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I, INTRODUCTION

Because of the strong influence of elastohydrodynamic (EHD) lubrica-
tion upon the failures of heavily loaded rolling contacts, the EHD problem
has received considerable attention in the past dgcade. Comprehensive
review of the progress on EHD up to 1965 was made by Dowson [1] and
Archard [2] and more recently was covered by Mcgrew et al [3].

For the most part, the emphasis of EHD, is still on the film
thickness level and the film thickness distribution within the contact.

On the analytical side, there have been film thickness formulae developed
by Grubin [47, Dowson and Higginson [57), Archard and Cowking [6] and Crook
[7], and Cheng [8]. Within the range of moderate speeds and loads (below
500 in/sec (12.7 m/sec) and 100,000 psi (6.89 x 10° N/m’) max. Hertz
stress for steel contacts), and within a limited range of pressure-
viscosity coefficients, these film thickness theories have been shown

to agree reasonably well with the measured film thickness by Crook [9],
Sibley and Orcutt [10], Christensen [11], and Dyson, Naylor, and

Wilson [12]. The good agreement between the above theories and experi-
ments has led to a wide acceptance of using Dowson-Higginson type of
formulae to predict EHD film thicknesses.

For high load and high speed cases, the prediction of film thickness
by using Grubin or Dowson-Higginson formula is grossly inadequate. This

fact has been demonstrated by the film thickness measurement by



Kannel et al [13] using the X-ray technique. The X-ray data has
consistently shown that the dependence of the minimum film thickness
upon load under heavy loads is far higher than that appeared in the
Dowson-Higginson theory.

Several explanations have been suggested as the possible cause for
discrepency between the measured film data and those calculated by the
isothermal theory. These are: 1) the heating effect at the inlet region,
2) the inability of the viscosity to arise with pressure according to
the static pressure-viscosity experiment during a short time interval,
and 3) loss of viscosity due to high-shear.rate at high speeds.

The inclusion of heating effects in the Grubin-type inlet analysis
has been examined thoroughly in a recent report by Cheng [14]. The
thermal analysis can account for a major part of the loss of film gener-
ating capacity at high speeds, but it fails to show the high load-dependence
as observed in X-ray data. Consequently, further work is needed in
determining the effect of a reduced pressure-viscosity coefficient and
the effect of a shear-rate-dependent viscosity upon the EHD film
thickness formation.

The effect of reduced pressure~viscosity coefficient cannot be
examined by the existing Grubin or Dowson-Higginson formula, since in
both formulae the assumption of a high pressure-viscosity coefficient is
required. To develop film thickness data valid for conditions approaching
isoviscous cases, it is necessary to extend the full EHD solution to
regions of high loads and low pressure-viscosity coefficients. Such

has been the major objective of this research,



IT. SUMMARY OF EHD FILM THICKNESS FORMULATION

It is well known that the ratio of the EHL film thickness to the

effective radius is governed by three non-dimensional parameters, the

speed, load, and pressure-viscosity coefficient parameters. A survey of

all EHL film thickness formulae shows that both the nominal film thickness,
ho, or the minimum film thickness hmin’ in a line or point elastohydrodynamic
contact can be put into the following general expression:

I n n n
1 =-2= 3
=CG U th ¢y

ehl=g

where C is a constant and n and n, are the exponents for the non-

10 "2’ 3

dimensional lubricant, speed, and load parameters respectively. The
distinction between nominal and minimum film thickness is shown in

Fig. 1. Values of C, ny, o, and n, based on analyses by Grubin [4],
Dowson and Higginson [5], Crook [7], Archard and Cowking [6], and Cheng

[8], are listed in Table 1. It is seen that the agreement among various

theories is very good with regard to load or speed dependence,

III. GOVERNING EQUATIONS

Referring to [15], the two coupled equations governing the pressure
and film distributions in an elastohydrodynamic line contact between two
rollers (Fig. 2) are:

1. The Reynolds Equation
L%
h-h £

dp _ S
rodie 6u(u1 + u2) < h3 ) (2)

2, The Elasticity Equation

X
.2 w2 £ i
h=h +3-2% . ".j mAe =l ey g (3)
2R mE o £ - x"l

3



In non-~dimensional form, these equations become

§2=<£§_>§—<.H_;Ei/_—§‘ (4)
dx i g o )

167, 2 - x -
u=1+—:§f-12—(’2‘—2-%f-}(€) zné—f%[—ld'é) (5)

where the non-dimensional variables are defined in the Nomenclature.
Since the primary interest in this investigation is to extend the present
EHD solutions to extremely heavily loaded regions, the pressure distri-
bution in nearly all of the contact region would coincide with the
Hertzian elliptical profile. Taking advantage of this fact, one may
divide the problem in two parts, the 1lnlet and the exit solutions. The
inlet solution determines the film thickness level in the conjunction,
and the exit solution furnishes the details of the protrusion before the
film terminates.

Numerical solutions for the inlet as well as the exit region differ
slightly with that presented earlier [15] in order to make provisions
for viscosities varying arbitrarily with pressure. The numerical

procedures for the inlet analysis are documented in the Appendix.

IV. DISCUSSION OF RESULTS

Considerable data have been obtained for a lubricant having a
constant pressure-viscosity coefficient. These data cover a wide range
of pressure-viscosity coefficients from a nearly isoviscous lubricant,

-4 . 2 -8 2 . .
o - o0, toa =10 in /1b (1.45 x 10 ~ m"/N), which is comparable to the

coefficients for mineral oils. The load range has been extended to



maximum Hertz pressures equal to & x 105 psi (2.76 x 109 N/mz) for steel
contacts. Some typical runs were also made for lubricants with a
composite pressure-viscosity coefficients, and for the pressure and

deformation profiles in the exit region.

A. Inlet Solutions for Oils with a Constant Pressure-Viscosity Coefficient

Results in this section were obtained for the most commonly used
viscosity model for which the viscosity varies exponentially with the

pressure.

= p &P 6
w= e (6)

For this model, data were generated for the speed parameter, ﬁ, from
10_13 to 10-8, for the load parameter, Ehz’ from 0.003 to 0.012, and for
the pressure-viscosity parameter, G, from 50 to 3000. These results are
tabulated in Table 2,

The effect of the speed parameter on the dimensionless center film

thickness, Hc‘ is showvn in Figs.3a through 3e feor yarious Ph
z

The straight line relationship between Hc and U holds true over a wide

and G.

range of U for all cases. However, the slope of these curves varies
slightly with respect to the pressure-viscosity parameter G as well as
the load parameter. The exponent for U in the power relation,

n
H =cT 2 )
c
is 0.625 for the case of G — 0. This value agrees well with the
isoviscous theory provided by Herrebrugh [16]. At higher values of G,

the exponent n, is found to be 0.69 and 0.725 for ihz equal to 0.003 and

2
0.012 respectively. These values seem to agree well with that appeared

in the Dowson-Higginson's formula.



The effect of load on Hc can be seen in Figs. 4a through 4e in which

Hc is plotted against th with U and G as parameters. The load dependence

is measured by the slope of these logrithmic plots. The load exponent

n, varies slightly with respect to G, but is practically unaffected by
-

U. For G- O, ng is equal to -0.5 which again agrees very well with
Herrebrugh's isoviscous solution; for G = 3000, n, is reduced to -0.36

3

which is slightly higher than that given in Dowson-Higginson formula,

Unlike the influence of load or speed on Hc, the dependence of film
thickness upon the pressure-viscosity coefficient is not linear on the
log-log plot., This is demonstrated in Fig. 5 by plotting the variation
of Hc with G. For high values of G, the power relationship prevails and
the expoment for G in this region is found to be approximately 0,6, which
confirms the Dowson-Higginson theory.

For small value of G, the curves become flat,and HC becomes in-
dependent of G and approaches to the isoviscous value provided by
Herrebrugh. Fig. 6 gives another representation of these results in
terms of the parameters proposed by Moes [17]. 1In this plot, the number
of non-dimensional parameter is reduced by one. One can also obtain
similar plots in terms of the three parameters proposed recently by

Greenwood [187].

B. Inlet Solutions for Oils with Composite Pressure-Viscosity Coefficients

A few computer runs were also made for oils for which the relation be-
tween fn W and p is represented by two straight lines with a steeper line at
low pressures and a flatter line at high pressures. This is known as
the composite exponential model, which was first introduced by Allen,
Townsend, and Zaretsky [19] in the study of spin friction in elliptical

contacts,



Fiz. 7 shows the viscosity and pressure relationship for the
composite exponential model suggested in [19]. The discontinuity in slope
at the cut-off pressure has been smoothed out in order to avoid any
possible numerical difficulties introduced by this abrupt change in slope.
Typical results using this method are shown in Table 3. It is seen that
the difference between the straight exponential model and the composite
exponential model is insignificantly small., These numerical results
definitely support the argument put forth recently by Bell and Kannel [21].
Using a simple Grubin type analysis he showed that the inlet film thickness
is largely governed by the pressure-viscosity effect in the low pressure
region. Unless the cut-off pressure in the composite exponential model
is very small, otherwise the reduction of the pressure-viscosity dependence
at high pressures introduced by the composite model has very little in-

fluence upon the film thickness,

C. Typical Outlet Solution

Results in the outlet section show no significantly different results

from the previous EHD solutions. Figure 8 shows typical pressure and

film profiles for ihz = 0.003, G = 3000, and Hc = 10-5. The minimum film

thickness is approximately 807% of the center film thickness and 70% of

the inlet film thickness.

V. COMPARISON WITH EXPERTIMENTS AND OTHER THEORIES

The experimental data which are selected to compare with the present
analytical data are those obtained recently by the X-ray technique
in.Ref. 20, Figs. 9a to 9e show a plot of the measured
minimum film thickness against the maximum Hertz stress for various rolling

speeds and ambient temperature. These were obtained with a pair of



crowned-cone disks; the lubricant is a synthetic paraffinic hydrocarbons
with no additives.

Since the rolling speeds for these tests are in the range where the
heating has a significant influence on the film-forming capability, direct
correlations between the present analytical data and the X-ray data will
not be meaningful unless some corrections for thermal effects are made
on the analytical data. Such corrections were achieved by using the

thermal reduction factors provided by Cheng [14].

A. Thermal Reduction Factor

In Ref. {14], it was shown that the thermal reduction factor, Pp
defined as the ratio of the actual film thickness to the isothermal film
thickness based on the Dowson-Higginson formula, is a function of the

following five parameters:

2
b (u, + uy)

Qm = TR T = heating parameter
fo
G = oE' = non-dimensional pressure-viscosity coefficient
B' = % = non-dimensional temperature-viscosity coefficient
o
= hz
= —= d
th oL load parameter
u, - u
S = —l—;——g = slip
1

These thermal reduction factors are obtained by solving the coupled energy
and Reynold equation at the inlet region using the Hertzian deformation

profile. The heat convected by the lubricant and the heat conducted by



the disc are both considered.

The lubricant properties for this synthetic paraffinic oil for an am-

bient temperature of 150°F (338.S°K) are estimated as

W = inlet viscosity = 1.45 x 10-5
& = pressure-viscosity -4
coefficient =1,5x 10
B = Temperature~-viscosity
coefficient = 7700
Y = pressure~temperature-

viscosity coef-

ficient = 0,145

Kf = thermal conductivity of
the lubricant = 0.0216

lb—sec/in2 (0.1 N-sec/mZ)

2

. 2 -8
in /1b (2,18 x 10 " m /N )

°r (4280 °k)

5

o_ . 2 -5 0 2
R~in /lb (1.17 x 10 K~m /N)

1b/sec-oR

)

(0.1725 N/ ___ o,

Fig. 10 shows the variation of the thermal reduction factor with the heating

parameter Q corresponding to the lubricant properties for this sythetic par-

affinic oil, Using this curve, the values of wT for the ambient temperatures

of 150 and 300°F (338.5 and 421.5°K), and the rolling speeds of 5000 and

20,000 RPM are given as below

T = 150°F (338.5°K)

N=5000 RPM  N=20,000 RPM
Q 0.31 4.9
o 0.76 0.31

B. Comparison of Results

The present analytical results are compared with experimental X-Ray data [20]

T = 300° (421.5%)

N=5000 RPM N=20,000 RPM
.0373 0.596
0.92 0.67




at To = 150 and 300°F and N = 5000 and 20,000 RPM in Figs. 1la through

lle. Along with the experimental data, the calculated film thickness based
on earlier EHD theories by Grubin [3], Dowson and Higginson [4], and

based on more recent isoviscous formulae by Herrebrugh [16], and Bell and
Kannel [21],

In these figures, the minimum film thicknesses are plotted against
the maximum Hertzian pressure. In calculating the Grubin's film thickness,
a reduction factor 0.75 has been used in order to convert the nominal
film to minimum film thickness. TFor the data in the present analysis,

a factor of 0.8 has been used in converting the center film thickness to

the minimum film thickness. For Grubin, Bell and Herrebrugh's work, the
results are given in terms of minimum film thickness; therefore, no
reductions are required. Figure 11 shows the comparison of the experimental
results with all theories without any corrections for thermal effects,

Op = 1. It is seen that the measured data come very close to the

isoviscous data by Herrebrugh indicating that 'all the pressure-viscosity
effects may have been lost due to the combined thermal and non-Newtonian
effects.

Among the isothermal theoretical data, the Grubin or Dowson-Higginson
formulae (based on Go = 4950 at'lSOoF) predict minimum f£ilms almost one
order of magnitude higher than the isoviscous data. In the range of high
G, the present theory agrees closely with D-H data. In the extremely low
G range where the lubricant is practically isoviscous, this theory shows
a complete overlap with Herrebrugh's isoviscous data. The recent theory by
Bell and Kannel [21] based on a time-delayed pressure-viscosity model
predicts a load dependence much stronger than all other EHD theories.

Since this trend is much closer to that observed at higher loads, it is

10




very temptive to believe their approximate inlet analysis using the time-
delayed pressure-viscosity model, However, a closer examination of their
conclusion that the dependence of film thickness upon 10/11th power of
maximum Hertzian stress IS a consequence of the application of Grubin's
method for an isoviscous lubricant (o — 0). Vhile the Grubin's approach
yields an accurate solution for lubricant with high o, it is grossly inade-
quate far isoviscous fluids, This is further evidenced by the lack of agree-
ment between the Grubin's load exponent for the isoviscous case (10/11)
and the Herrebrugh's load exponent (1/2) which is obtained from a complete
EHD analysis. Thus, the strong load dependence found in Bell and Kemnel's
theory may be a direct consequence of the Grubin-type approximation rather
than a result from the use of time-delayed, pressure-viscosity model.
Figure 11b shows the same comparison as in Fig. 1lla except with @T
included in all the calculated film thickness. By accounting for
thermal effects, the experimental data agrees reasonably well in the
low-load region with the present theory for G = 3000, particularly in
trends. For high loads, there seems to be a drastic reduction in film
thickness as the load increases. This sudden increase in load dependence
appears to be caused by the loss of pressure-viscosity dependence at high
loads.
The comparison for three other operating conditions is shown in
Fig. llc through lle. The general features of these curves are in
same as those in Fig. 11b except the level changes slightly., For
N = 5000 RPM and 1500F, the experimental thickness in the low-load range
approaches an equivalent pressure-viscosity coefficient of 2000 which is
slightly lower than the value for 20,000 RPM. For the cases of the

higher ambient temperature, further reduction of the pressure-viscosity

11




effects are evidenced.

Figure 12 plots the intercepts between the experimental curve
and the curves for various values of G calculated from the present theory.
These are interpreted as the variation of the effective pressure-viscosity
coefficient with the increase of load. The drastic reduction of pressure-
viscosity dependence at high pressures is clearly seen in these curves.,
VI. CONCLUSIONS
1. The extensions of isothermal EHD results in the extremely heavily
loaded region and in the region of moderate and low pressure-

viscosity dependence show that:

a) The dependence of film thickness on load in the region of
heavy loads and low pressure-viscosity dependence is slightly
stronger than that predicted by the previous isothermal EHD

theories., The load exponent in the film thickness formula,
Eq. (1), is -0.5 instead of -0,26 given in Dowson-Higginson

formula [5].

b) The power relationship between the film thickness and the
pressure-viscosity parameter, G, only holds at high values of
G. As G decreases, the dependence of film thickness on G
becomes steadily weaker. For G — 0, the film thickness is

independent of G as predicted by Herrebrugh [16].

2, The loss of pressure-viscosity dependence in the high pressure region,
as illustrated by the composite exponential model [197], has a negligible

effect on the film-forming capability in the inlet of an EHD contact.

3. Comparison between the calculated minimum film with the present
theory and the recent measured, X-Ray data for a synthetic paraffinic,
lubricant, shows that:

12



a)

b)

In the moderately loaded regime, there is little dispute
between EHD theories and the measured data., They agree well
both in trends and in magnitude.

In the extremely heavily loaded regime, the measured film shows
a drastic reduction of film with respect to the load, and this
sharp reduction does not appear to be predictable by the present

isothermal EHD theories.
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TABLE 1 CONSTANTS AND COEFFICIENTS FOR
EHD FILM THICKNESS FORMULAE
L W 3 3
R hz
CONTRIBUTOR c ny n, ny REMARK
GRUBIN 1.65 0.73 [0.73 |- .18 FOR NOMINAL FILM, h_, f = ®
CROOK 1.68 -.75 {0.75 |- .25 FOR NOMINAL FILM, h_, f =
DOWSON & a _
HTCCINSON 1.26 0.6 0.7 |- o0.26 FOR MINIMUM FILM, h_. , ¢ = ©
ARCHARD 1.37 0.74 |[0.74 |- 0.22 FOR NOMINAL FIIM, h_,
AND POINT CONTACT, a/b = 1.0
1.625 0.74 |0.74 [~ 0,22 FOR NOMINAL FILM, h_, f 2 5.0
1.56 0.736 |0.736 [- 0.209 FOR NOMINAL FILM, h_, f = 2.0
CHENG a
1.415 0.725 |0.725 |- 0.174 FOR NOMINAL FILM, h_, £ = 1.0
1.22  0.688 [0.688 |- .066 FOR NOMINAL FILM, h_, % = 0.5

a
b

16

= ratio of semi-major to semi-minor axis of tlie contact
ellipse (a/b —» = line contact)
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TABLE 2. ISOTHERMAL EHL FILM THICKNESS FOR FULL RANGE OF
PRESSURE VISCOSITY COEFFICIENTS, Hc VS. -l: WITH -I;hz AND G
AS PARAMETERS.
?hz = .003 th = .006 552 = .009 Ehz = .012
) T T T T
1x107° 1.9069 x 10 3.3718 x 10711 4.6116 x 107 5.7839 x 10711
50 5 x10° 6.3775 x 10722 1.1304 x 10°XL 1.5589 x 107 1.9437 x 10712
2 x 107 1.4737 x 1071%  2.6158 x 10712 3.6388 x 10712 4.5004 x 10712
1 x10° 4.8547 x 10020 8.3793 x 10713 1.1864 x 10°72  1.46607 x 10”2
1 x10° L3322 x100 2,127 x 2001 2.766 x 10710 3.304 x 1071}
500 5 x 16'6 4.616 x 10712 7.510 x 10722 9.853 x 10712 1.183 x 10711
2x10°% 1,129 x 1071%  1.870 x 10712 2.472 x 10712 2,998 x 10712
1 x10% 3851 x 1073 6452 x 10713 8.597 x 10713 1.062 x 10712
 1x107° 9.980 x 1072 1.519 x 107! 1.973 x 10"t 2,273 x 107!
1000 5x10°°% 3,548 x 10712 5.521 x 10°Y2  7.085 x 10712 8.381 x 10712
2 x 107 8.979 x 10717 1.430 x 10712 1.851 x 10717 2.231 x 10”12
¥'1u; 1078 3.142‘; 10713 5.106 x 10723 6.665 x 10712 8.287 x 10713
1 x100 6661 x 1002 9.724 x 1072 1.211 x 10710 1.408 x 1011
2000 5 x100% 2.434 x 1002 3,632 x 1002 4.562 x 10712 5.351 x 10712
2x10°% 6.302 x 10713 9.789 x 10713 1,247 # 10712 1.500 x 10712
1x10°  2.308 x 10750 3.613 x 1072 4.689 x 1013 5.770 x 10713
— rrii; io”s 5.060 x 1072 7.19 x 10712 8.89 x 10712 1.02 x 10”12
3000 5 %100 1.890 x 10712 2.70 x 10°22  3.39 x 10712 3.94 x 10712
2x107% 4.940 x 1001 743 x 1008 g.48 x 10713 1.14 x 107 }2
T 1x10° 1.80 x 1005 2.79 x 10720 3.65 x 1013 4.33 x 10713
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TABLE 3. COMPARISON OF EHL FILM BETWEEN THE STRAIGHT
EXPONENTIAL MODEL AND THE COMPOSITE EXPONENTIAL MODEL,

STRAIGHT MODEL COMPOSITE MODEL
-I;hz -Hc kij U
0.003 1 x107° 5.060 x 10712 5.012 x 10712
5 x 107° 1.890 x 10712 1.876 x 10712
2 x 1078 4.940 x 10733 4.986 x 10713
1 x 108 1.800 x 10733 1.831 x 10713
0.012 1 x 107> 1.020 x 10”1 1.022 x 101
5 x 107° 3,940 x 10712 3.962 x 1072
2 x 107° 1.140 x 10712 1.135 x 10712
1x 1078 4.330 x 10713 4.295 x 10712
For straight model oE = 3000
For composite model alE = 3000
ozzE' = 240
6

Cut off pressure = 55,000 psi (2.03 x 10 N/m2)
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APPENDIX A - NOMENCLATURE

semi-major axis of an elliptical contact, in (m)
see Eq, (A-18)
semi-minor asix of an elliptical contact, in (m)
see Eq. (A-18)

constant used in the film thickness formula

-2 %
16 th/H

— * 2

48 U/(H )
2 2
1-v 1 v, . , 2 2 .
() o (7 m)
1 2
Young's Modulus for rollers 1 and 2 lb/in2 (N/mz)
Q/ED
film thickness in (m)
inlet film thickness at x = - b in (m)
dp *
reference film thickness at ax = 0, h = hc in (m)
center film thickness at x = 0 in (m)
minimum film thickness in (m)
h,
/h

hrf

/R
hc

/R

grid point numbers for the x coordinate

grid point numbers at x = X

19



nl,nz,nB

HJ |

hz

exponents used in the film thickness formula

indices in Eq. (A-11)
iteration number
see Eq. (A-12,A-13, and A-14)

thermal conductivity of the lubricant 1b/secoR (N/sec—oK)

pressure

P
h
/g

see Eq. (A-11)

2
uo(ul + u2)

2K T

Kf o
Rle/

(R1 + R2)
radius of roller 1 and 2 in (m)
(u1 - U2)
/u
1

ambient temperature of the lubricant °r (OK)
p,o(u1 + u2)
LA S

2E'R
velocity of rollers 1 and 2 ln/sec (m/sec)
ccordinate along the film in (m)
reference coordinate at dp =0 in (m)

dx
20



% B

® 1

Rl m

gl

coordinate separating the inlet region
into two subregions in (m)

coordinate separating the outlet region

into two subregions in (m)
x/b

coordinate at the termination of the film in (m)
¥ Phz in /m'2 \
pressure-viscosity coefficient /1b \ /N)
temperature-viscosity coefficient oR(OK)

pressure-temperature-viscosity oy . 2 On 2 .
coefficient R-in /1b k K-m /N)

- 2 - 2
viscosity of the lubricant 1b sec/in (F Sec/in )

inlet viscosity 1b-sec/in2 (N-sec/in2>

“u

37 3
density of the lubricant lb/in KN/m >

* 1b 3 I'/N 3
density at x - x /in \ /m )
p/po

3 /N, 3
ambient density 1b/in ( /m )

Poisson's ratio of rollers 1 and 2

dummy variable for x

thermal reduction factor
see Eq. (A-10)
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APPENDIX B

Numerical Solution for the Inlet Region

The inlet half of the contact zone, which is bounded by -« < X < 0,
is further divided into two subregions as shown in Fig. 13 . The first
subregion is bounded by - < X < ;a’ and the pressure in this region is
obtained by direct integration of the Reynolds equation considering the
film profile being known in each iteration.

In order to improve the accuracy in the direct integration of Reynolds

equation in this region, a new dimensionless function, q, is introduced,

where
g=1-1 (A1)
"
Using this function, Eq. (4) takes the form
—k
- pg-0/
ix 5 dp H3
G/ % * *
where C_ = 48U/(H )2 and h =h orH =H
5 c c
Integrating (A2) gives
- —%
x - g-P/_
Ty = d(4n ) ( 9) dF 3
4() = ¢, J"_w Lo — g (43)

The pressure is then obtained by solving numerically the following implicit

equation using Newton's method.

wE) = —— (A%)
1 - q(x)
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It was found that this procedure gives a much improved convergence of the
pressure profile in the first subregion at the inlet.

For viscosity varying exponentially with the pressure

P

h=e (A5)
d(Ln'E) =
ap = o (A6)
q=1 - e-Q/P (A7)
S D Y (a)
o

In the second subregion, the pressure and film profile are solved

simultaneously by combining Eqs. (4) and (5) to form

3 =2 Ff = = —%
1T{Lilﬁ-c5[:1+c1(lz‘ -%TJ P(@)znﬁ;—"[@)-ﬁ =0 (A9)
dx - el p
165, /"
Where C1 = th /H
Written in finite difference approximation, Eq. (A9) becomes, Yk = 0,
where

¢ - (Hk—lj)3 (2 - Pk-l)_ “of1 o) ;k-l—zz _

k - - = 2
My, ("k - xk-l)
ke o s
3) R QGenD - & ] (A10)
3=1,3,5... Pr-3

Equations (Al0) are a set of n equations for k = ka + 1 to ko’ and
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n = ko - ka. The Q(k-%,j) are the quadrature formulae for the singular

logarithmic kernel given in [227].

3
Q(k-%,j) = ¥ [K (k,j) + K (k-1,3j) - K (k_,j) - K (k -1 ')] (All)
2’J 2[__1 m ’J m ’J m O’J m fo) ’J
m=1
and
1 v,
Kl(k,Jj) = 2—5—3_ (-3vj - vj+2) - _Lsa 5 - uj(zn[uj] - 1) (A12)
J
) 2v,
Kz(k,Jj) =% (vj + vj+2) + ——12 (A13)
i 38,
3
1 v
Ky(k,3) = ?5; (-vy = 3v)) i U (znluj+2| - 1) (Al4)
where
5, =&, . - E
3 gJ+1 gJ
4y =8y T R
(Al5)
2
%y 3\
Vj =3 (En,u ] -3
u 2 u 2
7 = v - =17._ __j+_2]
viT Uy vy - TS J Uiz V2 6

Similar to the procedures used in [15], Eqs. (Al0) are solved by
the Newton-Raphson method in the following manner for Pk.
Linearizing Eqs. (Al10) and neglecting the high order terms, one

obtains
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k -1
o]

A E,Wk § nt1 n
2 ('a—Pf ) (APj) = - (‘i’k) (A16)

=k
a

[

where the superscripts n denotes the values at nth iteration. The

pressures at (nt+l)th iteration are simply

P, o m e (o)™t (A17)
J J J
oY,
The coefficients SN take the following expressions for various
A
values of j:
e 18
— A
%, AFFP (A18)
J
where
“%
A= —— Q(k-%,]) for j #k, (A19)
ka
c.,C P }
175 % ( £ 1 .
= =2 = -1 = A20
AT L P(ka)>Q(k 24) for § =T, (420)
£=1
B=20 for j # k or k-1
() ;
-1 ‘ 1
L ey C ) (5%, * 2
- _ = k k-1 25 oP K-k
T %k-1 M-y B Mgy
C. —* dp
2 —2 P,
pk_l/ k-%

for j = k the sign in front of é—— is plus and for j = k-1 the sign is

) M-z
minus.
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The steps used in obtaining the inlet solution for a given set of

H, Ehz’ G are:
1. Assume a pressure profile for -« < x < 0.
2. Calculate H(;) for - @ < x < O,
3. Calculate the following integral
- —%
x H- P/

= _ ¢ dUnw f 0\ 45
O I e G )

H
for ~o < x < x .,
a

_ * 2 q(x)
4, Calculate U = i%gl- a

I(xa)

5. Solve Eqs. (A-16) and (A-17) using Newton-Raphson method.
6. Check convergence for pressure, If not, repeat calculations
starting from Step No., 2,

7. The converged solutions are represented by

U, P(x), and H(x).
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FILM SHAPE HERTZIAN PRESSURE

1
e b——b
h,—NOMINAL FiLM

h.—CENTRAL FILM
—MINIMUM FILM

Pmin
b —SEMI-W|DTH OF HERTZIAN CONTACT

Figure 1. - lllustration of nominal, central, and minimum film
thickness.
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Figure 2. - Geometry of lubricated rollers.
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Figure 3(a). - Variation of central film thickness with rolling speed, for G = 3000,
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Figure 3(b). - Variation of central film thickness with rolling speed, for G = 2000,
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Figure 3(d). - Variation of central film thickness with rolling speed, for G = 500,
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Figure 4(a). - Effect of load on central film thickness, for G = 3000,
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Figure 4(c). - Effect of load on central film thickness, for G = 1000,
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Figure 4(e). - Effect of load on central film thickness, for G = 50.
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Figure 6. - Isothermal EHD results using dimensionless parameters by Moes [17].
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Figure 11(a). - Comparison of X-ray measured film with isothermal

theories, Ty = 150° F, N = 20, 000 rpm.
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Figure 11{b). - Comparison between measured film and calculated
film corrected for thermal effects, T, = 150°, N = 20, 000 rpm.
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Figure 11(c). - Comparison between measured film and calculated
film corrected for thermal effects, T, = 300° F, N = 20, 000 rpm.
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