Pg (sin ¢ = sin ¢ (14)

Tesserals: m#0 and m<n

. . -1 ..

Pﬁ (s;n,¢ﬂ = Pﬁ_z (sin ¢} + (2n-1) cos ¢'PE_1 (sin” &Y
(15)

p% (sin ¢ = cos ¢ (16)

Sectorals: m=n

P" = (2n-1) cos ¢‘Pg:% (sin ¢9 (17)
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The derivative rc]atioﬁship is given by LGRAV

iﬁ (Pﬁ (sin ¢)> = P$+1 {(sin ¢) - m tan ¢‘Pﬂ{sin )
a¢ (18)
it should also be noted that multiple angle EGRAV
formulas are used for evaluating the sine and cosine VEVAL
of mA.
These accelerations on the spacecraft arc com-
puted in subroutine EGRAV. Arrays countaining certain
intermediate data are passed to subroutine VEVAL [or
use in the computations for the variational equations.
These contain the values for:
M /a V!
— |-£ (19)
T T
m .
5 Pn (sin ¢)
sin ma
COS MA
m tan ¢

for each m and/or n.
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The following discussion relates primarily to VIVAL
the mathematical formulations utilized in subroutine .
VEVAL.

The variational ecguations requirce the computation

of the matrix UZc’ whose elements arc given by

U =
2¢/5 5 ar, 2T
where
r,o= {x, y, 2z}, the true of datc satcllite position.
5} is the geopotcntial.

Because the EBarthi's field is in terms of r, sin ¢,

and A, we write
3

7 3y
. Upe = G Uy Gy~ Z 7o S (21)
k=1 k

where

e, ~ Tranges over the elements r, sin ¢', and X
U, is the matrix whose i, jth element is given
by 22 U
ae. de.
1 J
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and

1 s the matrix whose i, jth clement is given VEVAL
by °°i
3T,

J .

C,y is a set of threc matrices whose i, jth

elements are given by 82 }
?rl arj

We compute the sccond partial derivatives of the

potential U with respcct to r, ¢, and A:

) T ax n
27U 26M GM
— 33 Z (n+1) (ne2) ( ) Z (22)
3T T m=9
. m : 1
(Cnm cos mia + Snm sin mA) ?n (sin ¢
BZU nmax n
- E i (n+1) Eiﬁ (C.. cos m\ (23)
] o nm
arod n=0
o
- - 1
+ Snm sin m\) m—~(Pm (sin ¢"))
ad'
X GM nmax I ,
= (n+1) Z m (24)
dT3A

T
n= 2

_c - . e R .
( an S0 mA Som €08 mA) ln (sin &0
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Z. WM A 5 n

g d GM {4
e s Z — E ' ~On < .
a@, " . (r) (L“m COw mi + Sop B! mA )
n==z n=o ’
(25)
aZ mn
e » 5 1 b
3(5,2 (1“ [.J]l (p})
BZU GM npax .\ n )
’ ‘e s :
= — m (—C“nl S1m mh (26)
e . it .
aPIA T pe2 T =0
9 m
+ 5 cos m) — (Pn (sin &ﬂ
ddl
Z JLMA A Hoon
& u GM = f .
G 2 27
—— = - ——— Arm— N N 5 o S )
~ . 7 (r) 5 (C,y, €05 mh (27)
n=2 m=0
+ 8 s1n mh) p (sin o)
nm no-
where
d nt . ' m+1 ) ' m . '
— P‘j1 {sin @)) = }31 (sl ¢ - m tan ¢ Pn {sin ¢
ry gt
¢ (28)

2.8-21

VIVvAL



"2 .
d -
EqTZ (P;: (sin ri;')) = !’];;"?‘(siu $) - (m+ D) tan 1‘2“ (sin ¢')
- m tan ¢ {P$+l (sin ¢) - m tan ¢‘Pﬂﬁsin )
- m sec’ ¢ P;’; (sin ¢") (29)
The elemcnts of U, have almost been computed.
What remains is to transform from (r, ¢, A) to
(r, sin ¢,1). This affects only the partials involving
¢
ouU al 3 ¢!
S (30)
3 sin ¢ 36! 5 sin ¢
BZU a ' E)ZU ¢! al Bzd)'
= o — —r————
. 3 sin ﬂZ 5 sin ¢ aﬁz 2 sin ¢ 8¢ ? sin ﬁz
(31)
where
¢
—_— = sec ¢ (32)
3 sin ¢
324)' 3
————>s = sin ¢ sec” ¢ (33)
3 sin ¢
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- TFor the C

sin ¢ and A are obtained from the usual formulas:

r =
Z
sin §' = —
T
1Y
A = tan 1(~) - B
x g

We have for Cl:
oo h
ari T
9 sin ¢ -2 T 1 3z
i
= 3 - . e
or T T Bri
aA 1 3y 99X
= P (. - y
2,2 n
ar. X +y 8ri ori
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(35)

(36)

(37)

(38)

(38)
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The CZk are symmetric. The necessary elements VEVAL
are given by

321“ T. T 1 oar.
= .E_gl - T (39)
8Y.0T. Y T 3T,
1] J
32 sin ¢! 3z r, T, 1 9z 32 Y,
= ____%__l - ig ¥ * T, + z
BT, OT T r 13 3 . 3
1 J ]
(40)
5 -
a7 - 2%, 3y ax
= T Y Y (413
9T, 8T (xZ+y%) 91 ar.
j i
1 ' ox 3y gy - 9X
+ - VR — r————
2 .2
+ Y. 37T, 3Y. 9T,
rr i % i

If gravitational constants, C, . o¥ S,m @re being RESPAR
estimated, we require their partials in the f matrix
for the variational eguations computations. These

partials are

3 U GM [a)" -
- —J= (n+1) — -j cos (mr) P (sin $) (42)
aC ar T T
nm
3 5u GM fa\" o
- — = n u—-(—% sin (mA) P (sin ¢) {43)
aC I r \r _
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3 3U GM a,n , ’ a1 RESPAR
B . (#% cos {(mX) P; (sin ¢)
0C 3¢ roAr
- m _tan ¢,l Pﬁ (Si'n ¢|)] . (44)

The partials for Snﬁ are identical with cos (mA) re-
placed by sin (mA) and with sin (mi) rcplaccd by
~cos (mA).

These partials are converted to inertial to true of
date coordinatcs using the chain rule; e.g.,

) ol d -oU\ 3vr d -2U\ a8 A
— — = —_— — E&-S)
BCnm ax BCnm ar§ 3x BCnm dAf aXxX
9 -oU \ 3¢
+ S
3Cnm 9¢') ox

This particular set of computations is performed by
subroutine RESPAR. The items which EGRAV computes for
VEVAL are also available to RESPAR and are therefore
utilized.
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2.8.4 Solar and Lunar Gravitational Perturbations

The perturbations caused by a third body on a

satellite orbit are treated by defining a function,

Rd’ which is the third body disturbing potential.

This poténtia] takes on the following form:

where

Hi

M

GMmd

Ta

is the mass

2 -1/2 —E
2T T T
S 4 5 - — 8 (1)
Ta Ty Ta }

of the disturbing body.

is the geocentric true ol datc position

vector to the disturbing body.

is equal to the cosine of the

enclosed angle between T and ?d'

is the geocentric true of date position
vector of the satellite.

is the universal gravitational constant,

and

is the mass of the Earth.

The third body perturbations considered in
NONAME are for the Sun and the Moon. Both are
computed in subroutine SUNGRV by
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o
il

|

1

o’

=

=

o,
91 &
[

d Ta \ra-

- where

ful

it

=

1

H |
fa )

s}
ol
i
t—g
¥
]
]
\-{
—
fa
(V2]
*
=

These latter quantitices, d and D as well as DZ/3

for the Moon are passed to subroutine VEVAL for the

variational equation calculations. VEVAL computcs

th

the matrix UZC whose i, jJ elements is given by

Rd _ GMmd Bri . Sdi di
2/3

ari grj Dd arj Dd

This matrix is a fundamental part of the variational
equations.

2.8.5 Sclar Radiation Pressure

The force due to solar radiation can have a
significant effect on the orbits of satellites with
a large area to mass ratio. The accelerations due
to solar radiation pressure are formulated in the
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NONAME system as

where

= -ve,hsp (1)

is the eclipse factor, such that

v=0 when the satellite is in the Larth's
shadow

v=1 when the satellite is illuminated
by the Sun

1s a factor depending on the reflective
characteristics of the satellite,

is the cross scctional area of the

satellite;
is the mass of the satellite,

is the solar radiation pressure in the
vicinity of the Earth, and

is the (geocentric) true of date unit vector
peinting to the Sun.

~

The unit vector T 1s determined as part of the

luni-solar ephemeris computations.
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The eclipse factor, v, is determined as follows:
Compute

where T is the truc of date position vector of the
satellite. [f4 D is positive, the satellitc is always
in suniight. Tf D is negative, compute the vector fk

?ﬁ= T -Dr_. (3)

Fal

This vector is perpendicular to r If its magnitude

.
is less than an DNarth radius, or rather if

P..P.<a? (4)

‘the satellite is in shadow.

The satellite is assumed to be specularly
reflecting with reflectivity p ; thus

C, = 1l+p (5)

When a radiation pressure coefficient is being

determined; i.e., CR’ the partials for the £ matrix
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in the variational equations computation must be

computed. The ith element of this column matrix 1s

given by
A
e - 4y ——p
fl = v 15 ]f‘5
me 1

These computations for the cffects of solar

radiation pressure are done in subroutine F.

"2.8.6 Atmospheric Drag

A satellite moving through an atmosphere ox-
periences a drag force. The acceleralion due to

this force is given by

1 A

A o= - —Cpn == p V_ V
D 2 I M D 'r v
S
where
C is the satellite drag coefficient

D

T
VEVAL

(6)

DRAG

(1

AS is the cross-sectional area of the satellite
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m is the mass of the satellite,

Pp is the density of the atmospherc at the
satellite position, and

<

is the velocity vector of the satellitce
relative to the atmosphere,

Both AS and C,, are treated as constants in NONAMLE.
Although Ag depends somewhat on satellite attitude, the
use of a mean cross-sectional ares does not lead to
significant errors for geodetically useful satellites.
The factor Cj; varies slightly with satellite shape and
atmospheric composition. However, for any geodetically
useful satellite, it may be treated as a satellite
dependent constant.

The relative velocity vector, ?}, is computed
assuming that the atmosplicre rotates with the Darth.
The true of date components of this vector a:e then

T g 7 (2)
y. = ¥ - ég X (1)
2. = 2 O]

-as is indicated from Section 2.3.4, the subsection on
transformations between EBarth-fixed and true of date

systems., The quantities i, &, and»é are of course the
components of ?, the satellite velocity vector in true

of date coordinates,
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The drag accelerations arc computed in the DRAG
NONAME system by subroutine DRAG, with the atmospheric DENSTY
density Pp being cvaluated by subroutinc DUNSTY. In
addition, subroutine DRAG computes the direct partials
for the f matrix of the variational cquations when the
drag cocfficient Cp 1s being determined., Thesc partials
are given by

1A, .
f = - g. ;m Pp Vo Vo (5)
v S .
When drag is present in an orbit determination VEVAL

run, the Dr matrix in the variational equations must
also be computed. This matrix, which contains the
partial derivatives of the drag acceleration with
respect to the Cartesian orbital elements, is con-
structed in subroutine VEVAL. We have

where

* - L4

X, is (x,y,z,%,y,2); i.e., X, spans T and T.
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and
apD

B4

to x

t

the required partials are

2.8-35

density partial derivatives}.

3T

is the matrix containing the partial deriva-

VEVAL

(7)

(8)

DENS'TY

tives of the atmospheric density with respect

and is partially computed in subroutine
DENSTY (see section 2.8.7.4 on atmospheric

Because the density

is not a function of the satellite velocity,
ap
D



2.8.7 Atmospheric Density

The atmospheric density is the factor which is
least well known in the computation of drag; however,
it is essential to the computation of realistic per-
turbations'dge to drag. Thec NONAME solution is to use
the Jacchia-Nicolet model, which is perhaps the most de-
scriptive model presently available. This model gives
densities betwecen 120 km and 1000 km with an extrapola-
tion formula for higher altitudes.

The NONAME model, as implemented in subroutine
DENSTY, is based on Jacchia's 1965 report, 'Static
Diffusion Models of thc Upper Atmospherce with Impirical
Temperature Profiles" (Reference 2). The Fformulace for
computing the exospheric temperature have in some cases
been modified according to Jacchia's later papers. The
“density computation from the ecxospheric temperature is
based on density data provided in that report, repro-
duced herein as Table 1, which presents density dis-
tribution versus altitude and exospheric temperature

k The discussion which follows will cover basically

the assumptions behind the model and the [ormulae actually

used in subroutine DENSTY. It will also cover the pro-

cedure for computing the density which was developed by
WOLF.

The reader who is interested in the develcpment
of these emplllcal formulas and the reasoning behind
them should consult the above mentioned report and
Jacchia's later papers. For the convenience of this
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. Table 1 (Jacchia, Reference 2)

ities as a function of height and exgspheric temperature.

. « D
Decimal logarithms, g/cm
2059 2001 gD popn Lusd 1403 1760 1100 Lol 1400 1550 1500 14%) 1400

ml1 00 <L 60 -1RLH0Y —18.59% =153.839 -10.609 =1J.60F =10.609 =10.6033 =10.609 -10.609 -10.009 -10.60% -10.509
“1lelbe ~Ltoli® =f1.8b8 =L 187 =10.007 =l11.0117 -11a017 =i1.117 —il.kie =1t.318 -li.1t5 ~-11.115 -11.t8s -11.3t2
wll.Bany mlloteud mll,8dn =1a%hd —Lladad =11.657 ~llgwai =1l.441 —11.440 ~11a439 =11.%33 -11.437 =11.435 —-11.433
“lleho? =ttebh 11688 ~il.88% ~)1.684 ~L1.683 -11.622 -11.68l =1l.0¥? =10.4678 =11.577 ~11.675 =11.67« ~11.5672

=11.890 =1l.eenl =11.879 =11,57% =11.8%6 —LL.675 -1l.aTs —11.973 ~11.371 ~11.370 ~11.865 ~11.867 -1l.84> -11.885
m12.082 =17e3~1 =12.76% =12.03% «12.833 ~12.337 -12.035 -12.03. -12.532 -12.331 -12.330 ~12.029 =12,023 -12.02%
~E20181 —12.880 =12.180 =12.179 =L2.174 —12.174 =12.175 -12.17% ~12.173 =12.171 124171 ~124170 ~12.172 ~12.171
~12.304 =12.30% 12,333 ~12,307 -12.301 ~12.300 ~12.29y ~-12.298 “12.297 —22.297 ~12.297 -22.297 =12.298 -12.2%39
S13 41y =10unls m12.608 ~LlT.610 =12.413 12,42 =12.612 ~1Z.411 ~12.411 “12.411 ~12.411 ~12.9812 =12.416 ~12.417
~12,54% —17e%16 -12.518 =12.5916 =12.516 —12.515 -12.515 —-i2.51% “12.915 -12.516 =13.507 ~12.51% ~12.523 -12.527
—12.509 ~Lia5L0 =17.518 =12.610 -12.619 —12.56kL -12.611 —1Z.611 ~12.612 -12.616 =12.6156 ~12.620 -12.624 -12.530
ml/.0%8 ~12.637 =12.45%4 -17.499 —12.699 -L2.700 -12.7CL -12.702 -12.704 —12.706 =12.710 -12.714 -12.72C -12.728
SEl L TP =12.779 ~P2.7Rd ~12L7BR -12.743 —12.754 ~12.786 -12.785 —12.751 -12,794 -12.799 -12.835 -12.311 ~12.821
17.4%4 =10.3%7 —312.-53 =1Z.560 ~12.862 —b12.855 =12.357 -.2.473 —12.874 ~12.878 -12.894 ~12.891 -12.%00 -12.911
—12.928 ~12.93C -12.433 ~12.935 =12.938 ~12,9&) -11.94%6 -12.54F -12.953 -12.95% =12.9b65 -12.974 -12.%§5 -12.998
—12.998 =17.09} -13.456 =13.008% =i3.001 -i3.019 -13.009 ~13.024 -13.530 =13.036 -13.0485 ~13.0685 -13.0e7 -13.081
=[3.055 =13.01% ~§5.572 =13.077 —13.021 ~13.08% -)3.09) -13.097 -13.i0a =173.112 -13.121 ~13.133 -13.17 =13.163
—b2,13% ~13.124 ~E3.13% ~13.148 —13.169 ~13.15%4 -12.160 -13.167 -13,375 ~13.185 -13.195 ~13.209 -13,22% -13,242
—13.197 -313197 ~13.203 ~33.209 -13.214 —-13.221 -13.22% -13.236 ~13.245 ~13.256 -13.268 =13.283 ~13.300 =-13.320

—173.252 =13.259 -13.26% ~13.271 -13.273 -13.285 -13.293 ~13.393 ~13.313 =13.325 -13.239 =13.3%5 =13.374 ~13.395
~13.311 ~13.316 -~13.305 -13.332 —13.240 -13,348 ~13.357 -13.34R —13.370 =13.393 ~13.408 ~13.,425 ~13.%~5 ~13.969
—13.38% ~13.3T6 ~11.385 =13.392 —13.401 ~13.410 =13.420 =13.43]1 ~13.644 —13.459 =13.875 —13.0e96 ~13.5186 —13.541L
~13.426 =13.473 ~13.44) —13.4852 =13.460 =i3.«T0 -13.681 -13.4%4 ~13,598 —-13.923 -13.5&1 -13.562 -13.5a5 -13.512
—13.4713 =~13.433 =13.437 =13.507 ~13.517 ~13.529 -13.5%1 ~13.33% ~13.570 -13.587 =12.508 -23.528 -13.6%3 ~13.632

~13.532 -13.547 =13.552 ~13.563 ~13.574% ~13.588 ~13.55% ~13.614 ~12.631 -13.669 -13.6VC -13.4653 ~13.720 -13.7%5)
“13.%964 -13.595 =13.5C& ~13.517 -13.629 =13.56&3 -13.657 ~13.673 ~13.593 =13.916 -13.732 =22.757 -13.73% ~-13.817
—13.635 11,04 13,654 ~13.671 —13.684 ~13.569% -13.713 ~13.720 -12.749 -13.772 -13,794 -13.320 ~13.8645 =13.383
~1%3.563% —13.697 ~13.718 —13.722 -13.737 -13.752 -13.769 -13.7%7 -13,807 -13.82%9 -13.853 ~13.382 -13.913 ~13.947
—13.{34 =l3.%&T =13.75] =13.775 ~13.790 -13.806 -13.423 =13.e43 =13.5666 -13.8E7 =13.913 ~13.%942 «13.97% -15.011

—11.727 ~L3.Tyn =1¢.811 =13.B26 —13.8342 ~13.859 —13.977 =13.897 =13.920 -13.944 =13.972 ~14.,002 ~14.738 -1a.374
=13.477 =Pi.866 -313.860 -13.8375 ~13.392 ~13.91% ~13.530 212,931 =13,975 —1%.000 =14.029 ~1&4.861 ~14.0%6 -15.1335
—12.8T6 ~L3.A%7 ~13.703 —13.925 ~13.942 ~13.961 ~13.982 -14.004 =-1%.029 ~14.056 -146.085 ~1&.117 -18.155 -l4.138
A13.972 -£3.932 =13.955 —13.973 ~12.992 —-14.812 ~14.533 14,057 16,082 —14,1i3 ~l4.T/1 —14.176 «15.21l4 ~16.255
—13.75s ~13.94% ~16.602 —14.071 —14.0860 ~14,.061 -l4.2g6 -14.102 —14.135 —laclbe =tallas ~14,232 ~16.270 —~16.315

—4a012 —i46.030 -14.06% 16,068 —14.088 -14.110 -16.133 -16.159 =14.187 =14.217 ~14.251 -14.288 =14,32% -14.373
Cih.09h ~Y5 0T% —15.0% =14.116 —14.13% =14.158 ~1s-183 ~14,209 =16d238 = 14,270 ~14430% ~16,362 15,385 ~lu.bl)
“rhL 1 =14 E13 =, b3 =14, 160 ~14.1R2 ~14.204 -14a23L —15.29% —14.262 =]4.321 =14.357 -14.397 —]6.4LD -1L. 438
e 14d ~La.183 16,123 ~14.205 -14.228 ~14.253 -14.279 14,308 =1l4.33F ~14.377 ~04.408 ~14.n5) ~14.495 ~ic.544
~lh lMh —16, 200 ~14.227 ~14,250 -15.274 =14.29% -16.326 wit, 356 —146.3RB ~14.423 ~14.486F —14.50) -14.543 =14.593%

~34,727 ~14.24d ~146.271 —14.795 -14,319 -14.365 342373 “th. 406 ~16,637 ~16.4T73 =14.522 -14,.555 ~1&.8732 -1L.454
A 2hH L.l =16.7313 =16.347 —14,363 -14.390 “l4eetI=1b. 451 —1L.885 =14,522 =14.552 —14.507 =14.5%%55 =1e.7059
~14.3030) =14.317 ~la. 1%k =14.3k) ~1&, 40T ~14.436 -14.465 -14.697 =14,533 ~16.511 ~14.612 16,658 =16.705 =146.762
b A =thotd3 ~1ALINT 16427 —14LA5D 14,679 =14.510 =16.545 =i6.58D =16.619 -15.5862 ~14.70% -16, 762 14,518
clh, a4 =3hAE L —lu,atd 214,665 =14 6TF ~16.523 =14.5%5 - 14507 LG 2T =14 6T ~laalli =1%.799 14,510 ~-14,34%3
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Table 1 (continued)
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Table 1 (continued)
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intercsted reader, the rceferences® for this scction form

%
a reasonably comprchensive bibliography.

2.8.7.1 The Assumptions of the Model

The Jacchia-Nicolet model is bascd on certain
simplifying assumptions and on cmpirically determined
formulae. This is primarily due to the complexity and
varied nature ol the processes occurring in different
regions of the atmospherc and the gencral lack of
anything resembling a complete understanding of the
fundamental mechanisms involved. The actual derivation
of the model is based upon assumptlons [irst proposcd
by Nicolet (see Reference 8} Jacchia sclected the
Nicolet approach to generatc a model suitable for
satellitc dynamics.

The model of the atmosphcre proposcd by Nicolet
considers that thé fundamental parameter is the tempera-
ture. Other physical parameters such as the pressure
and density were derived [rom the temperature. Thus
thc first concern is the temperaturc variation in the
atmosphere.

This temperature variation is controlled by the

following conditions:

NENSTY

1. Above the thermopause, the temperature of the atmo-

sphere does not vary with altitude. The thermopause

varies with solar activity (and the time of day},

ranging between about 220 km to 400 km. The

#Reference 9, "U.s. Standard Atmosphere Supplements, 1966"

contains a fairly comprehensive description and summary.
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H

temperaturc above the thermopausce is called DENSTY
the cxospheric teomperaturce and s dirvectly

responsive to solar clffects.

2. At an altitude of 120 km, the temperature,
density, and atmospheric conditions arc inde-
pendent of time. This is an obvious simpli-
‘fication. Mowever, the variations of these
parameters above 120 km are considecrably
larger than those occurring at 120 km, and,
considering the other assumptiohs, this
assumption represents a reasonably good

rapproximation.

3. The atmospherc is assumed to be in static
equilibrium. With the large day-to-night
temperaturc varlations, having a period ol the
same order of magnitude as the conduction time
in the lower thermospherce, and with the oc-
casional occurrence of scvere magnetic storms
which give risc to fairly rapid and large
temperaturc variations the validity of this
assumption is open to question. The best
argument for this assumption is 1ts relative
simplicity. It should be anticipated, however,
that in times of rapid change of the solar or
geophysical paramcters the predictions of this
model will be in error due to the invalidity
of this assumption.

The atmosphere is considered to be in diffusive

equilibrium above 120 km; that is, the density distribu-
tions of each atmospheric constituent with height arc

2.8-40 )



governed independently by gravity and temperaburc. The
governing cquations arc the hydrostatic law, relating
the pressurce variation with height to the acceleration
of gravity, and the perfect gas law, which relates the
pressure, density and temperaturce.

With this approach, Nicolet shoyed that above
250 km the obscrved density profiles were reproduced
satisfactorily if the (exospheric) temperature was as-
sumed to be a di[fcrcnt.constant; He also indicated
that the problem of representing the density between
120 km and the thermopausce was: largely a problem of de-

ducing the vertical distribution of temperature.

The contribution of Jacchia to the so-called
Jacchia-Nicolet model is largely the development of
empirical formulas to compute both the exospheric
temperature and vertical temperaturc distribution as a
function of exospheric temperaturc. Thesc formulac are

based on satcllite obscrvations coupled with physical

reasoning. In addition, Jacchia has updated the bhoundary

conditions of Nicolet. Thus in e¢lfcct Jacchia has pro-
vided all but the basic assumptions behind the model.

The fundamental parameter of the model is therefore

the exospheric temperature. This temperature, together.

with the boundary conditions, implics a particular vertical

temperature profile. Thesc three items - exospheric

temperaturc, boundary conditions, and tempcrature profile -

define the density at any altitude over 120 km through the

diffusive equilibrium equation.

?2_8-41
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Fipure 1, which was taken from Reflerence 3, shows
a comparison of density and cxospheric temperatures de-
rived from observations of Lxplorer 1 satellite with .
solar and gecomagnctic parameters, Note the correspondence

between the exospheric temperature and the density.

2.8.7.2 The Exospheric Temperature Computations
H
To calculate the fundamental parameter, the exo-

spheric temperature, Jacchia considered four [actors which

could cause variations:

1. Solar activity variation

2. Semi-annual variation
3. Diurnal variation
4, Geomagnetic activity vartation

Each of these variations was determined to be related
to one or more observable paramcters (sce Figure 1).

The given empirical formulac arc bascd on these parometers.

Solar Activity

There are many indices of solar activity hut the onec
whose variations most closely parallel thosc of atmospheric
density is the 10.7 cm. (2800 Mc.) solar flux line. The
intensity of this line has been mecasured continuously since
1947, by the National Research Council in Ottawa on a daily
basis. The values of the 10.7 cm. f£lux linc are published

2.8-42

DENSTY



IL000

958 )

o

EXPLORER I

\|H
o 11l
wi o TR Y
a) o3y a0 SIS
[FRLNETE B TR 1 34
ON LRI AURFEE B S B
vl [
e e i o gt = - ok - |.4 b S r g viey -
wel A Y R b Fo0
1 4] T E R A o “‘ J.
So ARy KR GO
. 4= N I I TU P i
...\u //_ W .&. .,.* 3ol ] »,." :_
. - ! wl Gp wl ol
. e 7 7 \\.\ 4 LT TR IR I A
% ~ I - EESRS B
"y Nl 2 NS N
w ~ y Woa o Oq @ d gy
- 1y WO oad w vy g
ww_ oad 7 g O
2 - \\\\ - 4 3 @t mo[E LD
] .ﬁ“. mL W . 1 ]
g ~ .
2 :
¥, TN 4 Al
_AF \ -
- . . .
F 4
PR I / e T
L 3 o 5 SRS [ [
’ an \\\\ H PERN et o
. Jd04d 43 v ol ni
L i T 4 . 5 ar OO 43 Wi
_w. / 4 O el a_ o
-t A ow "
= s o 5 o w [y
e \ -t - -...,.._ af - S ol M
e "~ 2 i By a3 Q) o
2l 8 . ~ T -4 ri fy 0]
“ iy i -y o s O tw
x% | 4 @ 4> el §
g _wm.. Tk om 19 .
¥ \ h . 4 4 0w “
el s M.-.. _ 5! [ LR | <
g g2 ) Y ;
-— b . - od Ul e
n o ~ % A St fufl @ £
Sus b & 3f L O fy o
L 5 1 % = o O @ i
AN ¥ 3 % 3ol G oW
> ! ”
£ = | a2l A " % D oad. -
b2, =" L ... E I A S » “ar - -3 e Q) W F o
8% F & | ™~ i gl wl oo 4
.....“ . oo > .m\ f e m."ﬂa._u m“"
- b h () <l = 4 . H
g ¢ e g VB $ - QD §d g o
s o by B\ & 3 T O @ w .
18 s Y5 £ / I S T < w B N £
grER T T 7871 7T TS eg S O B @ b ar
CET R £ 10 H e z H rl oo ur
r <. Yo - \ i ol fo S S Y
s g S I ICPA: g 4 £ m ®
g 7 B £ AR g |z G o & <
o 5 5 % N5 / A o | o @ O W3
3 s Tl I N Voot o < ZORE NI I B L - O
< -~ > i ; E; .1a & o A
E - L’ ] ] 2 ) Sell O @e 0
it § K8 | 1EL] 288 Fwe
7 1, - » T
ils % % % © /ﬂﬁ 4 mi.; S I
N —_ b e Loele o bvimia b e Lo B SIS TS B [ T & S B i1
ms 3T Ta g gTgTg =T e e g e g g o VSRR R I
e T T8 g2 2 a ut! L o ed © 5 oW ek
s R e 3 Y00 Ol @ o
= "L . - B <
(I T T T v ) %a
«f O O K oo
. 2 M [ T |
4 a} 4 v @ 6]
P g ur 4 ok owm ruw
& O~ I A | iH
i G DG D@ el
* QO a4 oy ed A G 35
> .
ol |
o —
EQg
e L)
= ol "
) fa)
] b

Reproduc
best avai

:
!

-

2.8-43

e f v o

FER R ]

ero = "

e

Fe o e



. . . . , " NV
monthly in the "Solar-Geophysical Datu Reports” ol the DENSTY
Envirommental Scicence Scervices Administration in oulder,

Colorado (U.S. Bepartment of Commevce).

Most of the time solar activity is much more intense
in onc solar hemisphere than the other so that the Tiux tine
appears to vary with the rotation period of the sun, 27
days. This periodicity frequently persists foy a ycar ox
longer. In addition, therc is a variation in the average
flux strength with a period of about 11 ycurs which is
relatced to the solar cycle.

From satellite drag data a lincar relation between
the averagc 10.7 cm. flux and the average global nipghttime
minimum exospheric temperature has heen obtained (Refercnce 2)
and is expresscd as

T, = 357° + 3.60° Fpy , (1)

whero

10.7 is the average 10.7 com. flux strength over
2 or 3 solar rotations measurcd in units
of 1(‘1-22 watts/mz/cyclc/soc. bandwidth.

=3

0 is the average global nighttime minimum

temperature averaged over the same period.

This formula gives the relationship for absolutely quiet
geomagnetic conditions; i.e., when ap is zero.
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The variation wiithin one solar rotation 1s ‘cx- DENSTY

pressed (Refercnce 2} by

Vo= T ° (F T YA
Ty' = Ty + 1.8° (Fry Flg 7) (2)
wherc
FlU 7 is the mean of the 10.7 cm solar flux
for a given day in the same units uas
1710_7. and
1
T, is the global nighttime minimum for the

same day.

This formula accounts (approximately) Tor the day to day
temperaturc variation supcrimposcd on the average global
nighttime minimum temperature determined by the previous

formula.

There is some indication that the coefficient 1.8°
a&tually varies from sunspot maximum to sunspot minimum.
The indicated range of variation is from about 2.4° down
to 1.5°.

Semi-Annual Variation

The semi-annual variation is the least understood
of the several types of variation in the upper atwmo-
sphere. Yearly, the atmospheric density above 200 km
reaches a deep minimum in July followed by a high
maximum in October-November, a secondary minimum in

January, and a secondary maximum in April, Jacchia
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(Reference 1) found that the obscrved density variations NENSTY
could be cxplained by tempcraturce varigtions ia the thermo-
pause, and are roughly proportional to the 10.7 cm flux
line. It has been noted that the height of the iono-
spheric FZ.Tayer shows & semi-unnual variation almost
exactly in phasc with the observed density variations.
Anothcr suggestion by ¥.5. Johnson (Reference 7) concern-
ing the causce of the scmi-annual variation, Involves
convective transfer at ionospheric levels from the

summer pole to the northern pole. This, as yci, does

not seem to account corrcctly for all the detalls

of this variation. The scmi-annual variation 1is not

as stablec a fecature as the diurnal variation. Jacchlia
(Reference 2) accounted For this featurc in 1965 but has,
with the recent information of drag data From six satel-
lites, updated his empirical formula (Reference ¢) as
follows:

To = T4+ 2.41 + Ty o[0.349+40.206 sin(21r1+226.5°) ]

(3)
- sin (4v1+247.6°)
where
2.16
1 + sin|2w(d/Y) + 342.3°]
T = &/Y + 0,1145 -0.5
2z

(4)

2.87460


http:4rT+247.60
http:s]ii(2irtr+226.S0

d = day of the year counted from January 1. DENSTY
Y = the tropical year, in days.

Ty = global nighttime minimum temperature for
that day corrccted for semi-annual varia-
tion.

Jacchié, Slowey, and Campbell (Reference 6) have more
clearly defined this variation. As expected, the re-
lationship between the temperature and the 10.7 cm flux
1line cannot be considered accurate. It-was concluded
that the observed density variations are the result of

temperature variations at essentially the same level as
in the case of the solar effect. However, a variable

altitude shows that the semi-annual variation affects
the whole atmospherc in the same manner, irrespective
of latitude.
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Diurnal Variation NENSTY

The most rvegular of the variations is the diurnal
variation. Onc¢ can picturc the density distribution as
an atmosphcrlc bulge with th peak 30° cast ol the sub-
solar p01nt, degrading ncmrly symmetrically on all sides,
but a little steceper on the morning side. The density
peaks at 2 P.M. local solar time.and the wminimum OCCUTS
at 4 A.M. The ratio of the maximum temperature
at the center of the bulge to the minimum in the opposite
hemisphere remains constant throughout the solar cycloe;
the Tatio is 1.28 in Jacchia's model atmospherc. The
cause of the heating is in disputce. Some investigators
believe it is duc cntircly to extreme ultra-violet (BUV)
radiations; others, te ion drift; and still others, to a
combination of the two.

The tomperaturc, T, at a given hour and geographic
location, can be computed in terms of “the corrcct global
nighttime minimum temperaturc for that day, Ty» using
the following formula which approximates a mathematical
description of the atmospheric bulge (Reference 2):

h]

(5)

n R(cosmn-sian) g
T = To(L+R sin6){1 + - cos" -
1+R sin 0 2
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where . ~ DENSTY

n=m-= 2.5

T =1+ B +p sin (try)  -u<o<w)

‘B = -45°
p = 12°
v = 45°

no= ABS| @7 6,)/2]
6 = ABSL(4%6,)/2]
¢ = geographic latitude

§ = declination of the sun .

t

11 = hour angle of the sun
(H = 0 occurs when the point considered,
the sun, and the earth's axis are coplanar.

Il is mcasured westward 0° to 360°)

Based on satellite information, Jacchia (Reference 5) assumes
a maximum day temperaturc 28% higher than the corres-

ponding nighttime minimum. The variation is representead

by R in the above equation. However, further investi-

gation by Jacchia, Slowey, and Campbell (Reference 6}, re-
vealed that the diurnal-variation factor (R) is somewhat
variable. A value of 32% is considercd valid for dates

2.8-49



- r'-! - 1 [}
prior to Tebruary 1963, and [lrom August 1963, onward, DENSTY
26% variation is considercd valid. letween these dates,

R is made to decreasc lincarly.

Although in these equations the oxpéncnts m and
n, which determine the mode of the Jongitudinal and
latitudinal temperaturc variations respectively, are
kept distinct, it was found jn practice that m = n.
These values are not really known accurately and coutd

be as small as 2.1,

The constant B determines the lag of the tempora-
ture maximum with Tespect to the uppermost point ol the sunj
p introduces an asymmetry in the temperature curve whose
location is determincd by v.

Gecmagnetic Activity

To the temperature, T, which is calculated above,
a correction must be added which accounts (or altmos-
pheric heating related to changes in the Earth's mag-
netic field. The heating probably occurs in the L layer
of the ionosphere, but the mechanism involved is not
well understood. The temperature correction, AT, is
given by Jacchia, Slowecy, and Campbell (Reference 0):

AT = 1.0° ap + 100° [1—exp(—0.08ap)] (6)

where

a, is the three-hourly planetary gcomagnetic index.
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The quantity a_ is a measure of the variation in DENSTY -

the earth's magnetic fiecld in a giwen three hour period.

During magnetic storms the temperature changes
generally lag bchind the variations in ap by about five
hours, duc to conduction. Therc is some cvidence of
larger temperature changces LQT given values of ap as
one proceeds to higher geomagnetic latitudes. lDowever,
the amount of data indicating this is neglipible at

. . ' I
this time.

The DENSTY subroutine allows For the magnetic
heating effccts with onc modification. To minimizce the
input data for NONAME, the 3-hourly index (ap] is
replaced by a 24-hourly or daily index (Aj).

Gencrally, magnctic storms last for "2 or 3 days so
that the temperature calculation using Ap will reflect
a daily change, but not the 3-hourly [luctations which
occur with a -

The quantity Ap and the sotlar flux data is
available from E.S.S.A., Boulder, Colorado. The publi-
cation is, "Solar Geophysical Data, Part T."

Accurate daily values for both the solar and INPT
geomagnetic flux arc rcquired for the computation of ADVLUX
thp exospheric temperaturc. [In NONAME, thesc values
are input via a BLOCK DATA routine, INPT. This infor-
mation may be updated (cf subroutine ADFLUX) using the
appropriate NONAME Input Cards. The user should be aware
of the fact that these tables are expandcd as new infor-
mation becomes available.

2.8-51


http:quanti.ty

At the beginning of cach run, a f[ile is gencrated
for cach satellite arc which conifains the required flux
data for the time span indicated. Subroutine JANTIG
is the routine which sets up the flux tables, including
averaging the daily valucs of solar {lux over iwo soliar
rotation periods. The rcason lor this is to free the
large amount of computer storage requived lor daily
flux values over five and a half years. As a matter of
reference, the associated COMMON BLOCK is PRIORT.

2.8.7.3 The Density Computation

The density computation in NONAMI subroutinc
DENSTY is bascd on the density distribution versus
‘altitude and exospheric temperature presented in Table 1
which is reproduced from Jacchia's 1965 paper (Reference
2). This data was obtained by numerical integration of
the diffusion equation using an cmpirical temperature

profile for each indicated exospheric tomperature.

This vast quantity ol information was fitted
(by WOLF) to various degree polynomials of the form:

- A p(3-2) 4 (1-1)
LOG10 Py = zi: A@d ajj 1 h
1 J

where

Pp is the density,
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i is the exospheric temperature,

h is the spheroid heipht of the satellite
(altitude), and

a  is a set of appropriate cocflicicnts

Unfoxrtunately, a single polynomial of the typc
presented is not completely descriptive. An examina-
tion of Tablc 1 reveals that density is ncarly in-
dependent of temperaturc for low altitudes, but
becomes increasingly dependent for heights above
160 km. Accordingly, appropriate polynomials werce
choscn to account for the varying dependency of the
variables. This neccessitated the scparation of
Table 1 into threce parts.

The lower rcgion (120 km - 160 km) is expressed

as a sccond degrce polynomial which is solely a function

of altitude, This is due to the fact that density is

not appreciably .depcndent on temperature in this region.
The remaining regions of 160 km to 420 km and 420 km to

1000 km are described by polynomials of fourth degree
in both temperature and altitude.

The cocfficients for the seleccted polynomials are

presented in Table 2. These cocfficients have becen
modified to compute the natural log rathexr than the
decimal log of the density.
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TABLE 2

DENSITY POLYNOMIAL COLFFICIENTS
(FOR NATURAL LOG OF DENSITY)

420-1000 Ki
' 0

160-420 KM

rl\ (j

120-160 KM

}10 1]]' ]L2 113
61.5177 48.60687 6.87280 0.305304
~-173.970 03,4870 -14.1203 0.651270
111.908 -60.34177 §.349784 -0.440330
-23,38064 12.64400 -1.98945%0 0.0950336
0.514627) -26.40622 6.28711 ~0.604854
-36.8141 37.5137 -9.9944692 1.00192
22.6334 -23.9095 6.780537 -0.695452
-4,.47654 4,83017 ~-1.41853 0.148026
1.1335948F -31.8585066 8.78272069
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The densities produced by these fitted polynomials
differ from the dcensitles in Table 1 by an RMS of 3.7
percent. lHowever, the fit does vary in different regions
of the table. In the region of worst [it, where the
temperature is relatively low (700-1000° K) and the

altitude varics Trom 0620-840 km, the RMS is somewhuat creater

being about 8.5 percent. ‘The largest. percent dillerence
between densitics is 13.2 percent and falls within the
region described.

The fits above could be improved by cither going
to higher degrec polynomials or by additional segmenta-
tion of the tablc. However, these (its are considered
to be as accurate as the model being uscd.

For satellite altitudes above 1000 kmn, the density
is computed according to the cxtrapolation [formula given
by Jacchia (Reference ):

[b(h-1000}]

Pp = P 7 (Proovo-pgle {8)

where
b = d (¢n p,) as evaluated at 1000 km
dh D’ - :
., - is a limiting valuec for the density.

This is zecro in subroutine DIENSTY.

h - is the spheroid height.
Dlooo - is the density evaluated at 1000 km.
Py - is the desired density at altitude h.
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2.8.7.4 Density Partial Derivatives DENSTY
VEVAL
In addition to the density, NONAME also roguires
the partial derivutives of the density with respect
to the Cartesian position coordinates. These partials
arc used in computling %hc drag contribution to the

vartiational equations.

As demonstrated above, the density is given by

2

+C. hne (1)

Pp = exp (CO + C1 h o+ Cs h 3 )

where

h is the spheroid height, and the
C. are coclficients which are polynomials in

temperature.

We then Have

M

Py ,  oh :
—=p, (C, +2C, h+ 3, h) — (2)
o D ‘"1 2 3 -

where

is the true of date position vector of

il

the satellite (x,y,z). The partial deriva-

tives gi are presented along with the com-

T
putation of spheroid height in Section 2.5.1.
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ap

-—— are computed in subroutinc
ar

VEVAL. The quantities h, Ppy> and the Ci are computed

in DENSTY and passed through COMMON BLOCK DRGBLK.

The partial derivatives
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SECTION 2.9
INTEGRATION AND TNTERPOLATTON

NONAME uses Cowell's method for direct
numcrical Integration of both the cquations of motion
and the variational cquations to obtain the position
and velocity and the attendant variational partials
at each observation timc. The integrator output is
not requircd at actual observation times: it is
output on an even integration step. NONAME uses an
interpolation technique to obtain values at the
actual obscrvation time. The spocilic numerical
methods used in NONAME for this integraticn and
Ainterpolation are presented below., These procodures‘
are controlled by subroutine ORBIT.

2.9.1 Integration

Let us first consider the intcegration of the
equations of motion. These equations arc three
second order differential equations in position, and
may be formulated as six first order cquations in
position and velocity if a first order integration
scheme were uscd for their solution. For reasons of
increased accuracy and stability, the position vector
T is obtained by a second order integration of the
accelerations ¥, whereas the velocity vector T is
obtained as thc solution of a first order system.
These are both ten point multi-step methods requiring
two derivative evaluations on each step.

2.9-1

ORBIT

COWELL



To integrate the position components, a Stormer
predictor

.
v (Ah)°

n+J n n-1 qu Tn—p

=]
It 0
g

is applicd, followed by a Cowcll corrector:

q
_ o= = 2 =
Tpap T 8Tn - Tt (AR EE:.YQP Tn-pel
p=0

The velocity components arc integratcd using an Adams-
Bashforth predictlor;

- * q al o
T4 - T, oAb :EZ ﬁqp Th-p
p=0

followed by an Adams-Moulton corrector;

~

Ral

Tael T T Y ah ji: qu 1~n-p+1
p=0

In these integration formulac, &h is the integration
&

step size, q has the value 9, and y R and B

2.9-2

ap’ Tap’ “ap qp
are coefficients whose values are presented in Table 1.

(1)

(2)

(3)

(4)

COWEL



He

DR*,
%a

- 262

2 631
11 882
31 829
-56 041
67 833
-57 287
33 507
~13 229

3 814

where D

1

420
486
722
896
292
843
383

TABLE

INTEGRATION SCHEME

bp
878 7
186 - 73
320 38
224 - 931
412 1 702
588 - 217
776 2 016
686 -1 420
614 1 190
122 262

9144457600 and is the common denominator

217
212
670
648
270
739
292

184 :
664 :

426

406
810

801

2.9-3

1
COl

12
15

-172

I TCTENTS

%2
~3

379
620
028
308
044

743

840

453

DYéi

739
5406
127
936
969
569
542
061
368

091

100
-273
494
-618
540
-2472
875

57

698

738



Let us next consider the integration of the

variational equations. These cquations may be written
as

Y . .
Y = [A B] . ] + f : (5)

where

|
4

and, partitioning according to position and velocity
partials,

[A B] = [UZC-:-Dr} : (6)
4
Note that equation (5) is the same as equation (7) of
Section 2.8.2, with Y corresponding to the matrix F.
The variational particle Xm and the partial derivative

matrices Uyns D., and £ are completely defined in that
section,

Because A, B, and £ are functions only of the

orbital parameters, the integration can be and is performed

using only corrector formulae. (Note that A, B, and f must

COWELL

- . . - ” r — 1 ":' .
be evaluated with the §1na1 corrected values of Tl and 1n+1')

In the above corrector formulae, we substitute
the equation for Y and solve explicitly for Y and Y:



¥n+] €

- s (7)
y C )
Yn+]
where
I - Yqo A _Yqo B :
S = 1
-8 A 1-B Bk
o} o}
1 © 4
] 4 )
C =38, -~ Y, zﬂ! Tap Yn~p41 T Tgo {
5 p=1 i
- ) [} q LR
- 7 o T
¢ Y:n"l ¥ E : qu \n—p+1 5 qu ¢
- P=
. Under certain conditions, a rcduced form of this

solution is used. Tt can be secn from the variational
and observation equations that if drag is not a factor
and there are no range rate, doppler, or altimeter rate
measurements, the velocity variational partials are

not used. There is then no nced to integrate the
velocity variational cquatioms. This represents a
significant time saving. 1n the integration algorithm,
the B matrix is zero and S is reduced to a three by
three.

2.9-5
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sackwards integration involves only a few simple
modifications to these normal or forward integration
"procedures. These modifications are 1o negate the
step size, lnvert the time completion test, and invert
the entire table of bhack valucs.

The above intcgration procedures are implemented
in NONAME in the subroutine COWLELL, The inversions .
for backwards intcgration are performced by BAKINT.
The matrix inversion is performed by subrgutino DNVIERT,

The default step size for these integration pro-
cedures is sclected on the basis ol perigee height and
the eccenfricity of the orbit. The default step size
selection is cxplained in detatl in the Operations Manuatl,
Volume J1I of the NONAML System Documentation. This may
be reset to some other [ixed valuc on jnpht. (Sce the

STEP control card description in the above manual.)

Variable Step Mode

There is an optional variable step mode which 1s
the default modc for high eccentricity orbits. The
selection of this mode of operation, its delault initial
step size, halving error bound, and doubling error bound

—

VANENT

BAKINT
COWLLL
DNVERT

are also explained in Volume IJT with thc STEP control card.

In the variable step mode, the local error is
compared against upper and lower errer bounds to determine
whether the step size should be halved or doubled. This
local error is computed as the difference between the
predicted and corrected values of position. Both the
halving and doubling procedures require the tables of

3
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back values to be modified so as to be compatible with the
new step s%ze. The halving TCqu}rcﬁ a Hcrmlfo interpolation
for mid-points. This interpolation is of course on the
back position, velocity and acceleration values. The
doubling is achieved by discarding 'every other time point
in the table of back values.
; t

It should be noted that twenty scts ofl back valuces
are saved when NONAME is operating in variable step wmode.
Doubling of the step size is disabled for thc‘following ten
steps after a step size change; i.e., until the table of
back values 1s again filled. ]

These halving and doubling procedurcs are contained
in subroutine REARGC. In the case ol halving, subroutinc

HHEMIT is invoked to interpolate for the mid-points.

2.9.2 The Integrator Starting Scheme

Thetpredictor-corrector combination cmployed to
proceed wi%h the main integration is not sclf-starting.
That is, ecach step of the integration rcquircs the
knowlcdge of past values of the solution that are not
avallable at the start of the integration. The method
presented here is that implcmented in the NONAML
subroutinc” INTGST. '

A method first proposcd by W. Romberg provides
the ten values required to start the main predictor-
corrector scheme. The Duler-Cauchy single step method
is combined with Richardson's hz—cxtrapolation to gen-
eratc a scquence of approximate solutions, X(h), for
a fixed time interval h. Successive approximations

2.9-7
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to X(h) are formed by subdividing the intevval inte TNTGST

subintervals of lengths Aty > At, > At, ---- and by
appl ying “the Fuler-Cauchy method to yield the scquence
of approximations K(Atlj, K(Aiz), K(At3)~~-. An Aitken-

Neville interpolation schoeme is then used 1o [ind
successive cxtrapolatjons'tU'X(AL=O)f A complete
analysis of this very stdble and accurate technique
has been published by Rutishauscr,:Sticfel, and Baucr
(Reference 2). ‘ '

The subintervals Ati, i=l,..,7 arc defined as
t—, by step-ratios S5 1=1,...,7, which must form a
5 )

lay

nmonotonic increasing scries. 1In the_NONAME starting
scheme this step-ratio series is a [fixed program
parameter {1,2,3,5,8,12,17}, chosen to méintain the
scheme's accuracy by considering a broad range of
step-ratios, without consuming the computation time
needed for very large step-ratios. ‘

" At each subinterval, an Euler-Cauchy scheme 1is
used to predict a valuec of the position-velocity
vector X as the solution of a first order system of
equations, using the Euler Fformula.

*

X [(5+1)at;] = X [36t,] + at, X [38¢;], (1)
j = 0,...51—1, i = 1,...,7

This predicted vector is next refined using the
formula
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X [(3+2)8t,) = X [3At;] + At X [(] SOISH N (2)  INTGST

Po=1,...,7
and finally correccted using the cquation

At. . . -
[Grlyaes] = X [36t5] + —= {X [5at3] + X [(5+1)4t;1D,

J= 0,085 4, 1 =1,...,7 (3)

The approximations X (SjAti), i=L,...,7 to the
position velocity vector X(h) over a full step h, given
by each sequence of subinterval integrations arc Lhen

used in an Aitken- Heville interpolation scheme:

X_(h) =X (A‘Ci]"‘* Tii [XC'J'ﬂti) - X(;;Atl 131 (4)

The Aitken-Neville factors Tji are computed from the

monotonic increasing series ty, ty,...t, from the

formula
2 fl | k=1,...,6
Toy = k+1 -] - , (3)
] ts jo=1,...%



The final approximation X(h) to the integrated
vector is then uscd to repeat the above process lor
‘the next time-step h, until ninc values of the position-
velbcfty vector have been geherated.  Together with the
epoch position-velocity vector, these values arc uscd
to start the much faster predictor-corrector sequence

employed to integrate the remainder of the orbit.

¥

2.9.3 Interpolation

NONAME uses Hermite interpolation for two
functions. The first is the interpolation of the
orbit elements and variatiomal partials to the ob-
scrvation times; the sccond is the interpolation
for mid-points when the integrator is halving the
step’size. These functions arc separatce largely
because they have entircly different accuracy re-
quirements. Tm particular, when the step size is
being halved, the accuracy of the interpolation for
the new points is critical becausc any errors intrq—
duced will quld up in the subsequent intcgration. -

~The Hermite interpolation Fformula uses osculating
pelynomials of contact order n; i.e., they have the
propertics

- - 1
X(t;) P(tj) (1)

x (1) (1)) = p (3] (t;) i=0,1,...n (2)

where the K(i)(tj) are the itM derivatives of X (t)!
evaluated at t = tj. Also, the derivatives of P (t)
higher than n are zero.

2.9-10-
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These lormite polynomials have the form (sce Reference 3):

: } ) : HERMLT
© g c . :
. : HHEM1T
P(t)= ) >y xH e (3)
.( J) : _ 35 ( J?
1=0 =1
where
n - 4is the number of derivatives being
utilized,
k is the number of valucs available for
each X(l), and
hij is a polynomial having properties similar
" to those of the Lagrange polynomials.
Let us consider the case where n is one. This HERMIT

produces the usual Hermite interpolation formula in .
the literature. Tor this case,  only the function and
its first derivative are used. The two scts of co-

efficients.are given by

o2 -
= - (1) - ) i
hoj ll 2 Lj (tj) (t tj]:\ [Lj (Lj)] (4)

I 5
15 (t tj) .[Lj (tj)} (5)

-
1
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where the L. (t) are the familiar Lagrange polynomials HURMIT
‘of degree k. This is the casc for interpolating the .

orbital clgmeﬁts and is implomentcd in NONAME subrouting

HERMIT. Notc that the samc_1wo seis of cocllicients are

used for all of the variables heing interpotated. The
variational partials.arce interpolated using the Lagrange

polynomials., This is also implemented -in NERMIT.

We also take advantage of the fact that the data HHEMTT
is cvenly .spaced according to the current integrator step
size. The hij are used as

LN -
hgy =41 - 2(5—'3') ‘f‘;_-“é -1—; 1 (e (6)
it
- 42
'hlj = h (s-j) le (tj)J (7

where h is the step size,

and the Lagrange-polynomials take thie form*

-1 (s-1)

L. (t.) =
b it (-3

Fd . .
n7(s-i) is a.standard notation for the derivative of
o,n
m(s-i) evaluatecd at i=j; i.e., I (s-1).
iy
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Let us now consider the casc where n is two, - HIIEMLT
where the function and two derivatives arc required.

In this case there arc threce scts of coefficients:

- a2 ,.2_1 (2) o
hys L+ 6(t-t,) [1. ]th)J ;1, (650 (8)

12
; _ (1) ..
3 (t tj)-L (Lj) L'Ctj)J

: 2
_q i} ox 12 () oy _
13 (t cj) 3(t tj) L '(“Lj)] L[tj) (9

!
I

; 2
Z (t~tj)2 L(ts) (10)

[}

This is the casc for the mid-point interpolation For
position when the integrator is halving the step size,.
It is 1mplemcntcd in subroutine HHEMIT, along with the
n equals oné case for the velocity and variational
partials. -

In intcrpolating for the mid-points advantage
is taken of both the fact that the data is evenly
spaced and that the mid- -points arc being determined.
The quantity s becomes £+lq the hij arc thereforc
given by
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hzj =

hij become

hz(
2

for n equals two.

L
2

For the casc of n equal to one, the

1#]

1

j-1

>

1=
it]

G-1)2

(11)

(12)

(13)

(14)

HHEM T



- UHEMIT

1
h-. = h £-g+— L. t. 15
113 ( J 2) ' i (JJ (15)
‘ it should be noted that both interpotation IERMIT
schemes arc tenth order. HEMIT
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SECTION 2.10-
THE STATISTICAL ESTIMATION SCHEME

The basic problem in orbit determination is to
calculate; from a given set of observations of the '
spacecraft, a set of parameters specifying the
trajectory of a spacecraft. Because there are gen-
erally more observations than parameters, the parame-
ters are overdetermined. Therefore, a statistical
estimation scheme is necessary to estimate the
"best" set of parameters.

The estimation scheme selected for NONAME
is a partitioned Bayesian least squares method.

The complete development of this procedure is pre-
sented in this section.

It should be noted that the functional re-
lationships between the observations and parameters
are in general non-linear; thus an iterative pro-
cedure is necessary to solve the resultant non-linear
normal equations. The Newton-Raphson iteration

formula is used to solve these equations.
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2.10.1 Bayesian Least Sguarcs Istimation®

i

Consider a vector of N independent obscrvations
z whose valucs can be cxpressed as known (unctions of
M paramcters denoted by the vector é. The {following
non-lincar regression cquation holds:

z = £ (x) + o, (1)

where ¢ is the N vector dcnoting the noisc on the ob-
servations. Given z, the functional [orm of £y and
the statistical propertics of o, we must obtain the
estimate of x that is "best' in some sensc. ™ ®

Bayes theorem in probability holds [or proba-
bility density functions and can be written as follows:

p ()

pxlz) = p(zlx). (2)

p(z)
where
p(x|z) is the joint conditional probability

density function for the paramcter vector X, given

that the data vector z has occurred -

®Vector notation in this scction is that used by
statisticians; i.e., an underscore denotes a veclor.
The symbol """ denotes the "hest' ecstimate of the
superscripted quantity.

x%Foy a complete discussion of the properties of estima-
tors sce Maurice 0. Kendall and Alan Stuart, Reference 1

2.10-2


http:foJowii.ng

p(x) is the joint probability density function
for the vector x;

p(z) is the joint probubility-density lunction
for the vector z;

and

P(EJEJ ts the joint conditional density function
for the vector z given that x has occurrcd;

p(x) 1s often referred to as the a priori density

-

function of x, and p(x|z) is referred to as the

a posteriori conditional density flunction. In

any Baycsian cstimation schene, we must determine
this a posteriori density function and fram this
function dcterminc a “"hest™ estimate of x, which

can be denoted x.

To obtain the a posteriori conditional density

function, we must make an assumption concerning the
statistical properties of the noise on the observations:
the noise vector ¢ has a joint normal distribution with
mean vector 0 and a variance-covariance matrix E:z’

:E:z is an NxN matrix and is assumed diagonal, that is,
thc observations are considered to be indgpendont and
uncorrelated. The "best" estimate of x, x, is dcfined

as that vector maximizing the a posteriori density

function; this is equivalent to choosing the mean valuc
of this distribution. An ecstimator of this type has
been referred to as the maximum likelihood estimate in
the Bayesian scnse. (Reference 2)

2.10-
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A further assumption is that the a priori density
function p(x) is a joint normal distribution and 1is

written as follows:

1l
!
|

p(x)

where

Xy 18 the 2 priori cstimate of the paramcter

vector,

1
E:A is the a priori variance-covariance matrix
associatced with the a priori paramcter vector.
< T
ﬁ;A'is an MxM matrix, which may or may not be

diagnnal.

The conditional density function p{z|x) can be

written as [ollows:

. N
“1 E) Y "'1-
Det(z 4 1 T
plz|x) = 2“2 exp { -, | z-L(x) jg:; z-E()p U
Z

It can be shown that maximizing the a posteriori density
functilion p(§|5) is equivalent to waximizing the product
p(g)p(glEJ because the density function p(z) is a con-
stant valued function. Further, this reduces to mini-

mizing the following quadratic form:
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This results in the following set of M non-lincar
equations:

T (pe0) ¢ T (en) o

where B is an NxM matrix with elements

9f (%)

Xy |2F

?

By =

lk

This equation defines ‘the Bayesian least squarcs

estimation procedure. We have not statcd how the
a priori parameter vector and variancc-covariance
matrix were obtained, In practicc these a priori
values are almost always estimates that have hecn

obtained from somc previous data. In these cases

the Bayesian estimates are identical to the classical
maximum likelihood cstimates that would be obtained

if all the data were uscd; in this context the

a priori parameters can be considered as additional

observations.
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The variance-covariance matrix of x, V,

is’
given by the following formula:

-1 -1} -
vo= Bty B,
7 ﬁA

Solution of the Estimatioh Formula .

Equation 6 defines a set of M non-linear equa-
. ”~
tions in M unknowns 'X; these equations arc solved

using the Newton-Raphson iteration formula.

Equation 6
can be written as follows

A

E(x) = 0
The iteration formula is
A) -1
Ay PN 3F (x S PN i -
- : ECIHI) - E(n],_ == F ?.5(‘11) (8)
’x  J :
where
‘ X (M) 55 the a™ approximation to the true
‘solution X.
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Now

Then differentiating and neglecfing sccond deriva-
tives,

S aw e - -1 -1 N
3k (x) T - .
e} = BT B + (10)

A

Substituting equation 10 in equation 8 gives

"(n+1) (n) | —: TZ B+ 21 “ Bt Z (_Z_"ff_tg‘z) Qn)) .

-1, . ] o
2, j(.%““’ -A); an

A

Now let x(n 1), (n)} the cofrection. tQ the- nth approxi

‘matlon ‘be denoted by dx(n l), and 16t z- f( (n)) the

vector of re51duals from the nth

approximation, be
) dz(h)

Equation 11 becomes

dl{_(ni-l)? = BT 21B+21 _ T Z dz(n) z (n)
: ; ..z A/

| ' -(1.2‘)-
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2.10.2 The Partitioned Solution LSTIM

In a multi-satellite, multi-arc estimation progran

such as NONAME, it is necessary to formulate the estima-
tion scheme in a manner such that the in{ormation for

131 satellite arcs are not in core simultancously. The
srocedure used in NONAME is a partitioned RBayésian
Estimation Scheme which requires omly common paramcicer

information and the information for a single arc to be

in core at any given ‘time. The development of the
NONAME solution is given here. '

The Bayesian estimation formula has been devel-

oped in the previous section as

where

’ \‘ ) "1 v
@) (g" B+ V '1) BT wam + vt (5(“3- w:,}

-is the

o,

A

(1)

is the a priori estimate of X.

is the a priori covariance matrix associated
with X,.

is the weightiﬁg matrix associated with the.

abservations.

th approximation to X,

is the vector of residuals (0-C) from the
th ~

n" approximation.
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i+l . ’ - . S
dX( 3) is the vector of corrections to the
paramotcr"' j.é.,'
+1° T n+l
En'l“.]. = }_(- * (l ( )
B is the matrix of partial derivatives ol th
observations with respecct to the paramcters
! * . 2 .t . -
where' the i, jLn clement is given by
oM . :
i
IX .
J

The iteration formula given by this cquation
solves thé non-lincar normal cquations formed by mini-
mizing the sum of squarcs -of the weighted residuals.

We desirc a solution wherein x is partitioned
according to a; the vector of parnmétcrs associated
only with individual-arcs; and K, the vector of paréme~
ters common to all arcs. For gecodetic- paramcter esti-
mation a consists of the sets of orbital elements,
satellite parameters, and mecasurement biaqes‘associated
with each arc, whercas k consists of the gcopotenflal
.COfoLCleDtS and station coordinates: ’

As a result of this partitioning, we may write

B, the matrix of partial derivatives of thec observations,
e

2.10-9
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where

)
al. =
L3

and

]
[ﬂ%. )
1,7

We may also

the parameters as

PST Y

ami

k.
]

write VA’ the covariance matrix of

(3)

where we have assumed the independence of the a priori

information on the arc paramcters and COMMON parameters

(in practice valid to an extremely high degree).
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¢ may now rewrite our iteration formula: - BSTIM

|]1 I fll \ —E -
da B OWR_ ¢ V0 B WBy .
S R O X )
dk 2T wp, | LB own, o+ v
ol o k 1 Iz 7k k
= (n) ]
T n
By wan v v ta - ay)
T ()
B Wam o+ vy (k) -k
T
A i\k C:1
T
Ay K c

"The, required matrix inversion is obtalned by

partitioning. We write

Ny 5 _
C =- 1 (5)
T T :
N, N A* K

2 -y

and, solving the resulting equations, detecrmine

PES I T B T ,-1 6
Ny = A b(f\ Ak} NdrlAkA} . (_)
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Ny = -A 7 Ay N, ' (7)

and

=
u

-1
;AT ,-1
4 [} A A7 Ay } (8)

There is no problem associated with inforting A
"because the existence of the a priéri information alone
guarantees this property. On the other hand, the
inverse of K - Ai A—l ﬁk is not guarantced to exist.
High correlations betweccen the paramcters’ could make
‘the matrix near singular. 1n practice, howcver, the
usc of a reasonable amount of a priori information

eliminates any inversion difficultics.

The iteration formula may now bec written as

- E]._-?.- Nl NZ la - ’
= 7 (9)
| dkc N Ny Cx
E ]
or
da = [A_l et N, oy ah e, - AT AN, o
(10)
dk = N, AL p7d
dk Ny A A77 C o+ Ny €y (11)

2.10-12

LESTIM



Noting the similaritics between da and db, we write

da = ATt cC - AT A, d (12)
and rewrite dk as’

= C. - - 13
dk =N, (C, ~ A AT C). (13)

Note that most of the elements of A are zcro
becduse the measurocments in any given arc arc inde-
pendent of the arc parameters of any other arc. Also,
the covariances between the & priori information
associated with cach arc is assumed to be zero. Thus
both A and V, are composed of zeroes cxcept for matrices,

A and'VrL respectively, along the diagonal, where

. . . th -
T is a subscript denoting the r arc,

. . th
where % ranges over the measurements in the r

arc and i, j range over the parameters in ‘the
th
T arc, a

2.10-13
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Vr is the partition of V, associated with the
v aye.

The reader should notc that Aﬂl, Tike A, 1s conposcd of

. -1 . .
zeroes coxcept {for matrices Ar along the diagonal.

We shall also require the partitions ol Ay and
Ca according to cach arc. These partitions arce given
by

dm 1 am
A = ; 2 2
[ rk}i,j 9; (15)

olk.
]

and

(16)

P
')
-
|
=
1]
=3
=
P
—
[N
=
=
o

where the subscript r again denotes the rth arc and %

ranges over the measurement partials and residuals in

the rth arc.

Let us now investigate the matrix partitions -

in the solutions for da and dk. We consider At to be

1

a diagonal matrix with diagonal elements Ar' and Ca

to be a3 column vector with elements Cr' Hence

2.10-14
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is the rth ¢lement of the product matrix. Ak is con-

sidered to be a column vector with elementis Ark’ thus

k rk ' T

[AT At ca} S L L
The elements in the product At Ak arc given by

-1 !
{A Ak} = AT A

r

We also requirce the product Al A—1~Ak. Its clements

are given by

The solutions for da and dk may now be rewritten

taking into account the partitioning by arc:

ol
)
1]
o=
i
H
(]
i
=3

la
et
1]
b
S
]
F;-l
o
N
=
I
e
-
PR
i._'l
(@]
[

EST1Y
(17

(18)

(19)

(20)

(21)

(22)



where ESTIM

‘N, = K - ‘AT At A = 23
4 ji: Tk T rk (23)
=

These solutions form the partitioned Baycsian estima-

tion scheme uscd in NONAME.

Additionally, the covariance matrix for the arc
parametexrs must be updated to account for ‘the simultan-

eous adjustment of thec ‘common paramcters:

_ .-l -1 T, -1 -
Ml = AT (Ar Ark) Ny (Ark Ay ) (24)

SUmMmMary

The procedure [or computer implementation i

illustrated in Figure 1. This proccdure is:

'

1. Integrate through cach arc forming the
matrices A_, A_,, and C_; and simultan
T rk ¥

-

eously accumulatc into the common

parameter matrices K and Cye -
2, At the cnd of each arc, form
da” = At ' (25)
— T T

and modify the common paramcter matrices

as follows:
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. ESTIM
K = K- AL A“ta (26)

and

- AT da (27)

c - Ck rk

k

'
r

The matrices da_,

be put in external storage.

-1
Ark’ and Ar must also

After processing all of the arcs; i.e.,

at the end of a global or "outer" iteratiom,
determine dk. Note that K has become Nél .
and Ck has been modified so that

& = Kt (28)

The updated values for the common parameters

arc of course given by

k(n"'l) = E(n) + _@i (29]

The arc parameters are then updated to
account for the simultaneous solution of
the common paramcters. Information for each

arc is input in turn; that is, the previously
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storcd ggé, Ay and A;]. The correction ESTIM
vector to the updated arc parameters is
given by b

day= dap - (A7 Ay dk (0)
and hence
irtn+l) - ET(H) + da_ (31)

The covariance matrix {for the arc paramcters,

A;l, is updated by

1 1

-1 (32)

-1_ -
= A + (Ar .

Ark) K (Ark A

This completes the global iteration.

It should be noted that if only the arc parameters
are being determined, as is the case for "“inner" itera-
tions, the solution vector is dal and hence the updatcd
arc parameters are computed by

2. (n+1) _ ér{n) - dar : (33)
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The common parameter matrix K is carried as a
symmetric matrix. It is core-resident throughout the
estimation procedure. Its dimension is sct by the
number of common parameters being determined and remains

constant throughout the procedure.

The arc paramcter matrices Ar are also carried as
symmetric matrices. Their dimznsions vary Ffrom arc to
arc according to the number of arc parameters being deter-
mined. Only one arc parameter matrix Ar and the corres-

ponding covariance matrix Ark are resident in core at
N

any given time. Thesc arc parameter matrices are store
on disk during step 2 of the above summary and recovercd
during step 3.

The a priori covariance matrix Vk 1s not carried
as a full matrix. The correlation coefficients be-
tween each coordinate of a given station position ae
carried. The position coordinates of diffcrent stations
and the geopotential coefficicents are considered to be
uncorrelated.

The a priori covariance matrices Vr are also not
carried as full matrices. The drag coefficient, radi-
ation pressurc coefficient, and each bias are considered
to be uncorrelated. The covariance matrix for the cpoch
clements is carried.
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Tn terms of a subroutine breakdown within NONAME,
this entirc scction is implemented in subroutine BESTIN
with the cxception of the matrix inversions. These
inversions arc done by subroutinc SYMINV.

2.10.3 Data Editing

The dita editing procedures for NONAMI have two

forms:
@ hand editing using input cards to dclete
specific points or scts of points, and
8 automatic editing depending on the weighted

residual as component to a given rejection

level.

The hand editing is a simple matching of the
appropriate NONAME control card information with the
set of obscrvations. This calling procedurc is done
in NONAME subroutines GLOSRD or DODSRD.

The automatic editing of bad observations from
a sct of data during a data rcduction run is performed
in the NONAMI main program. Obscrvations arc rejected
when

0 - C :>
k (1)
(o]
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where NONAMY

0 is the observation
C is the computeced observation
a is the a priori stoundard deviation

associated with the observation (input)

k is the rejection level.

The rejection level can apply either for all
observations of a given type or {or all observations
of a given type from a particular station. This re-

jéction level is computed from
ko= By v By {(2)

where
Ey is an input multiplier, and
ER is the weighted RMS of the previous '‘outer™
or global iteration. The initial value of

ER is set on input.

it sﬁould be noted that both EM and ER have default values.
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SECTION 2.11
GENERAL INPUT/OUTPUT DISCUSSITON

NONAME is a powerful yct {lexible tool for
investigating the problems of satellite geodesy and
orbit analysls. This same powcr and [lexibility
causes extremc vafiation in both input and output
requirements. Consequently, NONAME contains a grcat
deal of programming associated with input and output.

2,11.1 Input

There are two major functions assocciated with
the input structure:

These arc the input of

6 Observation data, and

@ NONAME Input Cards.

The observation data utilized by NONAME in-
cludes data f£rom all the major satellite tracking
networks. The observational types usecd to date,
together with their originating networks and instru-
ment types, arc:

‘e Right Ascension and Declination

SAQ Baker-Nunn cameras
STADAN MOTS~cameras
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USAF
USCEGS
SPEOPT
Range

STADAN
SAO
AMS
C-Band
MSFEN

Range Rate

STADAN
MSFN

Frequency Shift

PC-1000 cameras

BC-4 cameras
All of above

cameras

GRARR S-Band
GSFC Laser

‘Laser

SECOR

FPQ-6 Radar
FPS-16 Radar
S-Band Radar

GRARR S-Band
S-Band Radar

TRANET - Doppler

Direction Cosines

STADAN

X and Y Angles

STADAN
MSEN

GRARR

S~Band Radars

2.11-2
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o Azimuth and Elevation Angles

.  STADAN GSFC laser
. C-BAND FPQ-6, Radar
FPS~16 Radar

The observations are required to be in cither
the format specified by the National Spacc Science
Data Center (NSSDC) or the GSFC DODS Systen.

The NSSDC format includes indicators to identify GEOSRD
observation type, instrumentation source, reduction
method, coordinate system, and information concerning
tropospheric ana ionospheric refraction corrections.

Data in this forymat is input via subroutine GEOSRD.
| :

The DODS!format includes indicators to identify DODSRD
observation type, satellite identification, ambiguity DATBSE
corrections, transponder channel when applicable,
timing correction, and time reference system informa-
tion. It also contains flags to indicate the need
for transit time correction or other types of pre-
processing corrections, Data in this format is input
via subroutines DODSRD and DATBSE.

The NONAME Control Cards are the complete ADFLUX
specifications for the problem to be solved including INOUPT
special output requests. Their input, controlled
through subroutines ADFLUX and INOUPT, consists of
data and berhaps variances for

s Cartesian orbital elements

e ‘Satellite drag coefficient

7 11-%



o Satellite emissivity

3

o Zero set measurement biascs to be adjusted
@ Station positions
L) Geopotential coefficicnts

and data fof

] Satellite cross-sectional area

o Satellite mass

o Integration times for the orbit

) ﬁpoch time c¢f elements .

] éritéria for iteration convergence and data
gditing _

s Solar and geomagnetic flux

Subroutine ADFLUX modifies the program internal'
data tables of solar and magnetic flux according to the
input requests. It also generates the scratch file of

fiux informgtion to be used with each arc.

Subroutine INOUPT interprets the NONAME Control
Cards and sets the appropriate run parameters. It
" also generatés.the NONAME run description and the
descriptions for all arcs.

2.11-4
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Subroutine INOUPT refercnces other routines to INOUTT

set up certain Tun parameters or to list sclected run STAIND
parameters in a particular format. Notable among the BLKSTA
former are STAINP, BLKSTA, SQUANT, and PLIOUT. These SQUANT
are all concerned with station position processing. PLHOUT

It should be noted that the starting orbital DODELM

elements for some arcs may be recovercd from the DODS
Data Base by subroutine DODELM.

2.11.2 OQutput

Most of the output from NONAME, not counting the ORB1
descriptions of the input or run parameters, is pro-
duced by the main program. The exception to this is
the ORB1 tape output, which has a special subroutine,
named ORB1l, to produce the required output.

The printed output consists of a measurement
and residual printout, residual summaries, and solution

summaries as detailed below.
N

For each arc:

Measurement and Residual Printout

e Measurement date

© Measuygment station
° Measurement type

) Measurement value
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. Measurement residual
® Ratio to sigma

¢ Satellite elevation

Residual Summary by Station and Type

] Station

e Measurement type

) Number of measurements

& Mean of residuals

é ‘Randomness measure

® Residual RMS about zero

¢ Number of weighted residuals

© Mean ratio to sigma for weighted residuals
e Randomness measure for weighted residuals
o RMS about zero for weighted residuals
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Residual Summary by Type
. Measurement type
) Number of weighted residuals

) Weighted RMS about zero

e Weighted RMS about zero for all types togcther

Element Summary

o a priori Cartesian elements

3 Previous Cartesian elements

° Adjusted Cartesian elements

6 Adjustment to Cartesia? elements (delta)
@ Standard deviations of fit (sigmas)

8 Position RMS

) Velocity RMS

o a priori Kepler elements

© Previous Kepler elements
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) Adjusted Kepler elements

. Adjustment to Kepler elements (declta)

e Double precision adjusted Cartesian elements
‘ (current best elements for arc)

Adjusted Force Model Parametcr Summary for Arc

© Drag Coefficient and/or Solar Radiation
Pressu;e Coefficient

) a priori coefficient value

] Adjusted coefficient value
© a priorl standard deviations for coefficient

Y Standard deviation of f£it for coefficient

Adjusted Parameter Summary

° Instrument biases - timing bias and/or

constant bias

e . a2 priori bias value

@ Adjusted bias value

o a priori standard deviation for bias
° Standard deviation of fit for bias
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e Time period of coverage

The following itcms are printed on the last inner iteration

of every outer iteration,

- e  Apogec and perigecc hecights
° Node rate and perigee rate
° Period of the orbit
e Drag rate and period decrement if drag is

being applied

° Updated covariance matrix for Cartesian arc
elements
e Adjusted arc parameter correlation coefficients

After all afcs:

5 Total Residual Summary

e Total number of weighted measurements for

each measurement type
] Total weighted RMS for each measurEment‘type
@ Total number of weighted measurements

® Total weighted RMS
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Station Summary

¢ Earth-fixed rcctangulur coordinates and

geodetic (¢,A,h) coordinates

o a Eriori coordinate valucs

[ a priori standard deviations for coordinate
values

o Adjusted coordinate values

o + Standard deviation of fit for coordinate valucs

e Correlations between determined coordinate
values

Geopotential Summary

o efficien each n,m set
Cnm and Snm coefficients for ea R

determined

) a priori values

e Adjusted values
-
o Ratios of a priori value to a priori sigma

for each coefficient

(] Standard deviations of fit for coefficients
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Arc Summary for Outcer Iteration - For cach arc
© Updated Cartesian elements for arc i

=) Correlation cocf{ficicnts between individual
arc parametcrs

[} Standard deviation of {it {for arc parameters
o Correlation coefficients between individual

arc parameters and parameters common to all

arcs

Common Parameter Correlation Coefficients

8 Geopotential coefficients

© Cartesian station positions
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NONAME also produces an XYZ and Ground Track
listing upon request. This is the normal printout for
Orbit Generation Mode.

The. tape output from NONAME consists of

° the ORB1 tape,

] the XYZ and Ground Track tapc,

] a DODS formatted data tape, and
o a binary residual tape.’

The XYZ and Ground Track tape and the binary residual
tapes are used as input to NONAME support programs.

2.11.3 Computations for Residual Summary

The residual summary information is computed in STAINF
subroutine STAINF for printing by the main program.
The formulas used in this subroutine for computing
each statistic are presented below.

The mean is the familiar average:
n

e = — ZRi' &9

i=1

ae]

where

the R.l are the residuals and n is the number of
residuals.
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The RMS is the-:squarec root of the sample
variance:

RMS = ./s_f' (2)

where

The expected value of the sample variance' differs from
. the population variance % '

E(s%) = o - var (®) (3)
or réther
E(sz) ‘o 02(1 - %) 4)

Hence we may make a better estimate of 02 by computing

n
ot = ___ s2 (5)
n-1
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This is known as Besscl's correction. This computed STAINY
value for the standard deviation, g, is also callced
the RMS about zero.

The randomness measurc uscd in NONAME is {from a

mean square successive difference test. We have

ja

RND = (6)

&

when

RND is the random normal deviate; our statistic;

s is the unbiased sample variance; and
n-1
a? = - )%
Z(n 1) 5=

Note that d2 is the mean square succéssive difference.
For each i the difference R, iv1 " By has mean zero

and variance 202 under the null hypothesis that
(Rl"" R % is a random sample from a pOpulaT10n2W1th
variance ¢ The expected value of d is then o

If a trend is present d% is not altered nearly so much
as the variance estimate 52, which increases greatly.
Thus the critical region RND constant is employed in

testing against the alternative of a trend. (Reference 1)
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In order to use this test, of coursc, it 1s

STATNY
necessary to know the distribution of thec RND.

It
can be shown that in the casc of a normal population
the expected value is given by

E (RND) = 1, (7)
H
the variance is given by
1 i
var (RND) = 1i-—1, (8)
n+l n-1

and that the test statistic, RND, is approximately
normal for large samples (n > 20).
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2.11.4 Kepler Elements

The Kepler elements describe the position of the

satellite as referrced to an ellipse inclincd to the orbit
planc. This is shown in Figures 1 and 2. The definitions

of these clemcnts are:

a

semi-major axis of: the orbit
eccentricity of the orbit
inclination of the orbit plane’
longitude of the ascending node
argument of perigee

mean anomaly

eccentric anomaly

true anomaly

Apogee height and perigee height are sometimes used
in place of a and e to describe the shape of the orbit.
can be seen in Figure 1, the radius at perigee is a(l-e)

and that at apogee is a(I+e).

The heights are determined

by subtracting the radius of the reference elipsoid at the
given latitude from the spheroid height of the satellite.
The computations of these last are detailed in section

2.5.1.
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> Perigee

Figure 1: Orbital Ellipse

Figure 2: Orbital Orientation
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Conversion to Kepler Elemcents ELE

The computation of Kepler clements from the

Cartesian positions<and“vclocities X,¥,Z,X,y,Z is as.
follows:

Compute the angular momentum vector per unit mass:
h=7Tx7T o : (1)

where T is the position vector and ¥ is the velocity
vector. Note that v2 =T - r. The inclination is
given by

i'= cos T | = - (2)

v? - GM'(-Z— i l), | (3)
T a

where G is the universal gravitational constant and M
1s the mass of the primary about which the satellite is,
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orbiting. Thus we have

Recalling Kepler's Third Law,

2

we determine

h = QM a (1-¢2),

The longitude of the ascending node is also

determined from the angular momentum vector:

The true anomaly, f, is computed next.

integrating
T x h =M ;:/.i

one arrives at

2.11-19
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TXxXh=06M (T + €) (9) ELEM

where e is a constant of integration of magnitude equal

to the eccentricity and pointing toward perihelion.
Thus, '

T X € =re sin f (%%) . (10)
or, performing a little algebrd,

a (l—e2) r - %.

sin f = T . (11)

The cosine of the true anomaly comes from

a (luezj'

TS ieCos f ° (12)
A
that is
a (1—e2) 1
cos £ = e - (13)

£ = tan ! (sin f) (14)
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The eccentric anomaly is computed from the truc anomaly:

- f+e
COS E = —~—"8
l+e cos [ ?

/ 2 .
. - Vl-e sin f
sin E = 1+e cos T >

and

_ -1 fsin B
E = tan (cos E) s

The mean anomaly is then computed from Kepler's
equation:

M = E - e sin E.

The central angle u is the angle between the satellite
vector and a vector pointing toward the ascending node:

X ¢cos  +Y sin @
T

cos u =

n

sin u

(Y cos @ - X sin Q) cos 1 + z sin i

by

-1 sin u
1l = tn ——————
a cos u
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The argumenf of perigee is tHen ELEM

w=u - £ (22)

In NONAME, this conversion from x,y,z,X,y,z
to a,e,1,%,0,M is performed by subroutinc LLEM.

Conversion From Kepler Elements

The input elements are considered to be a,e,i, - POSVE
Q,w, and M and the Cartesian elements are required.

An iterative procedure, Newton's mcthod, is.
used to recover the eccentric anomaly, E, from Kepler's
equation (M=E-e sin E).

The vectors A and B are computed. . A is a vector
in. the orbit plane directed toward peri center with a
magnitude equal to the semi-major axis of the orbit:
A
cos w co0s - sin w sin  cos i
A=2afcos w sin @ + sin w cos & cos i (23)

sin ®w sin i

B is a vector in the orbit plane directed 90° counter
clockwise from A with a magnitude equal to the semi-
minor axis of the orbit.
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1

- sin w cos § - cos w sin © cos 1 POSVILL
B = ayl-e - sin w sin  + cos w cos £ cos i} (24)
cos ® sin 1

The position vector T is then

|
H

(cos E - e) A + (sin E) B (25)

The velocity vector is given by

M.
1

E [[—sin E) A + {(cos E) B (26)

where E is given by

[ Gt
' a3

l-e cos E

(27)

This conversion procedure for converting
a,e,i,0,w,M to x,y,z,x,y,z is performed in the NONAME
system by subroutine POSVEL,
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2.11.4.1 Node Rate and Perigcece Rate

The pode rate é and perigece rate @ are computed from
Lagrange's Planetary Equations. As these are for printout
dnly, NONAME uses just the Barth oblatcness term in the
geopotentiél. From Reference 4, .pagec 39, wc have

| H 7]
. 3 GM a V37 cos i (
g = 1-¢C — = SR 1)
20 % 3 2.2
2 a, N (1-e7)
. 3 o 1 /a \73° (1-5 cos? i)
w = }—C — | — (2)
20 3 _ 2.2
4 a, g (1-e7)

in radians per second, or rather

-3.5

\ . a cos i
8 = -9.97f — —y (3)
; a, (1-e™)
. a -3.5 (1-5 c052 i) : (0
w = -4.98 | — 4
ag (1-62)2

in degrees per day. The quantities used in the above equations
are defined as:
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a is the semi-major axis of the Larth
GM  is the product of thc universal gravitational

constant G and the npass of the Earth M

C,q 1s the Larth oblateness term in the geo-
potential’ {see Section 2.8.3).

a semi-major axis of the orbit
e eccentricity of the orbit
i ‘inclination of the orbit
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2.11.4.2 Pcriod Decrement and Drag Ratc

The period decrement and the drag rate arc determined
from the partial derivatives of th? position and velocity '
with respect to the drag coefficient at the final intcgrator
time step in the given arc. Thesc: (multiplied by the drag
coefficient) represent the sensitivit}y of the position or
velocity to drag effects. Let us define

B = — (¥) - C
3C, ) % (1)

where

is the satellite {inertial) position vector

H|

Ch is the drag coefficient

We also define

r:-l-
{f

_— - C (2)
3¢ D

The (two-body) period of the orbit is

P = 2w — - (3)
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where

a is the semi-major axis of the orbit

GM is the product of G, the universal gravitational
constant, and M, the mass of thec Earth.

Thus

~ .
AP = 3w | — Aa. (4)
oM

The vis viva or energy integral has -

2 2 1
v = GMi—- —1, (5)
T a T
hence
1
) a = (6)
2 T . T
T GM

pa — ' (7)

1
+

GM

H
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The effect of the drag on the period is then given by
6r [a° [T -® T .10 |
AP = — o — x + : (8)
a GM T GM

The daily rate or period decrement is computed as AP/At

where At is the elapsed time (in days) between the last

integrator time point and epoch.

"The drag rate is computed {from the along track
{actually normal) portion of AD, that ié ADy - We need to
construct the unit vector along track, L. The velocity
vector %'may be resolveé into a radial component and a
component normal to the radius vector. The magnitude of

the normal. component is found by the Pythagorean Theorem:

) ) 1 A2
A =-%/? LT - (ﬂ T . ?) (9)
: T

The unit normal vector L is then

(10)

>

il
"

'

I
H
|-

—_—
ey

5D, = L - D (11)
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This Eﬁﬁ
due to drag over the integrated time span. The drag rate

is computed as ﬁDN/ZtZ where At is again the clapscd time

represents’ the along-track position cffect

in davs.
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SECTION 3.0
NONAME ANALYSES AND GRAPHICS SUPPORT PROGRAMS

There exist threc ancillary program which are
used with the NONAME program in the analysis of NONAME
determined trajectories and residuals., Thesc programs

are entirely independent of the NONAME program.

DELTA is used to print and/or plot a]oné track,
cross track and radial differcnces between two trajec-
tories. GEORGE performs a regression analysis of the re-
siduals for each pass of data about a trajectory to
determine trends in possible timing;and measurement biases.
GROUNDTRACK simply plots the groundtrack of the satecllite
over a particular tracking station or stations to provide
geometric insights into data trends.
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3.1 DELTA
INTRODUCTION

The graphic support program DELTA prints and/or
plots trajectofy diflferences. The two trajecctories cnler
the progiaﬁ from two-magentic tapes in cither an R-V tape
format or-ORBL tape format. If the, tapes arc in the ORB1
format, the subroutine READER is cailcd to obtain each
trajectory point; DELTA itself can read thc R-V tapes.
The subroutine READER is the driver for the secquence of
calls to the Plot Package, which provides the plots of
the trajectory differences.

1
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PROGRAM MATIILEMATICS

The trajectory tapes input to DELTA consist of the
satellite positions (X,Y,Z) and velocitics (X,¥,2) in the DI
Cartesian system at given time intervals.

If Xl’ Yl’ Z1 are the Cartesian coordinates of satel-
lite position from tapc 1 and Xz, YZ’ ZZ arc the coordi-
nates from tape 2 then the position differcnce vector is

AP 2= (AX =X, - X, AY = Y_ - Y., and AZ = Z. - %

2 1’ 2 1° 2 1)'

The velocity difference vector AV = (AX, AY, AZ) is
computed similarly.

These vectors are then resolved into 'a radial vec-
tor, H, a cross track veétor C, and an approximation to an
~along track vector, L (for nearly circular orbits).

First, the distance from the geocenter to the satel-

lite, R, is computed where
A

R = \le+Y_2+Zz

and the square of the magnitude of the velocity vector V),
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[l

Thus the unit vector, U, in the radial direction is

DELT

=

I
————
| e
~| =
N
g

Then to calculate the mdgnltudo of the vector in
our along track dlrectlon (normal to U in the ovrbit plane),

A, we nust compute U + V becausc

Now we compute the unit vectors in our along track

direction A = (a;, a,, a;) wherc

Cz) vhere

Al
[
>
”
ol

or

301—3



Finally we
radial, H_ , cross

track, Lp;
H = U -
P
c. = C-
P
L::K-
P

and the velocity differences in the radial, Hv’ cross track,

compute the position differences in
track Cp, and approximation to along

>
gl

CV, and approximation to along track, L

H = U .
v

CV = C
L, = K.
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3.2 GEORGL
INTRODUCTION

The support program GEORGLE analyzes NONAMI: wmcasure-
ment residuals. The residuals cnter GLEORGE Erom tapce
generated by NONAME and are analyzed on a pass by pass
basis for either the station and/or measurcment typc
specified by card input to GEORCGE.

The main routine GEORGE selects the residuals to
be analyzed and breaks them up into individual passes.

GEORGE also controls which types of plots are to be made,
if any.
REGANL performs the regression analysis and can

edit. data points on the basis of their standard deviations
from the mean,

‘ The. subroutines HISTO and PLOTER provide visual aids
-in aﬁalyzing the residuals.- HISTO plots a histeogram or
.either the residdals or the ratios to sigma for each pass
and a grand summation histogram for all the passes analyzed.
"PLOTER plots either residuals versus time or measurement
rate versus residuals for each pass of data. Both subrou-
tines are drive routines for the-Plot Package.

The subroutine DIFF computes the difference in days
between any two dates, and the subroutinec RYMDI rcsolves
a date in one word into three words; the year, the month,

and the day. Both of these subroutines are members of the
NONAME program.



PROGRAM MATHEMATICS

The subroutine REGANL determincs measurement biases
(or zero-set errors) and timing ertors in cach pass of
data and then performs a regression and analysis of the

residuals.
The- zero-sct error, A, and timing crror, B, are REGANI,

determined by using a least squares mcthod of solving the

following equation:
Y = A+ BX (1)

where
Y is the residual and
X is the measurement rate.

_ Taking the partials of (1) with respect to B and
then with respect to A and setting them to zcro, we get

b

N

N
2" _
ZXiYi'BZXi-A X; =0 (2)
i=1 1=1" 1=1



N N
' ES Y. - B jg X. - NA =20 (3)
i i -

=l ' i=1

where N is the number of points in the pass. REGANL
The two equations arc solved simultancously for A
~and B.

First REGANL computes the sums of the rates,
N

E Xy

i=1 :

and residuals,

N
Z Yio
i1

the products of Xi and Yi’

N
Z X3Y5,

1=1

the squares of .the rates,

N
2
zxi

i=1



and finally, the squarcs of the residuals, _ REGAN

N
2
Yi .

i=1

Then the corrected sum of the products, CSXY, and
the corrected sums of the squares, CSX2 and CSY™, are com-
puted as follows:

N N N
CSXY = 25 X.Y. - zz X. ES y. /N
1 1 ] 1
is1 ; Ty

CS8X = X.

(X
]
I =
[
]
(3%
I
/f—-\
=
[ =
Ny
e
(%N
\____/
(a8
Z\

csyZ =

™
=
}—l
-
H
™
‘
T
N =
=
E.Ja
\\\\i1\
=

[Wp
1]

Now, solving for B we get

CSXY/CSXZ,

=
i

and solving for A using B we get
N N .
A V)
i=1 i=1



The regression anmalysis is performed next. (Sce

Anderson, R.L., and Bancroft, J.A., Statistical Thcory in

Rescarch, 1952, McCraw-llill Book Co., Inc., New York, pp.
156-157,)

The regression sum of squarcs, RSS, is
RSS = csxyz//csxz
and the regression mecan, RM, 1s

2

RM = (CSY“ - RSS)//(N - 1),

which is nothing more than  the square of the standard
deviation of the residuals about thc trajcctoxy.

The standard deviations of the zero-set error,
SDZ, and timing error, SDT, are )

‘N

N ] 2

SDZ° =  [RM EE X;“ / Nesx
i=1

and

SDT.

VR [ @-1)
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The noise about the fitted linc, D, is

D = W RM

The residual mean square, RMSQ, is computcd as
) . [

CSY™ - RSS

. . !
To test the randomncss of the result, wc compute
the residuals corrected for zero-set and timimg crror

biases, CRi, as

CRi = RESIDi - Ai - BiXi

where RESID:.L is the residual,.

Then we compute difference.sum of squares between

sqpsequent residuals, DSQ, as
N 2
DSQ = E (CRi+l - CRi)
_ i=1

The random normal deviate, RND, is then

(720) - 1
2

J(N-z)/(N -1)

RND =




The noise is random if
[RND] < 2.58
and non-random if

IRND| > 2.58.

3.
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3.2 GROUNDTRACK
INTRODUCTION

GROUNDTRACK provides gcometric insights into NONAME
results by plotting the satellite groundtrack for each pass
over a particular .station.

The main routine GROUNDTRACK contrels ‘the type of
plot (groundtrack only or groundtrack with Jand plots},
fixes the size of the grid, rcads the data rcquired for
the groundtrack requested, and makes the required calls
to the Plot Package.

The subroutine CENTER centers the station position
on the plotting grid. The subroutine LAND finds the re-
duired data in the WRLMAP block data to plot the land
masses on the grid. WRLMAP is part of the Plot Package.

The subroutine DATIML converts minutes into days,

hpurgvénd minutes. The subroutines ADDYMD, DIFF, and
‘RYMﬂI'arb members. of the NONAME program and are used to
» handle the dates and times in the progfam.
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3.4 . WOLF SC4020 PLOT PACKAGE
JNTRODUCTION

The WOLF Piot Package is a completc system lor pro-
ducing SC4020 and/or printcr plots. The package has bheen
designed to be highly flexible and casy to usc. Any plot
from a quick simple plot (which %equircs only'onc call to
the package) to highly sophisticated plots -(including
motion picture plots) can be casily gencrated with only
a basic knowledge of FORTRAN being ‘necessary.

The SC4020 (Stromberg Carlson 4020) is a cathode
ray plotter whose outstanding fecature is its plotting
speed. As such, any user who is producing scrics of
plots should use this plotter. Film (35 mm and-16 mm)
and hardcopy are available and the WOLF Plot Package
also allows for printer.plbts which can be used as a
quick look for. the SC4020‘output.

. A typewriter mode is available which conviently
allows plotting of character information on the SC4020.
This is especially useful as a printer substitude for
large amounts of output.
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PROGRAM DESCRIPTEHON

The WOLF Plot Package is a system ol FORTRAN call-
able subroutines which arc used to createc plots. It is
structured into four major levels as follows:

1. " Basic Level - The basic ievel routincs perform

the primary functions of the plot package. Ixcept for a

few auxiliary routines, the basic level routines arc neces-
. ! .

sary for all other routines. However, few of the basic

routines arc user called.

The primary basic routinc assemblcs the instructions
for the SC4020 tape. There is a printer simulation (of
the S5C4020) in this routine. This allows for S$C4020 plots,
printer plot br both simultaneously. The other major basic
level routine is used for initialization and termination
of the Plot Package.

2. Intermediate Level - The intermediate level
contains the major user called routine. Some of the func-

tions of this level are

\ a. Grid Overlays (both Cartesian and Polar)
with labels

b. Scaling functions

C. Plotting of vectors or characters in any of

the following coordinate systems:

Linear
Semi-Log
Log-Log
Polar
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3. High Level - This level is for quick plots with

a minimum of programming effort. At this lecvel, all of the
other levels are called upon. Only one FORTRAN statement

is necessary to producc‘a plot of any array of data complete
with a labeled grid overlay.

4. Independent Level - These routines perform func-

tions that are independent of all other levels except the

basic level. The following are among the functions of this
level:

a. Labels: A string of chara’cters can be plotted
horizontally, vertically or diagonally (at any
inclination and direction).

b. Graphic Letters: Letters can be output in any
size and in any font design f{i.e., standard
block letters, mathematical symbols or even

old English script).

C. Typewriter Mode: The tfpewriter function in
the SC4020 plotter can be uscd by caliing the
various typewriter routines. These allow for
information to be typed (strings of characters
output in page format) on either the SC4020 or
prinfer.

In addition to these four levels, there are also a
number of auxillary routines. These perform such functions
as conversion of decimal (binary) numbers to EBCDIC equi-

valents and dump of the SC402Z20 plot tape.

The functional struction of the Plot Package is
1liustrated in Figure 1.
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SECTION 4.0
NONAME DATA HANDLING SUPPORT PROGRAMS

The three data handling programs arc uscd to merge
or modify existing data tapes for usec with the NONAME
. ¢ i )
system. Lo,

DODS SORT-MERGE sorts and merges data {rom two data
tapes in the DODS data tape format described in detail in
Volume IIT-NONAML SYSTEM OPERATIONS DESCRIPTION. GLOS
SORT-MERGE performs the same task for tapes in the GHOS
format described in section C.4 of the above reference. .
The ORBl conversion program converts a NONAME generated
ORB1 tape of the format described in Scction C.6 of the
same reference on a 9-track tape to thc same format on a

7-track tape. |

No input cards are required for any of these programs
as there are no options.
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4.1 GEOS SORT-MERGE

The GEOS SORT-MERGL program sorts data from two GLOS
format data tapes iﬁto chronological, station, and then
measurement type order, c¢liminating duplicate data records.

SORT-MERGE first rcads and sorts a block of 250 data
records onto a scratch filc: It then reads and sorts another
. block of 250 records and merges it with the first block. The
same procedure is followed until all the data has been sorted
and merged. The output from the final merge operation is an
ordered magnetic data tape in the GEOS data lormat.



4.2 " DODS SORT-MLRGL

The DODS SORT—MﬁﬁGE program soris data from two DODS
format data tapes by satcllite identirication nembers into
chronological, station and then mecasurement type order,
eliminatang duplicate data records.

SORT-MERGE first reads and sorts a block of 250
data records onto a scratch file. It then rcads and sorts
another block of 250 records and merges it with the f{irst
block. The same procedure is followed until all the data
has been sorted and merged. The output From the final merge
operation is an ordercd magnetic data tape in the DODBS !
data format in blocks by satellite.
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4.3 ORB1 CONVLRSION

The ORBL CONVERSION program is uscd to convert a
9-track 360 double-precision ORBI tapc to a 7-track 7094
single-precision ORB1 tapec.

The main routine rcads in 360 doublc-prccision words

and writes on a 7-track tapc the 7094 single-precision word.

The subroutine WORD94 docs the conversion [rom the

360 64-bit floating point format to the 7094 36 bit floating
point format.
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APPLENDIX A
INDEX OF SUBROUTINI REFERENCES
FOR NONAME PROGRAM '

SUBROUTINE SECTION

ADFLUX 2.8.7.2, 2.11.1

BAKINT 2.9.1 oro

BLKSTA 2.11.1

COWELL 2.9.1 .

DATBSE 2.11.1

DENORM 2.8.3

DENSTY 2.8.2, 2.8.6, 2.8.7

DNVERT 2.9.1

DODELM 2.11.1 .
_DODSRD 2.7.1, 2.7.2, 2.10.3, 2.11.1
DRAG 2.5.1, 2.8.Z, 2.8.6

EGRAV 2.8.3

ELEM 2.11.4

EPHEM 2.3.5, 2.4

EQN - 2.3.6, 2.3.6.2

EQUATR 2.3.6, 2.7.2

ESTIM - 2.10 _

B 2.3.5, 2.8.1, 2.8.2, 2.8.5
GEOSRD 2.7.1, 2.7.2, 2.7.6, 2.10.3, 2.11.1
GRHRAN 2.3.4,72.3.5, 2.6.1

HERMIT 2.9.3 :

HHEMIT 2.9.1, 2.9.3

INOUPT 2.5.1, 2.11.1

INPT 2.8.7.2

INTGST 2.9.2

JANTHG © 2.3.5, 2.8.7.2

NUTATE 2.3.6, 2.3.6.2



APPENDIX A (CONT.)

SUBROUTINE SECTION
‘0BSDOT 2.3.4, 2,5.2, 2.6, 2.6.1, 2.06.3 ’
ORBLT _ 2.8.2, 2.9-1
ORB1 L 2.11.2
PLHOUT 2.5.1, 2.11.1
POLE 2.5.4
POSVEL 2.11.4°
PRECES 2.3.6, 2.3.6.1
PREDCT ' 2.3.4, 2.5.1, 2.5.2, 2.6, 2.6.1, 2.6.2, 2.82
PROCES 2.7.1, 2.7.3, 2.7.4, 2.7.5
REARG 2.9.1
REECOR 2.3.6, 2.8.1
REFION 2.7.5
RESPAR 2.8.2, 2.83
SATCL2 2.7.1
" SATCLC 2.7.1
SQUANT 2.5.1, 2.5.2, 2.11.1
STAINE 2.11.3
STAINP 2.11.1 _ -
SUNGRV 2.8.4
SYMINY 2.10.2
TDIF 2.5.3
TRUEP 2.5.4
VCONY 2.5.1
VEVAL 2.5.1, 2.8.2, 2.8.3, 2.8.4, 2.8.5, 2.8.6,
2.8.7.2
XEFIX 2.3.4, 2.6.3
XINERT 2.3.4
YEFIX 2.3.4, 2.6.3
YINERT 2.3.4





