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SECTION 1.0
 

INTRODUCTION TO THE
 

NONAI4E ORBIT D TERMINATION SYSTEM 

The NONAME Orbit Determination and Geodetic Para­
meter Estimation System consists of a set of computer 
programs designed to determine and analyze definitive
 
satellite orbits and their associated geodetic and
 
measurement parameters. 

The heart of the system is the NONAMJ program
 
itself, which possesses the capability of estimating
 
thqt set of orbital elements, station positions, measure­
ment biases, and 
a set of force model parameters such that
 
the orbital tracking data front multiple arcs of mu]tiple
 
satellites best fits the entire set of estimated para­
meters. In any given run, 
little or all of this capabi-­
lity may be exercised according to 
the type of orbit, the
 
amount and type of data available, and the purpose for
 
which the run is being made.
 

NONANE ancillary analysis programs may be grouped
 
into three different categories according to the function
 
which they perform:
 

1. Orbit Comparisons
 
The DELTA program performs the function of
 
differencing satellite orbits and 
trans­
forming the differences in position and
 
velocity into the more physically meaning­
ful along track, cross track, and radial
 
components. This program is useful for
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comparing orbits generated usijg d.iffLeront. 
d'ata sets, using dJffernt gravity model s, 
using different mode s of data reduction, etc. 

2.. 	 Data Analysis using Reference Orbits 
The GEORGE program is used to analyze resi­
duals from measurements not used in an orbita
 

solution, but computed on 
the basis of a
 
reference orbit determined by measurements of 
known quality. Measurement biases and timing 
errors are computed on a pass by pass basis. 

The results of this analysis may be given
 

different interpretations, depending upon
 
the quality of the unweighted data and the 
quality of. the reference orbit. 

3. 	 Pass Geometry Computation 

The GROUND TRACK program plots the sub­

satellite points of orbits at station mea­
surement times. A graph is produced for-each 
station giving the total geometric coverage
 

achieved during a specified data p6riod.
 

All the above three programs use one or more tapes
 
written by the NONAjME program in eithex a data reduction
 
or orbit generator run. Although it is 
not necessary,
 
these programs are generally run immediately following
 
the associated NONAME run, thus mihimizing tape handling
 
problems. 
 In. addition all three prog-rams use the WRDC
 
.PLOT PACKAGE and can produce a graphical depiction of
 
their results both on printer plots and on SC4020 micro-,
 

film or hardcopy plots.
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In addition to the above-analysis programs, the 
NONAME System contains three data management routines: 

1. SORT-MERGE Programs 

a. NGSP Format 

b. DODS Format 

There are two programs for merging multiple 
data tapei, which may not be in time order, 
and producing a single tape with the data 

in time order. These two programs differ 
only in the format of the data tapes.
 

2. 9-7 TRACK Conversion Program 

This program converts a 9-track ORB1 tape
 

written by the IBM System 360 computers into 

a 7-track tape which can be read by the 

GSFC 7094 computer.
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SECTION 2.0
 

THE NONAME PROGRAM 

The original version of the NONAME Program was 
written for GSFC by WOLF in 1967. Since that time 
NONAME has undergone:extonsive development to enhance 
its capability, accuracy, and versatility. 

NONAME has become one of the most widely used 
orbit and geodetic parameter estimation programs in
 
the world. It is currently operational at GSFC on
 
the IBM 360 '95, '91, and '75; at the Goddard Institute
 
for Space Studies in New York on an IBM 360 '95; at
 
Wallops Island on the GE 625; and at the Tnstitut fur
 
Physik und Plasmaphysik,Garching, West Germany on an
 

IBM 360 '91.
 

NONAME has been used for
 

0 determination of definitive orbits
 

o tracking instrument calibration
 

o satellite operational predictions
 

* geodetic parameter estimation
 

and many other items relating to applied research in
 
patellite geodesy using virtually all types of satellite
 

tracking data.
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SECTION 2.1
 

INTRODUCTION TO TIlE NONAME PROGRAM 

The NONAMB Program is an orbit and geodetic'
 

parameter estimation program utilizing the Bayesian,
 

least squares process for determining the set of-param­

eters which makes the measurements most consistent
 

with the satellite orbits. Multiple arcs of multiple
 

satellites may be used in d simultaneous solution when
 

adjustments are desired for geodetic parameters.
 

The NONAME Program is designed around the concept­

that the determination of definitive satellite orbits
 

will-be affected by small errors.from three different
 

sources: measurement errors (bfases, etc.), statiqn 

position errors, and force model errors. Accordingly,
 

the program has the capabilijty of adj-usting these types
 

of parameters- along with the satellite orbital elements.
 

In general, this process leads to an improved orbit and
 

improved values for the measurement and geodetic
 

parameters.
 

The parameter adjustment features of NONAME
 

provide a large number of options and thus great
 

flexibility in the use of the program. The manner
 

in which independent parameters are assigned is based
 

upon the physical and statistical independence expected,
 

'ith some latitude left to the user for certain parame­

ters. The types of parameters; along with limitations
 

(through pr6gram tdimensioning) on the number of each
 

are:
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A. 	 Individual arc parameters. 

1. 	 Orbit elements one set of six for each arc 
which must always be adjusted (a priori 
information 
can be used to cffectivoy con­
strain them if no adjustment is desired). 

2. 	 Measurement biases 
- limit'of 50, optionally 
applied with assignments normally made on a 
pass 	by pass basis. The same bias may be
 
applied for any period of time up theto 

length of the arc.
 

3. 	 Station timing errors 
- same as for measure­
ment biases. The limit of 50 applies to the 
sum of measurement and timing biases. 

4. 	 Atmospheric drag coefficient 
- optionally, 
one drag coefficient per 
arc may be adjusted.
 

5. 	 Solar radiation pressure reflectivity
 
optionally, one reflectivity parameter may
 
be adjusted.
 

B. 	 Parameters common to 
all arcs
 

1. 	 Station.positions - optionally, up to 
21
 
independent stations may be adjusted. 
In
 
addition, any number of stations in the
 
tracking complement may be constrained to
 
move with a fixed relative location to 
one
 
of the independent stations.
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2. 	 Geopotential coefficients - limit of 20, with 

the adjustment of any coefficient whose degree 
is less than or equal to the maximum degree 
coefficient used in the orbit integration. 

In addition to the above restrictions, the follow­
ing overall parameter limitations must be observed: 

1. 	 The total number of adjusted parameters
 

affecting any one arc may not exceed 70.
 

2. 	 The total number of force model parameters
 

affecting any one arc may not exceed 20.
 

The NONAME program is configured to iterate on
 
the adjustment of orbital elements with fixed station
 
positions and geopotential model. After this iteration
 
process has converged, the common parameters of station
 
positions and geopotential parameters are adjusted and
 
the process is repeated.
 

Many features are designed into NONAME to facili­
tate ease of usage and to assist in interpretation of
 
the results. These features are discussed as a part of
 
the detailed program description in this volume and in
 

the Operations Manual.
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StUfIUN Z.Z 

THE ORBIT AND GEODETIC PARAMETER ]ST IMATION PROBLEM 

The purpose of this section is to provide an under­

standing of the relationship between the various elements
 

in the solution to the orbit and geodetic parameter esti­

mation problem. As such, it.is a general statement of
 
the problem and serves to. coordinate the detailed solutions
 

to each element in the problem presented in the sections
 

which follow.
 

The problem is divided into tw& parts:
 

o 	 the orbit prediction problem, and
 

o 	 the parameter estimation problem.
 

The solution to the first of these problems corresponds to
 

NONAME's orbit generation mode. The solution to the
 

latter corresponds to NONAME's data reduction mode and
 

of course is based on the solution to-the former.
 

The reader should note that there are two key choices
 

which dramatically affect the NONAIE solution structure:
 

a 	 Cowell's method for integrating the orbit, and
 

o 	 a Bayesian least squares statistical estimation
 

procedure for the parameter estimation problem.
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2.2.1 The Orbit Prediction Prob]em 

There are a number oF approaches to orbit pre­
diction. The NONAME approach is to use Cowell's method, 
which is the direct numerical integration of the satellite 
equations of motion in rectangular coordinates. The
 

initial conditions for these differential equations are
 
the epoch position and velocity; the accelerations of 
the satellite must be evaluated.
 

The acceleration producing forces which are cur­
rently modelled in NONAME are the effects of
 

o the geopotential,
 

o the luni-solar potentials,
 

o radia.tion pressure, and
 

* atmospheric drag 

Perhaps the most outstanding common feature of these
 
forces is that they are functions of the position of the
 
satellite relative to either the Earth, Sun, or Moon.
 
Only atmospheric drag is a function of any additional
 

"
quantity, specifically, the relative velocity of the
 
satellite with respect to the atmosphere.
 

The accurate evaluation of the acceleration of
 

a satellite therefore involves the solution to two
 

concomitant problems:
 

*Not to be confused with the "fixed" parameters in the 
models.
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o 	 the accurate modeling of each force on the 

satellite - Earth - Sun - Moon relationship, 

and
 

* 	 the precise mode] iAg of the motion~s of the 
Earth, Sun, and Moon. 

The specific details for each model in these solutj:ons 
are given elsewhere in Sections 2.3, 2.4, and 2.8. The
 
question of how these models fit together is in effect
 
the question of appropriate cootdinate systems.
 

The key factor in the selection of coordinate
 
systems for the satellite orbit prediction problem is
 
the motion of the Earth. For the purposes of NONAMIE,
 
this-motion consists of:
 

* 	 precession and nutation, and
 

* 	 rotation.
 

We are considering here the motion of the solid body of
 
the Earth, as versus the slippage in the Earth's crust
 
(polar motion) which- just affects the position of the
 

observer.
 

- The precession and nutation define the variation
 

in
 

* 	 the direction of the spin axis of the Earth
 
C+ Z), and
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o the direction of the true equinox of date
 

(+ X). 

These directions define the (geocentrjc) true of date
 

coordinate system.
 

The rotation rate of the Earth is the time rate 

of change of the Creenich hour angle 0 between the 

Greenwich meridian and the true equinox of date. Thus 

the Earth-fixed system differs from the true of date 

system according to the-rotation angle 0 

The equations of motion for the satellite must be
 

integrated in an inertial coordinate system. The NONAME
 

inertial system is defined as the true of date system
 

corresponding to O C of the day of epoch.
 

The coordinate systems in which) the accelerations
 

due to each physical effect are evaluated should be
 

noted. The geopotential effects are evaluated in the
 

Earth-fixed system, and then transformed to true of
 

date to be conbinedwith the other effects. The others
 

'are evaluated in the true of date system. The total
 

acceleration is then transformed to the inertial system
 

for use in the integration procedure.
 

The integration procedure used in NONAME is a
 

predictor-corrector type with a fixed time step. There
 

is an optional variable step procedure which will halve
 

or double the step size. As the integration algorithms
 

used provide for output on an even step, an interpolation
 

procedure is required.
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2.2.2 The Parameter Estimation Problem
 

Let us consider the relationships between the
 
observations 0 , their corresponding computed values C1I±
 
and P, the vector of parameters to be determined. These 
relationships are given by
 

O. - c. dP. dO. (i) 
3 J 

where
 

i 	 denotes the ith observation or association
 

with it,
 

dP. 	 is the correction to the jth parameter, and 

dO. 	 is the error of observation associated with
 

ith 
the observation.
 

The basic problem of parameter estimation is to determine
 
a solution to these equations.
 

The role of data preprocessing is quite apparent
 
from these equations. First, the observation and its
 
computed equivalent must be in a common time and spatial
 
reference system. Second, there are certain physical
 
effects such as atmospheric refraction which do not
 
significantly vary by any likely change in the parameters
 

represented by V.
 

These computations and corrections may equally
 
well 	be applied to the observations as to their computed
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values. Furthermore,, the relationsh.p, between the computed 
value and the model parameters P1 is, in general, nonlinear, 
and hence the computed values may have to be evaluated
 
several times in the estimation procedure. 
 Thus a con­
siderable increase in computational efficiency may be,
 
attained by applying these computations and corrections
 
to th0 observations; i.e., to preprocess the data.
 

The preprocessed observations used by NONAME 
are
 
directly related to the position and/or velocity of the
 

satellite relative to the observer at the given observa­
tion 	 time. These relationships are geometric, hence 
computed equivalents for these observations are obtained
 
by applying these geometric relationships-to the computed
 
values for the positions and velocities of, the satellite
 
and the observer at the desired time.
 

Associated with each measurement from each ob­
-serving station is 
a (known) statistical uncertainty.
 

This uncertainty is a statistical property of the noise
 
on.the observations. This uncertainty is reason
the 

a statistical estimation procedure is 
required for the
 
NONAME parameter determination.
 

It should be noted that d0, the measurement
 
error, is not the same as 
the-noise on the observations.
 

The dOi account forall of the discrepancy (0i-Ci) which
 
is not accounted for by the corrections to the parameters
 

dP. These dOi represent both
 

o 	 the contribution from the noise 
on the
 

observation, and
 

o 	 the incompleteness of the mathematical model
 

represented by the parameters P.
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By this. last we mean either that the parameter sot 
being determined is insufficient or that the functional 
form 	of the model is inadequate.
 

NONANE has two different ways of dealing with 

these errors of observation:
 

1. 	 The measurement model includes both a 

constant bias and a timing bias which may 

be determined.
 

2. 	 There is an automatic editing procedure 

to delete bad (statistically unlik-ely) 

measurements.
 

The nature of the parameters to be determined has 

a significant effect on the functional structure of the 

solution. In NONAME, these parameters are:
 

o 	 the position and velocity of the satellite 

at epoch. These are the initial conditions 

for the equations of motion.
 

* force model parameters. Those affect the 

motion of the satellite.
 

o 	 station positions and biases 'for station
 

measurement types. These do not affect the
 

motion of the satellite.
 

Thus, the parameters to be determined are implicitly
 

partitioned into a set a, which ate not concerned with
 

the dynamics of the satellite motion and a set T which
 

are.
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The computed value C. for each observation Oi is a 

function, of 

Xob" 	the Earth-fixed position vector of the
 

station, and
 

xt 	 the true of date pdsition and velocity vector
 

of the satelijte {x,y.,z,x,y,Z}
 

at the desired observation time. Whon measurement biases
 

also a function of. , the biases associated
are used, Ci is 


with the particular station measurement fypd.
 

consider effect of the given partitioningLet us 	 the 

on the required partial derivatives in the observational
 

equations. The DCi become
 

a i. Ci1 Ci 	 (2) 

9 -a DFob DB 

aC. = c aCt 	 (3) 

ait 

The partial derivatives are called the variational
 

partials. While the other partial derivatives on the
 

computed from
right-hand side of the equations above are 


the variational
the measurement model. at the given time, 


partials must be obtained by integrating the variational
 

As will be shown in Section 2.8, these equations
equations. 


are similar to the equations of motion.
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The need for the above mcnti oned va riatiana] 

piartals obviously has a dramatic effect on any solution 

to the, observational equations. in addjtion to integrat­

ing the. equations of motion to generate an orbit, the 

solution r.equires thattho variational equations be
 

integrat ed.
 

We have here-tofore discussed the elemonts of the 

observational equations; we shall now discuss the solution 

of these equations; i.e..; the statistical estimation 

scheme.
 

There are a number of estimation sciemies that 

can be used. 'The method used in NONAME is---a- batch 

scheme that uses all observations simultaneously to
 

estimate the parameter set. The alternative would be
 

a sequential sch]eme that uses the observations se­

quentially to calculate an updated set of parameters
 

from each additional observation. Although batch and
 

sequential schemes are essentially equivalent, practical
 

-numerical problems often occur with sequential schemes,
 

especially when processing highly accurate observations.
 

Therefore, a batch scheme was chosen.
 

a
The.particular method selected for NONAMIS is 


partitioned Bayesian least squares method as detailed
 

in Section 2.10. A Baye-sian method was sele.cted' because
 

such a scheme utilizes meaningful a priori information.
 

The,partitioning is such that the arrays which must be
 

simultaneously in core are arrays associated with
 

parameters comimon to all satellite arcs, and arrays
 

pertaining,to the arc being processed. Its purpose is
 

to dramatically reduce the core storage Tequirements of
 

the program without any significant cost in computation
 

time.
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There is an interesting asid~b related to the use 

of a priori information in practice. The use of a 

information for the parameters guarantees that the esti­

mation procedure will mcchanically operate (but not 

necessarily converge). The user must ensure that his 

data contains information relating to the parameters 

he wishes determined. 
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SECT]ON 2.3
 

THE MOTION OF THE EARTH AND RELATED COORDINAT13 SYSTEMS
 

The major factor in satell'ite dynamics is the 

gravitational attraction of the Earth. Because of the 

(usual) closeness or the satellite and its primary, 

the Earth cannot be considered a point mass, and hence 

any model for the dynamics must contaiji at least ,an 

implicit mass'distribution. The concern of t his' sec-tion 

is the motion of this mass distribution and its relation 

to coordinate systems.'.
 

We will first consider the meaning :of this motion 

of-the Earth in terms of the requisite coordinate systems 

for the orbit prediction problem: 

The choice of appropriate coordinate systems is 

c,ontrolled by several factors:
 

o 	 I-n the case of a satellite moving in the­

Earth's gravitational field, the mosL 

suitable reference system for orbit com­

putation is a system with its origin at 

the Earth's center of mass,, referred to 

as a geocen-tric reference system. 

0 	 The satellite equations of motion must be 

integrated in an inertial coordinate system. 

o 	 The Earth is rotating at a rate 0g, which is
 

the time rate of change of the Greenwich hour
 

angle. This angle is the hour angle of the
 

true equinox of date with respect to the
 

Greenwich meridian as measured in the equatorial
 

plane.
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0 	 The Earth both pr'ecesses and jiutates, thus 

changing the directions of both the Earth's 

spin axis and the true equinox of date in 

inertia] space. 

The motions of the Earth referred to here are of course
 

those of the "solid body" of the Earth, the moti-o of 

the primary mass distribution. The slippage of the 

Earth's crust is considered elsewhere in Section 2.5.I 

(polar motion).
 

2.3.1 The True of Date Coordinate System 

Let us consider that at any given time, the spin
 

axis 	of the Earth (+ Z) and the direction of the true 

equinox of date (+ X) may be used tu define a right-handed 

geocentric coordinate system. This system is known as 

the true of date coordinate system. The coordinate 

systems of NONAME will be defined in terms of this system. 

2.3.2 The Tnertial Coordinate System
 

The inertial coordinate system of NONAMIE is 
the
 

true of date coordinate system defined at 0120 of the
 

epoch day for each satellite. This is the system in
 

which the satellite equations of motion are integrated.
 

This is a right-handed, Cartesian, geocentric
 

coordinate system with the X axis directed along the tiue
 
h


equinox of 0.0 of the epoch day and with the Z axis direct
 

ed along the Earth's spin axis toward noth at the same
 

time. The Y axis is of course defined so that the co­

ordinate system is orthogonal.
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It should be noted that the inertiaJ system diffe'rs 

from the true of date system by the variatlon ill time OC 

the directions of the Earth's spin axis and the true 

equinox of date. This variation is described by .the 

effects of.precession and nutation. 

2.3.3 The Earth-fixed Coordinate 	System
 

The Earth-fixed coordinate system 	is geocentric,
 

axis of rotation
with the Z axis pointing north along the 


and with the X axis in the equatoriza) plane pointing
 

toward the Greenwich meridian. The system is orthogonal
 

and right-handed; thus the Y axis 	 is automatically defined. 

This system is rotating with respect to the true
 

the spin axis of
of date coordinate system. The Z axis, 


the Earth, is common to both systems, The rotation rate
 

the Earth's angular velocity. Consequently,
is equal to 


the hour angle 0 of the true equinox of date with respect
 

to the Greenwich meridian (measured westward in the equa­

the angular
torial plane) is changing at a rate 0 equal to 


velocity of the Earth.
 

2.3.4 Transformation Between ]arth-ixed and True 	oF
 

Date Coordlnates 

and true of XEFIXThe transformation between Earth-fixed 

date coordinates is a simple rotation. The Z axis 	 is Y "3FIX 

true XINERT common to both systems. The angle between Xi , the 


of date X component vector, and Xe; the Earth-fixed 
 YINERT
 

The GRIIRANcomponent vector, is 8g, the Greenwich hour angle. 


These trans-
Y component vectors are similarly related. 


accomplished in
formations for X0 , Ye) Xi' Yi which are 
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NONAME by the functions XEFIX, YEF[X, X1NERT, and YINERT GRURAN 

are: 

o Xo = X.
1 

COs 0 g +.Y si-n 0 g. xI:I x 

0 Yo = X.1 sin 0 g Yy.4 cog 0 g YEI;IX 

o X - =S Xe cos 0g Ye sin 0 g XINIIRI' 

o Y. = Xe sinS e 0 -+g Y e cos 0 g YINRT 

The transformation of velocities requires taking 

into account the rotational velocity, 0, of the Earth­

fixed system with respect to the truc o[ date reference 

frame. The following relationships should be noted: 

ax C' 9- -X (1) 

aXi 

g 
Doy

1 
13g 

2Y-
Do I .=(2)

1 
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The velocity transformations are then OBSDOT 

P REDCT 

Xe e [Xi[ Cosco 0g + Y. sin 0 ]g + Y 0a g 

Y= [-Xi sin Og + Cos 090 X0 

Xi = [ cos g - Y sin 0 - Yi 0g 

Y= [Xesin Cai [e i g + YaCos 0 3 +a g X. 0g 

The brackets denote the part of each transform which is 

a transformation identical to its coordinate equivalent. 

These same transformations are used in the 

transformation of partial derivatives from the Earth­

fixed system to true of date. For the k t h measurement, 

Ck, the partial derivative transformations are ex­

plicitly: 

C[k C k C o s g k'C g 

- c e-sin e 
LX-axa g aY 

(3) 

PIIEDCT 

Xe 
sie 

g 
-y Cos 8 I 
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PR I:DCT
i1 

aCk 3 __ aC 

-_ sin 0g + -cos 0 (4) 
g3Y 3X0 DY e 


+ 0k0 sin 0 0g 

aCk ack 

[ax Co 0 YCsn 0atg 


Ck [ Ck cos Ck si l l (5) 

ax i g 

S. ksin + cos 0 (6)
3X09 D
DY i e


The brackets have the same mcning as beFoie. 2Q3F1X 

These above transforms are used or computed XINSRT 

using the functions XEFIX, YEFAIX, XINE,JT, or YINERT YINERT 

in three NONAWE subroutines: URIIRAN, OBSDOT, and GRIIRAN 

OBS1OT
PREDCT. 


P RE UCT 

2.3.5 Computation of 0g
 

The computation of the Greenwich hour angle is quite GRIIIAN 

important because it provides the orientation of the Earth F
 

relative to the true of date system. The additional effects;
 

i.e., to transform from true of date to inertial, of pre­

cession and nutation are sufficiently small that early orbit
 

analysis programs neglected them. Thus, this angle is the
 

major variable in relating the Earth-fixed system to the
 

inertial reference frame in which the satellite equations
 

of motion are integrated.
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The ev.aluat ion of 0g 

the Explanatory Supplement, 
in subroutines GRIiRAN and F 

i, (Iiscussed in deta ii in 

Rej'erq)nIce I'. 0 js comuptiLe'd 
from the oxpT.ssioi: 

GRIIRAN 

1: 

6 0 0 + Atl11 + At2 02 + Aa (1) 

where 

At I is the integer 

January 0.0 of 

number oF (lays since 

the reFerence year, 

At 2 is the fractional 
time of interest, 

part of a clay for the 

e is the Greenwich hour angle on 
January 0.0 of the reference year, 

eI is the mean advance of the Greenwich 
hour angle per mean solar day, 

62 is the mean daily rate of advance of 
Greenwich hour angle (2r+0 1 ) , and 

Aa is t-he equation of equinoxes (nutation in 

right ascension). 

The initial e is obtained from a table of 

values containing the Greenwich hour angle 

on January 0.0 for each year. This table is in 

Common Block CGEOS and is accessed in JANTHG. 

JANTHG 
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The equation of equinoxes, Act, i-s obtiinod from GRIIINAN 

subroutine IIIIIBM, wqhich caiJcuJ a tos tChe cuaitity From P 

the ephemcris tape data according to othe Ilvcrctt fi fth- l'IIIl'i 

order interpolation scheme used for the 1lunair and solar 

ephcmerides. 
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2.3.6 Precession and Nutation 	 IEQN
 

LQU I'rT 
The inertial coordinate system of NONAME, in NUTATII 

which the equations of motion are integrated, is do- PRCIS 

fined by the true equator and equinox oF dato for R1SFCOR 

0.0 of the day of epoch. However, the hirth- fixed 

coordinate system is related to the true equator 

and equinox of date at any given instant. Thus 3it is 

necessary to consider the effects which change the 

orientation in space of the equatorial plane and the
 

ecliptic plane.
 

These phenomena are
 

o 	 the combined gravitational eFfect oF the
 

moon and the sun on the Earth's equatorial 

.bulge, and
 

o 	 the effect of the gravitationa] pulls of
 

the various planets on the ]Eafth's orbit.
 

The first of these affects the orientation of the 

equatorial plane; the second affects the orientation
 

of the ecliptic p]ane. Both affect the relationship 

between the inertial and Earth-fixed reference systems
 

of NONAME.
 

The effect of these phenomena is to cause pre­

cession and nutation, both for the spin axis of the
 

Barth and for the ecliptic pole. This precession and
 

nutation provides the relationship between the inertial
 

system defined by the true equator and equinox of date
 

for epoch and the "instantaneous" inertial system de­

fined by the true equator and equinox of date at any
 

2.3-9
 



given instant. Lot us consider the offect oF each of IiQN 

these phenomena in greater detail. EQUATR 

NI ITATEi 

The luni-solar effects cause tho-Earth's axis IR]iCIiS 

of rotation to process and nutate ahout the ecliptic RIEFCOR 

pole. This precession will not affect the angle be­

tween the equatorial plane and the ecliptic (the 
"obliquity of the ecliptic") but will affect the 

position of the equinox in the ecliptic plane. Thus 

the effect of luni-solar precession is entirely in 

celestial longitude. The nutation will affect both, 

consequently we have nutation in longitude and nuta­

tion in obliquity. 

The effect of the planets on the Earth's orbit 

will cause both secular and periodic deviations. 

However, the 'ecliptic is defilnod to be the1 mC,111 p1,10 

of the Earth's orbit. Periodic effects arc not con­

sidered to be a change in the orientation of the 

ecliptic; they are considered to be a perturbation 

of the Earth's celestial latitude. (See Reference i.) 

The secular effect-of the planets on the 

ecliptic plane is separated into two parts: planetary 

precession and a~secular change in obliquity. The 

effect of planetary precession is entirely in right 

ascension. 

In summary, the secular effects on the orienta­

tions of the equatorial plane are: 
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0 

0 

o 

luni-solar precession, 

planetary precession, and 

a secular change in obliquity. 

EQN 

EQUATR 

NUI'TATE 

'PRECES 

RE FCOR 

As is the convention, 

considered under the 

periodic effects are 

all of 

heading, 

these secular e0focts 

"precession." The 

are 

a nutation in longitude, and 

o nutation in obliquity. 

In terms of the NONAME system, subroutine PIRECES 

determines the secular effects; i.e., the rotation 

matrix which will transform coordiniates from the mean 

equator and equinox of date to the mean equator and 

equinox of 1950.0. 

PRECS 

Subroutine NUTATE determines the rotation matrix 

to transform from true equator and equinox of date to 

mean equator and equinox of date. This accounts for 

the periodic effects. 

NUTATE, 

NONAME has two different routines for transform-

ing from one epoch to another. These are EQUATR and 

REFCOR. Both will take either mean or true coordinate 

input and output in mean or true coordinates as re­

quested. The same general algorithm is used in both: 

EQUATR 

REFCOR 

a Rotate from true to mean equator and 

equinox of input date if required. 

2.3-11
 



a Rotate 

1950-.0. 

from mean of inpul. dale Lo mean of hQUATR 

RI: COI 

o Rotate from mean 

output date. 

of 1950.0 to mean of 

01 Rotate from mean 

if required. 

to true of output date 

All of these 

matrices. 

rotations are of course done with rotation 

Subroutine REIFCOR will. transform between any 

time of dayand 0.0 on a given reference day. This 

reference day and time are the epoch of the inertial 

coordi.nate system of NONAME. It performs this trans­

form by interpolating linearly between the rotation 

matrices for the day of the input and that day plus 

one. 

RIFCOR 

2.3.6.1 Precession 

The precession of coordinates from the mean 

equator and equinox of one epoch t0 to the mean equator 

and equinox of tI is accomplished very simply. Ex­

amine Figure 1 and consider a position described by 

the vector X in the XI,X 2 ,X 3 coordinate system which is 

PRCES 

2.3-12
 



PRECESSI(ON
 

P2 x2
 

x2
 

Mean Equatorat t 

Y'2 Mean Equator of tl 

I
 

P = Direction of Mean Axis of Motion at t o 

P2 = Direction of Mean Axis of Motion at t 

Yl = Direction of Mean Equinox at to 

Y2= Direction of Mean Equinox at tI 

Fig.1: Rotation Between Mean Equator & Equnox of Epoch to
 

and
 

Mean Equator & Equinox of Epoch t1
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defined by the mean equator and equinox of t 0 . 1 ike-

wise, consider the same position as described by the 

vector T in the Y, Y 3,Ysystem docinCd by the mean 

equator and equinox o t]. The express ion rel:tting 

these vectors, 

!RFCES 

T = R3 (-z) R2 (0) Z3 (- K, (1) 

follows directly from inspection of Figure 1. 

It should be observed that 900 - r is the 

right ascension of the ascending node oF the equator 

of epoch t 0 reckoned from the equinox of to, 900 = z 

is the right ascension of the node reckoned from the 

equinox of t and 0 is the inclination oF the equator 

of t1 to the epoch of tO. 

Numerical expressions for these rotation angles 

z,8,c were derived by Simon Newcomb, based partly upon 

theoretical considerations but primarily upon actual 

observation. (See References for the derivations.) 

The formulae used in NONAME are relative to an initial 

epoch of 1950.0: 

= .305 953 204 65 x 10-6 d + R109 749 

+ R'1 78 097 x 10-
2 0d3 

2 x 10-14j2 (2) 

z ='305 953 204 

+ R191 031 x 

65 x 10-6 d 

10-o2d3 

+ R397 204 9 x 10-14d 2 (3) 
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0 R 266L039 997 54 x 10-6d - R154 811 8 x 10- 1 4 d 2 (4) PRE
 

3
 
x 1020d
RN13 902 


The angles are in radians. The quantity d is the
 

number of .elapsed days since 1950.0.
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2.3.6.2 Nutation NUI'ATE' 

The nutation of coordinates between mean and 

true equator and equinox of date is readily accomplished 

using rotation matrices. Examine Figure I and consider 

a position described by the vector Y in the XI 2 

system which is described by the mean equatoy and equi­

nox of date. Likewise, consider the same position as 

described by the vector Z in the Z1 ,Z 2 ,Z 3 system de­

fined by the true equator and equinox of dat. ]'he 

expression relating these vectors,
I 

= 1 (-CT) R3 (-At) R1 (en) X, (1) 

follows directly from inspection of Figure 1. 

The definition of these angles nre: 

T true obliquity of date 

Em - mean obliquity of date 

At - nutation in longitude 

Note that ET - E is the nutation in obliquity. 

The remaining problem is to compute the nutations 

in longitude and obliquity. The algorithm used in 

NONANE was developed by Woolard and is coded in sub­

routine EQN. 

NUTATE 

EQN 
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NUAT ION
 

z3 x 
CI 

C-r 

- -Y 2 

-C -

X2 

T True F 

CM = Mean Obliquity of Date
 

ET = True Obliquity of Date
 

YM= .Direction of Mean Equinox of Date
 

YT = Direction of Time Equinox of Date
 

Figure 1: Rotation Between Mean Equator & Equinox of Date
 

and
 
True Equator & Equinox of Date
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Woolard's solution as it appears in references I 

through 4 is reproduced in Tables In, ib, and Ic. The 

periodic terms have been rearranged in descending order 

of magnitude.. The subprogram JiQN computes the itla-tion 

in longitude and obliquity by using the a]gorithm in 

Tables 2a, 2b, and 2c. In Tabl.e 2a , aI .cthe uIar ti ni ts 

of the fundamental arguments have been charged to 

radians and the time units have.been charged to day)s. 

Tab]es 2b and 2c are identical to Tables l) and Ic 

often neglecting all periodic terms with coefficients 

less than '001 and all secular portions of the co­

efficient which are less than '2003. The expressions 

for true obliquity of date and nutation in right as­

cension appear in Table 2d. 

The definitions of the variables use1 in these
 

solutions and additional notation arc as follows:
 

J = 	 Julian Ephemeris Date of desirod calcujation 

Jo = 	 241 5020.5 (Julian Ephemeris Date corresponding 

to 1900 January 0.5 Ephemeris Time)
 

T = 	 (J-J 0 )/36525 = Julian ephemeris centuries of 

36525 Ephemeris Days elapsed from J to J 

d = 	 J-Jo = Ephemeris Days elapsed from J to Jo
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COORD]NATE SYSTEM: Geocentric, ecliptic amd 

mean equinox of date: 

g = mean anomaly - Moon 

g meah anomaly - Sun 

F = mean angular distance of the Moon from its 

ascending node 

D 	 = mean elongation of the Moon from the Sun 

= longitude of the mean ascending node of the 

Moon's orbit 

6M = mean obliquity of date 

ET true obliquity of date
 

Ac = nutation in obliquity 

A = nutation in longitude 

A a nutation in right ascension 

(equation of the equinoxes) 
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TABLEi la FUNDAMENI'AL ARGUMIENTS 

T2 	 T3
 g = 296006"16V59 + 13 2 5 r 3 980S0'56279 T + 33'09 + '0518 

T 2 T3
g'=335828'33'.'00 + 99r359002'59'.'10 T - '259 "0120 

T 2 	 T3 F = 1.l1503:120 + 1342' 82O1'30"'S4 T - ii."56 - "0012 

D = 350044114'1.9 + 1236'307°06151.118 T - 52V17 T2 - "00681 T3 

T 2 T3Q = 259l0 59 .'79 - 5 r1 ,3 4 0 0 8 31P.'2 3 T + 7'48 + '.0080 
2 323027'081126 -	 46':845T - '0059T 4- '.'0080 T 

TABLE 1b NUTATION IN OBLTQUITY 

Series No.
 

Ac = " (+0".00091 T + 9"22100) cos ( 	 + P) ] 

+ (-0'.'00029 T ± 0.5522) cos ( + 2F - 21) + 2Q2) 2 

+ (+0.00004 T 0.0904) cos ( 	 + 2() 3 

+ (-0.00005 T + 0.0884) cos ( + 2F -1 2Q) 4 

+ (-0.00006 T + 0.0216) cos ( + gl + 2F - 21) + 2Q) 5 

+ 0.0183 cos 	 ( + 2F + Q) 6 

+ (-0.00001 T + 0.0113) cos (+ g + 2F + 2() 7 

-+ 	 (+0.00003 T - 0 .0093) cos ( g' + 2F - 2D + 2Q2) 8 

- 0.0066 cos ( + 2F - 2D + Q) 9 

- 0 .0050 cos (- g + 2F + 20) ]0 

- 0.0031 cos (+ g + 2) 11 

+ 0.0030 cos (- g + 2) 12 

- 0.0024 cos (-2g + 2F + 0) )3 
+ 0.0023 cos 	(+ g + 2F + (2) 14 

+ 0.0022 cos 	(- g + 2F - 21) + 2Q) 15 

+ 0.0014 cos 	( + 2F + 21) + 2M) 16 

- 0.0011 cos 	(+ g + 21F - 2D + 2M) 1.7 
+ 0.0011 cos (+2g + 2F' + 2Q) 3.8 

- 0.0010 Cos (- g + 21 + Q) 19 

+ 0.0008 cos 	( + g' + Q) 20 

0.0007 cos (- g 	 + D + n2) 21
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TABLE -b (Cont.) 

Se'i-(,s No. 

0.0007 cos (- g 	 - 21) + 0.) 22 

+ 	 0.0007 cos (+ g + 2' + 2F - 21) + 2) 23 

+ 	 0.0005 cos ( ' Qg 24Q) 

+ 	 0.0005 Cos (- g + 2F3 + 21) + ?) 25 

0.0003 cos ( + g + 2F + 2Q) 26 

+ 	0.0003 cos ( g- + 214 + 2Q) 27 

+ 	 0.0003 cos (+ g + 2F + 21) + 2Q) 28 

+ 	0.0003 cos ( + 2D + Q) 29 
+ 	0 .0003 cos (-2g + 2D + Q) 30 

+ 0.0003 cos ( -g' + 2F - 21) + S) 31 

- 0.0003 cos (+ g + 2F - 21) + Q) 32 

+ 	 0.0003 cos (- 21) + Q) 33 

+ 	 0 .0003 cos (+ i1 + 21) + ) 34 

-	 0.0002 cos (+2g + 2F 21) + 2m) 35 

+ 0 .0002 cas ( 2g' + 2F 21) + 0) 36 

- 0,0002 cos (+2g 2D + 9Q) 37 

+ 	 0.0002 cos (+2c + 2F + 9) 38 

0.0002 cos ( + g' + 2F - 2D + 9) 39 

+ 	0.0002 Cos (-2g + 2F + 2S) 40 

TABLE 1c NUTATION IN LONGITUDE
 

Series No. 

(-01737 	 (+ 01= T - 17V2327) sin 	 + 2) 1 

+ 	 (-0.00013 T - 1.2729) sin ( + 2F - 21) + 2q) 2 

+ 	 (+0.00002 T + 0.2008) sin ( + 22) 3 

+ 	 (-0.00002 T - 0.2037) sin ( + 2F + 20) 4 

+ 	 (-0.00031 T + 0.1261) sin ( + ) 5 

+ 	 (+0.00001 T + 0.0675) sin (+ g ) 6 

+ 	 (+0.00012 T - 0.0497) sin ( g + 2F - 2D + 29) 7 

+ 	 (-0.00004 T - 0.0342) sin ( + 2F + 2R) 8 
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TA1ISJ 1c (CoIt.) 

Series No. 

- 0.0261 sin (+ g ) 9 
+ (-0.0000S T + 0.0214) sin ( - g + 21: - 21) + 2Q,) 10 

- 0.0149 sin (+ g - 21) ) H 
+ (+0.00001 T + 0.0]24) sin ( + 21..- 21) P &?) 12 

+ 0.0114 sin (- g + 21; + 2) 1S 

+ 0 .0060 sin ( + 21) ) 14 

+ 0.0058 sin (+ g + Q) 15 

- 0.0057 sin (- g + Q) 16 

-0 .0052 sin ( g + 21 + 21) + 20) 17 

+ 0,0045 sin (-2g + 2F + Q) 18 
+ 0.0045 sin (+2g 2D ) 19 

-0 .0044 sin (+ +- 2P + n) 20 

- 0.0032 sin ( + 2F + 21) + 2Q) 2] 

+ 0 .0028 sin (+2g ) 22 
+ 0.0026 sin (+ g + 21: - 21]) + 2Q2) 23 

-0 .0026 sin (+2g + 21' + 2Q) 24 

+ 0.0025 sin ( + 2F ) 25 

- 0 .0021. si ( + 2F - 21) ) 26 

+ 0.0019 sin C- g + 2F ± 2) 27 

+ (-0.00001 T + 0.0016) sin ( + 2g' ) 28 

+ (+0.00001 T - 0.0015) sin ( + 2g' + 2F - 2D + 25) 29 

0.0015 sin ( + a' + 5.) 30 
+ 0.0014 sin (- g + 2D + Q) 31 

- 0.0013 sin (+ g -2 + Q) 32 

- 0.0010 sin ( - + 2) 33 

+ 0.0010 sin (+2g - 2F ) 34 

- 0.0009 sin (- g + 2F + 2]) + 0) 35 

+ 0.0007 sin ( + + 2F + 292) 36 

- 0.0007 sin (+ g + , - 2D ) 37 

+ 0.0006 sin (+ g + 21) ) 38 
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TABLE ic (Cont.)
 

0.0006 sin ( ' + 21: + 20) 39 

- 0.0006 sin (+ g + 2 + 2) + 2Q.) 40 

+ 0.0006 siln (+2g + .2F- 21) - 2D) 41 

0.0006 SLf ( + 21) + ,) 42 

- 0.0005 sin (-g + 21 )i 9.) 43 

0.0005 sin C - + 2 - 21) + 0.) d14 

+ 0.0005 s in ( g + 2F- 21) + .) 45 

0.0005 si ( 21) ' £) 46 

0.0005 sin ( + 21 + 21) + Q,) 47 

0.0004 siln ( 2g' + 21: - 21) + 0) 48 
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TABLE 2a FUNDAMENTAL ARGUMENTS 

= 

= 

s5168 000 345 

r6.256 583 580 

745 + '228 027 134 939 576 d + Y120 251 689 x a0 1 2 

r r -l12497 + .017 201 969 766 646 cl - .001 966 037 x 10 

d 

2d2 

+ 5.153 876 x 

r1.193 948 x 

10-21 

110 

' 

c 

F 1196 365 054 887 + 5230 895 723 235 372 d - 5042 009 958 x i0 - 2 ' 119 395 -x 10 C 

D = 61121 523 942 807 + 5212 768 711 675 140 d - .018 788 191 x 10O d + .676 571 x 10 c 

i) 

S=m 

= 45523 601 514 

.409 319 755 

852 -

r205 -

000 924 220 

.000 000 006 

294 225 d + 5027 182 914 x io12 

217 959 d - Y000 021 441 x i0 1 2 

d2 

2 2d2 

+ 795 965 

a71
.180 087 

x 1021 

x 10 c 



TABLE 2b NUTATION IN OBIIQUITY 

Series No. 

Ac = + 9''2100 cos ( + Q) 1 

+ 0.5S22 cos ( " + 2F - 21) + 2Q) 2 

- 0.0904 cos ( + 2Q) 3 

+ 0.0884 cos ( + 2F + 212) 4 

+ 0.0216 cos ( + g' + 2F - 21) + 2M) S 

+ 0.0183 cos ( + 2]: + £) 6 

+ 0.0113 cos (+ g + 2F + 22) 7 
- 0.'0093 os ( g + 2F - 2]) + 2P) 8 

- 0.0066 cos ( + 21F - 21) + 2) 9 

- 0.0050 cos C- g + 2F + 292) 20 

-0 .0031 cos (+ g + 2) 11 

+ 0.0030 cos C- g + Q) 12 

- 0.0024 cos (-2g + 2F + fl) 13 

+ 0.0023 cos (+ g + 2F + Q2) 14 

+ 0.0022 cos C- g + 2F + 21) + 2Q) 15 

+ 0.0014 cos ( + 2F + 21) + 2Q) 16 

- 0.0011 Cos (+ g + 2F - 2D + 2Q2) 17 

+ 0.0011 cos (+2g + 2F + 212) 18 

- 0.0010 cos (- g + 2F + R) 19 
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TABIiE 2c NUTATION 1N I,ONCI'I1't1jI1 

SOr i CS 0\L 

+ (-V.'1i 37 T - ]7'.'2:27)7I sin ( ,9 I 
- 1.2729) sin ( + 21: 21) q ,A, 2 
+ 0.2008) sin ( A 2,.2) S 
- 0.2037) sin ( + 21: 4- 2S2) 4 
+ 0.1261) sin ( + ) 
+ .0.0675) sin (+ g ) 6 
- 0.0497) sin ( g' + 21; - 2D + 2fP) 7 
- 0,0342) sill ( -' + 25) 8 

- 0.0263 s.min (4 g +2]: 2) 9 

+ 0.0214) sinl ( -l 21: - 21) + 22) 10 

- 0.0149 sn ( - 21) ) 
+ 0.OJ 24) si.(I 21 - 21) Q) 12 
+ 0.0)14 sin (- g -F + 2Q) J3 
*' 0.0060 sjn ( + 21) ) 14 
+ 0.0058 sin ( + g + Q2) i5 

- 0.0057 sin (- g + f ) 16 
- 0.0052 sinl (- g 21: + 21 + 2Q?) 37 
* 0.0045 sin (-2g + 2F + Q) 28 

* 0.0045 sn (1 2 g - 21) ) 19 

- 0.0044 sin (+ g + 21: + 0) 20 
- 0.0032 sinu ( 21: + 21) + 2Q?) 21 

+ 0.0028 sin (2g ) 22 
+ 0.0026 sin (+ g + 21 - 21) ± 2,0) 23 

- 0.0026 sin ( 2g -i 21: + 292) 24 

+ 0.0025 s il ( 21: ) 25 
- 0.0021 sin ( -' 2] 21) ) 26 

+ 0.0029 sin (- g + 21 S2) 27 

+ 0,00)6) s in + 2g' ) 28 
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TABLE 2c (Cont.) 

+ 

+ 

0.00 1S 
-0.0015 

0.0014 

0.0013 

0.0010 

0.0020 

sin 
sin 

sin 

siln 

sin 

sin 

( 
( 

(- g 

( g 

( 

(+2g 

- 2g 
+ g' 

g' 

+ 21: 

2]: 

-

+ 

21) 

21) 

2]) 

+ 

+ 

+ 

2 
) 

Q .,) 

q) 

) 

) 

:2) 
30 

3.! 

32 

33­

34 

Note: To change time units for 

.475 565 x 10-6d .01737 

cooFfi.cicnt 

T 

oF Is t term, use 

Table 2d: True obliquity of Date and Nutation in right ascension 

ET 

A . 

EM + Ac 

= A* cos T 
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SECTION 2.4 

LUNI-SOLAR '11IIIMflRUfD]ES 

NONAME uses procomputed oqui- spoced c')lmc ri s d att I3I-I IBM 

in true of date coordinates for both the Sun and the Moon. 

The actual ephemerides are compulod using lhverctt's El fth­

order dnterpolation formula. The 'ite(rvaj Ihetwebn 

ephemerides; i.e. , the tabular intervn] h, is (.S days. 

The NONAMI, ephemeris tape contains the lunar and 

solar ephemerides in true of date coordinates and the 

equation of equinox. 'he format of this tape is presented 

in Volume III o-f the NONAME System Documentation. 

This ephemeris tape was prepared from a JPL planetary 

ephemeris tape corresponding to "JPl Dcve] olnile-t EpheriLiS 

Number 19,' Reference 1. JPL provided subroutines RIEADI 

and GETTAP which obtain the ephemeridcs from the IPL tape. 

NONAME subroutine EQUATR was used to precess and nutate 

the ephemerides to the true of date system. The inter­

polation differences d were also recomputed, using the 

equations given on page 6 of the above report. 
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The formulation for Fverett's li Fth- order interpo­

latioh is 

y(tj+sh) = yj Fo(I-S)+dji2 F2<]s 

+ d 4 (.1-s) 

+ Yj+l F()dZ 2s
1 2.(s 

+4 
dj~l 1:4 (s) 

where EM 

Fo(s) = s 

F 2 (s) = [(s-i) (s) (s+1)1/6 

F4 (s) = [(s-2) (s-2) (s-i) (s) (s+1) (s- 2)]/120 

The quantity s is of course the fractional interval [oIr 

the interpolation. The quantities d. are obtained from 
3 

the ephemeris tape. 
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SCTiON 2.! 

TIlE OBSERVER 

This section is concerned with the position and 

coordinate systems of the observer. Thus it will cover 

o geodetic station posit~oj coordinatcs, 

0 topocentric coordinate systems,
 

e time reference systems, and 

o polar motion.
 

The geodetic station position coordinates are a
 

convenient and quite common way of describing station 
positions. Consequently, NONIAME contains provisions For 

converting to and from these coordinates, inc]uding the 

transformation of the covariance matrix for the deter­

mined Cartesian station positions. 

The topocentric coordinate systems are coordinate
 

systems to which the observer references his observations. 

The time reference systems arc the time systems in
 

which the observ6r specifies his observations. The
 

transformations between time reference systems arc also
 

given. These latter are used both to convert the ob­

servation times to Al time, which is the independent
 

variable in the equations of motion, and to convert the
 

NONAME output to UTC time, which is the generally recognize,
 

system for output.
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The positions oF the observer.s in NONAMEI are reofrred 

to an Earth-fixed system definod ),!he mean 0pole of 11{}0.5 

and Greenwich. They are rotated ito theIl:irth-'Fixed sYstei 

of date at each observation time hy a) lyingo "nJp met ion'", 

which is considered to be slippage oF thie liartlh' crust. 

2.5.1 Geodetic Coordinates
 

Frequently, it is more convenient to define the 

station positions in a spherical coordinate system. 

The spherical coordinate system uses an ob]ate spheroid 

or an ellipsoid of revolution as a model for the geo­

metric shape of the Earth. The iarth is flattened 

slightly at the poles and bulges a little at the
 

equator; thus, a cross section of the Barth i,s appFO(1­

mately an ellipse. Rotating an elipse about its 

shorter axis forms an ob]ate spheroid.
 

An oblate spheroid is uniquely defined by specify­

ing two dimensions, conventionally, the semi-major axis 

and the flattening, f, where f - a-b (See Figure 1) 
a
 

This model is used in the NONAME system. The
 

spherical coordinates utilized are termed geodetic co­

ordinates and are defined as follows:
 

a 4 is geodetic latitude, the acute angle 

between the semi-major axis and a line
 

through the observer perpendicular to
 

the spheroid.
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0 X 	 is east longitude, the angle measured 

eastward in the equ atori a 1, p IIne betwet 

the Greenwich meri.dian and the obseo rer's 

meridi an. 

e h 	 is spheroid height, th1e pe rpend cutar
 

height of the observer above the refer­

ence spheroi-d.
 

Consider the problem of converting from 4, N, and SQUANT 

h to Xe, Y., and Z., the EartL-fixed Cartesian coordinates. 

The geometry for an X-Z plane is illustrated in 

Figure 1. The equation for this ellipse is 

X2 	 22Xa , 	 ('I)(1-c 2 ) 

where the eccentricity has been determined from the 

flattening by the familiar relationship 

2 

1 (-f) 2 .	 (2) 
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it 

Figure 1: 
 Diagram of Geodetic and Geocentric Latitudes
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The equation for the normal to the s-urface of the StI\NT 

elipse yields
 

dX 
tan - --

dZ 
S(3) 

By taking differentials on equation (1) and app]ying 

the result in equation (3), we arrive at 

.1- (1-e2) tan 4 (A) 
x 

The simultaneous so]ution of equations (1) and (4) for 
X yields
 

a cos ,
 

x = (5) 
1-e 2 sin 2
 

From inspection of Figure 1 we have:
 

x 
cos 4 = - ; (6) 

N 

and hence, applying equation (S),
 

a 
N :(7) 

2.sin-
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ence 

For an observer at a dis;itcc h From 

e]lipsoid, the observer's coordinates 

the 

(X,Z) 

rolF,-

hlecome 

SQI1A 

X N co 4,+ h cos 4, (8) 

and 

Z = N (1-c 2 sin + h sin Y'. (9) 

is 

The conversion of 4, 2, and h to 

then 

X~4 Gacs .2XSie [(N~h) cos 4,sin X(0 

z e- (N+h-e N) sh 4,-

X 0 , Yo, and ZC 

In the JNONAMBNI system 

subroutine SQUANT. 

this conversion is performed in 

The problem of converting fromi X., Y., and Ze to 

,, A, and h is more complex as we cannot start with a 

point on the reference ellipsoid. For this reason the 

determination of accurate values for 4 and h requires 

an iterative technique. 
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Conversion to Geodetic Coordinates 

For the problem of converting station coordinates PIIIOTI' 

in Xe, Ye' and Z to 4, 2, and h we know that N is on the 

order of magnitude of an Earth radius, and h is a ['ew 

meters. Hlence
 

h <<N (i) 

The Earth is approximately a sphere, hence 

e << . (.2) 

Therefore, again working in our X-Z pla-n (see Figure 1), 

N sin ZZ Z. (13) 

From Figure 1 (see also equation (9)) wo have 

2
t = Ne sin 4, (14) 

or, for an initial approximation,
 

t e2 Z. (15) 
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The series of 

each iteration is: 

calcIlations to bh pcrri on IhO,11 

Zt 

N+h 

Z + t 

(x + y2 ; ) 1/2 

(16) 

(17) 

sin 4 t (N+h) 

N 
A -o 2 sin 

2 1/2 (9 

t = Ne2 sin 4, (20) 

When t converges, 4 and h are computed from sin 4,and 

(N+h) The computation of A is obvious; it being simply 

X tan-I (Ye /x) (2]) 

Thin procedure for determining 

in subroutine PLHOUT. 

4,X , and hi is that coded 

> S-8
 



There is a diFferent proccdure in stihbroltine DnIM 

PREI)CT for computing q, A, and h for ,sate i '. 'iIT 
is because the accuracy raptqi.rellont.s e les.s st r i lent. 

This different procedure is also used in sIuhro,., i C 
DRAG to evaluate the satellite height For subtrout Iio I)]iNSTY. 

Because a << 3, we may write an approximation 

to equation (9):
 

Z = (N+h) (1-e2 sin ¢ = Z (22)
 

From Figure 1, 

X = (N+h) co 0 = X2 + y2(23) 

and by remembering equation (2),
 

ta n] (24) 
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The equation for the ellipse, equation (1), DRAG 

yields the following formula for the radius of the IRI'CT 

ellipsoid: 

Z2r' = -a l f (271Sn(1 F__ 
ellipsoid 1 '2 

where 4" is the geocentric latitude. After applying the 

Binomial Theorem, we arrive at 

I _ - 2 3 f2 - 4 (28) 

rellipsoid = a f Af) sill - + 2' j2 

wherein terms on the order of f3 havc boon nLOgLocted, The 

(spheroid) height may theni be calculatou from r, the geo­

centric radius of the sate]lite: 

h = r - rellipsoid, or (29) 

h xx2 +y2z 2 - a- + (af+3 af 2 ) Sin 2 -:a2 stun ,p (30) 

The sine of the geocentric latitude, sin 4, is of
Ze 

course 2
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Subroutine VIVAL also requires the partial VIiVAI, 
derivatives of h with respect to position for the drag 

variational partials computations: 

9h ri	 ' 3
 

2
- + 2 sin [(aaf 	 (31)
+ 4-at

2 	 2i r I2D 

-3 af2 sin2 ' - r -"3 + er3T
 
3. 

where the
 

ri 	 are the Earth-fixed components of 7; i.e.,
 

{Xe' Ye' e}
 

In addition to the conversion of the coordinates INOUPT 

themselves, NONAME also converts covariance matrices for SQUANT 

the station positions to either the p, X, h system or PLHOUT 
the Earth-fixed rectangular system. This is accomplished VCONV 

in INOUPT, SQUANr, and PLHOUT by calling VCONV to compute 

VOUT 	= pTVINP (32) VCONV 

where VOUT is the output covariance matrix, VIN is the.
 

input covariance matrix, and P is the matrix of partials
 

relating the coordinates in the output system to the
 

coordinates in the input system.
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These 

requires are 

vice versa. 

p-4 

-
Dye 


Dp 
a-

axe 

ax 
Dye 


O
 

_ 

axe 

ay e 
e 


ahO 
Z-

partial derivatives (ih P) which NONAME PIIIOUT 

for Xe, YC, Ze with respect to , X, h and 

These partials are: 

"-x z (l-e 2 )!((Ie%2 X 2 P 2Y 2 I~2) X2_ 2-I 
G~ C .C C 

(X 2 +y 2 ) + Z2 )-Y Z (i02/((]-e2)2 2.2)2 
l ' e ) / C Ce) 

2 2 22 2 2 +2 2 2 2 
2(Xe+Ye)/ (1-e (Xe+Ye) +Z) (X0 +Ye) 

-Y /(X2+e (33)
 
e 

(X2+y2Xe/ e e) 

3(eZa(l-e2)sin cos /(l-e2sin2 -Z cos)/Si/~qX)
 
Xe
 

3-
Dye(-e 2a(l-e 2)sin4 cos/(1-3 2 sin 2 2 _z cos /sit262) 
- e 

2 
3 

3Z (-e 2a(1-32)sin cos/(-32sin2 4) -Zecosq1/sin 4f) 

TZ(o .-
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Nc 2D cosZ (1) 
S - -sin4 cosA N'+h - -- SQ[7\NT

Do 3-C 2 _[s in1­

eL 
DX
 

-- = -(N+h) cos sinX 

ax 

DX
 
-- = cosq) COSX.
ah 

Nc2 
DYo -i'\h Ne2 c o 2
 

L-e1 2 sin 2
 

DY
 
e 

- (NI+t) cos4 cos (34) 

DY
 

cos sinA
3 ­at 

De=cos€ +3Z~ hi+N 2 (1ile 2 in2 2 )] 

DZ
 
S- 0az 

DZ
 
he -sin
 

ah
 

The partials for converting from Xe,Ye,Z to
 

, A, h are computed in subroutine PLIJOUT. Those for 

converting from @, A, h to Xe,Yc,Z e are computed in 

subroutine SQUANT. 
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2. 5.2 "'opocentric Coordinate Systems 

The observations of a spacecraft are usually
 

referenced to the observer, and therefore an add)tional 

set of reference systems is used f:or this )urposc. The 

origin of these systems, Teferred to as topocentric 

coordinate systems, is the observer on the surface oF 

the earth.
 

Topocentric right ascension and decl ination are 

measured in an inertial system whose Z axis and fupda­

nental plane are parallel, to those oF the geocentric 

inertial-system. The X axis in this case also points 

toward the vernal equinox. 

The other major topocentric system is the Earth- SQUANT­
fixed system determined by the zenith and the observer's 

horizon plane. This is an orthonormal system defined 

by N, E, and Z, which are unit vectors which point in 

the same directions as vectors from the observer 

pointing north, east, and toward the zoni th. Their 

definitions are:
 

N = sin sin A ()[Isin cosinA()sn 

Cos
 

(2)
 
= nCosCosI
C sX 

0
 

(3)
Z = Cos i 

sin q j 
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where is the geodetic 'latitude and A is the cast SQt\NI' 

longitude of the observer (see Section 2.5.,) Pli-'I 
/ OBS)OT 

Those N, E, and !Z vectors are computed in 

4QUANT for use in PRIiDCT and OBSDOT. 

This latter system is the one to which such 

measurements as azimuth and elevation, X and Y angles, 

and direction cosines arc related. 

It should be noted that the reference systems For 

range and range rate must he Harth-fixed, hut the choice OF 

origin is arbitrary. In NONAMli, range and range rate arc 

not considered to be topocentri.c, but rather geocentric. 

2.5.. 3 Time Reference Systems
 

Three principal time systems are currently in 

use: ephemeris time, atomic time, and universal time. 

Ephemeris time is the independent variable in 

the equations of motion of the sun; this time is the 

uniform mathematical time. The corrections that must 

be applied to universal time to obtain ephemeris time 

are published in the American Ephemeris and Nautical 

Almanac or alternatively by BIHl, the "Bureau Inter­

national de l'Heure."
 

Atomic time is a time based on the oscillations
 

of cesium at zero field. In practice Al time is based
 

on the mean frequency of oscillation of several cesium
 

standards as compared with the frequency of ephemeris
 

time. This is the time system in which the satellite
 

equations of motion are integrated in NONAME. 
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Universal time is determined by the rot ation of 

the Earth. UTI, the time reference system used In 

NONAMNi to position the Earth, is unJvers;SI] time tih at 

has been borrectdd for polar motion. UTC is the time 

of the trailsitti.ng clock oF aiiy of the synchrolitzed 

transmittinjg time signals. The Frcqu cncy of a UTC 

clock is pro-set to a predicted frequency of UT2 time, 

where UT2 time is universal time corrected for ob­

served polar motion and extrapolated seasdnal variation 

in the speed of the earth's rotation.
 

The reader who is unfamiliar with these time 

systems should refer to one of the annual reports of 

BIH. 

2.5.3.1 Time System Transformatiolns
 

The time system transformations are between any TDIF 

combination of the Al, UTl, UT2, or UTC reference sys­

tems. These trdnsformations are computed in the
 

NONAME system by subroutine TDTF.
 

The time transformation between any input ti.me
 
system and any output time system i.s formed by simple
 

addition and subtraction or the foll.owing sot of time
 

differences:
 

0 UT2 UTI
 

0 Al UTI
 

S Al - UTC 
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cThe following equation is us-ed to ilculate TDIF 

(UT2-UTI) for any year: 

(UT2-UTI) = + '022 sin 27rt-i012 cos 21rt (1) 

s 	 5.006 sin 41rt+.007 cos lilt 

t 	 fraction of the tropicaL year 

elapsed from the beg i nni ng of the 

Besselian year for which the 

calculation is made. 
=(I tropica] year 365.2422 days) 

This difference, (UT2-UT) , is also knowyn by the name 
''seasonal variation."
 

The time difference (AI-ITI) is computed by 

linear interpolation from a table of values.
 

The spacing for the table is ever), 10 days, which 

matches the increment -for the "final time of emission" 

data published by the U.S. Naval Observatory in the 

bulletin, "Time Signals.'" The differences for this 

table 	are determined by
 

(Al -	 UTl) = (Al - UTC) - (UT - UTC) 

The values for (UTI - UTC) are obtained from "Circular D", 

BIH. 	The differences (Al - UTC) are determined according
 

to the following procedure. 
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The computation of (Al-UTC) is simple, but not 

so straightforward. UTC contains disconti nui ties both 

in epoch and in frequency because an attempt is made 

to keep the difference between a U'C clock and a UT2 

clock less than s] . When adjustments sire made, by 

internati dnal agreement they are Inade in slteps of Ql 
and only at the beginning of the month; i.e., at o.o UT 

of the first day of the month. The general formula which 

is used to compute (Al-UTC) is 

(Al-UTC) = a 0 + a1 (t-to) (2) 

Both a 0 and a2 are recovered from tables. The values 

in the table for a 0 are the values of (AI-UTC) at. the 

time of each particular step adjustment. The values 

in the table for a1 are the values for the new rate. 

of change between the two systems after each step 

adjustment. 

Values for a0 and a1 are published both by the 

U.S. Naval Observatory and BIH.
 

2.5.4 Polar Motion
 

Consider the point P which is defined by the POLE 

intersection of the Earth's axis of rotation at some 

time t with the surface of the Earth. At some time t+At, 

the intersection will be at sonic point P' which is different 

that P. Thus the axis of rotation appears to be pnoving rela­

tive to a fixed position on the Earth; hence the term "motion 

of the pole."
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Let us establi. h a rectangulor coordinate system POLE 

centered at a point F fixed on the sur[ace of the Earth 

with F near the point P around 1900, and take measure­
ments of the rectangulaor coordinates of the point j) 

during the period 1900.0 - 1906.0. It is observed that 

the point -P moves in roughly circul.ar motion in this 

coordinate system with two disti.nct periods, one period 

of approximately 12 months and one period or 14 months. 

We define the mean position of P during this period to 

be the point P0 , the mean pole of 1900.0 - 1906.0. 

The average is taken over a six year period in
 

order to average 6ut both the 12 month period and the
 

14 month period simultaneously (since 6 times 12 months 

72 months and 72/1.4 = 5 periods. approximately of the 

14 month term). The radius of this observed circle 
varies between 15-35 feet. 

In addition to the periodic motion of P about P0 

by taking six year means of P in the years after 1900 ­

1906, called P., there is seen to be a secular motion 

of the mean position of the pole away from its original 

mean position P0 in the years 1900 - 1906 at the rate of 
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approximately '.O032/year in the di rection of the PO1 

meridan 6 0 ' W, and a libration motion of a period pf 

approximately 24 years with a cooffjciout of abouL: 

0'.'022. The short periodic motions over a period of 
six years average about O'2 0'.'3. 

Effect on the Position of a Station 

This motion of the pole means that the observing 

stations are moving with respect to our "Earth-fixed" 

coordinate system used in NONAME. The station positions 

must be corrected for this effedt.
 

The position of the instantaneous or true pple 

is computed by linear interpolation in a table of ob­

served values for the true pole relative to the mean 

pole of 1900 - 1905. The table increment is 10 days; 

the current range of data is from December 1, 1960 to 

August 1, 1970. The user should be aware of the fact 

that this table is expanded as new information becomes 
available. If the requested time is not in the raige of 
the table, the value for the closest time is used. 

The data in the table is in the form of the co­
ordinates of the true pole relative to the mean pole 

measured in seconds of arc. This data was obthinod from 

"Circular D" which is published by BIll. The appropriate 
coordinate system and rotation are illustrated in Figures 

1 and 2. 
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X1
 

PA
 

*1 .y
 
-I 

r
 
-
-
-
.p6t 

X2 

PA = Center of Coordinate System 
= Adopted Mean Pole 

X1 = Direction of 1 st Principal Axis (along meridian 
directed to Greenwich) 

X2 = Direction of 2 nd Principal Axis (along 90' 
West meridian) 

PT = Instantaneous Axis of Rotation 

x,y = Coordinates of PT Relative to PA Measured 

in seconds of arc 

Figure 1: Coordinates of the Instantaneous Axis of Rotation 

§X3 
PT 

X2 

xy = Rectangular Coordinates of PT Relative to PA 

XIX 2 Plane = Mean Adopted Equator Defined byDirection of Adopted Pole PA
 

YIY2 Plane = Instantaneous Equator Defined by
 

Direction of Instantaneous Pole PT
 

igure 2: Rotation of Coordinate System from Adopted Mean Pole
 

System to Instantaneous Pole System
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Consider the station vector X ifn a Syst om at tachld 

to the Earth of the mean po]e and the same vector Y 

in the "Earth-Fixed" system of NONAME . The transForma­

tion between Y and X consists of a rotation of x about 

the X2 axis and a rotation oF y about the X axis; 

that is 

iR if' 

7 = 1 (y) R 2 (x) y (3) 

1 
L cos y 
0 -sin y 

10lCo x 
sin L 0 

cbs y sin x 
0-if 
1 0 
0 Cos 

Because x and y are small angles, their cosines 

are set to 1 and their sines equal to their values in 

radians. Consequently, 

7 = 

1 0 

1 

-x 

y 1 (2) 

In the NONA'lE system, the position of the true 

pole is computed by subroutine POLE. The station vec-

tors are referenced to the true pole by subroutine 

TRUEP. 

POLE 

TRUEP 
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SECTION 2.6 

MEASUREMENT MODELfNG AND RELATED DERIVAT1VES 

nature.
The observations in NONAME are geocentric in 

The computed values for the observations are obtained by 

applying these geometric relat-onships to the computed 

values for the relative positions and volocitics oF the 

satellite 	 and the observer at the desired time. 

In addition to the geometric relationships, NONAME'
 

allows for a timing bias and for a constant bias to be
 

associated with a measurement type from a given station.
 

Both of these biases are optional.
 

for NONAME is tberofore
The measurement model 


Ct+At ft. (r, r, Fob) + b + -ft (r r, rob)'At (I)
 

where
 

Ct+At 	 is the computed equivalent of the ob­

servation taken at time t+At,
 

ris the Earth-fixed position vector of
 

the satellite,
 

rob 	 is the Earth-fixed position vector of
 

the station,
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ft(rFr rob ) 	 is the geometric relat ionship defined 

by the particu ar observation type at 

time t, 

b 	 is a constahrt bias on the measurement, 

and 

At 	 is the timling bias associated with the 

measurement. 

The functional dependence of ft was explicitly stated For 

the general case. Many of the measurements are functions 

only of the position vectors and are hence not functions 

of the satellite velocity vector r. We will hereafter re[or
 

to ft without the explicit functional dependence for rota­

tional convenience.
 

As was indicated earlier in Section 2.2.2, we require 

the partial derivatives of the computed values for the 

measurements with respect to the parameters being determined 

(see 	also Section 2.10.1). These parameters are: 

o 	 the true of date position and velocity of the 

satellite at epoch. These correspond to the 

inertial position and velocity which are the 

initial conditions for the equations of motion,
 

o 	 force model parameters, 

o 	 the Earth-fixed station positions,
 

o 	 measurement biases.
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I 

These parameters are imp]iciLly divided into a set 

a which are not concerned with the dynamics o sate]I litO 

motion, and a set ( which are. 

The partial derivatives associated with the param­

eters CL; i.e., station positions and measurement biases 

8re computed directly at the given observation times. The 

bartial derivatives with respect to the parameters W; i.e., 

thebpoch position and velocity and the force model param­

eters, must be determined according to a chain rule: 

U-tt+At t+ t 
 - (2) 

t 

where
 

xt 	 is the vector which describes the satellite
 

position and velocity in true of date co­

ordinates.
 
aCt+At 

The partial derivatives a arc computed directly at the 
xt 

given observation times, but the partial derivatives 

may not be so obtained. These latter relate the true of
 

date position and velocity of the satellite at the given
 

time to the parameters at epoch through the satellite
 

dynamics.
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x-

The partial. derivatives - Irce: Cn I d he xv ria ­

tional parti a] s ancd are ob ta j jod by di Iel CumeriC1 
integration of the variational equations. As will be 
shown in Section 2.8.2; these e quq t in s N - ana logous 
to the equations of motion. 

Let us first consider the partial derivatives of 

the computed values associated with the parameters in (F. 

We have 

aCt+At Dft 
 t
 

t 

Note that we have dropped the partial derivative with 

respect to W of the differential. product ftAt. This is 
because we use first order Taylor Series approximation 
in our error model and hence higher order terms are 

assumed negligible. This linearization is also com­

pletely consistent with the linearization assumptions 

made in the solution to the estimation equations 

(Section 2.10.1).
 

The partial derivatives -- are computed by 
I3t 31t 9 t 

transforming the partial derivatives - and _ 
a? ar 

from the Earth-fixed system to the true of date system 

(see Section 2.3.4). These last are the partial deriva­

tives of the geometric relationships given later in this 

section (2.6.2). 
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In summary, the partial deri.vatives requirod For 

computing the At, the partial derivativos oF the 

computed value for a given measuremcnt, are the variatioln] 

partials and the Earth-fixed geometr:ic partial derivatives. 

The partial derivatives of the computed values with 

respect to the station positions are simply related to 

the partial derivatives with respect to the satellite 

position at time t: 

Ct+At t t()
 

arob ob 

where r is of course the satellite position vector in
 

Earth-fixed coordinates. This simple relationship is a 

direct result of the symmetry in position coordinates. 

The function f is a geometric function of the relative 

position; i.e., the differences in position coordinates
 

which will be the same in any coordinate system.
 

The partial derivatives with respect to the biases 

are obvious:
 

3Ct+At 
 - 1 (5)
S
 

ab
 

D)Ct+At 
 -2 (6)(6
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In the remainder of this section, we will be con­

cerned with the calculation oF the geometric Function 

ft and its derivatives. Thbse derivatives have been 
shown above to be the partial derivatives with respect 

to satellite position and velocity at time t and the' 

time rate of change of the function, t 

The subroutine breakdown for the caI c11Ititn of 

these quantities in NONAMI is a,s fiollows: The geometric 

relationships and the geometric partia] denvzitivos Lre 

implemented in subroutine PRIIDCT. The time rates of 

change are coded in subroutine OBSDOT. j 

PR1DCTI' 

OBSUOT 

The data preprocessing also requires some use 

of these formulas fQr computing measurement equiva­

lents. These are then also implemented in subroutine 

PROC13S. 

PROCI3S 
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2.6.1 The Geometric Re]atonship s 

The current types of observation in NONAM[t are: 

5 right ascension and declination 

o range 

n. range rate
 

0 Zoand m direction cosines
 

o X and Y angles
 

o azimuth and elevation.
 

0 altimeter height and. rate*
 

The geometric relationship which corresponds to each of 

these observations is presented below: It should be noted 

that in addition to the Earth-fixed or inertial coordinate 

systems, some of these utilize topocentric coordinate 

systems. These last are presented in Section 2.5.2. 

* There is currently no input format set .or these 
measurement types.
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Range -

Considcr the station-satellite vector: GRIIRAN 

p= r - r-ob (1) 

where 

r is the satellite 

the geocentric 

position vector (x,y,z) 

Earth-fixed system, and 

in 

r ob is the station vector in the same system. 

range, 

The magnitude of this vector, p, 

which is one of the measurements. 

is the (s]auit) 

Range rate: 

The time 

p = r 

rate of change of this vector - is 

(2) 

GRHRAN. 

P REDCT 

OBSDOT 

as the 

tem is 

velocity of the observer in 

zero. Let us consider that 

the Earth-fixed sys­

p= pu (3) 

where 

u is the unit vector in the direction of . 
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Thus we have 

P Pu + 

-
pU 

"^ "(4) 

GIIRAN 

PR 1jUL71 

The quantity p in the above equation 

for the range rate and is determined 

is 

by 

the computed value 

P = U () 

Altimeter height: 

The altimeter height and rate are unique in that the 

satellite is making the observation. Wffhile these are 

actually measurements from the satellite to the surface 

of the Earth, they are taken to be measurements of the 

spheroid height and the time rate of change of that 

quantity for obvious reasons. Using the formula for 

spheroid height previously determined in Section 2.5.1, 

we have: 

PREDCT 

Halt r ae. 
3 
a 

2 

4

1 
f2rz 

+ (ae f+ a 
2 

f2) ($) 
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where PII1)CT 

ae is the Earth's mean equatorial radius, 

f is the Earth's flattening, and 

z is r 3 , the z component of the Lartli-F.xod 

satellite vectorl
 

Altimeter rate:
 

The altimeter rate is determined by a chain rule: PREDCT 

Halt = Vilalt r (7) 

The required partial dorivatives are givoen iii the section 

on geometric partials.
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!ight ascension and declination: PREDCT 

The topocentric right ascension a and decJi.iation 

6 are inertial coordinate system measurements as ijIlus­

trated in Figure 1. NONAME computes thesc angles from 

the components of the Earth-flxed station-satel] ito vec­

tor and the Greenwich hour ang]le 0 

-= tan + (Og 

sin-s1n I3) (9) 

The remaining measurements are in the topocentric 

horizon coordinate system. These all require tile N, Z, 

and E (north, zenith, and cast base line) uniL vectors 

which describe the coordinato system.
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NORTH 

Spacecraft 

Observer. sZ 

FIGURE 1. Topocentric right ascension & decl.ination angles 
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Direction cosines: 

There are three direction cos'Lnes associated with PRUhDCT 

the station-sate]lite vector in the topocentric system. 

These are:
 

= u, H(30)r* 

m = N 

n1 = u z 

The P, and m direction cosines are observation types for 

NONAMEI. 

X afid Y angles:
 

The X and Y angles are illustrated in PLgurc 2.
 

They are computed by
 

Xa = tan-1(1 

Y = sin1 (in) (12) 
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Spacecraft 

EAST 

x
 

ORT Tracking Statron 

Local Horizontal Plane 

FIGURE 2. X and Y Angles
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Figure 3 illustrotes the 11e8sureifln U o C a-.mu th 1>IIDCI 

and elevation. These a ngJ s 8 re -oiiiptil d by: 

A = tan-11an	 -- (J.3) 
m 

-E Y sin	 (1) 

2.6.2 The Geometric Partial Dorivatives 	 PR]EDC1' 

The partial derivatives for each of the calculated 

geometric equivalents with respect to the satelli to positions 

and velocity are given here. All are in the geocentric, 

Earth-fixed system. (The r. refer to tho ]arth-fixed 

components of F.) 

Range: 

P 

=_ Pi --	 (1) 

1 

Range rate:
 

- 1 (2) 

3T i P 

a 1 Pi -.-	 (3)i P
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t 

' 

North z-South 

Eost 

FIGURE 3. Az'imuth and E3levation AngIcs 
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Altimeter rangc. PupPC
 

al a,1t r 1 -(2 ( (a f - 3 ae 
ar. r 

-6 ae 

r 

f 

3­

(~ x 

i rz 

Altimeter Range Rate: 

l 

ar.11 
3r alt 

r (5) 

2 

r_ 

a t 

ar 

1 3r. 

ar. 

r. r. 
2 (6) 

+ [(2 a0 f + 3 a. 

IT 

rr iTr 

f2) 

rr+ 

2 9 

) 6 

33 

a f2 ()X 

ez 

. 3 

r2 . 7 
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H2a ]
f + 3 a - a f2 (0 


F iaz 

3 

zr. 

DI' alt M alt 

Right Ascension: 

3 a -P2 

(7) 

Da 

ar 2 

P 

/P]P22 

(8) 

96 
- =0 
Dr3 

(9) 

Declination: 

D6 
=-arl 

P1 P3 

p2 !P 2P22 

1 2 

(10) 
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2 - 02 03
 

alr 2 p 02+22
 

3 

as 
2P, 

P2 (12) 

Direction Cosines: 

DaQ . -- EF . u ( 1 3 ) 

ar. i 

- ~ Z. - nu (15) 

( 
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X and Y Angles: PRE CT 

ax nE- -Z ia 1 1 (16) 

ar- p(]-m2 ) 

Ya Ni-mu­a _(17) 

Azimuth and Elevation:
 

@Az mE.-ZN.(

1 I (18) 

qr i PVTl-n 2 , 

@F, i- Dui-_ ZZ1 n~(19) 

Dr. p(l-n 2 ) 

2.6 -20
 



2,6.3 The Time Derivatives OBS1)O'F 

The derivatives of each measurement type with 

re~pect to time is presented below. All are in the 

Earth-fixed system. 

Range:
 

p= u r (1)
 

Range Rate:
 

The range rate derivative deserves special atten­

tion. Remembering that
 

p = r, (2) 

We write
 

p = u p (3) 

Thus
 

p - u p + u p (4) 
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OBSDOT
Because 


p - (pu) =pu + pu
 
dt
 

we may substitute in Equation 4 above' for a:
 

i.
1 . ^ -)
 

we Tay write 

1 2 -

P = - ( P-P + (8) 
P 

In order to obtain'T, we use the limitedgravity potential
 

(see Section 2.8.3):
 

GM- 20 e 2P sin (9) 
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The gradient of this potential with-respect to the Earth- OBSDOT
 

fixed position coordinates of the satellite is the part of
 
due to the geopotential:
 

9U . GM [ 1 3 a2 C20 (- 2 r 
- 1 (5 sin2 - 1-2 1 

(10) 

We must add to this the effect of the rotation of the 

coordinate system. (The Earth-fixed coordinate system 

rotates with respect to the true of date coordinates with 

a rate 6 g' the time rate of change of the Greenwich hour 

angle.) 

The components of p are then
 

OU
 

P1 = - + [X cos 0 + y sin 9] g + r2 0 (II) 

DU aU
 

P3 - - (13) 
r3 'Dz 

The bracketted quantities above correspond to the coordinate OBSDOT
 

transformations coded in subroutines XEFIX and YEFIX. These XBFX
 

transforms are used on the true of date satellite velocity YEFIX
 

components x and y. The interested reader should refer to
 

Section 2.3.4 for further information on transformations
 

between Earth-fixed and true of date coordinates.
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It should be noted that all quantities in this ORSDO'. 
formula, with the exception of those quantities bracket­
ted, are Barth-fixed values. (The magnitude r is tn­
variant with respect to the coordinate system translorma­

tions . 

The remaining time derivatives are tabulated
 

here:
 

uI ;2-u2 r 1
 
Right ascension: 
 - 1 2 (14) 

p (1-u 3 ) 

Declination: 6 3 Pu 3 

PVl-u'3 

p E-Stp
Direction Cosines: P-
 (16) 

p 

p N-rap 
M -(17) 
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X and Y angles: Xa= 

a 

p 
p 

p 

(n f3-tZ)
(n2) 

Ni-rp) 
A 

(18) OB SI)OCT 

Ya -
p -N-mp 

(19) 

p A A 

Azimuth: 
* 

A = 
P (mE-PN) 

(20) 

Elevation: 

* 

E 

p 

p 

(-inZ j 

Z -rp 

i.­ 2 5 
(21) 
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SECTION 2.7
 
DATA PREPROCESSING
 

The function of data preprocessing is to 
convert
 
and corrett the data. 
 These corrections and conversions
 
relate the data to the physical mode) and to the co­
ordinate and time reference systems used in NONAMI.
 
The data corrections and conversions implemented in
 
NONAME are to
 

o 
 transform all observation times to Al time
 
at the satellite
 

o 
 refer right ascension and declination ob­
servations to 
the true equator and equinox
 
of date.
 

o correct range measurements for transponder 
delay and gating effects
 

0 correct SAO right ascension and declination
 
observations for diurnal aberration
 

a correct for refraction
 

o 
 convert TRANET Doppler observations into
 
range rate measurements.
 

These conversions and corrections are applied to the data
 
on the first iteration of each arc. 
 Each of these pre­
processing items is considered in greater detail in the
 
subsections which follow.
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2.7.1 Time Preprocessing 

The time reference system used to specify the 

time of each observation is determined by a time 

identifier on the data record. This identifier also 

specifies.whether the time recorded was the time at 

the satellite or at the observing station. 

The preprocessing in NONAME transforms all DODSRD 

observations to Al time in either G130SRD or DODSR. GE10SRD 

If the time recorded is the time at the station, it PROCES 

is converted to time at the satellite. This con­

version is applied in subroutine PROCES using a cor­

rection equal to the propagation time between the 

spacecraft and the observing station. The station­

satellite distance used for this correction is computed 

from the initial estimate of the trajectory. 

There is special preprocessing for right GEOSRD 

ascension and declination measurements from the GEOS 

satellites when input in National Space Science Data 

Center format. If the observation is passive, the 

image recorded is an observation of light reflected 

from the satellite and the times are adjusted for 

propagation delay as above. If the observation is 

active, the image recorded is an observation of light 

transmitted from the optical beacon on the satellite. 

The beacons on the GEOS satellites ar6 programmed to 

produce a sequence of seven flashes at four second 

intervals starting on an even minute. For the active 

observations, the times are set equal to the programmed 

flash time with a correction applied for known clock 

errors (Reference 1),_ plus half a millisecond, the time 

allowed for flasn buildup. 
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Theicorrections for the active observations are GEOSRD 
applied in GEOSRD, which calls SATCLC and SATCL2 to SATCLC 

evaluate the corrections for GEOS 1 and CEOS 2, re- SATCL2 

spectively. These routines compute the correction by 

simple linear interpolation in a table of known errors 

in the satellite on-board clock. 
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2.7.2 Reference System Conversion to True of Date 

The camera observations, right ascension ,ind 

declination, may be input referred to the-mean equator 
and equinox of date, to the true equator and oqutulOx 

of date, or to the mean- equator and equinox of some 
standard epoch. The NONAM system transforms these 

observations to the true equator and equinox of date 

in subroutines GEOSRD and DODSRI). The necessary 

precession 'and nutatioh is performed by subroutine 

EQUATR. 

DODSRD 
I;QUATVIR 

GEOSRD 

2.7.3 Transponder Delay and Gating Effects 

The range observations may be correcLed for 

transponder delay or gating errors. If requested, the 

NONAME subroutine PROCES applies the corrections. 

PROCES 

a 

The transponder delay correction is computed as 

polynomial in the range rate: 

Ap = a 0 + a1 p + a2 ()2 (1) 

where a0, al, and a2 depend-on the characteristics of 

the particular satellite. 

A garing error is due to the fact that actual 

range measurements are either time delays between 

transmitted and received radar pulses or the phase 
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signal with 	 IROClzSshifts in the modulation oF a received 

respect to a coherent transmitted signal.. Thus there 

is the possibility of incorrectly identifyinig the 

returned pulso or the number oF integral phase shifts. 

The difference between the observed range and the com­

puted range on the first iteration of the arc is used 

to determine the appropriate correction. The correction
 

is such that there is less than half a gate, where the 

gate is the range equivalent of the pulse spacing or
 

phase shift. The appropriate gate of course depends
 

on the particular station.
 

2.7.4 Diurnal Aberration
 

Right ascension and declination may be corrected PROCES
 

for diurnal aberration,, which is an effect due to the 

rotation of the Earth. The corrections for these are 

given by
 

Aa - 0.0213 rob cos p' cos hs sec 6 	 (1) 

A6 0 rob ¢T sin hs sin 6 	 (2)0320 cos 


where 

rob 	 is the geocentric distance in units of
 

Earth radius (assumed to be 1).
 

is the geocentric latitude of the station,
 

and
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PROCES
is the hour angle
h s 


shown in the formula is the observed
6 	 as 


declination.
 

This 	and related topics are discussed in groat detail
 

in the Explanatory Supplement. 

This correction is appliod in subroutine PROCES.
 

It should be noted that this applies only to SAO
 

network stations.
 

2.7.5 Refraction Corrections
 

The NONAME system can apply corrections to all 
PROCES
 

of the observational types significantly affected by
 

refraction. The corrections requested are applied by
 

subroutine PROCES.
 

Right Ascension and Declination:
 

The right ascension and declination measurements
 

for SAO stations may require correction for parallactic
 

refraction:
 

a = a' - AR sec 6' sin Pa	 (1) 

(2)
6 = 6'- AR cos P a
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where PROC]3 

AR is the differential refraction; 

Pa is the parallactic angle; i.e., the angle 

at the object in the pole - object 

zenith; and 

a' and 31 are the observed values of the righIt 

ascension and declination. 

The differential refraction AR is computed by (Re Ference 2)
 

AR 435'.'0 
tan Z 0 

o 
p cos Z 

1 - exp (-0.1385 p cos Z0) (3) 

where 

7.0 is the observed zenith angle, 

p is the topocentric range in kilometers, and 

AR is the differential refraction in minutes 

of arc 
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PROCU S

Range: 

The refraction corrections Ap appl ied to range
 

observations is computed as follows:
 

4
AP 2.77n s
Ap = 2.(4) 
328.5(0.026+sin Er)
 

where
 

EA 	 is the elevation angle computed from the
 

initial estimate of the trajectory
 

and
 

is the surface index of refraction; if this
ns 

value is not specified, it is assumed to
 

be 1.
 

Range Rate:
 

For range-rate, the correction Ap is derived from
 

the range correction:
 

.p = 2.77n5 cos E 	 ( 

328.5(0.026+sin EQ2) 2
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where PROCS 

E£ is the computed rate of change oF elevation. 

For observations of range or range rate from 

certain stations, there is a correction to account for 

the mean daily variation of the surface index of're­

fraction. This correction, which is a correction to 

the product(2.77 1%), is computed by subroutine REFIONtherodct(328.5 n 

by linear interpolation in an hourly table. 

REFION 

Elevation: 

is 

For elevation observations the correction 6MU 

computed as follows: 

PROCES 

ABS 

3 

n5 
16.44+930 tan E 

(6) 

Azimuth is not affected by refraction. 

Direction Cosines: 

The corrections At and Am are derived from the 

elevation correction: 

At = -sin A sin (Et) AEz (7) 

Am = -cos Azsin (E.) ABZ (8) 
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where Az is the azimuth angle computed From the infitial PROCliS 

estimate of the trajectory. 

X and Y Angles:
 

For X and Y angles the corrections AX and AY are
 

computed as follows:
 

sin AzAE
AX =(9) 
a (sin 2 H + sin 2 A COS E( 

cos Azsin EZ A, (0 
AY 1 (10) 

1-cos z AzCOS2 E 

Note that these are also derived from the olevation correction.
 

2.7.6 Tranet Doppler Observations
 

TRANET Doppler observations are received as a GEOSRD
 

series of measured frequencies with an associated base
 

frequency for each station pass. Using the following
 

relationship, the NONAMIE system converts these observa­

tions to range rate measurements in subroutine GEOSRD: 

c(FB- FM) 
p - (1)


FM
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GEOSRD
 

where 

FM 

FB 

is the measured frequency, 

is the base frequency, 

and 

c is the velocity of light. 
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SECTION 2.8
 

FORCE MODEL AND VARIATIONAL EQUATIONS
 

A fundamental part of the NONAMF system requires 

computing positions and velocities of the spacecraft 

at each observation time. The dynamics of the situa­

tion are expressed by the equations of motion, which
 

provide a relationship between the orbital elements
 

any given instant and the initial conditions of
at 


epoch. There is an additional requirement for varia­

tional partials, which are the partial derivatives of
 

the
the instantaneous orbital elements with respect to 


These partials are generated
parameters at epoch. 


using the variational equations, which are analogous 

to the equations of motion,
 

2.8.1 Equations of Motion
 

In a geocentric inertial rectangular coordinate
 

system, the equations of motion for a spacecraft are of
 

the form
 

-3 +
 
r 

where
 

r 	 is the position vector of the 

satellite. 

2.8-1 



is GM, where G is the gravitational constant
 

and M is the mass of the Earth. 

A 	 is the acceleration caused by the
 

asphoricity of the Earth, extra­

terrestrial gravitational forces, atmos­

pheric dr'ag, and. solar radiation.
 

This provides a system of second order equations 

which, given the epoch position and velocity components, 

may be integrated to obtain the position and velocity 

at any other time. This direct integration of these 

accelerations in Cartesian coordinates is known as
 

Cowell's method and is the technique used in NONAE's 

orbit generator. This method was selected for its 

simplicity and its capacity for easily incorporating
 

additional perturbative forces. 

There is an alternative way of expressing the F 

above equations of motion: 

(2)
r = 	 VU + AD + AR 

where 

U 	 is the potential field due to gravity,
 

contains the accelerations due to drag,
KD 

and
 

KR contains the accelerations due to solar
 

radiation pressure.
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This is, of course, just a regrouping of terms coupled
 

with a recognition of the existence of a potential field. 

This is the form used in NONAME.
 

The inertial coordinate system in which these
 

equations of motion are integrated in NONAMI' is that

h­

system corresponding to the true of date system of o.0 

of the epoch day. The complete definitions for these 

coordinate systems (and the Earth-fixed system) are 
presented in Section 2.3.
 

The evaluation of the accelerations for r is F
 

controlled by subroutine F. This evaluatJon is performed REFCOR 
in the true of date system. Thus there is a requirement 

that the inertial position and velocity output from the 

integrator be transformed to the true of date system for 

the evaluation of the accelerations, and a requirement to 

transform the computed accelerations from the true of date 

system to the inertial system. These transformations are 

performed by subroutine REICOR (wvhich controls the pre­
cession and nutation routines, PRECES and NUTAT]3) and is
 

controlled by subroutine F.
 

2.8.2 The Variational Equations
 

The variational equations have the same relationship VEVAL 
to the variational partials as the satellite position vector 

does to the equations of motion. The variational partials 

are defined as the xt where xt spans the true of date 

position and velocity of the satellite at a given time; i.e.,
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xt= {x,y,z,x,y,z} ; 	 VEVAL 

and - spans the epoch parameters; . ,
 

X0o oZthe satellite position vector at
 

epoch
 

XoYZo0 	 the satellite velocity vector at
 

epoch
 

CD 	 the satellite drag factor
 

CR 	 the satellite emissivity factor
 

CnmSRm 	 gravitational harmonic coefficients 

for each n, m pair being deter­

mined. 

Let us first realize that the variational partials
 

may be partitioned according to the satellite position 

and velocity vectors at the given time. Thus the re­

quired partials are
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V VALwhere 


T 	 is the satellite position vector (x,y,z)
 

in the true of date system, and 

r 	 is the satellite velocity vector (x,y,z) 

-in the same system. 

The first of these, _, can be obtained by the double 

integration of
 

d2 )-( 
dt 	 3 

or rather, since the order of differentiation may be
 

exchanged,
 

__ 	 (3)
 

Note 	that the second set of partials, Er, may be obtained
 

by a 	first order integration of Hence we recognize 

that 	the quantity to be integrated is -. Using the second 

form given for the equations of motion in the previous
 

subsection, the variational equations are given by
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a 	 V3EVAL
 
(4) 

-	 CVU + R + TO 

where 

U 	 is the potential field due to gravitational
 

effects
 

AR is the acceleration due to radiation pressure 

AD is the acceleration clue to drag 

The similarity to tho equations of motion is now obvious. 

2.8-6
 



At this point we must consider a few items: 	 VEVAL
 

* 	 The potential field is a function only of 

position. Thus we have i 

D= 3 ( a2 
()
 

o 	 The partials of solar'radiation pressure
 

with respect to the geopotential co­

efficients', the drag coefficient, and the
 

satellite velocity are zero, and the par­

tials, with respect to satellite position, 

are negligible. 

a 	 Drag is a function of position, velocity,
 

and the drag coefficient. The partials,
 

with respect to the geopotential coefficients
 

and satellite emissivity, are zero, but we
 

have
 

- + 	 (6) 
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Let us write our variational equations in matrix VEVAL
 

notation. We define
 

n 	 to be the number of epoch parameters in -

F 	 is a 3 x n matrix whose jth column vectors 

are Dr 

U2c 	 is a 3 x 6 matrix whose last 3 columns are 

zero and whose first 3 columns are such 

that the i, jth element is given by 
32 U 

ar. arT
 

DT is a_3 x 6 matrix whose j th column is defined 

by 3A
 
9xt.
 

3 

X 	 is a 6 x n matrix whose . row is 

given by 3xt Note- that X contains the 

variational partials.
 

f 	 is a 3 x n matrix whose first six columns 

are zero and whose last n-6 columns are
 

such that the i, j th element is given by 

-(VU + AD + AR). Note that the first six 

columns correspond to the first six elements..
 

of f which are the epoch position and velocity. 
(This matrix contains the direct partials of 

3t with respect to F.) 
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We may now write VEVAL 

=F [U2c + Dr] Xi + f (7) 

This is a matrix form of the variational equations. 

Note. that U2c' Dr, and f are evaluated at the 

current time, whereas Xm is the output of the integra­

tion. Initially, the first six columns of XIIIplus 

the six rows form an identity matrix; the rest oFf the 

matrix is zero(for i=j,X. =I; for ijr Xi~ =0). 

Because each force enters into the variational
 

equations in a manner which depends directly on its
 

model, the specific contribution of each force is dis­

cussed in the section with the force model. We shall,
 

however, note a few clerical details here.
 

The task of computing these variational equations
 

in the NONAME system is largely accomplished by sub­

rbutine VEVAL. The matrix dimensions given were for
 

notational convenience; empty rows and columns are not
 

programmed.
 

The, above equation is also applied in subroutine PREDCT
 

PREDCT to "chain the partials back to epoch," that is, to 

relate the partials at the time of each set of measure­

ments back to epoch.
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The matrix for @x~ , XM above, is initializod in ORBIT 

subroutine ORBIT.
 

The contributions of subroutines DENSTY, DRAG, DENSTY 

EGRAV, F, hnd RESPAR will, be discussed as part of the DRAG 

following subsections. The matrices U2 0 and I will F 

be referred to in each subsection as though the par- RESPAR 

ticular force being discussed had the only contribution. 
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2.8.3 The Earth's Potential
 

The Earth's potential is most conveniently ox- EGRAV 

pressed in a spherical coordinate system as is shown 

in Figure 1. By inspection:
 

o 	 ', the geocentric latitude, is the ang]e 

measured from A, the projection of OP in 

the X-Y plane, to the vector OP.
 

o 	 X, the east longitude, is the angle measured 

from the positive direction of the X axis 

to OA. 

o 	 r is the magnitude of the vector 013. 

Let us consider the point P to be the satellite EGRAV
 

position. Thus, OT is the geocentric Barth-fixed satellite
 

vector corresponding to Y, the true of date satellite
 

vector, whose components are (x,y,z). The relationship
 

between the spherical coordinates (Earth-fixed) and the 

satellite position coordinates (true of date) is then
 

given by
 

Sx2 + z 	 (1) 

= n-1 (7) 	 (2) 

= tan- -	 (3) 
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rY
 

Figure 1: Spherical Coordinates
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li(;RAVwhere 0g is the rotation angle between the true oF date 

system and the Earth-fixed system (see Section 2.S. ). 

The Earth's gravity Field is represenited by the 

normal potential of an cllipsoid of revolution and 

small irregular variations, expressed by a sum of 

spherical harmonics. This formulation, used in the 

NONAME system, is 

U G r Zn Z-n sin /l C 
1 in cos IX + S 111 sin m1 

=2 m=O 

(4) 

where 

G is the universal gravitational constant, 

M is the mass of the earth, 

r is the geocentric satellite distance, 

nmax is the upper limit for th]e summation (highest degree), 

a e is the Earth's mean equatorial radius, 
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)' is the satellite geocentric latitude, IZGRAV 

X is the satellite east longitude, 

Pro(sin 4) indicate the 

functions, and 

associated six Legendre 

Cnm and Snm are the denormalized gravititiona] 

coefficients. 

The relationships between the normalized co-

efficients (C m ,m) and the denormalized coefficients 

are as follows: 

DENORM 

C 
(n-m)1(2n+l)(2-

[n- (n+m) 

) 1M.1/2 

( 

where 

60r is tho Kronecker delta, 

=o1for m=O and 6 =0 for mAO. 

A similar expression is valid for the relationship 

between S and Snm. This conversion factor is com­
nm31 

puted by the NONAME system function DENORM4. 
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The 	gravitational accelerations in true of date co- EGRAV
 

ordinates (,Hi) are computed from the geopotential, 

U(r,&',X), by the chain rule; e.g., 

3U 	 3r aU a' m DX 
x - + + (6) 

x ar ax a x " 

The accelerations y and z arc determined likewise. The 

partial derivatives of U with respect to r, 4', and X are 

given by 

[IGMnmax n
3U _ a.n 
St (Cnm cos mX (7) 

k n=2 111=0 

+ 	 S sin mx) (n + 1) p (Sin 
nm n 

r 	 EL (r- (S cos mX- C sin mr) (8)
• 	 r n=2 m=O 

m Pm (sin j9n 

GMnmax \fl 
a- ZE Z (Cn cos mx + Snm sin m)(9) 

n=2 m=O 

pm
m+l (sin 47)- m tan ' (sin 4)] 

2.8-15 



The partial derivatives of r, 4,',and X with respect to 1I"RAV 
the true of date satellite position components arc 

r r. 

rr2 Dri­

Dr-i Dri x r 
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The Legendre functions are computed via recursion }FGRAV 

formulae: 

Zonals: m=O 

pon (sin 00 
=-) n n sin 

(n-i) P2 

4' Pon-i 

(sin 

(sin 4- (13) 

P (sin V) sin ' (14) 

Tesserals: m O and m<n 

pmn 

P 

(sin 

(sin 

4 = mp (sin 40n-2 

o)Gas 4'(16) 

+ (2n-1) cos PPm-1 (s i n 4) 

Sectorals: m=n 

pm
n 

(2n-1) cos 4' n-I
n-i 

(sin (17) 

2.8-17
 



The derivative relationship is given by IiGRAV 

d- m ( = pm+l (sin (!) - III tal ' ( f 
d4 ' V n.(18)T)} 

It should also be noted that multiple angle 

formulas are used -for evaluating the sine and cosine 

of mX. 

EGRAV 

VEXVAL 

These accelerations on the spacecraft are com­

puted in subroutine EGRAV. Arrays containing certain 

intermediate data are passed to subroutine VEVAL for 

use in the computations for the variational equations. 

These contain the values for: 

T r 

GM a 0 n(19) 

p m (s inIn ' 

sin mX 

cos nix 

m tan 4 

for each IIand/or n.
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The following discussion re]ates prHi1mnr13i to VEVAL 

the matbemat.icaI formul ations Lit i lizod in sub roIti no 

VEVAL. 

The variational equations require the computation 

of the matrix U2c , whose elements are given by 

D2 
(U22 ))- =2 amj r. (20) 

where
 

r i {x, y, zi, the true of date satellite position. 

U is the geopotential.
 

Because the Earth's field is in terms of r, sin ¢,
 

and X, we write
 

3 D 

U2 c 1 2 1 - C2k (21) 

k=l k 

where
 

e k ranges over the elements r, sin ¢', and X 

U2 is the matrix whose i, jth element is given 

by _ U
 
2e.
1 J .e. 
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C1 is 

by 

the 

Doi 
J 

matrix whose i, jth olcment is given 11VAL 

and 

C2k is a set 

elements 

of three matrices whose 

are given by D2 ek 
ri rJ 

i, jth 

We 

potential 

compute the second partial clerivativos 

U with respcct to r, 4', and X: 

of the 

S2U 
2 

2GM+ 

3 

GM 

+3 S 

nmax 

3 n= 2 
(n+1) 

) n 

111=0 

(22) 

(Cnm cos mX + Snm sin mX) i (sin ' 

r2U  
U nmax

•2(n+l) 

n=2 

(29 n 

m=o 

(Cn cos m?, (23) 

+ Snm sin mX) - (PII (sin ) 

2U
3r3_ 

GM
G12 

nmax 

n = 2 

(n+l) 
i'n 
2i 
r 

11 

1= 0 

(24) 

(-C 
nm 

sin rnX + 'S cos 
nm 
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GM -- Q), o A u0).VF 

.2 
o11 '11= 

kp2 ill (4j) 

(25) 

2GM 
-

__ __ - ran=2 

ninax
E

Z 
)I( 

dm=o 

m (Cj­
(-C m si n m (26) 

" 

2 

+ S 

7 2 

cos 

n 

GM 

reX) 

/1 
n=2 

OpfII (sin 

D. 

r j ' (C 
Ill2 

111=0 

cos 
C o 

m (27 
( 2 7 1) 

+ S sin rInx 1)ll (sin q,) 

where 

t (s inpa+1 (sin ') m tan p (sin 
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2 (m (Si VF :AI 

(pro sin ') = ]P +2 (sin 4),')- Ul~a' ,['PoI s~1 

m.i tan cV (in 4') m tan 49Pfl(sil ): 

I sec 2 mn (sin ') (29) 

The elemonts of U2 have almost bean computed. 

What remains is to transfoTm from (r, cP', X) to 

(r, sin ¢',X). This affects only the partials involving 

4':
 

_ u a' (30) 

a sin 4' a4' 3 sin +1 

2% aDV a 2U aU 21 

D sin aa sin - Sill sin -

(31) 

where 

4 - sec ' (32) 

3 l? 

V 

si2sn sec 3 ' 

2.sin 

(33) 
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.For the C1 and C2k mat r ces, the partials of r, VEVAL 

sin {' and X are obtained from the usual formulas: 

r = x2+y2+ 2 .(34) 

sin 41- (35) 
T 

x = tan- 1 - (36) 

We have for C1 :
 

ar r.
 i (37) 
r. r
 

asin)' -Z r. 1 az 
= + -- (38) 

ir. r r 9r.1 1 

ax 1 [ y 1X 
ar. x+y 2 r- - (38) 

" X2 r8i -­
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____ ___ 

The C2k are symmetrIc. TIe necessary elements VEiVA], 

are given by
 

2r ri r 13r

19) i
 

3+ 

3
ar.ar. rr r 3ax.
 

1 J J
 

2 sin 4)_ 3z r. r. 1z or
 
- + r. ­_ 

(40) 

a2x -2r. [ ay a 
x+Z2 - rij 1) 

37 i 

ar. ax. x x.-r- yy (41) 

D
 

1 jx Dy 1 y 3x 

+
2ji r. 

If gravitational constants, Cnm or S are being RESPAR 

estimated, we require their partials in the f matrix
 

for the variational equations computations. These
 

partials are
 

(n+l) -- Cos mX) P2 (sin 4;) (42) 
r

Cnm 


Pm- = m - sin (mX) (sin 4) (43) 

nm r \r 
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a 
3Cnm 

(au) 
0' 

G 
r 

s (rX) (sin ) RESPA 

- m tan pmn (sin (44) 

The partials for Snm are identical 

placed by sin (mA) and with sin (mX) 

-Cos (mX). 

with cos (mX) 

replaced by 

re-

These partials are converted to 

date coordinates using the chain rule; 

inertial 

e.g., 

to true of 

acnm aCx 

-- I-~- 
3 

+ 

ax 

_ _ 

9 Cnm 
--

axax 
(45) 

+ 3 - U DV 

acnm 

This particular set of computations is performed by 

subroutine RESPAR. The items which EGRAV computes for 

VEVAL are also available to RESPAR and are therefore 

utilized. 
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2.8.4 Solar and Lunar Gravitotional Perturbations 	 SUNGRV
 

The perturbations caused by a third body on a
 

satellite orbit are treated by defining a Function,
 

Rd which is the third body disturbing potential.
 

This 	 potential takes on the following form: 

Rd - d [i---S+§ 	 ) -/] (I) 

r d rd rd 	 r d 

where
 

md 	 is the mass of the disturbing body.
 

r d 	 is the geocentric true of date position
 

vector to the disturbing body.
 

S 	 is equal to the cosine of the
 

enclosed angle between r ancd d"
 

r 	 is the geocentric true of date position
 

vector of the satellite.
 

G 	 is the universal gravitational constant,
 

and
 

M 	 is the mass of the Earth.
 

The third body perturbations considered in
 

NONAME are for the Sun and the Moon. Both are
 

computed in subroutine SUNGRV by
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a. d 
Dd 

_d+1 
rd \rd'/ 

SUNGRV 

where 

d r - r 

Dd = 
7drd2 _ 2r r d S 4" r 2 3/2 

These latter quantities, d and D as well as D2 / 3  

for the Moon are passed to subroutine VEIVAL for the 

variational equation calculations. VEVAL computes 
.ththe matrix U2C whose i, j elements is given by 

VEVAL 

It 

D2 

i 

Rd GMmd Ir.+ 
91'.~r.- lr. 

Dd 

3di d 
DT3 1(3)

dj 

This matrix is 

equations. 

a fundamental. part of the variational 

2.8.5 Solar Radiation Pressure 

The force due to solar radiation can have a 

significant effect on the orbits of satellites with 

a large area to mass ratio. The accelerations due 

to solar radiation pressure are formulated in the 
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F
NONAME system as 


TR 
-v's]P AAA 

R- s 
r 

s 
(1) 

m 
S 

where 

v is the eclipse factor, such that 

v=O when the satellite is in the Earth's 

shadow 

v=l when the satellite is illuminated 

by the Sun 

CR is a factor depending on the reflective 

characteristics of the satellite, 

As is the cross sectional area of the 

satellite; 

ms is the mass of the satellite, 

Ps is the solar radiation pressure in the 
vicinity of the Earth, and 

rs is the (geocentric) true of date unit vector 

pointing to the Sun. 

The unit vector r. is determined as part of the
 

luni-solar ephemeris computations. 

2.8-28 



The eclipse factor, V, is determined as follows: F 

Compute 

D r (2) 

where r is the true of date position vector of the 

satellite. If D is positive, the satellite is always 

in sunlight. If D is negative, compute the vector P R. 

PR ¥r D r3 . (3) 

This vector is perpendicular to r If its magnitude 

is less than an Earth radius, or rather if 

2(4) 
PR -P e(4
 

'the satellite is in shadow.
 

The satellite is assumed to be specularly
 

reflecting with reflectivity ps; thus
 

CR 1 + Ps (5) 

When a radiation pressure coefficient is being
 

determined; i.e., C the partials for the f matrix
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in the variational equations computation must be•thVVA 

computed. The i element of this column matrix 

given by 

is 
F 
VEVAL 

As 
S 

m 
s 

1 

(6) 

These computations for the effects of 

radiation pressure are clone in subroutine P. 

solar 

'2.8.6 Atmospheric DrIag 

A satellite moving through an atmosphere ox-

periencos a drag force. The acceleraLiun due to 

this force is given by 

DRAG 

AD = 
1 
-

A 
s 

s 

D 'r v ) 

where 

CD is the satellite drag coefficient 

A 
S 

is the cross-sectional area of the satellite 
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DRAGm is the mass of the satellite, 


is the density of the atmosphere 
at the
 

PD 

satellite position, and
 

is the velocity vector oC the satellite
 

relative to the atmosphere.
 

v 


Both A and are treated as constants in NONAME. 

sate.]ite attitude, theAlthough A. depends somewhat on 

use of a mean cross-sectional area does not lead to 

significant errors for geodetically useful satellites. 

The factor CD varies slightly with satellite shape and 

atmospheric composition. However, -for any geodetically
 

useful satellite, it may be treated as a satellite
 

dependent constant.
 

The relative velocity vector, vr, is computed
 

assuming that the atmosphere rotates with the Earth.
 

The true of date components of this vector nje then
 

(2)xr 


Yr S-% x (3)y x
 

z (4)
z = 

-as is indicated from Section 2.3.4, the subsection on
 

transformations between Earth-fixed and true of date
 

systems. The quantities x, y, and-z are of course the
 

components of r. the satellite velocity vector in true
 

of date coordinates.
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in the DRAThe drag accelerations arc computed 

NONAME system by subroutine DRAG, with the atmospheric DENSTY 

density PD being evaluated by subroutine DENSTY. In 

addition, subroutine DRAG computes the direct partials
 

for the f matrix of the variational equations when the 

drag coefficient CD is being dotetminod. These partials 

are given by
 

(

1 As 


(S)

f - -- PD Vr vr2 
 s
 

When drag is present in an orbit determination VEVAL 

run, the Dr matrix in the variational equations must 

also be computed. This matrix, which contains the 

partial derivatives of the drag acceleration with
 

Cartesian orbital elements, is con­respect to the 

structed in subroutine VEVAL. We have
 

1 A[ v r -1D
-Vr 


C D  
 PD Vr rr PD T
 

(6)
 

where 

x t is (x,y,z,x,y,z); i.e., Xtspans r and r. 
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and 

3% is the matrix containing the partial doriva- DErNSTY 

axt tives of the atmospheric density with respect 

to it and is partially computed in subroutine 

D]INSTY (see section 2.8.7.4 on atmospheric 

density partial derivatives). Because the density 

is not a function of the satellite velocity,
PD 

the required partials are 
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2.8.7 Atosheric Density 

The atmospheric density is the factor which is DENSTY 

least well known in the computation of drag; however,
 

it is essential to the computation of realistic per­

turbations due to drag. The NONAME solution is to use
 

the Jacchia-Nicolet model, which is perhaps the most de­

scriptive model presently available. This model gives
 

densities between 120 km and 1000 km with an extrapola­

tion formula for higher altitudes.
 

The NONAME model, as implemented in subroutinp
 

DENSTY, is based on Jacchia's 1965 report, "Static
 

Diffusion Models of the Upper Atmosphere with Empirical
 

Temperature Profiles" (Reference 2). The formulae for
 

computing the exospheric temperature have in some cases
 

been modified according to Jacchia's later papers. The
 

density computation from the exospheric temperature is
 

based on density data provided in that report, repro­

duced herein as Table 1, which presents density dis­

tribution versus altitude and exospheric temperature.
 

The discussion which follows will cover basically
 

the assumptions behind the model and the formulae actually
 

used in subroutine DENSTY. It will also cover the pro­

cedure for computing the density which was developed by
 

WOLF.
 

The reader who is interested in the developmont
 

of these empirical formulas and the re.asoning behind
 

them should consult the above mentioned report and
 

Jacchia's later papers. For the convenience of this
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I Table I (jacchia, Reference 2)
 

as a function of height and exosphe-ric temperature.Densities 

Decimal logarithms, g/cm 3
 

\~~ 0 I O I0 b lO 75Ld I?00 1650 100 1550 1500 145 14000 vO 


q 

l.0 t.0 -10.609 -10.601 	- 10 . 9 -10.611 - I -6O -10.609. -10-609 -10.609 -10-609 

I? -o~hq-,.0 I.0 l., 

1 1. 116 - l l -11.11 5 - 11.1 15 	-1 .1 I 1. 11Z
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170 -2 - -1., --. 2- --2 4 
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ISO -12.1 l .31 
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- 12 .61 1 - 1 2.6 1 2 - 12 . 6 1 4 - 14. 6 16 - 1 2 6 2 0 - 12. 6,2 - 12 .633 
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- 1
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-13.753
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p5) -13. '5 1 3l.5,4 -13.iq5 -13.6C& -13. I T -13.629 -13.O63 -13.657 -13.103 -13.6935 -13.710 -13.132 -13 .232 -13.785 -13.317 
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Table 1 (continued)
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-14.477 -14.611 
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-4.101
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°	 -[4 .33 -14.4Cq -14.-04 -1.587-I4-.2646 -14.1.7 -14.2-
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Table I (continued) 
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' for this section Corm DIN'ITYinterested reader, the refercnces* 

a reasonably comprehenkivc bibliography. 

2.8.7.1 The Assumptions of the M4odel
 

ccrta.i
The Jacchia-Nicolet model is based on 


simplifying assumptions and on empirically determined 

formulae. This is primarily due to the complexity and 

varied nature of the processes occurring in different 

regions of the atmosphere and the general lack of 

anything resembling a complete understanding of the 

actual derivationfundamental mechanisms involved. The 

of the model is based upon assumptions f.irst proposed 

by Nicolet (see Reference 8); Jacchia selected the 

Nicolet approach to generate a model sui-table [or 

satellite dynamics.
 

The model of the atmosphere proposed by Nicolet
 

considers that the fundamental parameter is the tempera­

ture. Other physical parameters such as the pressure
 

derived from the temperaLure. Thus
and density were 


the first concern is the temperature variati61 in the
 

atmosphere.
 

This temperature variation is controlled by the
 

following conditions:
 

atmo­1. Above the thermopause, the temperature of the 


sphere does not vary with altitude. The thermopause
 

varies with solar activity (and the time of day),
 

ranging between about 220 km to 400 ki. The
 

'US. Standard Atmosphere Supplements, 1966"
"Reference 9, 

contains a fairly comprehensive &escripbion and summary.
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is cailed I)INSPYtemperature above the thc rmopause 

"is irCtlythe oxosphcric temperatutro and d 

responsive to solar effects. 

2. 	 At an altitude of 320 kin, the tempOratutT, 
inde­density, and atmospheric conditions arc 

obvious simpli­pendent of time. This is an 

the variations of these
fication. towever, 

km considerablyparameters above 120 are 

larger than those occurring at 120 km, 
and,
 

other assumpti ohs, 	 thisconsidering the 

a goodassumption represents reasonably 

'approximatilon. 

be staitic
3. 	 The atmosphere is assumed to in 


With the large day-to-ni ght

equilibrirum. 

having a period oF the 
temperature variations, 

order of magnitude as the conduction time 
same 

and with the oc­
in the lower thermosphere, 

of severe magletic stormscasional occurrence 

fairly rapid and large
which give rise to 


the validity of this
temperature variations 

The best
assumption is open 	to question. 


argument for this assumption is its relative 

It should be anticipated, however,
simplicity. 


that in times of rapid change of the solar or 

parameters the predictions of this
geophysical 

invaliditymodel will be in error due to the 

of this assumption. 

The atmosphere is considered to be in diffusive
 

the density distribu­kin; that is,
equilibrium above 1.20 


each atmospheric constituent with height are
tions of 
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governed independently by gravity and tempera L'urc. The 1) NSI 

governing equations are the hydrostatic Ilaw, Telting 

the pressure variation with height to the acceleration 

of gravity, and the perfect gas Jaw, which redites the 

pressure, dens ity and temperaturc. 

With this approach, Nic]oFt shoted th al ahove 

250 ki the observed density profiles were reproduced 

was as­satisfactori]y if the (oxosphcric) temperature 

sumed to be a different, constant. l-ij also indicated 

that the problem of. representing the density between 

120 km and the thormopause was. largely a problem of de­

ducing the vertical distribution of temperature. 

The contribution of Jacchia to the so-called 

Jacchia-Nicolet model is largely the development of 

empirical formulas to compute both the exosphcric 

temperature and vertj cal temperature di stri but] on as a 

function of exospheric temperature. These FonMulfle arC
 

based on satellite observations coupled with physical
 

the boundary
reasoning. In addition, Jacchia has updated 


has
conditions of Nicolet. Thus in effect Jacchia pro­

vided all but the basic assumptions beh-ind the model.
 

The fundamental parameter of the model is therefore
 

the exospheric temperature. This temperature, together.
 

with the boundary conditions, implies a particular vertical
 

-temperature profile. These three items exospheric
 

temperature, boundary conditions, and temperature profi]e ­

define the density at any altitude over 120 k through the
 

diffusive equilibrium equation.
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Figure ) , whi ch was taken From Re [erence 3, shows I)INS 

a comparison of density and exosph eric omporalluros doe-C 

rived from obs ervat iot s oF Explot'ey I l ii to withv1ate 
solar and geomagnetic parameters,. Note the correspondencc 

between the exospheric temperature and the density. 

2.8.7. 2 The Exospheric Temperature Computations 

To calculate the fundamental parameter, the exo­

spheric temperature, Jacchia considoed -four factors which 

could cause variations: 

1. Solar activity variation 

2. Semi-annual variation 

3. Diurnal variation
 

4. Geomagnetic activity variation
 

Each of these variations was determined to be related
 

to one or more observable parameters (see Figure 1).
 

The given empirical formulae are based on these parameters. 

Solar Activity
 

There are many indices of solar activity but the one 

whose variations most closely parallel those of atmospheric
 

density is the 10.7 cm. (2800 Mc.) solar flux line. The
 

intensity of this line has been measured continuously since
 

1947, by the National Research Council in Ottawa on a daily 

basis. The values of the 10.7 cm. flux line are published 

2.8-42
 



EXPLORER 	 " ,s d, 
CCMa0 ,400 60 0 ~ 0 t 0 0 , 0

-1"coo 	 : 


1.7p, 

-it'
 

I 	 I 

~\EXOS"IPfIC TE PZAATUVZ 

. ,% 	 ' .,- rw I. ' ."*'*.. I. 

11VV 

bes avilblecop.. 	 z-r
 

'___ -a '- ls_ -'C.,: 	 __,___.. __..l e V si he 27 £a 	 < .. 

f0rI7Reproue fro 	 n0este efe ro h 

-	 (e
con:jpre& with so'ar and 'geo=agretzcR)rarasreters. I -st "'ce teee zn anaya'
'; 0~n
 :p-rlerm')lr~jure ihi-'. npal'ele&.. aec~~-----7rza enz :nxs me 

veqrs co-erec by the diagrevt Th'e reie ' ~~n ~ha -f~r~ -- 272 
days are caused by 'he motion cC_ 'he sate -'t :tri,-ee -n and o :f thef_ I 

osc:~t c ns 4in ase wit.h C't>hb'ft9-e. Visible are also the 27-da 	 cetfluxnd afew erft-rbations ceu- ec. 7hy matcr s~~tcsom 
Pe:, _Y -n(±"he d-urnal end of t-e senifann";q' 

-fnr±e e nlots of satllie a. T.:.e t. .*-- - -- ­

nestetc ..­zxi':ree 	 crised by th cpc vatolS 
the~~~~~~zte 4oiidJlnfly(?rn-2§YO.5) 0szs - f-onRpr-oduced Ref. 



monthly in the "So]ar-Geophysical Data Repor-ts" of the UhNSTY 

nJn IBoulder,Environmental Sci.enco Services Admi u istrat i 

Colorado (U.S. Department of Commert-ce)• 

Most Of the time 	so] ar act ivity Is much more intense 

than the olher so 1lh;it the Ui linein one solat hemisphere 

appears to vary with the rotation period ol'the sun, 27 

days. This periodicity frequontly pers ists for a year or 

longer. In addition, there i.s a variation in the average 

flux strength with a period of about 11 yours which is 

related to the solar cycle.
 

From satellite drag data a linear relation between 

globni nighttimethe average 10.7 cm. flux and the average 


minimum exospheric temperature has been obtained (ReForence 2)
 

and is expressed as
 

T 0 3570 + 3.600 r1 0 . 7 	 (i) 

where
 

is the average 10.7 cm. flux strength over
 
10.7 


2 or 3 solar rotations measured in units
 

of 10- 22 waltts/m 2/cyclc/scc. bandwidth.
 

TO is the average global nighttime minimum 

same period.
temperature averaged over the 


This formula gives the relationship for absolutely quiet
 

when ap is zero.
geomagnetic conditions; i.e., 
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The variation within one solar rotation is 'ex- 1WNSTY 

pressed (Reference 2) by 

0 0 + 8° (F10.7 1 0 . 7 ) 	 (2) 

where 

is the mean of the )0.7 cm so]ar fluxF 1 0 , 7 

for a given day in the same units as 

F 10.7' and 

T 0 	 is the global nighttime mnimuin for the 

same day. 

This formula accounts (approximately) for Lhe day to day 

temperature variation superimposed on the average global 

nighttime minimum temperature determined by the previous 

formula. 

There is some indication that the coefficient 1 .80 

actually varies from sunspot maximum to sunspot minimum. 

The indicated range of variation is from about 2.4' down 

to 1.50.
 

Semi-Annual Variation 

The semi-annual variation is the least understood 

of the several types of variation in the upper atmo­

sphere. Yearly, the atmospheric density above 200 km 

reaches a deep minimum in July followed by a high 

maximum 	 in October-November, a secondary minimum in 

January, and a secondary maximum in April. Jacchia 

2.8-45
 



(Reference 1) found that the observed density lvriatiols DIiNSTY 

could be explained by temperature var.i atnons in the thermo­

pause, and are roughly proporti.oal to the 10.7 cm [lux 

line. It has been noted that the height of the i ono­

spheric F2. layer shows a semi-oannual variati on almost 

exactly in phase wi th the observed density variations. 

Another suggestion by F.S. Johnson (Refoeence 7) concern­

ing the cause of the semi-an nual variation, involves 

convective transfer at ionospheric levels from the 

summer pole to the northern pole. This, as yet, does 

riot seem to account correctly -for all the details
 

of this variation. The semi-annual variation is not
 

as stable a feature as the diurnal variation. Jacchia
 

(Reference 2) accounted For this feature .in 1965 but has, 

with the recent information of drag data From six sate]­

lites, updated his empirical formula (Reference 6) as 

fol lows:
 

T 0 = +10 F o10.7[0.34910.206 s]ii(2irtr+226.S 0 )]+ 2.41 + 

(3)
 

sin (4rT+247.60 )
 

where
 
2.16
 

°
 I + sin[21r(d/Y) + 342.3 ]= - 0S d/Y + 0,1145 


(4)
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DENSTY
 = day of the year counted from January 1.d 


Y = the tropical year in days. 

T-= global nighttime minimum temperature -or 

that day corrected for semi-annual varia­

tion.
 

(Reference 6) have moreJacchia, Slowey, and Campbell 

clearly defined this variation. As expected, the re­

lationship between the temperature and the 10.7 cm flux 

It-was cohcluded
line cannot be considered accurate.. 


that the observed density vatiations are the result of
 

as
temperature variations at essentially the same level 


in the case of the solar effect. However, a variable
 

altitude shows that the semi-annual variation affects
 

the whole atmosphere in the same manner, irrespective
 

of latitude.
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IENSI'YDiurnal Variation 

The most regular of the variations is the diurnal 

variation. One can picture the donsity distribution us 

an atmosphexic bulge with its pQak 300 cast o[ the sub­

solar point, degrading neatly: symnietrically o1 all sides, 

but a little steeper on the morning side. The density 

peaks at 2 P.M. local solar time-and the minimum occurs 

at 4 A.M. The ratio of the maximum temperature 

at the center of the bulge to the minimum in the opposite 

hemisphere remains constant throughout the solar cycle; 

the ratio is 1.28 in Jacchia's model atmosphere. The 

cause of the heating is in dispute. Some iivestigators 

believe it is due anti rely to extreme ulItra-viol-t (]UV) 

radiations; others, to ion drift; and still others, to a 

combination of the two. 

The tomperaturc, T, at a given hour and geographic 

location, can be computed in terms oftthe correct global 

nighttime minimum temperature for that day, TO' using 

the following formula which approximates a mathematical 

description of the atmospheric bulge (Reference 2): 
I 

R (cos%-sinm0) 

T = TO ( I R sinmo) i + Rossin n _ (5) 
sinm001R 2 

2.8-48
 



DINST!Y
 
where 

R = 0.26 

n =m = 2.5 

T = II + B + p sin (II.y) -ir<' <',)
 

-B -45'
 

°
 p = 12
 

y = 45
 

ri = A.BS !6 )/2]
 

U = ABSL[ 6 )/2]
 

4r = geographic latitude
 

6 = declination of the sun
0 

- = hour angle of the sun 

(1- = 0 occurs when the point considered, 

the sun, and the earth's axis are coplanar.
 

II is measured westward 00 to 3600) 

Based on satellite information, Jacchia (Reference 5) assumes 

corres­a maximum day temperature 28% higher than the 


ponding nighttime minimum. The variation is ropresented 

by R in the above equation. However, further investi­

gation by Jacchia, Slowey, and Campbell (Reference 6), re­

vealed that the diurnal-variation factor (R) is somewhat
 

variable. A value of 32% is considered valid for dates
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prior to February 2963, a(d From August 196S, onward, D1NSTY
 

26% variation is considered valid. Between these dates,
 

R is made to decrease lincarJy.
 

Although in 	 those equations the e xponents iii and 

the mode oF the ogi ttuidnol andn, vwhich dete rmieic 

latitudinal Lemperaturc variation's respect ively, arc 

kept distinct, it was found in pr;actice that i = n. 

Those values arc not reaily known accura 1clI and could 

be as small as 2.0. 

The constant B determines the. lag of the tempera­

ture maximum with respect to the uppermost point of the sun; 

p introduces an asymmetry in the temperature curve whose 

location is 	determined by y.
 

Geomagnetic 	 Activity 

To the temperature, '1,whLch is calculatod above, 

must be added which accounis For atmos­a correction 


pheric heating rel ated to changes in the FElarth's mag­

netic field. The heating probably occurs in the E layer
 

of the ionosphere, but the mechanism involved is not
 

well understood. The temperature correction, AT, is
 

given by Jacchia, Slowey, and Campbell (Reference 6):
 

AT = 1.00 ap + 1000 [1-exp(-0.08a p)] 	 (6) 

where 

a is the three-hourly planetary geomagnetic index. 
P 
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IWINSTY

The quanti.ty ap i,; a measure oF the varial lol in 

the earth's magnetic fel]_d in a givn ,three hour period. 

During magnetic storms the temperature changes 

generally lag behind the variations in a) by abI)out Live 

hours, due to conduction. ''here is sone evidence of 

oF ap aslarger temperature changes for given values 

one proceeds to higher geomagnetic latitudes. However, 

of data indicating this is negligible atthe amount 
I I 

this time. 

the magneticThe DENSTY subroutine allows for 

heating effects with one modifica-on. To mijnuinzo the 

input data for NONAME, the 3-hourly index (a p) is 

replaced by a 24-hourly or daily index (Ap).
 
so
Generally, magnetic storms last fort" or 3 days 


that the t mp.ra tur calculation using Ap will reflect
 

a daily change, but not the 3-hourly fluctations which
 

occur with a
 
p 

The quantity A and the solar flux data is 

The publi­available from E.S.S.A., Boulder, Colorado. 


cation is, "Solar Geophysical Data, Part T." 

Accurate daily values for both the solar and INPT 

are required for the computation of ADULUXgeomagnetic flux 


the exospheric temperature. In NONAMIE, these values
 

are input via a BLOCK DATA routine, INPT. This infor­

mation may be updated (cf subroutine ADFLUX) using the
 

The user should be awareappropriate NONAME Input Cards. 

of the fact that these tables are expanded as new infor­

mation becomes available.
 

2.8-51
 

http:quanti.ty


.At the beCginnig of each run, a rile is gener;ited JANTIIG 
for each sate]ite arc which coni aiuis the rtqui -ed iJiUX 
data for the time span i(1icat(d. Subiroutine ,ANI'IIG 
is the routine which sets 11) the flux ta)ies, nl1izding 
averaging the daily values of solar Flux over iwo so]ar 
rotation periods. The reason For this is to free the 
large amount or computer storage rCeqjvIed For" daily 
flux values over five and a half years. As a matter of 
reference, the associated COMMON BLOCK is PIORI. 

2.8.7.3 The Density Computation 

The density computation in NONAME subroutine DENSTY 
DENSTY is based on the density distribution versus 
altitude and exospheric temperature presented in Table 1, 
which is reproduced from Jacchi.a's 1965 paper (Reference 
2). This data was obtained by inunerical integration o 
the diffusion equation using an empirical temperature 
profile for each indicated exospheric temperature. 

This vast quantity of information was fitted
 
(by IWOLF) to various degree polynomials of the form: 

LOG~. a, ,(j_ h(i-1)7LOG10 PD = a T (7) 

iij 

where
 

PD is the density,
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1' is the exospie v.-ic tompern ttire, IIINS'1Y 

h is tire spheroid height of the steJtll ito 

(altitude) , and 

a is a set of nppropriate coefficients 

Unfortunately, a sing]e polynomial or the type 

presented is not completely descriptive. An examina­

tion of Table I reveals that donsity is nearly in­

dependent of temperature for low altitudes, but 

becomes increasingly dependent for heights above 

1,60 km. Accordingly, appropriate polynomianls wore 

chosen to account for the varying dependency of the 

variables. This necessitated the separation of
 

Table I into three parts.
 

The lower region (1.20 km - 160 kin) is expressed 

as a second degree polynomial which is solely a function 

of altitude, This is due to the fact that density is 

not appreciably dependent on temperature in this region. 

The remaining regions of 160 km to 420 km and 420 km to
 

I000 km are described by polynomials of fourth degree
 

in both temperature and altitude.
 

The coefficients for the selected polynomials are
 

presented in Table 2. These coefficients have been 

modified to compute the natural log rather than the
 

decimal log of the density.
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TABLE 2 

DENSITY POLYNOMIAl. COEFFPICIIiNTS 

(FOR NATURAL LOG OF DENSITY) 

0 2 3 

420-1000 KIM 

T0 61 .5177 48.60687 6.87280 0.305394 

T1 -173.970 93.4870 -14.1203 0.6511270 

T2 111.908 -60.34177 9.349784 -0.440330 

T3 -23.3864 12.64406 -1.989456 0.0950336 

160-420 KM 

T0 0.51-4627 -26.4622 6.2871]J -0.604854 

T1 -36.8141 37.5137 -9.994692 1.00192 

T2 22.6334 -23.9095 6.780537 -0.695452 

T3 -4.47654 4.83017 -1.41853 0.148026 

120-160 KMl 

1.1335948 -31.858566 8.7827269 
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The densities produced by these Fitted polynomials DiNST) 

differ from the densities in Tabl. 1 by an RMS of 3.7 

percent. However, the fit does wry in diFfecrent regions 

of the table. In the region or worst fit, where the 

temperature is relatively low (700-1000c X) and the 

altitude varies from 620-840 kin, the RMS Js somewhat greato 

being about 8.5 percenjt. ho .argest.percent di Frerence 

between densities is 13.2 percent and FalIs wilthin the 

region described. 

The fits above could be improved by either going
 

to higher degree polynomials or by additional segmenta­

tion of the table. However, those (its are considered 

to be as accurate as the model- being used.
 

For satellite altitudes above 1000 kin, the density
 

is computed accot ding to the extrapolat]on formula gi.ven
 

by Jacchia (Reference ):
 

- (8)
PD = PW + (P1000-P) e [b(h 1000)] 

where
 

b d np as evaluated at 1000 km.
 

p - is a limiting value for the density. 

This is zero in subroutine DENSTY. 

h - is the spheroid height. 

P 0D- is the density evaluated at 1000 km.
 

PD - the desired density at altitude h.
is 
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2.8.7.4 Density Partial Derivatives 1)EN STY 

In addition the NONIAMk isoto dons.ty, , rccpiies 

the partial dorivativcs of the density with respect 

to the Cartesian position cwordimntes. Thlese.C' parlial s 
are used in computiig the drag contr-ihuLi on to the 

variational equations. 

As demonstrated above, the density is given by 

PD= exp (C0 + C1 h + C2 h2 + C3 h3 ) (i) 

where 

h is the spheroic height , and the 

C. are coo Ffcients which arc polynom ialIs in 
temperature.
 

We then have
 

aPD + 2 al-PD (Cl 2 C2 h + 3 C3 (2) 

where 

r is the true of date position vector of 

the satellite (x,y,z). The partial deriva­
ahtives _ are presented along with the com­ar
 

putation of spheroid height in Section 2.5.1. 
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The partial derivatives -D -e computed in subroutine 

VEVAL. The quantities h, PD', and the C are computed 

in DENSTY and passed through COMMON BLOCK DRGBLIK. 

2.8-57
 



SECTI ON 2.9
 

INTBRAT ION AND 1N.'1'RPOJATTON
 

NONAMIi uses Cowell 's method for direct ORBIT 

numerical integration of both the equntion.s of motion 

and the variational equations to obtain the position 

and velocity and the attendant variational part.ials 

at each observation time. The intorator output is 

not required at actual observation times; it is 

output on an even integration step. NONAINI uses an 

interpolation technique to obtain values at the 

actual observation time. The spoci ic numerical 

methods used in NONMAIE for this integration and 

interpolation are presented below. These procedures 

are controlled by subroutine ORBIT. 

2,9.1 Integration 

Let us first consider the integration oF the COWELL 

equations of motion. These equations are three 

second order differential equations in position, and 

may be formulated as six first order equations in 

position and velocity if a First order intograt~ion
 

scheme were used for their solution. For reasons of 

increased accuracy and stability, the position vector 

r is obtained by a second order integration oC the 

accelerations r, whereas the velocity vector r is 

obtained as the solution of a first order system.
 

These are both ten point multi-step methods requiring 

two derivative evaluations on each step.
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To integrate the position components, a Stormer COWEL 

predi ctor 

q ­

= s-i+ (All )2 ±Z Yq) 0-() 
p=O
 

is applied, followed by a Cowe2l corrector: 

rn1 = 2r n - _ + (Ah) 2 q 
Y P Y (2)' 

p=O
 

The velocity components are integrated using an Adams-

Bashforth predictor; 

-.rn+1 = Tn + Alu r* (3 

foiJowed by ant Adams-Moulton corrector; 

q (4)Ah rnp+ 1T n+1 = + 


p=O
 

In these integration formulae, Ah is the integration 

step size, q has the value 9, and yqp, Yqp' qp and qp 

are coefficients whose values are presented in Table I.
 

2.9-2
 



TABLJE 1
 

INTIEGRATJON SCI Ilifli CO I: IC [tiNTS
 

DB* DI qi D-y* DY 
qi qii 

0 262 426 878 7 21.7 406 57 739 248 2 ]53 844 

1 2 631 486 186 - 73 512 830 - 579 546 324 - 21 86L 404 

2 -11 882 722 3Z0 38 670 864 2 620 127 661 300 226 448 

3 31 829 896 224 - 93. 648 032 7 028 936 208 -273 727 440 

4 -56 041. 292 412 1 702 270 332 J2 398 969 520 194 279 352 

5 67 833 843 588 - 21-7 739 396 I5 044 569 848 -618 300 144 

6 -57 287 383 776 2 016 292 320 -12 743 542 224 540 351 504 

7 33 5.07 517 680 -1 420 184 304 7 469 061 264 -242 102 448 

8 -13 229 393 814 1.190 664 342 - 2 840 368 608 875 698 740 

9 3 814 933 122 262 426 878 1 453 091 220 57 739 248 

where D = 9144457600 and is the common donominator 
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Let us next consider the integration 

variational equations. These equations may 

as 

of 

be 

the 

written 

COVCELL 

Y [A B] Y (S) 

where 

and, partitioning 

partials, 

according to position and velocity 

[A B] = [U2 C + Dr] (6) 

Note that equation (5) is the same as equation (7) of 

Section Z.8.2, with Y corresponding to the matrix F. 

The variational particle Xm and the partial derivative 

matrices U2C, D , and f are completely defined in that 

section. 

Because A, B, and f are functions only of the 

orbital parameters, the integration can be and is performed 

using only corrector formulae. (Note that A, B, and f must 

be evaluated with the final corrected values of r and F )n+l 

In the above corrector formulae, we substitute
 

the equation for Y and solve explicitly for Y and Y:
 



Yn+ COW l1 1J, 

s, (7) 

where 

Yqo qo 
S= 

[qoA qo 

r q 
C 2Yn - "n-i Yqp Y)n-p1 +qo 

LY +
 

Yn- qp n-p+i qCIo 
p=] 

Under certain conditions, a reduced -form of this 

solution is used. It can be seen from the variational 

and observation equations that if drag is not a factor 

and there are no range rate, doppler, or altimeter rate 

measurements, the velocity variational partials are 

not used. There is then no need to integrnte the 

velocity variational equations. This represents a 

significant time saving. In the integration algorithm, 

the B matrix is zero and S is reduced to a three by 

three. 
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Backhwards i ntegration involves only a few si mp]e "'AIN'f 

modifications to these normal or ForwV;LY- .into8gration 

procedures. These modiCicaLions are 1.o nealC 11o 

stop sLze, invert the time compLetion tCsI;, and inverl 

the entire tabl of back values. 

The above integration procedures are imp]emented BAIKINT 

in NONAME in the subroutine COIWELL. The inversions COWIELL, 

for backwards integration are performed by BAKINT. DNVI' 

The matrix inversion is performed by subroutine DNVIERT. 

The default step size for these integration pro­

cedures is selected on the basis of perigee height and 

the eccentricity of the orbit. The default step gize 

selection is explained in detail in the Operations Manual, 

Volume I]I of the NONAMB System Documentation. This may 

be reset to some other fixed value on input. (See the 

STEP control card description in the above manua.l .) 

Variable Step Mode 

There is an optional variable step mode which is 

the default mode for high eccentricity orbits. The 

selection of this mode of operation, its deCault initial 

step size, halving error bound, and doubling error bound 

are also explained in Volume III with the STEP control card. 

In the variable step mode, the local error is COWELL 

compared against upper and lower error bounds to determine REARG 

whether the step size should be halved or doubled. This II BI' 

local error is computed as the difference between the
 

predicted and corrected values of position. Both the
 

halving and doubling procedures require the tables of
 

2.9-6 



back values to be modified so as to be compatible wlh the RBAMtG 

new stop size. The halving roqn.reos a itermte interpolation 1111FII.'l 

for mid-points. This interpolation, is of cour:;e on the 

back position, velocity and acclcrat.i on values . The 

doubling is achieved by disarcling levory other time poinl" 

in the table of back values. 

It should be noted that twenty se.ts of back values 

are saved when NONAMI is operating in variab.fe step mode. 

Doubling of the step size is djs'abled'for the following ton 

steps after a step size change; i.e-., until the table of 

back values is again filled. 

These halving and doubting procedures are contained 

in subroutine RIIARG. In the case of halving, subrouti-ne 

IIHMIT is invoked to interpolate Cor the mid-points. 

2.9.2 The intcgrator Starting Scheme 

Thepredictor-corrector combination employed to INTGST 

proceed with the main integration is not self-starting. 

That is, each step of the integration requires the 

knowledge of past values of the solution that are not 

available at the start of the integration. The method 

presented here is that implemented in the NONAME 

subroutinc INTGST. 

A method first proposed by W. Rombcrg provides
 

the ton values required to start the main predictor­

corrector scheme. The Euler-Cauchy single stop method 
is combined with Richardson's h 2 -extrapolation to gon­

crate a sequence of approximate solutions, X(h), for
 

a fixed time interval h. Successive approximations
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to X(h) arc formed by subdividing the intorval into TNTGST 
subintervals of lengths At1 > At 2 > At --- and by3 


app] ying-thx'. Eu) er-Cauchy mbthod to y-i.el d the sequence 

of approximations X(At1 ), X(At2), X(Ats)---. An Alitkon-
Neville interpolation scheme is then used_ to Ui nd 
succossiv6 extrapolat.ions'to X(At=O).' A complete 

analysis of this very stable and accurate te tchn i que 

has been pub]ished by Rutishauser,Stie l,,a-cr and 


(Reference 2).
 

The subintervals At, ,i=1,.:,7are deCined as
 
by step-ratios si., i=l,...,7, which must form a
 

.monotonic increasing series. In tfe NONAM13 starting
 

scheme this step-ratio series i's a fixed,program
 

parameter fl,2,3,S,8,12,171, chosen to maintain the
 

schbiie's accuracy by consider.ing a broad rungc of 

step-ratios, without consuming the computation time 

needed for very large step-ratios.
 

"At each subinterval, an Euler-Cauchy scheme is 
used to predict a value of the position-velocity 

vector X as the solutidn of a first order system of 

equations, using the Euler formula. 

X [(j+l)Ati] X [JAt.] + Ati JAt, (1) 

j = ,...Si- , i = 1,...,7
 

This predicted vector is next refined using the
 

formula
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X [(j+2)Ati = X [jAj.] + Ati X f(j I'I)AI J, (2) iTUS 

j = O,.-.s 2 J =. 7 

and finally -corrected us.ng tile Oquation 

At.
 

x [(j+l)At.]], X [itt.] + At3. 1 2 X [jAt
1" ± X (j±1)At.]), 

j = 0,... Si- i = l,...,7 (3) 

The approximations X (s Ati) , i=il,...,7 I-o the 
position velocity vector '1(h) over a full step Ii, given 
by each sequence of subinterval integrations are then 
used in an AItken-Nevii1e in-torpol'n--ion scheme: 

X(h) = X (Ati) + rji [X(jAti) - X(jAti_)] (4) 

j = i,2.., i j , 

The Aitkcn--Neville factors rji are computed from the 
monotonic increasing series t], t 2 ;...t 7 from the 
formula 

k+- 2 ; 1 ,...,62k 
r jk j
rk =) 
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The -final approximation X(h) to the inti-egmat-ed 
vector is then used to re)eat the a)ove process ror 
the next time-stop h, until nine val,ues .oF the position­

velocity vector have boon generated. "'o;gethcr with, the 
epoch position-velocity vector, these valucs are us'ed 
to start the much faster predictor-corrector sequence 
employed to integrate the remainder of the orbit. 

I NTGS'I 

2.9.3 Interpolatbon 

NONAME" uses Hermite interpolation for two 
functions. The first is the interpolation of the 
orbit elements and variational partials to the ob­
servation times; the second is the interpolation 

for mid-points when the integrator is halving the 
step'-size. These functions arc 'separate largely 

because they have entirely different accuracy re­
quirements. Tn particular, when the step size is 
beiiig halved, the accuracy of the interpolation fof 
the new points is critical. because any errors intro­

duced will build up in the subsequent intogratibn. 

IIiROIT 

111iE1IT 

The Ilermite interpolation formula uses oscul"ating 
polynomials of contact order n; i.e., they have the 

properties 

X(t P(t.) (1) 

x ( i ) (tj = p(i)(t ) "i = 0,1, ... n1 (2) 

(U thwhere the X)(t) are the i derivatives of X 
evaluated at t = t.. Also, the derivatives of P (t)J 
higher than n are zero. 
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These llcrmite polynomials' have the Form (see ReFerence 3) 

-, IHERMIT 

n kC 

i=O 	 j=]1 

where 

n 	 'is the number of derivatives being 

utili zed, 

k 	 is the number of values ava,il.able for 

X( ' ) each , and 

h-. 	 is a polynomial having properties similar
 

to those of the Lagrange polynomials. 

Let us consider the case where n is one. This HERMIT 

produces the usual Hermite 'interpolation formula in 

the literature. For this case," only the function and 

its first derivative are used. The two sots of co­

efficients.are given by 

2 L!	 )
h 	 = I - (t ) (t-tJ tj (4)
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where the L (t) are the familiar Lagrange polynomials IfIR, 1IT 

of degree h. This is the case for interpolatjing the 

orbital elements and is implemented in NONAMI subroutine 

IERMIIT . Note that the same Iwo sels or co'ffi cJ oits are 

used f6r al] of the variab.Ies hei.ng interpoltited. The 

variational partials are interpolated using the LJagrange 

polynomials. This is also implemented in HIIF, IT. 

We also take advantagq of the fact that the data IHTHEMIT 

is evenly .spaced according to the current integrator step 

size. The hi. . are used as 

r 1 

n 2 

h I - 2(s-j) " (t)6

i=oJ
 
i-Oj 

r2 

hlj h (s-j) L. (t) (7) 

where h is the step size,
 

- t-t o 
0S=
 

-h 

and the Lagrange-polynomials take the form* 

(- 1 )n -j r (s-i)
 
I, t(t
 

L.(t jI (n-j)!
 

<'(s-i) is a.standard notation for the derivative of'
 
0,f 

(s-i) evaluated at i=j; i.e., I (s-i).
 
i12j 
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Let us now consider the case where n is two, -lllI3i
 

where the function and two derivativCs Jrc required. 
Inthis cas-e there are three sets of coeFicients: 

2S (t-tj {[ )n(tj 2_ (2) (t}AL 
4
 

1 (t ) [L (tj)
-3 (t-tj L 

2hj =[ t-t.) - 3(t-tj) L()(tjj J_(tj (9) 

2h2j - (t-t t (10) 

This is the case for the mid-point'interpolation for 
position when the integrator is halving the step size. 

It is implemented in subroutine HHEMIT, along with the 
n equals one case for the velocity and.variational
 
partials.
 

In interpolating 'for the mid-points advantage 
is taken of both the fact that the data is evenly 
spaced ind that the mid-points are being determined. 

The quantity s becomes 9+1-; the h.. are thereFore 
given by
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IT 
1 )2 n
j + +-3(,j -Zl- 2 +)2+ 

2 2 = -i =o( 2 

iOj i /j
 

n 2]I
-3 -j+- L tj 

+2 L2 i 0C 

hlj
 

h j 9-i l) 3 Rj-iU ) jL (12()
] 

hoj1
 

for n equals two. For the case of niequal to one, the 

h.. become i/i 

h becom i,=
2.9 -14 
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hl h (h, +I) fL+ ( t i) 

it should be noted that both intcrpolat.ion IIHRMIT 
schemes arc tenth order. illlI1MtT 
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SECTION 2.10 -

THE STATISTICAL ESTIMATION SCHEME 

The basic problem in orbit- determination is to
 

calculate, from a given set of observations of the
 

spacecraft, a set of parameters specifying the
 

trajectory of a spacecraft. Because there are gen­

erally more observations than parameters, the parame­

ters are overdetermined. Therefore, a statistical
 

estimation scheme is necessary to estimate the
 
"best" set of parameters.
 

The estimation scheme selected for NONAME
 

is a partitioned Bayesian least squares method.
 

The complete development of this procedure is pre­

sented in this section.
 

It should be noted that the functional re­

lationships between the observations and parameters
 

are in general non-linear; thus an iterative pro­

cedure is necessary to solve the resultant non-linear
 

normal equations-. The Newton-Raphson iteration
 

formula is used to solve these equations.
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2.10.1 Bayesian Least Sqtares Ystjimat ion" 

Consider a vector of N independent observlt.ons 

z whose values can be expressed as hiiown functions of 

1 parameters denoted by the vector k. The foJowii.ng 

non-linear regression equation io]ds: 

fZ (X) + _a, (1) 

where a is the N vector denoting the noise on the ob­

servations. Given z, the functional form of f-, and 

the statistical properties oF o, we must obtain lhe 
in some sense.-*of x that is "best"estimate 

Bayes theorem in probability holds for proba­

bility density functions and can be written as Follows: 

p (x) 
P(xlz) P_v- p(zlx). (2) 

where 

p(xz) is the joint conditional probability 

density function for the parameter vector x, given 

that the data vector z has occurred ­

*Vector notation in this section is that used by
 

statisticians; i.e., an underscore denotes a vector.
 
The symbol ""' denotes the "best" estimate off the 
superscripted quantity.
 

**For a complete discussion of the properties of estima­

tors see Maurice C. Kcndall and Alan Stunrt, Refcrence 1 

2.10-2
 

http:foJowii.ng


p(x) is the joint probability densI ty fnncl ion 

for the vector x; 

p(z) is the joint probabi~lity-dclnsity Function 

for the vector z; 

and
 

p(zlx) !.s the joint conditional density function 

for the vector z given that x has occurred; 

p(x) is often referred to as the amL.iori density 

function of x, and p(x Iz) is, ref[erred to as the 

a posteriori coiditionl density. funiction, tn 

any Bayesian estimation scheInc, we must (on~erine 
this a posteriori dcnsity functio and frF m h is 

function dictcrminc a "best" Ostimate of x, which 

can be dcnoted x. 

To obtain the a posteriori conditional densilty 

function, we must make an assumption concerning the 

statistical properties of the noise on the observations: 

the noise vector a has a joint notmal distribution with 

mean vector 0 and a variance-covariance matrix z" 

Z z is an NxN matrix and is assumed diagonal, that is, 

the observations are considered to be indepondent and 

uncorrelated. The "best" estimate of x, x, is defined 

as that vector maximizing the a posteriori density 

function; this is equivalent to choosing the mean value 

of this distribution. An estimator of this type has 

been referred to as the maximum likelihood estimate in 

the Bayesian sense. (Reference 2) 
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A further assumption is tha the a poricr1 densit-y 

function p(x) is a joint normal distribution and is 

written as follows: 

~(x) ) (3)[]cwX0hV C (A 

where 

-A is the apriori estimate of the parameter 

vector, 

A s the a priori varance-covaridnce matrix 

associated with the a priori parameter vector. 

/A is an MxM matrix, which may or may not be 

di agonal. 

The conditional density function p(zlx) can be 

written as follows: 
• N 

It can be shown that maximizing the a posteriora density 

function p(xlz) is equivalent to. maximizing the product 

p(x)p(zlx) because the density function p(z) is a con­

stant valued function. Further, this reduces to mini­

mizing the following quadratic form:
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(5~AT
A 

Z(-~A)±(ft j (~- ).(5) 

This results in the following set of M non-linear 

equations:
 

BT 1 (zZ (KX)+ ' x- > 0 (6) 
z \- )A ( 

where B is an NxM matrix with elements 

f11 (x)B 

SXM I x=x
 

This equation defines 'the Bayesian least squares 

estimation procedure. We have not stated how the 
a priori parameter vector and variiancc-covariancc 
matrix were obtained. In practice these a__pritoni
 

values are almost always estimates that have been
 

obtained from some previous data. In these cases 

the Bayesian estimates are identical to the classical 

maximum likelihood estimates that would be obtained 
if all the data were used; in this context the 
a priori parameters can be considered as additional
 

observations.
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The variance-covariance matrix oF.x, V, is
 

given by the following formula: 

V = TB+(7) -1 

Solution of the Estimation Fornula-

Equation. 6 defines a set of M non-linear equa­

tions in M unknowns x; these equations are solved
 

using the Newton-Raphson iteration formula. Equation 6 

can be written as follows: 

i.(x) 0 

The iteration formula is
 

_x_ (n+l)-- - -_ P8 ( ))- >n) 
\ax /
 

where
 

(n) th o otetuis the n approximation to the true 
solution x.
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Now 

F(x _ T _L-f(_ + E (-)= (9) 
z A 

Then differentiating and neglecting second deriva­

ti7es,e" 

Substituting equation 10 in equation 8 gives
 

+ A7( 2( 
A 

Noilt n+1)I_(n) .pr.th 


n ­1Now:-et _nl)x the cofrection',to the n -approx­

mation,'be denoted by. d- ( n +l ) , and let z-£ , the 
- thvector of residuals from.the n:. -approximation,,,be
 

dz (n ). Eauation 11 becomes
 

dx (nfl) T B + )~ TL 1+ Z(n) 
.. A ,D" z A 
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ISTI\
2.10.2 The Partitioned Solution 


In a multi-satellite, multi-arc' stjmtlon program 

3uch as NONAME, it is necessary to Formulate the estim1-

Lion scheme in a manner such that the information Cor 

Pa" satellite arcs are not in core simultaneously. The 

?rocedure used in NONAME is a partitioned Bayesian 

parameterEstimation Scheme which requires oily common 

information and the information for a single arc to be 

in core at any given time. The deyelopment of the 

NTONAIE solution is given here. 

The Bayesian estimation formula has been devel­

oped in the previous section as
 

dxC n + j) 1_1 	 + V''d 1 1
-x (B 	 JIB A + 1d R (n)-

(1) 

where
 

XA 	 is the a-priori estimate of x. 

VA 11is the a prioxi covariance matrix associated­

with] XA 

W 	 is the weighting matrix associated with the 

observations. 

X (n) 	is the nth appToximation to x. 

dm 	 is the vector of residuals (0-C) from the 
n approximation. 
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dx 	 is the vector of correct iOf.S re 1hle Io 
parameters; i.e., 

n+l -n (ii+I). 
xA + dxX + 

B is the matrix of partial derdivatives of Ihe 

observations with respect to the parameters 

where' tile i, th element is given by 
fr..
 

1 

ax 

The iteration formula given by this equation 

solves the non-lincar normal equations formcJd by mini­

mizing the -sum of squares-of the weighted residuals. 

We desire 	 a solution wherein x is partitioned 

according 	to a; the vector of parnmeters associated
 

only with 	individual-arcs; and k, the vector of parame­

ters common to all arcs. For geodetic-paramoter esti­

mation a consists of the sets of orbital elements,
 

satellite parameters, and measurement biases'associated
 

with each arc, whereas k consists of the geopotenti-al
 

.coefficients and station coordinates:
 

As a result of this partitioning, we lay write
 

B, the matrix Qf partial derivatires of the observations,.
 

as
 

(2')
[Bk >B' I 1 
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ST
where 

Bal i Ifla 

and 

am. 

a k 

We may also write VAP the covarianco matrix of 

the parameters as 

[Va ] 
vA - (3) 

0 Vk 

where we have assumed the independence of tho a priori 

information on the arc parainters and common paramictors 

(in practice valid to an extremely high degree). 
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e may now rewrite our iteration formula: ESTT1M 

1 1da WB + 'V B 
a a a' a IK
 

n
dk Bd a jT + V R 

n + (xi) A ] 
BTwdm T + V n 

The,required matrix inversion is obtained by
 

partitioning. We write
 

14 N21 A -

=- (5) 

-T [AT 


and, solving the resulting equations, determine
 

N1 A 1 [A Ak] AlT A- (6) 
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-A - (7) .ISST1mN2 Ak N4 

and 

= [ - KT A 1 Ak (8) 

There is no problem associated with invorting A 
.because the existence of the a priori- information alone 

guarantees this property. On the other hand, the 
-T A-1
 

inverse of K - A- Ak is not guaranteed to exist. 

High correlations betwVeen the parameters" could make 
the matrix near singular. in practice, however, the 

use of a reasonable amount of a r.iori information 

eliminates an-y inversion difficulties. 

The iteration formula may now be written as 

da = 1 N2 [c a9) 

or 

da [A-I + (A­1 A1 ) N4 (4 A-I Ca A- A N4 Ck 

(10) 

dkk -N4 A{A- 1 Ca + N4 Ck (11) 
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Noting the simi]aritj os between cia aid_.d, we write IM 

da = A-1 C A - A (1(1 

and rewrite dk as
 

AT A - C) (13)
dk = N (Cd 4 k k a
 

Note that most of the elements of A are zero
 

because the measurements in any given arc arc .ile­

pendent of the arc parameters of any other arc. Also,
 

the cova~iances between the a priori information 

associated with each arc is assumed to be zero. Thus
 

both A and Va are composed of zeroes except for matrices, 

A r andVr. rVespoctively,, along the diagonal, where 

th 
r is a subscript denoting the r arc, 

e. g., a 

= 1 (14) 

[Ak i~ D a r. a Z2. r.ij [va 

3
 

th
 

wh'ere £ ranges over the measurements in the r
 

arc and i, j range over the parameters in the
 
th
 
r arc, a,
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is the partition of Va associated with the I.ST [, 
r th arc. 

The reader should note that A like A, is composed or 

ze,roes except for matrices Ar aiiig the. agonaL. 

V 

We shall also require the partitions oF Ak and 

Ca according to each arc. These partitions er given 

by 

Ark i,j £ ar,P 2 

3.3 

and 

ia2 d (16) 

91 3~a r 

where the subscript r again deno.tes the rth arc and £ 
ranges over the measurement partials and residuals in 

the rth arc. 

Lot us now investigate the matrix partitions 

A- 1 in the solutions for da and dk. We consider to be 

a diagonal matrix with diagonal elements AI and C 
to be a column vector with elements C Hence 
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A-1 Cia A;' Cr (17) 

is the rth element of the product matrJix. Ak is con­
sidered to be a column vector with elements Ark' thus 

AT A-I Ca = Ak A Cr 

The elements in the product A -1 Ak are given by 

rk 

We also e als the Ak'tA-A. Itsrequire"nt product elements 
are given by
 

ATA Ak = Ar r Ark (20)
 
r~r
 

The solutions for da and dk may now be rewritten 
taking into account the partitioning by arc: 

da = A-1 Cr - A dk (21) 

r r k ­

dk = N4 k 7 kA' Cr 
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where 	 ESTIM 

N [K - Z A 1I Ar] 	 (23) 

These solutions form the partitioned Bayesian estima­

tion scheme used in NONAMP,. 

Additionally, the covariance matrix for the arc 

parameteis must be updated to account for the simultan­

eous 	adjustment of the 'common paramters:
 

Nd A- 1 +A- I \ Ar -)(24)
Nl r Ak N4 (Ark 

Summary 

The procedure for computer implementation i1
 

illustrated in Figur't 1. This procodire is:
 

1. 	 Integrate through each arc forming the 

matrices A.; Ark, and Cr; and simultan 

eously accumulate into the common 

parameter matrices K and C1k. 

2. 	 At the cd of each arc, form
 

-1
da 	 = A C (25) 

and modify the common parameter matrices 

as follows: 
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ESTIM
 
T A-lI (26)


K = K Ark r Ark 

and
 

dat (27)
Ck Ck - AT 

-
The matrices da-, Ark' and A must also
 

be put in external storage.
 

3. After processing all of the arcs; i.e.,
 

at the end of a global or "outer" iteration,
 

determine dk. Note that K has become N1
 

and Ck has been modified so that
 

dk = K-1 Ck (28) 

The updated values for the common parameters 

are of course given by 

k(n+l) k + dk (29) 

The arc parameters are then updated to
 

account for the simultaneous solution of
 

the common parameters. Information for each
 

arc is input in turn; that is, the previously
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-
stored da', A and A " The correcion ESTINI 
r rC r 

vector to the updated arc parameters is 
given by I
 

d= da' - (A;1 Ark' UE3 
-r -r" 3'k( r ) ... 0
 

and hence
 

a (n+l) a (n) + da-r --r (3) 

The covariance matrix for the arc parameters, 
Ar1 , is updated by
r
 

1(
AT1= A + (A Ark) Ark (32) 

This completes the global iteration.
 

It should be noted that if only the arc parameters
 

are being determined, as is the case for "inner" itera­

tions, the solution vector is da4 and hence the updated
 

arc parameters are computed by
 

(n~)_(n) ,d
 
a (n+l) = a + da' 
 (33)
- -r r 1-r 

2 .10-18 



tic 

1152
 

Figure 1: Partitioned Estimation Procedure
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FiLgure 1: Partitioned Estilijtion Procedure (Cont.) 
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Figure 1: Partitioned Estimation Procedure (Cont.)
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The common parameter matrix K is carried as a 
symmetric matrix. It is core-resident throughout the 
estimation procedure. Its dimension is set by the 
number of common parameters being determined and remains 
constant throughout the procedure. 

The arc parameter matrices A are also carried asr 
symmetric matrices. Their dimensions vary from arc to 
arc according to the number of arc parameters being deter­
mined. Only one arc parameter matrix A and the corres­

rponding covariance matrix Ark are resident in core at 

any given time. Thesc arc parameter matrices are stored 
on disk during step 2 of the above summary and recovered
 

during step 3.
 

The a priori covariance matrix V,, is not carried
 
as a full matrix. The correlation coefficients be­
tween each coordinate of a given station position a~e 
carried. The position coordinates of different starions
 
and the geopotential coefficients are considered to be
 

wuncorrelated.
 

The a priori covariance matrices Vr are also not
 
carried as full matrices. The drag coefficient, radi­
ation pressure coefficient, and each bias are considered
 
to be uncorrelated. The covariance matrix for the epoch 
elements is'carried.
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In term.s; of a suibroutine bi-ealdown wi lhin NONAMI:, 

this entire section is implemented an subTouiino IS'1'IM 

with the exception of the matrix invcrsions. These 

inversions are done by subroutine SYMNV. 

EST IM 

SY.>tHNV 

2.10.3 Data Editing 

forms: 

The dttta editing procedures for NONAME have two 

o hand editing using 

specific points or 

input cards to delete 

sets oF points, and 

o automatic editing depending on the weighted 

residual as component to a given rejection 

level. 

The hand editing is a simple ma ching of the 

appropriate NONAME control card informati on with the 

set of observations. This calling procedure is done 

in NONAME subroutines GEOSRD or DODSRD. 

G01OSRD 

DODSRD 

The automatic editing of bad observations from 

a set of data during a data reduction run is performed 

in the NONAME main program. Observations are rejected 

when 

NONAMF3 
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NONANIwhere 

is the observation
0 


C 	 is the computed 6bservation 

a 	 is the a priori standard dcv.iation 

associated with the observation (input) 

k 	 is the rejection level.
 

The rejection level can apply either for all
 

observations of a given type or tor all observations
 

of a given type from a particular station. This re­

jection level is computed From.
 

k= EM ER 	 (2)
 

where 

EM is an input-multiplier, and 

ER is the weighted RMS- of the previous "outer" 

or global iteration. The initial value of 

BR is set on input. 

It should be noted that both E and ER have default values. 
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SECTION 2.11 

GENERAL INPUT/OUTPUT DISCUSSION 

NONAME is a powerful yet flexibJe too] for 

investigating the problems of satellite geodesy and 

orbit analysis. This same power and flexibility 

causes extreme variation in both input and output 

requirements. Consequently, NONAME contains a groat
 

deal of programming associated with input and output.
 

2.11.1 Input
 

There are two major functions associated with 

the input structure:
 

Those arc the input of
 

0 Observation data, and
 

eNONAME Input Cards.
 

The observation data utilized by NONAM11 in­

cludes data from all the major satellite tracking
 

networks. The observational types used to date,
 

together with their originating networks and instru­

ment types, arc:
 

o Right Ascension and Declination
 

SAO Baker-Nunn cameras
 

STADAN MOTS-cameras
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USAF PC-1000 cameras
 

USC&GS BC-4 cameras
 

SPEOPT All of above except Baker-Nunn
 

cameras
 

o Range
 

STADAN GRARR S-Band
 

GSFC Laser
 

SAO 'Laser
 

AMS SECOR
 

C-Band FPQ-6 Radar
 

FPS-16 Radar
 

MSFN S-Band Radar
 

o Range Rate
 

STADAN GRARR S-Band
 

MSFN S-Band Radar
 

* Frequency Shift
 

TRANET - Doppler 

* Direction Cosines
 

STADAN Minitrack inter ferometer
 

* X and Y Angles
 

STADAN GRARR
 

MSFN S-Band Radars
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o Azimuth and Elevation Angles
 

STADAN 

C-BAND 

GSFC Laser 

FPQ-6,Radar 

FPS-16 Radar 

The obsevations are required to be in either 

the format specified by the National Space Science 

Data Center (NSSDC) or the GSFC DODS System. 

The NSSDC format includes indicators to identify 

observation type, instrumentation source, reduction 

method, coordinate system, and information concerning 

tropospheric and ionospheric refraction corrections. 

Data in this format is input via subroutine GEOSRD. 

GEOSRD 

The DODSiformat includes indicators to identify 

observation type, satellite identification, ambiguity 

corrections, transponder channel when applicable, 

timing correction, and-time reference system informa­

tion. It also contains flags to indicate the need 

for transit time correctiofn or other types of pre-

Processing corrections, Data in this format is input 

via subroutines DODSRD and DATBSE. 

DODSRD 

DATBSE 

The NONAME Control Cards are the complete 

specifications for the problem to be solved including 

special output requests. Their input, controlled 

through subroutines ADFLUX and INOUPT, consists of 

data and perhaps variances for 

ADFLUX 

INOUPT 

a Cartesian orbital elements 

a Satellite drag coefficient 

2 11 -



a 

* 

Satellite emissivity 

Zero set measurement biases to be adjusted 

AI)FLUN 

INOUPT 

a Station positions 

o Geopotential coefficients 

aAd data for 

* Satellite cross-sectional area 

o Satellite mass 

* Integration times for the orbit 

a Epoch time of elements. 

* Criteria for iteration convergence and data 

editing 

0 Solar and geomagnetic flux 

Subroutine ADFLUX modifies the program internal 

data tables of solar and magnetic flux according to the 

input requests. It also generates the scratch file of 

flux information to be used with each arc. 

Subroutine INOUPT interprets the NONAME Control 

Cards and sets the appropriate run parameters. It 

also generates.the NONAME run description and the 

descriptions for all arcs. 
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I]NOUI'
Subroutine INOUPT referonces other routines to 


STAINP
 
set up certain run parameters or to list selected run 


BLKSTA
 
parameters 	in a particular format. Notable among the 

STATNP, BLKSTA, SQUANT, and PLILOUT. These SQUANT
former are 


are all concerned with station position processing. 
PLHOUT
 

DODELM
It should be noted that the starting orbital 


elements for some arcs may be recovered from the DODS
 

Data Base by subroutine DODELM.
 

2.11.2 Output
 

Most of the output from NONAME, not counting the 
ORB1
 

descriptions of the input or run parameters, is pro­

duced by the main program. The exception to this is
 

the ORB1 tape output, which has a special subroutine,
 

named ORB1, to produce the required output.
 

The printed output consists of a measurement
 

and residual printout, residual summaries, and solution
 

summaries as detailed below.
 

For each arc:
 

Measurement and Residual Printout
 

o Measurement date
 

a Measurement station
 

o Measurement type
 

o Measurement value
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* Measurement residual
 

* Ratio to sigma
 

* Satellite elevation
 

Residual Summary by Station and Type
 

* Station
 

o Measurement type
 

o Number of measurements
 

a Mean of residuals
 

a Randomness measure
 

* Residual RMS about zero
 

* 
 Number of weighted residuals
 

o Mean ratio to sigma for weighted residuals
 

* Randomness measure for weighted residuals
 

o RMS about zero for weighted residuals
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Residual Summary by Type
 

* Measurement type
 

o Number of weighted residuals
 

o Weighted RMS about zero
 

o Weighted RMS about zero for all types together
 

Element Summary
 

o a priori Cartesian elements
 

* Previous Cartesian elements
 

o Adjusted Cartesian elements
 

o Adjustment to Cartesian elements 
(delta)
 

* Standard deviations of fit (sigmas)
 

a Position RMS
 

o Velocity RMS
 

o a priori Kepler elements
 

o Previous Kepler elements
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* Adjusted Kepler elements 

* Adjustment to Kepler elements (delta) 

o 	 Double precision adjusted Cartesian elements
 

(current best elements for arc)
 

Adjusted Force Model Parameter Summary for Arc
 

* 	 Drag Coefficient and/or Solar Radiation
 

Pressure Coefficient
 

o a priori coefficient value
 

a Adjusted coefficient value
 

0 a priori standard deviations for coefficient
 

* 	 Standard deviation of fit for coefficient
 

Adjusted Parameter Summary
 

* 	 Instrument biases - timing bias and/or 

constant bias 

0 	 a priori bias value
-

a 	 Adjusted bias value
 

o a priori standard deviation for bias
 

a Standard deviation of fit for bias
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e Time period of coverage
 

The following items are printed on the last inner iteration
 

of every outer iteration.
 

- Apogee and perigee heights
 

* 	 Node rate and perigee rate
 

o 	 Period of the orbit
 

o 	 Drag rate and period decrement if drag is
 

being applied
 

o 	 Updated covariance matrix for Cartesian arc
 

elements
 

a 	 Adjusted arc parameter correlation coefficients
 

After all arcs:
 

Total Residual Summary
 

* 	 Total number of weighted measurements for
 

each measurement type
 

6 Total weighted RMS for each measurement type
 

a Total number of weighted measurements
 

* Total weighted RJMS
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Station Summary 

o 	 Earth-fixed rectangular coordinates and 

geodetic (pA,h) coordinates 

o 	 a priori coordinate values 

o 	 a priori standard deviations for coordinate 

values 

a 	 Adjusted coordinate values
 

o 	 Standard deviation of fit for coordinate values
 

o 	 Correlations between determined coordinate
 

values
 

Geopotential Summary
 

a 	 Cnm and Snm coefficients for each n m set
 

determined
 

o 	 a priori values
 

* 	 Adjusted values
 

o 	 Ratios of a priori value to a priori sigma
 

for each coefficient
 

o 	 Standard deviations of fit for coefficients
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Arc Summary for Outer Iteration - For each arc
 

o 	 Updated Cartesian elements for arc
 

o 	 Correlation coeficients between individual 

arc parameters 

* 	 Standard deviation of fit for arc parameters
 

o 	 Correlation coefficients between individual 

arc parameters and parameters common to all 

arcs 

Common Parameter Correlation Coefficients
 

a 	 Geopotential coefficients
 

o 	 Cartesian station positions 
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,NONANIBE also produces an XYZ and Ground Track 

listing upon request. This is the normal printout for 

Orbit Generation Mode. 

The tape output from NONANME consists of
 

* the ORBI tape,
 

o the XYZ and Ground Track tape,
 

o a DODS formatted data tape, and
 

o a binary residual tape.-


The XYZ and Ground Track tape and the binary residual
 

tapes are used as input to NONAME support programs.
 

2.11.3 Computations for Residual Summary
 

The residual summary information is computed in STAINF
 

subroutine STAINF for printing by the main program.
 

The formulas used in this subroutine for computing
 

each statistic are presented below.
 

The mean is the familiar average:
 

n1 I 

SR i (1) 

where
 

the Ri are the residuals and n is the number of
 

residuals.
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The RMS is 

variance: 

thesquare rpot of the sample STATNF 

WAs =./S7 (2) 

where 

2 
s -

1 n> (xi - ) 

The expected value of the sample variance:differs from 

the population variance 02 

E(s2 = a2 - var (c) (3) 

or rather 

Es2E(s 2) -= a2 (l2(1 1-)(4 (4) 

Hence we may make a better estimate of a 

o2 n 2 
0 = _ s 

n-i 

by computing 

(5) 
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This is known as Bessel's correction. This computed STA1NF
 

value for the standard deviation, a, is also called
 

the RMS abbut zero.
 

The randomness measure used in NONAMI is from a
 

mean square successive difference test. We have
 

d 2
 

RND = (6) 
s 

when
 

RND is the random normal deviate, our statistic;
 

s2 is the unbiased sample variance; and
 

1) n-I
 

d=E (Ri+1 - Ri)
 
2(n-1) i=l
 

Note that d2 is the mean square successive difference.
 

For each i the difference Ri+ 1 - R. has mean zero
 

and variance 2a2 under the null hypothesis that
 

(R R ) is a random sample from a population with
. . . ..
 

2 n 2
 
variance a . The expected value of d2 is then a
 

If a trend is present d2 is not altered nearly so much
 

as the variance estimate s2, which increases greatly.
 

Thus the critical region RND constant is employed in
 

testing against the alternative of a trend. (Reference 1)
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In order to use this test, of course, it is STA] N:
 

necessary to know the distribution of the ]ND. It
 

can be shown that in the case of a normal population
 

the expected value is given by
 

B (RND) = 1, (7) 

the variance is given by
 

var (RND) - n1(8)n+1 nil 

and that the test statistic, RND, is approximately
 

normal for large samples (n > 20).
 

2.11-iS
 



2.11.4 	 Kepler Elements 

The Kepler elements describe the position of the 

satellite as referred to an ellipse inclined to the orbit 

plane. This is shown in Figures I and 2. The definitions 

of these eiements are: 

a semi-major axis of the orbit 

e - eccentricity of the orbit 

i 	 inclination of the orbit plane'
 

- longitude of the ascending node
 

- argument of perigee
 

M - mean anomaly
 

E eccentric anomaly
 

f true anomaly
 

Apogee height and perigee height are sometimes used APPER
 

in place of a and e to describe the shape of the orbit. As
 

can be seen in Figure 1, the radius at perigee is a(l-e)
 

and that at apogee is a(I+e). The heights are determined
 

by subtracting the radius of the reference elipsoid at the
 

given latitude from the spheroid height of the satellite.
 

The computations of these last are detailed in section
 

2.5.1.
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Figure 1: Orbital Ellipse
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Figure 2: Orbital Orientation
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Conversion to Kepler Elements EL E
 

The computation of Kepler elements from the 

Cartesian positions and velocities x,y,z,x,y,z is as. 

follows: 

Compute the angular momentum vector per unit mass:
 

=FrxF r (19 

where r is the position •vector and r is the velocity

12
vector. Note that v = r. The inclination is
 

given by
 

i=Cos Ti (2) 

From the vis-viva or energy integral we have
 

where G is the universal gravitational constant and M
 
is the mass of the primary about which the satellite is
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orbiting. Thus we have 1IA 

a [2 _v 2 
a = - G (4)(4) 

Recalling Kepler's Third Law, 

h2= GM a.(l-e 2), (5) 

we determine 

= 1 ­ (6) 

The longitude of the ascending node is also 
determined from the angular momentum vector: 

Q = tan- 1 hxCt) 
The true anomaly, f, is computed next. Note that in 

integrating 

7) 

rx GM r/, (8) 

one arrives at
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r x = GM (+ -) (9) ELEN 

where e is a constant of integration of magnitude equal
 
to the eccentricity and pointing toward perihelion.
 
Thus,
 

r re sin f (10)
 

or, performing a little algebra,
 

2)­
sin f = a (1-e )
reh
 

The cosine of the true anomaly comes from
 

r- -e cos f '(2
=a (l-e) 
 (12)
 

that is
 

Cos f = a (l-e)
er e (13)
 

The true anomaly is then
 

f = tan-I (sin f) 
 (14)

f(1 2cos 
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The eccentric anomaly is computed from the true anomaly:
 

c E f+e (15)

1+e cos f
 

s1e sin f (16)sin E l+e cos f 

and
 

-I  
E =tn cos E
tn(17)( E=) 


The mean anomaly is then computed from Kepler's
 

equation:
 

M E - e sin E. (18) 

The central angle u is the angle between the satellite
 

vector and a vector pointing toward the ascending node:
 

Cos u = x cos Q + Y sin Q (19)
 
r
 

sin u = (y cos n - x sin -92) cos i + z sin i (20) 

u = tan-r' (soin) (21) 



The argument of perigee is then ELE, I
 

W= u - f (22) 

In NONAME, this conversion from x,y,zx,y,z 

to a,e,i,,w,-M is performed by subroutine ELEM. 

Conversion From Kepler Elements 

The input elements are considered to be a,e,i, 

Sfw, and 14 and the Cartesian elements are required. 

POSVE 

An iterative procedure, Newton's method, is. 

used to recover the eccentric anomaly, E, from Kepler's 

equation (M=E-e sin E). 

The vectors K and F are computed. _T is a vector 
in. the orbit plane directed toward peri center with a 

magnitude equal to the semi-major axis of the orbit: 

= a 

cos 

cos 

u cos Q ­ sin oi sin 0 cos 

w sin Q + sin w cos £1 cos 

sinw sin i 

i 

i (23) 

is a vector in the orbit plane directed 900 counter 

clockwise from K with a magnitude equal to the semi­

minor axis of the orbit. 
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- sin w cos Q - cos w sin 9. cos " I'OSVI, 
'ISa V- e - sin w sinQ +cos w cos 0cos 1(244) 

Cos W sill i 

The position vector r is then
 

r = (cos E- e) A + (sin E) B (25) 

The velocity vector is given by
 

= (-sin E) + (cos E) ] (26) 

,whereE is given by
 

SGM
 

a3
 
(Z7)E - 1-e cos E 

This conversion procedure for converting
 

a~ei, ,oM to xy,z~x,y~z is performed in the NONAME
 

system by subroutine POSVEL.
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2.11.4.1 Node Rate and Perigee Rate 

perigee rate ) are computed fromThe Pode rate ? and 

Lagrange's Planetary Equations. As these are for printout 

only, NONAME uses just the Earth oblateness term in the 

geopotential. From Reference 4, page 39, we have
 

3 G (a 3. ( os i 

FG20 ae3(e 

SC- 3 -e2,2 (2) 

3GM.(aC *5 ,_Scosz j) 

in radians per second, or rather
 

cos
= -9.97 
(a 

" 35 
i (3)

\a e (l-e2 

a S(1-S cos i) 
- 2 (4)
- -4.98 \a.) (1-e2) 

in degrees per day. The quantities used in the above equations
 

are defined as:
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a. is the semi-major axis of the Earth 

GM is the product of the universal gravitational 
constant G and the mpass of the Earth M 

C
20 

is the Earth oblateness term in the geo­

potential (see Section 2.8.3).
 

a semi-major axis of the orbit
 

e eccentricity of the orbit
 

i inclination of the orbit
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2.11.4.2 Period Decrement and Drag Rate 

The period decrement and the drag rate are determined 

from the partial derivatives of the 
I 
position and velocity 

with respect to the drag coefficient at the final integrator 

time step in the given arc. These (multiplied by the drag 

coefficient) represent the sensitivit of the position or 

velocity to drag effects. Let us define 

AD - (F) CD (1)
aC
D
 

where
 

F is the satellite (inertial) position vector
 

CD is the drag coefficient
 

We also define
 

AD - (T) CD (2) 
aCD 

The (two-body) period of the orbit is
 

3 
a 

P = - (3) 
GM 
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where
 

a 	 is the semi-major axis of the orbit
 

GM 	 is the product of G, the universal gravitational
 

constant, and M, the mass of the Earth.
 

Thus
 

(4)
AP = - 6a. 
GM
 

The vis viva or energy integral has
 

(25)

2
v GM - ,
 

hence
 

1 

a (6) 

r G• 

Recognizing that A(-) is A-D and N(r) is AD, 

F .kDAD
2F 


+ 	 (7)Aa 


2 

2•1G7
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The effect of the drag on the period is then given by
 

67r a rD.rAD 
AP = - + (8) 

a G 

The daily rate or period decrement is computed as AP/At 

where At is the elapsed time (in days) between the last 
integrator time point and epoch. 

The drag rate is computed from the along track
 

(actually normal) portion of ED, that is Al)N' We need to
 

construct the unit vector along track, L. The velocity
 

vector F may be resolved into a radial component and a
 

component normal to the radius vector. The magnitude of
 

the normal.component is found by the Pythagorean Theorem:
 

A r) (r 


The unit normal vector L is then
 

L = " -- F(10) 
L r A 

The normal portion of AD is then
 

ADN ADE 


2JIi-28
 



This DN represents' the along-t-rack positi.on bFf.ct 

due to drag over the integrated time spann. The drag rate 

is computed as ADN/At2 where At is again the elapsed time 

in days.
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SECTION 3.0
 

NONAME ANALYSES AND GRAPHICS SUPPORT PROGRAMS
 

There exist three ancillary program which are
 
used with the NONAME program in the analysis of NONAME.
 
determined trajectories and residuals, These programs
 
are entirel independent of the NONAME program'.
 

DELTA is used to print and/or plot along track,
 
cross track and radial differences betwee two trajec­
tories. GEORGE performs a regression analysis of the re­
siduals for each pass of data about a trajectory to
 
determine trends in possible timing and measurement biases.
 
GROUNDTRACK simply plots the groundtrack of the satellite
 

over a particular tracking station or stations to provide
 
geometric insights into data trends.
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3.1 DELTA 

INTRODUCT ION 

The graphic support program DELTA prints and/or 

plots trajectory differences. The two trajectorics enter 

the program from two -magentic tapes in either an R-V tape 

format orORBl tape format. If the. tapes arc in the ORB1 

format, the subroutine READER is called to obtain each 

trajectory point; DELTA itself can read the R-V tapes.
 

The subroutine READER is the driver for the sequence of
 

calls to the Plot Package, which provides the plots of
 

the trajectory differences.
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--

PROGRAM MATILMAT ICS 

The trajectory tapes input to )ILTA consist of the 
satellite positions (XY,Z) and velocities (XY,2) in the urn. 
Cartesian system at given time intervals. 

If XI, Y1 Z1 are the Cartesian coordinates of satel­
lite position from tape 1 and X2 
 Y2' Z2 are the coordi­
nates from tape 2 then the position difference vector is
 

(AX X2 XI1 AY - Y2 YI, and AZ = Z2 ZI).
 

The velocity difference vector AV = (AX, AY, AZ) is
 
computed similarly.
 

Thes'e vectors are then resolved into a radial vec­
tor,, H, a-cross 
track vedtor C, and'an approximation to an
 
along track vector, L (for nearly circular orbits).
 

First, the distance from the geocenter to the satel­
lite, R, is computed where
 

R
 
R = x2 + yZ + 

and the square of the magnitude of the velocity vector 
(V) 

v = i2 + 2+ 2 
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Thus the unit vector, U, in the radIial1 direction is 

U YZIT-X
1vV7 

K ) R') 

Then to calculate the magnitude of the vector in
 

our along track direction (normal to U in the orbit plane), 

A, we must compute U * V because 

A = (Us v) 

Now we compute the unit vectors in our along track 

direction A = (al, a2, a2) where ­

a= (x2 - • (k)Au 


a2 92 • V)( (Y( (z))\
 

a3 = 2 (U V) 

and the cross track direction C = (CI, C2, C2 ) where 

U= x U
 

or
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C = (a,) (Y) (X) (a2) 

Finally we compute the position differences in
 

radial, Hp, cross track Cp, and approximation to along
 

track, Lp
 

H U • Ap
 

C = C'-App
 

L = K* Ap
p
 

and the velocity differences in the radial, Hv , cross track,
 

C v and approximation to along track, Lp
 

H U
U'AV
 
v
 

C = C AV
v
 

Lv = A AV
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3.2 GEORGL 

INTRODUCTION 

The support program GEORGE analyzes NONANi measure­
ment residuals. The residuals enter uORGI: from a tape 
generated by NONAME and are analyzed on a pass by pass
 

basis for either the station and/or measurement typo
 

specified by card input to GEORGE.
 

The main routine GEORGE selects the residuals to
 

be analyzed and breaks them up into individual rpasses.
 

GEORGE also controls which types of plots are to be made,
 

if any.
 

REGANL performs the regression analysis and can
 

edit. data points on the basis of their standard deviations
 

from the mean.
 

The. subroutines HISTO and PLOTER provide visual aids
 

'in analyzing the' residuals.' HISTO plots a histogram or
 

-either the residual's or the ratios to sigma for each pass
 

and a grand summation histogram for all the passes analyzed.
 

PLOTER plots either residuals versus time or measurement
 

rate versus residuals for each pass of data. Both subrou­

tines are drive routines for the-Plot Package.
 

The subroutine DIFF computes the difference in days
 

between any two dates, and the subroutine RYMDI resolves
 

a date in one word into three words; the year, the 'month,
 

and the day. Both of these subroutines are members of the
 

NONAME program.
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PROGRAM MAT II[T'AT J CS 

The subroutine REGANL determines measurement biases 

(or zero-set errors) and timing eriors in each pass of 

data and then performs a regression and ana]ysis of the 

residuals.
 

The-zero-set error, A, and timing error, B, are REGAN], 

determined by using a least squares method of soJving the
 

following equation:
 

Y = A + BX (1) 

where
 

Y is the re'sidual and
 

X is the measurement rate. 

Taking the partials of (1) with respect to B and
 

then with respect to A and setting them to zero, weget
 

N N N 

SXiYi -B Xi"- A Xi = 0 (2) 

i=l i:=l "i-­
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N N 

yi -B XXi NA =0 (3) 

i l 

where N is the number of points in the pass' . RGANL 

The "two equations arc solved s imultaneously for A 

.and B. 

First REGANL computes the sums of the rates, 

N 

i=l
 

and residuals,
 

N 

Yi, 

the products of Xi and Y.
 
1 

N 
SXiYi,
 

i=1
 

the squares of the rates,
 

N 

3.2-3
 



and finally, the squares of the resi duals, 1G;GAX] 

N
 

2 
Lil
 

Then the corrected sum of the products, CSXY, and
 
2
the corrected sumsof the squares, CSX and CSY , are com­

puted as follows: 

N N N 

CSXY = X.Y. X Y 
i=l i=l a=1. 

N N 

1= 1 

CSy 2 
- Y2 y.- N 

Now, solving for B we get
 

2
 
CSXY/CSX
B = 

and solving for A using B we get
 

A Y. - B Xi N. 

2i=l­
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The regression analysis is performed next. (SC.e 
Anderson, R.L., and Bancroft, J.A., Statistical Thcory in 

Research, 1952, McGraw-Iili Book Co., Inc., New York, pp. 

156-157,) 

The regression sum of squares, RSS, is REGA:
 

2
 
RSS = CSXy2 /csx 

and the regression mean, RM, is
 

RM (CSY 2 _ RSS) / (N 1),
 

which is nothing more than the square of the standard
 

deviation of the residual's about the trajectory.
 

The standard deviations of the zero-set error,
 
SDZ, and timing error, SDT, are
 

SDZ- ]RM
= /NCX
1=1 X1
 

and
 

SDT. = .R /RMN 
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The noise about the fitted line, 1), is
 

The residual mean square, RMSQ, is computed as 

CSY2 - RSS
 

RMSQ = N - 1
 

To test the r'andomncss of the rosult, w compute
 

the residuals corrected for zero-set and timi:ng error
 

biases, CRi, as
 

CR = RESID- A. - BiX.i 


where RESID. is the residual.
 

Then we compute difference.sum of squares between
 

subsequent residuals, DSQ, as
 

N 

DS = (CRi+ - CR) 2
 
i=1
 

The random normal deviate, RND, is then 

1
RND = 


4(N-2)/(N 2 -1)
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The noise is random if
 

IRNDI < 2.58
 

and non-random if
 

IRNDI > 2.58.
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3.3 GROUNDTRACK
 

INTRODUCTION
 

GROUNDTRACK provides geometric insights into NONAME
 

results by plotting the satellite groundtrack for each pass
 

over a particular .station.
 

The main routine GROUNJ)TRACK controls the type of 

plot (groundtrack only- or groundtrack with land plots)I 

fixes the size of the grid, roads the data requi.red for 

the groundtrack requested, and makes the required calls 

to the Plot Package.
 

The subroutine CENTER centers the station position
 

on the plotting grid. The subroutine LAND finds the re­

quired data ini the WRLMAP block data to plot the land 

masses on the grid. WRLMAP is part of the Plot Package.
 

The subroutine DATIME converts minutes into days,
 

hou-rs and minutes. The subroutines ADDYMD, DIFF, and 

RYMDIare members, of the NONAME program and are used to
 

handle the dates and times in the program.
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3.4 WOLF SC4020 PLOT PACKAGE
 

,INT1ODUCTION 

The WOLF Plot Package is a complete system for pro­

ducing SC4020 and/or printer plots. The package has been 

designed to be highly flexible and easy to use. Any plot 

from a quick simple plot (which requires only one call to 

the package) to highly sophisticated plots -(inc]uding 

motion picture plots) can be easily generated with 'only 

a basic knowledge of FORTRAN being necessary. -

The SC4020 (Stromberg Carlson 4020) is a cathodc
 

ray plotter whose outstanding feature is its plotting
 

speed. As such, any user who is producing series of
 

plots should u.se this plotter. Film (35 mm and.16 mii;)
 

and hardcopy are available and the WOLF Plot Package
 

also allows for printer plots which can be used as a
 

quick look for the SC4020'output.
 

A typewriter mode is available which conviently
 

allows plotting of character information on the SC4020.
 

This is especially useful as a printer substitude for
 

large amounts of output.
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PROGRAM DIISCR I PI ON 

The WOLF Plot Package is a system of FORTRAN call­

able subroutines which are used to create plots. It is 

structured into four major levels as follows: 

1. -	 Basic Level - The basic level routines perform 

the primary functions of the plot package. Except for a 

few auxiliary routines, the basic level routines arc neces­

sary for all other routines. However, few of the basic 

routines are user called. 

The primary basic routine assembles the instructions
 

for the SC4020 tape. There is a printer simulation (of
 

the SC4020) in this routine. This allows for SC4020 plots,
 

printer plot or both simultaneously. The other major basic
 

level routine is used for initialization and termination
 

of the Plot Package.
 

2. Intermediate Level - The intermediate level 

contains the major user called. routine. Some of the func­

tions of this level are
 

a. 	 Grid Overlays (both Cartesian and Polar)
 

with labels
 

b. 	 Scaling functions
 

c. 	 Plotting of vectors or characters in any of
 

the following coordinate systems:
 

Linear
 

Semi-Log
 

Log-Log
 

Polar
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3. High Level - This level is for quick plots with 

a minimum of programming effort. At this level, all of the 
other levels are called upon. Only one FORTRAN statement 

is necessary to produce a plot of any array of data complete 

with 	a labeled grid overlay.
 

4. Independent Level - These routines perform func­

tions that are independent of all other levels except the 

basic level. The following are among thc functions of this 

level: 

a. 	 Labels: A string of characters can be plotted
 

horizontally, vertically or djagoally (at any
 

inclination and direction).
 

b. 	 Graphic Letters: Letters can be output in any
 

size and in any font design (i.e., standard
 

block letters, mathematical symbols or even
 

old English script).
 

c. 	 Typewriter Mode: The typewriter function in
 

the SC4020 plotter can be used by calling the
 

various typewriter routines. These allow for
 

information to be typed (strings of characters
 

output in page format) on either the SC4020 or
 

printer.
 

In addition to these four levels, there are also a
 

number of auxillary routines. These perform such functions
 

as conversion of decimal (binary) numbers to EBCDIC equi­

valents and dump of the SC4020 plot tape.
 

The functional struction of the Plot Package is
 
illustrated in Figure 1.
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SECTION 4.0
 

NONAME DATA IIAN])LtNG SUPPORT PROGRAMS
 

The three data handling programs are used to merge
 

or modify existing data tapes for use with fiho NONAME 

system.
 

DODS SORT-MERGE sorts and merges data from two data 

tapes in the DODS data tape format desc-ribcd in detail in 

Volume II1-NONAME SYSTEM OPERATIONS DESCR]PTION. GF.OS 

SORT-MERGE performs the same task for tapes in the GBOS
 

format described in section C.4 of the above reference. 

The ORB1 conversion program converts a NONAM]3 generated 

ORB1 tape of the format described in Section C.6 of the
 

same reference on a 9-track tape to the same format on a
 

7-track tape.
 

No input cards are required for any of these programs
 

as there are no options.
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4.1 GEOS SORT-MILRGli 

The G'OS SORT-MERGIA program sorts data from two GOS 

fomat data tapes into chronological, statio), and then 

measurement type order, eliminating duplicate data records. 

SORT-MERGE first reads and sorts a block of 250 data 

records onto a scratch file. It then reads and sorts another 

block of 250 records and merges it with the first blocR. The 

same procedure is followed until all the data has been sorted 

and merged. The output from the final merge operation is an 

ordered magnetic data tape in the GElOS data format. 

4.1-1
 



4.2 DODS SORT- MLRGL
 

The DODS SORT-MERGE program sort:s datta From two DODS 

format data tapes by satellite identi iCcatjion nembers into 

chronological, station and then measurement type order, 

eliminating duplicate data records.
 

SORT-MERGE first reads and sorts a block of 250 

data records onto a scratch file. It then reads and sorts 

another block of 250 records and merges it with the first 

blo'ck. The same procedure is followod until all the data 

has been sorted and merged. The output from the final merge 

operation is an ordered magnetic data tape in the DODS 

data format in blocks by satellite. 
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4.3 ORBI CONVERSION
 

The ORBI CONVERSION program is used to coniver-t a
 

9-track 360 double-precision ORB1 tape to a 7-track 7094
 

single-precision ORBI tape.
 

The main routine reads in 360 doubIc-procision words 

and writes on a 7-track tape the 7094 sJiigle-precsion word. 

The subroutine WOID94 does the conversion from the 

360 64-bit floating point format to the 7094 36 bit floating 

point format.
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APPENDIX A 

INDEX OF SUBROUTINE- REFEREiNCliS 

FOR NONAME PROGRAM 

SUBROUTINE SECTION 

ADFLUX 2.8.7.2, 2.11.1 

-BAKINT 2.9.1 

BLKSTA 2.11.1 

COWELL 2.9.1 

DATBSE 2.11.1 

DENORA 2.8.3 

DENSTY 2.8.2, 2.8.6, 2.8.7 

DNVERT 2.9.1 

DODELM 2.11.1 

-DODSP,D 2.7.1, 2.7.2, 2.10.3, 2.11.1 

DRAG 2.5.1, 2.8.2, 2.8.6 

EGRAV 2.8.3 

ELEM 2.11.4 

EPHEM 2.3.5, 2.4 

EQN 2.3.6, 2.3.6.2 

EQUATR 2.3.6, 2,7.2 

ESTIM 2.10 

F 2.3.5, 2.8.1, 2.8.2, 2.8.5 

GEOSRD 2.7.1, 2.7.2, 2.7.6, 2.10.3, 2.11.1 

GRHRAN 2.3.4, 2.3.5, 2.6.1 

HERMIT 2.9. 

HHEMIT 2.9.1, 2.9.3 

INOUPT 2.5.1, 2.11.1 

INPT 2.8.7.2 

INTGST 2.9.2 

JANTHG 2.3.5, 2.8.7.2 

NUTATE 2.3.6, 2.3.6.2 
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SUBROUTINE SECTION 

OBSDOT 2.3.4, 2.5.2, 2.6, 2.6.1, 2.6.3 

ORBIT 2.8.2, 2.9-1 

ORBI 2.11.2 

PLHOUT 2.5.1, 2.11.1 

POLE 2.5.4 

POSVEL 2.11.4 

PRECES 2.3.6, 2.3.6.1 

PREDCT 2.3.4, 2.5.1, 2.5.2, 2.6, 2.6.1, 2.6.2, 2.82 

PROCES 2.7.1, 2.7.3, 2.7.4, 2.7.5 

REARG 2.9.1 

REFCOR 2.3.6, 2.8.1 

REFION 2.7.5 

RESPAR 2.8.2, 2.83 

SATCL2 2.7.1 

SATCLC 2.7.1 

SQUANT 2.5.1,2.5.2, 2.11.1 

STAINF 2.11.3 

STAINP 2.11.1 

SUNGRV 2.8.4 

SYMINV 2.10.2 

TDIF 2.5.3 

TRUEP 2.5.4 

VCONV 2.S.1 

VEVAL 2.5.1, 2.8.2, 2.8.3, 2.8.4, 2.8.5, 2.8.6, 

2.8.7.2 

XEFIX 2.3.4, 2.6.3 

XINERT 2.3.4 

YEFIX 2.3.4, 2.6.3 

YINERT 2.3.4 
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