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ABSTRACT

Space experiments for detecting variations of the Newtonian gravi-
tational constant and for detecting the difference between inertial
and passive gravitational mass have been examined. These variations
are precluded by Einstein's theory of gravitation, the General Theory
of Relativity, and the experiments pose strong tests of that theory.

Four designs are studied to detect gravitational constant varia-
tions. The one that has the best potential for achieving the required
resolution, is a space—~adapted approach of a technique devised by
Prof. J.W. Beams (University of Virgina). An analysis of the major
factors of this experiment uncover no prohibition from attaining
a necessary measurement resolution of AG/G of 1 part in 1010, although
the instrument design requirements may prove difficult to achieve.

This is the largest resolution permitted (reserving an order of magni-
tude for experimental confidence) to detect the maximum effect pre-
dicted by the Brans-Dicke theory, for a highly eccentric solar orbit.

An experiment is proposed to check the equivalence between inertial
and gravitational mass to an accuracy of 1 part in 1014. The proposed
instrument design to achieve this experiment in earth orbit appears
feasible.

An experiment with this accuracy will provide the first experi-
mental test of the inertiale-gravitational mass equivalence of the weak-
interaction binding energy. Based upon our best estimate of the magni-
tude of the weak interaction binding energy, this experiment would
test its mass equivalence to 1 part in 103. The weak interaction
(or part of it) has previously upset supposedly well-established

assumptions in physics.



SECTION I

Introduction

The overall effort in this reporting period was to study several
proposed experiments, to be conducted in space, involving the measure-
ment of gravitational-inertial forces. One purpose of these experi-
ments would be to investigate the nature of the gravitational attrac-
tion between objects (here called the G-Constancy Experiment). The
specific question is whether the attractive force is simply proportional
to the masses and inverse square of the separation, or whether the force
is also related to the gravitational potential (i.e. whether Newton's
"constant” G appearing in the force equation is not constant but itself
varies with the gravitational potential). A second purpose is to inve-
stigate the equivalence of inertial and passive gravitational masses.
The specific question here is whether the inertial-gravitational mass
ratio of one material is identical to that of another. That is, is the
Eotvos ratio equal to 2zero?

In particular, the study of the G-Constancy Experiment focused
upon the evaluation of the experimental equipment wherein gravitational
forces are counter-balanced by inertia reaction forces (in a D'Alembertian
sense). These are described in Section II and the relevant appendices.
The first method described in Section II is the Gravitational Clock,
where a set of non-rotating attracting masses provides a gravitational
potential well for the oscillation of a test body rotor, the relevant
measurement being the frequency of oscillation of the rotor. This
method was reported previously(l) and the description in Section II
' presents some new observations. In the next method, the Beams
Balance, the attracting masses are rotated so that the test body rotor
is subjected to a constant torque; the relevant measurement here is
the angular acceleration of the rotor.

The third method described in Section II, the Centrifugal Balance
Sphere, utilizes a homogeneous sphere to provide gravitational attrac~
tion for three test objects which are in tunnels internal to the
sphere. This attractive force is counterbalanced by a centrifugal
force due to the orbiting of the three test objects. Each test ob-
ject is constrained by a suspension system to remain along a radius
fixed to the rotating sphere. The relevant measurement in this case
is that of the angular velocity of the sphere needed to keep the test



bodies radially motionless. The fourth methdd, the Synchronous-Oribt
Sohere,. is similar to the Centrifugal-Balance Sphere éxcept that the
(only) test body is not constrained by a suspension system. The rele-
vant measurement is that of the angular velocity of the sphere needed
to keep the test body from colliding with the tunnel sides. Approxi-
mately 85% of our effort was devoted to studies of these four methods.
The study of the Eotvos Experiment focused upon the evaluation of
a new method to measure the Eotvos ratio. The method exploits the
possibility of measuring small forces under near-weightless conditions.
The essence of the method here would be to determine, not simply the
existence or non-existence of a different gravitational pull on dif-
ferent materials, but specifically the differing pull, if any, on
objects having different amounts of weak-interaction energy in their
total makeup.* Section III contains a discussion of the detection
of small differences in the force exerted by the earth on different

orbiting test masses, in terms of. the small orbital differences implied.

If the experiment provides a non-null measurement, this result
may be attributable to a small fractional anomaly in one of the
larger contributors to atomic mass or a large fractional anomaly
of the weak-interaction. The assumption made here is that latter

effect prevails.



SECTION II

Measurement of Var:.ations of the

Gravitational Constant

The Einstein theory of general relativity is the currently accep-
ted theory of gravity. It is a very beautiful and deductive theory
founded on a shallow experimental base. It clearly gives Newtonian
gravitation in the weak field, and low velocity limits and furthermore
predicts non-Newtonian effects which comprise tests for the theory.
There are to date four non-Newtonian predictions of the theory for
which observations have been attempted. The gravitational red shift,

the phenomenon in which clocks appear to run slower in a strong gravi-
tational potential, has been measured by a terrestrial Mossbauer experi-

(2)

ment to be within 1% of the value predicted by the Einstein theory.
It is, however, not a decisive test of the theory since it can be in-
terpreted as a result of energy conservation in a special relativistic

formulation of Newtonian gravity. The deflection of star light by

a gravitational field is poorly measur:eél.z33 The best that can be

said at present is that there appears to be a deflection of star light
by the sun of approximately the value predicted by the Einstein theory;
however, there is an uncertainty of the order of one-half of the size

of the effect. The apparent change in the velocity of light in a

gravitational field has been measured by radar ranging of Venus near

(4)

superior conjunction with the sun. The data as well as knowledge of
the planetary dynamics of earth and Venus are sufficiently good to
establish the Einstein value to 10%. Finally it was pointed out by

Einstein that the anomalous‘perihelion’advance~of:Mer¢ufy could be

explained by the general theory. This offers a more stringent test of
the theory than the other phenomena that have been mentioned. The
perihelion advance is a cumulative effect that can be measured with
sufficient accuracy to give information on second order non-Newtonian
contributions in the theory. Dicke(s) has cast gome doubt on the
validity of the Einstein explanation of the perihelion advance by sug-
gesting that a solar mass quadrupole moment may contribute part of it.
Attempts to explain the entire perihelion advance by a solar oblateness
or a non-spherical distribution of mass within the orbit of Mercury
were made in the 19th century. However, this would cause other changes
in the orbital parameters of Mercury such as a regression of the nodes



of the orbit which have not been observed. At present, however, it is
not possible to reject Dicke's suggestion that as much as 10% of the
perihelion advance might be due to a solar mass oblateness.

Besides the explicit effects predicted by the theory, there are
tests of a different nature that tend to result in null experiments,
but are nevertheless important. A fundamental axiom of the Einstein
theory is the principle of equivalence, which has several interpreta-
tions. As first used by Einstein, it states that it is impossible to
distinguish a gravitational field from an acceleration’, in the neigh-
borhood of a point. This clearly implies that the ratio of the gravi-
tational mass to the inertial mass of all bodies must be the same.

The Dicke—Eotvos(6) 11

aluminum and gold, the ratio is the same to within one part in 10 ~ .

experiment has established that, at least for

However, the principle of equivalence as used in the general theory is
a stronger statement, for it implies that the neighborhood of a point
in a freely falling frame at which the gravitational field has been
cancelled by an acceleration is locally an inertial frame that is
equivalent to all other inertial frames. Measurements that are in-
sensitive to gravity gradients, such as measurement of the ratios of
fundamental interaction constants, must give the same results in
freely falling frames near massive objects as well as far away from
them. In other words, the numerical content of physical laws is in-
dependent of the gravitational field. This is the statement of the
strong principle of equivalence which, regarded as a potentially
verifiable hypothesis, has not been experimentally verified for all the
presently known physical interactions. An experimental program to
measure the fundamental interaction constants as a function of gravi-
tational potential may result in null experiments. However, such a
program must be performed to establish the strong principle. In par-

(7)

ticular, the Dicke-Brans gravitational theory which adds a scalar
gravitational interaction to the Einstein tensor field is still a viable
gravitational theory which violates the strong principle. This theory
makes the specific prediction that the gravitational constant, G, which
is a constant in the Einstein theory, depends on the gravitational

potential. For weak fields, the dependence is given by



g wFay 2 (1)

where G is the Newtonian gravitational constant, ¢, the Newtonian
gravitational potential, ¢, the velocity of light and w a coupling con-
stant which is equal to 0 if there is no tensor interaction and ap-
proaches = if there is no scalar interaction. At present w can be

set to w > 6 wi%g?%g)conflicting with the measurements of the peri-

helion rotation The experiment suggested by this is some form
of Cavendish experiment that can be transported to different gravita-
tional potentials; the measurement however, does not have to be absolute.

An earth-based experiment to measure G as a function of time
throughout the year is a possibility(g). The eccentricity of our orbit
around the sun provides a 1% modulation of the solar gravitational
potential at the position of the earth with a yearly amplitude such
that AG/G = 3x10—11. This could be measured with stable gravimeters if
the geophysical phenomena with yearly periods were better understood.
Moreover, since the fractional change is so small, a terrestrial ex-
periment that does not use the earth as one of the attracting masses
looks difficult. Larger variations in gravitational potential are
provided in space, for example the relative change in G between near
earth orbit and close orbit to Jupiter is AG/G = 3x10—9; or better
still between earth orbit and a solar orbit of 0.1 A.U. radius might
give AG/G = 3x1078,

Instruments designed to measure gravitational forces can be dis-
tinguished by the nature of the restoring force used. These instru-
ments fall into two major areas: those using mechanical or electrical
forces, in the sense of springs, fibers or electromagnetic devices¥*;
and those using inertia reaction forces exclusively. In the first
group, we have the classical torsion balances of Cavendish and Eotvos,
along with a number of modern improved versions, such as those by
Heyl(lo), Dicke(G) and Douglass(ll): in addition, we have an array
of modern gravimeters, accelerometers, and gradiometers. The second
group is primarily restricted to instruments designed for use in free-

fall and hence have been of interest only with the advent of space

* perhaps in conjunction with inertia reaction forces



operations. (A notable ex0epti0n-to the space application of the

(12)) Berman and Forward have

second group is the work of Beams, et al.
proposed measuring the period of 2 equal spheres in close orbit around
eaéh other, or that of a small mass in close orbit around a large
sphere(l3). As another experiment they have proposed measuring the
period of a test mass oscillating about the mid-point of a tunnel bored
through a large Sphere(l3).

Apparatus utilizing inertia reaction methods include: tangential
acceleration balance systems - wherein the test mass is restrained from
relative radial motion, and the tangential force component of inertia
reaction is balanced against the tangential component of gravitational
attraction; centrifugal balance systems, wherein the test mass is re-
strained from relative tangential motion and the centrifugal force com-
ponent of inertia reaction is balanced against the radial component
of gravitational attraction; and orbital systems, wherein the test
mass is not restrained and the test mass is in orbital motion.

The primary purpose of this Section of the Progress Report is to
present four schemes that might be used to measure variations of G in
space. These are in the categories of tangential acceleration balance

(1) (14) and the Beams

systems (Gravitational Clock as suggested by Weiss
Balance as suggested by Blood), centrifugal balance systems (Centri-
fugal Balance Sphere as suggested by Wilk), and orbital systems
(Synchronous Orbit Sphere as suggested by Chapman). From the nature of
the equipment the first two schemes can be carried out with a single

instrument, while the second two schemes use a second instrument.

A. Gravitational Clock

A self contained scheme to compare the gravitational interaction
with the nuclear and electromagnetic interactions would be to make an
oscillatory system for which the restoring force is primarily gravi-
tational - a gravitational clock - and measure its periodicity using
an atomic clock; both instruments mounted in the same space probe.

A typical although not necessarily optimum gravitational oscillator

is shown in Figure 1. There are three stator masses, in this case
balls with a slot cut in them and three spherical rotor masses mounted
on a rigid equilateral triangle that travel in the stator slots. The
rotation axis is centered on the equilateral triangle and is normal to
the plane of the triangle. The period of the oscillator is close to
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Figure 1 Gravitational Oscillator Configuration



T = (§?=) (2)
At _ 126
T 2 G

G is the local value of the Newtonian gravitational constant and o the
density of the stator masses. Eg. (2) neglects the influence of the

slot and the moment of inertia of the structural members of the equi-
lateral triangle, both of which increase the period. If the stator is
made of gold or platinum, density 20, the minimum period is approximately
45 minutes.

The period of the oscillator is amplitude dependent because of
anharmonic terms in the rotor gravitational potential energy in the field
of the stator. The potential energy of the rotor ekpanded in a powerx
series in 0, the rotation angle measured from the null point is given
by

Uu(e) = a,0" +

2 a4e + a8 + ... (3)

The dominant term is a262, the harmonic term. The fourth order
term has two contributions, the principle one due to the curved path
of the rotor ball in the nearest stator mass and a smaller contribution
from the other stator masses. The fourth order term however, can be
reduced to zero by cutting a cylindrical slot in the stator. More
subtle distributions of mass may be able to reduce the sixth order
term, however this is not a simple analytic problem. Most likely the
best method is to use a trimming stator mass that can be moved about
to empirically reduce the anharmonicity. Classical perturbation theory
leads to a change in periocd with amplitude given by

2= R (4)

where E is the energy of the harmonic oscillator and (Ep) is the
energy of the anharmonic term averaged over a cycle of the unperturbed
motion. For the configuration of Figure 1,



AT 15 %6 4 8 - -2
= yg oo O 3, 10 (5)

so that if the amplitude dependence is not to affect the measurement
of the period by more than lx10—9, emax < 3x10_2 radians. This assumes

that the amplitude of the oscillator is uncontrolled or not measured.

Sensitivity of the period to gravity gradient due to external
masses is small'because of the triangular structure of the rotor. The
potential due to a mass at distance r from the oscillator is given by
9GM b> 2

(T ——3—sin U.)e + ... (6)
r

li2

U(e)

if
b << r

where b is the radius of the circumscribed circle around the rotor
equilateral triangle, M the perturbing mass, and o the angle between
r and the rotation axis. The fractional change in period is

9 .
T T Iw Tg_ s o (7)

For b 2 5 cm, a man at 10 meters produces at worst a fractional change
in period of 1x10"8 while the sun at 0.1 A.U. produces 3x10-16.

A fundamental limit to the precision of the period measurement is
established by the thermal noise which causes a fractional fluctuation

in the zero crossing time on the average per cycle given by

1/2
LE (8)
Iw
0

~
|

(3

=3

@

03

K is Boltzmann's constant, T the absolute temperature of the damping
mechanism, wg the resonance frequency of the oscillator, Q/w0 the time
for the energy in the oscillator to be damped to 1/e of its initial
value, I the moment of inertia of the motor and GM the angular amPli—

tude of the oscillation. For typical parameters,



I = 103 gm cm2

wy v 2x1073 radians/sec

_ -2 .
emax = 3x10 radians
T = 4°K
-6
AT . 3x10 (9)
T measurement Ql:2

If the system is evacuated we may have Q > 106; however this depends on the
the details of the suspension.

The rotation angle 6 is to be measured by a differential, rotation
sensitive, laser interferometer as shown in Figure 2. The interferogram
is first order insensitive to translation and insensitive to rotations
about an axis perpendicular to the free rotation axis. The principle
components of the interferometer are a pair of small corner reflectors
mounted on a beam that is attached to the rotor. The remaining com-
ponents, all 50-50 beam splitters, are external to the oscillator
chamber and mounted on a single rigid structure. Using the typical
parameters mentioned previously, the fringe frequency is = 6 hz near
null. With a 1 mw laser limited by Poisson noise, the passage of a
single fringe can be measured to 10 sec or give a fractional period
measurement At/T 10"8. The time series that makes up the inter-
ferogram carries all the information needed to make a complete period,
amplitude and time varying perturbation torque measurement. It also

includes information concerning space craft motion.

Some difficulties with the proposed scheme:

(1) Temperature dependence of the oscillator period. The period
depends on the density of the stator masses and in detail on the moment
of inertia of the rotor. Both of these parameters vary with tempera-
ture in the same direction. The oscillator period varies with T as

iy

8T = 5 (g /AmyaT (10)

N W
]

10
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The linear expansion coefficients AL/2/°C of gold or platinum are of
the order 10“5 at room femperature, which would require temperature
measurement or stabilization to 10—4°C. At 4°K however, the expansion

coefficient is down to 6x10f9(See also Appendix G).

(2) The suspension. The nub of the experimental problem resides
in the torsion suspension which has to be sufficiently isotropic to let

the gravity restoring torgues dominate. This means the torsion constant

3

of the suspension must be much less than 1x10 ° dyne cm/radian and

furthermore be constant in time and independent of temperature. Since
the thermal noise depends on Q'_l/2

Q > 106. A major requirement of the suspension is that the unwanted

; the suspension should permit a

modes of motion in the remaining degrees of freedom both rotational
and translational, have high frequencies and are well damped. Excita-
tion of these modes can effect the period of the oscillator by modu-
lating the gravitational potential of the stator masses or by changing
the effective moment of inertia of the rotor about the free rotation
h(l4) that

satisfies some of the requirements is shown schematically in Figure

axis. A superconducting suspension proposed by M. Blitc

3. The suspension employes the diamagnetism of a superconductor and
provides eddy current damping in copper for all motions that are not

pure rotations about the free axis.

(3) Electrostatic and magnetostatic torques. It is clear that
electrostatic forces between the rotor and stator as well as magnetic
forces between stray fields and ferromagnetic impurities in the rotor
are a serious problem. If the rotor float has no electrical connection
to the stator, a charge servo that can hold the rotor to a charge
unbalance less than 100 electron charges is required. If the rotor
is grounded, the contact potential difference between rotor and stator

has to be less than 1 uv or at least held constant to less than 1 pv.

B. Beams Balance

If we modfy the Gravitational Clock configuration such that the
attracting (stator) masses are rotated in such a fashion that the angle
(6) between it and the rotor system does not change, then the angular

accelerations of the instrument will provide a measure of the

12
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(12). In

principle, one would monitor the angle 6 and drive the stator such that

gravitational attraction between the stator and motor masses

8 remains constant. Of course, as with any instrument of this type,
it is desirable to design it such that the operation is incrementally
insensitive to the angle 6 and that the spheres are sized to provide
a maximum of gravitational attraction. . Under these conditions, and
for an instrument configuration consisting of spheres at the ends of
n massless arms, the acceleration will be

(1+h2~2h cos 6_) n sin{0_+ i.360)
= [19.] G p p &
6 1 .2 . p) 1 3/2 °
h(l.1+—7 - §— cos 6.) i=1 [1+h"-2h cos (6 _+ = 360)]
h _ P P n
(11)
where

gravitational constant

G
o density of spheres

h = length ratio of moving arm to fixed arms
8

= angle between arms for zero torque variation-

As shown in Appendix A, a four arm device has a significant ad-
vantage in terms of size vs. effect of disturbance masses. Figure 4
shows a plot of Eg. (11), for a four arm instrument. Note that a
maximum acceleration occurs near h = 0.5. Figure 5 is a full scale
sketch of four arm instrument with h = 0.5. If fabricated of platinum
it would provide a gravitational torque of 0.001 dy-cm. and have an
angular acceleleration of O.284x10—6 rad/sec. The total mass (of
spheres) is 1.24 kg.

We can determine the angular acceleration by timing the passage

of angular increments. If the increments are of angle ¢ and T, and T,

1
are the times for the passage of sucessive increments, then the value

* These results are abstracted from Appendices A, B, C and D.

14
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of the gravitational constant will be given by

2 2 2
G={2¢ A }_1. 5m "2
(Tsz)(Tl+T2) M N z 60j31n e—dejcos 3]
L T2 2 , 372
j [5+a 2a2(6ojcos e+6ejs1n 8)]1]
T,=T
_ 1772 (1
= 2% } XK '. (12)
{ (117, (1+71,) 1

We see that G is determined by using measured time increments to cal-
culate the first bracket which is then multiplied by a constant, K.
The second bracket, K, is determined by the parameters of the experi-
mental setup. Clearly, for a precise measurement of G, we need a
correspondingly precise knowledge of XK. This calibration constant

is fixed by the manufacturing tolerances and metrology. Since our
experiment is not to determine the absolute value of G, but rather to
detect variations, then K need not be precisely known, but it must
remain constant to parts in 1010.

Appendix B further shows that in oxder to hold K constant to
parts in 1010 in a room temperature environment, thermal expansion
dictatgé.that we need to achieve a temperature stability on the order
of 10

the experiment at cryogenic temperature.

°C. Thus requirement indicates that it may be best to perform

Disturbance force inputs can arise from a variety of sources:
also, their importance may be related to the off~nominal conditions
of the instrument. Disturbance forces due to gravity gradients, linear
accelerations, electrostatic and magnetic fields and gas pressure
effects are considéred in Appendix B. The major negative conclusion
is that the spacecraft aerodynamic drag variations (combined with a
postulated mass variation of the arms of 1 part in 105) must be less
than 2x10_8 cm sec2 during a full revolution of the experimental appara-
tus. This may require that an earth orbit space experiment be conduc-
ted in a "drag free" spacecraft mode, or else that the experiment be
conducted in solar orbit. The other main conclusion is that the elec-
trostatic charge accumulation must be limited to 10_16 coulombs (i.e:
600 electron charges). This condition may necessitate a charge-

control system, or else it precludes a suspension system that

16



electrically isolates the rotor.

In Eq. (12), the 1's represent the times for rotational displace-
ments, ¢, of the moving test body with respect to inertial space. In
a practical case, the time periods will be measured as the fiducial marks
on the table supporting the attracting masses cross a fiducial mark
on the frame supporting the table. If the frame is non-rotating in
inertial space, the measurement times will be in error by the dif-
ference between the angular displacement of the table and the angular
displacement of the test body. This difference is represented by varia-
tions in the servo signal A8, However, we must also expect that the
rigid frame supporting the table will have angular motion with respect
to inertial space. To eliminate the effect of this angular motion,
we can take two separate set-ups mounted on the same frame, such that
the rotation vectors of the test bodies are parallel but in opposite
directions. For one of the set-ups, the frame's angular motion will
increase our time measurements and in the other set-up it will decrease
the time measurement. By combining the data (obtained over the same
time interval) from the two set-ups, we can eliminate the effect of
the frame's angular motion.

Under these conditions, an error analysis of the first bracket
in Eq. (12) was undertaken by means of a simulation, which is described
in Appendix C, and the results are detailed in Appendix B. The simula-
tion utilized an optimal estimator and used as input values an rms error
of 1 second of arc in the measurement of ¢, fiducial marks every degree
(360 marks per revolution), a base (spacecraft) angular acceleration
6 rad/secz, and a nominal angular
acceleration of the table (due to G) of 10—6 rad/sec2

given as noise with an rms level of 10~

The basic conclusions of the simulation can be summarized by four
main points:
1) The time required to reduce the table angular acceleration

10 is decreased as the initial

measurement uncertainty to 1 part in 10
table velocity is increased, but at the expense of an enormous increase
in the amount of data to be handled.

2) The time to reach 1 part in 1010

is not affected appreciably
by the accuracy of the initial estimate of the table angular accelera-
tion.

3) The primary hardware limitation on the estimation process is

the measurement error variance of ¢.
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4) The estimation process is quite insensitive to the angular
acceleration variance of the spacecraft.

Although subject to many trade-offs, a reasonable experimental
choice might be to give the tables and initial angular velocity of 0.02
rad/sec. Under the condition stated, an angular acceleration measure-
ment uncertainty of 1 part in 10lO could be achieved in 14 hours and
would require the reduction of 132,000 data points.

The operation of the Beams Balance might be improved if a mass
shape other than spherical is used, since, for example the attractive
force between adjoining square blocks (of optimized thickness) is 79%
greater than the force between adjoining spheres of the same mass (ad-
joining optimum cylinders provide an increase of 86%; adjoining hemi-
spheres provide an increase of 89%; while adjoining optimum half-spheroids
provide an increase of 92%). The problem of determining a mass shape
that provides a maximum of specific forces is formidable¥ and not neces-
sarily pertinent since the sensitivity of the experiment is more related
to either the level of angular acceleration or the level of torque achieved
by the apparatus. These factors are examined in Appendix D. By means
of a straightforward computer model, a simple analysis is made of a
one-arm Beams Balance with hemispheres compared to a one~arm Beams
Balance with Spheres. This analysis indicates that the performance
(acceleration and specific torque) can indeed be improved, but this
improvement is less than the factor of 2 dimplied by the specific force
increase. There is evidence, however, that more improvement, particularly
in the level of angular acceleration, may well show up in a four-arm

device; and by a more thorough design and analysis effort.

C. Centrifugal Balance Sphere*¥*

Consider a sphere of uniform density (p)with 3 orthogonal cylindri-
cal tunnels passing through the center. In each tunnel is a test mass
that is constrained to remain along the central axis of the tunnel
and whose position along the axis can be determined. A coordinate
system (rotating) aligned to these axes is chosen as shown in Figure
6. The rotation of the sphere is controlled by an external servo-
mechanism. The (instantaneous) components of (inertial) angular velo-

city are shown. The following assumptions are made:

* Also, any significant increase over the optimum half-spheroids is
doubtful

** See Appendices E,F, and G
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1) The sphere is true and has uniform density.

2) The gravitational attraction within and due to the sphere
is unmodified due to the tunnels and test masses.

3) The gravitational gradients due to external sources are uni-
form throughout the sphere.

Figure 6 Centrifugal Balance Instrument and Coordinate Systen

Under these circumstances, the equations of motion of test masses
m . my, and m,, will be (respectively)

0

X + ﬁi X + (%ﬂpG—wz—wz— é—% )X = %5
X Y 9x X
C 2 £
y o 4 2 2 970 _ 'y
Y + <& YV + (_ Tpr"U) - — )Y =
m 3 X Z ayz my
C 2 £
z 3 4 2 2 937U Z
2+ =2+ (5 710G~~~ — )2 = = (13)
m, 3 X 'y az2 m,
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rwhere’cx,c ,Cz,is damping in the respective tunnel, U is the gravita-

Y
tional potential withinAthe sphere due to external masses, and fx'
fy, fz are all other forces on the test masses. If the instrument

is in free-fall, and the disturbance forces are ignored, then

If the servomechanism rotates the sphere so that the test mass
radial motions are stabilized, then

Thus
2
4 ﬂpG—wz—w -2 0
3 Yy 8x2
2
4 2 0" U _
3 TG W W, = 3—7 = 0
Yy
- T G—wz—wz— 22_[_'].. = 0 (14)
3 TP XV azz <
Hence
2 2 2
4ﬂpG-2(w2+w2+w2) - (a Uy o"U + 0 U) = 0 (15)
X Yy 2Z 5 2 N 2 3 2
X y z
Since
2 2 2
3 U + 89U + 0V _ V2U = 0 (16)
2 2 2
X oy 02

2Tp (17)
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We also note that
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Thus we see that, to a first order, the sphere will rotate at a
constant (inertial)angular speed which is simply related to the density
of the sphere and the universal gravitational constant. Further, the
components of the (inertial) angular speed provide a measure of the
(instantaneous) in-line gravity gradient components. (These components
are referred to a coordinate system fixed to the sphere.) We note
further that (knowing the density) a measure of w, which is constant,
provides a measure of G which is independent cf all (uniform) gravity
gradients arising from sources external to the sphere including those
due to the astronauts, the spacecraft, and nearby planets, even if
these (uniform) gradients vary with time. Further the determination
is independent of the size and shape of the test masses, their radial
position and their damping constraints - requiring only that the servo
be stable.

One important advantage of this proposed instrument is that there
are few inherent initial condition requirements on the experiment.
(Perhaps it may be necessary or advantageous to add some due to the
design of the servo.) BAnother advantage lies with the capability of
checking the operation of the instrument in a laboratory before launch.
This can be done by orienting the sphere so that tunnels are all at
nearly equal angles to the vertical and the test masses are above the
center of the sphere. The operation of the instrument in this mode
will present a much different set of conditions to the servo and to
the suspension restraints than in space, but the loops could be closed.
(In another mode, two horizontal tunnels could be operated, with the
other disabled.)

A more complete analysis of the equations of motion of the appara-
tus, including the effects of the spacecraft can be found in Appendix
D. Appendix E derives the modifications of the gravitational field
within the sphere due to the presence of the three tunnels,
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and the primary error analysis of this experiment is documented in
Appendix F. For the convenience of the reader, we will provide the

summary of that report.

Summary of Appendix F

Purpose and Scope

The purpose of this program was to study and recommend the material
and fabrication techniques for laboratory size primary masses whose
physical and geometrical characteristics are very accurately. known.

In addition, studies were made of suspension systems for a test mass
within the primary masses and techniques for cooling experiments to
cryvogenic temperatures.

The program included investigation of materials suitable for
fabricating the primary masses by considering gravitational field un-
certainties due to density, density inhomogeneity, temperature,
strain, geometry, the presence of suspension systems and other sources
of uncertainty. The suitability of elemental materials whose density
is greater than 15 grams per cubic centimeter are discussed from the
point of view of density, homogeneity, strength, fabricability, costs,
availability, and the associated contribution to gravitational
uncertainties. These materials are categorized according to their
state of technology for fabrication, developments required to achieve
a uniform mass, and the probability of success of achieving a primary
mass of known uniform density. The general applicability of diamagnetic
suspension systems.to space gravity experiments is discussed. The
applicability of a quadropole and sextipole system for suspension of
a test mass in a tunnel within the primary mass of the proposed experi-
ment are discussed. Experiment cooling requirements are estimated and
both open-cycle and closed-cycle cryogenic refrigeration techniques

are examined.

Conclusions and Recommendations

1. The N3/G experiment to test the Brans-Dicke theory is most difficult
if carried out at 300°K but has a reasonable chance of success at
liguid helium temperature. The measurement of the absolute value
of G to an improved accuracy is feasible at either temperature.

The proposed earth-orbital mission is to measure both G and to
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test the suitability of the appartus for later experiments in
highly elliptical solar orbit to measure AG/G. To accomplish the
latter missions in a meaningful way, it is essential that the

earth-orbital experiments be performed at cryogenic temperatures.

The primary sphere should be rotated in such a way that the test
particle always stays in the same longitudinal position in the
tunnel within a very close tolerance. This is necessary because
of considerable non-linearity in the longitudinal force due to the
tunnel itself and to possible defects in fabrication of the

sphere.

The support system must be capable of holding the test particle

at all times within 1 micron of the tunnel axis. This is necessary

-because of significant variation of the longitudinal force with

distance from the tunnel axis.
The primary sphere should be round to 10_5 cm.

Gross density variation across the sphere should be less than 1
part in 10—6.

Fine scale density variations of 2% on a scale of 10—4 cm are
tolerable.

The test mass should be made from a diamagnetic material and
should be supported in a quadropole superconducting magnetic
field which has superconducting current elements to avoid dis-

sipation within the sphere.

Tungsten is the primary candidate for fabrication of the principal
mass. Fabrication techniques have been demonstrated for achieving
spheres of 99% theoretical density. Uranium is unsuitable

because of non-crystallographic phase changes below 43°K, its
non-cubic structure (causing an isotropy in its properties), and
poor oxidation resistance. Tantalum will be a good candidate if

its lower density is acceptable in the experiment.
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9. An excessively long time may be required to achieve equilibrium

cryogenic temperatures if the experiment is cooled radiatively.

10. Open-cycle helium refrigeration systems in zero gravity require
an as yet unproven liquid vapor separator to ensure the venting

overboard of only gaseous phase helium.

11. A mechanical helium refrigeration system with long life and smaller
size and weight than an open-cycle system is the best selection for
both earth-orbital and solar-orbital gravitational experiments.

In addition to the above considerations, it must be noted that a
test mass is subject to extraction from its tunnel under certain cir-
cumstances. If the experiment is conducted so that the sphere is in
a free-fall condition, gravity gradients can operate to bring about
this extraction. From Eg. (13) we see that we require

4/3 wpG > EE% (19)
ov

(where v = x,y, or 2z) for stable solutions. For an earth orbit, Eq.
(19) is approximately

2p$

P>
(l+h/Re)

(20)

where h is the orbital altitude and P is the average density and R@
the average radius of the earth. For a low (h ~ 100 n.mi.) earth orbit,
the density of the sphere must be greater than about 11 gm/cm3.

This extraction can occur whenever the radially outward force (at
w, = 0) is greater than the gravitational attraction of the sphere.
If the sphere is not in free-~fall but is translationally constrained to
the spacecraft, then forces additional to gravity gradients can bring
about extractionf (In fact, the gravity gradient extraction conditions
must also be reevaluated). The extraction conditions will be dependent
upon a number of factors, including the size, density and location of
the sphere. For instance, a worst case analysis can show that extrac-

tion due to gravity gradients alone will occur when
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where Rd is the displacement of the sphere from the C.M. of the space-
craft, and Ry is the radius of the sphere. Selecting a 10 cm radius
tungsten (p = 19.3 gm/cm3) sphere, we see that the sphere must be
located such that Rd < 8.8 cm, (and also note that the sphere weight
81 kg.).

If we neglect forces due to gravity gradients then note that
extraction can occur if the spacecraft acceleration (or drag) is

a__ > 3 TPCR_ (22)
in the worst case. For the sphere selected above, Eq. (22) requires the
spacecraft drag to be less than about 5x10_5 cm/secz. Depending upon
the drag coefficient of the spacecraft, this could preclude a low
earth orbit.
If we select a sphere location of Rd = % RS from the C.M. then,
in the worst case, angular rotation of the spacecraft of 3 millirad/sec.,
or an angular acceleration of 0.01 millirad/sec2 can cause extraction.
Each of these extraction conditions examined above was considered
independently. They do support, however, the conclusion that this
experimental configuration must be operated in a free-fall condition,

and not constrained to the spacecraft during data-taking intervals.

D. Synchronous Orbit Sphere

A massive, homogeneous sphere of
density p is in a circular orbit of
radius R about the e@arth. A small test
mass moves in a radial hole drilled in
the sphere, which is servoed in angle
to follow the test mass so that it
does not touch the sides of the hole.

In a local vertical coordinate

system [2~axis down, 3-axis along the

orbital. angular momentum, l-axis chosen

to make a right triadl, with origin Figure 7 Sygggrgnﬁus
rbi ere

at the C.M. of the sphere, the equation P

of motion of the test mass is
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I=-kr+g-gy-282xE-Q2x (@xzp +f (23)

9o
4
k = 3 mGp (24)

-where 8 is the orbital angular velocity and g, gy are the accelerations
of terrestrial gravity at the test mass and the origin, respectively,
f represents any additional perturbing accelerations.

If the orbit is sufficiently high, so that Q and the terrestrial
gravity gradient may be neglected, the equation of motion becomes

r+kr=0 (25)

The components of this equation represent three sinusoidal motions
of equal period, so the orbit is clearly a plane ellipse with the C.M.
of the massive sphere as center (not, as in the more familiar case of

an inverse-square force, as a focus), and the period is
T = 21/VK = ‘/5_71 (26)
Gp

independent of any orbital parameters of the test mass. If the density
is accurately known, measurement of the period would allow determina-
tion of G. In practice, however, it is necessary to take account of
the terrestrial gravity gradients and orbital d'Alembert forces.

The terrestrial gravitational field at a point of radius vector
R from the center of the earth is

GM
g=-r- _§Q R (27)
R

where M@ is the mass of theearth , so the first-order gravity gradient

tensor is

Bgi

ij = 3R,
J Rj=Rj' the C.M. of the sphere.

on 2 (i)

]

R, 3
3 R UR =R,
3]
_ o2 _ 3
= [9) [sij 55 RiRj] (28)
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since, for a circular orbit, p? = GMeR_3. In this expression, Gij
is the Kronecker delta, unity for i=j and zero for i#j.

If we also write

;5= 0[0 -1 0= ax
1 o 0 (29)
o 0 0

then Eg. (23) may be written, to first order in the gravity gradients,
in the tensor form

r., = —kri + Gijrj - ZQijrj - Qikajrj + fi

= -—kri + Pijrj - ZQijrj + fi (30)
where
= 2
i3 = Gi3 Qiknkj Q 0 0 0
0 +3 0 (31)
0 0 -1

The components of (30) are

rl = —krl + 2Qr2 + fl

.= —(k-32%)r. - 20%. + £
2 2 1 2

. o= ~(k+Q%)r. + f (32)
3 3 3

The last of these represents a simplée harmonic motion, perpendi-
cular to the orbit of the primary sphere, at an angular frequency
‘&k+92), but the other two equations are coupled through the Coriolis
terms. Taking Laplace transforms and writing

k' = k - 302 (33)

yields
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(sz+k) -2Qs r = |lu +srl(0)

1 1 (34)
+2Qs (sz+k') r, u2+sr2(0)
" where
u, = fl + vl(O) - 2ﬂr2(0)
u, = f2 + v2(0) + 29r1(0) (35)

and rl(O), r2(0), vl(O); v2(0) are the initial values of the coordinates
and velocity components. Egq. (34) may be solved, to give

ry ]l = [s24k) (%4 44026817 [ (sP4kt) +2ms | |u *sr, (0)
2
r, -20s (s“+k) u2+sr2(0) )
(36)
The denominator in this expression is, from (33),
s + (2k+0%)s? + k(k-30%) = (s%+a?) (s%+b?) (37)
where
a?p? =k + 10?41 Q.J(92+16k) (38)

Of the four roots +a, +b of (37), two are always real, but the
other pair will be imaginary unless

x > 302 (39)

which is thus the condition for stability of the system; if it is not
fulfilled, gravity gradient forces will extract the test-mass from
the primary sphere. ‘From (24) and the expression for 92, this condi-
tion may also be written in the form

R
o > 3pg( g2 0> (40)
where Po is the average density of the earth and Re is its radius.

For low earth orbit (7100 n.m. altitude), the density of the primary
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sphere must be greater than about 16 gm/cc. Lighter materials could of
course be used if the experiment were conducted in a higher orbit.

When the disturbing accelerations fi are zero, the solution of (32)
may be written as

]

ry Alcos(at+a1) + Blcos(bt+sl)

r, = A,sin(at+a,) + B,sin(bt+8,) (41)

The phase and amplitude constants in these expressions are not all
independent; their relationships to the initial conditions are compli-
cated, but may be obtained by Laplace transforming (36), or by inser-
tion of (41) in (32). The important point, however, is that the fre-
quencies a and b do not depend on the parameters of the orbit, but only
on k and §, so that sufficient information is available to allow deter-
mination of G from frequency measurements, without any requirement that
accurate initial conditions be established.

In practice, it is almost certainly more convenient to carry out
the measurements in .an inertially non-rotating frame, which is rotating
relative to the orbital frame of the calculation at an angular velocity
-2. In this frame, the coordinates of the test-mass are given by

vl s

ri| = cos ft sin Qt 0 r1

ré sin Ot cos Nt 0 r, (42)
t

r3 0 0 1 r3

The effect of this transformation is to split the frequencies, so
that four components at (a+Q), (b+Q) appear, as may readily be seen by

substituting (41) in (42). If the measured frequencies are
wy = a- Q
w2=a+§2
Wy = b ~-Q
wy = b+ @ (43)



then, for example,

1 2
7(@0+w,)) 7 + waw, =2 + b7 - Q

-2k (44)

from (38)

Spacecraft gravity gradients:

Suppose that the primary sphere is in free fall inside an inertially
non-rotating spacecraft whose mass distribution produces a gravity-
gradient tensor Gij at the C.M. of the sphere. For simplicity, we
first consider the case in which the spacecraft is in such a high orbit
that the terrestrial gravity gradients may be neélected. The equation

of motion of the test mass is then

r, + kri - Gijrj = 0 (45)

The frequencies of oscillation in this case are given by the roots

of the determinantal equation

2 vl o=
| (s )84 - Gijl =0 (46)
which are clearly
w? =k - A (y = 1,2,3) (47)
Yoo Y

where the AY are the eigenvalues of the tensor Gij. While it may not be
possible to calculate the XY precisely, because of the complexity of
the mass distribution of the spacecraft, the sum of the eigenvalues of

a tensor is equal to its trace, so that

) wi = 3k - Gi,
Y
3%y 2
= 3k - 3 oE, " 3k - V°U = 3k (48)
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where U is the gravitational potential at the C.M. of the sphere due
to the spacecraft; the last equality is due to the fact that U is a
solution of Laplace's equation.

In this simple case, then, the effect of the spacecraft gravity
gradient is to split the frequency of oscillation into three components;
but k, and hence G, may be determined from the average value of the
squares of these three components.

When both terrestrial and spacecraft gravity gradients are present,
the equation of motion of the test mass, Eg. (30) is modified to read*

. _ ., _
ry + kri Fijrj +,ZQijrj Gijrj fi (49)

In general, the spacecraft gravity gradients couple all three of
these equations together; by inspection of Egs. (32), the frequencies
a', b', c' appearing in the components of the motion of the test mass
are given by

(sz+k)—Gil -20s-G} -G, = (s%+a'2) (s24b'2) (s%4c'2) = 0
+205-G! (s2+k ') ~G! ey
21 22 23
-G! __'Gl (52+k")—G'
31 32 33

where k' = k—392, k" = k+92. Equating the coefficients of s4 on the

two sides of this equation yields

3k + 202

1

' noo_ ' Vg 2
k + k + k (G11+G22+G§3) + 40

2 )

+ b'2 + ¢

il

a' (51)
the trace Gii being zero.

If the motion of the test-mass is resolved in an inertially non-
rotating frame, the measured frequencies are split (analogously to

Eq.(43)) into six components

* It is assumed the spacecraft is in a local vertical attitude hold, so
that the Gij are constants in the orbital frame of this equation
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+

a- = a' - Q
b+ = b' + Q
b_=b"-Q
c, = c' + Q
c_=c¢'" - Q

- (52)

Ample information is then available to determine k. For example,
substituting from (52) and using (51), is is easy to show that
2

2
a,+a_+b

2
+

2

2
+b__+c+

+c?+10[a,a_+b,b_+c,c_] = 36k (53)
Other organizations of the data are of course possible. The im-
portant point, however, is that self-contained frequency measurements
within the apparatus, using a suitable inertial reference (gyros or
star-trackers) to resolve the test-mass motion into components, provide
sufficient data for the determination of G even in the presence of
both terrestrial and spacecraft gravity gradients. If available to
sufficient accuracy, an external measurement of the spacecraft orbital
angular velocity could be used in processing the data, but this is not
essential. The only requirement on the spacecraft gravity gradients is
that they be constant in time, in the local vertical orbital frame; a
more thorough error analysis is required to determine the effects of
deviations from this condition, due to motion of parts and/or astro-
nauts within the spacecraft as well as unavoidable changes in space-
craft attitude. In general, it may be assumed that changes in space-
craft gravity gradients are important only when they contain frequency

components fairly close to the oscillation frequencies of the test-mass.

Non-Linearity of the Primary Force Field

In practice, it can be expected that the gravitational field
within the primary sphere will deviate slightly from the linear form
of Eq. (3), and this will introduce some dependence of the period of

the motion of the test mass on its orbital parameters. The principal
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reasons for this are as follows:

i) Perturbation due to the tunnel drilled through the sphere. This
perturbation and the resultant effects on the orbit of the test mass
may presumably be calculated numerically to any desired accuracy.
However, some control of the initial conditions for the test mass mey
be required. The effect may be minimized by minimizing the ratio of
the tunnel diameter to the radius of the primary sphere. For a given
mechanization with a consequent minimum tunnel diameter and given
accuracy of initial conditions (caging and release mechanism for the
test mass), a minimum size of the primary sphere may be required in
order to achieve a desired accuracy in the measurement of G. This

is important, because the overall Weight of the experiment of course

increases with the cube of the radius of the sphere.

ii) Non-sphericity of primary. If the primary is a slightly oblate
or prolate spheroid, with the tunnel along the symmetry axis, the

equation of motion of the test-mass is(l5)

r v -k(l+e)r (54)

where € is the fractional deviation of the polar radius of the
spheroid from the mean radius, and the plus or minus signs refer to
the prolate and oblate cases, respectively. The fractional error in
the measurement of G due to this effect is thus approximately equal
to the fractional tolerance in manufacture of the primary sphere. As

d(l3), a tolerance of one part in a

discussed by Berman and Forwar
million is not unreasonable. Furthermore, if it is possible to mea-
sure the first harmonic of the spheroid with an accuracy better than
the manufacturing tolerance, the equations of motion may be corrected
to the same order. This effect is therefore not expected to be a

limitation on the attainable accuracy in the determination of G.

iii) Density inhomogeneity of primary sphere. While the shape and

mass, and hence the mean density, of the primary can be measured with an
accuracy better than one part in 106, small density inhomogeneities are
likely to exist, and these will certainly produce errors in the mea-
sured value of G. Some averaging will be achieved as the test-mass
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moves along the tunnel (a circular orbit not being possible in the
presence of gravity gradient forces). Also, Forward(l6) has suggested
a possible modification of the experiment in which the test mass moves,
not in a tunnel, but in a disc-shaped region obtained by removing an
equatorial slice through the center of the primary sphere, which is
spun at a relatively high angular velocity about an axis perpendicular
to the slice, as well as being servoed in the other two axes to follow
the motion of the test mass: this averages the effects of density
inhomogeneities over a much larger region of the primary sphere,
although of course it would considerably complicate the mechanization
of the experiment. Further study‘of these guestions must be postponed
until more information has been obtained concerning the degree of

density homogeneity which is feasible in the manufacture of the sphere.

Eccentricity of the Spacecraft Orbit

If the orbit of the spacecraft is elliptical, the orbital. angular

velocity becomes(l7)

Q = Qo(l—ez)'3/2(1+e cos 8)% = § (55)

where QO is the mean angular motion (i.e., the angular veloéity in a
circular orbit of the same period), e is the eccentricity, and 6 is
the true anomaly. Furthermore, the coefficient in the gravity gradient

tensor Gij (cf. Eg. (28))becomes

GM
8. Qz(l—ez)—3(l+e cos 6)3 (56)
R3 0]

Finally it is necessary *o add to the equations of motion a term

(Q x r), representing tangential acceleration, where
Q = —ZQge(l—ez)_3(l+e cos e)3sin 9 (57)
For small e, the equations of motion (32) become a set of
Matthieu-type equations, the first two being coupled through the

Coriolis and tangential accelerations. To first order e, we have

92 = Qg(l + 4e cos Qot) (58)
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3 _ 42
GMe/R = Qo(l + 3e cos Qot) (59)
Q= —292 e sin Q,t
0 0

In low earth orbit, an eccentricity of 10_5 means that the apogee
and perigee differ in altitude by only about 0.1 n.m. If this ex-
periment is not to constitute a serious mission constraint, eccentrici
ties an order of magnitude or higher than this must be expected. The
implication is that corrections to the equations. of motion, to the fir
order in e, should be considered. This is a matter for further study,

perhaps by computer simulation.

Conclusion

This preliminary analysis of the rotating tunneled sphere Cavendis
experiment in earth orbit has shown that the proposed apparatus offers
considerable promise of substantially improving knowledge of the New-
tonian gravitational constant. The principle problem areas appear to
be the effects of density inhomogeneities in the primary sphere and
of eccentricity of the spacecraft orbit. Further study of these areas
is required in order to form a realistic estimate of the attainable
accuracy in the measurement of G. So far, however, nothing has been
discovered which should prevent achievement of an accuracy of a few

parts in a million.






SECTION IIX
Measurement of the Eotvos Ratio

1. Objective
The objective of the experiment is to measure the Eotvos ratio for
gold and aluminum (and possibly other materials) with an accuracy of

one part in 1014 or better.

2. Significance

A fundamental assumption in all current gravitational theories is
that all bodies fall with the same acceleration in a given gravitational
field. 1If mp(A) is the passive gravitational mass of a body of material
A, a measure of the strength of its interaction with a gravitational
field, and mi(A) is its inertial mass, the Eotvos ratio for a pair of
bodies of materials A and B, respectively, is defined as

2[m (A)/m, (B) - mp(B)/mi(B)]

n(a,B) [mp(A)/mi(A) + mp(B)/mi(B)] (61)

If this ratio were found experimentally not to vanish identically
for all pairs of materials, a major revision in current understanding
of gravitation would be required. Since such a result would imply
anomalous gravitational behavior for some of the fundamental consti-
tuents of matter, new light might also be cast on profound problems
concerned with the relationship between particle physics and the struc-
ture of space-time. The accuracy of the proposed experiment is suf-
ficient to investigate the effects of gravitation on all forms of
mass-energy making up matter except that stored in the gravitational
interaction itself. 1In particular, it should be possible to determine
whether energy stored in the weak interaction (which is known to
violate another well-established physical principle, that of parity
conservation) violates the principle of equivalence of inert and
gravitational mass.

The theoretical rationale for the proposed experiment results
from extending a line of reasoning given by Schiff. He points out that

the total mass-energy of any atom has several distinct components.
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One part is due to the masses of the three types of elementary particles
in an atom:

1) Protons

2) Neutrons

‘ 3) Electrons
The rest of the atom's total mass-energy is due to the four types of
binding energy which hold the atom together.

1) Strong interactions, which bind together the neutrons
and protons in a nucleus.

2) Electromagnetic interactions, causing protons to repel one
another in a nucleus, making electrons bind with nuclei to
form atoms, and causing atoms to form molecules.

3) Weak interactions, responsible for the B-decay process.

4) Gravitational interactions. .

To put it another way, atoms and molecules have masses which are dif-
ferent from the sum of the masses of the individual free protons,
neutrons, and electrons; these differences are due to the binding
energies produced by the strong, weak, electromagnetic, and gravita-
tional interactions between the particles. It might be possible for
certain types of particles to have inertial-to-passive mass ratio
y that differed from other particles; in addition, any one of the
interactions could produce binding energies for which the inertial
mass equivalents and the passive-mass equivalents had an anomalous
ratio Y.. Placing accurate experimental limits on the differences in y
for various kinds of particles and binding energies is thus essential
to give the theorist an idea of the nature of the particles and their
interactions.

Elementary particle theory can provide guantitative estimates of the ac-

curacy to which n(A,B) need be known in order to rule out anomalous Eotvos
ratios for the various kinds of binding energies which hold an atom

together. The following equation shows the sources of the different-
kinds of mass which make up an atom of atomic number Z, neutron number
N, and mass number A = N+3:
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2 _ .2 2 2
Mc”™ (real atom) = Zmpc +Nmnc +Zmec BE BS(Z,A) BER BW—BG
(62)
mp = proton mass, m = neutron mass, m, = electron mass

B, = 15.6 27/3ev = electronic binding energy or total ioniza-

E
tion potential
BS(Z,A) = strong-interaction binding-energy of the nucleus
0.6%(2-1)e? ,
Bpr = 173 - = electromagnetic repulsion energy of
A x(1.4x10 cm) the protons
BW = weak-interaction part of binding energy

BG = gravitational part of binding energy

Note that the nuclear binding energy measured by nuclear physicists
is actually

B(Z,A) = BS(Z,A) + BER + By, + BG. (63)

BER can be computed to a reliable accuracy, as given above. Bios the
weak-interaction contribution to nuclear binding cannot be rigorously
computed using present-day theories; we can, however, make a fairly
reliable estimate using Fermi's phenomenological theory of weak inter-
actions. Fermi's universal weak coupling constant is
_ -5 =2

Gy = 10 mp (64)
as measured in B-decay reactions. The contribution of the weak force
is then assumed to be a certain fraction of the strong force given by
the dimensionless number mZGW, where m is a mass characterizing the
strong interactions. In the least advantageous case, m would be
the mass of the pi-meson, which is largely responsible for the strong
internuclear force. We would then have

2

. _ -7
By, & m;GB(Z,A) = 2x10° 'B(Z,A) (65)

This estimate agrees with the more rigorous nuclear physics calcu-
lation of the Blin—Stoyle(33).

39



The gravitational binding energy is estimated by using the

nuclear radius formula

r, = 1.4 al/3x107 3¢ (66)

and computing the gravitational potential energy of one half of the

nucleus acting on the other, using Newton's gravitational constant
8 3 1 -2
c .

G = 6.67x10 ° cm gm "—se The result is

G(3 am)) (3 Am))

13

-31,5/3
73 — A~ "e
(1.4)Aa x10 cm

B, = = 2.08x10

- \ (67)

We now list in Table I the estimates of the relative contributions of

each kind of energy in electron-volts for aluminum (Al) and gold (Au).
We see that if the Eotvos anomaly lies all in the electron masses,

for example, the electronic Eotvos ratio Ne will be given by the

expression

Zme Z'm,e

- M M'

n

e = n(z,2'), (68)

where n(Z,%2') is the total anomaly measured in the Eotvos experiment.
Suppose we decide to believe that R is satisfactorily close to
zero if we show

n =0+ 10 °. (69)

Then, for gold and aluminum, we need to show

7

-3 ( e _ e - -
10 - " W) = 1.78x10 (70)

Zm Z'm
n < )

Similar calculations for the other types of energy give the required
upper limits of n(Au,Al) listed in Table II.
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np(Zmp) < 10~ if n < 10
n, (Nm ) <1073 if n < 1074
ng (2m_) <1073 i n <1077
ng (Bg) <1073 if n<107?
ng(Bg(Z,R)) < 1073 if n < 107!
ngg (Bgg) <1073 if <108
nyg (Byy) <1073 if g <207t
ng (Bg) <1073 if  n o< 10742
Table II

We are how in a position to see the strongest argument as to why

the Eotvos experiment should be improved beyond Dicke's limit, n(Au,Al)

= < 10_11. Table II shows us that Dicke's number confirms n(Au,Al) to

be very near zero for every type of energy down to but not including

the weak-interaction energy. To rule out an anomalous Eotvos ratio
for weak-interaction binding energies, we must show

n@a,B) < 10714 (71)

In addition, as previously mentioned, if any interaction would be ex-
pected to give an anomalous Eotvos ratio, it would be the weak inter-
action. The weak force has a long history of upsetting supposedly
well-established assumptions in physics; in 1956, physicists were
profoundly surprised to discover that the weak interactions violated

the parity conservation symmetry and the charge-conjugation symmetry
obeyed by the strong interactions. Increasing the accuracy of the

Eotvos experiment would conceivably demonstrate a similar weak-interaction

violation of the principle of equivalence of inertial and passive mass.
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3. Disciplinary Relationship
a. Brief history of related work

The field of experimental gravitation was for many years restricted
to the study of the three famous tests proposed by Einstein himself(lg)
to verify his theory of general relativity. The only three measurable
differences between Newton's law of gravitation and Einstein's theory
were the gravitational red shift of stellar spectral lines, the bending
of starlight passing the limb of the sun during the solar eclipse, and
the non-Newtonian part of the precession of the perihelion of Mercury's
orbit about the sun.

Recent advances in technology have opened up several new areas of

(20)

experimental investigation. Using the Mossbauer effect Pound and

Rebka (21)

earth's gravitation field. Using new radar technology, Shapiro

measured the violet frequency shift of light falling in the
(22)

has measured the gravitational time delay in the return of a radar
pulse from a planet on the other side of the sun. Weber(23) appears
to have detected gravitational radiation. Future experiments include
that of Fairbank(24), who, acting on a proposal by Schiff(25), is
preparing to use a super-conducting gyroscope to measure the non-
Newtonian precession which is predicted by general relativity.

(26)

Kleppner, Vessot, and Ramsey were until recently contemplating the
use of a hydrogen maser to measure the effect of the gravitational
potential on the rate of a clock.

Curious enough, it seems that the fundamental assumption of
Einstein's theory of gravitation cannot be directly tested, although
the agreement of the above-mentioned experiments with the theoretical
predictions can certainly be regarded as an indirect test. Einstein's
theory of general relativity is based on the so-called "strong prin-
ciple of equivalence", which states that in an infinitesimal region
of space-time, it is impossible to distinguish between a gravitational
field and an acceleration of the coordinate frame. Treating gravita-
tional fields as equivalent to accelerating coordinate systems leads
fairly directly to the curvature of space-time which Einstein's theory
holds responsible for all gravitational effects(lg). It is impossible
to measure the space-time curvature, since the measurable numerical
predictions of Einstein's curved-space theory are exadtly reproduced
by Thirring's flat-space formulation of gravitation(27). In the latter
theory, the gravitational field is interpreted as distorting measuring

instruments while leaving space-time itself unaffected. The flat-space
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formulation does not depend on the strong principle of equivalence, but
does require the "weak principle of equivalence", which states that

a body's inertial mass, measuring its resistance to a known force, is
exactly equivalent to the body's passive gravitational mass, which
measures its response to a given gravitational field. The weak principle
of equivalence, which obviously follows from the strong principle, says
that the ratio

- mpassive
Y = (72)

inertial

is a universal constant for all materials (taken by convention to be
unity) regardless of composition. We are thus led to the conclusion
that we can come no closer to testing the basic postulates upon

which experimentally-verified theories of gravitation are based than
an examination of the validity of the weak principle of equivalence.

A classic series of experiments aimed directly at testing the

weak principle of equivalence was begun around 1890 by Baron Roland

(28) His apparatus consisted of a torsion balance with

von Eotvos.
a different material attached to each end of the beam. When in equi-
librium at latitude A, the materials were acted upon by the

(3.39 cos A sin )\)cm/sec2 acceleration due to the earth's rotation

on its axis (A is the geographic latitude) and by an egual and opposite
component of the earth's gravitational attraction. If we label the

two materials at opposite ends of the beam as A and B, then, at res-
pective positions R, and Ry relative to the center of the earth, the

center of gravity R of the balance beam is
R = Im (AR + m (B)RG]/(m,(B) + m (B)). (73)

The component of the torgue on the beam acting perpendicular to the

earth's surface is given by
T = [m; (A)-m, (A)](Ry-R)x (~ux (uxR,)) *R/[R|

+ Imy (B)-m (B)] (Ry-R) x (-ux (uxRp) ) *R/|R] (74)

where w is the angular velocity of the earth's rotation and m, and mp
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refer of course to the inertial and passive gravitational masses of the

materials. If the apparatus is aligned so that wsR, = WeRy, We have

m, (B)m_(A) - m_ (B)m, (A)
= 1 P p 1 R
T = n(A,B) [ 2(mp (A)+mp BY) ] [Q(I}Bxle) (w I}A)/]I}H

(75)

where we have defined the "Eotvos ratio", n(a,B) as
mp(A) ) mp(B)
mi(A) mi(B) (76)

1 mp(A) mp(B)
7[mi(A) + mi(B)]

n (‘A,B) =

The Eotvos experiment therefore consists of the determination of
the measurable quantity

Ya~Y
n(a,B) = 2 (77)

where in the second line we have arbitrarily chosen our mass units so
that mp(B)=mi(B). In the original experiment n(A,B) was measured by
comparing the equilibrium position of the torque arm in one orienta-
tion to that when the supporting frame was rotated 180°. If n(Aa,B)
were non-zero, the torque would change sign under the 180° rotation
and give rise to a slight difference in the equilibrium orientation
of the torque arm relative to the supporting framework. A represen-
tative upper limit on the value of n(A,B) for a variety of pairs of
materials as determined by this mathod is 10—9. Thus the experiment
of Eotvos provides quite a respectable experimental basis for the
theory of gravitation.

As technological developments have allowed new experiments in other
areas of gravitation, they have also permitted improvements in the 7
Eotvos experiment. In a series of measurements ending in 1964, R.H.

(29)

Dicke and his collaborators were able to reduce the upper limit

45



on n (Gold, Aluminum) to one part in 1011. This experiment used a

balance beam similar to that of Eotvos, but suspended so that the 0.59
cm/sec2 centrifugal acceleration of the earth's motion about the sun
was counteracted by the equal and opposite gravitational attraction
toward the sun. The rotation of the earth on its axis introduced a
characteristic 24-hour period into the torque which would act on the
balance beam if n(A,B) were non-zero, thus facilitating the data analysis.
The paper describing the experiment mentions that it was generally
difficult to obtain reliable data continuously for more than three
24~-hour perids because of earth-based disturbances, such as construc-
tion activity and rapid weather changes, and because of gravity-
forced convection, even in the reduced atmosphere of the highly-

evacuated pendulum environment.
b. State of present development in the field.

The technology appears to have advanced to the point where the
experimental upper limit on n(A,B) can be significantly reduced. In
particular, the possibility of performing the experiment in the space

(29)

environment originally suggested by Dicke , permits the elimination
of the earth-based noises and convection problems which plagued

Dicke, the utilization of free-fall techniques unavailable on earth, and
full exploitation of the 700-800 cm/sec2 centrifugal and gravitational
acceleration acting on a body in earth orbit(30). Combining these
advantages with those of modern control systems, measurement devices,
and data reduction techniques, we hope to demonstrate that a device can
be constructed in the near future which will be capable of decreasing

the upper limit on n(A,B) by several orders of magnitude.

4. Experiment Approach
a. Detailed description of the experiment concept.

We now present a possible method of improving the Eotvos experiment
by adapting it to the space environment. Our method makes use of a
large rotating mass of one material, an oscillating small mass of the
same material and an oscillating small mass of a different material.
We proposed to use servo devices to control the various aspects of the

suspension and detection systems. The resulting short time scale of
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the potential Eotvos oscillations will, it is hoped, reduce problems
of long-term stability of the instrument. The limiting error source
appears at present to be thermal noise, yielding at normal tempera-
ture, an upper limit on n(Au,Al) of about 10_14. With ‘this accuracy,
we hope to demonstrate whether or not the weak-interaction binding
energy of nuclei possesses an anomalous Eotvos ratio.

As shown in Figure 8, the proposed system consists basically
of an aluminum wheel, spinning with an angular velocity w, the direc-
tion of which lies along the normal to the plane of a low, circular
orbit about the earth. This orientation is, of course, stable under
gravity-gradient effects. A sensitive accelerometer is mounted
radially in the plane of the wheel; it contains two independent proof
masses, one of gold and one of aluminum, suspended coaxially.

Since our technique directly measures the differential Eotvos
force instead of converting the small forces involved into torques as
in the earth-bound experiments.of Eotvos and Dicke, the gravity-
gradient forces can for physical reasons be directly distinguished
from the Eotvos forces during the measurement process. This cannot
be done as readily in the former experiments.

Let mi.and m.p be the inert and gravitational masses of the gold
proof mass, and r its position vector relative to the center of mass of
the system. It is assumed that the mass of the wheel is so large that

motion of the proof mass does not appreciably shift the position of the

C.M, within the system. Since the axis of ithe accelerometer may not,

in general, pass through the C.M., we write

r=2x+4d (78)
where 4 is the position vector of the null of the accelerometer. The

equation of motion along the accelerometer axis is then

_ 2. i o
m;X = -m.q + m o0 rei + (mpg + migo) i mig i (79)

where m,q represents a servo restraint force applied to the proof mass,
4 is a unit vector along the axis, g is the gravitational field of the
Earth at the proof mass, 90 is the inertial acceleration of the C.M. due
to gravitation, and £ is any disturbing acceleration applied to the

C.M. In this equation, terms such as that due to the Coriolis accelera-

tion, which is always perpendicular to the axis, have been dropped.
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Figure 8 The Orbital Eotvos Apparatus
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if the passive-inertial mass ratio of aluminum is taken as unity, and
if it is assumed that there is too little gold or other non-aluminum
material in the system to affect the overall Eotvos ratio significantly,
then

gp = © x (2xR) = +RQ® (80)

=

where 9 is the instantaneous orbital angular velocity of the system
(and is a function of R) and R is the geocentric position vector of the
C.M. If we consider the earth as a perfect sphere of mass M, the

gravitational acceleration at a distance X from the center is

g = -GM §/|§]3 = —ggz (81)
_ -8 3 -1 -2 . . . . -
where G = 6.6732x10 cm~gm T sec is Newton's gravitational constant.
We now expand the gravitational term in Eg. (79) about the C.M.
position R by letting X = R + r. The result is

GM (R+r) 5
mgtm.g, = [m.—y —— + RO (R) ]
p2 120 i |B+§|3 o~
_ 2 ) 2
= -m; Q7 (R) [nR" + y(r-3R(r-R)/R") + ...] (82)

where Yy = mp/mi is the passive inertial mass ratio of gold and
n £ n(Au,Al) is the Eotvos ratio for gold and aluminum. Substituting
Eg. (81) in (99), we have

% = ~gro?x-ngy+i-v0? [1-3R72 (R+1) 21x-£-1
+(w?-v?)a 143872 (R+) (R-1) ¥0° (83)

The term in @-% is a constant, which may be minimized by choosing d

as nearly as possible along the spin axis of the wheel. Since this is
nominally along the orbital angular momentum, this choice also minimizeé
R-d. Then, since R and g, are rotating at the orbital angular wvelo-
city Q, and i is rotating at w about the same axis, the equation becomes
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1

: v9%cos 2 (w-R)tlx = ng cos (w-Q)t-f' (84)

[\S1Y¥8)

§+q—[w2+ y92+
If we neglect constant terms, and assume £ lies in the orbital
plane, £' is given by YQZ

2,1/2

f' = £ cos{w-N)t+ 2)

2 o°(al+a cos [2{w-9)t+a] (85)
where dl'dZ are the components, if any, of 4 in the plane of the wheel,
and tan o = d4,/4,.

2771 21

If g is a simple spring restraint (say, g = kx, k > w+5

zyﬂz), then

Eq. (84) is recognized as a standard Mathieu equation.
For the aluminum proof mass (which has vy = 1), an identical
calculation yields the equation of motion
2 2

- D 1 3
x' + q fw™ + 5 [ + 5

chos 2{w=-2)tlx' = 0 - £! (86)
On the right-hand side of this equation, it is assumed that the null
positions of the gold and aluminum proof masses are identical, a condi-
tion which should be realizable to within a fraction of the wave-
length of 1light, because of the coaxial design.*

The quantities which can be measured directly in this system
are %, X' and y = x-x'. By subtraction, the equation of relative mo-

tion of the two proof masses is, to an entirely sufficient accuracy,

y—[w2+%Q2+%chos 2(w-Q)tly+tg-q' = ng cos(w-Q)t (87)

The orbital angular velocity is of order 0.01 rpm, whereas the wheel
angular velocity may be 10-100 rpm. The time-varying coefficient in
Egs. (86) and (87) is then 6 to 8 orders of magnitude smaller than w2,
and may be neglected in the initial stages of the servo design (although
it must be taken into account in the final analysis, since it may cause

instability). The Laplace transform of (86) is then

* Since, from Egq. (85), a deviation of the null positions of the two
proof masses results in a double-frequency input signal, it may be
necessary to design a separate, slow servo loop to maintain coincidence.
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[52+A(s)—w2—% 021x' = £ (88)

where the transform of gq' has been chosen as A(s)x'. The transform

of g is chosen to be
g(s) = B(s)y + (1+8)A(s)x’ (89)

which,: from Egs. (87) and (88), gives

1
Yy = [e-H(s)f'] (90)
[s2+B(s)-w2—92/2
Here
e = ngs (91)

52+(w—9)2

is the Laplace transform of the very small Eotvos acceleration which
it is desired to detect, and

SA(s)

H(s) =
[s2+A (s)~w2-0%/2]

(92)

The function of the aluminum proof-mass system is to filter disturbing
accelerations, thus giving only the differential displacement y as the
output. Common electronics can be used for A(s) in both the x'- and
y-loops, so that the value of § depends only on the difference in the
sensitivity of the force transducers used to command the two proof

masses: a value as low as 0.001 should be attainable. The optimum choice

for A(s), consistent with stability in the x'-loop, must await speci-

fication of the statistics of the disturbing accelerations and is thus

dependent on the overall vehicle design. Reducing the disturbing ac-

celerations essentially to zero still leaves the gravity-gradient-
induced, double-frequency component of f' in Eg. (85). Reducing this
component to lO—llg, the present lower limit on the Eotvos acceleration,
would require that the accelerometer null lie on the spin axis of the
wheel with an accuracy of about 50 microns. The design should be such
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that the disturbance-filtering capability of the proposed system will
allow the apparatus to be mounted in a low-pass suspension to the
spacecraft structure. 1In this case, the spectrum of f£' should be con-
tained in narrow bands around (w-f) and 2(w-2), a situation allowingb
H(s) to be designed for strong rejection of the disturbances.

It is a simple matter to assure stability of the x'~loop of this
system, but stability of the y-loop may be affected by the time-varying
term in the equation, which can also cause spurious responses which
might be mistaken for the Eotvos effect. To investigate this, we
assume that the disturbing accelerations have been effectively reduced
to an acceptable value, rewrite Eq. (87) as

§ + [w2 - Acos 2(w=Q)tly = ng cos (w-2)t (93)

where w2 has the Laplace transform

w2(s) = B(s) —wz - % 92 (94)

and A is used in the time-varying coefficient to allow for the possi-
bility of computing a correction term in the servo from external measure-
ments, if this should prove necessary.

For maximum resonance, the first choice of w2(s) is apparently
a real quantity

w2 = (w-0)2 (95)

but such an ideal, infinite-Q case results in one of the unstable
regions for solutions of the Mathieu equation(3l). Examination of the
stability boundaries shows, however, that stability can be achieved

by operating off the resonant frequency by a fractional amount

A
(w-8)°

w- {w~Q)

=) (96)

-}

In order to maintain the desired response to the Eotvos driving force,
the overall Q of the system must then be limited:

Q < 4(w-0)2/A (97)
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If stability is assured, and the time-varying term is sufficiently small,
its effects may be calculated by a perturbation technique; choosing

w2(s) = sz+2us (98)

with 4 = w/2Q. Neglecting starting transients, Eq. (93) may be written

to first order as

§+2u§+w2y = (n)glcos(w-0)t+Ab cos 2(w-2)t cos ((w-R)t+0)

= (n)glcos(w-Q)t+ %E cos ( (w-Q)t-0)+ %9 cos (3 (w—-N)t+0)
where i

b= [(wo-(w-2)%)% + (w(w-9)/0)%171/? (100)
and

tan 8 = -2y (0-0)/ (Wo- (0-0)2). (101)

In order that the Mathieu term may be regarded as a perturbation,

it is necessary that

= << 1 (102)

or, for operation near resonance,

Q << 2(w-2)%/0 (103)
a more stringent limitation than (97). If A has its natural value
% 92, and w is taken as 100 rpm (10.47 rad/sec), (103) implies that the
Q must be small compared to 109. On the other hand, a reasonable wvalue

of Q, within the limits of mechanical feasibility, is 105; this would
allow starting transients to die away in a period of order 5 hours.
The conclusion is thus that it is unnecessary to compute a compensa-
tion in the servo for the Mathieu term.

b. Method'and procedures for carrying out the experiment

While these are roughly outlined above, they remain to be worked
out in detail. However, the following considerations are applicable.
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In the steady state, the amplitude will be given by -

y=299 (104)
(w-§2)
Thus we see that with n = 10-11, a Q of 105 and a spin or 100 rpm, the
-§mp1itude of the displacement of gold proof mass is of the order of 103
A or 10 %cm. However, displacements of 10 1 cm have been detected in
the laboratory by laser interferometry(Bz). This implies a limit

for the accuracy of the comparison of gravitational to inert mass

of one part in 1017. While it is undoubtedly impossible to approach
this displacement accuracy in an operational system, it appears

that the displacement detector will not impose a design limitation.

The principal transverse force on the accelerometer (a force which
must be opposed by the suspension system) is that due to Coriolis
acceleration. If k is the cross-coupling between the support and
sensitive axes of the accelerometer, the disturbance due to the support
will be less than the force the device is intended to measure if Q<%.
Current practice with electrostatic accelerometers gives a value for
the cross-coupling of about 10—5. This value could certainly be im-
proved in an accelerometer designed specifically for the space en-
vironment, but cross-coupling could impose a limit on the maximum
useable Q.

There are many other error sources which have not been considered
here, such as nutation of the wheel, deviation of the spin axis from
the direction of the orbital angular momentum, eccentricity of the
orbit and deviation of the null point of the accelerometer from the
spin axis of the wheel. The analysis which has been carried out to
date, however, indicates that this device may nevertheless offer
a technique for increasing the sensitivity of the Eotvos by three to
five orders of magnitude.

c. Measurements to be made and ranges of numerical values expected

An orbital Eotvos force just at the outer limit of detectability
of the most refined experiment to date (Dicke's) will yield a displace-
ment of the gold mass relative to the aluminum proof mass of about
103i amplitude with an angular velocity of the aluminum wheel of
10 rad/sec. This displacement may be measured by laser interferometry.
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The result is expected to be a continuous real-time record of mass-
displacements, with steady-state, after a short disturbance, attained
3 sec), with a Q of 105. Data~taking
could be automatic and require only occasional monitoring.

after an orbital period (V5 x 10

d. Method for analysis and interpretation of data

This has yet to be worked out in detail. The aforementioned
mass~displacement record would be analyzed for the presence of other-
wise unaccounted-for sinusoidal displacement components having that
period corresponding to the difference of the disc angular velocity
relative to the orbit andkrelative to the earth.

e. Prime obstacles and uncertainties which can be anticipated

The system may of course turn out to be infeasible in the course
of development. In any case, it seems unlikely that it will be possible
to carry out adequate performance checks of the accelerometer in a
terrestrial environment, so a test of this subsystem may be regarded
as a preliminary experiment to be conducted in a manned space labora-
tory. 1In view of the expense and difficulty of providing a "pure
gravity orbit" windshield for the system, if that should prove necessary,
it may also be desirable to carry out a manned orbital test of the
complete wheel assembly, before proceeding to the design of such
ancillary apparatus, even if it is necessary to launch the actual,
complete experiment on an unmanned vehicle. By that time, however,
it may well be possible to have the experiment assembled and calibrated
in a manned orbital facility, and then launched gently into the
required orbit. A development program making optimum use of both the

manned and unmanned capabilities of the national space program offers
the only feasible approach to the design of mechanical systems of the
sensitivity contemplated here.

In the steady state, the amplitude of the displacement due to the
Eotvos force is calculable as follows. At room temperature, with a
proof mass of 5°'gm, equipartition of thermal energy produces an oscilla-
tion of amplitude 1078 cm; the threshold of suit?§%? displacement

detectors (e.g., using laser homo-dyne techniges is several orders

of magnitude lower than this. This thermal limit corresponds to an

anomalous gold/aluminum Eotvos ration of 1 , a value which could
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‘be improved by an order of magnitude or so by reducing the temperature
of the appartus and/or increasing the size of the proof masses.
Further improvement is possible by decreasing the wheel angular velo-
city and increasing the Q. '

These considerations lead to an expected threshold of about 10—15
in measurement of the anomalous Eotvos ratio with this apparatus, if
the effective disturbing forces can be reduced to a sufficiently
small value. Whether this is possible in a conventional spacecraft
(i.e., without employing the pure gravity orbit technique) depends
on (i) the spectrum of disturbances in the spacecraft and the rejec-
tion characteristics of the dual accelerometer servo; and (ii) design
of the accelerometer proof mass suspension to minimize coupling of
support forces into the sensitive axis.

f. The significance of the astronaut in performing the experiment

A technically-trained astronaut in a space station will be able
to conduct development tests in free fall of parts of the apparatus at
relatively low cost; the resultant confidence in the design may
substantially simplify the engineering. The astronaut can also be
used to set up, calibrate, and deploy the experiment in its operating
environment, so that it is not necessary to design complex caging
devices to enable it to withstand the stresses of launch. Finally, it
will be possible to monitor the experiment at intervals to effect
routine maintenance, to repair or replace defective parts, to gather
data records, and perhaps to modify the equipment in the light of
experience with the experiment. The reliability specifications may
then be relaxed to a level comparable to that of high-guality ter-
restrial systems, a factor which can by itself reduce hardwaré costs
by an estimated factor of 10.

5. Baseline or Control Data

The following list identifies by title support studies and con-
current investigations that must be conducted to augment the flight
investigation. The requirements for these studies are discussed in
the foregoing sections.
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(1) study of the deliberate modulation of the "elastic constant"
of the test masses to assure accurate location of the equilibrium
position.

(2) Study and computer simulation of a system to keep the disk's
spin angular velocity vector in a fixed orientation with respect to
the orbital angular wvelocity vector

(3) Engineering study and computer simulation of data-handling
systems.

(4) Computer servo-design study, to determine optimum Q for
test-mass motion.

(5) Study, by computer, of the stability of the system,
especially its response to expected disturbing accelerations with
various mounting methods.

(6) Computer simulation of the overall experiment, creating
artificial data.

(7) Computer simulation of data-processing methods.

(8) Experimental and theoretical study of a suspension system
for the test-masses (including superconductive suspensions).

(9) Experimental study of a laser-interferometer for measuring
test-mass position, including new methods of application.

(10) Engineering design of a calibration scheme for positioning
test-masses concentrically with the large disk.

(11) Engineering design of power-transfer system from spacecraft
to the spinning disk.

(12) Analysis of resolution of disturbances and signals with fre-

gquencies near those of Fotvos force.
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SECTION IV
Summary and Conclusions

In the period to 1 April 1971 we have continued to study several
proposed space experiments involving the measurement of gravitational:
inertial forces. Specifically, these are null-experiments with res-
pect to Einstein's General Theory of Relativity and, as such,
require an unprecedented degree of precision. ‘This precision may be

attainable by the proper exploitation of the outer -space environment,
which is now available.

A. Measurement of Variations of the Gravitational Constant

We have examined, with varying comprehensiveness, four devices
conceivably capable of measuring the possible variations (with gravi-
tational potential) of the Newtonian gravitational constant. Some
of these devices are capable of operation only in a "zero-g" labora-
tory as approximated by a spacecraft in orbit about the earth or the
sun; and all of them require the benign aspects of spéce environment
if they are to achieve the required resolution. The space environment
is also required to provide a substantial variation in the gravitational
potential, for the comparative measurements.

The four devices are: 1) the Gravitational Clock, where a set
of non-rotating attracting masses provides a gravitational potential
well for the oscillation of a test body rotor and the relevant measure-
ment is the frequency of oscillation of the rotor; 2) the Beams
Balance, where the attracting masses are rotated so that the test body
rotor is subjected td a constant torque, and the relevant measurement
is the angular acceleration of the rotor; 3) the Centrifugal Balance
Sphere, where a homogeneous sphere provides gravitational attraction
for three test objects which are constrained to the axis of internal
tunnels, and the relevant measurement is the angular rate required of
the sphere to keep the test bodies axially motionless and; 4) the
Synchronous Orbit sphere, where a homogeneous sphere provides gravi-
tational attraction for one test body which is unconstrained in an
internal tunnel, and the relevant measurement is the angular rate
required of the sphere to keep the test body from colliding with the
sides of the tunnel.
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The Gravitational Clock is a possible approach which can be opera-
tionally checked in earth orbit, but would require a solar orbit for a
viable experiment. The primary difficulties are: 1) the harmonicity
of the restoring force; 2) the requirement for cryogenic temperatures;
3) the development of a superconducting isotropic suspension with a
Q > 106; and 4) the development of an adequate charge control technique.

The Beams Balance also is a possible approach which can be opera-
tionally checked in earth orbit, but would require a solar orbit for
a viable experiment. Its suspension requirements are considerably
relaxed from the Gravitational Clock, but would also require operations
at cryogenic temperature} and a charge control technique. A preferred
configuration would utilize two Balances back-to-back to eliminate
the need for an inertial reference, and would utilize hemisphere masses
rather than spheres. An experiment to achieve a resolution of 1 part
in 1010
duction of 132,000 data points. Of the four devices studied, the Beams

in detecting AG/G would take about 14 hours and require the re-

Balance has the best potential for detecting variations in the gravita-

tional constant with a resolution of 1 part in 1010

, but still has many
instrument design requirements that are unprecedented.

The Centrifugal Balance Sphere and the Synchronous Orbit Sphere
appear to have identical serious flaws. In order to avoid extraction
of the test masses, because of gravity gradients, the sphere must be made
of a very dense material (viz. tungsten). In order to avoid extraction,
because of spacecraft acceleration (drag, angular motion), and in order
to avoid excessive miniaturization of ancillary equipment, the sphere must
have a radius on the order of 10 to 20 cm. This provides for a minimum
device weight in the range of 200 to 800 lbs. Additionally the equip-
ment must be operated at liguid helium temperature; and the tolerances
on the radial and axial position of each test mass in its tunnel is

critical.

B. Measurement of the Eotvos Ratio

Although the major effort in this reporting period was devoted to
the G-Constancy Experiment, the analytic derivation of the major factors
of the Eotvos Experiment, as presented in Section III, provides a high
degree of optimism for this proposed space experiment. This approach con-
consists of measuring the differential force between two materials with
differing proportions of weak interaction binding energy (viz. aluminum
and gold), which have identical orbital conditions. This force is
measured by observing the individual amplitudes of oscillation of the

test bodies (near resonance) in a rotating structure.
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The anticipatéd resolution of the measurement of the Eotvos ratio
(1 part in 1014) will provide a highly accurate check (1 part in 103)
of any anomaly in the equivalence of inertial and passive gravitational
mass. Further, it will significantly decrease the possible anomalous
contribution Which could be attributable to the other, larger, sources
of atomic mass. This result will place a significant restriction on
the viability of any gravitational theory. The proposed experiment
is a unique exploitation of space operations in that the effect being
observed is enhanced in earth orbit, and the external disturbances

are reduced, compared to an earth based experiment.
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ABSTRACT

This research note presents an elementary analysis for
an experimental apparatus. In order to detect changes in the
gravitational attraction between two or more test bodies,
the experiment uses inertial angular acceleration as a balance
torque (in a D'Alembertian sense). The Dicke~Brans theory
General Relativity predicts a different value for the Newtonian
Gravitational Constant, G, in regions of different gravitational
potential. This difference is very small for gravity fields
of objects in the solar system. For an initially remote observor

approaching the earth, the maximum difference is

AG

I
& v -7 %10

This note contains a discussion of the problems associated
with adapting an experimental concept of J.W. Beams to an ap-
paratus that can be used in a spacecraft. The experiment will
detect AG/G as the craft orbits to regions of different gravi-
tational potential. The chief results of the analysis are

1. Establishment of an idea of the size (and mass)

of the experiment

2. Isolation of problems to be considered in

subsequent analyses.
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I. Detection of AG/G

The Dicke-Brans scalar-interaction theory in General
Relativity predicts a different value for the Newtonian Gravi-
tational Constant, G, in regions of different gravitational
potential. This effect is very small for gravity fields of
objects in the solar system. For an initially remote ob-

server approaching the earth, the maximum difference is

28 -7x107Hh
To make a measurement of AG/G, we require instrumentation of
unprecedented sensitivity. The Measurement Systems Laboratory
(MSL) has been working on the design of an apparatus that can
be used in a spacecraft to detect AG/G as the craft orbits to

regions of different gravitational potential.

In general the experimental apparatus, as presently con-
ceived (at MSL and elsewhere), will involve a set of precisely
"known test-masses disposed in a precisely known geometry. In
one version, gravitational forces between the test masses are
exactly balanced by some other calibrated forcest (presumably
not subject to change with gravitational potential). These
calibrated forces can be adjusted to account for Dicke-Brans
changes in the gravitational forces. The balance is detected
by observing the relative displacements of the masses. In a
second version, the masses are arranged to permit relative

*
periodic motion, either libration or rotation.(l)'(z) With

*Superscript numbers refer to the list of references

tWe include here and throughout this note the notion of inertial

reaction as a force in the D'Alembertian sense -
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gravitational attraction as the restoring force (alone or in

(3)y,

combination with some other calibrated force the period

of the motion is related to G.

This note is concerned with a few aspects of the force-
balance version. It seems reasonable to assume that the most
precise force balance is that in which we counteract gravita-
tional attraction with an inertial force.* Since inertial
forces can be determined by the direct measurements of mass,
length, and time, we then have the possibility of making an
absolute determination (in terms of present mass, length, and
time standards) of G (at a given point) in the process of
detecting AG/G.

Each of the three inertial forces that arise in rotational
motion has been suggested for a balance force. Centrifugal
force as a balance is the design basis for a device consisting
(in part) of a massive sphere of uniform density, p, and a
small test mass, m, free to move without friction in a radial

(4)
tunnel.
¢, such that

The sphere is given an inertial angular velocity,

2

m ¢°r = TpPp Grm

W

and then we can get

Coriolis force (in the form of a gyroscopic torgque) also
has been considered, as in the use of a Pendulous Integrating

Gyro Accelerometer (PIGA)T mounted on a massive sphere(s).

* The use of inertial forces is in contradistinction to establishing
the force balance with electromagnetic, elastic, or other physical
forces.

T An accelerometer used in inertial guidance and navigation systems.



Here the balance equation is

HY = K G
in which
H = a constant gyro angular momentum
@ = an inertial angular velocity, applied transverse

to H, to provide the torque balance

K = a constant determined by the mass of the sphere,

the pendulosity and geometric factors.

The third inertial force (torque) reaction to angular
acceleration, has been used by J.W. Beams and others (all at

the University of Virginia) in an experiment to measure the

absolute value of G.(G) The force balance equation is
Ia;:__;B(];éE.)
in which
1 = moment of inertia of a pivoted test body
Q = relative angle between the test body and a set

of known attracting masses

P.E. = potential energy (proportional to G) of the test
body in the field of the attracting masses

$ = an inertial angular acceleration imparted to

the whole apparatus to effect a torque balance.

In this note we are specifically concerned with some preliminary
thoughts on adapting the Beams' method to a space experiment for
the detection of AG/G.
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II. Beams' Experimental Concept

Newton's Gravitational Constant, G, is measured in the
Beams' experiment by balancing a gravitational torque acting
on a pivoted test body with an inertial angular acceleration.
As shown in Fig. I, the test body is torqued by the gravitational
attraction of two sphere, while an equal and opposite torque
is provided by accelerating the table that holds the apparatus

so that the relative displacement, 6, remains constant.*

The theoretical gravitational torque can be calculated
to great\precision (except for the constant factor G) since
spheres of uniform density are used and the dimensions of the
experiment are determined accurately. The dimensions are held
to their measured values by running the experiment in a tempera-
ture controlled environment. The angular acceleration of the
table is proportional to G, so the data taken are the time
increments for successive rotations. These time increments are

then used to calculate the acceleration.

The test body is, of course, subject to gravitational torques
due to other objects than the spheres. However, by the conserva-
tive nature of gravitational fields, external (to the table)
stationary masses have effects that are averaged to zero for
complete (relative to the laboratory) revolutions of the table.
The data taken are then the time increments for complete revolu-
tions. Torques arising from masses (other than the spheres) on

the table, as well as the effects of the fibre suspension are

* The situation is analogous to the case of linear motion when
we have a test mass, m "freely falling" in the field of another
body, M. The relative separation between m and M is maintained
constant by accelerating M so that, in effect, m is "chasing"” M.
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calibrated out by running the experiment with and without the

spheres on the table.

The Beams' experiment has been built and operated at the

University of Virginia. Experimental results have confirmed
the presently accepted value of G (known to one part in 500).(6)
Further results show that the apparatus gives consistent measure-

ments to one part in 34,000 or about 3 parts in 10—5.*

ITTI. Adaptation of the Beams' Concept to a Space Experiment

For operation in a spacecraft, the most obvious change
in the Beams' device is the suspension of the test body. In
view of the single-degree-of-freedom nature of the experiment,
we require a suspension that permits the test body to rotate in

a set of bearings something like a watch balance wheel.

bearings

N\
test btﬁy\G O .
_'\/__'/

Since 6 is to be held constant during the experiment, the
bearing need only be "frictionless" over a small range around

the operating value, ep.+

*Verbal communication with J.W. Beams.
+Suspensions that can be considered are

1. Double torsion fibre (7)

2. Magnetic - Servo controlled electromagnets (8)

3. Magnetic - Diamagnetic substance at room temperature(g)(l)
4. Magnetic - Meissner effect at cryogenic temperatures

5. Electrostatic.

Of these, 3 and 4 seem the most promising, at least for an initial

analysis.
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Before the selection and design of a suspension system,
we need to answer some questions about the size, mass, and
geometry of the experiment. Most of the remainder of this

note is concerned with these preliminary design guestions.

IV. Preliminary Design Considerations

One of the compelling features of the Beams' concept is
that external stationary masses have effects, which average
to zero for complete revolutions of the experiment. In a
spacecraft, however, we will have the motion of astronauts
and the changing mass of the craft as fuel is expended, as
well as a changing position in the gravity gradient field
of the orbited body. To minimize the effects of these moving
objects, we can consider making the test body of a number of
symmetrically arranged arms. To show this, we make some
calculations based on the idealized representation of the arms
by massless rods of length, a, with point masses, m, at the

ends. In the sketch we show a disturbing mass, M, (taken

as a point or spherical mass for simplicity) at a distance zd

from the pivot. The potential energy of m in the field of M is
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P.E. = mMG (1)

2 2
VE +Zd -2a2dcos60

For the case of n symmetrical arms, we have

n
P.E. = ) mMG - (L+h®-2h cose,) /2 (2)
i=1 d
in which
- a
h = +—
4
and
- i
= 4 =
ei 90 5 (360) degrees.

We can expand the radical in (2) in terms of Legendre polynomials

1

(1+h%-2h cos6.) %2 = § (W)*P_(cose.).

1 K 1
k=0
Equation (2) becomes

n o0

p.e. =€ J ] (n*p, (coss,). (3)

d i=1 k=0

The first few polynomials are

Po(cosei) =1
Pl(cosei)_= cose:.L
_ 1 2, _
P2(cosei) =3 (cos ei 1)
P.(cosb.) = 1 (5 cos3e -3 cos8.,)
3 i 2 i i
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_ 1 4 _ 2
P4(cosei) =3 (35 cos ei 30 cos ei +3) .

Presuming that the disturbing mass is at some greater distance

than the arm length or h < 1, we write (3) out to the precision

of nt.
n . n n
p.E. = ZC [ ] Pylcose,) +h J P (cos8;)+h’ ) B, (cos8,)
a li=z i=1 i=1
3 7 4 3
+h” ] Py(cosb.) +h D) P4(cosei)] .
i=1 i=1

Substituting the expressions for the Pk's and rearranging the

terms gives us

2 4 n
p.E. = MG [n (lw o, é-}—1~—->+ ) cosGi(h— 3 h3)
i=1

n ‘ n
+ ) cos39. (%‘h3\ + ) cos4ob, (E% h4) ] .
i=1 * i=1 *

For n=3, the summations give us*

*We ignore n=1 and n=2, since in the first case M gives a direct
torque and in the second case the gradient of M's field will

torgue the arms.

»



2
. mMG n? 3%\, 3/3 .2 30 4)
5 3) 9 (35 .4

+Zcos 390(7 h + §.(§_ h )]

and for n = 4,
2 4
P, = WG [y 100 3 )y, 03,2 3040
12 , 1 35 .4
+ (8 + 5 cos490)( e h ].

To determine the torque exerted by M's field, we have

T = Torque = 860 .

For n=3,

_ —mMG 45 . 3 .
Tn=3 = '-——/Q'I—d—— 'g— h¥sin 360 (4)

and for n=4,

_ -mMG 35 ,4 .
Tn=4 = ld Z—-h sin 460. (5)

With the disturbing mass, M, at a distance, zd, we see that the
peak torque on the 4-arm device is about 3/2 h of that on the
3-arm device. We conclude that the 4-arm device has a distinct

advantage (if h < 2/3) especially in the changing mass environment
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of a manned spacecraft.

V. Geometric Design Considerations

Increasing the number of arms reduces the sensitivity to
external fields -- yet we can not increase the number of arms in-
definitely because we must still apply a torque by placing our
calibrated masses in some sort of known juxtaposition to the

moving arms.*

For our simple analysis, a pivoted device consisting of
n symmetrically disposed massless rods tipped with point (spherical)
masses, m, are attracted by n symmetrically disposed fixed
spheres, M. The sketch shows the configurations to be analyzed.
We can determine the torque expression for these configurations

by differentiating (2) with respect to & and multiplying by n

two arm

three arm four arm

*In the absurd extreme we could increase the number of arms until
we had a wheel. Then no torques could be applied, disturbance or
otherwise. We obviously have a design "trade-off" between sensitivity

to external masses and the efficient use of the calibrated masses.
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(for the n M's). Equation (2) (with 2., + &) gives

d
, i
MG n h sin (6 + = 360)
T=n - 2 T 373 (6)
i=1 [1+h“-2h cos (6+ = 360)1]
in which

h = % , & design parameter
a = length of the pivoted arm

£ = distance from the pivot to the calibrated attracting

mass.

For given values of our design parameter, h, we can cal-

culate an operating angle, ep’ for maximum torque. Setting

) + 12 . (7)

For other values of n, we must calculate cosep by numerical methods.
Fig. II shows the results of these calculations. Fig. III gives
the same information in a more instructive manner. If M, the
attracting mass, lies as shown, then the moving mass, m, must lie
on the curve as shown if dt/d6 = 0.
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i one arm
two arms
_______ three arms
— - e e LOUr Arms
m
2
Y
PIVOT
FIG. III. CURVES ON WHICH m MUST LIE FOR g-LI‘— = 0
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In addition to the desirability of placing m so that the
torque is a maximum (for a given h}), it is also important to
operate at an angle Gp, the angle at which the magnitude of
the torque is relatively insensitive to changes in 6. In general,
AB will be the error signal to the servo that accelerates the
experiment.* Operating at ep, we can make an estimate of the
change in torque, AT, with A8, by expanding the torque expression
in a Taylor series around 6 = ep to get

2
2% 4 ...,

T(6p+A8) = T(Gp) + T"(ep) 3

in which we have used

i
o
.

T'(Gp)

Now we have

(o +h8) - T(a) vio) 287
AT _ p P _ p 2
T - T T(6 B T (6 :
( p) ( p)
Differentiating (6) twice and using T'(ep) = 0, we get

*Tt can be argued that A8 could be monitored and then applied
with a correction factor in the data reduction. This is true
for operation at any ©; however, the sensitivity of our result
to errors in A8 and the correction factor will be reduced if
ep is used.
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. i i 2
n —51n(6p+ o 360) [2h cos(6p+ﬁ 360)+(1+h™)]

2

" A8 L 2_ i 572
AT _ T (Gp) — ) i=1 [1+h®~2h cos(ep+ Y 360)] , AB
T T(ep) n sin(6_+ = 360) z
p n
. i=1 [1+h% L 3/2

-2h cos(6p+ = 360)]

Using the wvalues of Gp shown in Fig. II, we can evaluate this
equation for the different values of n. The results are shown
in Fig. IV. A value for A0 of one arc second was used. This
value was selected as a reasonable tracking error for instrument
servomechanisms. From the curves in Fig. IV, we see that for
high precision (AT/T < 1.5 10 10)

h>1.7 or h < 0.5

at least for the simple model used in these calculations.

The significance of operating at ep can be illustrated by
an example. Using the simple model, we will assume a two-arm
device with h = 0.15 and an operating angle, 6 = 45°.% (From
Fig. II, we note that for h = 0.15, ep = 43.2°.) Using (6), we

get for n=2
[(h cos?8+(1+h?)cos6-3h)]

-5/2 2

(h cos 6—(1+h2)cose—3hﬂ+ﬁl+h2—2h cosB)_S/ZJ

3/2 _

dr/d6 _ (1+h%+2h cosb)
T

sin6 [(1+h2—2h cos®) (1+h%+2h cose)_3/2]

* These are very nearly the conditions for the Beams' experiment,
if we approximate the moving cylinder {(see Fig. I) by a dumbbell

of equal mass and moment of inertia.
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Evaluating this expression for h = 0.15 and 6 = 45°, we get

a1/dé  _ g.13.
T
For a servo error angle, A6 = 20 seconds of arc we have
AT - 41740 46 = (0.13)207% = 1.3 1077,

In this simple example, servo error angles of 20 seconds of
arc cause variations in our assumed value of T to a part in
10_5.* For contrast we see from Fig. IV that operation at

8 = ep = 43,2° would give

1

%E (A6 = 20 sec. of arc) = 3 10 l(400)

> 1.2 1078,

an improvement approaching 3 orders of magnitude.

VI. 8Size of the Experiment

To get an idea of the magnitudes of the torques and accelerations

as a function of the size of the experiment, we proceed by assuming

*Reference 6 on the Beams' experiment reports tracking errors as
large as 20 seconds of arc for short periods of time; however,
in general they assumed the tracking error to be less than 0.2
seconds of arc. For the latter error angle, operation at 9 = 45°
would not contribute an appreciable error to their present results.
However, for a refined version of the Beams' experiment, it would
seem prudent to operate at 6 = ep as calculated for the particular

mass configuration used.
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spherical masses of maximum size for a given ep.* Further, to
maximize the torque, we will apportion the total mass of the ex-
periment equally between the fixed and moving arms. From the
sketch we see the maximum diameter spheres that we can fit in
for a given ep.

p = density of the spheres
The maximum radii are
_ _ X 2_
r, S Iy = j-‘dl+h 2h cosep . (8)
Equation (6) now becomes
. i
2 36 n sin (6+ = 360)

T =n [%E] G(1+h®-2h cosep) 9

1=

i1 [1+h%-2h cos (6+ %n360)]3/2 )

(9)

* We will assume that the experiment will operate at 6 = ep in this

analysis,
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Taking

P ="21-45 grams/cm3 (platinum)
and

G = 6.675 107°
we get

T = n 8.07 10"%¢°n(1+h%-2n cosep)3

. i
n sin (04 = 360)

) 2
iZ1 [1+h“-2hcos (0 +

. . (10)
1 360)13/2
n

We see from the above sketch that the attractive force between
the spheres creates a torque about the pivot that is the same
in magnitude whether M is the fixed mass and m moves or m is

fixed and M moves. For convenience, we introduce

h' = length of shorter arm
length of longer arm

2:'

Il

length of longer arm.

Equation (9) remains the same with h + h' and £ = {'. Torgque
normalized to (SL')5 is given as a function of h' in Fig. V. Before
discussing the curves, we note that there are minimum values for

h' established by mechanical interference, as illustrated in the

following sketch.*

* This interference arises because our model calls for spheres that

have diameters which are functions of h' and Gp = F(h').



1.3
1.2
1.1
1.0
.9
e
0
=]
-
o
~ .7
1=
? .6
0}
£,
G .5
.f
— .4
v
2lﬁx 3
K .2
)
2
3 .1
=

A-25

FIG. V. MAXIMUM GRAVITATIONAL TORQUE NORMALIZED
o (2')°

Platinum Spheres
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0.39 three arms
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Mechanical interference occurs when the two inner spheres become
tangent. At this point

and using (8)

- 'Q" 12__ 1 — '
rm = §""«1+h 2h cosep = a'.
Then
1
A =nh'-= —zl-Jl+h'2—2h‘cosep )

Using (7) for cosep and solving for h', we get
h' . = 0.38 for two arms
Similar arguments give

h'

min 0.39 for three arms

and

il

h' 0.44 for four arms.

min



A-27

From Fig. V, we note that for any %', maximum torque
occurs at a particular h'. For the 4-arm device, optimum
torque occurs at h' ~ 0,46 and with &' = 16 cm, for example,
the torque is 0.64 dyne-cm.

This optimization is important for keeping the experiment
size small and yet getting the maximum torque for mass (spheres
in this model) used. Continuing on this line of thought,
we can divide (9) by n azm to get

n sin(0_+ L 360)
p n

o]
)
H
g
il
L E J
oo
—
@
T

(1+h?-2h cose )3/2 s . 73
P i=1 [1+h“-2h cos(6p+ = 360)]

- (11)
This expression is plotte. in Fig. VI. Using (3) we can

calculate the maximum disturkance torgque caused by a 150 1b.
astronaut (taken as a spherical object) at 2 meters from a

4-arm device. This disturbance torque is

Td = ma4(.124 10_12) dyne-cm
or
T
—91 = .124 10712, (12)
mna

We can divide (12) by (11) to get an expression for a2 in terms

of Td/T' For example, say we wish to limit

T
-,I-,ii-< 10~

6

then from Fig. VI (4-arm) we have the maximum T/4a2m = 0.32 10“6

at h ~ 0.5. Dividing (12) by this gives
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FIG. VI TORQUE AS A FUNCTION OF h NORMALIZED
2
TO (n a“m)
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ox

a= 3.2 cm (4-arm device).

This is the maximum size for "a" if we want to limit the effect
of the astronaut to 1 part in 106. If we want to put the same
limit on this disturbance torque's effect on a 3-arm device, we

get

Qax = 0.13 cm (3 arms)
For this simple model, the 4-arm device has a significant advan~

tage in terms of size vs. effect of disturbance masses.

Using Fig. 6, we can select the value of h that gives the
maximum torque for given values of a and m*. For the four

arm device, maximum torque occurs at h ~ 0.5.

Up to this point, we have only considered the gravitational
torque acting on the arms; now we can calculate the angular
acceleration needed to balance this torque by dividing (9) by
the moment of inertia of the moving arms. For the model of
"spheres on massless rods, the moment of inertia about the pivot
is

2

I = n[% mor + ma2] .

Using (8) gives

2
2 _a 1 _ 2
'm = r[7 t1l-5 cosep]

*We recall that the total mass of the 4-arm experiment is 8 m.
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and then

I=nm az[l.l + l%-— ﬁg cosO_}]. (13)
h p

Dividing (9) by (13) gives the acceleration

2 . i

T _ [:38 ]G (1+h”~-2h cosep) n 51n(6p+ = 360)'

I 6 h(l.l+—‘—2]l - 1-13 cost ) i=1 [1+h%-2h cos (6 _+ = 360)]3/2
n p p’ n

(14)

This eXpression for n=4 is plotted in Fig. VII. The peak
acceleration occurs near h ~ 0.5. From the results shown in
Figs. V, VI, and VII it appears that h = 0.5 would be a near

optimum choice for the design of the 4-arm device.¥*

Fig. VIII is a full-scale sketch of a 4~arm device that
has h = 0.5 and a peak gravitational torgue of 0.01 dyne-cm.
For comparison purposes, Fig. IX shows a full-scale sketch of a
4~-arm device that has h = 0.5 and a peak gravitational torgue
of 0.001 dyne-~cm. If we use platinum spheres to make a 4-arm
device (h = 0.5), the total mass of the experiment ~ 8 104T3/5

grams.t Fig.X shows the torque vs. the total mass and size

*Some caution must be used in interpreting Figs. V, VI and VII,
since the results shown represent variations with design para-
meters. The curves do not represent the operation of a particular
device. For example, the variation of torque with h (Figs. V

and VI) can not be used (at least directly) in a temperature-
sensitivity analysis because we are also changing the mass with

h in these figures.

+Here we mean, of course, only the mass that is active in the

gravitational torque equations
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FIG. VII Angular Acceleration of a Four-Armed Device

. _ 2 2_
Platinum Spheres, T = 2—‘[1+h 2h co'.sep

_a
h=rp

\

/ l/- ——

| N i A i -t i A

.2 .4 .6 .8 1.01.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0




A—-32

FIG. VIII - FULL-SCALE SKETCH OF A FOUR-ARMED DEVICE
(Gravitational Torque = 0.01 DYNE-CM)
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'FIG. IX FULL-SCALE SKETCH OF A FOUR ARMED DEVICE
(GRAVITATIONAL TORQUE = 0.001 dyne-~cm)

h = 0.5 if inside spheres move

h = 2.0 if outside spheres move

6 = 19.9° 1 em
p

Fach Sphere
Radius = 1.2 cm
Mass = 0.155 Kg.
Total Mass = 1.24 Kg.

it

0.5 Angular Acceleration = 0.284 1078 rda/sec?
2.0 Angular Acceleration = 0.076 107° rd/sec2

For h
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(%) of a 4-arm (h = 0.5) experiment with platinum spheres. 1In
a rough way, we can use Fig. X to estimate the size and mass

needed to get a certain accuracy in the face of suspension and
other uncertainty torques. We note in this connection that the

torque level in the Beams' experiment was about 0.2 10_4 dyne-cm.

VII. Further Analysis

In the foregoing analysis, we used an idealized test body
made of spheres and massless rods. This made the analysis
tractable for slide-rule calculations and also made the results
easy to visualize. These results do have practical validity
for the classical configurations of the Cavendish experiment.
Traditionally, spheres and cylinders have been employed as
test masses in experiments on gravitational attraction. Beyond
the obvious analytical advantages, spheres (of small size) and
cylinders are practical objects to fabricate with precise
dimensions and uniform density. A.H. Cook, in a contemporary
Cavendish experiment, has found it expedient to use cylindrical
(1074 For the

fixed attracting masses, Cook uses cylinders of radius "a" and

test masses to avoid fabrication difficulties.

length 2vV/3 a. With these dimensions and the addition of some

small cylindrical end caps, the composite object (see sketch)

*In a description of a new Cavendish Experiment A.H. Cook says,
"The masses attached to the pendulum will be in the form of
spheres, since it is not difficult to make spheres of about 10 Kg
with high accuracy and with reasonable assurance that the density
is uniform..... The stationary attracting masses are to be made
much larger, 500 Kg and cannot be spheres, both because of the
difficulty of handling them and because of the difficulty of

ensuring that the density is indeed uniform."(lo)
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Equatorial plane (//,——EfffT-\\\\

has a field in its equatorial plane equivalent to that of a sphere

{(at least up to correcting terms proportional to r_9 or less).

However, we can use any object as a test mass if it can be
fabricated (or measured) to the required dimensional and density
tolerances. With a digital computer, we can easily overcome the
analytical difficulties of gravitational-field calculations.
Considering the stringent size and mass limits on space experi-
ments, it would be useful to examine test-mass shapes that
give optimum torgque levels for the amount of mass used.* Also, in
this analysis of optimum configurations, it would be useful to
consider the criteria of the foregoing analysis (e.g., operating
at a ep, dT/de = 0) as well as other criteria which would reduce
the sensitivity of the apparatus to dimensional changes {(e.g.,

temperature effects).

In addition to the study of optimum configurations, we must
do an analysis of the dynamics of the Beams' experimental concept
for operation in a spacecraft. Since a spacecraft is generally in
accelerated motion with respect to inertial space, we need to
make certain corrections in the experimental measurements.
Spacecraft angular acceleration is an interfering quantity that

adds (or subtracts) directly in the force-balance equation of

*In these examinations, we would also consider the effects of
test-body density variations, surface roughness, and other

effects such as Van der Waal force.
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the experiment. We can remove this interference by measuring
the angular acceleration of the experiment with respect to an
inertial reference device. This reference device could be a
gyroscopic stable-element or a set of star trackers.

There is a way, however, to avoid the use of an inertial
reference device. Consider two separate experimental setups
mounted (close together) such that the angular accelerations
(needed for force balance) are colinear but in opposite
directions. For one of the setups, the spacecraft angular
acceleration will add in the force balance and in the second,
it will subtract. By combining the data (obtained over the
same time intervals) from both setups, we can (in concept,
at least) remove the effect of spacecraft angular acceleration.
One of the difficulties with this technique is that the two
setups will experience different (integrated) effects from
external fields, since their rotational periods will necessarily be
different. This difficulty needs to be analyzed in terms of
experiment size and the expected spectrum of spacecraft motions.

Pinally it would be useful to extend our analysis to the
design of a laboratory prototype of a space experiment using
Beams' concept. This design would bhe based on a detailed con-
sideration of the suspension system. For this prototype
it seems prudent (from cost and ease of construction considerations)
to base the initial design on a simple mass configuration and

a simple suspension scheme.
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ABSTRACT

This research note presents an elementary evaluation of error
sources in a proposed apparatus for the detection of variations in
the gravitational constant, G. The experiment is based on a concept
used by J.W. Beams to measure the absolute value of G in his laboratory.
The Dicke-Brans theory of General Relativity predicts that the magni-
tude of G will vary with the local magnitude of gravitational
potential. Our proposed experiment would detect changes in the
gravitational attraction between calibrated test-bodies in an orbiting
spacecraft as it moves to points of different gravitational potential.
The theory predicts a AG/G—vlo'_9
eccentric solar orbit. Instrumentation for this case should be

for the extreme positions in an

designed, then, to keep individual error effects to less than a part
in lOlO.
The error sources considered are
1. Thermally caused dimensional variations
2. Interfering inputs
3. Resolution in the measurement of angular acceleration.
Beams' concept involves the use of a controllable angular acceleration
to achieve a torque balance (in a D'Alembertian sense) with a gravita-
tional torgue on a pivoted test-body.
The simple analyses of this note do not uncover any insuperable
10 in detecting AG/G.

However, many of the instrument design requirements are unprecedented

problems in achieving a resolution of 10

and may prove to very difficult to meet.
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Chapter 1

Experiment Design Concept

According to the Dicke-Brans theory of General Relativity, the
magnitude of G (the Newtonian Gravitational Constant) varies with
gravitational potential. For example,

AG
G(initial)

= -2 x 1078

as an observer moves from a very remote initial position up to a

(1) *

distance of ten solar radii from the Sun. For a measurement of
AG

< in a spacecraft in an eccentric solar orbit, we might expect the
variation to be

AG -9
< - 10 ~.

An apparatus (in a solar orbiter) for ég detection should, then, have
—10, obtainable in reasonable averaging

times compared to the orbital pexiod.

a resolution to parts in 10

In this note we examine some of the error contributors in a
measurement apparatus that uses a concept of J.W. Beams.(z) In a
1964 paper Dicke evaluates some of the sources of error in his EOtvos
experimental apparatus. Because of the similarity in experimental
setups and desired precision, his results are apropos this note.(3)

Other relevant results are contained in an S.M. thesis by Blitch who
(1)

considers error sources in a gravitational clock apparatus. The
gravitational clock is also a é% detector; however, Blitch concludes
that the errors due to thermal noise make it impossible to get

resolution to parts in lO10

in reasonable averaging times. The
Beams' method has the advantage of giving a much higher data rate
and hence the possibility of having reasonable averaging times to

get the desired resolution.

*Superscript numbers refer to items in the list of References.



1.1 Beams' Experimental Concept

‘ To measure the magnitude of G, the Beams' method uses a pivoted
test-body which is accelerated by the gravitational torque provided
by a set of calibrated attracting masses. The relative separation of
the test-body and the attracting masses is maintained constant by a
servo that accelerates the attracting masses. The servo acceleration,

o, is then proportional to G. Ideally,

- T _ Gravitational Torque (1a)
I =~ Moment of Inertia of the Test-Body"

If, as in Ref. 4, the test body is a rigid, symmetrical arrangement
of four spheres on massless arms and the four attracting masses are

also symmetrically disposed,

4 4 al[GO.(éoisine -&éicose)+6e.(-Goicose+6eisin6)]
T = mMG J ) J J

c . 2, 2 . .
i=1 j=1 {l +a 2al[50j(doicose+6ei51ne)+6ej(aois1n6+6ejcose)]}

3/2

(1)

in which we have used the following convenient notation

5
=
o
{
iy
o

dnn

en

The remaining notation is defined in Fig. I.
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The moment of inertia of the test-body is

o am(2 2 4 a2

I= 4m(5 r +ta ) (2)
in which

T = radius of the masses, m.

The experiment is conducted by accelerating a table (on which the M's
are mounted) such that 6 remains constant. The table angular accele-
ration is determined by timing angular increments. If we time two
successive, equal increments, ¢, we can get

17 T2

o= 2¢ Tyt (1] F 150"

(3)

From symmetry considerations we can set i = 1 in Eg. 1 and get

o a%[so.sine— Ge.cosel
T = miG ] J 1 . (4)

3 [22+a2—2a2[Gojcose+aejsin9)]3/2

Now combining Egs. 2, 3, and 4

2 2 2
- ‘2 T T, 1 5%t
} (T.7.) (To+T.) M Go.sine - Ge.cose
12/ Y17 ag) —2J J
. 102, .2 : 3/2
j [L+a 2a2(60jcos6+5ej51n9)]
' Ta= T
= (24 i 2 K} . (5)

(Tsz)(Tl+T2)



We see that G is determined by using measured time increments to
calculate the first bracket which is then multiplyed by a constant, K.¥
The second bracket, K, is determined by the parameters of the experi-
mental setup. Clearly, for a precise measurement of G, we need a
correspondingly precise knowledge of K. This calibration constant

is fixed by the manufacturing tolerances and metrology. Since our
experiment is not to determine the absolute value of'G, but rather to
detect variations, then K need not be precisely known, but it must

remain constant to parts in 1010.

1.2 Sensitivity of the Calibration Constant

For an uncomplicated analysis of the dependence of K on the
parameters of the experimental setup, we take

2 2,2
= ro/a®+1
a 5 'm 2, .2 3/2]
MsinG [ . (L"+a"-2atcos ) . (6)
This expression was obtained by setting j = 1 in the second bracket

of Eg. 5. Effectively, this K is appropriate for a device consisting
of a single arm and single attracting mass.

For the simple case of Eg. 6, we see that K is sensitive to
variations in M, e @0 % and 6. From a practical point of view we
assume that M is unlikely to change, but that a, %, and r, are
subject to thermal effects and 6 has variations due to servo errors.
To reduce the sensitivity of K to variations in these dimensional
parameters, we would ideally like to choose values for a, &, rm, and
8 such that K (as a function of these independent design variables)
is at a stationary point, i.e.

*#In Chapter 3 we show that many sets of time increments are used in
an optimal estimation procedure to get the desired resolution in our
result.
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or

K/3r
dr _ 93K/36 3K/%a m 3K/34. _
K———T——d6+——K da+————-———-K drm+-——-—-—K df = 0
Using Egq. 6, we can get
9K/ 90 h 2 1 + n?
2 = 5 [cos®8 + — cosb ~-31, (7)
sinb[l + h® - 2hcos6]
L2
35%3& = % 5 L E%‘~%(2h2—l—hcose)+(4h2+l~5hcoseﬂ ,
X a
(% 2 +1) (1+n%-2hcos6) 8)
a
2
9K/9% _ 1.2-h“~hcos®
‘—K'—'—'-—[ 5 1. (9)
£ 1+h“-2hcos®
and
BK/arm 1 .8
K =z V. (10)
m .4+ a"/r
m
in which

The greatest varijiation in parameters is likely to be in 6, since
it represents a degree of freedom in the experiment and is held to a

nominal value by servo action. In Ref. 4, we examined in detail the

conditions required for %% = 0. That report concluded that it was

indeed physically possible to adjust the design parameters so that

%% = 0. The report further showed, for a four-arm device, with



38 - 07
h~0.45
that
for AB8.1 second of arc.
On tihe other hand, examination of Eq. 10 shows that %% = 0 only for
m
r, = 0, a physically impossible condition.
For getting the conditions for %g = 0, we set the right-hand-

side fo Eq. 8 = 0*., If we then use %% = 0, we have an expression(4)

cos® = £{h)

Using this f£(h), we can then get an expression

]

m

T = g (h)

to establish the condition g% = 0. We examine this proposition in

Appendix A, where it is shown that, with a four-arm device, we can not

get a physically realizable arrangement for %% = 0 (with 3K/%6 = Q)

unless a second set of attracting masses is introduced.

For getting the conditions for %% = 0, we have from (9)

2 - h® - hcos6 = 0. (11)

Now if %% = 0, we have from (7)



2 2
1 1l+h 1+h™, 2
cosh = 5 [ g + .‘[;%—— + 12 (12)

Substitution of (12) into (11) and solving for h gives

h = 1%

which is a physically unrealizable solution (i.e. the masses m and M
would need to be points). We could proceed here in a manner similar to
that of Appendix A and calculate the conditions for g%-= 0, using two
masses on the pivoted arms. Fig. II illustrates the idea. From the
figure we see that the parameters can be set so that if M moves a

distance A% the increase in torque on m, is exactly offset by the

decrease in torque on m, .

*We note here that since both the torque T, and inertia, I of Eqg. 1
are functions of "a," that making 3K/3a = 0 is equivalent to
adjusting the parameters so that

ar
da
S
da

*This solution also holds for a four-arm device.

Aa

Aa



FIG. II. Double Set of Masses on the Moving Arms

dKk _ _ 1
Note: hland h2 set for T 0. h1 =5 - See Ref. 1.



We conclude from the above discussion that if we adjust the

parameters for %g = 0, then %g can be made zero by using an additional
set of attracting masses or %% can be made zero by using two masses

on the pivoted arms. With our simple models* it does not seem
physically possible to make both %g = 0 and %% = Q for the same
device.

For the hypothetical device of Fig. VIII, Ref. 4, we made no
oK 9K

attempt to make Ta = 0 or 3T = 0.** For this device we have from
Egs. 3,9,and 10
3K _
36 = 0
AK Aa
X - 1.74 Y
(13)
AK AL
X -~ 4.25 =7
Ar
AR m
— . 0.12 — .
K rm

We note the K is less sensitive to variations in T by over an order
of magnitude. Examination of Eg. 10 will show that this will generally
be the case since for most physically realizable arrangements a > L

In general we conclude that we must maintain Aa/a, AL/% and

Ar_/r  to be less than about 1/2 x 10710 to achieve the desired
precision in K if no attempt is made to set %%, %%, and %% to zero.
m

*Spherical masses on massless rods

**Actually in this device we adjusted the parameters to make o a
maximum under the conditions 3K/%6 = 0.
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CHAPTER 2
Sources of Error

To discuss sources of error in our AG/G detection, we classify
the effects in three general categories.
1. Dimensional Variations
Servo Errors
Thermal Effects

2. Interfering Inputs (Extraneous Torgues)
External Gravity Fields

Linear Acceleration

Electrostatic Forces

Gas Pressure Effects

Magnetic Forces

Cosmic Ray Protons

3. Errors in Measuring Angular Acceleration

Brownian Motion/Thermodynamic Fluctuations

Spacecraft Angular Accelerations

Each of these items is discussed in more less detail in terms of
magnitude and design requirements to keep the effect in general to

less a part in 1010.

2.1 Dimensional Variations

Dimensional variations introduce errors in the calibration con-
stant, K, as discussed in the previous Chapter. Here we are concern-
ed with the factors A0, Aa/a, AL/%, and Arm/rm of Eg. 13.

Servo Errors

As detailed in Reference 4 the nominal operating angle,ep, can
have variations due to non-ideal operation of the servo. With
A®.1 second of arc, AK/K can be <10—10, if the experiment's parameters
are properly adjusted. There is another A0 effect, however, which

is discussed below in 2.3.
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Thermal Effects

At room temperatures the coefficient of thermal expansion for
most metals (including platinum) is about 10_5 per °C. We might
expect to achieve temperature control to 10_3°C.(5) This will give

use AL/%, Aa/a, and Arm/rm 10_8. Yet, from'Eq. 13, we require

~ .2 10710

| >
=

L 10"9
r

to keep %5 <10_10. With a very refined temperature control and using

a quartz base for the attracting spheres, setting %g = 0 by the method

of Appendix A, and making r<<a we might barely achieve AK/K<1O"10 at
room temperature. However it seems more feasible to achieve the
required insensitivity by operating at cryogenic temperature where the
coefficient of thermal expansion is on the order of 10_8 per °C.

Other sources of dimensional variations include the effects of
centrifugal force on "a". For example, if the angular velocity of the
test body is 0.2 rd/sec., and m is a 645 gram weight at the end of a
slender rod, then the area of the rod, A, must be 1.29 cm2 to‘main—
tain Aa/a<10—10. In the calculation of A we have taken Young's
Modulus to be 1013 dynes/cmz. This particular Aa is more or less de-

terministic and the effect could be éompensated in the data reduction.

2.2 Interfering Inputs (Extraneous Torques)

In discussing interfering inputs, we must consider the effects
on an non-ideal device (one with deviations from perfect symmetry) as
well as the ideal.

Gravity Fields

As discussed in Reference 4, one of the advantages of the Beams'

device is that the gravity fields of fixed external objects do not
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affect the experiment if the timing data is taken for full revolutions

of the experiment. In an environment of moving external masses (during
a revolution period of the experiment) there are three general ways to

minimize the effect on the ideal instrument.

1. The moving test body is constructed of 4 symmetric arms

(see Reference 4) to minimize the effects of gravity gradi-
ents.,

2. The moving test body is made so that arm length, a is much

shorter than the distance to the disturbing object.

3. The experiment is run at relatively high angular velocities

so that the rotation period is short compared to the
period of mction of the external disturbing masses.

An extreme example in Reference 4 showed that a 150 lb. astronaut
at 2 meters from a 4-arm rotor (arm length = 3.2 cm) introduced an ex-
traneous torque of 1 part in 106. We can calculate what deviation
from symmetry in our 4-arm device will give an equal extraneous torque
for this object. Suppose we model the dissymmetry by an excess of mass,
Am, at the end of one of the 4-arms, then Am/m must be less than 0.4 10_4
to limit the extraneous torque (because of the astronaut) to 1 part in

106. Establishment of a manufacturing tolerance on the mass, m, to

107° is not unreasonable. ()

Although each specific case would need be analyzed, it does not
seem unreasonable to conclude that effect of extraneous gravitational
torques can be reduced to parts in lOlO by experiment design, manu-

facturing tolerances, and control of the environment.

Linear Acceleration

Just as gravity fields of fixed external objects do not affect
the ideal experiment, constant linear acceleration does not as well.
Variations in linear acceleration will, however, affect the non-
symmetrical device. Using the example of Figure VIII, Reference 4,
i.e., a=3.2cm and m=645 grams we can calculate the maximum change in
linear acceleration permissible if the extraneous torque is to be

less than 1 part in 1010. We again take the effective dissymmetry

to be Am/m = 10—5. Under these conditions,A(linear acceleration)must
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8

be less than 2 10 cm/sec2 (during the period of the experiment's

full revolution).*

Another effect of linear acceleration and external gravity
fields is to pull the center of mass of the test body off the center
of symmetry. In Appendix B we show that reasonable suspension stiff-
ness will easily limit this effect on the constant K. For a constant

5 2

acceleration of 10~ cm/sec” and a test body mass of 2.58 kg.

AR -
- <10

10

if the suspension stiffness is 890 dynes/cm. In a practical case we

(1)

can expect asuspension stiffness on the order of 106 dynes/cm.

Electrostatic Forces

The rotating test body has small clearances with the attracting
masses to maximize the gravitational torgque. With these small
clearances, a small difference in electric potential between the test
body and the attracting masses will give a relatively large electro-
static force. If the device shown in Figure VIII, Reference 4 has sus-
pension that electrically isolates the test body, we get an extraneous
torque of

- * %
AT~2V210 2dyne cm
in which V = potential difference. Since, for this device T = .01
dyne cm and we want AT/T<lO_lO, then we must have
-5
V<10 “wvolts.
With V = 10—5 volts and the assumed capacities = lO—ll farads we have

a charge, Q = lO_16

coulombs or about 600 electron charges. In view
of the difficulties (see Reference 3) of controlling such low
potential differences or small charge concentrations it may be wise to
consider suspension systems that do not electrically isolate the test

body.

* Such small variations in spacecraft acceleration would be difficult
to assume for low earth orbit where the drag acceleration is on
the order of 10-5 cm/sec2

*% This relationship represents a very rough calculation in which we
have used an estimated capacitance on the order of 0-11 farads.
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Gas Pressure Effects are treated by Roll, Krotkov, and Dicke in
Reference 3. They conclude that to keep gas pressure forces to less
than 10—10 dynes per cm2 in a vacuum of 10_6 mm, the temperature

difference of gas streaming in two opposite directions in the chamber

must be less than 3x10-6°C. Since the Beams' experiment requires as
low or lower effects, the same good vacuum and control of temperature
uniformity is needed as in Dicke's Eo6tvos experiment.

Magnetic Forces on the test body are only eliminated by making the
apparatus as free of magnetic contaminats as possible and using good
shielding. Roll, Krotkov, and Dicke report (Reference 3) that the
measured sensitivity of their EOtvOs apparatus was about 7x10—12
cm/10”>

In addition to the above error sources, Blitch (Reference 1)
considers the effects of Cosmic ray protons. He concludes that with
proper shielding the effect can be limited.

dyne
gauss (external field).

2.3 Errors in Measuring Angular Acceleration

From Equation 5 we have

_ 1712
G = {2¢ T1T2(T1+T2) }{K} (5)

The 7's represent the times for rotational displacements, ¢ , of the

moving test body with respect to inertial space. In a practical case
the time periods will be measured as fiducial marks on the table
(holding the attracting masses) cross a fiducial mark on the frame
holding the experiment. If the frame is non-rotating in the

inertial space, the measured times will be in error by the difference
between the angular displacement of the table and the amgular dis-
placement of the test body. This difference is represented by varia-
tions in the servo error signal A6. In general with careful servo de-
sign, we can expect noise in 6 to be on the order of a few tenths of

a second arc rms.*

* In Beams' experimental get up it was assumed that noise in § was
generally about 0.2 seconds of arc rms.2
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Other sources of error in the time measurements come £from

thermodynamic fluctuations in the position of the fiducial marks (in

practice the coincidence detection of fiducial marks will be optical).

In the next chapter on data reduction we lump all noise effects together

and assume that there is an rms error of 1 second of arc in each
displacement measurement.
In general the rigid frame holding the experiment will have

angular motions with respect to inertial space. To eliminate the

effect of angular motion we can take two separate set ups mounted on
the same frame such that the rotation vectors of the test bodies are
parallel but in opposite directions. For one of the set ups, the
frame's angular motion will increase our time measurements and in the
other set up it will decrease the time measurement. By combining the
data (obtained over the same time interval) from the two set ups we
can eliminate the effect of the frame's angular motion. This arrange-
ment is assumed in the next chapter in which we take the frame's
angular motion to be an angular acceleration given by a constant term

plus noise with an rms level of 107® rad/secz.
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Chapter 3

Data Reduction

3.1 Simplified Estimator

The least amount of information required to compute an estimate of
G is the passage time for the table through a set of three fiducial

marks. If the times are T, and T respectively, the

n+l
estimate for G is given by (5):

n+l’ ' n+2

T - T
261 n,n+l n+l,n+2

& K (5)

T +
n,n+lTn+l,n+2 n,n+l Tn+l,n+2)

If the passage times for N such fiducial marks are measured, the
best estimate for G is:

-1

Eh(i)éi (14)
i=2

~
Gy = §=2

The weighting factor, h(i), is a function of the wvariance of the

estimate Gi. If all of the Gi have the same variance, then h(i)

is unity; but this will not in general be the case. The variance of
éi is determined by the variance of the passage time measurements
which in turn is determined by the table angular velocity. For

long experiment runs, the velocity will vary significantly and h(i)
will not be unity. In general, the individual estimates, éi’ at a
high angular velocity will be less accurate, but more numerous.* This

fact should not be construed to suggest that the most accurate estimate

of GN is obtained for low table angular velocities. In Section 3.2.3,

*See Appendix E of Forward for details.

B-17



the opposite is shown to be true.

The variance of GN

"~
GN are not independent. This is obvious since a large measurement

is not trivial to compute since the errors in

error in the passage time for the (n+l)th fiducial mark affects the

measurement of T and T

A

G

and this directly affects Gn—l'

The statistics for the passage time measurement must

A

be known to determine h(i). The variance of GN can in principle be

computed from the same information. For the volume of data required

n,n+l n+l,n+2

n’ and Gn+l.

to attain the necessary accuracy, the computation would be tedious.
The mathematical model upon which the above estimator is based
assumes that the angular acceleration of the table is constant between
fiducial marks and that the base acceleration is zerc. The only
error sources which are accounted for are the direct measurement
errors in the passage time measurement and in the value of K. If the
fiducial marks correspond to full revolutions of the table, the conser-
vative torques from fixed masses within the spacecraft will not
affect the true passage times and can be ignored. Two disturbances
which will affect the true passage times are:
1) torques from moving masses within the spacecraft, and
2)base angular accelerations of the spacecraft.
The simplified estimator proposed above cannot account for the effect
of either of these disturbances on either the estimate, éN' or the
variance of the estimate. Although the estimator may be used in the
real experiment to reduce the data, an estimator based on a more
detailed mathematical model is necessary to study the importance of
the disturbances.
It is possible to devise a more complicated estimator which will
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allow for the effect of random base angular accelerations. The movirg
mass torques cannot be so readily accomodated except by order—of—
magnitude comparisons with the base accelerations. 8Such an estimator
and its statistics are investigated in the remainder of this chapter.

3.2 Minimum Variance Estimator

3.2.1 Mathematical Model of System

The gravitational constant can be estimated directly from:

AA

G = oK (15)

if the estimates
K are independent, then the variance in G is the product of the

variances:

2

g2 = (oi +02) (012< +K2) (16)

2
G
The minimum variance estimator developed in this section determines

& in such a manner as to minimize cz. The estimator is optimal to
the extent that the assumptions to be made are valid. If the minimum
variance estimator were used to effect the actual data reduction, it
would provide at least as accurate an estimate as any other estimator
based upon the same mathematical model.¥*

The minimum variance estimator is presented here in a general form

which includes optimal position and angular velocity estimates for

*For linear systems with Gaussian noise sources; the estimator to
be used is alternatively called a Kalman estimator or a conditional
mean estimator. -~See Bryson and Ho for details.



‘the test tables. If the estimator were to be used for the actual data
reduction, the amount of computation could be reduced to a level more
competitive with that of the simple estimator of Section 3.1 by
solving the derived equation in component form rather than matrix
form. Many of the matrix elements are identically zero and need

not be continually updated.

For a minimum variance estimator for a linear system, the estimate
variance oi may be precomputed for the experiment if the times at
which the state measurements are made are known. Unfortunately, for
the Beams-type configuration'the measurements are not of the state
but of the passage times of a particular set of states (fiducial
marks). In order to determine ci it is necessary to know the passage
time measurements and then to relate the time measurement error to
an equivalent position measurement error. Any analysis of the variance
must be based upon a simulation in order to obtain a set of realistic
passage times. A mathematical model used for such an analysis is
described in this section. The estimator itself is discussed in
3.2.2 along with the necessary mathematics for the variance computa-
tion. In 3.2.3 the simulation results are used to estimate the
dependence of 02 on the length of the experiment runs and the initial
angular velocities of the tables and also to determine the sensitivity
of ci to model parameter variations. The simulation is not used to
compute &-since the estimate would have no particular significance,
but only to study the variance of the estimator.

The angular acceleration of the table with respect to the frame can
be modeled as:

é(t) = o + Asin(2e+¢l) + B(t)sin(26 +q>2)+ao + + v(t) (17)

a
% b

B~ 20



where o is from the primary gravitational interaction,
Asin (26 + ¢l) is due to the fixed mass distribution of the
spacecraft,
B(t) sin(26 + ¢2) is due to the moving mass distribution of
the spacecraft,
a, is the acceleration bias due to configuration uncertainties,
abxis the average-base angular acceleration, and
v(t) is the zZero mean spacecraft angular acceleration profile.

Any servo uncertainties are lumped into a, and v(t). If the

b
spacecraft is in a local vertical or sun-oriented attitude, the bias
term ay will vary as a function of the position of the spacecraft
along its orbit. The experiment running times will be short
relative to the orbital period and the orbital angular acceleration
can be assumed constant over that time. The bias a, may or may not
be invariant between experimental runs. *

It is difficult to develop a model involving the mass distribution
terms that is mathematically tenable. The fixed mass contribution
is conservative and can be ignored if the fiducial marks coincide
with full revolutions; however, practical considerations will
dictate a much more closely spaced set of measurements. The approach
to be taken is to assume that a linear model is valid by supposing
that the mass distribution accelerations are small when compared to
the base accelerations.

A reasonable value of A and B(t) would be lO—'8 rad/sec2 or less.

The variance of v(t) to be assumed is on the order of 10_6 rad/secz.

Thus it would seem reasonable that the mass distribution terms are
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of secondary importance. The acceleration model used to determine

the minimum variance estimator for o is:

8(t) = o + a, + ay, + v(t) (18)

X

-

It is shown in Section 3.3 that the qualitative results derived from
the ensuing analysis appear to be valid independent of the error in
(18) ., Before the minimum variance estimator is utilized for data
reduction, however, the effect of the mass distribution terms should
be more carefully investigated.

The experimental apparatus is expected to incorporate two tables
with opposite directions of rotation. The equation of motion for the
X-table is given by (18). The equation of motion for the Y-table is

given by:

p(t) = a + a - a
oy b

- v(t) (19)

The configuration uncertainty bias is particular to a given table.
The remaining accelerations are common to both tables.

If the constant accelerations are defined:

o, =0+ a  +a (20)

then in terms of the optimal estimates o and uy, the optimal

estimator for o is defined to be:
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A.—-l/\ ~
a =3 (ax + uy) (21)

~

The estimates o and ay will be shown to be unbiased in 3.2.2. The

~

estimate o is biased by the configuration bias accelerations:

El(a - o)l =2 (a_ +a_) (22)

2 1 2 2 2
o, =7 (Gu + o + 9 o ) (23)
X Y X'y
where ci and oi are the variances in oy and Ny respectively and
b
Oz o is the covariance between the two estimates. Since the Y-table
Xy

will experience the same noise profile as the X-table but of opposite
polarity, the covariance between the two estimators is significant
and cannot be ignored.

Since the experiment is to estimate Ao/a, the bias in & is
unimportant if a and a, are invariant for the series of test runs.

X
If the biases change between test runs, the effect will be to increase

02 but not to change the form of the estimator. If direct estimates
of a, and a, are made, they may be incorporated into (21) with an
attenzant decrease in 03. For the remainder of the present analysis
the biases are assumed to be invariant but unknown.

The random nature of the experiment is modeled by the base

acceleration profile, v(t), and the passage time measurement errors.

The base acceleration profile is modeled as Gaussian white noise with
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a variance, Qv' which is constant:

E[v(t)] =0
(24)
E[fv(t)v(t)] = Q,8(t-1)
where §(t-t1) is the unit impulse function. The base acceleration

model is assumed to account for all continuous, random accelerations

12 (rad/secz)z.

in the system. The nominal value of Q, used is 10~
The passage time measurement is corrupted by two noise sources;
the timing uncertainty in the sensor and the resolution of the
fiducial marks. The timing uncertainty is of the order of one
microsecond or less and can be ignored. A reasonable estimate for
the attainable resolution is a standard deviation of a few tenths
of a second of arc. The nominal value used is a standard deviation
of one second of arc. The larger value was chosen in an attempt to
account for other error sources.
The resolution measurement errors comprise an independent random
sequence. If the X-table and Y-table have p fiducial marks distributed

th

uniformly about their circumferences, the n and mth position

measurements respectively at the true passage times will be:

e(t ) = _%_Tr_ll + W
n P n
(25)
' 2mm
p(t m) - + uy

where W and u, can be modeled as zero-mean, *normally distributed,

*The simplified estimator of Section 3.1 illustrates that the state
estimate is determined from time interval measurements, Thus timing
biases are subtracted out and need not be modeled.
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independent random variables:
E[wnwj] =Q.6

E[umui] = Q &

i
o

E[wnum]

in which 6ij has the properties that:

6ij lif i =3
= 0 otherwise.

From (25) the passage time measurements can be approximated by:

w
Tn = tn - eTt )
n
(26)
u
E R él?t' )
m

The passage time measurements have the desired statistical properties
of the measurement system. If the simulation were to be used to
calculate &, the passage time errors would correspond to first order
to the position measurement errors of (25).

The variance for both the base acceleration model and the measure-
ment error model may differ significantly in the actual experiment
from the chosen values. The sensitivity of 02 to changes in QV and

Q is investigated in 3.2.3.

w
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The remaining element of the model to be developed is the

dynamics of the two tables.

convenient to use

be self-explanatory.

maﬁhematical approach.

For the remainder of the chapter it is
state-space notation. The notation is assumed to

Athens and Falb is a general reference for the
[7]

The tables can be modeled as second order integrators which

integrate angular
determine angular

dimensional state

acceleration about their input axes twice to
displacement. Defining the elements of the three

vectors X and Y respectively as:

xl = 0
x2 = §6 = xl
(27)
X3 = %y
iz = x, + v(t)
and
yl = ¢
(28)
Y3 = ay
5’2 = Y3 - V(t)

The purpose in including oy

the properties of

part of the state

and ay in the state vector relates to

a minimum variance estimator. Even though only

vector is measured (in this case the angular

positions Xy and yl), the minimum variance estimator provides the

B- 26



best possible estimate of the entire state vector. Consequently,
if o and uy are to be computed for substitution into (21), they must
be included in the state.

If the state matrices are defined:

B
I
<
o
s

(29)

o
o
(=

B, = 1 (30)

B = -1 (31)

and:
H = [1 0 01 (32)

then the equations of motion for the two tables can be expressed as

first-order vector differential equations:

X(t)= AX(t) + B,V (t) (33)

ZX(TA) = HX(Tn) + oW (34)
and:

Y(t) = AY(t) + Byv(t) (35)



(36)

2 (ty) = BY(T)) + uy

where ZX(Tn) and Zy(T&) are the measured states corresponding to

the fiducial mark measurements:

_ 27
Zx(Tn) =5 n (37)
Zy(Tr;l) = _2_; m (38)

The presence of the noise signals in (34) and (36) should serve as

a reminder that the measured fiducial mark crossings at T and T& are
not the true positions of the tables. The true fiducial mark
crossings occur at t) and t& respectively.

The state equations (33)-(36) are sufficient to define minimum
variance estimators for qx,and uy if the motions of the two tables
are assumed to be statistically independent. This is not the case.
Since the tables are driven by the same base acceleration noise, as
well as the same o, a measurement Zy(ré) on the Y-table provides
information on the true position of the X-table and thus improves
the estimate of &x along with &y' In addition, to compute ci from
(23) it is necessary to know 02 - To make the best possible estimates
of O and ay, it is necessary tz zonsider the two tables as part of a
single experimental apparatus where different functions of the

apparatus state are measured at different times.

Define the six~dimensional state vedtor:



" - -
&1 X
g x
2 2
53 X(t) X3
= E(t) = = (39)
£y ¥ () ¥y
Es Y,
g€ Yy
6 3
- - .
The state-vector differential equation is then:
E(t) = Ag E(t) + By(t) (40)
where:
A 0
Ag =
0 A
and:
Bx
B =
B
Y

To include measurements on both the X-table and the Y-table in
the measurements history, define the list {TBn} as an ordered,
increasing list of times at which a state measurement is made. A value
B = 1 indicates a measurement on the X-table is taken and B = 2
indicates a measurement on the Y-table is taken. The state description

is completed by defining the measurement system:
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ZB(TBn) = HB E(TSn) + W (41)
where:

HB =[1 0 0 0 0 0] ifg=1
and:

HB = [0 0 0 1 0 0] if B = 2.

3.2.2 Estimator Statistics*

The mathematical model developed in (40) and (41l) is for a
continuous dynamic system with measurements occuring at discrete
intervals. To employ the minimum variance estimator it is necessary
to write the true state at the nth measurement time recursively in
terms of the true state at the (n—l)th measurement time. This
requires a discrete formulation of (40). The minimum variance esti-
mator is also defined recursively. The minimum variance estimate of
the entire six-dimensional state vector based on the first n data
points, g(TBn),iS defined recursively in terms of the n*? measurement
and E(Ts(n_l)). The initial state estimate is propagated recursively
through the set of measurements to arrive at the final state estimate
based upon all the measurements available. The final state estimate

~

yields oy and Qy as its third and sixth elements respectively.

*The material in this section on minimum variance estimators is taken
from Bryson and Ho, Chapters 12 and 13. The properties of state
transition matrices and the state vector approach to dynamic systems
are presented in Chapters 3 and 4 of Athens and Falb.
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At the time TBn, the state can be written in terms of the state
at the previous measurement time, E(TB(n—l))' the state transition

matrix, @(Isn,TB(n_l)), and a random variable g(TBn):

) = o(1

(T TBn,TB(n_l)) E(TB(n—l))+ g(TBn) (42)

Bn

The vector g(TBn) is a six-dimensional vector random variable
and is defined as the time integral of v(t) from (40). The elements

of the vector are zero-mean and normally distributed with covariance:

TBn
E[q(TBn)zl = Qg =/ <I>(TBn,t)BQVBT<I>T(TBn,t)dt (43)
"8 (n-1)
E[g(TBn)g(TBm)] = 0 n#m

The off-diagonal elements of Qg are non-zero, indicating that the
six random variables which comprise g(TBn) are correlated. A general
procedure for generating correlated random numbers was developed for
the simulation to facilitate the computation of g(TBn).

The state transition matrix is best defined in terms of its

LaPlace transform:

-1

?(s) = (Is - AE) (44)

where I is the identity matrix.



If ATn igs defined as:

At
n

=T

gn ~ 'g(n-1)

then the expressions for these matrices become:

1
-3—AT
1l
EAT
0
Qg = 1
ngT
-ZAT
. ' 0 .
and: L
*(Tgnr T (n-1))
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The recursive expression for the state estimate can be written

in terms of the quantities defined in (40)-(47):

Brgy) = Elrgy) + K(rg) [Bg(T) = HE(rg )] (48)
where:

K(tg,) = Pt )Hg oF (49)
and:

Elrg,) = eltg, s Tgn1y) E(Tg (n-1)) (50)

P(TBn) is the covariance matrix for the state estimate, g(rsn), and
is defined recursively below. The solution of (48) requires an
initial state estimate, 2(0), and a corresponding initial covariance
matrix, P(0). If the experiment generates a large quantity of data,
the effect of the initial state estimate is gqguickly dissipated. (48)
and (50) are the equations that would be used in reducing the actual
experimental data.

The covariance matrix is defined recursively:
1

1 T [ T - s
n)—P (an)HB[HBP (Tsn)HB + Qw] H, P (TBn) (51)

) = Pi(T 8

P(T

Bn B

where:

' _ T
Pilrgn) = @lTeniTe(n1) P Tp(n-1)) ¥ Ton Tp(m-1) g (52
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Again, P(0) must be specified. The recursive relationship for P(TBn)
can be solved in principle without knowledge of the state measurements,
ZB(TBn). Since the measurement times,TBn, are themselves determined
by the measurements, the solution of (51) does require either real

or simulatedkdata for this particular application.

If TSN is the last measurement, then:

a, = XB(TBN) = 53(TSN)
(53)
ocy = YB(TBN) = EG(TBN)
The covariance for & is:
o2 = Lp. (v.) P _(1.) +2P. (T.)] (54)
o 4' 33BN 66 BN 36" BN

3.2.3 Simulation Results

The simulation consisted of determining the true state of the two

tables at discrete time intervals,ATl, using the discrete formulation

of (40):

E(nATl) = @(nATl,(n—l)ATl) E((n—l)ATl) +g(nATl) (55)

where g(nATl) is defined similar to (43). The fiducial marks were
distributed uniformly every .0175 radians (360 measurements per
revolution). The true passage times were interpolated from the true

state profiles and the measured passage times were computed using (26):
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Th 7 tn Ezltn)
(56)
Tt tl _ YW
T m E4(t$)

The measured passage times for the two tables were then formed into
the list {TBn} and (51) was solved for P(TBn). OZ was then computed
from (54).

The nominal parameter values for the simulation are listed in
Table 1. The primary variables in the simulation were the table
velocity at the beginning of the experimental run and the time
required to reduce the standard deviation in & to 10"l6 rad/sécz.
The sensitivity of the results to variations of the parameters in
Table 1 was also investigated.

The limiting factor with the simulation was the amount of compu-
tation required to complete one experimental run. The results

16 rad/sec2 would require an

indicate that to reduce o, to 10
experimental run of 50,000 seconds duration (approximately 14 hours)
and the analysis of 140,000 data points. The computation involved
in solving (51) and (55) iteratively 140,000 and 300,000 times

respectively was prohibitive from an economical point of view.



10~6 rad/sec?

(s 3 ==

- 2
QW = (1 arc second)
o, = 107*%(raa/sec?)?

_ 3 -11 2
Pll = P44 = 2.5 x 10 rad

- _ -8 2
P22 = P55 = 10 “(rad/sec)

_ _ ..-16 2,2
P33 = P66 = 10 (rad/sec”)
Pij =0 i# 3

360 measurements per revolution
TABLE 1 Nominal parameter values for simulation.

The alternative was to run the simulation for a shorter time and

16 rad/secz. Very clear trends

extrapolate the value of %y to 10~
were cobserved for the 500 second to 5,000 second segments which
were run and it is felt that the extrapolations are not without
justification and provide at least nominal estimates of the experiment
requirements.

The basic results of the simulation are qualitative and not
related to the extrapolation érocess. These can be summarized by
four main points:

16 rad/sec2 is reached in

i)the requirement to reduce o, to 10~
less time as the initial table velocity is increased, but at
the expense of an enormous increase in the amount of data to

be reduced.
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ii)the time to reach 10—16 rad/sec2 is not effected appreciably

by the accuracy of the initial estimate of a.

iii)the primary hardware limitation on the estimation process is
the measurement error variance, Qw'

iv) the estimation process is quite insensitive to the base accele-
ration variance, Q_.

v

The first result is a contradiction of the results presented by
Parker-[gllt is discussed on a quantitative basis later in this
section.

The last three points can be analyzed quite satisfactorily on a
gualitative basis. If the measurement error variance, Qw' is reduced
by a factor of two, then, regardless of initial table velocity, the
standard deviation, O of the estimate, &, after a specified time
interval is .707 what it would have been for the same initial condi-
tions but the greater measurement error variance. The effect of

16 rad/sec2

this sensitivity on the time required to reduce o to 10~
is discussed later.

Alternatively, if the variance of the base acceleration, Q7 is
decreased by a factor of 10C, the effect on Oy is negligible. 1If
QV is increased by a factor of 10,000 from the nominal value, for an
initial table velocity of .002 rad/sec the increase in T is a
factor of two over the nominal value after 1000 seconds and a factor
of three over the nominal value after 2000 seconds. If the base
acceleration variance used in the simulation is nominally accurate,

base acceleration contributions to the experiment are not important.

This would indicate that the simplified estimator of Section 3.1 may
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have some merit.

The value of o, as a function of time for initial table velocities
of .2 rad/sec, .02 rad/sec, and .002 rad/sec is presented in Figure 1.
The simulations run for 1000 seconds for the two slower velocities
and 500 seconds for the .2 rad/sec velocity. In Figure 2 the!simulation
for .002 rad/sec 1s extended to 5500 seconds.

The basis for iii) above can be obtained from Figure 1. The
initial standard deviation for & for the simulation was 10_8 rad/secz.
If this was to be decreased by a factor of ten, the result would be
roughly to save the 140 seconds that it took the experiment starting
at .002 rad/sec to obtain that accuracy in its estimate, or the 95
seconds for the table at .02 rad/sec, etc. For an operating time
in excess of 10,000 seconds, these savings would be negligible.

Observation i) above can be substantiated quantitatively by
extrapolation of the available data. Two trends of o, are very clear
from Figures 1 and 2. The first is that the ratio of the standard
deviations corresponding to two different initial velocities is very
nearly a-.constant independent of the time at which the ratio is
calculated. The second is that after the first 50 seconds, the decay
in 9 is geometric, decaying by a factor of 5.65 every time the
experiment running time is doubled. The data upon which these
results are based is presented in Tables 2 and 3.

The deviation from the factor at 5.65 for the slower run and times
greater than 1000 seconds is due to the fact that the time integration
of o becomes the dominant factor in determining the table angular
velocity. The initial angular velocity becomes relatively important.

B-38



Standard Deviation (rad/secz)

10

10

10

]0-11

10712

-10(

1 1 i i )] [ i ] i i
0 100 200 300 400 500 600 700 800 900 1000
Time (Sec)

Figure 1 Standard deviation of a as a function of time for three -39
initial table velocities. The initial velocities for
A, B, and C are respectively .002 rad/sec, .02 rad/sec, and
.2 rad/sec. The model parameter values are those of Table 1.




Standard Deviation (rad/sec?)

—_
(e
1
—
—

]0-12

]0-13

1 ) A L A 1 i
1000 2000 3000 4000 5000 6000
Time (Sec)

Figure 2 Standard deviation of a as a function of time for an
initial table angular velocity of .002 rad/sec. The

model parameter values are those of Table 1.



For an initial velocity of .002 rad/sec, the velocity is .003 rad/sec
at 1000 seconds and increases .001 rad/sec per 1000 seconds thereafter.
The effect of the increased velocity is to cause the standard devia-
tion for the slower table to assymptotically approach the standard
deviation for the table starting at .02 rad/sec.

The results of Table 3 suggest that the value of o, as a function
of time can be satisfactorily modeled when the velocity is constant

as: ° °
KO(G(O).¢(0))
Ou(t) = t2'5 (56)

for:

and when the integrated velocity from o is dominant as:

K, (8(0),4(0))

Oa(t) = t2'7 (57)
for:
£ > .a = - o,
6(0) ¢ (0)

The values for the constants are summarized in Table 4. The accuracy
for (56) is easily checked by comparison with Figure 1. Between

50 seconds and 1000 seconds, the error is less than 5% for all three
initial velocities. The exponent of 2.5 corresponds to the ratio of
5.65 which appeared to be the norm in Table 2. The extrapolation of
(56) to greater times for initial velocities of .02 rad/sec and .2
rad/sec should yield results with a high confidence level.

The model for the time region when the table velocity is essenti-
ally independent of the initial velocity is not quite so satisfactory.
The exponent of 2.7 was determined from analyzing the decay of %
between 5000 seconds and‘5500 seconds in Figure 2 with consideration

for the fact that the initial velocity of the platform is not quite
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Initial 32 64 128 256 500
Velocity to to to to to
rad/sec 64 128 256 512 1000
.002 - - 5.50 5.67 5.75
.02 2.62 5.35 5.52 5.68 5.68
.2 4.55 5.55 5.65 5.65 —
Table 2
Time (Seconds)
Ratio of o 50 100 200 400
for A over
'Ua'for B l.48 2.69 2.91 2.86
Time (Seconds)
Ratio of 9, 50 100 200 300
for B over
Ua for C 2.76 3.10 3.12 3.13
Table 3
. C to .2 rad/sec.
Initial KO(rad/secz)
Angular
Velocity
.002 2.5 x 10
.02 8.9 x 10
.2 2.8 x 10~
Table 4

Time Interval (Seconds)

1000
to
2000

2000 2750
to to
4000 5500

Factor by which o4 is reduced when the running time

is doubled as a function of initial table velocity.

3.12

800 1000
2.84 2.83
500 --
3.11 -

Ratios of Oa for different initial table velocities.
A corresponds to .002 rad/sec, B to .02 rad/sec,and

4

5

5

Kl(rad/secz)

"1.05 x 1073

5.1 x 104

Constant parameter values for geometric models of Oy



negligible for the data analyzed. The value for K, was determined
from the value of oaat 5500 seconds. The model is ‘in-error at
5000 seconds by 2% and at 4000 seconds by 8%.

It is felt that (57) is useful in estimating the time required

16 rad/sec. Certainly the use of (56) alone

to reduce o to 10~
would overestimate by a considerable amount the time required to
reach that accuracy for the low initial angular velocities.
Different methods for estimating the parameter values for (57)
suggest that the time estimate for an initial velocity of .02
rad/sec may be accurate to within 2000 seconds and for an initial
velocity of .002 rad/sec to within 5000 seconds. These error
estimates assume that the initial model (56) is relatively precise.
The estimates for total time required and total data required to

16 rad/sec2 for o, are summarized in Figure 3

achieve a value of 10
and Figure 4. The time required clearly must approach a maximum
value somewhere in the vicinity of 70,000 seconds. The number of
data points required must approach a corresponding lower limit of
around 125,000 data points. No such limit for higher velocities exists.
As a rule of thumb, increasing the velocity by a factor of ten in
the high velocity region of Figures 3 and 4 reduces the time
requirement by 25% to 30%, but increases the total amount of data
acquired by a factor of between 8 and 9.

The total time and total data requirements are quite sensitive
to the measurement error variance of the mathematical model. The
measurement errors for the simulation had a standard deviation of

one second of arc. If this is reduced by a factor of two, the

corresponding total time and total data requirements for the same
B~43



initial conditions are decreased by 26%. If the standard deviation
is reduced by a factor of four, the savings is 42%. The latter
accuracy has been suggested as feasible. If it can be attained with
a 360 measurement per revolution measurement system, the required
accuracy in & can be reached in 30,000 seconds with 76,000 data
points for an initial velocity of .02 rad/sec.

All of the data for Figures 3 and 4 is based upon a sample rate
of 360 measurements per revolution. For the faster velocities, a
change in the fiducial mark spacing is equivalent to a change in the
table angular velocity. For the slower velocities the gquantitative
analysis of fiducial mark density changes would require an additional
simulation.

The conclusion to be drawn from Figures 3 and 4 is that a
definite engineering tradeoff exists in the choice of initial table
angular velocities. If an experimental run of 50,000 seconds is
acceptable, only 132,000 data points need be stored and analyzed. If
mission constraints require a shorter experimental run, the penalty
is a vast increase in the data storage and transmission requirements.

The simulation has dealt only with the case for accelerating
tables. A correspcnding case for decelerating tables exists. It is
expected that the gualitative results would be similar to those

which have been presented.
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The condition 2K
2a

Appendix A

. oK
Design for Y

0

= 0 is equivalent to

3
2a

2 < o.

If we set 1

1

in Eq.(l), we have an expression for the torque on one arm of the

test body in the fields of four attracting masses.

The angular

acceleration,
e MG 4 a2[60j51n9 - Gejcosel
@=37T5 7323 N
m(grm +a’)J=1 [22+a2—2a2(6 .cosf + § .sinb)
o] e)

Differentiating with respect to "a" gives us

]3/2

(al1)

grz _ a2
1l oo 5"m z 1 .
_ 92 == [~§ _.sindb + & .cosb]
MG a (§r2 + a2)2 3 R? oj ej
m J
+ a y =3 Fag - 22(6 cosb + § sin6ﬂ[}6 .8in6 + §_.cos6 | (A2)
22 2 & 5 oj ej oJ ej
(-gr + a J R
m J
in which
R§ = a2 + 22 - 2a2(60jcose +.dejsine).
Setting %% = 0 and doing the summations gives us
5 5 5 5 5
1+4h2 1 (El -1) + __l_(ﬁl - El) + 5 (1+5l)_(5l + E.
r2 h cost RS sin® RS RS_ R5 RS
m _5 _ 3 2 %4 3 R R
az 2 2 R5 R5 RS R5 R5 R5
1-2h '[ -1 (_if_1)+ __l_(*l - _i) - (1+_l _(_l + _i)
h cos® RS sing R5 R5 . RS RS R5
3 2 4 3 2 4
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in which h = %.

If we establish the condition 3

)
equal to some function of h or

Q

0, then from Ref. 1 we have 6

<D

8 = £(h)

We can write Eg.(A3) as

l a]
iE N

— 5 N(h)
= 3 D)’ (a4)

W

since
RO 2 5/2 2 5/2
f1o_ [l+h —2hcos6] 1[l+h - 2h cos f(h):l
Rg 1+ h2 + 2h cos$ 1+ n + 2h cos f(h)
r
Using the 6 = £(h) shown in Fig. II of Ref. 4, we can calculate —%
for %% = 0. These calculations reveal that we cannot get a real

r
value for —2 for any value of h.

If, however, we introduce another set of attracting masses,
each with mass, M' at a distance &' from the pivot, we can rewrite

Eg. (A4) as

[

2 N+ 3N
= j MY (AS)
a D(h) + W D{(q)

Nl



in which

a
q = T

g.?'....:o_

For the second set of masses we also have TR

B' = £(q).

As a not necessarily optimum example, we choose

h=10.5, 6= 19.,95°

g = 2.5, ¢' = 21.45°,
and M' _

M= .312.

For these values we get

H

m _
T = .256.

This example is illustrated in Fig. AI.

Then we have



FIGURE Al
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Appendix B

To calculate the required suspension stiffness to maintain

%—I-<-<10—10 %2<10_10), we first calculate the effect

of a small vector deflection, X, of the center of the test body.

(or equivalently

Using the notation of Paragraph 1.1, we can write for the potential
energy of the test body (in the field of the attacting masses)

4 4

1
P.E. = mMG (B1)
i=1 j=1 {x2+a2+22+~23'§zj+2§‘i“5—2&'§§}1/ 2
in which we have defined
_ 2 2_ T
Ryy = va® + 2 zii&j (B2)
. .th .th
to be the distance between the mass on the i arm and the j
attacting mass.
Then
P.E. = mMG ) L 5 1'1' 7
i ij X +2(ai - )x | 1/2
1+ R— (B3)
: R2 .
1]
Now keeping terms to order of x2
L x>+ 2(a) - 20)x
P.E. = mMG ] ] z— [1 - 1/2 > J ] (B4)
. s ij RS .
ij 1]



SO we have

T
_ L2 T x (a,=-L.)
spE. =ZE T X sme ] ] 0 (B5)
1] Rij i Rij
By symmetry
a, - &.
221—3—13—50
. R, .
1] 1]
Then
2
mMG X
AP.E. = ==} ] el (B6)
i3 ij
To calculate AT we differentiate
2
N2 dr; .
=4 _  —mMG 3x ij
AT = 35 AP.E. = —— D) - a5 (B7)
ij ij
Using Egs. B(l) and B(2) (x = 0),
| dr?.
T= -G ] ] —5 g5 (B8)
.  2R%
i3 ij
Now 2
a3 2 I 1 R3S ggij
i i
T2 ¥ = (B9)
Y ) R,: dR
b xTij ij
] de

Doing the summations in B(9) for the example shown in Figure VIII,
Reference 4 gives us

AT 2
——T— ~elX

or for

AT =10
_T<10

x<3 10 3em.



The total mass of the test body in Figure VIII, Reference 4 is

2.58Kg, so, for example, the suspension stiffness, k, needed to limit
5

x in the face of an acceleration of 10~ 'cm/sec2 is

='(2;58'103)10—5

31072

Il

890 dynes/cm.
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ABSTRACT

A digital simulation package has been developed in support of
current Measurement System Laboratory research on an experiment to
measure the Newtonian gravitational constant in earth orbit. The
apparatus for the experiment is similar to that developed by J.W. Beams
in an earth-fixed experiment.

The mathematical model upon which the simulation is based accounts
for earth orbital dynamics, vehicle dynamics, and a generalized exper-
imental configuration. The simulation package is structured to allow
the user to make necessary modifications in the mathematical model
relatively easily. The procedure for adding disturbance force models

or modifying existing models is outlined.
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The feasibility of an experiment to measure the Newtonian
Gravitational Constant, G, in earth orbit has been the subject of
investigations at the Measurement Systems Laboratory by Blood [2 ],
Chapman [3 ], and Lee [5]. The general experimental approach is to
balance the gravitational force between two sets of calibrated masses
by some precisely measurable inertial force. The literature should
be consulted for a detailed analysis of the experimental concept.

One proposed experimental configuration is the apparatus used
by J.W. Beams in an earth-fixed Cavendish experiment[ 7 ]. The
apparatus consists of a set of masses mounted on the spokes of a
suspended wheel with one degree of freedom about its axis of gymmetry.
The wheel is free to accelerate about that axis in response to
externally applied torques. The control torque is provided by a
second wheel which is rotated through an angle 6 relative to the free
wheel (See Figure l1l.). The control wheel is servoed to maintain the
angle 6 near a nominal value, Ny e The equations of motion for the
free wheel are specified by:

« _ o(P.E.)
In"s = 58 (1)

where IM is the moment of inertia of the free wheel,
P.E. is the potential energy of the free wheel in the field
of the control wheel,. and
ﬁs is the angular acceleration of the free wheel.
In the absence of disturbing torques, the free wheel will experience
a constant acceleration and the servo will provide an identical
acceleration to the control wheel. The quantity ﬁS is directly measur-
able within experimental uncertainties.
‘ The intent of the digital simulation of the Beams experiment
was to provide a general framework for the study of :
1) experiment sensitivity to disturbance effects, and
2) @ata reduction procedures required to minimize the effect
of stochastic disturbances,
The simulation package developed has stressed a modular design
concept to allow modification of the experiment model and the
environment model with a minimum of knowledge of the program
mechanics. Each of the environmental factors(atmospheric drag,
earth gravity gradient, etc.) is defined independently as a subroutine



@ Integration

Cycle 1

r--———---———————————-‘---—-——-—_—————-—-1

Integrate earth
orbit equations

Integration
Cycle II

N e o e s e SN S E M) WP R AR S e e

7
1
1
|
)
I
I
l
!
1
|
!
1
1
|
1
|

Branch
left, right
or both

Integrate experiment Integrate torgue
c.g. equations balance equations
Return to 2

- En G e M G E e W @S Gk S G e me e G G e e eE e A

for K cycles

b e e e e e e e - e - - - e - e - =

________ ____-__-_t____-___-_-___-_

Return to 1
for J cycles

'-————-—————-—-————-——————--——-——--G
'——-—-—--.-.— G ewm e e MR GEn N GEs W Ghm AR NN GES M GND NN e G oS @ b G GED G | vme  Gme e

Figure 2. Macrostructure of the simulation package

The cycle II integrations (experiment c.g. equations and torque balance
equation) are nested inside the cycle I integration (earth orbit
equations) to allow different integration time intervals



with explicitly defined calling parameters. The shape of the two test
wheels can be chosen arbitrarily without program modification if all
test masses are spheres. Non-spherical test masses can be accomodated
if a subroutine specifying the gravitational interaction between the
two sets of masses is substituted for the model employed in the
simulation. The experiment can be simulated in either free fall or
bolted to the spacecraft without program modification.

The subroutines modeling the measurement system for ﬁs and the data
reduction procedures are under development and are not included in the
present package. They will be added to a revised simulation package
at a later date.

The macrostructure of the program is governed by the three sets
of integrations performed involving respectively:

1) the orbital eqﬁations of motion of the spacecraft,

2) the equations of motion of the experiment c.g. with

respect to the spacecraft c.g. if the experiment
is in free fall, and

3) the equations of motion of the fixed and the free wheels

relative to the éexperiment c.g.(torque baiance eqguations).
As indicated in Figure 2, the integrations involving the experiment
c.g. motion and the torque balance are nested within the earth’
orbit integration cycle to allow an integration interval which is
a submultiple of the earth orbit integration interval. The earth
orbit parameters are interpolated to provide the increased data density
required for the nested integrations. The experiment c.g.
integrations and torgque balance integrations are performed in parallel
if both are required. The integration algorithm employs a anorder
Runge-Kutta procedure. The integration interval for both the inner
and outer loops is directly accessible as a program input parameter.
Throughout this report, the outer and inner integration loops will be
referred to as cycle I and cycle II respectively.

The mathematical models upon which the simulation is based are
developed in Section 2. A modular flow chart for the program is pro-
vided in Section 3 along with an input/output specification and
comments upon the range of problems the simulation is directly
applicable to. Section 4 is of interest only if modifications to
these models are being considered.



2. Mathematical Models

The mathematical models upon which the simulation is based are
detailed in this section. The coordinate frames are defined in
Section 2.1.

The simplest model is the equation of motion for the earth orbit

integration:

ag =g+ g (2)

where a_ is the acceleration of the spacecraft c.g., g is the earth

B

gravitation, and aj

in the I-frame. The algorithm for the integration is detailed in

is atmospheric drag. The integration is performed

Appendix D. The models for g and a, are specified in Section 2.4.
The equation of motion for the free wheel is given by:

L

s =1, ; mygs 85/ 8 % By/N) (3)
where IM is the total inertia of the wheel,
th

Mﬂs is the mass of “the J~ spheré of the free wheel,
BJ/N is the vector to the Jth sphere from the origin
of the N-frame, and

h

is the acceleration of the Jt sphere as seen in

&5/N
the N-frame.

The N-frame is the reference coordinate system for the integration.
The relationships defining EP/N and BP/N for an arbitrary point P
in the N-frame are given in Section 2.2.

The equation of motion for the experiment c.g. is derived in
Section 2.2.

The mathematical models described in this section deal with
some physical aspects of the experiment and its environment analyti-
cally, some in an approximate manner, and some not at all. In the
latter two cases it is conceivable that the model would have to be
expanded in order to accurately describe certain phenomena. It is
hoped that if the user can adequately describe the necessary
expansions mathematically, Sections 3 and 4 will make the manner in

which the program can be modified apparent.



2.1 Coordinate Systems

For purposes of generality the program maintains six coordinate

systems with sufficient transformation matrices to facilitate a

coordinate transformation between any two frames.

In addition, the

O-frame is directly calculable using the E-frame and the true anomaly,

fO' if

Frame

TABLE 1

it is required. The frames available are described in Table 1.

Type

inertial, earth centered

inertial, earth centered

rotating with respect to
E, earth centered

spacecraft centered,
fixed to spacecraft

nonrotating with respect
to B, experiment c.g.
centered

experiment c.g. centered,
fixed to control wheel

experiment c.g. centered,
fixed to free wheel

Coordinate frames maintained in simulation.

axis orientations are specified.

REFERENCE
zZ-axes X-axes
north complete
triad
orbital orbit
angular perigee
momentum
vector
angular vector to
momentum spacecraft
vector c.g.
complete complete
triad triad
axis of complete
rotation of triad
experiment
axis of complete
rotation of triad
experiment
axis of complete
rotation of triad
experiment

y-axes

complete
triad

complete
triad

complete
triad

longitudinal
axis of space
craft

complete
triad

complete
triad

complete
triad

The essential

The remaining axis

orientations are chosen to complete a right-handed

coordinate system.



The coordinate transformation matrices maintained by the
simulation are listed in Table 2. The algorithm for calculating C?

is provided in 2.6 where the general problem of orbital parameter
determination is dealt with. Cg is time invariant. Cg and CE are

calculated explicitly from (4) and (5) respectively if the torque

TRANSFORMATION FUNCTION COMPUTATION COMPUTATION

MATRIX METHOD INTERVAL
C? from I to E explicit start only
N
CB from B to N =  —=we———e | e
cS
D from D to S explicit half cycle II
CS
N from N to S explicit half cycle II
Cg from E to S update half cycle II
Cg from B to S explicit half cycle II
Cg from E to B update half cycle II
Bl
CE from E to B update half cycle II

TABLE 2 Coordinate transformation matrices maintained in simulation.

e, £

balance equations are being integrated and not otherwise:

cosB =-sin® O
Cg = sin® cos® 0O (4)
0 0 1
L e

cosnS sinnS 0

co = —sinnS cosng 0 (5)

=R



Cg and CZ are computed as products:

s

Ncg (6)
S B

B "E (7)

. . B .
when the torque balance equations are integrated. CE is calculated

from the update algorithm:

B _ B ,T B
Cg (t + At) = (I + AtWEB) Cg (t) (8)
with:
B B
0 WZ WY
B _ B _yB
Ygg = | ¥y 0 Y% (9)
-8 B
Yy X
B | .
where ¥ is the angular rate of the B-frame with respect

to the E-~frame coordinatized in the B-~frame,

At is the update interval, and
I is the identity matrix.

The integrations in cycle II are only approximately simultaneous

and it is necessary to maintain Cg for the torque balance integrations

t
and Cg for the c.g. integrations.



2.2 Dynamics for Rotating Coordinate Systems

If the spacecraft is maintained in a true inertial mode the
dynamics of the experiment c.g. motion and of the torque balance can
be described by a linear relationship if time histories for the
inertial forces are known. If the spacecraft is to be maintained in
a non-inertial mode, however, or if vehicle motion disturbances in an
essentially inertial mode are to be analyzed, then it is necessary to
consider the form of the dynamical relationships as viewed in the
rotating coordinate system attached to the spacecraft. The
development of this relationship requires consideration of the

dynamics of several intermediate coordinate systems.

O-frame--The O-frame is earth-centered and rotating with an angular
velocity @ relative to the earth-centered I-frame. The state

vector relationships are given b§ (10) :

Rr = %

V= Yot e xRy (10)
a. = a_ + ag X R, .+ 20 x V. + Q x (€ x R.)

-I -0 dt =0 — -0 - — =0

where the subscripts denote the frame in which the guantity is

observed.

V-frame~--The V-frame is a spacecraft-centered, local vertical
navigation system. It is linearly accelerating, but non-rotating
with respect to the O-frame. The state vectors in terms of the

V-frame are specified by:
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(11)
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where Ryr Yy and a,, specify the state of the V-frame origin

V

(spacecraft c.g.) and BP/V’ yP/V, and ap /y

experiment at P with respect to that origin (Figure 3a). For the

specify the state of the

torqgue balance eguation, P is the coordinates of one of the free wheel
test masses (Equation 3).

The acceleration a,

spacecraft c.g. motions, i.e. BP/V’ YP/V’

can be determined from (10) by considering

and a

P/V are zZero:

- _ a8 _ - :
3, = égv + ED at X BV 20 x XV Qx(gxgv) (12)

where gg is the primary earth gravitational force at the
v
spacecraft c.g., and
ap is the atmospheric drag at the c.g.
B-frame--The B-frame is a vehicle-centered, vehicle-fixed coordinate
system rotating with an angular velocity Y relative to the V-frame.

The state is specified relative to the state observed in the V-frame

by:

Rp v = By

Y—P/V=Y-B+EXEB (13)

- ay
=% ta Bt 2¥ x Vo + ¥x(¥xRy)



N-frame~~The N-frame is centered at the experiment and non-rotating
with respect to the B-frame (Figure 3b). If the experiment is
floating free in the spacecraft the N-frame will translate linearly

with respect to the B-frame.

20
v~-frame

Figure 3a Translation of V-frame with respect to O-frame.

Figure 3b Translation of N-frame with respect to B-frame.

Cc-10



The state for this general case is given by:

&

B = B *

= 14
y—B YP/N + Y..N ( )
a8 = 2p/n t 2y

where BN' YN, and ay specify the state of the N-frame origin and

BP/N’ YP/N’ and EP/N specify the state of the experiment at P with

respect to that origin. In the case where the experiment is free, the
acceleration, ayr of the c.g. is éB if BP/N’ YP/N’ and ap
equal to zero. Substitution of (10) and (12) into (13) and (14) and

/N are set

rearranging yields:

= - - - 48 - -
&y < —aIB _ga v 2p dt * Ry fix (.SZXEN) 28ix (V_N + EXBN)
- ¥y - 2¥ x Vo - ¥x(¥xR) (15)
dt BN = % VN Ix (¥xRy

where a; represents the inertially referenced forces acting on

the experiment c.g.

The only forces acting on the experiment c.g. are the primary
gravitation of the earth and the primary gravitation of the
spacecraft. For small displacements of the experiment from the
spacecraft c.g. the earth gravitational effect can be modeled as a

gravity gradient. The first two terms of (15) then become:

a - a = G, R+ a (16)
I, Zgy ERN SCy

where 250 is the spacecraft gravitational acceleration at Ry and
N

C-11



Gy is the earth gravity gradient matrix evaluated at the
spacecraft c.g. (Section 2.4).
The equations of motion for the experiment c.g. when the experiment

is free are then given by:

dan
& < sy * GgRy~ 3y T FE ¢ By T DX (@Ry) - 20x(Yy + BRy)
ay Sy x
- gt < By T 2 ¢ Yy - W (¥xRy) (17)

In order to write the torque balance equations it is necessary

to express the acceleration a

P /N as seen in the N-frame. The

expression for a is:

P/N

Qs

_ b4 - - -
3p/n = 2psv T @ ¢ Bpyw Ry 2B (Tp g+ V) - B((RBp y + Ry)) - 3y

(18)

For the case where the c.g. is free a, is given by (17). Substitution

N
of Ry amd Vi using (11), (13), and (14) and inclusion of the sphere

gravitational interaction in the inertial force model yields

ultimately;

- - da - :
3p/n = SgRp/n *3sc' * CscBen T @t ¢ Bew A (p gt ¥ X Ry )

- x(Q x BP/N) - %g x BP/N - 2¥ x YP/N - ¥ (¥ x BP/N) (19)

where aga is the sphere gravitational interaction, and

GSC is the spacecraft gravity gradient matrix

evaluated at the experiment c.g.

For the case when the experiment is mounted rigidly in the

spacecraft, ay = 0 and the torgue balance equations become:

C-12



‘ ds
2p/ = CpBy * Bpyw) T3¢ T 2gc, T2 T & ” (Rp/n + Ry

- zﬁx(gx(BN +'I_{P/N)) - QX(QX(B_N + EP/N))

- ay _ 20
& (R * Ry) = ¥x(x(Rp y + Ry)) (20)
where agc is the spacecraft gravitation at the point P.

P
(17), (19), and (20) are the state equations instrumented in the

simulation. When the experiment is free, (17) and (19) are integrated

in an approximately simultaneous fashion.

2.3 Control Law

To maintain a constant torque interaction between the two wheels,
it is necessary to maintain the angular separation at some nominal
value g The incremental control law employed in the simulation
attempts to drive the error signal, no—e, at the beginning of the
integration interval to null at the end of the interval. The
law assumes that thé disturbances are zero mean and that all torques
are constant in the interval. The angular acceleration of the

control wheel is then:

« e 2..
. (no—(nD—nS) - At(ny-ng) + .5 AtTHig) . . (21)
Np = 2 - Yy T Sy
.5At Z 2
where At is the integration interval,

QN is the angular acceleration of the O-frame with
b

respect to the E-frame resolved along the Z-axis
of the N-frame, and

@N is the angular acceleration of the B-frame with
Z

respect to the V-frame resolved along the z-axis of

C-13



the N-frame.

The control ﬁD is computed at the beginning of each cycle II
integration. The error signal, no—e, used for the control law is
precise. For some applications it may be desirable to replace this

exact value with a noise corrupted measurement ( See Section 4

2.4 Force Models

The mathematical models discussed to this point have been discrete
time expressions of analytical relationships and will presumably
converge as the integration time increment becomes small. The force
models described below are approximate relationships. The accuracy of
the simulation is a function both of the integration time increment
and of the precision of the force model. It is presumed that the

user is capable of supplying a more precise model where necessary.

The primary earth gravity field model at the spacecraft c.g. is:

\GME
9= "3 % (22)
|Ry |

where ME is the mass of the earth. The computation is performed in
the I-frame. If a more precise model is desired, the additional
elements must be specified in the I-frame.

The gradient matrix is specified by:

(23)

(o]

]
QJI (<%
{9

In component form the gradient model is:
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GM 3

E -
57 Tel? MY Ryl

7 Ryi Ryy (24)

3
!

where 6ij = 1 if i = j and zero otherwise, and

Rys and RVj are the ith and jth components of Ry
respectively.
The force model for the gravitational interaction between the
two wheels assumes that all of the test masses can be modeled as
th

point masses. The acceleration of the J test mass of the free

wheel due to the test masses of the control wheel is:

Mo

256, ~ '% TSNE Ri/k (25)
=J/K
where MKD is the mass of the Kthsphere of the control wheel, and
BJ/K igs the vector distance from the Jthsphere of the

th

free wheel to the K sphere of the control wheel,

coordinéfized in the S-~frame.

The angular acceleration of the free wheel is computed from the
torque balance equation (3) using (25). If the test masses cannot be
modeled as point masses, (25) must be modified.

The simulation as presently implemented does not include a
spacecraft gravity model. Development of a model is currently in

progress.

The drag model in the simulation is specified by:
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1 2
5 PC AV

Mg

where MS is the mass of the spacecraft,
p is the atmospheric density,
Cd is the drag coefficient,

A is the cross-—sectional area of the spacecraft

perpendicular to VR and
I

Ve is the relative wind at the spacecraft c.g.

The relative wind is given as the vector difference:

Vo, = V, =V (27)

where ZA is the atmospheric velocity and is a function both of
latitude and altitude. In the simulation V., is zero.

A

For a circularly symmetrical spacecraft, the cross-sectional

area is a function of the angle between the velocity vector, V

—R
and the y-axis of the spacecraft. Defining:
VB
Y
C = ———— (28)
~-R
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where YkB is the y=-component cf YR coordinatized in the B-frame,

Y
then:

=

_ 2.3
A= A1C22 + Az(l C22) (29)

where Al is the cross-sectional area perpendicular to the y-axis
of the B-frame and A2 is the cross-sectional area for any plane
containing the y-axis. The cosine function Cyy is maintained in

the simulation but is not used in the drag model.

The drag model presently incorporated in the simulation does not
account for either atmospheric density wvariations or cross-sectional

area variations or relative wind considerations. The model is:

»

-17
ay = 1.5 x 10 -l‘_’vl‘lv (30)

This model is within the drag range estimated by Lee[G] and summarized

in Table 3.

Conditions: (1) Circular orbit at 500 km.
(2) Drag coefficient = 2.3
(3) Mass of spacecraft = 4.54 x 107 gm.

(4) Velocity = 7.64 x 105 cm/sec2
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Parameters Probable (90 g ) Mean Probable (90 % )
Lower Limit Upper Limit
Exospheric 580 °K 812 °K 1125 °K
Tenp.
Density 2.0 x 10717 1.7 x 10718 1.1 x 10713
gm./cm3 gnp/cm3 gm./cm3
Area 2.92 x 10° cm® 5 x 10° cm? 7.35 x 10°cm?
(projected)
8.6 x 10°° 1.3 x 107° 1.2 x 107°
Drag 2 2 2
Acceleration cm. /sec cm. /sec cm./sec
8.8 x 10+ g's 1.3 x107? g's 1.2 x 10°% g's
TABLE 3 Expected drag accelerations for Skylab B [6].

2.5 Vehicle Motion

The choice of vehicle motion model is somewhat arbitrary. The
model that has been implemented is an inertial hold mode with no
disturbance forces. The initial orientation of the spacecraft is
user specified. In applying the simulation, the user may prefer to

substitute a vehicle motion time history for the present model.

2.6 Orbit Determination

The orbit determination routines perform two functions:
1) computation of orbital parameters from Ry and YV' and
2) updating the true anomaly to determine the relative
position of the spacecraft in the orbit.
The second function is performed at the start of each pass through cycle
I. The computation of orbital parameters is carried out only when a
flag is set by the main program during execution.

As currently

implemented, the flag is set only to initialize the orbit. If



the flight profile to be simulated involves large drag forces or
orbit changes, the main program must be altered to set the flag at
the appropriate times (See Section 4).

The orbital parameters of interest are the eccentricity, e;
the true anomaly, fo; the angular rate, Q; the angular acceleration,

Q; and the coordinate transformation matrix, CE All computations

1
are carried out in the I-frame. The eccentricity is defined as the

positive root of:

—lgii—~——— -1 + al \'A (31)
e || awglrgl VY

where the massless orbital angular momentum is defined by:

h = BV X YV (32)

The true anomaly can be defined uniquely from the two equations:

- LI
sSlin = T ———————— .
. = '
0 GMEelgvl
5 (33)
Y .
cOSs fo'— -—e—

GMEeIBVI

The orbital angular rate and acceleration are given respectively by:

2,- 3/2

2 =9yl - e (1 - e cos f0)2 (34)

and :
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2)—3/2

Q= - ZQge(l - e (1 - e cos fo) sin £, (35)

where 90 is the average angular rate:

(M) (1 - &)3/2
o~ BE e

The coordinate transformation matrix, C?,

computing in the I-frame the unit vectors parallel to the three

is determined by

axes of the E-frame. The unit vector in the direction of the

angular momentum is obviously:

=2

iy = (37)

3

The unit vector directed at the orbital parigee from the origin is

given by:

o= o | (v, ]2 - B i (msv 38
2 T Gge Yy x| By - &y " ) Yy (38)

and the third vector is formed by the cross-product:

i o= i X i (39)

[2Ta¥



The coordinate transformation matrix is then specified by:

i, i, e,

cs = (40)
i i i
1 P °3

3. Program Implementation

The specific structure of the source program is presented in
this section and in Section 4. No detailed algorithm is presented;
however, the program is discussed in sufficient detail to permit
relatively easily the interchange of mathematical models.

The source language for the simulation is FORTRAN IV. The
program was written and tested ugder the G-level compiler on the IBM
360/65 at MIT IPC. The standard IBM double precision library function
package is required for execution.

The simulation is organized using a modular concept to facilitate
program modification. The source code consists of a main program
and 21 subroutines. The main.program performs Input/Output
operations, program initialization, and sequencing of the
integration cycles. Each of the 21 subroutines is used to perform
a specific function, e.g. ACCEL computes the accelerations at the
test masses of the free wheel. Under certain program options, output
is generated from the subroutines. All state variables and most
data for the computations and output are passed through COMMON to
faciliate access to the data by all subroutines. Control parameters
are passed to the subroutines as dummy arguments in the calling
sequence. These are discussed in Appendix A. If program

modifications are made requiring state variables not available in
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COMMON, then those variables are not computed in the present package
and must be supplied by an addition subroutine. The list of COMMON
variables along with definitions and the subroutines in which they

are computed is supplied in Appendix B.

3.1 Program Structure and Function

The control sequence for the simulation is depicted
schematically in Figure 4. A subroutine can be called by any
subroutine which is directly above it on the control tree. For
instance, DRAG can be called only by F, MOVE, Or ACCEL. Upon exit
the subroutine always returns control to the subroutine from which
it was called. The subroutines CROSS and MULT are matrix manipulation
subroutines and are called by several other subroutines. The
functions performed by MULT, CROSS, and INTERP are discussed in
Appendix C.

The specific function performed by each subroutine is listed

in Table 4. Complete time histories are computed and stored for:

1) position and velocity of spacecraft c.g.,

2) true anomaly,

3) orbital angular velocity,

4) position and velocity of experiment c.g.,

5) angular position, rate, and acceleration for control wheel,
6) angular position, rate, and acceleration for free wheel, and

7) angular separation error.

All other computed variables supersede the previous value and no
history is maintained. The time histories specified by the user
are printed after completion of the simulation. The storage allocation

in COMMON restricts the time histories to 400 entries in each dimension.



PROGRAM

MAIN

DIFFSQ

INTERP

DIFFBQ
VEHCLE
DIFFVQ
ORBIT
PARAM
F

MAT1
MOVE

MATRIX

CONTROL

TORQUE
ACCEL
DRAG
SPACE
DYNAM
EARTH

SPHERE

MULT

CROSS

FUNCTION

Input/Output and program initialization, sequencing of
integrations

Torque balance equation integration

Interpolate orbital position, Velocity, angular rate,
and angular acceleration values from DIFFVQ to match.
integration interval of DIFFSQ and DIFFBQ(See Appendix C)

Experiment c.g. equation of motion integration
Vehicle motion history
Orbital equation of motion integration

True anomaly, orbital rate, and orbital acceleration

E

Orbital eccentricity, true anomaly, and CI

Primary earth gravitation

Cg coordinate transformation matrix

Acceleration of experiment c.g.

S S S S
CD, CN’ CE' C

and C22

B’ and Cg coordinate transformation matrices;

Position, angular rate, and angular acceleration of
control wheel

Torque and angular acceleration of free wheel
Accelerations at test masses on free wheel

Atmospheric drag

Spacecraft primary gravitation (current program is dummy)
Dynamics of rotational coordinate systems

Earth gravity gradients

Gravitational acceleration on test spheres due to
control wheel test spheres

Product of vector and matrix (See Appendix C)

Cross product of vectors (See Appendix C)

TABLE 4 Simulation subroutine functions.



CONTROL - VALUE EFFECT

VARIABLE

DTIS real The integration interval for the cycle II
integrations is DTIS seconds.

KSKIPS integer The state variables for the cycle II
integrations are printed at KSKIPS<DTIS
second intervals.

NDT integer The state variables for the cycle I
integration are printed at NDT*KSKIPS-
DTIS second intervals.

KSKIPG integer The integration interval for the cycle I
. . . NDT+«KSKIPS+DTIS
integration is RSKIPC seconds.

IFIX 0 Experiment is fixed in spacecraft. Only
the torgque balance equation is
integrated in cycle II.

1(default) Experiment is free in spacecraft. The
torque balance edquation and the
experiment c.g. equations of motion are
integrated in cycle 1II.

2 Experiment is free in spacecraft. Only
the experiment c.g. equations of motion
are integrated in cycle II.

NRR 0 (default) No force profile at experiment c.g. is
printed.

1 A force profile at experiment c.g. is
printed if the c.g. equations of motion
are integrated,

NSS 0 (default) No force profile at test masses is printed,

1 A force profile is printed if the torque
balance equation is integrated.

NARMS integer The number of arms on the free wheel.

NARMD integer The number of arms on the control wheel.

TABLE 5 Control variable specifications. Cycle I is the
orbital equations of motion integration. Cycle II
encompasses the torque balance equation and the
experiment c.g. equations of motion.
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VARIABLE SYMBOL
NAME
XIS ns
VIS Vg
RNB Ry
VNB vy
CEB cg
CBN cg
ETO Moy
ARMS (K, J) RJ/S
ARMD (K, J) RJ/D
RMASS (J) MJS
M
RMASD (J) D
TABLE 6

COORDINATE
FRAME

N

PHYSICAL QUANTITY

Angle of S~frame relative to N-frame

(about z-axis)
Angular rate of

S-frame and D-frame

relative to N-frame (about z-axis)

Coordinates of experiment c.g.

Velocity of experiment c.g.

Coordinate transformation matrix

from E-frame to

B-frame

Coordinate transformation matrix

from B-frame to

N=frame

Initial and optimal angular
separation of free and control

wheels

State wvector to
from the origin

State vector to
.sphere from the
D-frame

Mass of the Jth
free wheel
Mass of the Jth
control wheel

the Jth free sphere

of the S-frame
the Jth control
origin of the

sphere on the

sphere on the

Definition of physical parameters requiring initialization.



CARD NUMBER . VARIABLES FORMAT

1 NDT ,KSKIPS ,KSKIPG,TIS,DTIS,TIME,XIS,VIS 314,8F10.4
2 XI 3F10.4
3 VI 3F10.4
4 RNB 3F10.4
5 VNB 3F10.4
6 CEB 9F8.3
7 CBN 9F8.3
8 IFIX,NARMS,NARMD,ETO 314,8F10.4
9 NRR,NSS 214
10 to K ARMS 3F10.4
K+l to J ARMD 3F10.4
J+1 RMASS 8F10. 4
J+2 RINERT F10.4
J+3 RMASD 8F10.4

TABLE 7 Card format for input variables. The coordinates for
the wheel spokes are read in one spoke per card.
K = 10 + NARMS and J = 10 + NARMS + NARMD. All
vectors are read in as x-component, y-component, z-component.



3.2 Input/Output Specifications

The input variables to the simulation can be classed in two
distinct catagories:

1) control variables for the execution of the simulation, and

2) initial values for the physical parameters of the simulation.

The control variable specifications are detailed in Table 5.
"Integer” or "real" implies that the user is free to specify the
appropriate value in the indicated mode. 1In the remainder of the
cases the user is required to choose one of the indicated integer
mode values. The defaulit option for cases in which the user
specifies a value other than the permi’ted value is indicated in
parentheses.

The physical parameters to be defined are indicated in Table 6
along with the coordinate system in which the input is to be
specified. The symbols refer to the mathematical symbology used in
Section 2. A complete list of program variables is given in
Appendix B along with the subroutine in which the variable is
computed. Program modification is required to obtain direct access
to any variable not listed in Table 6.

The card format for the input variables is detailed in Table 7.
Each vector is read.in on a single card as: xX-component, y-
component, z-component. The coordinates for the wheel spokes
(ARMS and ARMD) are read in one spoke at a time. The coordinate
transformation matrices are read on a single card according to the
element sequence: Cll' C21, C3l' Clz’ C22 ... The format for the
remaining variables is straightforward.

Examples of simulation output for the three state integrations
are presented in Figure 5. The user specifies which of the three
outputs are to be computed and printed through the control
variable IFIX. The definitions of the output parameters can be
obtained in either Section 2 or Appendix B.

Additional output variables for the spacecraft c.g. integrations
are the initial conditions on the state variables; the orbital
eccentricity, e; and the integration interval. For the experiment
c.g. integrations, the initial value for the transformation matrix

B

CE is printed along with the integration interval. For the torque
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balance integration; the test wheel configurations, the initial
conditions, and the integration interval are printed.

If either of the control variables NSS or NRR is assigned the
integer value 1, force profiles are printed as they are computed in
the subroutines. The vehicle angular rates and accelerations are
also printed along with the coordinate transformation matrices.

The format for the output is to print the time at the top of a new
page. Each line on the page then consists of the variable name
used in the program (Appendix B) followed by the variable value.
The output format for arrays and matrices is the same as the input

format described above.

TIME Ry Ro RO VO V0 VO f0 £
X y z X y z

Figure 5a Output format for spacecraft c¢.g. integration.
Output variables are time, position vector, velocity vector,
true anomaly, and orbital angular rate. Variables are

coordinatized in I-frame.

TIME RNX RNy Ry VN VN VN

z X y z

—— - - —— — — —— -

Figure 5b Output format for experiment c.g. integration.
OQutput variables are time, position vecfor, and velocity
vector. Variables are relative to spacecraft c.g. and
coordinatized in B-frame.

TIME ng Ny ng~{np=ng) ng Np g fip

——— — —_— —— —— —— — -

Figure 5c Output format for torque balance equation
integration. Variables are relative to N=frame and are coor=-

dinatized in N-frame.

c-29



2000 sec. \ -1400 4 - / \

\ START./'

—— —

;
Y F ' ' ' /,
-69Q0 -400 -200 200 400 600
FINISH , -
X-axis (cm.) ///

Figure 6. Simulation of motion of free floating experiment as
seen in spacecraft (B-frame).

Initial conditions are Ry = (0,-1574.8,0) and = (.745, 0., 0.)

V =
Experiment c¢.g. returns to initial state after“ﬁne earth orbit
of 5700 seconds. Position is shown at 100 second intervals.
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3.3 Integration Error Analysis

In addition to modeling errors, the simulation is sensitive to
truncation errors and finite integration interval errors. All
program variables are double precision with a maximum of 15 significant
digits. Althoﬁgh truncation errors can become significant for small
integratioﬁ intervals, the primary integration error is the lineari-
zation error introduced by the finite integration interval. For the
earth orbit integration (cycle I), the linearization error is controlled
by the integration interval, DTIG. For the cycle II integrations, the
linearization error is governed by both DTIS and DTIG.

The data of Table 8 is intended as an aid in estimating the
output errors associated with a particular pair of values for DTIS and
DTIG. Table 8a outlines as a function of DTIG the convergence of the
orbital state estimate after approximately one revolution in a drag
free orbit. Accepting the one second integration interval as a base
reference, the cumulative error after 5700 seconds with a 20 second
integration interval is .4 cm. in the x-coordinate, 15.88 cm. in the
y-coordinate, and 20.16 cm. in the z-coordinate.

Table 8b illustrates a case when the experiment is floating free
in the spacecraft. Given an initial displacement from the c.g. of
the spacecraft and a small initial velocity relative to the spacecraft
c.g., the experiment c.g. ideally describes a closed arc as seen in
the B-frame (Figure .6) and after one full orbit returns to a state
close to its initial state. In a drag free orbit with the spacecraft
in an inertial hold, the motion of the experiment c.g. is determined
solely by the resolution of the earth gravity(gradient matrix into
the B-frame. Since the gravity gradient matrix is calculated by the
subroutine EARTH from the orbital state estimates, DTIG indirectly
affects the integration error in cycle II along with the direct effect
from DTIS.  The data of Figure. 8b indicates that this error is quite
significant. The test run with DTIS and DTIG equal to one second is
assumed as a reference. When both integration intervals are 20
seconds, the cumulative error is 23.45 cm. in the x-coordinate and
73.20 cm. in the y-coordinate. ’

No test runs for the torque balance equations are included. The

results were similar to the experiment c.g. equation error analysis.



Integration
Interval
(DTIG)

20 seconds

10 seconds
5 seconds
2 seconds

1 second

Table 8a

Cycle II
lntegration
Interval

(DTIS)
20 seconds

1l second

10 seconds

1 second
5 seconds
2 seconds

1l second

Table 8b

Q
I
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x—-coordinate y—-coordinate z-coordinate

690093936.62 cm. -2622799.90 cm. -3125701.86 cm.
690093936.96 cm. ~2622815.82 cm. -3125720.83 cm.
690093937.01 cm. -2622816.76 cm. -3125721.95 cm.
690093937.02 cm. -2622816.80 cm. -3125722.00 cm.
690093937.02 om. -2622816.82 cm. -3125722.02 cm.

Convergence of orbital equations of motion integration
as a function of integration interval, DTIG. The table
entries are the coordinate estimates of a 500 km. orbit
after 5700 seconds (approximately one orbit). The case
with DTIG = 1 is assumed as the best estimate of the
true state. The initial state is (690106000., 0., 0.)
and the orbital period is 5706 seconds.

Cycle I x-coordinate y—-coordinate
Integration
Interval
{DTIG)
20 seconds -27.46 cm. -1501.26 cmn.
20 seconds -27.46 cm. —-1501.26 cm.
10 seconds -9.74 cm. -1555.80 cm.
10 seconds -9.68 cm. ~1556.13 cm.
5 seconds -5.45 cm. -15692.91 cm.
2 seconds -4.38 cm. -1573.61 cm.
1l second -4.01 cm. -1574.46 cm.

Convergence of experiment c.g. equations of motion
integration as a function of the integration intervals
DTIS (cycle II) and DTIG (cycle I). The table entries
correspond to the trajectory of Figure 6 after 5700
seconds (approximately one orbit). The case with

DTIG = DTIS = 1. is assumed as the best estimate of the
true state. The initial state is (0., -1576.8) and the
orbital period is 5706 seconds.



4. Possible Program Modifications

The simulation package described in this report was developed
with the hope that it would be sufficiently general to accomodate a
large number of applications and test configurations without
requiring program modifications. Nonetheless, there will undoubtedly
be application regquirements for which program modifications will
be necessary. Some such modifications are obvious and are presently
under consideration. There are a great number of modeling require-
ments for which no sufficiently general simulation package can be
developed, however, and a major concern in the development of the
package has been to allow relatively major alterations of the
mathematical model without requiring the programmer to understand
the mechanics of the entire package.

Desired modifications can generally be classified into three

major catagories:

1) alteration of the sequencing logic in the main program to
allow for variable integration intervals,
2) extended Input/Output capabilities, and

3) alteration of the mathematical model of the experiment
and its physical environment.

The first modification is of interest because of the nature of
the experiment. When the free wheel is revolving slowly, the forces
at the test masses change slowly with time and a relatively long
integration interval is sufficient to accurately describe the motion.
After several thousand seconds of constant mean acceleration,
however, the rate of change of the forces is high enough to warrant
a shorter integration interval. Modifications to allow a time
history for DTIS to be input are under development.

The most likely requirement for extended Input/Output is to
output the data in a different format, such as Calcomp plots. with
the exception of the force profiles and spacecraft angular motion
profiles, all output emanates from the main program in the form of
time history arrays. All that is required to modify the output
format is to replace the current output package with a new package.

If time histories for any of the force profiles are desired,
the simplest approach would be to set the appropriate control flag
(NSS or NRR) to unity, replace the print statement in the appropriate



subroutine by a time history array assignment, and pass the array
back through COMMON to the main program: If the variable of interest
is computed for the torgque balance integration, the

array index for the assignment should be IT. If the variable
originates in the experiment c.g. equation integration, the array
index is IB. ©For the orbit integration , the array is KRG.

The number of model changes which can be made is seemingly
endless. Substitution of models generally requires only
modification of the subroutine implementing that model. The
modifications can utilize any COMMON variable or the control
variables passed through the CALL statement to the subroutine. In
the event that the modification requires the current value of a
variable stored in a time history array, the array index indicated
in Table 9 should be used. The indexes KRG-1, IT-1, and IB-1
specify the value at the beginning of the current integration

ARRAY INDEX FOR CURRENT VALUE

TMG ,OMEGA ,DOMEGA , ANSG, VELOG,TA KRG-1

OM,DOM,PST,DPSI,XG, VG, ND for torgue balance

NDB for experiment c.g. motion

AETAS,ETAS,DETAS ,AETAD, ETAD IT-1

DETAD,ERS )

ANSB, VELOB IB-1

TMS IT-1 for torgue balance

IB-1 for experiment c.g. motion

TABLE 9 Index required to obtain data value in time history array
corresponding to value at beginning of current integration

interval.

interval. The resolution of ND, and NDB is such that the value at
the midpoint of the integration interval may also be accessed. The

procedure for effecting model modifications is to use Appendix B



to locate the subroutine in which the variable is computed and
Appendix A to determine what modifications are necessary. The
documentation in Appendix A is intended to be sufficient to define
the nature of the modifications.

The mathematical model for the simulation may be altered either
by replacing old models or adding new ones. The most likely instances
in which additional models might be added are:

l) a noise-corrupted measurement model, and
2) additional disturbance force models.

The noise-corrupted measurement model can be implemented by substi-
tuting the model for the two assignment statements for ERR in DIFFSQ.
The disturbance force models can be referenced as subroutines from

F, ACCEL, or MOVE depending on whether the disturbance affects the
spacecraft orbital motion, the torque balance, or the experiment c.g.
motion respectively. The model output must then be added in vector
form to either ACD, ACC, or ACB.

As discussed in Section 2.4, any of the force models may require
modification or replacement. The immediately apparent modifications
were discussed in that section. It is also conceivable that the
vehicle motion model may require a time history different from the
inertial hold implemented. This modification can be effected by
either inputting the time history directly or modifying VEHCLE to
compute the vehicle motion.

A further generalization of the simulation package can be effected
by allowing the possibility of impulsive orbit changes for the
spacecraft. The procedure for implementing this modification is
discussed in the documentation for MAIN in Appendix A.

Although additional program modifications may seem desirable,
they very likely cannot be effected without a more extensive
understanding of the logic structure of the program. It is
expected that as the simulation is applied and its limitations more
clearly delineated, modification to the general structure of the
package will be forthcoming.
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Appendix A

Source Deck Listing

The complete FORTRAN IV listing for the simulation package is
contained in this appendix. The documentation is intended as a
supplement to the textual descriptions in the body of the report. No
attempt is made to detail the mechanics of the individual subroutines.
The documentation in each subroutine defines the input and output
variables pertinent to that subroutine and outlines the funation of
the control parameters. The intent is to specify the interface
constraints that a user~supplied subroutine must meet if the mathe-
matical model in the simulation package is to be replaced. Appendix
B should be used in conjunction with Appendix A to relate the program
source code to the text of the report.

Because of the size of the source code program, Appendix A is
not included in this copy of the report. A complete listing is

available on request, as TN-2.






Appendix B

Program Variable Definitions

This appendix summarizes in a table format all of the variables
maintained in COMMON during execution of the simulation and.a number of
the more important variables which are passed through the CALL
statements. Dummy calling parameters are defined in the documentation
for the appropriate subroutine in Appendix A and are not included here.
In addition, variables which are intermediate products within a single
subroutine are omitted. In modifying a model, the user may replace
these variables with variable names of his own choice. All variables
necessary for communicating data between subroutines are listed in
this table except for the control parameters of Table 5.

The majority of the variable values are updated and only the
current value is available during execution. For those variables
which constitute time histories, the data value at the beginning of
each integration interval is pointed to by the appropriate index from
Table 9. Those variables listed in the table and not stored in
COMMON are generally accessible only to the subroutine in which they
are computed and the subroutine from which that subroutine was called.

The table contains seven entries for each variable. The key

letters at the top of each page denote respectively:

NAME -- the variablé name used in the program.

S =- the symbol used in the mathematical model of Section 2.

# -—- the equation number from Section 2 which defines the variable.
SUB ~- the subroutine in which the variable is computed.

C +-- whether or not the variable is stored in COMMON.

F -- the coordinate frame in which the variable is coordinatized.



NAME s
ACB EN
ACC EP/N
ACD a

—-E
ACT ﬁs
AEG GEBN
ET
AETAC nD
AETAD nD
AETAS ns
AFD ED
ASC ESC
ASG a

—SGJ

ANSB BN

ANSG BE

Table 9 Program variable definitions.
explained in the text.

19
or
20

16

30

16

25

13

SUB

MOVE

ACCEL

TORQUE

EARTH

CONTRL

CONTRL

DIFFSQ

DRAG

SPACE

SPHERE

DIFFBQ

DIFFVQ

N

Physiéal Interpretation

acceleration of experiment
c.g. as seen in B-frame

accelerations at test
masses on free wheel as
seen in N-frame

acceleration at space-
craft c.g. as seen in
I-frame

net angular acceleration
on free wheel (used in
integration routine onily)

earth gravity gradient
force

angle of control wheel
(D-frame) relative to N-
frame at midpoint of
integration interwval

angle of control wheel
(D-frame) relative to N=-
frame at beginning of
integration interval
(time history)

angle of free wheel (S-
frame) relative to N~
frame at beginning of
integration interval
(time history)

atmospheric drag force

primary spacecraft
gravity force

. th
acceleration of the J
test mass of the free
wheel due to the control
wheel

position of experiment
c.g. relative to space-
craft c.g. (time history)

position of spacecraft
c.g. relative to earth
(time history)

The column headings are



NAME s #

19,

or

20

ARMD - -

ARMS - -

c22 C22 28
N

CBN CB -
S

CBS CB 6
S

CDS CD 4
B

CEB CE 8
B'

CEBl CE 8
S

CES CE 7

CIE C? 40
S

CNS CN 5

CSTRA cos fO 33

DENT I 8

DETAD f 21

Table 9 (cont;d)

SUB

DYNAM

MAIN

MAIN

MATRIX

MAIN

MATRIX

MATRIX

MATRIX

MAT1

MATRIX

PARAM

MATRIX

ORBIT

PARAM

MAIN

CONTRL

Physical Interpretation

rotating coordinate
system force terms in
equations of motion for
cycle II

coordinates of control
wheel test masses (input
variable)

coordinates of free
wheel test masses (input
variable)

angle of spacecraft
velocity vector with
longitudinal axis of
spacecraft

coord. trans. matrix from
B-frame to N-frame
(input variable)

coord. trans. matrix from
B-frame to S-frame

coord. trans. matrix from
D-frame to S—frame

coord. trans. matrix from
E~frame to B-frame (used
for torque balance only)

coord. trans. matrix from
E-frame to B~frame (used
for experiment c.g. only)

coord. trans. matrix from
E-frame to S-frame

coord. trans. matrix from
I-frame to E-frame

coord. trans. matrix from
N-frame to S-~frame

cosine of true anomaly

identity matrix

angular acceleration of
control wheel (time
history)

Program variable definitions.
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NAME

DETAS

DIST

DOM

DOMEGA

DPSI

DTIG

DTIS

ECC

EETA

ERR

ERS

ETO

ETAD

ETAS

Table 9

fig 3
Ryx 23
Q —_
o) 35
¥ 13
e 31
i 39
=n

no -
nD -
Ng -
e 24

(cont'd)

SUB

DIFFSQ

MATRIX

INTERP

ORBIT

VEHCLE

MAIN

MAIN

PARAM

PARAM

DIFFSQ

DIFFSQ

MAIN

CONTRL

DIFFSQ

EARTH

Physical Interpretation

angular acceleration of
free wheel (time history)

vector distance from Jth
sphere of free wheel to

Kth sphere of control
wheel

orbital angular acceler-
ation interpolated to
cycle ITI data density

orbital angular acceler-
ation (time history)

B-frame angular acceler-
ation relative to V-frame

cycle I integration
interval

cycle II integration
interval

orbital eccentricity

y~axis of E-frame

angle position error
between free wheel and
control wheel

angle position error
between free wheel and
control wheel (time
history)

nominal angle between
free wheel and control
wheel

angular velocity of
control wheel (time
history)

angular velocity of free
wheel (time history)

earth gravity gradient
matrix

Program variable definitions.



NAME

HOLD

OM

OoMO

OMEGA

POS

PSI

RINERT

RMASD

RMASS

RNB

SNTRA

TA

TARM

TIG

TIs

Table 9

=3

12

{cont'd)

32

36

34

13

25

13

33

33

5UB

PARAM

CONTRL

INTERP

PARAM

ORBIT

TORQUE

VEHCLE

MAIN

MAIN

MAIN

DIFFBQ

ORBIT
PARAM

ORBIT
PARAM

MAIN

DIFFVQ

DIFFSQ

Physical Interpretation

orbital massless angular
momentum

last computed angle and
angular velocity for
control wheel

orbital angular velocity
interpolated to cycle II
data density

average orbital angular
velocity

orbital angular velocity
{(time history)
coordinates of Jth test
mass of free wheel for
force computation

angular velocity of B-
frame relative to V-frame

inertia of free wheel
mass of the Jth sphere
of the control wheel

mass of the Jth sphere
of the free wheel

position of experiment
c.g. relative to space-
craft c.g. (used in

" force routines only)

sin of true anomaly

true anomaly

cross product matrix used
to compute torques
clock time in cycle I

clock time in cycle II

Program variable definitions.



NAME

TMG

TMS

XG

XI

XIs

XXI

VELOB

VELOG

VG

Vi

VIs

ZETA

Table 9

i

(cont'd)

34

13

13

37

SUB

DIFFVQ

DIFFSQ

INTERP

MAIN

MAIN

PARAM

DIFFBQ

DIFFVQ

INTERP

MAIN

MAIN

DIFFSQ

PARAM

Physical Interpretation

clock time in cycle I
(time history)

clock time in cycle II
(time history)

position of spacecraft
c.g. relative to earth
interpolated to cycle II
data density

initial angle of control
wheel (D-frame) relative
to N-frame

initial angle of free
wheel (S-frame) relative
to N-frame

x—-axis of E~frame

velocity of experiment
c.g. relative to space-
craft c.g. (time history)

velocity of spacecraft
c.g. relative to earth
(time history)

velocity of spacecraft
c.g. relative to earth
interpolated to cycle II
data density

initial angular velocity
of control wheel (D-
frame) relative to N-
frame

initial angular velocity
of free wheel (S-frame)
relative to N-frame

velocity of experiment
c.g. relative to space-
craft c.g. (used in force
models only)

z-axis of E-frame

Program variable definitions.



Appendix C

Auxiliary Subroutine Functions

The subroutine MULT, CROSS, and INTERP are data manipulation

routines. Given the vector A, CROSS computes the matrix:

B = Ax (c-1)
[ 0 A, A,

B= | A 0 -2, (Cc-2)
-2 +A 0
| 72 1 )

for use in cross-product computations. Given the vector B, the matrix
A, and the control variable K; MULT computes:

C =28 (c-3)

if K equals zero and:

c=a"s (C-4)
if K equals one. MULT is used for effecting coordinate transformations
and computing cross-products in conjunction with CROSS.

INTERP performs a straight linear interpolation of the specified
variables. The input data density has a spacing of DTIG seconds and

the output data density has a spacing of DTIS/2 seconds.
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Appendix D

an Order Runge-Kutta

To integrate a pair of state vectors, x(t,) and v(tp), for a time
increment 8t, the an order Runge—-Kutta method assumes that the
derivatives can be computed as arbitrary functions of x(t), v(t), and
t. From the initial state, the acceleration f(x, v, tn) is used to

project a state estimate at t, §t/2:

£, = v(tn) (D-1)
0
and:
fvO = £(x, v, t,) (D-2)
yvield:
X'(t. + §t/2) = x(t) + & . ¢ (D-3)
n n 2 xo 7
and:
vt + 8t/2) =vi(t) + & . ¢ (D-4)
n n 2 VO

The acceleration corresponding to this projected state is then used to

compute a second projected state:

fx, = V' (tg + 6E/2) (D-5)



and:

fVl = f(x', v', tn + 8§t/2) (D-6)
yield:
x"(t. + 6t/2) = x(t.) + st , £ (D-7)
n ol 2 xq
and:
u n st
vty + 8t/2) = vi) + =5 - fvl (D-8)

This state estimate is then used to project a state estimate to

the end of the interval:

e, = v'(t, + §t/2) (D-9)
and:
S A 5t/2) (D-10)
yield:
X1 () = x(tg) + S - £ (D-11)
and:
v () = Vi) ¥ St e £y (D-12)
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Finally, this state estimate is used to estimate the derivatives

at the end of the time interval:

Hh
|

= v lll(tn)

and

£ = £(x'"', v'"', ty + 8t)

The state estimates at the end of the time interval are then:

x{t_ + 6&t)
n 0 %

and

v{t_ + &t)
n 0 1

X(tn) + Gt-(fx + 2F + 2fx

vity) + Ste(f + 2f  + 2f,

(D-13)

(D-14)

(D-15)

(D-16)
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A PRELIMINARY ANALYSIS OF THE EFFECTS
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A PRELIMINARY ANALYSIS OF THE
EFFECTS OF USING NON-SPHERICAL MASSES
IN A BEAMS~TYPE MEASUREMENT OF G OR

AG/G.

by

William N. Lee
ABSTRACT

A proven method of performing a Cavendish measurement of the
gravitational constant G has been developed by J. W. Beams. One
possible way to improve the accuracy of the measurement of G, or the
measurement of AG/G to test the general theory of relativity, is to
use masses other than spheres in the experimental set up.

This analysis considers the gravitational interaction between
masses of various shépes, and examines the use of a pair of hemispheres

in a Beams-type experiment.
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I. INTRODUCTION

The type of experimental set up used by J. W. Beams and his
colleagues for a measurement of G consists of two sets of masses which
are suspended on two sets of torque arms, anchored at a common point

(Figure I).

pivot

Figure I. ROTATING MASSES

One of the sets, "A" for example, is free to rotate and hence gravitate
towards the fixed set "B". The magnitude of the gravitational inter-
action can be measured by either allowing "A" té oscillate about "B",
or as Beams has done, servo "B" with an angular acceleration such that
the angular separation 6 is constant (Reference 1).

A preliminary design study for optimizing the geometry of Beams'
method, assuming spherical masses at the ends of massless torque arms,
has been carried out by B. E. Blood (Reference 2). Design considera-
tions included minimizing the effects of disturbance torques, maximizing
the magnitude of the torque, and minimizing the sensitivity to changes
in 6. Based on these analyses, Blood was able to optimize the size of

the experiment.



0.50 —
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Figure II. MUTUAL FORCE FOR VARIOUS DISTRIBUTIONS
OF MASS BETWEEN TWO SPHERES OF UNIFORM DENSITY



This report parallels a portion of Blood's analysis with the
study of the effects of replacing the spheres with solid bodies of
various shapes. The optimum shape is probably quite irregular, kidney-
shaped, for example. Unfortunately, precision machining of such a
shape is very difficult. The hypothesis is, however, that the per-
formance of the experiment might very well be improved with the use of
masses possessing fairly simple, but non-spherical shapes.

The problem of maximizing torque is related to that of maximizing
the gravitational force bhetween two bodies. This simpler problem is
investigated first to obtain a feeling for both the shape desired, and
more importantly, the magnitude of the improvement which can be

expected using masses other than spheres.

II. MAXIMIZATION OF THE FORCE BETWEEN TWO BODIES OF UNIFORM DENSITY

In order to maximize the force between two bodies of uniform density,
Figure II indicates the advantage of using two bodies of equal mass.
Furthermore, intuitive reasoning dictates that the bodies represent
mirror images of one. onother about the plane separating them and
perpendicular to the axis passing between their centers of mass, about
which they should be so-called bodies of revolution.

IT.1 Two Spheres

For two identical spheres of radius r and mass m, the maximum

(attractive) mutual gravitational force is

5_§;Z7§ = - % (%E) = ~ 0.650 , (1)
P



a dimensionless expression which is independent of the mass involved.
The density and volume of one sphere are denoted by p and V, respectively.
It might be noted that in general, for two bodies of different mass,

the non-dimensional force expression is

F

373273
GpypPaVy " TV,

and enables one to compare various interactions, given a specific
amount of mass.

The first derivative of the force with respect to separation x,
evaluated when the spheres are touching, can also be expressed in a

dimensionless form which is independent of the mass involved,

= 1.047.

[
w3
[

spheres are
touching

IT.2 Optimally Shaped Body Interacting with a Sphere

For improvement in the magnitude of the force between two bodies,
the first step was to maximize the force using a sphére and selecting
the shape of a second body with equivalent mass. Due to the complete
symmetry of a sphere about its center of mass, this reduces to the
problem of maximizing the field of the second body at the center of the
sphere.

With the coordinate system defined by Figure III in two dimensions

(and assuming "B" is a body of revolution about the x axis) the



+x
max
point mass 0 (x)
of mass m
~ Q X
4 >

body" B

density = o
h volumn = V

Figure III.

equation for the x-component of the field at a point "Q" on the x-axis
is

4

EE - _,ﬂGq/ xmafop(x) (xth)p dx dp
m 0 0 [ (x+h)2+p2]3/2

where the volume is specified as
*max o (x)
vV = ZQ/. ‘/. p dx dp .
0 0

Body "B" is restricted to lie on the positive x side of the plane
containing the y and z coordinate axes. The two preceding integral

equations reduce to



X
F max
X - 2qu/~ { xth -1 bax (2)
™ 0 [ Gern) 24p% (001172

and to the constraint that
X
max .,
Ve Jf pe(x)dx . (3)
0

Using calculus of variations, the Euler equation for maximizing

Fx (Reference 3) is

d oH oH

& | yde | T ° @
dx
where
H = x+h PV (5)
[ (x+h) 2+p211/2 2

and ) is the Lagrange multiplier. The application of (4) to (5) yields
the equation for p(x) which describes the perimeter of B in the x-y

plane:
02 (x) = g3 (x+n) 273~ (x+h)? (6)

where g = X oaxt h and g satisfies

5 3V 3, _
]-ng—h]—O. (7)

_ p5/3

4/3.4 5/3

gt/ lg /

A special case, and the one of interest here, is to place a
homogeneous sphere of radius R = h, such that its center of mass

coincides with the point Q. Equation (6) then takes the form



2 2/3
gy" o L4/3x 4 2
B =p/ g+ 1) (£ + 1) (8)
and (7) becomes
= .3 _ 92 4/3 _ 15 _
£=p P 7 =0 (9)
where
q Xmax+h
pPEgyg =—5 (10)

~

The relevant root of (9) is p = 2.1555 and the corresponding shape
is indicated in Figure IV.
The expression for the mutual force between the bodies is found
from (2), using (6) and (10):
2 2.3

__8 2 3 -2/3_
_F = 3'1TO'RG[§p+-§-p l]h

For the special case of h = R, this reduces to

F z -0.591 n2g%ar?

max

or in the dimensionless form

FX
max = -0.864

—22 : (11)
GOZV 3

Finally, one can calculate the derivative of the force with respect

to separation along the x axis:



Pelpe

~=— optimum shape

Figure IV, SHAPE OF BODY WHICH MAXIMIZES
INTERACTION WITH SPHERE
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of

e x s T i
dh oh op of

p=const. h=const. op

or
dF
8 2_3 2 3 _-2/3

aH——=—§ﬂcRG{-5—p+§-p/—l

2 -5/3 =15V
+ = (1 -p Yh
5 [4ﬂh4pl/3(p5/3—l)]}

which reduces in the special case of h = R, using

B
QJ'Q-
=)

to

= 0.55710%°R3G¢  at x = 0,

oxr

= 1.312

bodies are
touching

II.3 Two Hemispheres - Analytic Treatment

The mutual force between two identical homogeneous hemispheres
which are face-to—~-face can be found analytically (Reference 4). The
force is calculated using the gradient theorem, once an expression

for the potential of hemisphere "A" (see Figure V) is found.



Figure V. HEMISPHERES A AND B

F=p f Védt = p f¢3ds (12)

volume suface
of B of B

where
¢ is the potential of hemisphere A

p 1is the mass density of B (and assumed to be the same
for A in this case)

n is the outward normal to the surface of B
dt is volume element of B

dS is a surface element of B

One way to calculate the potential of "A" is to find the potential along
the x axis, and then, since the body is one of revolution about that
axis, expand the solution in Legendre polynomials for points off the

axis (Reference 5). The potential along the x axis is given by

bD-10



3 3/2 x,3
¢ (x) = TG %— 1+ %(g) - [1 - (2)2] + (5) . (13)

(RIIN

A binomial expansion of (13) yields two different expressions depending

on whether § is less than or greater than one. In these expansions,

powers of X" are replaced by R'P (cos 8) in the first case, and x (n+1)
by R—(n+l)Pn(cos 8) in the second case. This results in
_ 2 3 3R R, 2
¢1(R,6) =3 mToGa 5 53 Pl(cos 0)+ (E) Pz(cos 8)
31 R SN 0s0) + 11 )5 (cos )
24 '3 3¢ 246 ‘a’ '5
_3:1:1:3 R7 1
XY XYY (a) P7(cos 0) + cirerennn ’
0< R< a, 0 <8 < % (14)
and
2 2 a 3.1 ,a,2 3-1-1 ,a,4,
¢2(R,6) 3 TeGa (ﬁ) Y (ﬁ) Pl(cos 8)+ XYY (ﬁ) P3(COS 0)
_3:1+1°3 ,a,6 |
5 a8 (®) Pglcos 8) + .....
R>a, 0<86< g . (15)

When the hemispheres are face-to-face only equation (14) is necessary
to evaluate (12) and hence the force between the two bodies. It should
be noted that the author is currently treating an extension of this
problem which will facilitate the calculation of the force regardless

of the orientation of the hemispheres.
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The mutual force (along the x axis) is found to be

_ 1 .22 4
Fx = TR Ga
or ,
Fx 3ﬂ2 /3
552—\71—7:—3' = - 1—6—) = -1.228 . (16)

Comparison of this result with equation (1) reveals an increase
in force of about 90% for a given amount of mass, with an improvement
of about 40% over (11). With improvements of this magnitude the
question arises whether one could do still better with other shapes.

To attack this problem numerical techniques must be employed, as
the analytic methods become quite difficult, especially when one looks
for the dependence of the force upon separation of the masses.

11.4 Two Hemispheres - Computer Model

A particularly simple computaticnal method was used to examine
the interactions between various bodies. The program was not intended
for highly accurate results, nor was it expected to be particularly
efficient, but it represented a very straightforward approach to the
problem, and was easily adaptable to bodies of various shapes.

The body in gquestion (in this first case, a hemisphere) is
divided into a number of identical cubes aligned with the coordinate
axes. FEach cube is treated as a point mass located at the center of
the cube. The interactions among all the cubes are totaled for the
force calculations. In the limit, as the number of cubes per unit
volume becomes very large, the method approaches that of ordinary
calculus.

For two bodies of revolution with their axes of symmetry aligned,

the model can be reduced to the interaction among the cubes of one

D-12



guarter of one body and one half of the other, reducing the number of
necessary calculations.
In Figure VI two arbitrary bodies are assumed to be made up of

n, and ng cubes, each of mass m, and m . respectively. The component

A

Figure VI.

of force in the x direction is

dp'%
F, =G ) m_ ) my 3
body A body B d
ab
dap X
=Gmm }) ] — (17)
A B d
ab

If each cube of "A" is of length QA on a side and each cube of "B" is
lB on a side, and Pa and pg are the respective mass densities, (17)

becomes
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Computer Results
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d_, %
_ 3, 3 —ab =
Fe = GPaPRla™2g” 1 1 =3
ABd
ab
or in dimensionless form
3, 3 ~
33 573 = §Z>32B2E ) ga"“b'?é' (18)
GopPpVa " Vg Va ' Vg AB  dy

where VA and VB are the volumes, respectively, of "A" and "B". The
double summation in (18) represents six summations for the arrays of
cubes and is a task suitable only for a digital computer. The total
is adjusted when only a partial summation is performed (for the
symmetric case mentioned) and normalized by the factor in front.

With the analytic expression (16) for the two hemispheres face-
to-face, the results of using various computer models of hemispheres
can be compared. Figure VII indicates the accuracy as a function of
the number of cubes per body in the model. Note that the results
sre consistently below the exact snalYtic value, but converge to well
within 1% for hsmisphere models with only six or seven cubes on a
radius length. A check of the double precision program indicates no
truncation error for the range of calculation shown in Figure VII.

To obtain a feeling for the dependence of the force on separation,
the hemispheres are separated by a translation along the x axis, and
the results are shown in Figure VIII and Appendix A. For very small
separations, models with 1508 cubes per hemisphere are used to

approximate the slope of the curve as the begin to separate:
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f§. = (ig 1/3 glope in
Gp2V 3 ig. VIIT
hemispheres Ax=0
are touching
= 4n, Y3 0.01315)
3 0.01
= 2.12 (19)

II.5 Two Blocks

A computer model was also developed for two identical, homogeneous
blocks for various width to length ratios. Only blocks with square
cross section in Fhe Y-z plane are considered, since the primary ob-
jective is to maximize the magnitude of the force between them. The
results are shown in Figure IX and Appendix B, where the "best"
geometry dictates a width to length ratio of about 2.85 with a mutual

force of

F
X

Gp2VZ73

1K

-1.166

and a first derivative (obtained in the same manner as (19)):

RE: = 2,02

blocks are
touching

IT.6 Two Right Cylinders

Two identical right cylinders, situated end-to-end, are treated

D-17
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analogously for various radius to length ratios. As is the case with
the blocks, the optimization of the cylinders yields a gravitational
. force nearly that of the hemispheres. For a radius to length ratio

of 1.72, the force is

and

ne

2.08 .

cylinders
are touching

All the results are shown in Figure X and Appendix C.

II.7 Two Spheroids

In order to learn how much better one can do in terms of maxi-
mizing the level of force between two bodies, a larger class of bodies
is examined. The half spheroid, with circular cross section in the
y-z plane introduces an extra parameter, its eccentricity. For con-
venience this was defined as positive for prolate cases (the spheroid
is longer in the x direction) and negative for oblate cases.

The results shown in Figure XI and Appendix D, indicate the
largest force corresponds to an oblate spheroid of eccentricity = .69.

For this case the force is

and

2

2.09

spheroids are
touching
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Note the very small improvement over the hemisphere (eccentricity
= 0) in terms of maximizing the force. Also evident from Figure XIII
is the insensitivity of the magnitude of the force to changes in
eccentricity near e = 0, a significant fact from the standpoint of
precision machining.

One additional parameter is introduced in this final case (e~-.7)
in an attempt to further increase the force. Only a fraction of the
half spheroid is used, and the results normalized to account for the
reduction in mass. As indicated in Figure XII and Appendix D, the
effect detracts from the total force.

1I1.8 Summary of Chapter II

It is apparent that one could continue the efforts of Section II.7
in a systematic attempt to determine the "best" shape. But it is
also evident from the cases examined in Chapter II (see Figure XIII)
that very little additional force can be obtained - probably only
one or two per cent. ‘

Further, the necessity for precision fabrication of the bodies
tends to rule out an irregular shape. This leaves the cylinder, or
hemisphere as prime candidates as far as the maximization of the
magnitude of the force is concerned.

It should be noted, however, that with increases in the level of
force there is also an increasing dependence upon small separations.
Presumably this will detract somewhat from the over-—-all performance

of a system composed of "better" shapes when the dependence of the

torgue upon small separations is required to be small.

I1II. THE EFFECT OF USING HEMISPHERES INSTEAD OF SPHERES IN A BEAMS ~
TYPE EXPERIMENT

The results of Chapter II suggest that the use of hemispheres

instead of spheres might very well improve the p=rformance of the
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Beams~type experiment. In this chapter this possibility is examined
by comparing a system involving two identical, uniform hemispheres,
a so-called "one-arm device," with a similar system using spheres
(Reference 2).

A computer mocdel using 140 cubes per hemisphere is used to
treat the hemisphere case. As in Chapter II, the mutual interactions
among all the cubes are totaled, only in this case, each force
interaction is multiplied by the appropriate moment arm length.
Positive torque is taken in the sense that the, attraction of body
"A" to "B" causes "A" to rotate in a counterclockwise direction. An
extension of this analysis to a four-arm device (eight masses) would
require approximately four times as much computer time and was not
carried out for that reason.

III.1 Criteria for Comparing Performances

Three criteria are used to compare the performances of the two .
systems. Of prime importance is the level of angular acceleration which
can be achieved. The acceleration is a quantity which must be measured
experimentally, thus it is desirable to keep it as large as possible.
The acceleration ‘is calculated by dividing the total torque generated,
by the moment of inertia of the near bodyi(assumed to be free to
accelerate) about the pivot. For the spheres, using the parallel axis

theorem, this is

Ipivot T Tc.m.,

2/3
MIZ (D) + a’)

]

1]

M[.100 V2734 a2y (20)

D=25



where M and V are the mass and volume, respectively, of the body and
"a" is the distance from the pivot to its center of mass. For the

hemispheres:

I . = I +'Ma2
pivot c.m.
- 2 .2 _ 3 2 2
= m[.158v%/3 4 227 . (21)

The second criteria is a dimensionless torque parameter, normalized

in the following manner:

Torque
GpZVIJBa

A large torque is desirable as there will be unknowrn bias torques in the
suspension system. Unlike the acceleration, the torque will increase
with increasing the’size of the experiment.

However, it is wise to keep the system as compact as possible to
reduce the effects of temperature variations and of disturbance torques
due to external distributions of mass. Furthermore, it is advantageous
to restrict the quantity of mass required when designing an experiment
intended for space.

Since the force between two adjacent bodies is proportional to the
volume raised to the four-thirds power, division of the torque by that
quantity eliminates the effect of increasing the mass of the system.

In order to compare systems of comparable size, the torque is further
normalized by a characteristic moment arm. The length "a" is used

as it seems to be a key parameter.
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A second normalization of torque (also dimensionless),

Torgue

14
szzS

reflects the level of torque achievable for a given size of experiment,
when the amount of mass is not restricted. The length "4" is the
distance from the pivot to the center of mass of the far body.

III.2 Constraints on the Possible Geometrical Configurations

For all cases an important constraint is imposed upon the opera-
tion of the system. The requirement is that there be no first order
change in torque when the angular separation of the torque arms changes
by a small increment + A6. This is necessary because the servo-control
system will not be able to maintain a perfectly constant separation 60.

This constraint may be expressed as

and the torque is regquired to be a maximum for a particular 60. For

the spheres on a two-arm device this constraint leads to the relation

8y = cos T %—(q2+12)l/2 -

(Ve

where

(a/2)% + 1
a/% °

This specifies a single parameter family of possible geometrical con-
figurations, as shown in Figure XIV, if the spheres are to remain

touching, or very nearly so.
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Figure XIV.

FOR %% = 0 AND USING SPHERES: THE POSSIBLE
LOCATIONS OF THE PIVOT RELATIVE TO THE
SPHERES AND CORRESPONDING LEVELS OF

ANGULAR ACCELERATION '(rad/secz X -106)

FOR.A ONE ARM DEVICE.

817
/
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Two hemispheres, however, will remain in close proximity to each
other for an unlimited number of orientations. In this analysis the
faces of the hemispheres are kept parallel, but in general, this is not
necessary. Allowing the faces to shift relative to one another intro-
duces another parameter, and hence, there is a double parameter family
of geometric locations for the pivot which satisfy 93T/36 = 0. Figure
XV locates several of the positions with the small numbers, which
correspond to the levels of angular acceleration. Each point also .
corresponds to a particular orientation of hemisphere "B" as shown for
three particular cases.

IT.3 Comparison of Results of a One-Arm Device Using Either Spheres
' or Hemispheres

The levels of angular acceleration and torques are indicated in
Figures XIV and XV for the spheres and Figures XV, XVI, and Appehdix
E for the hemispheres. In Figure XVI, the accelerations are plotted
against the ratio of torque arms (a/%). The spheres are represented
by the solid line and the hemispheres by the dots. Since there is an
additional parameter associated with the hemispheres, there are an
infinite number of points for each (a/%) ratio. There is an upper
1imit, however, for éach a/%, and even with the few data points collec-
ted, one can get a good idea of the maximum acceleration for each a/%.

It appears as if the angular acceleration can be increased by
only a few per cent with the use of hemispheres for the one arm case.
Note, however, that the larger accelerations occur in situations where
the pivot is very close to the center of mass of hemisphere "A". An
examination of the expressions for the moments of inertia (20 and 21)
reveals that for small "a", the first term dominates in each of these
expressions. This means that the moment of inertia for the hemispheres
is about 60% greater than that of spheres in this case, and hence,

the angular acceleration is diminished by that amount. In order to get -
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Figure XV, FOR -g—%‘- = 0 AND USING HEMISPHERES: THE POSSIBLE

LOCATIONS OF THE PIVOT RELATIVE TO HEMISPHERE A,
CORRESPONDING LEVELS OF ANGULAR ACCELERATION
(rad/sec® x 10°), AND THREE CORRESPONDING POSITIONS
OF HEMISPHERE B FOR A ONE ARM DEVICE.
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Figure XVI, FOR-%%4= 0. COMPARISON OF ANGULAR ACCELERATIONS
AND NON-DIMENSIONALIZED TORQUES FOR SPHERES AND

HEMISPHERES FOR A ONE ARM DEVICE,
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Figure XVII. FOR aF . 0. COMPARISON OF TORQUES

a8
NORMALIZED TO szls FOR SPHERES AND

HEMISPHERES FOR A ONE ARM DEVICE.
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a net increase in the acceleration, as is the case, the torque genera-
ted must overcome this "handicap".

As Blood (Reference 2) has shown, optimum operation of a four-
arm sphere device dictates higher a/f's and the pivot moves away from
the center of mass of "A". This greatly reduces the weighting of the
first term in moment of inertia, and there is a good chance the rela-
tive performance of the hemispheres will improve significantly.

Examination of the levels of torque normalized to Gp2V4/3a
indicates some improvement, especially for small "a" again. In the
bottom half of Figure XVI one can again visualize an upper bound on the
envelope of possible torques with the use of hemispheres. This torque
parameter reflects the torque achievable for a given amount of mass and
a given size of experiment.

The peak at very small "a" might very well shift to larger "a" for
a four-arm device. It 1is not clear at this point just how large the
peak is, but it appears to be well over twice as large (maybe signi-
ficantly larger) as the corresponding curve for the spheres.

Note that for every a/% one can find a configuration involving
hemispheres which wili increase both the angular acceleration and
!T/Gp2V4/3a.

Finally, if cne is not particularly concerned about the amount
of mass incorporated into the experiment, but only on the size, Figure
XVII compares the torques of the two systems. There is a marked
improvement for some ratios of a/%, but not for the smaller ratios.

This means that the previous optimizations conflict with this one.

Whether or not they will merge for a four-arm device is unknown.

IV. ©SUMMARY AND CONCLUSIONS

With the 89% increase in force hetween two identical hemispheres

over spheres of the same mass, the fundamental question is whether or

D=-33



not this would carry over: to thé problem of Qenerating torqué'and
angular acceleration in a Beam's-type experimental set up.

As shown by Blood, the optimum arrangement calls for a four-arm
device. Analysis of a one-arm device indicates that the performance
" can indeed be improved, but not by a straight factor of two. There
is evidence, however, that more improvement, particularly in the
levels of angular acceleration, may well show up in a four-arm device.
Hopefully, this can be investigated with the use of a more analytic,
more efficient method currently being developed by the author.

Finally, it should be kept in mind that the analysis of the
hemisphere device was based on approximate methods, and also, re-
stricted the orientations of the hemispheres relative to one another.
Both of these simplifications would tend to diminish the true optimum

performance levels of the device.
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Appendix A

Computer Results for the Calculation of the Force

Between Two Hemispheres

Normalized Separation Normalized Number of Cubes per
Force Hemisphere in Model
Ax ~F
(%%)% Gp? V3
0.0 1.17541 44
0.0 1.21212 140
0.0 1.21405 240
0.0 1.21797 420
0.0 1.22058 736
0.0 1.22117 1004
0.0 1.22425 1508
0.0 1.22422 2112
0.01 1.21110 1508
0.02 1.19816 1508
0.03 1.18543 1508
0.038 1.172 736
0.063 1.141 736
0.126 1.070 736
0.252 0.944 736
0.505 0.748 736
1.26 0.411 736
2,52 0.193 736

ety A
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Appendix B

Computer Results for the Calculation of the Force
Between Two Blocks

Normalized Width/Length Normalized Number of
Separation Ratio Force Cubes per
Block
Ax -F
1 4
Vs P
0.0 2,0 1.1395 600
0.0 2.5 1.1645 400
0.0 3.0 1.1657 576
0.0 3.5 1.1539 784
0.0 4.0 1.1349 124
0.0 4.667 1.,1040 588
0.01 3.0 1.1545 576
0.02 3.0 1.1433 576
0.03 3.0 1.1323 576
0.10 3.0 1.0592 576
0.20 3.0 0.9651 576
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Appendix C

Computer Results for the Calculation of the Force

Between Two Right Cylinders

Normalized Radius/Length Normalized Number of
Separation Ratio Force Cubes per
Cylinder

Ax -F
(%—%)3 Gp? v%

0.0 0.407 0.7829 520
0.0 0.691 1.0184 768
0.0 0.853 1.0989 784
0.0 0.981 1.1405 1040
0.0 1.162 1.1804 1456
0.0 1.289 1.1930 1128
0.0 1.409 1.2035 780
0.0 1.716 1.2095 592
0.0 1.719 1.2097 1160
0.0 2.006 1.2033 1580
0.0 2.257 1.1894 1024
0.0 2.570 1.1675 1328
0.0 3.009 1.1320 768
0.01 1.716 1.1970 592
0.02 1.716 1.1846 592
0.03 1.716 1.1725 592
0.10 1.716 1.0926 592
0.20 1.716 0.9916 592
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Radius/Length -F
2 —
Ratio Gp~ V3
1.716 0.8257
1.716 0.5085
1.716 0.2649

Number of
Cubes per
Cylinder

592
592
592



Appendix D

Computer Results for the Calculation of .the Force

Between Two Half-Spheroids

Normalized Eccentricity Normalized Number of
Separation (pos. if pro- Force Cubes per
late; neg. if half spher—-
oblate) oid
Ax -F
(%)5 Gp? v3
0.0 -.898 1.1955 380
0.0 -.805 1.2335 696
0.0 -.747 1.2478 1024
0.0 -.694 1.2493 12384
0.0 -.694 1.2481 872
0.0 -.646 1.2452 776
0.0 -.593 1.2420 404
0.0 -.541 1.2403 640
0.0 -.491 1.2357 556
0.0 -.361 1.2245 520
0.0 -.155 1.2206 736
0.0 +.206 1.2206 688
0.0 +.265 1.2191 668
0.0 +.536 1.1933 800
0.0 +.753 1.1064 464
0.0 -.699 1.2318 512



Ax Eccentricity ~F Number of
1 4
3Vi= 2 =
(Zﬁ)3 Gp~ V3 Cubes per
half-spher-
oid
0.02 ~-.699 1.2191 512
0.03 -.699 1.2066 512
0.10 -.699 1.1239 512
0.20 -.699 1.1019 512
Normalized Eccentricity Fraction of Normalized Number of
Separation Spheroid Force Cubes per
Body
Ax £ -F
1 4
3V>— 2 =
(Z? 3 Gp~ V3
0.0 -.693 .05 1.2459 544
0.0 -.695 .10 1.2465 1020
0.0 -.694 .20 1.2390 1200
0.0 -.700 .30 1.2248 844
0.0 -.697 .50 1.1961 1272
0.0 -.694 .70 1.0852 492



Appendix E
Computer Results for the Calculation of the Torque

Generated by Two Hemispheres when g% =0

Position of Pivot Position Ratio Normalized Ang.
of near of Torgque Torgque Acc.
edge of B S
X Yy
-] X T 6 rad
EP' R R a/% —TT7TGD V73, X100 =
: sec
- .50 -2.50 -1.17 .90 .47 .31
- .50 - .31 +1.48 .49 .45 .49
- .38 ~1.85 - .57 .86 .53 .47
- .38 - ,86 + ,68 .61 .65 .15
- .33 -1.59 - .51 .85 .61 .43
- .33 -1,18 + ,18 .72 .70 .75
0.0 - .59 +1.18 .43 .57 .87
0.0 -5.00 - .83 .87 «58 .22
0.0 - .43 +1,47 » 39 .51 .74
0.0 -4,.88 - ,48 .80 .72 .66
0.0 -1.74 - .02 .72 .72 .75
0.0 -1.02 + .72 53 .65 .86
0.0 -1.60 .04 .71 .74 .78
0.0 -~1.10 .59 «57 .70 .90
0.0 -1.42 024 066 o73 .84
0.0 -1.26 .40 .62 .72 .88
010 -1031 031 064 .74 .87
+ .57 - .15 1.85 .21 .53 .99
.53 - .43 1.59 .22 .64 1.19
.50 -2.20 <17 .70 .74 .67
.50 - .65 1.41 .26 .62 1.14
.47 - .90 1.14 «37 .61 1.06
.45 -1.62 .51 .60 .66 .80
.45 -1.18 .88 .48 .61l .93
.88 - ,36 1.91 .06 1.40 1.15
.86 - .49 1.81 .08 1.02 1.19
.75 -~1.19 1.20 «39 .50 .83
.83 - L.€0 1.71 .13 .79 1.16
1.34 - .69 2.25 .18 w01 .29
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by
John P. Vinti
M.I.T. Measurement Systems Laboratory

Cambridge, Massachusetts 02139
Abstract

The paper begins with the idea that the gravitational constant G
and its possible variation AG with gravitational potential could be
determined, in principle at least, from the orbit of an artificial
satellite of an artificial planet, both of known mass and both in a
gravitationless environment. Such an experiment could be conducted
only in a zero-g laboratory, approximated by a space-craft in orbit
about the earth. As an alternative to a circumferential orbit, the
small satellite might be replaced by a small test object which moves back

and forth in a cylindrical tunnel through a large sphere (the "planet").

Both of these arrangements would be disturbed by the gravity-gradient

force produced by the earth, this disturbing force being of the same
order of magnitude as the main force of the sphere on the test object.
The paper then gbes on to describe Wilk's three-~tunnel method. This
would involve drilling three tunnels, along perpendicular diameters of
a tungsten sphere, either translationally constrained or unconstrained,
but free to rotate inside a space-craft in orbit about the earth. A
test object would be placed in each tunnel and constrained to remain on
its axis by means of an electrostatic suspension. Inertia reaction
wheels, governed by servomechanisms, would then slowly rotate the sphere
so as to keep each test object at rest. Measurements of the components
of angular velocity would then result in a value for G, provided that a

number of corrections are made, plus some other measurements. In the



case of the unconstrained sphere, the three-tunnel feature would almost
entirely eliminate the effects of the earth's gravity-gradient.

The paper considers the effects of earth gravity-gradient, aero-
dynamic drag, and gravitational forces produced by the space-craft
itself. (The force corrections for a given test-object, produced by the
finite diameter of its own tunnel and by the other two tunnels, are
deferred to a subsequent paper.) There is then a presentation and
discussion of the equations required to reduce the observations to obtain
G. Finally there follow the extra equations, not needed in the reduction,
that are required for a computer simulation. The latter would serve to
find out under what conditions the experiment would be made invalid by
extraction of any test object from a tunnel and to check and aid the

design of the servomechanisns.
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1. Introduction

Experiments to yield the gravitational constant G can also yield
variations AG, arising say from variations in gravitational potential,
if the experiments are performed accurately enough. The three-tunnel
rotating sphere (of Section 4) is intended to be an example of such ;n
experiment. Although AG is of prime interest in the studies sponsored
by NASA, it is helpful to regard the experiment as though a measurement
of G were the desired result.

Of all the fundamental constants of physics, G is the only one
which is not known with an accuracy better than one part in a thousand.
Recent theories of gravitation now make it desirable to know it much
more accurately.

The lack of such an accurate value has never produced inaccuracy
in dynamical astronomy, since G always appears as a factor of a mass
M and the product Y = GM can usually be determined accurately. E.g.,

for a planet moving around the sun

G M) = (21/2)2 a3, (1)

where Ml’ Mz, P, an§ a, are respectively the masses of the sun and of the
planet, the period, and the semi-major axis. But one does not know M,
and M2 accurately.

Suppose one could construct an isolated system consisting of an
artificial satellite of mass M, moving around an artificial planet of
mass Ml' with no perturbing forces from other sources. Measurement of
the masses and of P and ag would then lead to a value for G. Before the
modern space program such an experiment could not be imagined, because
of the pervasive presence of unwanted gravitational fields. With the

advent of artificial satellites and space laboratories, however, the

situation has changed.



2. A Drag-Free Spherical Laboratory in Orbit.

Consider a spherical laboratory, having a spherically symmetric
interior, traveling in an orbit around the earth that is made drag-free
by means of external jets. Imagine it kept inertially oriented, rela-
tive to the fixed stars, also by means of external jets.

A massive true sphere would then remain floating at the center of
the laboratory. (It could be used to monitor the jets that keep the
space~-craft drag-free.) A small test object in orbit about this sphere
would then be in effect an artificial satellite of an artificial planet.

Let R be the position vector of the center of mass of the sphere
of mass Ms,-in some large-scale astronomer's inertial system, and let
E(g) be the total gravitational field at R produced by all mass outside
the space craft. Also let s be the position vector of a small test-
object, of mass m, relative to the center of mass of the sphere. Let i£

be in close orbit about Ms' Then

R=£(R) + 35 (2)
T s
. GMS
R+§=f(R+S)——-3—S (3)
2T 8 = LikTS 3 =
Subtraction of (2) from (3) gives
G(M_+m)
§=- —3— s+ £(Rts) - £(R) (4.1)
S < A 4 A3
G(Ms+m)
= - S s+ st VER) *e.s (4.2)

s

Eg. (4.2) is obtained from (4.1) by expanding f(R+s) in a Taylor's
series in the neighborhood of s = 0 and using only the first two terms.
The expression §-[V§(g)]c, the first-order gravity gradient term,
causes trouble. If this term were absent, we should have an example
of the simplest two-body problem, with an inverse-square force. The

orbit would be an ellipse, so that by measuring the masses Ms and m,



the period P, and the semi-major axis a, we could use Eg. (1) to obtain
G.

Instead of letting m move in an orbit about Ms' we could drill
a narrow cylindrical hole along a diameter of M and let m vibrate

back and forth.* 1In this case the force produced on m by M would be
£_,m = - (3L Gps)m (5)
~ sl 3 2 r

where p is the uvniform density of the sphere. Then

= - %1 Go (145 )s + £(R+s) - £(R) (6)
]

I H

If a, is the radius of the sphere

4m 3
oo = @M /a, (7)
and
. G(Ms+m)
8= 3 s e lVER g e 8
o

If the gravity-gradient term were negligible, the test object would
move in simple~harmonic motion, with the same period as that of a

circular close orbit.

3. The Gravity-Gradient Term

In either of the above cases the gravity-gradient term causes
difficulties. We may approximate a true inertial system by taking
an inertially oriented system, with origin at the center of mass of
the earth. This procedure involves neglecting the lunar-solar perturba-
tion, but the latter will not affect appreciably the values of

§-[Vf(§)]c. If u is the product of G and the mass of the earth, then

* See for example Forward and Berman 1968.



£(R) = -uR/R’, (9)
closely enough for present purposes. Then

. 1 .}‘l—s- -— L4

SUVER) = 3 [-Igt SIp(IpeIl (20)

where Ix and ES are unit vectors along R and s, respectively. The

maximum value of the bracket is 2, so that the maximum value of the

gravity gradient field is

max. grav. grad. 5.'35§ (11)

R

For a fairly close orbit about the earth, R radius of the earth. Also

PaRe (12)

where R, and p, are respectively the radius and the mean density of

the earth. Thus
max. grav. gfad. N Gpes (13)

In either of the two cases, the field produced by the sphere is

£ (sphere) é% Gps, (14)

where p is the aensity of the sphere. The ratio of the maximum gravity-

gradient field to this is 2pe/p %11/19, if the sphere is made of tungsten.
The gravity-gradient effect is thus very serious and either of

the above methods would require important corrections. We thus turn

to another method, due to Wilk (1970).

4. The Three-Tunnel Method of Wilk.

In its simplest form, Wilk's method would involve the use of a
drag-free spherical laboratory, with a spherically symmetric interior,
in orbit about the earth, and inertially oriented relative to the

fixed stars. The sphere would float at the center of mass of the space-



craft and have three tunnels along mutually perpendicular diameters.
Since the three tunnels would produce a slight departure from spherical
symmetry, both external and internal gravitational fields would produce
a small torque on it, so that some means would have to be found to keep
it inertially oriented. (Such trouble will actually be avoided in
the later forms.)

With a small test object in each tunnel, their equations of

motion would be

= ——% Gpx + (s~Vf')x (x-tunnel) (15.1)
§ = —ﬂg-cpy + (seVEY) (y-tunnel) (15.2)
. am '
zZ = -3 Gpz + (s°-Vf )z (z-tunnel) (15.3)

In Egs. (15) §' is the gravitational field produced by all matter
outside the sphere. The equations would ultimately reqguire corrections
for the effects of the tunnels on the main field terms involving p and
also for the higher-order gravity gradient terms.

If V' is the potential corresponding to f£', these equations reduce

to

. 2
X 3] V!
X=-21Gp _< ) (16.1)
X 3 Bx2
4 32y
Ptz - (200 6.2
3y
Z 47 aZV'
_=__Gp-( ) (16.3)
z 3 az2

the second derivatives of V' being evaluated at the center of the

sphere, since they come from a Taylor expansion in the neighborhood



of s = 0. Addition then gives

X

vy, 2_ _ - (v2
+ ¥ + 2 41Gp (v V')o (17)

Since V' corresponds to f', the field external to the sphere, we then

have
21
(viv'y _ =0, (18)
o
whether or not the tunnels go all the way through the sphere. Then

- 47mGp = g + % +

NN

(19)

The method as described would thus eliminate the main difficulty about
the gravity gradient terms. It is clear, however, that the accelerations
¥, ¥, Z could not be measured‘accurately enough to improve present
values of G, even if one could produce the requisite spherical symmetry
and inertial orientation. Wilk has therefore turned to another
procedure, although he still retains the important feature of the

three tunnels.

5. "Rotation of the Sphere: Wilk's Null Method

Suppose one rotates the sphere, by means of inertia wheels, about
each of the thiee perpendicular axes defined by the tunnels. Let
Wys Woy and wy be the corresponding components of the angular velocity
of the sphere, in that inertial system with which the tunnels momentar-
ily coincide. In a coordinate system in which the sphere is at rest
2

there then appear centrifugal forces x(w2~w12), y(wz—wzz), z(w —m32)

along the x, y, z tunnels respectively. Here

(20)



On such rotation there also appear other inertial forces, viz
Coriolis forces and é forces, but they are perpendicular to the

tunnels.

The equations for motion along the tunnels now become

. 2
4 T
2 = e+ 0wl - (i_;_) (21.1)
ox °
204
§ = —4—g Gp + (.02"'0.)22 - (ajv—‘) (21.2)
3y
o
. 2
4 1]
Z = o+ wiu,? - (%}-) (21.3)
<
o

Addition then gives

41 Gp = 2w2 - (22)

e
1
o
'
NN

To achieve the validity of (21) and (22), one has to avoid friction of
the test objects with the walls of the tunnels. This requires the use
of a suspension system, perhaps electrostatic, to balance out the
perpendicular Coriolis and é forces.

To get rid of the acceleration difficulties, i.e., the troubles
produced by the terms in &, ¥, and £, Wilk then proposes to use
servomechanisms that will keep the inertia wheels turning at such rates
that the centrifugal forces just balance the gravitational forces.

Eq. (22) would then pecome

21 Gp = w? (23)

Measurements of Wyr Woy and wy over an appreciable time interval would
then give a value for Gp and thus for G. The servomechanisms will

so govern the actions of the inertia reaction wheels as to produce
known torgues on the sphere. On the simplest assumption, which I

shall write down as an example, for concreteness, they will have the



mathematical form:

L1 = kllx + kl2x {x-tunnel) (23.1)
L, = k21y + k22§ (y-tunnel) (23.2)
L3 = k3lz + k322 ({z-tunnel) (23.3)

The problem of design of the servos consists in achieving suitable

values for the constants kuv

Even if the servos are not perfect, the term X/x + ¥/y + Z/z will
now be much smaller, so that it need not be measured with as much

accuracy as if it were the main term in (22).

6. Wilk's Experiment in an Orbiting Laboratory

Within the next few years it is likely that there will be a
manned space station in orbit about the earth, called a "Skylab." Let

us assume that it will have a mass of about lO5

1b., and that it will
have an approximately ciicular orbit at an altitude of about 500
kilometers. Let us also assume it to be a cylinder, of length about
40 feet and diameter about 20 feet, So oriented by the earth's gravity-
gradient that its ' axis will always point approximately towards the
center of mass of the earth, and let it be free of spin about its axis.
The purpose of the rest of this paper is to develop the theory
of Wilk's experiment as it might be carried out aboard the Skylab.
I shall consider various possibilities, as follows.
(a) The sphere may or may not be placed at the center of mass

of the space craft.

(b) It may be held in place as regards translation, being allowed
to rotate freely by means of a system of gimbals. Or, it may be
allowed to drift in translation, with some method of moving it back

after a certain amount of drift.
(c) The space-craft, besides being equipped with external jets

to regulate its orientation, may or may not be equipped with external

E-8



jets to make it drag-free. If so equipped, some freely drifting test
body, perhaps the sphere, would have to be kept in place by sensors and
servomechanisms that could turn the drag-removing jets on or off,

as the test body moves respectively away from or toward its position
of equilibrium.

The theory will first involve a treatment of three reference
systems, with the direction cosines to go from one to another. Then
it will have to account for various corrections to be applied to Egs.
(21) for the motions of the three test objects in the tunnels.

For the reduction of the data to obtain a number for G, these
corrections will arise from the gravity gradient of the earth, the
non-spherical gravitational environment in the space-craft packed
full with equipment and astronauts, non-gravitational forces on the
space-craft, particularly drag, and the effects on a given test object
of the finite diameter of its own tunnel and the effects of the other
two tunnels.

For a computer simulation of the experiment one will also have to
assume an orbit and a distribution of mass in the space-craft. There
will then be nine unknowns, viz x, y, Z, Wyr Wyy Way and three Eulerian
angles or independent direction cosines that describe the orientation
of the sphere relative to the inertial system. The necessary nine
equations will be Egs. (21), as above corrected, Egs. (23) with
assumed values for the constants kuv,and three more equations
describing the changing orientation of the sphere. The purpose of
the computer simulation is in general to test out the feasibility of
the whole experiment and in particular to find whether any of the
test objects is likely to be extracted from its tunnel. It should
also help to decide on numerical values for the kuv’ in the servo

equations (23).



7. Reference Systems

a. The Equatorial System (Inertially-Oriented)

This is a system with origin E at the center of mass of tﬁe earth,
Z-axls pointing towards the earth's north pole, and X-axis pointing
towards the vernal equinox. (I leave the matter undecided whether
corrections should be made for variations in the directions of E 2
and E X, i.e., for the earth's precession and nutation.) Then with I
a unit vector along the X-~axis, § a unit vector along the Z-axis, and

J = K x I, the position vectors are as follows for

~

C = C.M. of Skylab: r,=1X +JY +KZ, (24.1)
O = C.M. of Sphere: ro=IX +JY +KZ, (24.2)»
C.M. of a Test Object: r=I X+ JY + K2 (24.3)

b. A System Almost Fixed in the épace Craft

, X, ic’ ic are all given to us as

I shall assume that Xc, Yc’ Z c

c
functions of time during the experiment, by the orbit trackers. Then,
with

r = (X“+Y“°“+2.9 (25.1)

i
2]

P xz, |, (25.2)

I define the unit vectors

r
- ~c _ 1

07 r. T (I X, +JY +K Zg) (26.1)

c c

. _ -1 .

20 = p r. X r. (26.2)
. _ 1 2. _ .r

1,7 3o ke = ;_; (r” o = I (£oor )] (26.3)

c



In this system we take the center of mass of the Skylab as origin.
Also Eo is a unit vector pointing from the center of mass of the earth
toward the center of mass of the Skylab, io is a unit vector pointing
along the instantaneous orbital angular momentum of the Skylab, and Eo
is then given by the right-hand rule.

If the axis of the Skylab points toward the earth's center of
mass, then _Eo points along this direction. If the orbit is circular,

r *r_ vanishes, p =r |r |, and i

r.*T. r.lz, = fc/lfcl' a unit vector in the

o
direction of the Skylab's orbital velocity.

There are other expressions for these unit vectors. If § and o
are respectively the declination and right ascension of the Skylab and

I and 9 the osculating inclination and the osculating right ascension

of the orbital node, then

ko = I cos 6§ cos o + J cos § sin o + K sin § (27.1)

jo = E sin I sin @ - g sin I cos Q + Kcos I (27.2)
Also

io = -IA sin £ + IB cos £, (27.3)

where £ is the osculating true anomaly and IA and IB are unit vectors
‘along the major and minor axes of the osculating ellipse.

Here

I, = ;( cos § cos w — sin  cos I sin w)

+ g( sin Q@ cos w + cos § cos I sin w)

+ K sin I sin w (27.4)
I_ = E(—cos Q. sin w - sin  cos I cos w)

+ J(-sin Q sin w + cos § cos I cos w)

+ K sin I cos w, (27.5)

where w is the osculating argument of perigee, not to be confused with

the angular velocity in Eqg. (20).
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c. The Tunnel System, Fixed in the Sphere

Let %, j, 5 be unit vectors along the tunnels. Then, for a test

object
r-r = 8= ix + jy + kz, (28.1)
where y and z will vanish along the axis of the x~tunnel, z and x
along that of the y-tunnel, and x and y along that of the z-tunnel.
With respect to the system (a):
s = J~:(x—xo) + .z(Y-Yo) + 1~<(z—zo) (28.2)

and with respect to the system (b):

s = fogl + 1o£2 + EOE3 (28.3)

d. Transformations among the Above Systems

Let us denote the unit vectors I, J, K in the equatorial system

by Iu(u = 1,2,3) and the unit vectors %0, 3j

o’ ko in the "space~-craft

system” by i

ou (0 =1,2,3). Also let B be the rotation matrix that

carries the space-craft system into the equatorial system. Then

I, = ZUB\)UJ:QU (29.1)

. _ T a = 29.1

i, zuswgu Xu;usw, ( )
where

B\m = E\)'JJOU (29.3)

g =8 =i oI (29.4)

vu uv ~0V ~U



The direction cosines Bv
that they will be known in terms of Xc' Yc, Zc, Xc' Y
furnished by the orbit trackers.

its position vector s relative to the center of mass of the sphere

(28.3) ’ viz

£

M 2uiou u

with Iv' to obtain

Xy = Xy = LI

the components of s in the equatorial system.

into the space-craft system.

iy = Luoyudy

)

iy uahv%ou
“op T ;ov.iu
By = Lu%y¥y
xy = LueyuEy

Finally, let y be the rotation matrix that carries the tunnel

system into the equatorial system.

can be read directly from Egs.

\)‘EOUEU = zuﬁ\miu r

Then, for a given test object, with

having components Eu relative to the space-craft system, we can dot

(28.3)

(29.5)

Next let o be the rotation matrix that carries the tunnel system

(30.1)

(30.2)

(30.3)

(30.4)

(30.5)



Iy = LYuuly (31.1)

]

1y szu\)Eu (31.2)

Yov = 1y0I, (31.3)

The components Xv - Xov of s in the equatorial system then follow from

the X, in the tunnel system by dotting (28.1), viz

s = ix (28.1)
with Iv and using (31.3). We obtain

X, - X =]y X (31.4)

Now we have seen how to obtain the éuv and it is planned to measure the
inertial orientation of each tunnel, so that we shall thereby obtain
the Yuv'

From the B's and vy's we can then obtain the a's, since the

o, B, and y matrices are connected by the equation

To prove {(32), use (29.1),(30.1), and (31.3). Adopting the summation

convention, we find from (29.1) and (30.1)

= B

Ev vu%ou = B = (Ba)voéc (33)

o, i
A TR TY o]



On comparing (33) with (31.1), we find

You = (B“)vu ’ (34)

so that (32) is proved. Then, from (32),
.—1 -~
a =8 "y = By, (35)
since B is a rotation matrix. Then
auv = Xcsuoyov>= Zosouycv (36)

Eq. (36) then permits evaluation of the a's from the f's and y's.

8. Equations of Motion of the Space-craft and of the Test Objects

Let r. be the position vectorpof the center of mass C of the
Skylab relative to that of the earth. gE(Ec) be the earth's gravita-
tional field at C, and M be the total mass of the Skylab., If we
consider the extreme case in which we represent it by two masses,
each M/2 at a-sepafation equal to its length, we find that the total

earth gravitational force on the Skylab is given by

F(total) = M £ (r_) + E', (37.1)

where
el x 107 g (1) (7.2

We may henceforth write (37.1) without the F', for the total gravi-
tational force of the earth on the Skylab. Its equation of motion is

then

?c = gE(Ec) + Q/M + q/M + gLs (38)
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Here J is the force on the space-craft produced by any external jets
that we may use, D is the total non-gravitational force, mostly
aerodynamic drag, and fLs is the lunar-~solar perturbation, which we
shall ordinarily neglect.

Now let O be the center of the sphere, P = 56, and s be the
position vector of a test object relative to 0. Its position vector

r, relative to the center of mass E of the earth, is then given by

vy =rotb+s=xr +s, (39)
where
I S It by (40)

the position vector of O relative to E.

When the electrostatic suspension is so adjusted that a test object
in a tunnel does not touch its walls, the motion of the test object
satisfies

=z, + b+ s = fE(E) + gL(E) + gs(g) + fL . (41)

where §L({) is the gravitational field at the_test object produced by
the laboratory, fs(g) is the gravitational field produced by the sphere,
and gl is the perpendicular force produced by the suspension and the
instrumentation. It is here assumed that the suspension and the instru-
mentation in the Skylab produce zero longitudinal force.

Suppose the sphere is fixed, translationally, on the axis of the
space-craft, which in turn has its axis pointing approximately toward

the center of mass of the earth. Then



Lo
b=Db = (42)
~ rc

If the orbit is approximately circular, with mean motion n, then

- 2
b ~bn Ec/rc (43)
so that
Ib| = bn? (44)
Now
£, () | =37 Gps, (45)
where p <~ 19 gm/cm3 for tungsten. From the Keplerian law u = n2Re3,
we find that
4 ~ 2
G é‘— pe ~n o, (46)
where Pe is the eapth's mean density. Then
~ 2
[£,(x) | ~€—-n s (47)
e
and
2|z fepi5s b (48)
fs(Ej p s 19 s

With b = 20 feet * 600 cm and s = 10 cm, the ratio amounts to about 17.

Thus b is much larger than fs(r), which is supposed to be the main

force in the experiment.



Now if the axis really pointed accurately toward E, we could
evaluate 5 accurately from (42), with sufficiently accurate values

X ., Y

of Xc’ Yc’ Zc’ c e’

and ic, and the drag. But the most one can

do in orienting the space-craft is to point its axis, as closely as
possible, along the perpendicular to the plane of the horizon.

There would thus arise an error, which although small as a fraction,
would undoubtedly produce too large an error in b, which already
‘swamps fs‘ It thus appears that translational restraint of the

sphere would destroy the experiment, unless one placed the sphere very
close to the center of mass C of the space-craft.

I shall therefore consider only two possibllities:

o) The sphere is not at C and is not constrained to the space
craft by any tethers or rods, but its center actually remains at a
point O fixed relative to the space~-craft by virtue of external jets.
An astronaut could bring this about, watching the sphere and turning
the external jets on or off to keep-O fixed. That is, he could act
both as sensor and servomechanism.

B) The center O of the sphere is tied to the center of mass

C of the spacecréft.

9. The Unconstrained Sphere: Case o

In this case the sphere is in free fall, so that
Eo = SE(EO) * gL(Eo) (49)

Eq. (41) becomes

*s = fglngrs) + £o(rghs) + f(5*s) + £ (50)



Subtraction of (49) from (50) then yields

s = fplr +s) - fo(r)) + fL(Eo+§)'§L(Eo)+§s(Eo+§)i§l (51)
Now, by (28.1)
X (52)

If w denotes the angular velocity of the sphere relative to the

fixed-star inertial system, we have

i = x i 5
1 w ( 3)
Let

=v, (54)

the velocity of the test object relative to the tunnel system. Two

differentiations of (52) then give

s = Luiy, + brs + 20y + wx(wxs) (55)
Here
we(wxs) = wlu's) - u’s, (56)
so that
2
= . - 57
[tgx((gx§)]u wu(g s) w'x (57

In a given tunnel pu, the forces wxs and 2uwxv are perpendicular to the
axis, and thus neutralized by the fl in (50). The suspension is designed

to do this. Also, in the p-tunnel



s = X (58)

so that (57) becomes

[wx(wxs) 1, = x (0 *-0?) (59)

Eqs. (51), (55), and (59) thus give
% = (0P-w 2)x. 4+ i ~[f_ (r +s)-f_(r.)] + i -[f, (r_+s)-f. (r )1+E_ (r_+s)
u M M ~y "<E'lo L7 ZE'RO ~u "RL'To <7 *L'<o SH ~0 ~

(w=1,2,3) (60)

Eg. (60) is notable for its lack of any drag term. The sphere force
fsu is approximately 4wpru/3. The term (wz--wuz)xu is the
centrifugal force and the other two terms are the gravity~-gradient
terms arising respectively from thé earth and the space laboratory
itself. Before we evaluate the various terms in (60) it is best to
derive the corresponding equation for Case B, where the sphere is
tethered to remain at the center of mass C of the space-craft.

-10. The Ccnstrained Sphere: Case B

Here co = 0, by hypothesis. Eq.(50) remains unchanged, but may now

be written

ro + 5= fplrots) + fp(r#s) + £.(r 4s) + £ (61)
In this case we assume no jets, so that J vanishes in (38). But now

we do have drag D. With neglect of £ (lunar-solar), we obtain

r_ = f lr,) + D/M (62)



Subtraction of (62) from (61) yields
s = LplZg?e) = fglrg) + £(r ¥8) + L (r ts)+f) -D/M (63)

The equation for a test object in the u'th tunnel now becomes

s 22 . _
X, = (w W )xu + i [fE(gc+§) fE(gc)]

+%u.§L(£c+§) + fsu(fc+§) - iu.P/M (u=1,2,3) (64)

Comparison of (60) and (64) shows that, in the case of tethered
constraint of O at C, the gravitational force of the laboratory enters
as a direct force and not just as the gravity-gradient force of the
unconstrained case. If the laboratory is symmetric with respect
to its mid-section, however, this direct force will be zero. If it
is almost symmetric, it may still not exceed the gravity-gradient
force in the unconstrained case. Finally, there is a drag term in
the constrained case and none in the unconstrained case.

By evaluating §E(§o+§), gL(EO+§), and fsu(£o+§)’ we can obtain
all the gravitatioﬁal terms in both equations. There will then remain

only the drag term in (64) to be considered.

11. Field at Test Object from the Earth's Gravity Gradient

The field at the test object, arising from the earth's gravity

gradient, is

th

n

~
it

gE(go+§) - §E(gc), (65)

where r, =zt +b, b # 0 for Case a,and b = 0 for Case B. The earth's

gravitational potential V is given by



2

WJI.R
= - B 2 e Z
vV = r+ —r?—Pz(r)+"' (66)
where J, = (1.08)10"2 ana
Z = Z_+K-s (67)
Then
Eplrots) = -VgV (68)
Since
2. 37° 1
Pale) =337 5 (62)
r
we have
WI.R 2 Wi R 272
ve-R_2e ,3 "Ze (70)
r 2r3 2 0r3 + ...

1 -3

: . - 2_~5
Thus we need expressions for r ~, r 7, and Z2°r

as functions of the

tunnel coordinates x, y, z of a test object. By (39)

r=ry + 2{ ‘s + s (71)
Also, by (40)
o © sz\)Xc\f" Z\)j;ovb\) (72)

Here the bv's are the components of b in the space-craft system and

thus approximately constant. The Xc are the components of T, in the

v
equatorial system and thus known from the specification of the orbit.

We need, however, to express L in the tunnel system. To do so,



apply (30.1) and (31.1) to (72). Then

5, = I is 2, (73.1)

| @)
|

o zv(xchvc * byeyg) (73.2)

Here o is the matrix +hat rotates the tunnel system into the space-craft
system and y the matrix that rotates the tunnel system into the equa-

torial system. Also
Ly = Q /r (¢ = 1,2,3) (74)

are the direction cosines of Lyr the position vector of the center of

the sphere, in the tunnel system.

Inserting
2 _ 2
r,* = ZGQG (75)
s = loigXg (76)

into (71), we find

r2 2 s2
o L 2 XGQUXG * ;—2 77
o o o
so that
-1
r 2 ®
=2 = (1-2Ah+n%) = ] n"p () (78)
n=0
where



where

= .5
h=-2 (79.1)

b4 (79.2)

Here Pn(A) is the Legendre polynomial. We thus obtain

o _ _As s 3,2 _1
Tl +=y (32 5) + .. (80)
o r
o
which results in
2,.2,..2
Bo B By gy MUY 2T 3U 0y gy )24, (81)
r ro ro2 o 2o niNe) 2ro3 2ro3 g og%o

To £ind r~3, we differentiate (78) with respect to A. The result

is

2
= (1-2Ah+h") =
n

H

e~ 8

hn—an'(A) (82)

S
r3 1

To find r >, differentiate (82) with respect to A, to find

5
r> 2, e
2 - (a-2xh +10%) =1 37 n"% () (83)
5 3 & n
r n=2
Eqs. (82) and (83) become
ro3 3 3(x2+y2+2z%) |, 15 2
= =1- E—'zdlcxc - 2 + 2 (zozcxc) te. (84)
r o 2ro 2ro
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5

r 2,.2, 2 A
o 5 5(x"+y“+27) 35 2
- =1=-=7 2 x_ - + (3 2 x )+... (85)
r5 r, “c’d’o 2r 2 2r 2 o oo
o o
But we need Z2r °. Here
Z =%, +K's (85.1)
By (31.1)
K= L1, (86)
Thus
Z =12+
o Euy3uxu 87)
and
2 2 2
= o+ E
Z Zo Zzozuy3uxu + (Xuy3uxu) (88)

Multiplication of (85) by (88) then vyields

r5 Z2
[e) _ 5 2 2
5 =2 + ZZOZu Yau%, * (Xuy3uxu)
2 2
4 102 52
_" "o o . . o© 2, .2 2
r Xczoxo T r (ZuY3uxu)(zczoxo) 7 (xT+y"+27)
o Lo} 2r°
2
o 2o (5 2 x )2 + o> (89)
2r 2 g oo
o



On inserting (81), (84), and (89) into (70), we find

2,.2,.2
- U 1 X +y©4z 3 2
Us-V==>—[1-2 J & x - + (.2 x )1
ro ro (o lioaiNe) 2r 2 r 2 o g0
o] (o]
“JzRe2 3 3 2.2 2. 15 2
+ T [1-- zo“oxc"“‘z (x“4+y“+2°)+ ““2(26%"0) 1
2r. o 2r 2r
o o] [o]
2
J.R
3 Wa%e 2 2 1 2
- = Z 1+ £~ + —
2 . 5 o | 2, ZUY3uxu y 2 (XuY3uxu)
o o]
5 ) 10 5 2,2 2
- = X s e (L Yo X V() & x )- s (x“+y“+2)
ro g o% o ZorO B3 (oMo miale 2ro2
35 2 3
+ ;;—f (EGQOXO) 1 +0(s™) (90)
Here
2 _ 2 2 2
r o= (X, + Zuslubu) +(Yc+zu82ubu) +(zc+zu33ubu) (91.1)
Z, = Z, + Eu83ubu’ (91.2)

where the bu's are the (almost) constant components of b in the space-

craft system, Blu' BZU' and B3u are the direction cosines of %ou in the

equatorial system, and Xc’ Y Zc are the components of r. in the

c'

equatorial system. Also

HIO
Q

_ 1
- f; [Xcho+YcY20 +ZcY3c+blalo+b2a20+b3a3o]' (31.3)

0

(0 =1,2,3)

=
1

26



where the EG are the direction cosines of x, in the tunnel system,

Y16 Yag* Y3g 2¥e the direction cosines in the equatorial system of a

unit vector along the ¢'th tunnel, o

1o’ %20’

tunnel, and the b's are the same as above.

The component

given by computing

= - ¥ __ - 3u 2
on(£o+§) r 2 26 3% + r 3 2'c x
o o o
WI.R 2 30 3x
+ 27e [~ g _ o, 15 2x ]
2r 3 To r 2 r 2 o
o o
uJ,R 22 2y 2y 5%
_ 3 2’e "o 30 + 30 _ o
2z 5 Z 2 o] r
r, o Zo o]
202 v, x 5X 352 2x
g'30°¢ o g “o
- + +eee
Zor r 2 2
° o o
Let (fc)g g be the component along the co'th tunnel of the earth
gravity gradient force, viz,
(fc)g.g. = fpylrots) - fpi(ry)

It is obtained from (92) by dropping all the terms independent of

Xo_-

along the o'th tunnel of fE in Eq. (68) is then

30
cosines in the space-craft system of a unit vector along the ¢'th

BU/axG and putting X, = 0, » # o:

B
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are the direction

(92)

(93)



>4 3ul J,R. 5%
(£.) - s + g % + UoRe - 3x + 1 o Xo
c'g.g. r 3 r 3 o 2r 3 2 r 2
o o o . o o
2 2 2
_3 quRe . 2 2730xc‘_20Y3020xc 5x . 352.Cr X .
2 r 5 o 7 2 Zoro r 2 r 2 ot
o} o o o}
(94)
This corresponds to a Taylor expansion of the earth's potential V,
through terms in the second degree, in the neighborhood of s = 0,
so that
(fo) 2
j —2 9.9 = _(vév) _, (95)
o] X o

which must vanish, since the earth potential satisfies Laplace's
equation (and not Poisson's) anywhere outside the earth. It is a simple

matter to verify this. We find immediately

- e -
B (r, z0Y3aﬂ'0 Z,) (96)

By (91.3), we then compute

_ 2
o P xc20Y3och+ Yc20Y3cY20 + ZchY3c

+b126d10Y30+'b220d20Y30 + b3zca3oy3c (97)

Here the coefficients of X, and ¥, vanish and that of zZ, is unity. To
evaluate the coefficients of the b's, note that, since the matrices

o, B, and vy satisfy y = Ba, we have



ay = 8 12 (98)

from which

-1 =, =8 (99)

)O'\) = 2()"::"’,..\O"Y\)O' v Vi

Loty

Thus the coefficient of bu is B3u, so that
rozconBG = Zc + zu83ubu = Zo (100)
by (91.2). Insertion of this result into (96) shows that
J— 22 =0 (101)
to this order, as expected.

12, Higher Harmonic Terms in the Gravity—-Gradient Force

To obtain an estimate of the effect of the J2 term in (94), let
us consider the case where the o'th tunnel is parallel to r,r so that

ko = 1. The contribution of the J., term is then

2

(£) (J2) = N x

c'gg oo, (102)
where 2 2
3uJ, R 20y, 2 302
N = —28 (4-2y, 2+ 390 __ o (103)
1] 5 30 x 2
2r° o r°

If the tunnel and r, are also parallel to the earth's polar axis, then

X° = Yo = 0, Zo = Iy and Y35 = 1, so that



N, = —%% (-8) = - 2 - 2 (104)

Let us compare this with the main field on the test object, viz

~ 4

£, (sphere) ¥ 3T Gpx_, (105)
when p < 20 gm/cm3 for tungsten. Then

NoXg <12 am o 3pdn ool

foisphere) R 3 3 Pee 3 P

e
Pe
= 12J2 5 (106)

where Pe ~ 5.5 gm/cm3, the mean density of the earth. Then

ratio ¥ (12)1073 223 = (3.3)107° (107)

Thus the J, gravity-gradient field may amount to 1/300 of the main

field. The gravjtngradient fields from the higher harmonics of the

earth's potential may be expected to be about 1073

6

of this or about
(3)10°° of the main field.

In the formal reduction of data, however, they will not enter
since (101) will still hold, when we take a sum over‘the three tunnels.
In the computer simulation where we are concerned with each tunnel
separately —— to make sure that no test object is ejected -- it is

only the Jz among the higher harmonics that may count and its effect

is marginal.



13. Quadratic Terms in the Gravity Gradient Force

For the estimate of quadratic terms it will suffice to consider

only the monopole part of the earth's potential, viz

- E_n 2, 3,2 1 3,5,3 _ 3
U=E=i [(1+h) + B*( 3% 3) + 0727 - F0+..0,  (208)

by (78). Its cubic part is

- W 5 3 _3,2,.,
Uy = Eglf(lh) 7 h"(hi)] (109)

With use of (79.1), (79.2), and (74), this becomes

- _u _ 3 2,2, .2
Uy = — [-5 (L 45%,) "+3 (x“+y“+2%) ] 2 x ] {(110)
o
Then
M a2 s (J 2 x 32+6x I o x +30_(x2+y2+z%))  (111.1)
axc 2 4 (o A To s a4 oLkeT 0" 0 g Y ¢

rO
Thus the quadratic gravity-gradient term in the o'th tunnel is given by
2

_ 3y - 2 .
= ;;"T 20(3 52.U )xc (111.2)
o)

63fg.g.o

The quantity [326— 5203| has a maximum value 2, oceurring for

20 = + 1, so that

[ c I 3ux02 4ﬂpe xc2
8 = — ® 36 —m—
379.9 gy r, 3 R,

Comparison with the main field

~ 4n
fc(sphere) ~ 3 pro
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gives

|ratio| = 3

where p_ ¥ 5.5 gm/cm3, p=< 19 gm/cm3, R, ¥ (6.4)10° cm, and lxol < 10 cm.
Thus the quadratic gravity gradient term is less than (1.4)14)“8 of the

main force on the test object.

14. Summary of Farth Gravity-Gradient Effects on a Test Object

a. Sphere Unconstrained, but Maintained by Means of External Jets

at a Point Fixed in the Space-Craft

In this case the gravity-gradient field fcg g at the test object

is given by

2
£ 3ud,R
299-9. o L B (1-3g %)+ 28 [iq45g 2.9y 2
p'4 g 5 o] 30
g r 2
o o
2
20y, 2 2
+ —39°90 4 79 (3-72 %)1+0(x_%) (112)
r 2 g g
o r
o)
Here the position vector of the center of the sphere is r = r +b,

(o] ~C ~

where T is the position vector of the sphere's center of mass relative
to that of the earth. If the axis of the space-craft is kept pointing
perpendicular to the plane of the horizon, the components bu of b will

be almost constant in the system io’ 3

of ko, when ko is a unit vector

along r and jo is a unit vector along the osculating orbital angular
momentum.

Then

2 _
r© o= (X  + EUB

2
o )

2 2
Pt (Yc+582ubu) +(z+] By b)) (112.1)



bo = Lo * zu63ubu (112.2)
ot = XcY10+YcY20+ZcY3c+blalo+b2a20+b3a30 (112.3)

Here Xc, Yc, ZC are the coordinates of the center of mass of the space-
craft in the equatorial system, Y1’ Y20; Y34 are the direction cosines
of the ¢'th tunnel in the equatorial system, U157 Gaqr O34 are the

direction cosines of the ¢'th tunnel in the space-craft system io"jo’

ko, and B3u (u= 1,2,3) are the direction cosines of the earth's polar

axis in the system io’ 3 . Also 10(0=l,2,3) are the direction

k
o’ Lo

cosines of r, in the tunnel system.

b . Center of Sphere Constrained to Remain at the Center of Mass

of the Space-Craft

In this case the sphere is constrained relative to translation,

but mounted in a system of gimbals so that it can rotate freely. Also

b = 0,
The above formulas for fcg g then get simplified by the omission
of the terms in bl’ b2, b3. We may then put I, = Ie and ZO = Zc'

The direction cosines 20 are then those of r, in the tunnel system.

15. Gravitational Effects of the Space-craft Itself

Since the Skylab is to be a cylinder, filled with all sorts of
equipment and carrying several astronauts, it will produce a gravita-
tional field on a test object. Since the environment will be complex
and indeed unpredictable, it will be impossible to calculate this
field. 1Instead, I shall assume that everything is tied down during
a run, say for an hour. This means that the astronauts would have to

be persuaded to remain as stationary as possible during this time.



To treat the gravitational potential VL produced by the Skylab
itself, let us expand it in a Taylor's series in the neighborhood of
the center of the sphere. On carrying terms through the cube of S,
the position vector of the test object relative to the center of the
sphere, we can then specify VL by means of 18 coefficients. These
coefficients will be constanf if and only if everything is tied down
during the run. If the sphere is constrained, all 18 coefficients will
inideed be required to specify the field fLo produced by the space labor-
atory on the test object in the o'th tunnel. If’the sphere is uncon-
strained, only the gravity-gradient part, fLé' of this field remains
and fLé requires only 10 constants for its specification.

The idea behind this kind of treatment of the laboratory field
is to treat the above constants, as well_as G, as unknowns to be deter-
mined from the highly redundant data that will be obtained during a run.
A statistical reduction of these data will then give both G and the
"constants" and will test their constancy and thus the reliability of
the experiment.

Let UL = - VL‘ Then the gravitational field produced by the
spacecraft itself on the test object in the o'th tunnel will be given

by
£ = —, (113)

where Xy is the distance from the center of the sphere to the test
object in the o¢'th tunnel.
Now let gu(u= 1,2,3) be the components of s in a system fixed in

the space-craft. The system io’ Jj

o’ ko, as mentioned above, is approxi-

mately such a system. If we now expand U. as a Taylor's series in the

L

gu's, the coefficients will be constants, if and only if everything is

tied down during the run.

Through cubic terms, this Taylor's series takes the form (See



Hildebrand 1964 for tle method)

Up(rgts) - Uplzry) = AL
1 2 }
+=[] B E “ +) } C ¢ 5]
28Ty p<y BV TRV

1 3 o 2
+501,08, +Zv€u2v#uEuv€v + FE1E,E,] (114)

There are three A's, three B's, three C's, three D's, six E's and one

F, or 19 coefficients in all. But
= (g2 -
B1 + 32 + 33 = (V UL)o = 0, (115)

since we are here not including the sphere itself (which does not have
to be hollow at its center) as part of the space-craft. Thus there are
18 independent coefficients.

_If we let o be the matrix of the rotation that takes one from the

tunnel system i11 to the space~craft system iou' then

iov © Zuavuéu (30.1)
E, = Xuavuxu (30.4)

In the 0'th tunnel, however,

Eu = aucxb' {116)
not summed. Insertion of (116) into (114) then yields
2
_ 1 _21[)Ba +] ) cC . a o ]
U, - U (o) = xOXuAuau0 + 5 % U uo <y MV MO VO
1.3 3, 2
+3 x> L] Do zuguczv#uEuv“vo + Fag 0, 0, ] (117)

E-35



Then

BUL 2
£, = §§; = uAuauc + X [zuBuapo + ¥ Cuvaucuvol
: u<v
2 3 2
+
x “ 0 W2L%o +zu§vEuVau0aV0 + Fo, o, oy ] (118)

If the sphere is constrained (and we have seen 'that constraining
it will completely ruin the experiment unless its center is then fixed
at the center of mass of the space-craft), the net gravitational field
of the space-craft itself on the test object is given by (118), with 18
independent coefficients. If, however, the space-craft is approximately
symmetric with respect to its mid-section, the terms involving the Au's
will be "small". That is, they will certainly be much smaller than they
would be if the center of the sphere were 20 feet from the center of
mass of the space-craft.

If the sphere is unconstrained, then the net field on a test object,

produced by the space-craft,is given by a gravity-gradient term alone:

This is
1 = p—
f15 = fLo(Eo+§) gLo(fo)' (119)
where
. £5(x) = ZuAuaug , (120)
Thus
f L
Lo 2 2
=) Boa“+ JC o o
X U o n<y UV uo vo
+x_[}.Doa 3 +) 2 E o o 2 + Fo., o, O ] (121)
o] U U HO N UV UO Vo 10720 30

This gives the net field on the test object, when the sphere is uncon-
strained, but b # 0. (Of course the constants in (121) will have values

differing from those when b = 0.) When one sums the egquations of motion
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over the three tunnels, there is a further simplification, as follows.

2
Zc (EBuauc +zu2vcuvauoavo)

_ 2
- XuBuzoauo + zu<vzocuvaucavo (122.1)
= UBH' (122.2)

since o is an orthogonal matrix. Also ZuBu=0, by (115), so that

1
Lo 3,0 2
—_— = D + -
Zo X zu U oxcauo Zuszuv oxcaucavo+onxcgloa20a3c (123)
In this case only 10 coefficients remain to be determined, in the reduc-
tion of the data. Of course there will still be 18 in the computer
simulation, where one must consider each tunnel separately, in searching

for possible extraction of a test object.

16. The Effects of Drag on a Test Object

If the sphere is unconstrained, it is in free fall in the gravita-
tional field of the earth and the spacecraft, and the aerodynamic drag
on the space-craft has no effect on the test object.

Suppose now th;t the sphere is constrained, as in Case 8, at the
center of mass of the space-craft. The effect of space-craft drag on a

test object in the ¢'th tunnel then appears as a force per unit mass
D
fDG == i (124)

Here M is the total mass of the space-craft, of the order 105 pounds
and iU is a unit vector along the o'th tunnel. The vector D is the
total non-gravitational force acting on the space-craft. If this force

is entirely aerodynamic drag, it is given by

1
D = -3C AP V.V (125)

2 a
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Here Pa is the atmospheric density, Va is the resultant velocity
of the space-craft relative to the (rotating) atmosphere, v, = Iga],
A 1s the projected area of the space-craft perpendicular to Vo and CD
is a dimensionless coefficient ¥ 2.2. Here A will be of the order
20" x 40' = 800 ftz. Even if the axis of the cylinder is perpendicular

to the space-craft velocity %c' this figure is not exact because

Va # e

Indeed

v =r -QKXr_, (126)
~a ~C (=2 ~C

which says that the net velocity of the space-craft, relative to the
atmosphere, is its velocity in the equatorial system minus the velocity
in the same system of the atmosphere, considered to be rotating like a
rigid body along with the earth. Here Qe is the sidereal rate of rota-
tion of the earth and K a unit vector along its polar axis.

If Iu(u=l,2,3) are the unit vectors in the equatorial system, we

have
r = I X 127
z, Zwi cu (127)
and
K x5y = X - I (128)
Also
Eu- s T Yuo (31.3)

Then, from Egs. (124) through (128) and (31.3), we find

1 A . ° .
fhe™ ECD M pava[‘xc+QeYc)Ylo+(Yc ﬁeXc)Y20+ZcY3c]’ (129)

where the y's are the direction cosines of the o'the tunnel in the

equatorial system and where

vZ2=1r2_20 (XY -vYX)+82%x3%y? (130)
a ~C e C C CcC C e C C



Estimates show that the term in Qez is about 1/200 of the main term
.2 and that the term in @, is about 2/15 of it. Since §_ > 0 and
Xc§c - Ycic > 0 for a direct orbit, as the Skylab will have, the rota-
tion of the atmosphere diminishes the effect of drag, as expected.

To estimate the ratio of ch to the main field %ﬂ prc’ we con-~
sider the case where the given tunnel is parallel to Var Then by

(124) and (125)

C_ A

_1°p 2
£ = 5 W Pava (131)
Here Va2 z fcz < u/rc, for an orbit with small eccentricity. Approxi-

mating r by R, and writing
W~ G 3= p Ry (132)

where P is the earth's mean density, we then obtain

C.A
~ D 4T 2
fho ~ 20 P26 3 PeRe (133)
But R
L. 47
fmain ~ G 3= pXy (134)

where p is the density of tungsten. Then

fhe . Cp® PaPe R (135)
main M

With Cj = 2.2, A = 800 £t’= 743,200 em®, p_ = 5.5 gm/cm>, o = 19 gm/em’,

R, = (6.4)10%cm, M = 10° 1b = (4.54)107gm, we find



£

29— = (2.1410M (136)
main a
if R, = 10 cm and Py is in gm/cm3.

We consider an orbit at an altitude of 500 km. The atmospheric
density Py is a highly variable quantity. According to Jacchia (1969),
at 500 kilometers the exospheric temperature Tex can vary from about
700°K at sunspot minimum to 1900°K at sunspot maximum. There is also a
variation of a few hundred degrees between day and night. Reference
to the U.S. Standard Atmosphere Supplements, 1966 furnishes the following

data (which at 500 km do not depend on which seasonal model is used)

. : 3
Tox pa(ln gm/cm™) fDU/fmain at x= 10 cm
800° K 1.54 x 10 1° 0.033
1900°K  5.74 x 107 %° 1.23
At x_ = 2 cm, these values of the ratio would be five times larger.

(o

Thus at certain phases of the sun spot cycle, the effect of drag can

be very serious. At 400 km, the ratio is about twice that at 500 km

for Tex = 1900°K. and about eight times that at 500 km for Tex = 800°K.
If the sphere ig kept constrained, so that drag enters the picture,

its effects can thus be very important and highly variable, depending

strongly on the phase of the sunspot cycle, time of day, and altitude.

17. Reduction of the Observations: Unconstrained Sphere

To reduce the observations when the sphere is not constrained,

we may use Egs. (60), (94), and (121). 1In so doing, we write
o 4T L, _ LT
£og(Lots) = - 3= Gox, - £, (137)



where fgo is the attractive correction to the gravitational field of
the sphere, produced by the finite diameter of the ¢'th tunnel and the
presence of the two other tunnels. I defer the evaluation of fT

Go
to another report. Then

_ _ AT _ T 2 2
X, = prc ch + (w cuc)x0
2
3uJ,R
oW _ 2 27 e - 2_ 2
+ x I 3(1320)+———5——{1+59,0 2y,
r 2r
o o
20v5, 2,2, z 2 "
+ +5 -2 (1-72 )}]
r 2 o
o r
o
+ xc[i B. o i +y7Jc NCRPEC .
U p<v v u
2 3 2
+ X [XuDuauc + zp;v Euvaucavc + Fa10a2°a3cl (138)

On forming Eoio/xo’ the whole gravity—gradignt term drops out (iﬁcluding
the effects of the higher harmonics that are not indicated in (138)), as
does part of the term arising from the gravitational effects of the
space~craft itself. We shall then be neglecting only the truly
negligible quadratic gravity gradient terms and the quartic terms of the

space~craft potential. We obtain

T
Go

2

- _ _
L%y %y 4nGp ~ ] oo /%g + 20

3 2
+ zoxo[zuDuaud +zu;v Euvauouvc + Falca20a3cl (139)

Now suppose that the design has been such that no test object is



extracted during a run and that the servomechanisms work well, so

that each §0 remains small. Let us also suppose that at times ts ty,
t3,...tN we observe wz, each X and the orientation of the tunnel
system relative to the inertial system, so that we know all the y's at
each instant. If the orbit trackers give us the Xcu's and icu's at
each instant, we can then determine the B8's, to a certain approximation,
if the cylinder is kept properly oriented. We can then determine the
a's from o = B_ly. Numerical differentiation can furnish the small
terms éo'

In Eg. (139) there are then the unknowns Gp, three D's, six E's,
and F, or 1l unknowns in all, and all presumably constant, if every-
thing in the space-craft has been tied down during the run, and if the
space-craft has been kept properly oriented. We then have N equations
to determine the 11 unknowns. By taking N >> 11, we can increase the

accuracy of determination of Gp, with use of statistical methods for

reducing the highly redundant set of_ data.
18. Reduction of the Observations: Constrained Sphere

To reduce the observations when the sphere is constrainsd, we may

use Egs. (64), (112) with the bu's zero, (118), (129), and (137). We

obtain
- 4w T 2 2
xc/x0 = 3= Gp fGo/xo + (w Wy )x0
n 2 3“J2Re2 2 2. 20v345%5%,
- @3ty 22 [muesg Peaygle — 390 C
r 2r e}
c c
szc2 X
+ 5 (1*720 )]
r
c
+xtJAaa _+)Ba 2, y ) C oo o
o Lto™utuo wuuo L&y HV MO Ve



3 2
+ xg[EuDuau0+ D) Euvuuoavc + Fa, a, o ]
UFEV
+ ) R 0 v )y, 4 (Y -0 X )y + 7 ya ] (o= 1,2,3)
X c e c’' 'lo c "ec¢’ 20 c'3c0 rer

(140)
Here 20 is given by (91.3), with the bu's placed equal to zero. The

gquantity $(t), defined by

CDA

V(t) = 55— PV, (141)

is a highly variable and largely unknown guantity, because of the
atmospheric density I

Assume that the Xcu' X , x

w
cu o’

o’ Y's, and o's are given, as
before, at each time of measurement. With N times, Eq. (140) then
furnishes 3N equations for 19+N unknowns. These include Gp, three A's,
three B's, three C's, three D's, six E's, and one F, which add to 20,
minus one equation of condition, viz UBU = 0. They also include the
N values of yY{t). If we choose N so large that

3N > N+19, i.e., N > 10 (142)

we shall have enough data to do the reduction and thus find Gp.

We could not do the summing over ¢ in this case, because of the
need to determine the values of the unknown Y (t). Larger values of N
should give more accuracy, through greater redundancy, up to the
point where the time becomes so large that things cannot be kept tied
down in the space-craft.

In this scheme, harmonics of the earth's potential higher than
J, are not included in the earth gravity-gradient field. They may give

6

a field of the order (3)10 = of the main field 471G x_/3. In the other

method, with the sphere unconstrained, they did not enter the picture
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at all, since they disappeared on summing over o.

19. The Computer Simulation

The above equations for the xo's are sufficient for the reduction

of the data. 1In this reduction we have given to us the x the Xe

o’ u’

Xcu' the v's, and the w's.

The purpose of a computer simulatian is to find out whether any
test object will be extracted from one of the tunnels and to check or
aid the design of the servomechanisms. Now an experimental run is not
expected to last longer than one orbital revolution, else we could not
hope to keep things tied down in the space-craft. For the rather
qualitative purpose of computer simulation, it should thus suffice to

" xcu' It would

also be reasonable to omit the J2 part of the earth gravity gradient

use an elliptic (or circular) orbit as input for the Xc

field in (140), since it does not amount to more than about 1/300 of the
main field 4ﬂGch/3.

The simulation begins with Egs. (138) for the unconstrained sphere
or Egs. (140) for the constrained sphere. The other necessary equations
will be those that tell us how the w's and the Yuv vary with time.

(This is on the assumption that the space-craft maintains the orienta-
tion that has ﬂeen described, so that the direction cosines BUV and
and ic 2)

H M
I shall assume that the principal moments of inertia of the sphere,

auv can then be found from the Yuv and the Xc

viz A, B, and C, are those about the axes of the tunnels and that they
have been measured. If S is the total spin angular momentum of the

sphere, relative to its center of mass, then

+ isz + ECw3 {(143)



The variation of the w's is then given by

1n e
il
o

(144)

where the dependence of the torque L will be expressible by means of
Egs. (23) or something similar. Since i = wxi, etc, Egs. (144) and (23)

result in

Awl - (B—C)w2w3 = kllx + k12x (145.1)
Bw, - (C—A)w3wl = k21y + k22y (145.2)
Cw3 - (A--B)uulu)2 = k3lz + k3zz (145.3)

for the variation of the w's.

To describe the orientation of the sphere we need either three
differential equations for Eulerian angles or nine differential equa-
tions for the direction cosines Yuv’ Of these six will be redundant,
since the Yuv obey six orthonormal relations. It appears simpler to use
the direction cosines. The computer simulation will then involve inte-
grating fifteen differential equations, with six equations of constraint

on the Yuv that will serve as checks.

Fron
w = J_';wl + imz + ]§w3 (146)
i=wxi, 3§ =wxj, k= oxk (147)
i,= LI Yy (148)



we readily deduce

Y11 T TYp3@atvioWs Y12 = Y13917Y11%3 Y13 T TY1p@1%Y1%;

Yo1 T TYo3WatYpou, Yoo T Y23%17Y21%; Ya3 = Va1 %Y%)

Y11 T TY339tY359, Y32 = Y33@17Y3393 Y33 = “Y391%Y39)
(149)

Since vy is an drthogonal matrix, satisfying vy = 1, Egs. (149)
are subject to the six orthonormal relations

LoYpvYoy = 8, (io = 1,2,3) (150)

as conditions of constraint.

In doing the computer simulation, one will have to guess various
possible distributions of mass.in the space-craft, in order to estimate
the coefficients in the Taylor's series (114). One will also have to
guess various values for the kuv in (145) that describe the servos.
Numerical integration of the system of 15 differential equations can
be checked by seeing if Egs. {(150) are satisfied. The results can then
be used to find the values of the kuv that are required to keep the
§0 small (ideally, zero) and to prevent extraction of any test object

from a tunnel.
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ANALYSIS OF THE GRAVITATIONAL FIELD
IN WILK'S SPHERE WITH THREE TUNNELS
by
John P, Vinti

M.I.T. Measurement Systems Laboratory
Cambridge, Massachusetts 02139

ABSTRACT

In Wilk's three-tunnel method for the determination of the gravita-
tional constant G, the main gravitational field acting on a test object
in a tunnel is given by 4ﬂGpS/3, where p is the density of the sphere
and s the distance from the center of the sphere to the test object.

The present paper derives that correction fgo to this expression
which is produced by the finite diameters of the three tunnels. The
difficulties arising from the complicated intersection, a dodecahedron
with curved faces, are first pointed out. They are then eliminated
by letting each tunnel have a flat end, at a distance from the center
not less than the radius of the sphere circumscribing the dodecahedron.

Section (4) derives the correction produced on a given test object
by the finite diametér of its own tunnel. Sections (5) through (8)
derive the correction produced by the two perpendicular tunnels. The
final result for féc is given in Section (9).

The paper is intended to supplement the main report on this method,

listed in the references.

1. Introduction
A previous report by the author (Vinti 1970) dealt with the deter-
mination of the gravitational constant G in an orbiting space laboratory.

The method investigated is due essentially to Wilk (1970), who proposed



the use of a tungsten 3phere with' tunnels along-fhree mutually perpendi-
cular diameters. Inertia reaction wheels, govefned by servomechanisms,
would keep the sphere slowly turning in such a way as to maintain a
small test object motionless on the axis of each tunnel. From this
balance of gravitational field against centrifugal force, a measurement
of the components of angular velocity of the sphere would lead to a
value of G. The method would of course involve many other measurements
and corrections. The purpose of the three tunnels, rather than one,

is to eliminate, to a large extent, the effects of the earth's gravity-'
gradient, in those cases where it is possible to do a summation over

the three tunnels.

2. The Main Gravitational Field

Inside a uniform rigid sphere, of density p and radius R, the

gravitational field strength f is inward radial, of magnitude

f = 4nGps/3, (1)

where f = |f| and s is the distance of a field point from the center of
the sphere. Eq. (1) follows readily from Gauss's theorem. Inside a
single cylindriéal tunnel, of negligible radius, drilled along a dia-
meter of the sphere, the field would have the same value. If there

are three tunnels, each of negligible radius, the attractive field

fG on a small test particle in the o'th tunnel would then be given by
£, = 4nGps /3, (2)

where Sg is the distance of the test particle from the center of the

sphere.



3. The Intersection of the Tunnels

As soon as one takes into account the finite radius of each tunnel
there appear corrections to (2). For a test object in a given tunnel
o these are the effects of the finite radius of the o-tunnel and the
effects of the other two finite tunnels. If the tunnels are drilled alil
the way through, there is then a complicated intersection at the center,
which would get counted three times, unless one takes special precau-
tions. This intersection is a polyhedron with 12 curved faces. If
the radius of a tunnel is a, the radius of a sphere inscribed in this
polyhédron is a and the radius of a sphere circumscribed about it is
av3/Z.

For a model with 2a = 1.875 inches, the volume of the inscribed

sphere is 56.5 cm3 and that of the circumscribed sphere 103.8 cm3

» by
calculation. A laboratory-drilled model was found to have a volume of-
(62 + 2)cm3, so that the polyhedron is closer to the inscribed than to
the circumscribed sphere. )

If instead of drilling the tunnels all the way through the sphere,
one uses a drill with a flat end and stops drilling at a distance b
from the center in each case, there is no intersection of the tunnels

1/2. 1/2

2 If b = a(3/2) , the flat end of each tunnel is

if b = a(3/2)
tangent to the above '"circumscribed sphere'.

It appears unlikely that one can find a complete analytical solu-
tion for the gravitational field in a tunnel, when the actual intersec-
tion is permitted. In any special case, it is possible that one could
then do a numerical integration to find the field. In what follows,
however, I shall assume that each tunnel consists of two parts, each
running from r = b tor =R. Ifb = a(3/2)1/2, there is still no
intersection. Unless there turns out to be an experimental reason

for being able to see through a tunnel, such a configuration of partial

tunnels should be as good as that of the complete tunnels. It would



be better in one way, since it would give a larger field for small

values of Xy

4. Effects of the Tunnel ¢ on fc

Figure 1 shows the arrangement, the cylinders ABCD and EFGH
being hollowed out of the sphere of density p and radius R. Here Q
is a source point and P a field point on the axis. Region (1) is in-
tact and regions (2) and (3) have cavities (the tunnel). (Of course
the figure is not drawn to scale.) It is sufficient to consider a
field point P in the upper cavity alone, but source-points will have
to cover all three regions (1), (2), and (3).

Let f be the axial cdmponent of the field strength at P, taken

positive towards O. Then

f=f1+f2+f3, (3)
where fi is the contribution of region i.

With cylindrical coordinates z, T, ¢, the rectangular coordinates
of a source point Q are r cos ¢, r sin ¢, and z and those of the field
point P are 0,.0, s. Then

2 2

QP” =r cosz¢ + r2

sin2¢ + (z—s)2 = r2+(z—s)2, 4)

r being the distance from Q to the axis. Then

_ Gprdrdé¢dz
dfi = —(2—;2——— cos ¢ (5)
2 .2,1/2
For fl, r goes from 0 to (R™-z7) , z from -b to b, and ¢ from 0 to

2m. Also



From Eqs. (5) and (6) and these limits, we then obtain

NR7 -7 2
J,

b 2 2
f1 = ZwGp_/; (s-z)dz [r“+(s-2)°] rdr

0

After integration with respect to r, (7) becomes

f b
1 2,2
—2‘;;1__(-;—5 = 2b ".[; [R +S 'ZSZ] (s-z)dz

_1
2
The substitution

u =R + s® - 252z

then results in

f1 -1
21Gp

1 3 3
Z 2.7

rof ks

where

R2+sz+2bs

1t

u, = R2+sz—2bs

2b-(2s%) [(R%-s%) (W, w3, % D)1,

(6)

(7

(8)

(9)

(10)

(10.

(10.

Eq. (10) agrees with the result of a calculation by W. E. Lee (unpub-

lished).

To evaluate fz, note that in (5) the limits become ¢ from 0 to

27 as before, r from a to‘VRz—zz, and z from b to & = ‘JR2-32 - b.

Then

iy

2)



totN

£ . VrZ- ;2 -
2$er = jb'(s-z)dzf [r2+(s-2)%] rdr (11)

a

The substitution

2 2 \
v = v+ (s-2) (12)
leads to
22 _3 21 21
-z 2 2 2
f [r2+(s-2)%] rdr = [a’+(s-2)2]-[R®+s2-252] , (13)
0
so that
J1 2l
f L 2 2
2 2 2 2
TG - Jg(s—z)dzs [a“+(s-2)"] -[R2+s -2sz] (14)

It is convenient to leave f2 in this form until we find f3.

To find f3, use as limits in (5): ¢ from 0 to 27, r from a to

JRZ-ZZ, and z from -2 to -b. Then

NN

£ < -b VRZ-Z2 B
773;@5 =f_2 (s—z)dzf [r2+(s-2)2] rdr (15)

a

Application of (13) to (15), with replacing of z by z', then shows that

1 -1
iiGp = J(;b(s-z')dz‘ [a2+(s—z')2]%[R2+52—ZSZ']zg (16)
On putting z' = -z, this becomes
A A
;%CE =‘/;%s+z)dz %[a2+(5+2)2]2“[R2+SZ+ZSZ]2% (17)



Addition of (14) and (17) now gives

f2+f3 = fl[ $-2 + S+z - S-Z . s+2z
21Gp
b ‘L\la2+(s—z)2 Vaz+(s+z)2 VR2+52-252 \/R2+sz+252

dz

(18)
To combine (18) with (8), first rewrite the latter by decomposing the

integral into one from 0 to b and one from -b to 0. 1In the latter

rewrite the dummy variable z as z' and then put z' = -z. Eq. (8) then
becomes

£ b b

_L_=2b-f _(s-z)dz __(s+z)dz (19)
2mGp 0

VR +52-Zsz 0 VR2+52+252

The sum of (18) and (19) takes the form

f1+f2+f3 - 2b+ fz 5-7 N . S+z dz
ZmGo b 2 2 2 )
\Ia +(s-2z) \/a +(s+z)

i fz S-z . hat (20)
0 \IR +sz—Zsz VR2+52+252

To evaluate these integrals, make the substitutions

u = aZ+(s-2)2 (21.1)
u, = al + (s+2)’ (21.2)
v, = R% + s? - 2sz (21.3)
v, = RZ + 2 + 252 (21.4).



With ‘use of (3), the result is then

L 2b+‘dg2+(s-b)2~ la%s (s+b)?

!

2, 2 1
_ R ;s i J£24(z-s)2 ) Jaz+(l+s)2 1
2s
% :
- i—z [a?+(2+s)%] - [a%+(2-5)?] % (22)
S

As a check on (22), note that for a = b = 0, in which case 2 = R,

this reduces to Eg. (1), as it should.

5. Effects of the Perpendicular Tunnels on fc

Figuré 2 shows a tunnel Tl perpendicuiar to the tunnel ¢, the
axis of o being along GP, with P a field point on its axis, at
distance s from O, the center of the sphere. The perpendicular "tunnel
T1 consists of the empty cylinders ABCD and A'Q'C'D' and of the empty
spherical segments CDE and C'D'E'. There is no need tp\draw the
other perpendicular tunnel T,.

The axial fie{d correction at P, produced by the perpendicular
tunnels T1 and T,, is then four times the sum of the axial fields pro-
duced at P by the cylinder ABCD and the spherical segment CDE, both
of density -p.

A straightforward attempt to evaluate the‘field produced at P,
either by the cylinder ABCD or by the spherical segment CDE, would
involve the calculation of a triple integral over three cylindrical
coordinates. One finds at once that the integration over the angular
coordinate yields an elliptic integral, of large modulus, which would
then have to be integrated twice more. Such a straightforward attack

is therefore to be shunned.



6. The Field of a Disk

To avoid the above difficulty, I shall regard both the cylinder
ABCD and the spherical segment CED in Figure 2 as composed of elemen-
tary disks. The procedure will then be to calculate the potential
produced by each disk at P, take its directional derivative along the
axis of the o tunnel to find the field produced by each disk, and then
integrate over all the disks to find the field corrections produced by
ABCD and CED.

Since the center of each disk is farther from the field point
P than from any source point, the potential at P can be expressed
by means of a converging series of zonal harmonics, similar to that
for an axially symmetric planet. In ABCD the disks ali have the same
radius a, but in CED the radius varies.

Let dz be the thickness of such a disk, T3 its radius, Tp the
distance from its center 04 to the field point P in.Figure 2, and

6 the angle from O4E to T, = 65?. If
- 2
ug = -Gmry“edz, (23)

the zonal expansion for the potential Vd produced by the disk at P

takes the form

ot
]
t~1 8

' 2k
|

T
d .
| k=1 P i

The odd zonals drop out, because of the symmetry with respect to the

plane of the disk. If the mass of the disk is

My = -m vyl edz, (25)



the J's are given by

Magdop = ‘_/1r/rd)2kP2k(cos 8'1mdS, (26)

integrated over the disk. Here 8' = %, 6 = -pdz, and dS = rzdrd¢.

The result is

P (0
Jok =7 KF T 0 (26.1)
where
X
(-1 ¥2)!
P, (0) = L)l (2K) (26.2)

255 k)

From (26.1) and (26.2), the first few JZR'S are J2 = 1/4, J4 = 1/8,

J, = 5/64, and J8 = -7/128.

6
With OOd = 2, we now have in (24)
rP2 = z2 + 52 (27.1)
cos 8 = —z/rP, (27.2)
so that
iy - rde
Vg= -ty Z —oT JZkPZk(z/rP), (28)
p k=1 Tp

since PZk(—E) = PZk(E). The attractive field produced by the disk along

the o tunnel is given by

v Hqs <
_ d _ ¥4 2k 3 -2k-1
fa=e “ -3t w L Iadd w [Tp Pa(#Tpl 29
) )



or

2k

d 2\, z z
d 2k+1)P (~—) Z_ps (-)] 30
Tp ) [( IP2x rp) T T \Ts) (30)

Lz}
<%
|
‘Jt
o
[
)
N!’:
=%
7))
8
[N
~
=
P
~

7. Corrections from the Empty Cylinders

The attractive field fABCD produced by the cylinder ABCD is then
given by placing ry = a and ug = —Gwazpdz in (30) and integrating it
from z = b to z = R, = wle-a2 . On using (27.1) and placing

A= z/rP = z(zz+sz) (31)

NI

we thus find

NIA

R -
2 1L 2. 2
fABCD = -Gma“ps . (z°+s7) dz
o ™ “k-3
sGralps 3 JZkaZk:Jf (z2+sh) o (naz, (32.1)
k=1 b

where

Q(A) = (2ZK+1)P,, (A)+ AP, (R) (32.2)

With use of the identities

Py (M) = gy [ Phyyq (WP () ] (33)
and
WP () = T Poxer (M * e Pt ) (34)



we then find

Q) = Py ()

On placing z = s tan o in (32,1), we find

DA

(zz+52) dz = s “cos ada = s d sin o = s 2da

and
k-;

(z%+s%) 23z = s72k"2(152ykgy

Insertion of (35) and (37) into (32.1) then yields

» A
(f )s ® 2k 2
ABCD a 2.ky’
— = Ag-A, ¢+ §J (—) f (1-2“)*p (\)da,
Gralp 17%2 7 b Y2k s \ 2k+1
where !
2
A = b(b2+sz)
-1
2
e (n 2.c2
)\2 = Rl(Rl +S )

Before we proceed further, it is interesting to check (38).

put b = 0 and Ry = =, the field fABCD

a distance s from its axis by an infinite cylinder of radius a and

(35)

(36)

(37)

(38)

(38.1)

(38.2)

If we

should be half that produced at

density -p. In such a case A= 0 and A, = 1. The integrals in (38)

then take the form



_/'1(1-x2)k1‘>i )dx = 1 f ! 1-22)kps A)da
; 2k+1 7J [ A Ph @)

1 2 k 1 1 2 k-1
7(1-A ) P2k+1(l) + k~/~ A(1-2%) P2k+1(k)dk,
A=-1 “-1

(39)
on integration by parts. The first term vanishes and so does the se-
cond, since x(l-kz)k'l is a polyncmial in A of degree 2k-1. 1Its ex-
pansion in Legendre polynomials does not include P2k+1(x), so that
orthogonality proves the vanishing.

Thus (38) reduces to

2
_ _ 2Gma®p
2fppep = T T (40)

Suppose one places a pill box of radius s around an infinite cylinder
of radius a and density -p and applies Gauss's theorem to it  The
latter states that the attractive fiux (inward) through it is equal
to the product of 47G and the mass in the pill box. The result is
(40). Thus Eq. (38) survives this check.

The correction from the four empty cylinders is thus

2 1

- 2k
_ 4Gma"p _ a
Maep T s [ M et LTk (E) T | (41)

~

where ), and kz are given by (38.1) and (38.2), the JZk by (26.1), and
2 Lk
Ik = (1-»7) p (A)dx (42)

xl 2k+1

It is simple to work out the I . We find
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A
2
1, = %_/: (1-1%) (52 2-1)dr
1

) ] U P :
= % (A -2,+2(05-21)7- (A ,-29)7] (43.1)
A2
I, - %..jr (1-22y (3152 * - 7023 +150)ax
A
1
= & [350,-2)%-120(0,-2) T+150 (A -2 ) 5-80 (0 -2 ) 3415 (A -2 ))1]
8 2™ 27" 2°"1 2 "1 21
(43.2)
A2
1, = 1 _/~ (1-2%)3 300325346524 +94522-35)ax
316 4
1

1 o, 413 o411 49 47
= Tgl-23100 A ) 7 %1134 (Ay-A) T -2261(hy- A ) #2324 (A1)

5 3
-1281(2,-21)7 * 350(A,-A1)7-35(2,-21)] (43.3)

By means of an integration by parts, like that of (39), it is

easy to show that |Ik| < 2k+2. Also, by (26.1) and (26.2)

1

~ -1 1+3-5...(2k-1)

ol = (1) " oo™ ; (43.4)
so that

19,0 < g2l o 32 ap k5 4 (43.5)

The ratio of the k'th term in (41) to the main term 4wGps/3 is thus

less than l%% (%)10 < 2(10-10) for a = 0.5 cm and s = 5 cm. It



thus appears reasonable to stop at k = 3.

8. Corrections from the Empty Spherical Segments

The corrective field fCED produced by a spherical segment is to
be obtained by considering a disk in it of variable radius ry =&,

thickness .dz, and

Hy = —Gn&zpdz (44)*

We make these substitutions in (30) and integrate the latter over z

from z = R1 to z = R, where R is the radius of the sphere and
R, = YRZ-a’

1 R®-a” . The result is then
R
f fddz (45)
R
1
Here, however
g2 = R%-2% (46)

so that the integration is more difficult. We have for the attractive

field produced by the disk on the test object

k
2
+ Gﬂps(RZ-zz)dz 2 JZk "7?‘3_1“ Q (M)

_ Gwp(RZ—zz)sdz
3

Tp

(473
This follows from (30), (44), (46), and (32.2), where Qx(A) is given
by (35) and A = z/rP. The Joy are still given by (26.1).

Then
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R 2.2
E— -4ansf S %dz
R T
1 P
k+1
o R 2 .2
R -
+4GTps kgl Jox /; L—zkégl——— Q (V)dz (48)
= 1%p
From (27.1) and (46), we now have
rpf = RPas?og? = n 2o (49.1)
hy® = R%E4s? (49.2)

Consider the first integral in (48). If we change to £ as independent

variable, it becomes

1 3
Rp2_ 2 a 2 o, 2
SR 4= TRl g%l e (50)
R1 T 0
P
a 2 2
= Eiwg . €3(1+ % if + .01+ % i—7 +...)dE
0 0
(50.1)
=_La[§i+l(l_ 3 >a6+... (50.2)
RS LY O 2R 2h02

Next consider the integral multiplying Jye Tt is



T
1 P 1 P P (51)
a 5 2 .2
_ g°de 5 R°-£%) 3
- Tz 7,7 2 (51.1)
0 \JrZ:2 (h02_£z)5/z hy“-¢

To obtain the term in a6, we may drop £ in this integral everywhere

except in the main &5 factor. Then

2 6
. 1 15 3)&
N, = = (222 -2 51.2
1 o5 (z L2 7/)% (51.2)
0 0
61 6
z 2 | SR - 1 < E-) (51.3)
I—iL(R2+52)7/2 R(RZ+52)572 (R

Here R ¥ 10 cm, so that if the tunnel diameter is less than 1 cm,
(%)6<%I 10“6. Also, since I, = %, the factor 4TersJ2 is 3/4

of the main field 4wGps/3 on the test object. It appears that all the
ferms containing the JZk's can be neglected. Also, in (50.2), the

. 1 .
term in 36 is less than ¥ (a/R)6, so that we can neglect it also.

Thus, closely enough

4
4f _ Gmpa

CED = " {(r%+s2372 S (52)

9. The Total Gravitational Field from the Sphere

On adding (22), (41), and (52), we find the total gravitational
field produced on a test object by the sphere containing tunnels.

It is
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f(I = 2wGp [2b+ \/a2+(s-b)2 - Ja2+(s+b)2

R2+s2

—;—7—-§Ja2+cz—s)2 - Va's(a45)? %
.S

3/2 3/2
§—73 [afr(a+s)? 1 - [a?+(2-5)2 ] f]
S .

2 o 2k 3
4Gra“p a
S — | ApmAp * kZ, Ja s Iy
=1 )
4
Grpa f a6\
- s + mGps O 2 (53)
R(RZ+s2)3/2 V@

Here the first three lines represent the field that would be produced
on the axis of a single tunnel in the sphere. The fourth line gives
a diminution of the attractive field{/produced by the four empty
cylinders in the other two tunnels. The last line gives the diminution
of the attractive field that is produced by the four empty spherical
segments in the other two tunnels. It is assumed that each tunnel
has a flat end, at a distance b from :the center of the sphere.

If the tunnels are drilled all the way through, we can proceed
as follows. First put b = 0 in Eq. (53). The dodecahedral intersec-
tion is then counted three times as a cavity. To correct this error,
we need to add to (53) twice the field produced by the solid dodeca-
hedron, of density +p. If we now expand the potential of this do-
decahedron in spherical harmonics, only the zonal harmonics enter on
the axis of a tunnel, since the tesserals and sectorials contain a

term sin me, (m 2 1) and sin 6 vanishes on the axis.



The dipole term vanishes, since the center of mass of the dodeca-
hedron is at the center of the sphere. By the construction we see
also that the principal axes are along the tunnels and by symmetry
the principal moments of inertia are all equal. This fact makes the
quadrupole moment vanish. Also the dodecahedron is symmetric with
respect to the plane X, = 0, so that the zonal part of the third
harmonic (or octupole moment) vanishes. The first non-vanishing term
after the monopole moment is thus the zonal fourth harmonic (16-
pole moment), producing a field that goes like s76,

We may express the volume of the dodecahedron as
=k 7 a, (53.1)

where k is a universal constant, on dimensional grounds. We can thus
determine k experiﬁentally, by making a model of the dodecahedron and
determining its volume. In the example in Section 3, the volume was

62 cm3 and 4n33/3 was 56 cm>. Thus, approximately, k = 62/56 = 1.094.

The méss of the dodecahedron is then
= 53.2
Md Qp ( )

By the theory of potential, the zonal part of the potential, Vd’ at a

field point outside it is then

C
- _ M 4 z ] )
vy = ?[1 -;IP4<r)+... (53.3)
Here
4W33



and

1/2
r o (laypeg?y T (53.5)

where x, y, 2z are the coordinates of the field point. Also P4 is the

Legendre polynomial of degree 4 and

- 4 z
M4C, = ~_/} pP4(F)dT, (53.6)

integrated over the dodecahedron.

To find the attractive field fdod along a tunnel, we differentiate

Vg with respect to z and put z = r = s in the result, which is

U €y
faoa = 7 - 57+ (53.7)
To put an upper limit on [C,|, we may use (53.6). Since
P, (= = and since the dodecahedron is contained within 1ts circum-
e S 1 and si he dodecahed i ined within i i

scribed sphere of radius

R = a(3/2)1/2, (53.8)
we obtain

R 6

Md|C4| < 4np_/; r°dr, (53.9)
so that

ulc, | < 438 or’ (53.10)

With use of (53.4), (53.7), (53.8), and (53.10), we find that the

fourth harmonic part of fdod is bounded by



s5uic, | : 7
4 135V1.5 7 ~.a

3

The main field is 47Gps/3. Since the dodecahedron has to be counted

twice in this calculation, the fractional correction produced by the

fourth harmonic is bounded by

270{1.5_3 Gpa7 3 _ A05/1.5 (3)7 2 (17.7) (1)7 (53.12)
14 56 47Gps 28 s * S

For a = 0.5 cm and s = 5 cm, this would amount to 2 parts in a million.

We may thus safely neglect the fourth harmonic, since the above upper
1imit on }C4| is probably a large overestimate.

Thus

3
= k Gdra“p

£ = , (53.13)
dod 352

to sufficient accuracy. Here k T 1.094, but may be determined more
accurately by a better experiment.
To summarize: when the tunnels are drilled all the way through,

fc is given by (53}, with b = 0, plus the correction

3
6f (intersection error) = 2k (£E§%~E-)+ negligible terms (53, 14)
3s

The correction £, of Vinti (1970) is then

£l =g - an Gps

“Go o] 3 (54)
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Summary of the Notation

R = radius of the sphere

a = radius of a tunnel

b = distance of fldt end of a tunnel from the center of the
sphere

R, = N

L = Rl—b

s = distance of a test object from the center of the sphere

= b(b2+52)'1/2

1
A, = R (R, +s%)71/2
JZk = - PZk(O)/(k"'l)
. (DX
P (0) =
2k 225k

2
2.k .
Ik = ./: (1-27) Pék+1(x)dx, with examples for Il, Iz, I3
1 in Eqs. (43)
Pn(x) = Legendre polynomial of x, of degree n

density of the sphere

p

G = sravitational constant
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Appendix : Vestigial Tunnels

This is an afterthought about both the present report and Vinti 1970.

Instead of drilling three perpendiculaf tunnels in the sphere, one
might proceed as follows in achieving the balance of gravitational force
against centrifugal force that has been described for measuring G.

.Suppose_we are given the completed sphere, accurately machined to
be a good geometrical sphere. Since there will be some inhomogeneities,
its center of mass will not quite coincide with its geometrical center.
Determine the position of its center of mass, perhaps by means of physi-
cal pendulum experiments, and indicate this position with reference to
some fiducial marks on the sphere.

Since the sphere will not be dynamically perfect, it will have
unique principal axes. Determine these principal axes, perhaps by
means of torsion pendulum experiments, and mark the six points at which
they intersect the sphere. Also determine the three principal moments
of inertia, viz. A < B < C. (The center of mass will have to be at the
intersection of the principal axes.)

Instead of drilling three tunnels, simply attach six short thin
hollow cylinders, each perhaps an inch long, on the outside of the
sphere, at the exit points of the principal axes. These cylinders may
be of some material much less dense than tungsten; they would contain
the suspension systems.

Use the inertia reaction wheels, servomechanisms, and suspension
systems, so that on rotation of the sphere, test objects in three of
these "vestigial” tunnels will remain fixed (or almost so) on the axes.
The servos will now not only have to prevent extraction but also to
prevent collision of the test objects with the sphere. Since the 'tun-
nels" are now much more accessible, however, it may be easier to design

the necessary suspension systems.



The expression for the gravitational field fc on a test particle

is now much simpler. With origin at the
taken along the principal axes, let s be

of mass and 6 and X be the corresponding

S sin6 cosA

»
it

S sin® sin)

<
L

1
It

z S cosb

If M is the mass of the sphere and R its

tential V outside the sphere is given by

- .GM % Ryn o
Vo= - [1 nzlcg) J P, (cose)

T R
4 nzl(g)npﬁ(cose)(cn’

Suppose we truncate this series at n = 2.

of mass, we have

2 2 2
GM R 3z 1 3R
V=-—|1--=%J, - )+
s s2 242 ;7 2 S2
Using .
2 XZ_ 2
sin®“ ® cos 21 = —-71— ,
s
we find

center of mass and x, y, z
the distance from the center

colatitude and longitude. Then

(54.1)
(54.2)
(54.3)

radius, the gravitational po-

nCos m A+ Sn,m51n m )\)] (55)

With the origin at the center

(56)
(57)

cos 2) +..] (58)

(59)



2 2 2 2
GMR"J GMR®J ,z 3GMR™C
- _GM _ 2 3 2 2,2,.2 2
L S A e (60)

In the x-tunnel the attractive field fx = 3V/9x with y

)

z = 0; in the

y tunnel fy = 3V/3y with z = x = 0; in the z-tunnel fz = 3V/3z with
X=y=0 .
On carrying out this procedure and using
C - Z(A*B)
Jy = ——— (61)
MR
B-A
C = =5 (62)
2,2 pvr?
we find
_ GM 3 G(B+C-2A)
fx = ;—2— + f_g—?—— +... (63.1)
f_ = %’[ + 3 G(C*A-2B) (63.2)
y 2
Yy y
_ GM 3 G(A+B-2C)
fZ = -z7- + 'Z’L—ZT——' Foaay (63.3)

there being a cyclic symmetry, as expected.

For a perfectly homogeneous sphere, of course, A = B = C, so that
the above quadrupole terms, which can be measured, would give some cor-
rection for inhomogeneities. However, a good-sized hole near the sur-
face and near a tunnel would cause trouble. Eqs. (63) are about as far
as one can go and still determine coefficients in (55) experimentally.

There should also be a small correction for the gravitational field

of the thin external cylinders that constitute the vestigial tunnels.



This should be easy to calcuiatc.

This method of "vestigial tunnels'" would appear to be much simpler
than the method first considered. botl in construction of the equipment
and in reduction of the data. 1. als. preserves the advantage of Wilk's
original proposal in those cases where it pays to sum over the tunnels,
i.e., when the sphere is in free fall. This follows because summing
over the three tunnels always eliminates most of the gravity-gradient
effects. On summation over the tunnels, these depend, to a high accur-
acy, only on the Laplacian of the gravitational potential of matter ex-
ternal to the sphere, which always vanishes at the sphere's center of
mass.

Finally, the field given by (63) is independent of thermal expan-
sion and contraction of the sphere. This statement does not hold for
- Eq.(53) for the field inside an interior tunnel, unless one knows how
much to correct the density p in that expression. Another way of say-
ing the same thing is that, except fer the weak dependence of the moment
of inertia differences in (63) on the temperature, the fundamental un-
known to be determined in this method of vestigial tunnels is G and not

Gp.



FIGURE 1.

R% = (24b)2+a?
c = R-2-b
0P = s



FIGURE 2. A Perpendicular Tunnel, T

1

Cylinders ABCD, A'B'C'D' empty

Spherical Segments CDE, C'D'E' empty

GP = axis of tunnel o

2 _p2 2
R1 = R a
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FOREWORD

A study of dense primary masses for use in gravitational experiments

was performed by Arthur D. Little, Inc., Cambridge, Massachusetts, for
the Measurement Systems Laboratory, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, under account number
DSR 71390 in support of Nationmal Aeronautics and Space Admiﬁistration,‘
Manned Spacecraft Center, Contract NAS9-8328. The authors acknowledge
the assistance and cooperation of Mr. Leonard S. Wilk, the Project Monitor,
Dr. Bernard E. Blood, and Professor Winston R. Markey, Director, of the
Measurement Systems Laboratory. The principal Arthur D. Little, Inc.,
personnel contributing to the program included: Dr. Alfred E. Wechsler,
Technical Review of the project; Dr. Alfred G. Emslie and Peter F. Strong,
gravitational field uncertainties; Dr. A. G. Emslie and Dr. Ivan Simon,
suspension systems for secondary test masses; Philip C. Johnson and

Dr. Alfred E. Wechsler, materials for the primary mass; and Arthur A.
Fowle, experiment cooling considerations. The program at Arthﬁr D.

Little, Inc. was under the overall direction of David L. Richardson.
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SUMMARY

PURPOSE AND SCOPE

The purpose of this program was to study and recommend the material and
fabrication techniques for laboratory size primary masses whose physical
and geometrical characteristics are very accurately known. In addition,
studies were made of suspension systems for a test mass within the pri-
mary masses and techniques for cooling experiments to cryogenic tempera-

tures.

The program included investigation of materials suitable for fabricating
the primary masses by considering gravitational field uncertainties due
to density, density inhomogeneity, temperature, strain, geometry, the
presence of suspension systems and other sources of uncertainty. The
suitability of elemental materials whose density is greater than 15
grams per cubic centimeter are discussed from the point of view of den-
sity, homogeneity, strength, fabricability, costs, availability, and
the associated contribution to gravitational uncertainties. These ma-
terials are categorized according to their state of technology for
fabrication, developments required to achieve a uniform mass, and the
probability of success of achieving a primary mass of known uniform
density. The general applicability of diamagnetic suspension systems

to space gravity experiments is discussed. The applicability of a
quadropole and sextipole system for suspension of a test mass in a
tunnel within the primary mass of the proposed experiment are discussed.
Experiment cooling requirements are estimated and both open-cycle and

closed-cycle cryogenic refrigeration techniques are examined.

CONCLUSIONS AND RECOMMENDATIONS

1. The AG/G experiment to test the Brans-Dicke theory is impossible if
carried out at 300°K but has a reasonable chance of success at

liquid helium temperature. The measurement of the absolute value

G-vii
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of G to a much higher accuracy is feasible at either temperature.
The proposed earth-orbital mission is to measure both G and to test
the suitability of tﬁe apparatus for later experiments in highly
elliptical solar orbit to measure AG/G. To accomplish the latter
missions in a meaningful way, it is essential that the earth-orbital

experiments be performed at cryogenic temperatures.

The primary sphere should be rotated in such a way that the test
particle always stays in the same longitudinal position in the
tunnel within a very close tolerance. This is necessary because of

considerable non-linearity in the longitudinal force due to the

tunnel itself and to possible defects in fabrication of the sphere.

The support system must be capable of holding the test particle
at all times within 1 micron of the tunnel axis. This is necessary
because of significant variation of the 1ongitudina1 force with

distance from the tunnel axis.
The primary sphere should be round to 10“5 cm.

Gross density varia;ion across the sphere should be less than 1 part

in 107,

Fine scale density variations of 27 on a scale oflO—4 cm are

tolerable.

The test mass should be made from a diamagnetic material and should
be supported in a quadropole superconducting magnetic field which
has superconducting current elements to avoid dissipation within the

sphere.

Tungsten is the primary candidate for fabrication of the principal
mass. Fabrication techniques have been demonstrated for achieving

spheres of 99%Z theoretical density. Uranium is unsuitable because

G-viii
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10.

11.

of non-crystallographic phase changes below.43°K, it's non-cubic-
structure (causing an isotropy in its properties), and poor oxida-
tion resistance. Tantalum will be a good candidate if its lower

density is acceptable in the experiment.

An excessively long time may be required to achieve equilibrium

cryogenic temperatures if the experiment is cooled radiatively.

Open—cycle helium refrigeration systems in zero gravity require an
as yet unproven liquid-vapor separator to ensure the venting over-

board of only gaseous phase helium.

A mechanical helium refrigeration system with long life and smaller
size and weight than an open-cycle system is the best selection for

both earth-orbital and solar-orbital gravitational experiments.
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1. TINTRODUCTION

Albert Einstein's general theory of relativity has been challenged by
the Brans-Dicke scalar-interaction theory which predicts that the value
for the Newtonian gravitational constant (G) will decrease under the

(1)

potential is predicted to be very weak. Within the earth's field the
(2)

influence of increasing gravitational potential. This dependence on

maximum effect, measured as AG/G, for an initially remote observer

approaching the earth is estimated to be approximately 7 x 10'11. For
a highly elliptical orbit of the sun (1.0 to 0.1 astronomical units),

(2) could be as large as 9 x 10_9.

the maximum AG/G effect
Recent advances in space exploration present opportunities for experi-
ments for testing the Brans~Dicke theory. To make measurements of AG/G
to the desired degree of accuracy will require instrumentation of un-
precedented sensitivity. The Measurement Systems Laboratory of MIT has
been investigating experiments for earth and solar orbit whose primary
objective is the detection and measurement of non-Newtonian effects.

A secondary objective of the proposed experiments is to provide a more
accurate measure of G than is now available. One experiment configura-
tion consists of a dense homogeneous sphere with a diametral tunnel.

An unrestrained test mass is placed in the tunnel and caused to orbit
about the center of the sphere. The rotation of the sphere is
controlled so that the test mass does not touch the sides of the tunnel.
In the absence of disturbing forces the test mass will orbit in an
ellipse whose center is at the ceﬁter of the sphere and hence the
rotational rate of the sphere will be independent of the parameters of
the ellipse, the radius of the sphere, and the size of the test mass.

The proposed experiment relies on the measurement of gravitational forces
associated with a laboratory-sized primary mass whose physical and

geometrical characteristics must be accurately known.
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This report summarizes analyses of gravitational field umncertainties
in the primary mass, material and fabrication techniques, suspension
systems for test masses, and cryogenic refrigeration techniques for

cooling the proposed experiment.
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IT. GRAVITATIONAL FIELD UNCERTAINTIES

A. BACKGROUND

In analyzing the errors in the proposed G-experiment we have to distin-
guish between two quite different objectives for which the experiment is
being designed. The first objective is the measurement of the absolute
value of G to a much higher accuracy than the figure of 1 part in 300
that has been achieved up to now in earth-based experiments. This part
of the experiment, which we will refer to as the G-experiment, is to be
performed in earth orbit and the goal is an accuracy of 1 part in 105.
It is therefore required that the gravitational field of the primary
sphere be known to an accuracy of 10_6. This imposes stringent require-
ments on the geometrical accuracy of the sphere and on the uniformity

~and stability of its density.

The second part of the experiment, which we will refer to as the AG ex~
periment, is to test the Brans-Dicke theory which predicts that G is not
a constant but depends on the gravitational potential at the measurement
location. The test of the theory therefore requires detection of wvery
small changes in G, of ghe order of 1 part in 1011, in an eccentric

earth orbit or preferably in e#n eccentric solar orbit. For this purpose,
therefore, the parameters that affect the measured value of G do not need

11 o

to be known to high accuracy but must be stable to 1 part in 10 T

the duration of the experiment, which may be about a year.

We will consider the perturbation of the field by each of the following

causes:

1. The tunnel

2. The support system
3. Sphericity error
4

Large-scale density gradient

Arthur D Little Inc



Small-scale density variations

5
6. Secular temperature variation
7. Temperature gradient

8

. Dissipation in the support system

B. PERTURBATION OF THE FIELD BY THE TUNNEL

1. Field on the Axis

The field on the axis of the tunnel is the undisturbed field
due to the complete sphere less that due to the mass removed from the
tunnel. The field of the complete sphere is

f = - ———-—4ng Z (l)

where G is the gravitational constant, p is the density of the sphere,
z is a cylindrical coordinate directed along the axis of the tunnel,

and fz is the force per unit mass.

We consider the mass removed from the tunnel to be approximately a right
circular cylinder of length 2R, where R is the radius of the sphere.
The potential of an elementary disk of the cylinder of thickness dz' at

a point distant z' from the center of the disk is
'\/'2 2 '
dV = - 2nGp dz'(V¥Vz'™ + a” - z'") (2)

where a is radius of the tunnel. The potential of the whole cylinder

at the point z is therefore

R-z R+2z
V=—2nGp{f dz'( z'2+az-z')+f dz'( z'2+a2—z')}

0 0
(3)
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The field of the cylinder is therefore

Af = - S—Z = - 21Gp [i V(r-2)%4a? - (R—z)z - 3 Virtz)2+a? - (R+Z)U

= - 2TGp [22 + \/(R—z)2+a2 - \/(R+z)2+a2 ] (4)
The resultant field on the axis of the tunnel is the difference of fields
(1) and (4):

£(0,2) = - 21Gp [\/(R +tral - Vr-a2+a? -4 z] 5)

The ratio Afz/fz of Equations (4) and (1) gives the relative magnitude of
the disturbance in the field due to the tunnel. This ratio is plotted
in Figure 1 as a function of z for various values of the tunnel radius a.
It is seen that the disturbance reaches a value of about 7% at the end

of the tunnel for a l-cm diameter tunnel.

The departure of the field from the simple linear relation of Eq (1)

means that the test particle in the tunnel does not describe an elliptical
orbit as in the caée of the linear force. Indeed the orbit is no longer

a closed curve and the period is no longer isochronous. These uncertain-
ties are minimized if, by suitable rotation of the sphere, the test
particle is made to describe a circular orbit of very accurately con-
trolled radius. We will assume henceforth that this mode of operation
will be used. The question then is, with what accuracy must the orbital

radius of the test particle be measured?

Now G is determined from measurements of the angular velocity w of the

test particle and its orbital radius z by means of the formula

f
W= - 2 (6)
zZ
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where fz, in general, is of the form

£, =- Go[kz - F(z)] (7)

and F(z) is a small nonlinear term. Therefore (6) becomes

wz = Gp [k - Eﬁ_&)] (8)

z

The error in G due to an uncertainty Az in the longitudinal position of
the test particle is therefore

Ac,%{ﬂz’z‘)‘}“z vo1D {H_Z.L}AZ 9)

—— e A Ll = —
4

This is the desired formula for the necessary positional accuracy Az.
We now apply it to the case of fz given by Eq (5) which can be written

approximately as

2 3223
fz = — 21TGQ<§' z - R4_) (10)

On comparing this with (7) we get

k = % (11)

2.3
F(z) = ——— (12)

Therefore, from (9)

AG _ SazzAz

G R4

(13)
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For the G-experiment we assume that AG/G = 10-6, a=0.5¢cm, z =5 cm,

and R = 10 cm. Then Az = 2.7 x 10_3 cm, which is certainly not an im-
possible accuracy. The AG-experiment is more difficult. To attain
AG/G = 10_ll requires values such as a = 0.05 cm (1 mm tunnel diameter)
and Az = 2.7 x 10_6 cm, with z and R the same as before. One can argue,
of course, that since Az is a random error, the figure of 2.7 x 10_6 cm
is really the time averaged value of Az. This means that if N observa-
tions of Az are made during the course of a single AG determination,

the accuracy requirement can be relaxed to 2.7 x 10_6‘/ﬁ'cm. We will
not attempt to evaluate N since signal processing is beyond the scope

of this report.

2. Off-Axis Field in the Tunnel

By fitting a solution of Laplace's equation to the known field
on the tunnel axis we can find the off-axis field. Since the field
fz(O,z) on the axis (r=0) varies nearly linearly with z we take for the
potential the following sum of solutions of Laplace's equation that are

polynomials in the cylindrical coordinates r and z and are symmetrical

in z:

V= A(r2 - 222) + B(3r[+ - 24rzz2 + 824) (14)
The field components are

£ = -2 = aar - B2 - 48r2%) (15)
£ o= -2 o 4az + BsrTz - 3220) (16)

On the axis,

3

fz(O,z) = 4Az - 32Bz (17)

Arthur D Little Inc.



We determine A and B by comparing (17) with the expansibn of Eq (5) up

to cubic terms in z:

2R

£ (0,z) = - 2mGp ———-———-——-%
z 2 2

Therefore

A = - 27GO 2R _4

N 4 5 > 3
R+ a

2nGp .
32

B = -~

(Rz + a2)5/2

(18)

(19)

(20)

On substituting these values of A and B into (15) and (16) we find for

the off-axis field components:

2
£ = 2nGp [%— (—-—2—3———~ - %)r +§ - Ra 7575 (3 - 4rz2)] (21)
R2 + a2 R+ a")
' ' 2
£, = ~2m6e — "% z +'% 2 = 2,572 (3" - 223{] (22)
‘/ 2 2 (R + a”)

R+ a

From

(22) we see that if the test particle is displaced by a distance r

from the axis of the tunnel, due to the action of some transverse field,

the longitudinal field acting on the particle is changed by an amount

6fz that is given approximately by

(23)

This change in fz, if undetected, produces an error in G of amount

G-9
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-
G 4 4 (24)

For a = 0.5 cm, R = 10 cm, AG/G = 10_6, 10—11, the maximum allowable

undetected values of r are r = 0.1 cm and ¥ = 4 x 10—4 cm, respectively.
The transverse variation of fz therefore poses less of a problem than
the longitudinal departure from linearity. Monitoring the transverse

- displacement of the particle can be avoided by means of a support system

capable of holding the particle within 4 microns of the tunnel axis.

C. PERTURBATION OF THE FIELD BY THE MASS OF THE SUPPORT SYSTEM

We will consider only the case of a quadrupole diamagnetic support
system consisting of a thin walled metal tube divided longitudinally
into four sectors and attached to the wall of the tunnel. The potential

on the axis of the tunnel is

L

V= - / Cmdz’ = - Gm sinh—l(l‘:_Z_ + sinh {12 ! (25)
—3 b b/
‘/E;' -2z)  +b

-L

where m is the mass per unit length and b the mean radius of the tube.
2L is the length of the tube which may be greater than the diameter 2R
of the sphere.

The field on the axis is

Af = - — = - - (26)

o ~—3‘/(——) Ve (2f

The relative perturbation is

c-10
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z _ 3

- m 1 _ 1
f 4mpbz
z ‘/l +_(ng)Z \/l + ;2)2

@27)

where, as before, p is the density of the sphere. The effect of the

tunnel itself is not included since this has already been discussed.

Figure 2 shows how Afz/fz depends on z for three values of L, for the
case of a copper tube of cross section 0.3 cm2 and density 8 gm/cmB,
for which m = 2.4 gm/cm. The figure shows that Afz/fz decreases as the
length of the tube increases. This is understandable since for an in-

finite tube the longitudinal field is zero.
On comparing Figure 2 with Figure 1 we see that the effect of the tube
is less than that of the tunnel. We therefore do not need to consider

the effect on AG/G.

D. EFFECT OF SPHERICITY ERROR

The field of an out-of-round sphere is closely equivalent to that of a
perfect sphere with a superimposed surface distribution of mass
o(6',4'). If AR(B',¢') is the sphericity error as a function of the

spherical angles 6' and ¢', then
a(8',4"') = pAR(E',0") (28)
where p is the density of the sphere.

We will consider first the case where AR(8',¢') has the form of an

axially symmetric second order spherical harmonic:
1 2,
AR =3 ARO(B cos 8' - 1) (29)
where ARO is the maximum departure in shape from the mean spherical
G~12
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surface. It is to be noted that the

corresponds to a displacement of the sphere.

The equivalent surface distribution of mass is

pAR

g = "TZE (3 cosze' -1

The potential due to o is of the form:

02

v, = A E**'(B cosze' -1) R
i 2
R
3
v, = A —B;-(B cosze' -1 .
r'

first order harmonic cos8' merely

BA

v

(30)

(31)

(32)

where r' is the radial spherical coordinate and A is an arbitrary con-

stant. v and v, satisfy Laplace's equation and match over the surface

of the sphere. The other boundary condition at r' = R is that

ov ov
i o _
st e T AT

This gives, from (30), (31), and (32),

27
A= - = GpRAR0

Therefore, from (31),

ZﬂGpAROr'z(B cosze' -1
i 5R

The force components are

L 2 1]
avi 4ﬂGpAR°r (3 cos“8

-1

Afr' =T = 5R

G-13

(33)

(34)

(35)

(36)
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Bvi - 4wGpARor' (3 sinB' cosd'")

1 _
Afgr = = v g7 = 5R (37)

If the tunnel is drilled at the angle 8', the longitudinal force in the

tunnel is Afr' and the transverse force is Af It is to be noted that

g'’
these forces are linear in the tunnel coordinate z, which is equal to r'.
Therefore Afr, does not contribute any error in G due to error in mea-

surement of the position of the test particle.

The maximum value of Afr, occurs for 8' = 0 and is given by

8mGpAR ¢! 8wGpAR 2z
o o

Af v =~y = T sR (38)

The transverse force is maximum when the tunnel is drilled at 45° to

the polar axis and has the value

- —6ﬂGpARoz
5R

Af (39)

el

We have seen earlier that for the AG-experiment the test particle must
be held at a distance io <1x 10“4 cm from the axis of the tunnel in
order to overcome the transverse variation in the longitudinal force.
The support system must therefore supply a restoring force at this dis-
tance at least as large as the transverse force given by Eq (39). The
required spring constant is therefore

67GpAR 2z
0

K=~z (40)
(o]

8, p =20 gm/cm3, z =5 cm,

For AR = 10 cm, R = 10 cm, G = 6.7 x 10
and r = 1 x 10_4 cm, we get K = 2.5 x 10"7 dyne/(cm gm), which indi-
cates that there should be no difficulty in providing the necessary

support system to take care of this effect of the sphericity error.

G-14
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It is worth noting that sphericity errors involving higher order har-
monics than the second give nonlinear contributions to the longitudinal
force. For example, in the case of the third harmonic 5 c0338 - 3 cos®

we find, by the same method, that
2
lZWGpAsz

(Afr )max B 1R (41)

On applying Eq (9) we find that

26 _ 2.AROAZ 42)
G 7 RZ
For the AG-experiment we take AG/G = 10_11, ARb = 10_5 cm, R =10 cm

and find Az = 1 x 10-4 cm. Therefore the required resolution in the
position of the test particle is much less severe than in the case of
the tunnel force. This means that a sphericity tolerance of 10—5 cm

is adequate.

E. EFFECT OF SPATIAL VARTATIONS OF DENSITY

Two kinds of density variation in the metal sphere will be considered--
small-scale variations due to the microcrystalline structure of the metal
and large-scale variation due perhaps to frozen strains, to change in
microstructure across the sphere, or to the presence of a temperature

gradient across the sphere.

1. Large-Scale Density Variations

Since the density variation will not in general be related to
the position of the tunnel, we use, as before, polar coordinates
r',0',¢' to describe the density distribution and the associated gravi-
tational field. ¥For simplicity we restrict the discussion to the case

where the density distribution is independent of ¢'. Then the
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perturbation in gravitational potential v is related to the density

discrepancy Ap by Poisson's equation

EE (,_.'2 ;4;) Pl 2 (sine- by ) - - 4nCho 43)
r'® or' r'® sin“6' 38’ 28"

To avoid integrating this equation we assume a form for v and calculate

Ap by differentiation. For example, if

v =-Ar'" cose’ (44)
then

4TGAp = {n(n+1) -2 }»Ar'n—2 cosh'’ (45)
For n = 3 we get the case of a uniform densitf gradient:

41GAp

10 Ar' cos8' = 10 Az’ (46)
v = - Ar'3 cosH 7

The constant A, from (46), is related to the density difference Apo
between the pole and the center of the sphere by the formula

4nGApO

AT oR )

The field components are then

61TGApo r'2 cosH'

IS S R (49)

ZﬁGApo r'2 sing'

By = - 5 (50)
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Eq (49) shows that the maximum perturbation in the axial field in the
tunnel occurs when the tunnel happens to be aligned with the density
gradient and is

2
6ﬂGApoz

Afr' max _ 5R (51)

where z as usual is the axial coordinate.

On applying Eq (9) we find for the error in G

G 5 p R (52)

11 6

» o /p =107,
R = 10 cm and find that the required resolution in test particle position,

without including the effect of time averaging, i1s Az = 5 x 10—5 cm,

For the AG-experiment we assume that AG/G = 10

which is about one wavelength of light.

2. Random Small-Scale Density Vardiations

A general theory of the effect of a random distribution of den-
' (3)

sity inhomogeneities has been given by S. Madden. We will therefore
limit our discussion to a very approximate treatment of this problem

along somewhat different lines.

Let the density variation Ap from the mean be represented by a Fourier

series

> >

Ap = Thp (k) erX'T (53)

where k is the wavenumber 2m/)A of a Fourier component. The summation
means that a sufficient number of Fourier components of different k
values are added together to give a reasonable approximation of the

real density variation. The amplitudes Ap(k) are complex numbers but
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Ap is taken to be the real part of the right-hand side of (53).

The potential v due to the density fluctuations is given by Poisson's

equation

2 ik-r
Vv = - 416G I A e r (54)

The solution (particular integral) is

1 ik-r
v =416 L = Ay e r (55)
k
The z-component of force is therefore
k ->
v _ z iker
Afz =5y 4miG T kz Ak e (56)
The mean square value of fZ is
2 2.2 z 2
(A£)° = 16 776" T — |Ak| (57)
k
Now let P(k) be the power spectral density of Ap(k), so that
2
|, |7 = P(k) sk Ak Ak (58)
X y VA

Then (57) becomes, on replacing the sum by an integral,

2
—_— P(k) k¥~ dk dk dk
(Afz)2 = 16 wzcz/‘// S (59)
k
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Next we assume that P(k) has a constant value PO up to a spatial fre-
quency km and is zero for all higher frequencies. Then on setting
k =k cosb, dk dk dk = 2msind k>dkd® we get

z ) X y z

— km T 4 2
(Afz)z = 16 NZGZPO/ / 2m k cos™ 8 Zine de dk
0o Yo k
_ 64 32
=37 G Pokm (60)

From (58), P0 can be expressed in terms of the mean square density

fluctuation (Ap)2 as

7 _4m 3
(8p) -[//Po dkdk dk, = *T kP (61)
R=k
m

Therefore
A 2.2 2
(Af )2 16 7°G° (Ap) (62)
2 2
k
m

We may express km in terms of a characteristic length or grain size L

by the formula

- T (63)
km L
Therefore
(Afz)rms = 4G(Ap)rms L (65)
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Relative to the main force fZ =4 G z/3, we can write

(Afz)rms 3(Ap)rms L
f = (66)
TP Z
z p
Let L =1 x lO—4 cm, z = 5 cm, (ADP) /o = .02 Then (Af ) Jf = 10—6
> ? s e z' rms’ "z ‘

Therefore a sphere made of a metal composed of l-micron grains with 2%
density variation meets the requirement of the G-experiment. Actually,
since, in view of our earlier discussion, the test particle must always
be kept near the axis of the tunnel at a distance of perhaps 0.5 cm from
the tunnel wall, rather than in the sphere itself, the rms force will

be considerably less than the value calculated.

F. EFFECTS OF TEMPERATURE

In this section we consider the effects of beth time and space variations
of the temperature of the sphere due to varying environment, to noniso-
tropic heat input to the sphere, and to dissipation of energy in the

support system.

1. Secular Variation of Temperature

In the AG-experiment the heat input from the sun to the space
vehicle will change by a considerable factor during the course of the
experimeht. One may therefore expect that in spite of the best efforts
to control the temperature of the sphere, some systematic drift will

actually occur.

An increase AT in the temperature of the sphere causes the density to

decrease according to the formula

Ap

o= - 30 AT (67)
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where o is the coefficient of linear expansion of the material. The

angular velocity of the test particle, which is given by the formula

o = |/4ifp (68)

will therefore also decrease.

Tf the temperature change is below the level of detection, the change
in w will be interpreted as a change in G. Since, according to (68), G
and p affect w in exactly the same way, the result is that the tempera-

ture change AT causes an error im G given by

AGG- = - 3 QAT (69)
Table I gives calculated values of AG/G for tungsten and gold at 300°K
with temperature control te 0.001 °C, which is the state-of-the-art
limit for long periods of time with varying environment. It is seen
that the error in G is well below the goal of 10_6 for the G-experiment,
but is more than three orders of magnitude above the 10"ll error re-
quired for the AG—eiperiment. It appears therefore that the AG-experi-

ment is impossible at room temperature.

At cryogenic temperatures, however, the situation is completely different.
The expansion coefficient falls by several orders of magnitude, and tem—
perature control to 0.0001°C or less becomes quite feasible for indef-
inite periods of time. We have not been able to obtain data for tungsten
and gold at these temperatures, but the general trend is shown in

Table I for lead, silver, and copper. We have calculated AG/G for these
metals at temperatures of 300 K and 10 K. It is seen that the 10_ll goal
is approached, particularly for copper. Below 10 K the expansion coef-
ficient falls with temperature with a law that appears to lie between

T2 and T3. One would therefore anticipate a further factor of about

1/10 in AG/G if the equipment is operated at the temperature of liquid

G:él
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TABLE T

ERROR DUE TO TEMPERATURE VARTATION

o

T 1 AT AG
SPHERE (K) (°Cc) (°C) G
-6 -8
Tungsten 300 4.4 x 10 .001 1.4 x 10
-6 -8
Gold 300 14.2 x 10 .001 4.3 x 10
-6 -8
Lead 300 29.0 x 10 .001 8.7 x 10
10 3.2 x 107° .0001 9.6 x 10710
Silver 300 19.1 x 107° .001 5.7 x 1078
10 0.1 x 10°° .0001 3.0 x 10711
-6 -8
Copper 300 16.8 x 10 .001 5.0 x 10
10 0.04 x 10°° .0001 1.2 x 1571

helium at 4°K. Silver and copper, for example, would then have AG/G

values of about 3 x 10—12 and 1 x 10_12, respectively.

Although operation at cryogenic temperatures presents some difficulties

there are several advantages besides that of temperature stability.

For example, creep practically disappears entirely at these temperatures
since it proceeds by thermal excitation. Another advantage is that the

support system can use persistent currents in superconductors with com-

plete absence of dissipation.

2., Effect of a Temperature Gradient

A temperature gradient in the metal sphere produces a corre-

sponding density gradient. If AT is the temperature difference between

G-22
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the surface and center of the sphere and o is the expansion coefficient,

the density difference Ap between the same two points is given approxi-

mately by
%"— = - 3 QAT (70)

This formula does not take thermal stress into account. We have shown
earlier that a density gradient produces a nonlinear force in the tunnel

(Eq 51) and that this causes an error in the measurement of G of

magnitude
4G . 9 Ap Az
G 5 p R (71)

where Az is the resolution in test particle position. For AG/G = 10—11,
Az = 5 x 10--5 em, and R = 10 cm, Ap/p is 10_6. Therefore for a tungsten
sphere at room temperature, with o = 4.4 x 10—6 (°C)_1, we find from

(70) that the maximum allowable AT is 0.08°C.

To estimate the actual AT we assume that the sphere has a coating with
an emissivity € = 0.02 and is radiatively coupled to a black spherical
enclosure that has a 1°C temperature difference across its diameter.

We find that, owing to the relatively high conductivity of tungsten, AT

is less than lO_4°C. Temperature gradients are therefore not a problem.

3. Dissipation of Energy in the Support System

The heat input to the sphere in the case of a diamagnetic
support system operated at room temperature is about 2 x 10-3 watt.
Since the sphere is a good thermal conductor and is weakly coupled by
radiation to an external shield, the important effect of the heat input

is the overall temperature rise rather than the temperature gradient.
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Arthur D Little Inc.



The equilibrium temperature T of the sphere is given by the equation

4

lnrRzeo(T4 - TO) = Q (72)

where Q is the rate of heat input, To is the temperature of the sur-
rounding black shield, ¢ is the emissivity of the sphere, R is the radius
of the sphere, and ¢ is the Stefan—~Boltzmann constant. Since T differs

very little from TO, we can write (72) as

16WR250T3 AT = Q (73)

where AT is the temperature rise of the sphere relative to the shield.

We take T_ = 300 K, ¢ = 0.02, R = 10 cm, and Q = 2 x 10“36watt. 1Then
AT = 0.13°C. For the case of tungsten with o = 4.4 x 10 ~ (°C) ', the
nominal fractional error in G is 1.7 x‘10_6. This error can be removed
by calibration to within the accuracy‘of determination of Q. Such cal~
ibration will probably reduce AG/G to about 10—9. Therefore the heat
dissipation will not affect the G-experiment. As far as the AG-experi-
ment is concerned the dissipation merely adds to the impossibility of
doing this experiﬁent at room temperature. As mentioned above the dis-

sipation is zero at cryogenic temperatures if superconducting metal is

used in the support system.
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IIT. SUSPENSION SYSTEMS FOR SECONDARY TEST MASSES

A. BACKGROUND

We have shown in Section II that for the AG experiment one
must constrain the test mass to within about 1 y of the tunnel
axis in order to avoid uncertainties due to the off-axis varia-
tion in the longitudinal component of the gravitational force in
the tunnel. The suspension system must be able to maintain this
radial tolerance in the presence of transverse forces arising

from
1. sphericity error of the primary sphere,
2, electrification of the test particles,
3. gravitational fields of other objects in the space craft,

4, D'Alembert force on the test mass due to acceleration of

the primary sphere.
We will here consider only disturbances (1) and (2).

A further important requirement of the suspension system is
that it should not exert an appreciable longitudinal force on

the test mass.,

Several different kinds of suspension systems using electric

or magnetic fields have been tried or developed. These include

1. Servo-controlled support of a ferromagnetic body by a

magnetic field (J. W. Beams' ultra—centrifuge)(4)

2. Servo-controlled support of a conducting body by an
electrostatic field (Nordsieck's electrostatically

supported gyro)(5’6)

3. Passive support of a diamagnetic or superconducting body
by a fixed magnetic field (Ivan Simon's ADL tiltmeter or
John Harding's superconducting gyro)(7)
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4., Passive support of a small magnet by the induced magnetic
field of a superconductor (demonstrated many years ago by

Ivan Simon).

For the present purpose of suspending a small test mass in a
long narrow tunnel, the passive methods (i.e., methods without
servo control) have obvious advantages since no monitoring of the
particle's transverse position is required. We will therefore

confine our discussion to these methods.

B. DIAMAGNETIC SUPPORT SYSTEM

We will first consider the case of room-temperature operation
in which the supporting magnetic field is generated by four linear
conductors placed in the tunnel with the cross-—sectional geometry
shown in Figure 3. The currents in all conductors are the same
in magnitude but alternate in direction. For ease of calculation
we assume that the field is the same as if the currents were con-
centrated along lines at the points A,B,C,D forming a square of
edge 2b,

The field components are, in electromagnetic units,

2I(y - b)

- + 2I(y + b) _ 2I(y + b)
¥ et -2 -l g+em? b+ v+ )2
+ ZIéy = b) 5 (74)
x +b)2 + (y - b)
H 2I(x - b) _ 2I(x - b) + 2I1(x + b)

V-0 4y -2 x-b2+ g+ (x+b)+ (y+b)?

_ 2I(x + b)
x + )2 + (v - b)?

(75)

where I is the current in each conductor.
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Figure 3. Quadrupole electrodes for
diamagnetic support system.
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For small values of x and y, (74) and (75) reduce to

_ 4Ix
H = ‘;;Z (76)
41
H = - ___Y- (77)
y b2

which is a quadrupole field.

The square of the field magnitude is:

W - 16 Lx (78)

The force on a small diamagnetic test body of volume v and
diamagnetic susceptibility x placed in the tunnel at a distance r

from the axis is:

3H2 - 16 12 XV T (79)
dr b4

=1
Fr =3 X v

This magneticwforce can balance a transverse gravitational or

inertial force of magnitude

- 16 12 X T _ 64 12 X T

pb4 pa4

f

(80)

per unit mass, where p is the density of the test body and a is

the radius of the circle passing through the points A,B,C,D.

The restoring spring constant of the support system is

2
K = .6_[.L._];Z__x (81)
pa
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Let x/p = 5 x 10--6 gm_1 em (graphite)
a=0.5cm
I =0.7 amp = 0.07 abamp

Then K = 2.5 x 10 ° dyne/cm gm.

For a sphericity error of 10—5 cm in the primary mass the
transverse force in the tunnel, from Eq (39), has a maximum value
of 2.5 x lO“ll dyne/gm. The restdring force provided by the sus-
pension system will therefore hold the test mass at a distance of
1.0 x 10_6 cm from the tunnel axis which is very well within the

requirement of 1 yu.

The dissipation in the support system is 2 milliwatts if the
conductors have a radial thickness of 0.005 cm and are made of
copper with a resistivity of 1.7 X 10_6 ohm cm. However, since
from our discussion in Section II cryogenic temperatures are es-—
sential for the AG experiment, the conductors can be made of
superconducting material in which case the dissipation becomes

Z€ero.

It is worth noting that if more than four conductors are
used in the suspension system the power of r in Eq (78) becomes
higher than two. This means that the restoring force is no longer
linear in r, with the result that the test mass is not held so
close to the axis of the tunnel. The quadrupole configuration is

therefore optimum for the present application.

C. PERMANENT MAGNET~-SUPERCONDUCTOR SUPPORT SYSTEM

In the permanent magnet--superconductor support system the
test mass is a small permanent magnet and the supporting magnetic
field is produced by currents induced by the magnet in a super-
conducting tube that lines the wall of the tunnel. The induced
currents are in such a direction that the magnet is repelled
from the walls of the tube. Evaluation of the radial force on

the magnet is a somewhat intractable problem but we have derived
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the following approximate formula based on the analogous problem
of a magnetic dipole placed between two infinite parallel super-
conducting planes:

2
Sy (82)
a

e

F
r

where u is the dipole moment of the magnet, r is the displacement
of centroid of the magnet from the tube axis, and a 1is the tube

radius. This formula is wvalid only for r << a,

We will assume at first that the test mass consists of a
magnet of volume 1 mm3 of platinum-cobalt alloy (PLACOVAR) mag-
netized to its maximum remanent flux of 3000 gauss. Then
u = 3/b4x (dyne)l/2 cmz. Therefore if a = 0.5 cm, Fr/r = - 1.8
dyne/cm. Since the density of the alloy is 15.7 gm/cm3, the mass
of the magnet is 0.0157 gm and the spring constant per unit mass
is K = 115 dyne/cm gm. This value is about 7 orders of magnitude
larger than that for the diamagnetic system. It appears therefore
that the ferromagnetic--superconducting suspension system can be
arranged to supply any needed transverse restoring force. It is
not advisable, however, to provide much excess magnetization
since this merely increases the longitudinal magnetic force due
to end effects of the superconducting tube without giving any
useful gain in the radial constraint. A further reason for making
the magnet as weak as possible is the possibility of local quench-
ing of the superconductivity of the tube if the magnetic field

exceeds the critical value of a few hundred gauss.

D. DISTURBING FIELDS ORIGINATING IN THE SUSPENSION SYSTEM

The proper action of the suspension system can be disturbed
by fields that originate in the suspension system itself. Such
fields include electrostatic fields due to charges on the test
mass, magnetic fields due to the end effects in the support
system, and magnetic fields due to trapped flux in the super-

conducting tube.
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l. Electrostatic Fields

An electric charge q on the test mass causes a radial force

given approximately, for small displacements r from the tunnel

axis, by
ar
F_o= 3 (83)

where a 1s the radius of the tunnel. For a test mass of
0.0157 gm the (unstable) spring constant is therefore
64 o> dyn
K=-229 22, (84)

3
a cm gm

It is of interest to calculate the charge needed to annul the
restoring spring constant of the support system. In the diamag-
netic case, for which K = 2.5 x 10“5 dyne/cm gm, and with a = 0.5
cmwe get ¢ = 2 x ]_0—4 statcoulomb. The corresponding potential,

if the test mass is a sphere of diameter 0.1 cm, is about 1 volt.

For the case of the permanent magnet test mass, where the
restoring spring constant can possibly be as large as 115 dyne/
cm gm, the necessary charge is 0.5 statcoulomb and the potential

is 3000 volts.

These results suggest that some means for removing charge
from the test mass, by inclusion of some radioisotope for example,
is desirable in the case of the diamagnetic test mass, but not for

the permanent magnet test mass.

Charge on the test mass will also produce a longitudinal
force due the finite length of the tunnel. If we consider only

the effect of one end of the tunnel, the force is of the order of

z

2
F o= - % e—ZkIL (85)
a
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where ¢ is the distance of the test mass from the end of the
tunnel and ka 1s the first zero of the Bessel function Jo(x),
i,e., ka = 2,4048., It is to be noted that the force is in the
same direction as the gravitational force of the primary sphere.
If the end of the tunnel were closed by a conducting sheet, the
force would be reversed in direction but of about the same

magnitude.

It is clearly essential that the force Fz given by (85) be
kept smaller than the variation in gravitational force due to AG.
For a test particle of mass .0157 gm located at 5 cm from the
center of the primary sphere the change in gravitational force
for AG/G = 10-‘11 is 4 x 10-18 dyne. Eq (85) gives the same force,
with a = 0.5 e¢m, £ = 5 cm, when q = 26 statcoulomb, corresponding
to a test mass potential of 160,000 volt. Therefore the end

effect appears to be negligible.

2. Magnetic Fields

The end effect produced by the finite length of the supercon-
ducting tube gives rise to a longitudinal force on the test mass

given approximately by

2 —Zklﬂ
e (86)

where kla, the first zero of the Bessel function Jl(x), is 3.8317.
This wvalue of kla arises from the boundary condition that the
normal component of field at the surface of a superconductor must
be zero. On taking u = 3/4n (dyne)l/2 cmz, a = 0.5 cm, and

g = 5 cm, we find that Fr =5 x 10—34 dyne, which is to be compared
with the force of 4 x 10-18 dyne due to AG. The end effect of the

superconducting tube is therefore completely negligible.

The effect of trapped flux cannot be dismissed so easily. If

in the process of cooling down the tube below the superconducting
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transition temperature Tc a small area of the tube wall above TC
is surrounded by metal below Tc, the ambient magnetic f£lux thread-
ing this area is trapped and becomes compressed until the field
reaches the critical field Bc, which is of the order of a hundred
gauss. Under these conditions the trapped flux in an island of
area 1 mm x 1 mm acts like an isolated magnetic pole of strength
p = 1/4m (dyne)l/2 c
3/4m (dyne)l/2 cm2 is opposite this pole at a separation

m. If the test mass magnet of dipole moment

u =
a = 0.5 cm, the test mass experiences a longitudinal force
F = pu/a3 = 0.15 dyne which is enormous compared with the force

of 4 x 10718

greatest of care must be taken to cool the superconducting tube

dyne due to AG. It is clear therefore that the

from one end in such a way that no islands of normal material

are formed.

Alternatively, it may well be argued that the risk of trapped
flux is too great and that a diamégnetic test mass supported by
currents in non-superconducting material at low temperature is

to be preferred.
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IV. MATERTALS AND FABRICATION OF THE PRIMARY MASS

A. BACKGROUND

Information on the suitability and characteristics of the candidate
materials for the primary mass has been developed through a brief re-
view of the pertinent literature and discussions with potential suppliers,
processors, and fabricators. Discussions were held with personnel at

Oak Ridge National Laboratory (ORNL), Y-12 Plant of Union Carbide Corp.,
Nuclear Metals Division of Whittaker Corporation, and Battelle Memorial

Institute.

We examined only materials with a density greater than that of tantalum,
16.6 gm/cc. With the exception of uranium, alloys were not considered
because of potential problems of density variation due to alloy macro-
segregation. Although we believe that there are no particular advantages
to be gained by alloying the noble metals, tungsten, or tantalum, alloys
of uranium provide some advantages in terms of isotropic properties and

oxidation resistance, and are therefore worth consideration.

B. GENERAL CHARACTERiSTICS OF CANDIDATE MATERIALS

Pertinent properties of candidate materials are summarized in Table ITI.
Osmium, irridium, and rhenium are not desirable for the primary mass
because of cost and difficulty of fabrication. Gold and platinum are
less expensive, but they have marginal strength. To be dimensionally
stable, they would have to be used in the soft, annealed condition

and almost certainly would creep under their own weight. The remain-

ing materials deserve more careful consideration.

1. Tungsten

Tungsten is a strong candidate because of its availability, density,

strength and crystal structure. However, fabrication difficulties
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primarily associated with densification and machining are likely to

occur. These are discussed in greater detail below.

2. Uranium and Uranium-Molybdemim Alloys

Despite its good availability, and adequate mechanical and fabricability
qualities, uranium may be unsuitable because of its phase changes, its
non~cubic structure (causing anisotropy in its properties) and poor

oxidation resistance.

a. Phase Changes and Anisotropy

In addition tc the phases listed in Table II, uranium undergoes a non-
crystallographic phase change to an anti-ferromagnetic state at 43°K$8’9)
Below this temperature the coefficient of thermal expansion in the a
and b crystal directions is large and negative while that in the ¢
direction is large and positive. The anisotropy can probably be mini-
mized by one or more of the following approaches: 1) consolidation
by powder metallurgy; 2) repeated thermal cycling to wash out preferred
orientation; and 3) use of a uranium alloy such as uranium-10Mo, which

11
is cubic at least down to room temperature.(lo’ )

b. Oxidation Resistance

A highly polished uranium surface will tarnish over a period of time.
Thus the finished spheres may require electro or ion plating with oxida-
tion resistant materials such as nickel, gold or aluminum. Plating

of uranium is difficult, but techniques have been developed.(12—14)

An alternate solution to the oxidation problem involves the use of a

uranium-molybdenum alloy. These are the so-called "stainless" uranium

alloys.
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3. Tantalum

Tantalum presents no particular difficulties in terms of properties or

fabricability. Its principal drawback is its relatively low density.

C. MATERIALS PREPARATION TECHNIQUES

Cast materials are not suitable for the primary mass because of the un-
homogeneous macro and micro porosity which will generally be present.
Cast raw material would be suitable only if the ingot can be subsequently
hot or cold worked, and this only for cubic materials such as tantalum.
Hot isostatic pressing of poWders is the most attractive route to follow
for the other candidate materials. This method can be used to achieve

full density with isotropic properties.

1. Tungsten

Tungsten can be vacuum arc cast then hot extruded or forged. We do not
believe that available press capacity is sufficient to work a billet from
which a 20 cm diameter sphere could be machined. A survey undertaken by
the Nuclear Division 6f Union Carbide indicated that forging would be

marginal even for 4" diameter spheres.(ls)

Union Carbide did prepare

4" diameter spheres consolidated from Allied Chemical Corporation tungsten
powder by hot isostatic pressing. This seems to be the most promising
technique for 20 cm spheres. The Union Carbide personnel believe that
the type of powder produced by Allied Chemical is required to get full
densification. Unfortunately, the Allied Chemical facility is no longer
operating. Recently, Nuclear Metals has developed a powder manufacture
process by a rotating electrode process. An arc is struck between a
stationary nonconsumable electrode and a rotating bar of the material to
be atomized. The arc melts the bar, and molten droplets are spun off

of it. Atomization takes place in vacuum; and the resultant particles

are spherical and have extremely low impurity content. Tungsten powder

prepared in this manner may be suitable for the proposed application.
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However, an evaluation program would be required to determine whether
full density can be achieved on small parts under the temperature and
pressure conditions attainable with present large chamber hot isostatic

equipment.

Machining of tungsten is difficult but not impossible. Conventional
machining can be done with carbide tools. Electrical discharge machin-

ing would be the most logical choice for drilling the diametrical tunnels. -
Tungsten grinds and laps well because the surface finish depends largely

on the residual porosity of the material.

2. Uranium and Uranium Alloys

Uranium and its alloys can be vacuum arc cast and then hot worked to
eliminate porosity. However, the working will create preferred orienta-
tion and therefore anisotropy. While the extent of anisotropy of properties
may be minimized by cycling through the phase tramsitions or by alloying,

a more likely approach would again involve hot isostatic pressing of
powders., In the case of the alloys, segregation would be on a micro-

scopic scale and the sphere as a whole would be isotropic both in

chemistry and crystal orientation. Again an evaluation program would be

required to determine if small parts can be prepared adequately.

Union Carbide has had a great deal of experience in machining and finish-

ing of uranium and tungsten.

3. Tantalum

Vacuum arc cast tantalum has excellent forging characteristics. However,
the maximum ingot diameter is normally 8 inches so that a special mold
might have to be constructed. Alternatively, sufficient hot work may be

attainable by upset forging of an 8-inch ingot.

The machining characteristics of tantalum are much like those of stain-

less steel, i.e., there is a tendency to gall. ORNL has had little
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experience with this material, and while they felt it could be done,

it may require considerable development.

D. MACHINING AND HANDLING OF MATERIALS

Machining and finishing are by far the most difficult problems. One
reason is simply the size and weight of the spheres; handling 20 cm
spheres will be much more difficult than for the 10 cm spheres Union

(15)

Carbide made for the University of Virginia. As far as finishing
is concerned, the problems are not felt to be insurmountable. The best

sphericity that can be expected is approximately 20-25 microinches.

The most critical step will be forming the tunnels or holes. These
most likely will be drilled by electrical discharge machining, honed,
and lapped. It may not be possible to meet required tolerances for hole
dimensions, orthogonality of the three holes, and displacement of the

hole axes at the nominal point of intersection.

E. DETERMINATION OF THE QUALITY OF FINISHED SPHERES

1. Gross Density

The gross density can be computed fairly accurately from the geometry
and weight of the sphere before the holes are drilled. An alternative
approach would be to use the pycnometer, this would be particularly

useful after the holes have been drilled.

2. Geometry

Measurement of the diameter is fairly straightforward using interferometry.
Interferometry would offer the most promising possibility for measurement

of the hole geometry, but techniques would have to be developed.
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'3, Local Density

There are no known techniques for non-destructively measuring the local
density to the accuracies required. One can hope to minimize the problem
by consolidating the sphere to virtual theoretical density. The local
density can be evaluated destructively by sampling of sectioms cut from

a prototype sphere.

Union Carbide feels that measurement of the mass and geometrical center
displacement by the techniques they developed for the 4 inch spheres is
a very powerful tool for determining the overall quality of the spheres.

This would also be true for spheres with holes.

F, POTENTIAL SUPPLIERS AND PROCESSORS

1. Tungsten Powder

The most promising source of high purity spherical tungsten powder is
Nuclear Metals Division of Whittaker Corporation. They have available
several local sources of hot isostatic press services for smaller parts

which could be used to evaluate this powder's densification characteristics.

2. Uranium and Uranium Alloys

Union Carbide is the best source for cast and forged uranium and uranium
alloys. Again, Nuclear Metals would be the logical source for powders.
Nuclear Metals have a good deal of experience with these materials, and
have approximately 50 pounds each of natural and depleted uranium already

on hand.

3. Tantalum

The prime sources for tantalum ingot and forms are: Fanstel Inc.,
General Electric Co., Norton Co., Reactive Metals, Inc., Stellite Div.

Cabot Corp., Wah. Chang Corp., Westinghouse Electric. Corp. The prime
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independent forgers who do not melt are Ladish Co. and Wyman-Gordon.

4., Powder Consolidation

Consolidation of either the tungsten or uranium powders into a preform
for a 20 cm diameter sphere should be done by hot isostatic pressing.
Large size equipment, capable of reaching the temperature and pressures
required, is available both at Union Carbide and at Battelle Memcrial

Institute.

5. Machining and Finishing

Because of their extensive background in this type of fabrication, Union

Carbide is the best possibility.

6. Quality Determination

Again Union Carbide has a good deal of past experience. The National
Bureau of Standards represents another valuable resource, particularly

in development of gaging techniques for the holes.

7. Costs

All aspects of the sphere fabrication are developmental in nature. An
estimate for the sphere blank consolidation is $50-100,000 and $150-250,000
for fabrication and machining of the sphere. Formal proposals were not

requested from any of the potential suppliers or processors.
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V. EXPERIMENT COOLING CONSIDERATIONS

A, BACKGROUND

For the AG/G experiment it is necessary to maintain the primary mass at
cryogenic temperatures if we are to keep within the error budget for
this experiment. Furthermore, it is desirable that the experiment be

operated at temperatures at liquid helium or lower.

The experiment system designer is confronted with a number of choices
in selecting a ‘cryogenic refrigeration system. This selection must be
made within the constraints of the available space, weight, and power;

the required reliabilities; and the development funds available.

There are three basic cooling techniques which are available for space

application. They include:

a) Passive radiators which cool components to cryogenic
temperature levels by radiation to the low-temperature,
deep-space environment;

b) Open~cycle systems of two types. One uses stored
high-pressure gas and a Joule-Thomson expansion, and
the other uses stored cryogens in either liquid or
solid form; and

¢) Closed-cycle systems which utilize mechanical
refrigerators to provide cooling at low temperatures

and reject heat at high~temperature levels.

Passive radiators are not applicable to the experiments in question
because such radiative systems are limited to temperatures above 60°K
by dimperfect shielding and parasitic heat leaks. The open cycle of

the Joule-Thomson type is applicable in spaceborne systems only where
the duty cycle is very short and the heat load very low. This is be-
cause the Joule-Thomson system requires a high-pressure gas supply that

is too heavy for long-term operations.
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Thus, there are two cooling techniques which are applicable to cooling
the proposed experiments: (a) open-cycle refrigeration systems which
use stored liquid or soliid cryogens, and (b) closed-cycle systems which

utilize a mechanical refrigerator.

A fundamental problem associated with operating such an experiment at
cryogenic temperatures is cooling the thermal mass (in this case a

dense primary mass) to the desired temperature level of 4.2°K or lower.

In this section, we will discuss in general terms the estimated cooling
requirements, suggest techniques for achieving these temperatures,

estimate the cool-down time for the experiment, and estimate the weight,
power requirements, radiator area (wherever necessary), and development

costs for cryogenic refrigeration systems.

B. EXPERIMENT COOLING REQUIREMENTS

We assume that the experiment could be contained within a sphere of
radius 10 cm and that the primary mass of the sphere was a tungsten
sphere of radius 5 cm. By enclosing the primary mass within an evacuated
vessel with multilayer insulation, it is possible to achieve an insula-
tion shielding factor of approximately 100, This is a conservative
figure; it is possible to achieve shielding factors of 1000 if there
are a minimum of electric leads and heat loss penetration. With the
experiment maintained at 4.2°K in an ambient environment of 300°K (normal
spacecraft habitable environment), we calculate that the steady-state
heat load will be between 0.06 and 0.6 watts. For design purposes, we

assume that the refrigeration system should have a capacity of 1 watt.

Another fundamental problem in cryogenically cooling an experiment at
extremely low temperatures (less than 4.2°K) is that it may take an
extremely long time to achieve equilibrium temperature. This is
particularly true if the experiment is cooled radiatively as is the
case in the proposed experiment. We estimate that the rate of temp-

erature change near an equilibrium temperature of 4.2°K is approximately
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4.5 x 10_3°K/hr if radiation is the only mode of heat transfer. A
detailed analysis of the complete experiment might reveal a more rapid
cool-down under the same conditions; however, it will take a long time
to achieve radiative equilibrium and other means will be required to
establish the desired temperature level. The most obvious means would
be to precool the experiment prior to launch and it would appear that
precooling is absolutely necessary. Back-filling the experiment with
dry helium during the cool-down to take advantage of the heat transfer
afforded by gas conduction would aid the cool-down process. Subsequent

evacuation of the experiment in orbit is relatively simple.

C. CRYOGENIC COOLING TECHNIQUES

The cryogenic cooling techniques which we believe are applicable to

the proposed gravitational experiments are summarized in Table III.

For comparison purposes, we have assumed that each system is capable

of providing 1 watt of refrigeration at the temperature capability of
the system. In each system, we consider the temperature range, the size,
system weight, power requirements and radiator area (if any), safety,
problem areas, state of development and estimates of the development

costs for finished flight hardware.

It must be appreciated that the data on Table III is arrived at by “'rule-
of-thumb" estimates based, not on preliminary design, but on extrapola-
tion of the characteristics of similar designs. Therefore, they must

be regarded as being accurate within a factor of something like 1.5.

The cryogenic cooling systems listed in Table ITI are very sophisticated.
The state of the art of cryogenic technology goes a long way to making

such systems possible but advances in the art are needed.

The open-cycle helium system requires the invention of a workable liquid
vapor separator to insure the venting overboard of the gaseous phase
only. This need has been with us for a long time. In additiom, the

system is relatively heavy and bulky.
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The solid CO2 or NH3 shielded solid neon or hydrogen open-c¢ycle systems
represent an advanced state~of-the-~art development. As indicated on
the table, no systems of this type exist, but designs based on state-~
of-the-art should make them possible. These systems are less bulky and
of lighter weight than the helium open-cycle system but the lowest
achievable temperature is higher. The equipment and procedures needed

to charge these systems are complex but are comnsidered practical.

The closed-cycle, mechanical refrigeration systems with helium as the
working fluid for spaceborne use do not exist. However, a number of
devices of this type are in the exploratory development phase. Some
of them are designed to achieve cooling temperatures as low as 3.6°K.
The characteristics of the mechanical refrigerator listed in Table III
are those of a type we have been developing under Air Force sponsorship.
It is designed to be particularly efficient and to have very long life
as needed for spaceborne use. It, however, is in a very early stage

of development. A complete unit has not been assembled and tested nor,
therefore, has its operability or reliability been proven. About the
same can be said of competing units. Nevertheless, with sufficient
development effort, we believe workable low-temperature mechanical re-

frigerators will become a reality.

All cooling systems discussed have a common problem of temperature
control. Unfortunately, the degree of control necessary is not now
known, but it may be orders of magnitude greater than what is now

commonly achieved which is the order of + 0.10K.

The selection of the "best" system for cooling the experiment is not
obvious. We feel that the trade—offs favor the selection of the
mechanical refrigerator. In this selection we emphasize the relatively
low temperatures achievable, the long life, the small size and weight,
and the easy integration with the experiment. We accept the need for

power and the higher development costs.
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New Technology Appendix

This report is published in the belief that it constitutes an
improvement in the state of the art. The entire report is

referenced. See abstracts for more detailed descriptions.



