
REDUCTION OF CHROMATOGRAPHIC DATA AND EVALUATION OF A GC MODEL

Gordon L. Benoit

N71-355/4

National Aeronautics and Space Administration
Grant NGL 33-018-091

Rensselaer Polytechnic Institute
Troy, New York

REDUCTION OF CHROMATOGRAPHIC DATA AND EVALUATION OF A GC MODEL

Gordon L. Benoit

N71-35514

National Aeronautics and Space Administration
Grant NGL 33-018-091

Analysis and Design of a Capsule Landing System and Surface Vehicle Control System for Mars Exploration

June, 1971

Rensselaer Polytechnic Institute
Troy, New York
ABSTRACT

The initial unmanned missions to Mars will require a gas chromatograph, mass spectrometer system to make determinations concerning the existence of certain chemical and biochemical species on the planet. It is the overall objective of this project to generate fundamental engineering design techniques and concepts for use in optimizing the design of the chromatograph. This particular task has as its objective the completion of an experimental system for generating gas chromatographic data and the development of numerical procedures for comparing the data with proposed GC mathematical models.

A previously used commercial chromatographic system was rejuvenated and modified. The system now features micro thermal conductivity detectors, an automatic injection valve, and inlet and output signal detection capability. A data reduction program has been written to compare the mathematical impulse response to the actual system data. The program convolves the normalized impulse response with the input function to give the convolved response which is compared to the actual data which has been normalized. Simpson's method is used for integration and a modified regula-falsi 1st order iteration scheme is employed to determine a system parameter by curve fitting. The program is capable of comparing any model to actual system data.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. TEST FACILITY</td>
<td>7</td>
</tr>
<tr>
<td>III. PARAMETER ESTIMATION</td>
<td>14</td>
</tr>
<tr>
<td>IV. NUMERICAL METHODS</td>
<td>19</td>
</tr>
<tr>
<td>V. DATA REDUCTION</td>
<td>32</td>
</tr>
<tr>
<td>VI. RESULTS AND DISCUSSION</td>
<td>37</td>
</tr>
<tr>
<td>VII. CONCLUSIONS AND FUTURE WORK</td>
<td>83</td>
</tr>
<tr>
<td>VIII. REFERENCES</td>
<td>84</td>
</tr>
<tr>
<td>IX. APPENDICES</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>mR₀ Iteration Information</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE II</td>
<td>Outline of Data Reduction Computer Program</td>
<td>33</td>
</tr>
<tr>
<td>TABLE III</td>
<td>Experimental Conditions for Initial Studies</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chromatographic Column Concepts</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Test Facility Flow Diagram</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Sample Injection System Using Carle Mini-Valve</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Carle Injection Valve Operation</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Digital Representation of the Convolution Integrand</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Integration Cut-off Technique</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Regula-Falsi Iteration for $mR_0$</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Physical Interpretation of GC Model Dimensionless Parameters</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Typical Packed Column Dispersion Characteristics</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>A Correlation for Peclet Number</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Preliminary Results Using Various Injection Techniques</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>Chromatograms for Acetone on Chromasorb 102</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>Chromatograms for Ethylene on Chromasorb 102</td>
<td>72</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT.

The author wishes to express his sincere thanks to Professor P.K. Lashmet. His advice and assistance aided immeasurably in completing the objectives set forth. Also the financial assistance of NASA on this project is gratefully appreciated. Finally the interest and suggestions of Mr. J. Moore, of JPL, the contract monitor, are sincerely appreciated.
I. INTRODUCTION

One important phase of the unmanned missions to Mars is the search for organic matter and living organisms on the Martian surface. The present concept for attaining this objective consists of subjecting samples of the atmosphere and surface matter to certain biological and chemical reactions and thereafter analyzing the products produced (1, 2, 3). The most likely system for a general chemical analysis appears to be a combination gas chromatograph–mass spectrometer GC-MS (4, 5, 8). This unit would be a major component in the biological and chemical laboratory of an unmanned, computer-controlled, roving lander for Mars. It is the overall objective of the Chromatographic Systems Analysis program to generate fundamental engineering design techniques and system concepts for use in optimizing the design of such a chromatograph separation system. Such a system should provide maximum resolution with minimum retention times and minimum carrier gas usage, and should be capable of separating components evolved from many different types of experiments.

The mechanisms involved in chromatographic separations are shown schematically in Figure 1. A gas chromatograph is generally a long piece of tubing filled with some packing. This packing may take the form of a porous granular or a liquid phase coated on some solid substrate. A non-adsorbing carrier gas is continually flowing through the column. The packing may be kept at a constant temperature, or the temperature may be continuously varied, which is called temperature programming. At time equal to zero the gaseous mixture to be separated is introduced into the column entrance. This mixture will be axially transported down the column by turbulent and molecular diffusion as is
CHROMATOGRAPHIC COLUMN CONCEPTS

FIGURE 1

PACKED COLUMN

CARRIER
GAS FLOW

TRANSPORT BY TURBULENT AND MOLECULAR DIFFUSION

GRANULAR PARTICLE

TRANSPORT BY DIFFUSION AND ADSORPTION / DESORPTION

ADSORBENT PHASE
shown in the diagram. A properly selected column packing will selectively adsorb and desorb components in the mixture at different rates. In this manner some components are held in the column, on the average, a much longer time than other components and the mixture is separated. Total separation of a mixture into distinct molecular species is only achieved if the column or columns used are selective enough to adsorb and desorb each different compound in the mixture at a significantly different rates. Since this is rarely achieved in complicated mixtures with one column, parallel and series arrangements of columns are often used.

Because of the variety of mixtures to be separated and the complexity of the fractionating process, a system analysis based upon mathematical simulation of the chromatograph is being undertaken. This technique uses mathematical models, which incorporate fundamental parameters, to explore various concepts and to direct experimental research. Certain of these parameters are predictable a priori from the fluid mechanics characteristics, while others are peculiar to the specific system considered and are derived from experimental data. By using theoretical concepts as well as experimental data, it is hoped that the optimization of a particular system can be accomplished with more confidence than if experimental results are used alone.

Prior work has produced several mathematical models for evaluation (1,6,7). These models were solved from the basic second order, partial differential equation characterizing the chromatographic process. These equations were solved analytically by classical techniques and thus received certain simplifying assumptions. In particular, all of the models were solved assuming an impulse function input to the column.
The major objective of this project is to develop a method of evaluating these models. The construction of an experimental test facility was the first goal. Work was started in this area during the previous year, and was finished during the past fall (25). Important design requirements of the system included the following: rapid detector response, small system dead volume, record of both the input and output curves from the column, rapid recorder response, and predictable system parameters to facilitate comparison of the data to the models. The system is a modified Perkin Elmer Model 154 Fractometer employing Carle microdetectors, sample injection by syringe or a gas sampling value, and signal recording by a Honeywell Oscillograph. It is described briefly in a following section.

After the test system was completed, the remainder of the year was devoted to developing a computer program capable of comparing the mathematical models with the actual data from the test facility. Given input data to the column, the system output data, system parameters, and a mathematical model for the impulse response of the column, it is necessary to convert the system parameters to model parameters, adjust the impulse response to take into account a finite input, and finally to digitally compare the model to the actual data. The philosophy of simulating the system performance, using the given input data, is followed. Convolution of the impulse response with the actual system input function is used to account for the way the gas mixture enters the column. System parameters are estimated from existing correlations, or are obtained from the actual data by a curve-fitting technique.
In this study, one of the models being considered is evaluated using the data reduction program. This model, the equilibrium adsorption model (6), assumes that any point in the column the gas phase of any component is in equilibrium with the liquid phase of the packing. This is equivalent to an infinitely long column. This assumption leads to a simple exponential solution to the governing equations:

\[ \frac{Y}{A} = \frac{1}{2} \sqrt{\frac{\beta \, P_e}{\pi \, \Theta}} \exp \left[ -\frac{P_e}{4 \Theta} (\Theta - \beta)^2 / \Theta \right] \]

where

\[ \beta = 1 + \left( \frac{1}{mR_0} \right) \]

and

\[ P_e = \text{the Peclet number which is a dimensionless measure of sample diffusion in the carrier gas.} \]

\[ mR_0 = \text{a thermodynamic parameter, peculiar to the specific chemical species and adsorbent used.} \]

\[ \Theta = \text{dimensionless time} = vt/L \]

\[ v = \text{carrier gas velocity} \]

\[ t = \text{time} \]

\[ L = \text{column length} \]

The dimensionless Peclet number is predictable since it depends only upon the system configuration and fluid mechanics. The thermodynamic parameter \( mR_0 \) is specific to the system used and is determined from the system data using a curve fitting technique.
Because of its simplicity, the above model is probably not an accurate representation of all systems, but it shows the desired characteristics and is useful in validating the data reduction and simulation procedures.
II. TEST FACILITY

A gas chromatograph (GC) offers a method of separating a gaseous mixture into subgroups having similar chemical properties. In the presence of an inert carrier gas, the various subgroups have different dynamic adsorption characteristics for a given column packing material. These different characteristics are responsible for the ability of the GC to separate the mixture, and the resulting changes in gas composition can be related to concentrations of each component in the initial mixture.

Any gas chromatograph system consists of six basic elements:

1. A regulated carrier gas supply.
3. A means of detecting composition changes at the column outlet.
4. A chromatographic column.
5. A signal recording device.
6. A temperature-controlled oven chamber.

The gas chromatograph presently being used in the test facility is a modified Perkin Elmer Model 154 Vapor Fractometer. The system is not to simulate an actual gas chromatograph suitable for the Mars mission, but rather is to produce well-defined, reproducible data for evaluating mathematical models and to investigate various processing concepts. Hence a commercial system was acceptable providing modifications were made to give desirable characteristics:

1. Rapid detector response.
2. Detection of both inlet and outlet composition signals.
4. Minimum sample dead time, thermal transients and detector drift.
The major redesign objective of the test facility is to eliminate all unnecessary delays in the system so that the actual recorded output is as close to the actual composition variation as is physically possible. Because the mathematical models assume an impulse input, it is necessary to record both input and output composition variations. The actual input data are then used to mathematically adjust the model to account for the actual input behavior. This is done in the data reduction program described later, using the input function data from the test facility recording.

The system has been described in detail previously (25) so only the important features are presented here. The flow diagram modified system is shown in Figure 2. Helium is used in the system as the inert carrier gas. It was chosen because of its non-explosive nature, and its high thermal conductivity. The helium is regulated from 10 to 175 cc/min at 70°F by the system pressure regulator. The flowrate is recorded by a Brooks Rotometer located downstream from the regulator. The carrier gas then flows through the reference side of both detectors. These are thermal conductivity detectors which operate on the principle that the thermal conductivity of each component of a gas mixture is unique (13,14). If the thermal conductivity of the detector sample side differs from that of the reference side of the detector cell, a signal is generated in a Wheatstone bridge circuit connected to the detectors. This signal may be attenuated from 1 to 1000 times before being sent to a Honeywell Oscillograph for recording. Since two detectors are employed, two separate Wheatstone Bridge circuits are used, each being driven by the same 10 VDC source. The two signals are recorded simultaneously by the light beam oscillograph.
A gas sample is introduced into the carrier gas stream by one of three methods. For injection of a liquid mixture, a syringe is used to inject the mixture into the injection block, where the sample is vaporized by a small heater. A gas sample may also be directly injected into the block from a gas tight syringe. For gas samples from lecture bottles, a Carle Minivalve is used for injection. The schematic of this system is shown in Figure 3. The valve itself is similar to the actual injection system to be employed in the Mars mission. A gas sample of a specified volume is diverted into the carrier gas stream when the polarity of the valve is changed. The operation of the valve is shown in Figure 4. Experimental results indicate that the pulse sent to the column using this valve very closely approximates a rectangular pulse and is not as disperse as those obtained from syringe injection.

After injection, the sample passes through the inlet detector and then into the column. The column mounting bracket is designed to allow the use of two columns if necessary. This will allow either parallel or series operation of a complicated column system so other concepts can be studied. The separated sample then passes through the outlet detector where the actual gas chromatogram is recorded and is then vented.

The thermal control of the column and detector blocks is achieved through the use of an on-off controller which is connected through a variable load to the heating coil. The controller uses a signal from a thermistor located in the oven to adjust the heating load and thus control the oven temperature. The temperature in the oven is monitored by three thermocouples and a gas bulb thermometer all located in the oven chamber. Preheaters in both the carrier gas inlet stream and the
CARLE MINI-VALVE OPERATION

BEFORE INJECTION

AFTER INJECTION

FIGURE 4
sample gas inlet stream are used to maintain the desired temperatures. An analysis of the preheaters using the Graetz heat transfer solution confirms the fact that the preheaters effectively maintain the gas at oven temperature.

From preliminary experiments, it is concluded that this system is capable of generating repeatable gas chromatograms which are suitable for comparing to the theoretical studies. The rapid response of the detectors and recorder to composition changes within the system indicate that the recorder output represents far more accurately the actual response of the system then could be obtained with commercial instruments.

In summary, the information obtained from the test facility consists of the following:

1. System input and output curves are recorded in arbitrary composition units as a function of time.
2. Flowrate, temperature, and pressure of the carrier gas are measured.
3. Column characteristics such as packing diameter and material, and column length and diameter are available.

This set of information is required for the evaluation of the mathematical models.
III. PARAMETER ESTIMATION

Given a gas chromatograph system that is capable of generating accurate, reproducible data, the next objective is to convert these data into the form used in the mathematical models for comparison purposes. The GC test facility presently being used will generate the following information:

1. An input curve, composition (in arbitrary units) vs. real time.
2. An output curve, composition (in arbitrary units) vs. real time.
3. Operating conditions: oven temperature, carrier gas flowrate and pressure, and detector signal attenuation.
4. Column information: length, diameter, packing mean diameter, packing void factor $e$, and packing material.
5. Sample information: size of the sample and possibly sample pressure.

In addition, other physical property data such as densities, molecular diffusivities, and the like are available in the general literature. These data are further processed to compare the actual and predicted behavior.

The data reduction program was written to allow any of the models to be compared to actual system data. Although all mathematical models are functionally different, the models considered to date have common characteristics which have been incorporated into the program to simplify the calculations.
All the models define dimensionless time by the expression:

\[ \Theta = \frac{vt}{L} \]

where \( t \) is the real time in seconds, \( v \) is the gas velocity in cm/seconds, and \( L \) is the column length in cm. Therefore the composition vs. time curves, which are read into the program as finite data points with a constant time increment, \( \Delta t \) between data points, are converted in the program to dimensionless time data points with the interval between points being given by:

\[ \Delta \Theta = \frac{\Delta t \cdot v}{L} \]

Another characteristic of the models is that they all generate a dimensionless composition \( Y/A \) which has an area under the curve equal to unity. It is a characteristic of a gas chromatograph that the area under the output curve is directly proportional to the amount of sample injected. For example, if a sample of 21% oxygen and 79% nitrogen (air) is injected into a molecular sieve column, the output detector would record two distinct peaks. If the total area under both peaks is equal to unity, then under one peak will be 79% of the area which would correspond to nitrogen, and the other peak, oxygen, would have an area equal to 21%. This property would inherently create an error in our analysis if it was necessary to record exactly the sample size injected during each run. In addition, accurate detector calibrations would be required. These problems are eliminated by normalizing the input and output data so that they each have unit area. The data from the oscillograph is read into the computer in arbitrary units. The area under the curve is computed by numerical integration, and each data point is divided
by that area. The data are now in the form Y/A, as required by the mathematical models.

The models now being considered assume that the sample size is small compared to the amount of helium used, and that components act independently of each other. This assumption implies that the mathematical model may be solved for each component separately, and the solutions added linearly with an appropriate proportionality constant included. For example, if the oxygen-nitrogen system cited above is considered, the superposition assumption states that after the oxygen data is normalized to one, and the mathematical model may be solved for this case. Nitrogen may be solved in the same manner. The real solution is obtained by adding the oxygen and nitrogen models after multiplying each oxygen data point by 0.21 and each nitrogen point by 0.79. The same is done to the actual output data points and the two chromatograms may be statistically compared in this manner. The validity of this assumption is to be investigated during the next year.

The last similarity between the mathematical models is their common dependence upon the dimensionless parameter $mR_0$. In the derivation of all the models (1), the term $mR_0$ represents the adsorption characteristics of a given component for the specific column packing being used. In essence, this quantity, to a 1st order approximation, determines when a particular component will elute from the column. The other dimensionless parameters,

$P_e$, a dimensionless parameter related to sample diffusion in the carrier gas
and

\[ N_{t0G}, \quad \text{a dimensionless related to the approach to equilibrium adsorption} \]

both have a second order effect upon this 'retention time' of the component in the column. Since \( mR_0 \) will differ for each column packing used and each component used in the packing, this quantity is most easily calculated directly from the actual system data.

From previous work (1), an approximate value of \( mR_0 \) is given by:

\[ mR_0 \sim 1/(\Theta_{\text{max}} - 1) \]

where \( \Theta_{\text{max}} \) is defined as the theta value in the actual output at which the \( Y/A \) value is a maximum. In general, if a component elutes from a column in roughly a Gaussian curve, this \( \Theta \) value in real time is the 'retention time' for that component on the column packing being considered which is commonly cited in the literature. This equation for \( mR_0 \) was derived from the impulse response model of the system, and therefore does not include the effect of a finite input to the column. From experimental work it has been found that a better estimate of \( mR_0 \) is given by:

\[ mR_0 \sim 1/(\Theta_{\text{max}} - \Theta_{\text{max},i} - 1) \]

where \( \Theta_{\text{max},i} \) is defined as the dimensionless time at which the maximum of the input function appears.

The actual value of \( mR_0 \) is computed in the following manner for a particular set of data. The estimate of \( mR_0 \) is read into the program, and the output model is computed, using the convolution integral to be explained in the following section. The resulting value of \( \Theta_{\text{max}} \)
is compared to the actual $q_{\text{max}}$ of the data. If they differ, the value of $mR_0$ is adjusted using a first order iteration scheme. This procedure is repeated until the maxima of the two curves coincide.

Work was initiated this year into estimating $mR_0$ from heats of adsorption data given in the literature for specific gas chromatograph packings. Since $mR_0$ is a strong function of temperature, it has been shown (15, 16, 17, 18) that the effect of temperature upon the retention time of a component in a column may be estimated by:

$$\frac{t_{r2}}{t_{r1}} = \exp \left[ q_{\text{ads}} \frac{1}{T_2} - \frac{1}{T_1} \right]$$

where

- $T_1, T_2 =$ absolute temperatures
- $t_{r1}, t_{r2} =$ retention times
- $q_{\text{ads}} =$ heat of adsorption
- $R =$ gas constant

This concept is a simplification of the processes involved but it does afford a means for correlating $mR_0$ data. This and other theoretical approximations of $mR_0$ will be studied in the coming year to evaluate their applicability to this project.

In the above manner data from a gas chromatographic experiment is reduced to a form to allow for direct comparison to the mathematical model being considered. Depending upon the form of the model considered, it is necessary to estimate $P_e$ and $N_{\text{TOG}}$. The methods involved in estimating these dimensionless parameters are given in Section VI.
IV. NUMERICAL METHODS

In the course of the analysis on the computer, it is necessary to perform certain mathematical operations on the data. The accuracy of these numerical methods in turn affects the total accuracy of the data generated from the program. It is therefore necessary to investigate in some detail the numerical techniques used in order to estimate the magnitude of the system errors.

Because of the system complexity, the mathematical models derived earlier provide the impulse response of the system. However, in all chromatographs, sample injection requires a finite amount of time, so the impulse response introduces an error into the simulation. To account for finite pulse inputs, the system is assumed linear and the convolution integral (21) is used.

If the impulse response, $Y_P(\theta)$, of a system is known, and the system is linear, it is possible to calculate the system response for any input function $X(\theta)$ by one of the following integrals:

$$\text{Output } (\theta) = \int_{-\infty}^{\theta} X(\lambda) Y_P(\theta - \lambda) d\lambda$$

$$= \int_{-\infty}^{\theta} Y_P(\lambda) X(\theta - \lambda) d\lambda$$

This is sometimes called the convolution, Carson, or Faltung integral. In this case, since the input function is applied at zero time, the lower limit is adjusted to zero without losing any generality. It should be
noted that the two integrals shown are completely equivalent and either may be used in a given situation. This fact will be used in our application of the integral. It is assumed that both \( YP(\theta) \) and \( X(\theta) \) satisfy the Dirichlet conditions over the interval \((0, \theta)\) so step functions and other discontinuous inputs may be handled.

For use on the computer, the integration is performed digitally with a finite number of data points. In the computation, the integrand is represented by the following discrete form:

\[
\text{Integrand} = X(\lambda) \cdot YP(i - \lambda + 1) \quad \lambda = 1, i
\]

where \( YP(i) \) = impulse response
\( X(i) \) = input function

This expression may be explained in the following manner. The input function is read into the program so that \( X(i) \) represents the curve in array form. In general, the sample is finite and is injected in a finite length of time which is designated by the index \( M \). Hence, all values of the input function \( X(i) \) for \( i \geq M \) are set equal to zero. The impulse response, which is computed from the particular system model being considered, is placed into the array \( YP(i) \).

The integrand is then computed as a set of numbered pairs shown schematically in Figure 5. Then the area, which is the system output for the given input function, is estimated numerically using Simpson's method and is reported as the output vector \( \phi UT(i) \). When \( i \) is odd, Simpson's method is used directly, but if \( i \) is even, the terms from \( \lambda = 1 \) to \( \lambda = i-1 \) are integrated using Simpson's rule, and the last two data points are integrated using the trapezoidal rule (19):
Figure 5. Digital Representation of Convolution Integrand
Area = \left[ X(i-1) YP(2) + X(i) YP(1) \right] / 2

This area is added to that found for the other data points by Simpson's method to yield the value of $\Phi UT(i)$.

By looking at the digital form of the integral, it is possible to avoid much needless integration of data points having values of zero. This is done in the following manner. The input function contains non-zero data points for time elements in the range $i = 1, M-1$; and the first zero data point occurs at the time corresponding to $i = M$. Because subsequent values of $X(i)$ are set equal to zero (the sample injection being completed), it is only necessary to evaluate the integral for $\Phi UT(i)$ in the range $\lambda = 1, M$. For all values of $M \geq M$, the ordered pair $X(\lambda) YP(i-\lambda+1)$ will be zero. This is shown schematically in Figure 6.

The convolution subroutine, designated $C\Phi NV$ in the computer program, performs the integration for $\Phi UT(i)$ according to this strategy. This results in a considerable saving in computer time in some cases. For example, if the mechanical injection valve is used for introducing the sample, injection is usually completed within 1.5 seconds. If the data points required to represent the input function are separated by 0.1 second, the value of $M$ in this case is 15.

If ethylene is injected in this manner at room temperature, the data in Section VI shows that it will take 1500 data points to describe the output curve for a Chromasorb 102 column. In other words, the last detectable amount of sample eluted from the column was approximately 147.5 seconds after the initial injection of the sample. For values of $\Phi UT(i)$ where $i > 15$ the program will form only the first 15 data points and integrate under this curve. At a time approaching the end of the
Figure 6  Integration Cut-Off Technique
chromatogram, say at 140 seconds \( i = 1400 \) the subroutine would be computing the area under 1385 zeros unnecessarily if the program simply formed all of the data pairs. Thus a considerable saving of computer time is possible.

To reduce the effects of sample injection size and differences between the calibrations of the two composition detectors upon data analysis, the areas under the input and output curves are each normalized to unity. Because the impulse response from the theoretical model is also normalized to unity, this procedure is equivalent to imposing a material balance on the sample, and insures that the input and output data are quantitatively consistent.

This normalization is done automatically in the DATAJT subroutine. The subroutine is given the input and output arrays from the main program. The areas under these curves are calculated using the QSP subroutine (26) which employs a modified Simpson's method. Then the data points in each array are divided by the calculated area to normalize the array. Under these conditions, the area under the convoluted output curve, which is derived from normalized data, should be near unity.

If the area under the convoluted curve differs appreciably from unity, the function integrated was too peaked and more data points must be included to obtain a better integration.

All integrations in the data reduction program use Simpson's method (19,20). The general definition of this integration scheme is as follows:

Let \( f_1 \) through \( f_n \) define a set of data points, where \( n \) is odd. If the spacing between data points is given by \( H \), then the area under the points is given by:
\[ \int_{x_0}^{x_0+nH} f(x) \, dx = H/3(f_1 + 4f_2 + 2f_3 + 4f_4 \ldots + 2f_{n-2} + 4f_{n-1} + f_n) \]

This method was chosen because it is an excellent numerical approximation when considering a set of fixed data points. The approximate error in this method is of the order of \( H^5(20) \).

This integration method works well for smooth curves with no major discontinuities. However, if the number of data points is small, and the curve is peaked, errors in the method increase. It is therefore necessary, when inputting data to the program, to be certain that the interval \( H \) is small enough so that a reasonable number of data points appear. This is especially true when the mechanical valve is used for injection. In this case, as noted before, the entire injection generally takes place within about 1.5 seconds. A value of \( H \) must be chosen to give at least 10 data points for the integration. Therefore an interval of 0.1 second is usually chosen.

Of the parameter in the theoretical models, only the thermodynamic parameter \( \text{mR}_0 \) is not predictable \textit{a priori} and it must be determined from the experimental data. This parameter \( \text{mR}_0 \) primarily affects the time at which the maximum composition appears in the output chromatogram. Hence a curve-fitting procedure is used which positions the maximum point of the convolved output exactly at the time when the maximum concentration appears in the experimental data. Exact matching is possible because in the computations, time is considered in discrete intervals and is represented as an integer.

Determination of \( \text{mR}_0 \) requires the solution of a nonlinear equation, so a first-order, iterative process, the \textit{regula falsa} method (19,20) is
used. Starting with an initial estimate

\[ mR_0 = \frac{1}{\theta_{\text{max}, \text{out}}} - \theta_{\text{max}, \text{in}} - 1 \]

the technique proceeds as shown in Figure 7. The appearance time for the maximum composition in the data is designated as \( T_{\text{max}} \). Proceeding from the initial estimate \( mR_0 \), two new estimates \( mR_0' \) and \( mR_{01} \) are found, one being 10% larger than the initial estimate, the other being 10% smaller than the initial estimate. The impulse responses for these two values of \( mR_0 \) are computed, and are convoluted with the output data. The maxima of each generated curve are bound to occur at \( T'_{\text{max}} \), and \( T_{\text{max}1} \) respectively as is shown in the diagram. The false position method predicts a better estimate of \( mR_0 \), designated as \( mR_{02} \) as follows:

\[ mR_{02} = mR_{01} - \frac{(T_{\text{max}1} - T_{\text{max}})(mR_{02} - mR_0')/(T_{\text{max}1} - T_{\text{max}'})}{mR_{01}} \]

The procedure is repeated, but now the terms in the above equation, \( mR_{01} \) and \( T_{\text{max}1} \) are replaced by \( mR_{02} \) and \( T_{\text{max}2} \) respectively in the next estimate of \( mR_{03} \). This procedure is repeated until the value \( T_{\text{max}1} \) is equal to \( T_{\text{max}} \).

It should be noted that this method will converge only when the initial estimates \( mR_0' \) and \( mR_{01} \) are sufficiently close to the time value. If they are not, the iteration may diverge. The point \( (mR_0', T'_{\text{max}}) \) is held constant and considered the reference point for the iteration. In some other iteration methods this base value is also varied, but in this case this was found to be unnecessary. It typically will take six to eight estimates before the actual value of \( mR_0 \) is
Figure 7. Regula-Falsi Iteration for $mR_0$
obtained. If the procedure does not converge after the maximum number of iterations in the program (20), the last value of $mR_0$ computed is printed out. The procedure can be repeated as a new set of calculations, if necessary, using the final value of $mR_0$ as the initial estimate. In general this is not necessary. Table I compares the actual value of $mR_0$ with the value computed in the regula false routine. The number of iterations for convergence are also given for two systems - acetone and ethylene at various temperatures.

The statistical data computed in the program is done using the TALLY subroutine (27). This subroutine will compute the standard deviation, maximum average values of the impulse function, convolved output, and the actual system data using standard computing equations (22).

The last scientific subroutine used is RPPILOT (see Appendix A). It is a local program developed at Rensselaer that is capable of plotting data in polar, logarithmic, semi-log spherical or rectangular coordinates. It is also capable of plotting up to 33 sets of data on the same graph. In the data reduction program, RPPILOT is used in several ways. First the input function $Y/A$ is plotted against the dimensionless time $\Theta$. This is done by moving data points from the array $X(i)$ into the RPPILOT storage array $YY(i,j)$. The first index of $YY$ designates the $i^{th}$ data point of the array to be plotted. The second index tells the subroutine which array is being plotted. With this program it is possible to plot up to 33 separate arrays on the same graph. Therefore $j$ may take on a value of 1 to 33. The corresponding value of the dimensionless time $\Theta(i)$ is also moved into the RPPILOT storage array $TT(i,j)$ in a similar manner.
<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>mR₀' Initial</th>
<th>mR₀' Final</th>
<th>Number of Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.0858</td>
<td>0.0858</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0.1316</td>
<td>0.1322</td>
<td>3</td>
</tr>
<tr>
<td>75</td>
<td>0.2008</td>
<td>0.2009</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>0.2420</td>
<td>0.2435</td>
<td>4</td>
</tr>
<tr>
<td>125</td>
<td>0.2535</td>
<td>0.2545</td>
<td>3</td>
</tr>
<tr>
<td>150</td>
<td>0.2900</td>
<td>0.2939</td>
<td>6</td>
</tr>
<tr>
<td>Acetone System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.2240</td>
<td>0.2232</td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td>0.4580</td>
<td>0.4600</td>
<td>3</td>
</tr>
<tr>
<td>150</td>
<td>1.144</td>
<td>1.098</td>
<td>6</td>
</tr>
<tr>
<td>175</td>
<td>1.715</td>
<td>1.594</td>
<td>17</td>
</tr>
</tbody>
</table>
After plotting the input function, RPPLOT now plots the impulse response, convolved response and actual response on one graph. For this operation the program uses the information from the digital printout of the data. The first non-zero and the last non-zero data point of the three output arrays have been found previously. These values are used as the limits of the data points to be plotted. This eliminates the plotting of many zeros in the output and allows for a much better visual representation of the data. The methods are similar to those used in plotting the input function, only in this case the impulse response \( YP(i) \) is moved to \( YY(i,1) \), the convolved response \( \phi UT(i) \) goes to \( YY(i,2) \) and the actual data array \( YDATA(i) \) is moved to \( YY(i,3) \). The corresponding values of the dimensionless times are also moved to \( TT(i,1), TT(i,2) \) and \( TT(i,3) \).

Lastly, it has been found that since the impulse response is in general much more peaked than the actual convolved response, the plotting of all three arrays occasionally has the effect of causing the actual data and the convolved data to fall almost on the same curve, thereby eliminating a visual comparison. The program therefore plots the convolved and actual data on a separate graph for accurate comparison of the model to the real system response. The methods employed are analogous to the approach used in plotting the three arrays together.

In using RPPLOT it is necessary to input to the storage arrays one hundred data points or less. The program therefore scans the array to be plotted, and if the number of data points is greater than one hundred, it systematically skips data points until the number is under one hundred. For example if the number of points to be plotted is 321, the program first tries to use all the points. Next it will skip every
other data point - which would give 160, still too large. Next it would skip two data points before recording the third. This would give 107, which is still too large. Finally it would skip three data points. For this case 80 data points would be plotted. This is necessary to avoid an overflow in the FPLLOT subroutine.
V. DATA REDUCTION PROGRAM

The data reduction program was written in FORTRAN IV language for the IBM 360/50 computer. It is composed of a main calling program and six subroutines:

- DATAJT - program for normalizing input and output data
- QSIF - library supplied integration program (26)
- CONV - numerical convolution procedure
- TALLY - library supplied statistical program (27)
- RESP - mathematical model being considered
- REPL$T - data plotting program

A complete listing of the program is given in Appendix A followed by a definition of all program variables, the flow diagram, and the method of data input for operation. In this section the program will be explained in general terms and the more important system parameters and array names will be given to help the reader follow the program listing. The overall system procedure is summarized in Table II.

After the system storage arrays have been dimensioned, and all counters have been initialized, all program data is read into memory. The first card to be read in is a general Hollerith data card for the output title. Whatever is written on this card is printed out at the top of the first output listing page, and at the bottom of the comparative plots for the data and model. In general, one would put on this card the system being considered, the temperature, column packing, flowrate of helium, etc. to define the system being analyzed.

Next certain counters to be used in the program are read in, after which the input data is read in under the name X(M). After reading in
TABLE II

Outline of Data Reduction Computer Program

1. Read in all data.
2. Normalize input and output data.
3. Calculate optimum value of \( mR_0 \) using impulse response, convolution integral, and **regula falsi** iteration.
4. Print out all input and output curves.
5. Calculate statistical data.
6. Plot out generated curves.
M data points, the program automatically assigns zero to all subsequent values of \( X(I) \). This is necessary for evaluating the convolution integral, as explained previously. It should be noted here that \( X(1) \) corresponds to \( \Theta = 0 \), and any following value of \( X(K) \) corresponds to \( \Delta \Theta \cdot (K-1) \). In other words the output at \( \Theta = \Delta \Theta \cdot (K-1) \) is equal to \( X(K), K = 1, N \). All arrays used in this program follow the above nomenclature. The system parameters are read in next. These include \( mR_0 \) called ROM, the Peclet Number, PE, and column length, ALENG and velocity, \( V \), the number of theta increments to be considered, \( N \), and finally the theta spacing, \( \Delta \Theta \), called \( H \). The variable \( N \) is defined in the following manner. If the last data point from the output data is read in at \( \Theta = Q \), then the number theta increments necessary to define the system is

\[
\text{number of increments} = \frac{Q}{H}
\]

This represents the minimum usable value for \( N \). In general, \( N \) is made approximately 50 greater than this number so all of the simulated output will be included. It should be noted that the program requires the input and output data to have the same theta spacing \( H \). This can lead to problems if for example, the Carle injection valve is used, in which the sample is injected into the column in approximately 1.5 second. The output curve for the system might be 30 seconds long. To define the input function correctly a time spacing of 0.1 second would be appropriate. This would require 300 data points be read in to define the output curve since the same spacing must be used. The result is a large number of data cards for the output data. As an additional point, the maximum value of \( N \) is 1500 due to the limitations in storage in
the computer. It is therefore necessary to choose a value of $\Delta \theta$ so that the maximum theta value obtained in the program is less than $1500 \cdot \Delta \theta$.

Finally the output data is read into memory in the following manner. Since the output will be zero for a specified time until the component begins to elute, this time is read into the program as a number of delta the spacings, called $K_l$,

$$K_l = \frac{T}{H}$$

where $T$ is the theta time when the component first begins to exit the column. The output array, $YDATA(i)$ is set equal to zero for $1 < K_l$. The output curve is then read in and all values between the last data point and the last data array element (having index $N$) are set equal to zero. This means if it takes 250 theta points to define the output curve, and $N$ was set to 300, all values of $YDATA(i)$ for $250 < i \leq 300$ will be set equal to zero.

The input and output curves are now normalized so that the area under each curve is equal to one using the DATAJT subroutine. The areas are determined by the subroutine QSF. Each data point is divided by the appropriate area in the normalizing procedure DATAJT.

The programs then begins to calculate the simulated output chromatogram. The assumed value of $mR_0$ is transferred into the subroutine RESP which contains the mathematical model to be considered. An impulse response curve, $YP(I)$ is calculated. This response curve is then convolved with the input function to yield a response which accounts for the sample injection. The digital methods employed in the convolution subroutine (COINW) were considered in the previous section.
The theta value of the maximum Y/A value of the simulated output is found and compared to the maximum of the actual output. If they differ, the value of mR₀ is adjusted using the regula-false 1st order iteration scheme. This procedure is followed until the maximum points of the two curves are identical, or until 20 iterations have been performed. After 20 iterations, the final value of ROM is used.

The program now prints out the original data card listing the description of the system on a new page. It follows this with the system parameters such as the 11 column length and gas stream velocity, etc. It now prints out headings and the total input data including the value of theta, the actual time in seconds; the output array OUT(I), the actual data YDATA(I), and the impulse response YP(I). After printing out the entire input function, the program indexes until the first non-zero data point in any of the output curves, OUT, YP, and YDATA, is obtained. Then all the output are printed out until the last non-zero value of any of the three arrays is reached.

Statistical data concerning the curves are now computed by the subroutines TALLY and QSF and are printed out. These include the standard deviation, average value and maximum of each of the three output arrays. The input function with appropriate headings is plotted out using RPLOT subroutine. Next the three output chromatograms are plotted out on a single graph also using RPLOT with headings included. Finally the convolved output is graphically compared to the actual system data using RPLOT.
VI. RESULTS AND DISCUSSION

To run the data reduction program, a mathematical model must be chosen. This model must predict the chemical separation which occurs in flow through a packed bed. The simplified theoretical model is depicted in Figure 8. A carrier gas plus sample is flowing through a packed column in such a manner that the sample is dispersed axially by turbulent and molecular diffusion around the packing. This process is characterized by the dimensionless Peclet number $P_e$. Radially the sample is also transported by turbulent diffusion and by the adsorption and desorption at the packing surface. The rate of this adsorption-desorption process is governed by the behavior of the carrier gas in the vicinity of the particle represented by the dimensionless parameter $N_{tOG}$, the number of transfer units, and by the characteristics of the particular adsorbent phase being used in the column. This adsorbent phase is characterized by the thermodynamic parameter $m_{R_0}$.

This simplified approach is based on certain assumptions. First the column is assumed to operate isothermally, which basically holds constant the rate of adsorption and desorption within the column. Secondly, the velocity profile is flat, which allows the use of a mean velocity in the column which is independent of radius. It is assumed that the gas composition is approximately constant in the direction normal to flow, and the concentration gradient occurs only in a thin boundary layer near the adsorbent. With this assumption mass transfer coefficients or the parameter $N_{tOG}$ may be introduced. The adsorbent layer is assumed to be so thin that there is no diffusion within the layer, and that there is no diffusion through the solid phase of the packing material. The
CHROMATOGRAPHIC COLUMN CONCEPTS

PACKED COLUMN

GRANULAR PARTICLE

CARRIER GAS FLOW

TRANSPORT BY TURBULENT AND MOLECULAR DIFFUSION (Pe)

TRANSPORT BY DIFFUSION AND ADSORPTION (N_{tot})

FIGURE 8
carrier gas is assumed to have a negligible rate of adsorption, and to behave as an ideal gas. Finally the concentrations of the sample components are assumed to be very small at any point in the column.

With these assumptions it is possible to derive a set of dimensionless differential flow equations for the system (1). For the present study, as a means of evaluating the data reduction program, and also to do some preliminary evaluation of system data, the equilibrium adsorption model described in the introduction was chosen. This model only includes the effects of axial dispersion ($P_e$) and the rate of adsorption ($mR_0$). For this model, it is assumed that at any point in the column, the gas phase of any component in the sample is in equilibrium with the adsorbed phase on the column packing, that is, the number of transfer units, $N_{tOG}$, is infinitely large. In general this assumption is valid if the $L/D$ ratio of the column is large. For use on Mars, several proposed column designs are well within this limitation (28).

This particular model was chosen because it is a closed form solution and is easily adaptable to computer computation. Also, if the model proves to describe adequately the data, its solution for many sample cases is much easier than a more complicated solution which includes the effects of $N_{tOG}$ (7).

The Peclet number must be estimated if this model is used. As mentioned earlier, the Peclet number takes into account the axial dispersion of the sample as it passes through the column. As an example, consider Figure 9. This shows the chromatograms of ethylene was injected into a 60-80 mesh, glass bead column. Since the glass beads have no adsorptive characteristics, the only effect observed is the axial
COLUMN DISPERSION CHARACTERISTICS

ETHYLENE ON A GLASS BEAD COLUMN

FIGURE 9
dispersion of the gas sample as it passes through the column. The gas was injected by the Carle injection valve, in pulse form. But as is shown, the maximum concentration of the sample is reduced by about 50% by the dispersion in the column. Ideally, if there were no dispersion of the sample, the sample pulse would appear at the end of the column with no loss in maximum concentration. From these data, it is evident that the dispersion effects in a packed column are not negligible, and for any model to accurately describe the physical situation at hand, it must include a term that will account for the dispersion of the sample as it passes through the column.

It has been shown (23), that it is possible to estimate the Peclet number by a correlation with the dimensionless group

\[ \text{Re} \cdot \text{Sc} = \frac{d_p \, v}{D_{AB}} \]

where:

- \( d_p \) = mean packing diameter
- \( v \) = mean gas velocity
- \( D_{AB} \) = molecular diffusivity of a component A into carrier gas B.

This group is a product of the dimensionless Reynolds number (Re) which characterizes the fluid mechanics of the system and the dimensionless Schmidt number (Sc) which is related to the molecular properties of the system. The diffusivity \( D_{AB} \) is computed for a given component using a known correlation (29). A sample calculation of the mean gas velocity and the molecular diffusivity is given in Ref. (30). A correlation of \( \text{Re} \cdot \text{Sc} \) to \( \text{Pe} \) is shown in Figure 10 (23). For the Peclet number equal to infinity, there is no axial dispersion. It is seen from the
figure, that the gas flow rate and the particle diameter are the major factors which influence the Peclet number. The diffusivities of most gas systems are about the same, within an order of magnitude.

Since the Peclet number is so important in the mathematical simulation of a gas chromatograph, it will be necessary to insure that it is estimated accurately. The cited correlation is somewhat questionable, and more work is planned in this area. One possible method of estimating Pe directly from the data is as follows. If \( mR_0 \) is set equal to infinity in the equilibrium adsorption model, the model predicts that there is no adsorption of the sample onto the column packing. Sample runs for this case are available, such as those shown in Figure 9. By statistically fitting the equilibrium model to the actual data by varying the Peclet number, it would be possible to accurately estimate the Pe for that specific run. This information could be then utilized in analysis of the correlations. It would also be possible to form a Pe correlation plot for a specific packed column by varying Re·Sc and for each run fitting the model to the data and arriving at the 'optimum' Pe number for each value of Re·Sc. These ideas are being considered for future work.

If other system models are considered, it will be necessary to determine \( N_{tOG} \). It is therefore helpful to review the correlation involved in estimating this parameter. \( N_{tOG} \) is defined as (27):

\[
N_{tOG} = Sh \cdot a \cdot L/Re \cdot Sc
\]

where \( a \) = the packing surface area per unit volume

\( L \) = the column length

\( Sh \) = the Sherwood number

\[ = Sh_0 + 0.347(Re \cdot Sc)^{0.62} \]
At isothermal conditions $S_{h0}$ is constant at about 2.00, and since the product $Re \cdot Sc$ which was considered earlier is known, all of the terms are easily calculated. Qualitatively, $N_{tOG}$ indicates how close the system is to an equilibrium state at any point in the column. As $N_{tOG}$ approaches infinity, the gas phase approaches an equilibrium with the solid or liquid packing phase.

Using the given estimate of $Pe$, the data reduction program was run using the equilibrium adsorption model. Initial studies as summarized in Table III centered around samples of air, isobutane, ethylene and acetone at various flowrates. These data are given in Figure 11. For each run the input curve is given in dimensionless time ($\theta$) and comparative plots of the impulse response, the convolved response, and actual system data are plotted on one graph. In certain cases, a final comparative plot of only the convolved or simulated response versus the actual data is given to show better the differences between the two outputs. Pertinent information concerning the column packing, helium flowrate, and temperature are given with the plots and in Table III. All these graphs were generated by the RFPLOT subroutine.

The first two sets of data given, namely for isobutane, and ethylene were obtained using the Carle injection valve. The convolved output therefore differs only slightly from the impulse response, and as a first approximation the impulse response could be used directly. Since in both cases the dispersion in the sample is underestimated, it appears that the parameters of the model must be revised or that the model fails to account for some transport mechanism taking place. Prior work (6) has shown that the thermodynamic parameter $mR_0$ strongly influences the time at which the chromatogram peak occurs, but has little effect
TABLE III

Experimental Conditions for Initial Studies

<table>
<thead>
<tr>
<th>Component</th>
<th>Column*</th>
<th>Helium Flowrate</th>
<th>Temperature Range</th>
<th>Data Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobutane</td>
<td>Chromasorb 102</td>
<td>38 ml/min</td>
<td>20°C</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>Ethylene</td>
<td>Chromasorb 102</td>
<td>38 ml/min</td>
<td>20°C</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Molecular Sieve, 5A</td>
<td>35 ml/min</td>
<td>20°C</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Molecular Sieve, 5A</td>
<td>35 ml/min</td>
<td>20°C</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>Acetone</td>
<td>Chromasorb 102</td>
<td>24 ml/min</td>
<td>1250°C</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>Acetone</td>
<td>Chromasorb 102</td>
<td>43 ml/min</td>
<td>100-200°C</td>
<td>Fig. 12</td>
</tr>
<tr>
<td>Ethylene</td>
<td>Chromasorb 102</td>
<td>43 ml/min</td>
<td>28-175°C</td>
<td>Fig. 13</td>
</tr>
</tbody>
</table>

*Physical constants for all columns: length - 1 meter, inside diameter - 2.2mm, particle size - 60/80 mesh (0.250/0.177 mm.).
Figure 11 Preliminary Results Using Various Injection Techniques

a, b  Isobutane on Chromasorb 102. Input and Chromatograms.

c, d  Ethylene on Chromasorb 102. Input and Chromatograms.

e, f, g. Nitrogen on Molecular Sieve. Input and Chromatograms.

h, i, j  Oxygen on Molecular Sieve. Input and Chromatograms.

k, l, m  Acetone on Chromasorb 102. Input and Chromatograms.
FLCT CF THE INPUT FUNCTION

\[ \begin{array}{cccccccc}
7.2E-02 & C & C & C & C \\
6.4E-02 & + & C & + & + & + & + & + & +
\end{array} \]

FLCT CF Y/A VS. DIMENSIONLESS TIME FOR \( \mu = 0.146551 \) AND A PECEL TEMPERATURE 7200.00000
PLCT CF SYSTEM RESPONSE O=IMPULSE RESPONSE, 1=CONVOLVED RESPONSE TO INPUT FLUCTA

TIME RESPONSE

3.2CCE CC

2.8CCE CC

2.4CCE CC

2.0CCE CC

1.6CCE CC

1.2CCE CC

0CCE CC

-0.8CCE CC

-1.2CCE CC

-1.6CCE CC

-2.0CCE CC

-2.4CCE CC

-2.8CCE CC

-3.2CCE CC

7.2CCE CC

7.6CCE CC

8.0CCE CC

8.4CCE CC

8.8CCE CC

9.2CCE CC

9.6CCE CC

9.8CCE CC

9.0CEF CC

2.0CEF CC

-3.2CEF CC

-2.8CEF CC

-2.4CEF CC

-2.0CEF CC

-1.6CEF CC

-1.2CEF CC

-0.8CEF CC

-0.4CEF CC

0CEF CC

2CEF CC

6CEF CC

6.6CEF CC

6.8CEF CC

7CEF CC

7.2CEF CC

7.6CEF CC

8.0CEF CC

8.4CEF CC

8.8CEF CC

9CEF CC

9.2CEF CC

9.6CEF CC

14CEF CC

14.6CEF CC

15CEF CC

15.6CEF CC

20CEF CC

20.6CEF CC

25CEF CC

25.6CEF CC

30CEF CC

30.6CEF CC

35CEF CC

35.6CEF CC

40CEF CC

40.6CEF CC

45CEF CC

45.6CEF CC

50CEF CC

50.6CEF CC

55CEF CC

55.6CEF CC

60CEF CC

60.6CEF CC

65CEF CC

65.6CEF CC

70CEF CC

70.6CEF CC

75CEF CC

75.6CEF CC

80CEF CC

80.6CEF CC

85CEF CC

85.6CEF CC

90CEF CC

90.6CEF CC

95CEF CC

95.6CEF CC

100CEF CC

100.6CEF CC

105CEF CC

105.6CEF CC

110CEF CC

110.6CEF CC

115CEF CC

115.6CEF CC

120CEF CC

120.6CEF CC

125CEF CC

125.6CEF CC

130CEF CC

130.6CEF CC

135CEF CC

135.6CEF CC

140CEF CC

140.6CEF CC

145CEF CC

145.6CEF CC

150CEF CC

150.6CEF CC

155CEF CC

155.6CEF CC

160CEF CC

160.6CEF CC

165CEF CC

165.6CEF CC

170CEF CC

170.6CEF CC

175CEF CC

175.6CEF CC

180CEF CC

180.6CEF CC

185CEF CC

185.6CEF CC

190CEF CC

190.6CEF CC

195CEF CC

195.6CEF CC

200CEF CC

This is a plot of y/A vs. dimensionless time for R = 0.14651 and a Peclet number = 7200.000000.

ISOBUTANE ON A CHROMASORB 102 COLUMN, 38 CC/MIN, 30 DEGREES CENTIGRADE.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2CF CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4CF C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4CF C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4CF C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4CF C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5CF CC</td>
<td>7.50E 00</td>
<td>7.50E 00</td>
<td>R.00E CC</td>
<td>5.6CF CC</td>
</tr>
<tr>
<td>9.6CF CC</td>
<td>1.00E 01</td>
<td>1.10E 01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIS IS A FLUX OF Y/A VS. DISSIPATION TIME FOR M: RO = 1.7214 AND A PECLER: 6700.000000

ETHYLENE ON A CHROMASORB 102 CCLMPH, 38 CC/MIN, 20 DEGREES CENTIGRADE
This is a plot of $Y/Y'$ vs. dimensionless time for $N_{rd} = 6.64E+05$ and a Peclet number $= 6.481.19999$.
The image contains a table with columns labeled 'G', '3', '5', and 'S', and rows labeled '1.6CE CC', '2.0CE CC', '2.4CE CC', '2.8CE CC', '4.0CE CC', '4.4CE CC', '4.8CE CC', and '5.2CE CC'. The table includes symbols like '+' and 'x'.

At the bottom of the image, there is a note: "NITROGEN ON A MOLECULAR SIEVE COLUMN, 39 CC/IN., 20 DEGREES CENTIGRADE."
<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5CE_CC</td>
</tr>
<tr>
<td>4.CCE_CC</td>
</tr>
<tr>
<td>3.5CE_CC</td>
</tr>
<tr>
<td>2.5CE_CC</td>
</tr>
<tr>
<td>2.CCE_CC</td>
</tr>
<tr>
<td>1.5CE_CC</td>
</tr>
<tr>
<td>1.CCE_CC</td>
</tr>
<tr>
<td>5.CCE-C1</td>
</tr>
<tr>
<td>4.CCE-C1</td>
</tr>
</tbody>
</table>

**This is a PLOT of Y/A vs. Dimensionless time for m=0 = 2.31587 and a RePEt eP=6.361.194990**
PLOT CF SIMULATED AND ACTUAL SYSTEM RESPONSE, C = SIMULATED OILPLT, 1 = ACTUAL SYSTEM DATE

**OXYGEN ON A MOLECULAR SIEVE COLUMN, 35°C/C/MPa, 20 DEGREES CENTIGRADE**

THIS IS A PLOT OF Y/A VS. DIMENSIONLESS TIME FOR M RE= 2.221587 AND A PELOT ALNEEP= 6661.194000
THE CF SIMULATED AND ACTUAL SYSTEM RESPONSE, C = SIMULATED, 0 = PLT, 1 = ACTUAL SYSTEM DATA.

The diagram shows a comparison of simulated and actual system responses with markers indicating different conditions or parameters. The text at the bottom provides additional context:

"THIS IS A PDF OF Y/A VS. DIMENSIONLESS TIME FOR A RD = 4.077E-02 AND A PECLET NUMBER = 47.5."

Additional notes indicate:

- The chromatography was on a Chromabead 107 column, 24 cc/min., 125 degrees centigrade.
upon dispersion. On the other hand, the Peclet number strongly affects
dispersion (6) so perhaps the estimate of Pe was in error as noted above.

As a second system to consider, air was injected into a molecular
sieve column using a syringe. These results are also shown in Figure 11.
Oxygen and nitrogen components were treated as acting independently
and the results are given in this manner. The theta vs. Y/A plot for
the input function is also given for this case. As before, the
dispersion in the sample is not exactly predicted by the equilibrium
model, although for this set of data the model approximates the data
better than for ethylene and isobutane. If the errors in estimating
Pe are about the same, this suggests that the model is too simple.

The last system used in the preliminary studies was acetone with
a porous polymer adsorbent. This sample was injected by a syringe and
vaporized in the injection block chamber. The comparative plot and
the input function are also given in Figure 11. Again the extent of
dispersion is not predicted, although the error is between the results
of the ethylene-isobutylene systems and the air system.

Next the temperature effects upon model prediction were studied
using two system on a one meter, Chromasorb 102 column. Acetone injected
by a liquid syringe and ethylene injected by the Carle valve were chosen
to also confirm the previous results. The data for acetone are given
in Figure 12, and those for ethylene in Figure 13. In both cases the
input function is given at the beginning of the series of graphs.
Because temperature effects upon gas velocity and molecular diffusivity
approximately cancel, the Peclet number for both cases is approximately
constant, independent of temperature.
Figure 12 Chromatograms for Acetone on Chromasorb 102

a. Input.
b. Chromatograms at 100°C
c. Chromatograms at 125°C
d. Chromatograms at 125°C (magnification)
e. Chromatograms at 150°C
f. Chromatograms at 150°C (magnification)
g. Chromatograms at 175°C
h. Chromatograms at 175°C (magnification)
i. Chromatograms at 200°C
j. Chromatograms at 200°C (magnification)
THIS IS A PLOT OF Y/A VS. DIMENSIONLESS TIME FOR M RO = 0.22320C AND A PECLET NUMBER = 7806.00000
PLOT OF SYSTEM RESPONSE
0 = IMPULSE RESPONSE, 1 = CONVOLVED RESPONSE TO INPUT FUNCTION
2 = ACTUAL DATA FROM GAS CHROMATOGRAPH

ACETONE AT 100 DEG C, 43 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN

THIS IS A PLOT OF Y/A VS. DIMENSIONLESS TIME FOR M RO = 0.223200 AND A PECLET NUMBER = 7806.00000
ACETONE AT 125 DEG. C., 43 CC./MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
PLOT OF SIMULATED AND ACTUAL SYSTEM RESPONSE, 0 = SIMULATED OUTPUT, 1 = ACTUAL SYSTEM DATA

1.00E 00 x*********x*********x*********x*********x*********x*********x*********x*********x*********x

9.00E-01

8.00E-01

7.00E-01

6.00E-01

5.00E-01

4.00E-01

3.00E-01

2.00E-01

1.00E-01

0.00E-01

1.00E 00 2.40E 00 3.20E 00 4.00E 00 4.80E 00 5.60E 00 6.40E 00 7.20E 00 8.00E 00 8.80E 00 9.60E 00

THIS IS A PLOT OF Y/A VS. DIMENSIONLESS TIME FOR \[ M_{RO} = 0.460000 \] AND A PECLET NUMBER = 7806.000000

ACETONE AT 125 DEG C, 43 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
ACETONE AT 150 DEG C, 43 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
PLOT OF SIMULATED AND ACTUAL SYSTEM RESPONSE, O = SIMULATED OUTPUT, I = ACTUAL SYSTEM DATA

THIS IS A PLOT OF Y/A VS. DIMENSIONLESS TIME FOR M RO = 1.098462 AND A PECELUT NUMBER = 7806.000000

ACETONE AT 150 DEG. 63 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
ACETONE AT 175 DEG C, 43 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
PLOT OF SIMULATED AND ACTUAL SYSTEM RESPONSE. 0 = SIMULATED OUTPUT, 1 = ACTUAL SYSTEM DATA

-4.77E-07 8.00E-01 1.60E 00 2.40E 00 3.20E 00 4.00E 00 4.80E 00 5.60E 00 6.40E 00 7.20E 00 8.00E 00

THIS IS A PLOT OF Y/A VS. DIMENSIONLESS TIME FOR M RO = 1.594440 AND A PECLET NUMBER = 7806.00000

ACETONE AT 175 DEG C, 43 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
ACETONE AT 200 DEG C, 43 CC/MIN FLOW RATE, ON A CHROMASORB 102 COLUMN
This is a plot of Y/A vs. dimensionless time for M RO = 4.177459 and a Peclet number = 7806.000000

Acetone at 200 deg C, 43 cc/min flow rate, on a Chromasorb 102 column.
Figure 13  Chromatograms for Ethylene on Chromasorb 102

a.  Input.
b.  Chromatograms at 280°C.
c.  Chromatograms at 50°C
d.  Chromatograms at 75°C
e.  Chromatograms at 100°C
f.  Chromatograms at 125°C
g.  Chromatograms at 150°C
h.  Chromatograms at 175°C
This is a plot of Y/A vs. dimensionless time for MRC = 0.200907 and a PECLET NUMBER = 7189.69?CCO
This is a plot of Y/A vs. dimensionless time for m = 0.085793 and a Peclet number = 7199.67900

Ethylene on a CHROMASORB 102 column, 28 deg C, 43°C/min, helium.
<table>
<thead>
<tr>
<th>T (°C)</th>
<th>X on Chromatogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00E+00</td>
<td>X</td>
</tr>
<tr>
<td>3.60E+00</td>
<td>X</td>
</tr>
<tr>
<td>3.20E+00</td>
<td>X</td>
</tr>
<tr>
<td>2.80E+00</td>
<td>X</td>
</tr>
<tr>
<td>2.40E+00</td>
<td>X</td>
</tr>
<tr>
<td>2.00E+00</td>
<td>X</td>
</tr>
<tr>
<td>1.60E+00</td>
<td>X</td>
</tr>
<tr>
<td>1.20E+00</td>
<td>X</td>
</tr>
<tr>
<td>8.00E-01</td>
<td>X</td>
</tr>
<tr>
<td>4.00E-01</td>
<td>X</td>
</tr>
<tr>
<td>0.00E-01</td>
<td>X</td>
</tr>
</tbody>
</table>

**Notes:**
- The plot is of Y/A vs. dimensionless time for the reaction rate constant (k_reac) = 0.200907 and a Peclet number = 7189.699200.
- Thylene on a Chromosorb 102 column, 75 deg. C, 43 cc/min. Helium.
This is a plot of Y/A vs. dimensionless time for M Re = 0.243952 and a Pecllet number = 7189.699000

Ethylene on a Chromosorb 102 column, 100 deg. C, 43 cc/min. Helium.
This is a plot of y/x vs. dimensionless time for m ref. 0.294000 and a Peclet number = 7199.697600

Ethylene on a Chromasorb 102 column, 150 deg. C, 43 cc/min. Helium
<table>
<thead>
<tr>
<th>Pressures (E) Co</th>
<th>Chromatogram Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.000E00</td>
<td>++ + + + + + + + + +</td>
</tr>
<tr>
<td>4.500E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>4.000E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>3.500E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>3.000E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>2.500E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>2.000E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>1.500E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>1.000E00</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>5.000E-01</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>0.000E-01</td>
<td>+ + + + + + + + + +</td>
</tr>
</tbody>
</table>

This is a plot of y/a vs. dimensionless time for M Re = 0.271200 and a Peclet number = 7189.79000

Ethylene on a Chromasorb 102 column, 175 deg. C, 40 cc/min. Helium
Consider the acetone data first, as shown in Figure 12. In general, the ability of the model to depict the data accurately increases as the temperature is increased. As expected from heat of adsorption concepts discussed earlier, the retention or peak times decrease as the temperature increases. In this system, the thermodynamic parameter \( mR_0 \) increases from 0.223 at 100°C to 4.18 at 200°C as expected. At temperatures of 125°C and higher, the representation of the data by the model appears quite acceptable for design purposes.

The ethylene data shown in Figure 13 show the same effect, although it is more pronounced. In fact, at the highest temperature studied, 175°C the predicted chromatogram deviates appreciably from the actual data.

Both the acetone and ethylene data were obtained on the same type of column, a chromasorb 102 porous polymer, under similar conditions. Because the Peclet numbers will be similar in both systems, it appears that an unknown transport mechanism which is temperature sensitive as well as material dependent is responsible for the differences between the data and the prediction. Because the solid is a porous polymer, it is possible that the original assumption of a thin adsorbed layer on the adsorbent surface and no intraparticle diffusion is not valid. This might account for the differences between the observed differences between the acetone and ethylene systems because ethylene is a smaller molecule and would tend to exhibit larger intraparticulate diffusion effects. The use of the more complicated model which includes the transport parameter \( N_{tOG} \) offers a possible area of study. The term \( N_{tOG} \) itself is relatively temperature-insensitive but interactions
between the various system parameters $P_e$, $mR_0$ and $N_{t0G}$ may be sufficient to account for this behavior. These topics will be investigated thoroughly in future work.

The technique of numerically convoluting the theoretical impulse response with the input pulse as measured experimentally appears to be satisfactory. The results are qualitatively correct, and the areas computed under the convolved response using normalized data, deviate from unity by less than 0.1%. Finally, the program through adjustment of $mR_0$ is able to match the times of peak appearance for the model and data in an efficient manner. This allows for the comparison of the models solely on their ability to accurately describe the sample dispersion which appears now as a most important factor in reliable system prediction.
VII. CONCLUSIONS

The data reduction program, in its present form, is capable of generating a simulation of a gas chromatograph then comparing that simulation to actual system data. The program is capable of convoluting any model derived thus far and allows for the addition of added variables such as $N_{OG}$ to give a better simulation.

There are still integration problems in the program if the number of points to be integrated is small and the curve is peaked. This is a problem inherent in finite point integration, and is solved by considering more points. However, the program is limited to 1500 time increments because of restrictions in the WATFOR compiler used. FORTRAN G and H compilers are available, but the RPLOT subroutine will not function with these units.

The equilibrium adsorption model, a simple, two parameter equation was evaluated with data to check the data reduction program. It was found that the model exhibited the basic characteristics of the data, but under certain conditions it did not predict the disperse data. It was found that prediction was more satisfactory at higher temperatures, suggesting a temperature-dependent transport mechanism which is sensitive to the samples considered. A likely candidate is the intraparticle diffusion of the sample. Future model work will proceed in this direction using the data reduction program to compare theory with experiment.
VIII. REFERENCES


IX. APPENDIX A - Data Reduction Program

1. Variable Listing
2. Data Input Instructions
3. Program Flow Diagram
4. Program Listing

The appendix was not included in the report because of its length. A copy may be obtained upon request from:

Dr. Peter K. Lashmet
Rensselaer Polytechnic Institute
Systems Engineering Division
Troy, New York 12181