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ABSTRACT

STRAETER, TERRY ANTHONY. On the extension of the Davidon-Broyden class

of rank one„quasi-Newton minimization methoas to an infinite dimensional

Hilbert space with applications to optimal control problems. (Under the

direction of HANS SAGAN).

The various elements of the class of rank one, quasi-Newton mini=

mization methods are distinguished by the manner in which a particular

parameter is chosen at each iteration. For various choices of this 

parameter,conditions are found which guarantee that the algorithm's

iterates converge to the location of the minimum of a quadratic func-

tional. Also, conditions are found under which the iterates generated

by the Davidon-Fletcher-Powell method, the method of conjugate gradients,

and the rank onelquasi-Newton method with a particular choice of the

parameter are the same. An idea for Minimizing a function by a rank

one, quasi-Newton method due to Powell is extended to infinite dimen-

sional Hilbert spaces. Also considered is a modification of the rank

onelquasi-Newton methods in order to minimize a functional subject to,

linear constraints. Conditions are found which guarantee the convergence

to the location of the constrained minimum of aquadratic functional.

The application of these rank one, quasi-Newton:algorithms to various

classes of optimal control problems is investigated. Also, the

algorithms are applied to a sample optimal control problem. The results

are compared with the results for the same problem using other known

first-order minimization -techniques.
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1. INTRODUCTION

1.1 Background and Preview

In the past few years the problem of finding the location of

the minimum value of a real valued function of n real variables

by numerical methods has been the subject of a great deal of

research, [1,10,11]. Several iterative procedures have been developed

to solve the problem. Much of the work has been directed toward

deVeloping algorithms which use,the function value and its gradient

to locate the minimum by'iteration. This type of algorithm is usually

referred to as a gradient or first-order method. Historically the

method of steepest descent was the first such method. In order to

accelerate convergence the method of conjugate gradients was devel-

oped later by Hestenes and Stiefelt10 and then was applied to the

minimization probiem by Fletcher and Reeves [1.31.]. Later first-order

methods were developed which were inspired by Newton's second-order

method.

Two of the most effective of these techniques are due to Davidon.

In 1959 [r] Davidon proposed two techniques for solving the problem.

The first method, hereafter denoted by D1, was ziven in the mRin body

of his report. In 1964 Fletcher and Powell m modified D1 and

established that for any real valued function the method is stable,

that is, does not diverge. (This modified D1 we will denote by DFP.)

Moreover, they showed that for a real valued quadratic function of

n variables, the DFP algorithm converges in a finite number of steps.

In fact, at most n + 1 steps are needed. In 1968 Myers [2i showed
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the relationship between the search directions of the DFP method and

those of the conjugate gradient method if the function to be minimized

is a quadratic function'of n variables. Also in 1968 Horwitz and

Sarachik [20 extended the DFP method from an n dimensional

Euclidean vector space to an infinite dimensionallreal Hilbert space

and established convergence of the iterates when the functional to

‘.
be minimized is quadratic. The result due to Myers was also extended

to any real Hilberi spade: In 1970 Tokumaru„ Adachi, and Goto Ddi

also extended the DFP algorithm' to.an infinite dimensional, real

Hilbert space and gave a comparison of the DFP method, steepest descent

and the conjugate gradient method on some sample optimal control

problems.

The second method due to Davidon, denoted herein by D2, was

outlined in the appendix to the 1959 report M. Later in 1968 [8]

he published a modification of the second method and established

conditions insuring its convergence to the minimum of a quadratic

function of n variables in a finite number of steps and insuring

the stability of the method. In 1969 [9] Davidon proposed a second

modification of the second method. In 1967 Broyden E] proposed a

family of methods based on a parameter a the choice of which was

left unspecified. If a= 1, then under certain conditions, Broydents

method and the second Davidon method, D2, are the same. In 1969

Goldfarb Ell established convergence of the iterates of the Broyden

algorithm for a class of real functions of n variables when a is

chosen by means of a linear minimization technique (i.e., a one -

dimensional search).
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The purpose of this paper is to extend the Davidon-Broyden family

of algorithms to an infinite dimensional real Hilbert space, to estab-

lish conditions guaranteeing convergence 'of the iterates for various

algorithms in the family, and to apply the family of algorithms to

optimal control problems.

In chapter 2 of this paper, the Davidon-Broyden family of

algorithms is extended from an n-dimensional Euclidean vector space

to an infinite dimensional real Hilbert space. In the case of a

quadratic functional defined On a real Hilbert space, conditions are

given which guarantee convergence of the iterates to the location of

the minimum for Goldfarb's method of choosing the parameter and for

a far more general choice of the parameter. In this approach the

need for a linear minimization is eliminated.

In chapter 3, the relationship between the Davidon-Broyden

algorithm with Goldfarb's method for choosing the parameter, the DFP

method, and the method of conjugate gradients is examined. Also

conditions are given which insure that all three methods generate

the same search directions. Since the step size is chosen the same

way for each method, the same sequence of iterates'is generated.

In chapter 4, a modification in the method of choosing the

search directions in the extended Davidon-Broyden algorithm is

examined. This modification was suggested by Powell in 1970 [3C] in

an article reviewing the state-of-the-art for finite dimensional

optimization. For this modified method, conditions insuring con-

vergence of the iterates to the location of the minimum of a quad-

ratic functional are given.



In chapter 5, the basic algorithm ,as given in chapter 2 is

modified so that it can be applied to a constrained minimization

problem. The constrained problem is to find the location of the

minimum of a functional J(x) defined on a real Hilbert space H,

finite or infinite dimensional, subject to the constraint that

Ax = b, where b is a fixed element of another real Hilbert

space H and A:H is a bounded linear operator.

The mechanics of applying the algorithm to various classes of

optimal control problems are examined and discussed in chapter 6.

In many optimal control problems, only controls lying in a subset

of the Hilbert space are considered. For example, those 
11[9,21]

functions whose range is contained in U, a compact,convex subset

of R. However, the,basic algorithm discussed in chapter 2 updates

the neW estimate of the location of the minimum based only upon the

functionalls value and its gradient at the old estimate. The new

estimate can then lie anywhere in the Hilbert space. Because of this,

to apply the basic algorithm to an optimal control probleml its con-

trol region U must be an Euclidean space. Park [213 has examined
various classes of optimal control problems with a compact,convex

control region and by means of certain transformations has reformu-

lated these problems so - hat their new control region is an Euclidean

space. The equations necessary to apply this basic algorithm to these

transformed problems are also derived in chapter 6.

In chapter 7, the basic algorithm and its modification are applied

to one of the sample control problems given by Tokumaru et al. The

results are summarized and compared. The results given by
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- Tokiimaru. et'al; [36] comparing the conjugate gradient, steepest

. descent, and DFP methods for the same problem are presented. The

Tokumaru. et al. results show the DFP method superior in terns of

rate of convergence. The DFP method is then compared with our rank

one algorithm..

1.2 Outline_Of.Enown Methods

Let H denote a real Hilbert space with,the inner product

( , )• Let R denote the real numbers. A functional J:H->R

is said to be differentiable at x if there exists a -linear func-

tional ux:H->R such that for h E H

J(x + h) - J(x) = ux(h) + el(h)

el(h) 
.

where -4 0 II h u .L> 0 (Frechet differential). If such a

11 h II
functional ux exists, then it is unique [33]. Moreover, by the

Riesz representation theorem there exists a g(x)eH such that

(g(x),h) = ux(h) for all h E H and g(x) is given by

dJ(x + th) I

dt = (g(x),h)

t=0

We call g(x) the gradient of the functional J.

Suppose we wish to find the location of the minimum value of

a differentiable funCtional J:H ->R with gradient ex) at each

point x. The three iterative techniques, steepest descent, conjugate

gradients, and DFP„ could be applied to finding the location of the

minimum of J. These algorithms are all descent Methods and are
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only distinguished from each other by the manner in which.the search

direction is computed. If xo e H is the initial estimate of the

minimum and i = 01 the algorithms are as follows:

Step 1: Compute 3(xi) and g(xi); if Ig(xi)1

where ail

= 0 stop,

called the step size, is

otherwise,

Step 2: Let xi+1 = xi + aisi

a real number and si e H is called the search direction. ai is

chosen so that J(xi + nisi) <J(xi + Tsi) for all T e R. The

search direction si for the above-mentioned methods is chosen in

one of the following three ways.

If si = - g(xi), then the algorithm is the classical method

of steepest descent C25] .

If si - g(xi) + Si_isi_i where Oi -1
(g(x1_1),g(xi_1))

and so = - g(x0) then the algorithm is called the method of con-

jugate gradients [11, 18, 19, 23, 25, 510 .

Finally we have the:DFP method, if si = - H(i)g(xi) where

the H(i): H -->11 i = 0,1,2 ... are a sequence of linear operators

defined iteratively as follows:. H(°) is a strongly positive, linear,

self -adjoint operator on H and H(i+1) = H(i) + A(i) + C(1) where

A(i) and C(i): H-/11 are so that if x e H

(g(xi),g(xi))

( Yi/x) (4\A"-i1 ( (1)
x -   1/%4-/yi

bay J



where

and

where

yi = g(x1+1) --g(xi)'

(i) (ai,x)
C x ai

(ajai)

oi = - xi

7

We set i + 1 = return to step 1, and continue.

A summary of the results known concerning,the application of

these three techniques to quadratic functionals will be given at the

end of the next section.

1.3 Quadratic Functionals

Let A:H->H be a linear, self -adjoint operator such that

where

m x 2 s (x,six) <M II xIt2

sup (x0Ax) inf (x1Ax)
M = x0e 11 1 2' m

x#e
11 x 2

and where we assume that 0 Gra <M. Hence, 11 A II = M [2] .

71Since m> 01 A-1 exists [26] and Ais also self-adjoint.

Moreover, we have

(3)



We call the functional J:H --)R given by

, 1
A
,J(x) = Jo + (x,b) + -x,Ax)

a quadratic functional on H where b is a fixed element in H

8

(6)

and Jo e R. Using (5) we can compute the gradient g(x) .of the

quadratic functional givmn by (6) as follows:

dJ(x + th) d(J0 + (x + th,b) + .1(x + thIA(x.+ th)))

dt dt

and we have

d(J0) (h,b)d(t) d(x/h)

dt dt dt

1d[c x „ A x ) + 2t(h Ax ) + t (h,Ah

dt

(h,b) + (h,Ax) + t(h,Ah)

dJ(x + th)
dt

t=0

= (h,b + Ax).

Therefore, by (2), the gradient g(x) of the quadratic

. functional J(x) is given by

g(x) = b + Ax. (7)

The following well known theorem states a necessary and sufficient

condition for 3i' to minimize J(x):
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Theorem 1.1: A necessary and sufficient condition that X minimizes

J(x) as given by (6) is that g(X) = 0 where 8 denotes the zero

element of H.

Proof: Suppose g(x) = 0 then A; + b = 8 by (7) so that

b - AK, hence if x / x

J(x) - J(x)

since

Jo + (X,b) - Jo - (x,b) - in(x,Ax)

- +(1, t-Gc,ix? + (xlfia) Ax)

b= - Ax

Therefore, J(X) - J(x) = - - x1A(1 - x)) since A = A* an&

((x - .),A(x -x)) > - .11? > 0 by (3). Hence,

J(x) - J(x) -••ag. m6 - xf1 2 < O. So is the location of the

minimum of J.

Conversely let us suppose that J(;) < J(x) for all x e H.

If we let h E H, h fixed, then for t E R we have

J(X + th) - J(;) > O. (8)

Hence,

0 < Jo + (x + th,b) + + th,A(X + th)) - Jo - (X,b)- 22--(x,AX)

= t (h,b ) + t (h,AX) + t2(h,Ah)

t
2
M= th,g(x))+ f-tth,AhD t(h,g(x)) 

+ —2-11h 11 
2



Now suppose

stants and M > 0,11 h 112 < 0, we can force

by letting t

contradicts (8).

10

(h,g(1)) < 0; then since h 2 and (g(i-E),h) are con-

. t
2 

2
 m2

t(h,g00) +-- NI! h < 0

So this would imply J(x + th) - < 0 which

Sinvaarly, if (h,g(x)) > 0 by letting - t 0- we

have t(h,g(x)) 2 2M h 2 < 0 which leads to a contradiction to (8).

Hence., it must be true that (h,g(x)) = 0, and since h was an arbi-

trary element in

Theorem 1.2: If

ratic functional

H it follows that g(x) = 8.

3.1c denotes the location of the minimum of the quad -

J given by (6) then

x = - A -lb.

Moreover, if x,h E H are such that x + h = x then

Proof: By theorem

since A-1 exists.

(9)

h = - A 
1 
g(x) (10)

1.1 and (7) 8 = g(1) =A1 + b, so that ; = - A-1b

If x + h = x, then g(x + h) = ga) = 8. So,

h) - b = 8, Ax + Ah = b. Hence, Ah = - (Ax + b) = g(x) by

Therefore, h = A-ig(x).

Of course, the equation h = - A-1g(x), is the basis for the well

known Newton -Raphson method for minimizing a functional on a Hilbert

space [22] .

Other useful results due'to the fact that J is a quadratic

functional are the following: If x,x* e H, then

A-1(g(x) - g(x*)) = A-1(Ax + b - Ax* -b) = x - x*. (11)
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Hence, if we let - y = g(x) - g(x*) and o= x - x „ we have

= a. (12)

Moreover, we can see that s E H and a E R are such that

x
* 
= x + as (13)

then by (7) and (13) g(x*) = Ax* + b = Ax* + b + aAs. .So that by (7)

we have again

g(x*) = g(x) + aAs. (14)

Also, for all xo e H the smallest closed, convex set containing the

points x E H at which J(x) <3(x0) is bounded [25.] We denote

this set by Skli = conv(? E H:J(x) < J(xoD.

It is known [201.1 that if a quadratic functional is minimized by

the conjugate gradient method the ith search direction is given.by

si = - 11g(xi)11 (15)

Horwitz and Sarachik have shown for a quadratic functional that

the ith search direction of the DFP method is given by

si = - R(0)(g(xi),H(1)g(x1))
g(xj)

(g(xj),H(0)g(xj)).
(16 )

If H(°) is the identity denoted by I, then (15) and (16) are the same

directions. Since the step size is picked in the same fashion for both

methods they will generate the same sequence of iterates Ea] .
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The convergence of the iterates t41 the locatidn of.the minimuM

by the method of steepest descent, method of Copjugate gradients, and

the DFP algorithm has been established [2] D6] for the case where

the functional to be minimized is quadratic.

A note concerning the notation to be used thiNiUghout this paper

would appear to be in order. It shall be our practice that if refer-

ence is made to an equation, identity or relation in the same chapte4"„

only the number at the right-hand side of the page willbe:enclosed

in parenthesis. However, if the reference is to an equation, etc.,'

in anOther chapter, then the chapter number followedby a period-and then.

by the reference number will be giVen. Theorems will be numbered

sequentially with a chapter prefix, that is,as theorem 1.1, and

will be referenced in that fashion. The nuMbers enclosed in square

brackets refer to the references in chapter 8.

Also herein we shall denote by Lr[to,tiz] the real Hilbert

space of Lebesque measurable functions u = u(t)- defined on

Ctoltil with range in Rr (Euclidean r space) such that

J. dt < CO
to

where .u, (t), u2(t), ur(t) are the components of u.
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2. THE CLASS OF DAVIDON-BROYDEN ALGORITHMS

In this chapter: we shall discnss"the extension to an infinite

dimensional Hilbert dace of the Davidon-proyden minimization algorithms

alluded to in chapter 1. We shall also relate conditions insuring the

convergence of the iterates of various memberg of this family of—algorithms

in the case where the functional to be minimized is quadratic. In the

case of a finite dimensional Hilbert space, Broyden [4] called this

family of algorithms "quasi-Newton methods." Special cases of this

family have been called "optimal variance algorithm" by Goldfaxt D-31
and "rank one variance algorithm" by Davidon Dij. The author's contri-

bution is to show the relationship of these methods to each other, to

extend their applicability to infinite dimensional real Hilbert spaces,

and toestablish conditions insuring convergence of the iterates. For

the latter purpose, new proofs of convergence of the algorithm's various

manifestations, were necessal.y.

2.1 Outline of the Class of Algorithms

Let J:H Ane a differentiable fUnctional with gradient g(x).

Let xo E H be the initial estimate of the location of the ininimum of

J, and let V(
0)
 be a self-adjoint; strongly positive linear operator

from H onto H. Let Mo > mo > 0 be such that mo I < V(°) <No 
I.— — 

If J, the functional to be minimized; is quadratic as in chapter 1;

then V(0) is an estimate of A
1
. We compute J(x0) and g(xe) and

and obtain the first iteration as follows:



Step 1: Let
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x* = xn - anV(n)gn (1)

where gn denotes g(xn) and an is a scalar, the choice of which

is discussed later. Let

sn v(n)gn (2)

and compute J(x*) and g(x*) denoted by g*; if kg= 0, a
necessary condition for x* to be the location of the miniMum, we

stop. If J is a quadratic functional and g* = 01 then by theorem

1.1 x! is the location of the minimum.

Step 2: Compute the residial vector

that is,

or

r
n 
= V

.(n)
g* -

(n).
gn + anV

(n)
tbn

rn = V(n)(g* - (1 - an)gn)

rn = V(n)Yn ansn

where ya= g* - gn. If rn = 0, then set an = 1 and return to

step 1.

(3)

(4)

(5)



Step 3: Define scalars

and

and. let

Step 4: Let

Pn = (gtrn)

(En,rn) 
7n =

pn

if 7n - 1

if 7n = -

v(n+1) = v(n) (An - 1)  B(n)

Pn

where B
(n)

:H -)H is defined such that for all x E H

15

(6)

(7)

(8)

(9)

B(11)x = (x,rn)rn. (10)

Step 5: If J(x*) < J(xn), let xn+1 = and, consequently,

J(xn+1) = J(x*) and gn+1 = g*.; otherwise, let so thatxn+1 = xn

J(xn.f.1) = J(xn) and gn4.1 = gn. Set n = n + 1 and go to step 1.,

The elements of the class of algorithms outlined above are distin-

guished by the manner in which the parameter an is chosen with each
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iteration. DavidonN, Broyden [9, and Goldfarb proposed tech-

niques for choosing an in the finite dimensional case. For Davidon's

rank One variance algorithm an = 1 for a]l n, however, the scalar

An given by (8) is chosen so that certain inequality constraints are

satisfied. These constraints insure that DaVidon's V(n) remain

positive definite. Goldfarb's optimal. Variance algorithm required that

an be dhosen-so that 3(xn .+ asn) be minimized with respect to a.

The Broyden quasi-NeWton method requires only that an be chosen so

that (V
(n))1 

exists. For a quadratic functional theorem 2.7 proved

later shows that for ,v(o) 
> 

or 
v(0) A-1 either Davidon's or

Goldfarb's, method of chodsing an satisfy Broyden's criteria..

For the remainder of chapter 2, we shall assume that the functional

to be minimized is.qUadratic as Aefined in section 2 of chapter 1. We

shall make note of any results which are independent of the type of

functional to be minimized.

2.2 Theorems That Are Independent of the Choice of an.

Theorem 2.1: B(n) as given in (10) is a self-adjoint positive

operator for all n, for any choice of an.

Proof: If x e H, then

(x„B(n)x) = (x,(x,rn)rn) = (x,rn)2 > 0

and if xly e H, then

(x,B(n)y) = (x,(y,rn)rn) = (y,rn)(x,rn) = (yy(x,rn)rn) = (y,B(n)x)
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Theorem 2.2: V(n) is self-adjoint for all n, for any choice of

an•

n-1

V(n) = v(o) ): (Ai - 1) Proof: B(i) by (9), and V(°) is self-

i 
Pi

=0

adjoint by definition. By the above theorem, the B(i)'s are self-

adjoint and the finite sum of self-adjoint operators is self-adjoint.

Notice that the two theorems proved above are independent of the

type of functional that is to be minimized.

We have seen in chapter 1 that the location of the minimum x

of'a quadratic functional is given by X = xn -A-1gn. Also recall

from chapter 1 that the change in x from one iteration to the next

for the Newton Raphson method is given by -A-1gn. In the algorithm

outlined in section 1„ the change is -dg(n)gn hence, the name

quasi-Newton was given to the finite dimensional form of these

algorithms'by Broyden [4]. The search directions for the algorithm

outlined in section 1 are given by -V(m)gn and we want V(n) to

play the role of A-1. Hence, it is desirable that the sequence of

operators V(n) retain from one iteration to the next the following

property: if for some u e H, A-lu = V(n)u then A-lu = V(n+1)u.

By the definition of the vector rn we have the following general

result.

Theorem 2.3: If u E H is such that A-lu =V(n)u and B:H -411

is a linear operator such that B = for some real

then A-lu = Bu.

Proof: Since A-1(g* - gn) = x* - xn by (1.12) and (n)x* = xn - gn

by definition, then
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xt - xn = -anv(n)gn = A-1(g* - gn) (1a)

and by (3)

rn = V(n)(g* gn) anV(n)gn'

Therefore, rn = V(n)(g* - gn) - A-1(g* - gn) by (11) and hence

rn = (v(n) - A 1)(g* - gn).

Since A
-1
u = V

(n)
u we have

So

(V(n) - A-1) u = 19

(rn,u) = ((v(n) - A-1)(g* - = ((g* -

= (g* - gn1,19) = 0

by theorem 2.2 and equations 42) and (13). Hence, the hypothesis

(B -A-1)u = UB(n)u,imp1ie

MB(n)u = m(uirn

Therefore,. Bu = A u.
; •

= . 0 . rn =

(12)

(13)
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Since V(n+1) = V(n) + (2t - 1) B(n) we have the following.
Pn

'Corollary 1: If V(n)u = A -1u for some u e H, then V(n+1)u = A-lu.

In chapter 1 we showed that for a quadratic functional

-1/A kg* - gn) = x* - xn.

The following theorem gives the fundamental reason for our choice of
v(n+1),

that is, so that when Yn - 1, then V(n+1) and A-1 will

agree on the space spanned by g* - gn.

Theorem 2.4: (Basic theorem). If yn - 1, then

v(n+1)(g* gn) = x* xh

that is,

v(n+1)y
h ' 

an
sn

Proof: If rn = 0 then by (10) . B(n) is the zero operator, therefore
v(n+1) =

V(n), so that V(n+I)Yn = ansn.

v(n+1)
Yn -

Otherwise, consider

1.0
ansn = Vk iyn + 

(An - 1) 
(rwyn)rn - ansn

pn
(by (9))

= rn anV(n)gn + 
CNn  

(rn,yn)rn - ansh (by (3))
p

- 1) 

n

= 
 - 1)

-1* (rn,yn
pn

= r11{

(An - 1)

( Pn + 7nP4
pn

= rn 0 = 8

(by (2))

(by (6),(7))

(by (8))



Notice that the basic theorem is independent of the fact that

is a quadratic functional. The following corollary combines

theorems 2.3 and 2.4 to show that each iteration,
if 7n

20

raises the dimension of the subspace, on which V(n) and A 1 agree,

by one. Hence, ,some authors D.6] have calla the finite dimensional

form of this algorithm a rank one method.

COrollary I: (Fundamental property of V(n)) V(n)yi = aisi for all

i < n if 7,1 # - 1 :for' j = 0 1,...,n

Proof: (Bymathematical induction)

(1)V y = aoso (by theorem 2.4)

Assume V(n)yi,= misi for all i <: n. Consider V(n+1)yi for
•

i = n. Then by theorem 2.4, V(n+1)yri = aosn. 'Otherwise, for i < n,

since A-lyi = misi by (1.12) and V(n)yi = aisi, A-1 and V(n)

agree on yi. The corollary to theorem 2.3 implies V(n+1)yi = aisi.

The above corollary is most useful in later convergence arguments

and, hence, we have named it "the fundamental property of V( .
n)

In order to facilitate the proof of some later results, we shall

now find another way of expressing (2\n - 1)/Pn.

Theorem 2.5: If yi #- 1, then

(7\i - 1)

Pi
- (I[(i)Yi - = - (riai)-*.
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Proof: (Ai - 1)/pi = (yi/(ii +1) - 1)/P1 = - (pi(vi +

.-(pi-(ri,gi)) 1 = ((riA*) (ri'gi))-1 = (ri'yi)-1

= -(V(1)yi -mist/Y.1)-1

ln view of this, (9) can be written as

v(n+1) = v(n)  B(n)

and since cnsn = A-lyn, we have

v(n+1) = v(n)

(V(n)yil - ahsn
,3'

11)

B(n)

((r(n) - A -1)yn,yn)

which yields the following theorem:

Theorem 2.6: If V(°) > A-1, then V(n) > A-1 for all n and

similarly, if V(°) <A-1, then 11.(n) < A-1 for all n.

Proof: We proceed by induction and assume that V(n) > A-1. If

V(n41) = V(n), i.e., vn = - 1, the result is trivial. Otherwise,

by (15) and (10),

(x,(V(n+1) - A-1)x) = (x,(V(n) - A-1)x)  
(x,rn)2

(yn,(V(n) - A -1)yn)
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-1) ) (x'(V(n) A -1,)Yn)  >2 
From the C.B.S. inequality [2] (xk/

(n) - A ix/

(Yrger(n) A-1)Yn) —

The second part of the theorem is obtained by merely considering

(x,(A-1 - V(n+1))x) instead.

The following theorem gives a condition under which the V(n)'s

form a monotone sequence of self-adjoint bounded linear operators.

Theorem 2.7: If V(°) >A-1, then 17(n) < < < 17(°) for

all n. Similarly, if V(°)< A-1, then V(n) > 1/(n-1) > V(°)

for all n.

Proof: By theorem 2.6, if V(°) > A-1, then V(n) > A-1 for all n.

If v(n+1) = IT(n),

Otherwise, we have

yn - 1, then the assertion is obvious.

(x,(1)-(n+1) v(n)).)  (x,B(n)x)
< 0

' (Yn,(17.(n) _ A-1)yi„) —

by (15). The inevAlity holds since theorem 2.1 gives (x,33(11)x) > 0....

and from theorem 2.6 V(n) - A-I >_ O. The second part of the theorem

follows by considering V
(n) 

- V
(n+1) 

instead.

Corollary 1: If V(
0) 

-
1 

<A or V(
o) 
>A-1, then the V(n)ts form

a monotone sequence of strongly positive self-adjoint linear operators

v(o) and ,A, . Moreover, there exists a strongly positive'

self-adjoint operator V such that lim V(n)x = Vx for allx E H.
- co

Proof:. Aorm a bounded monotone sequence of strongly

positive, self-adjoint opérators by theorems 2.2.and 2.7. That is, if

< A-1,; we have V(b) i< V(1) 1T(2) < < V(n) <... < A-1, This
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i plies the existence of a strongly positive, self-adjoint linear

operator V such that V(n) converges to V pointwise [11.

Theorem 2.8: If V(°) < A-1 or V(°) > A-1 and 71.21 - 1 for

all n and if S is the closure of the space spanned by {yd), then

lim V(n)x = A-lx for all x e S independent of the choice of the
n- co

an's. (By closure of the space spanned. by a set M, we mean the

smallest topologically closed subspace containing M.)

Proof: For any x e S there exist pi E R such that

co

x = PiYi.

i=0

Consider

11A-lx - v(n)x11=11(A-1 v(0)x11=(A - V -1 (n)

n-

(A-1 - V(n)) piYi

oo

i=0

13iyi

v(n))

i=n

-1

By the corollary to theorem 2.4, (A-1 - V(n)) piyi = O. Since

i=0

IT(o) > A-1 or

be that

(16)

V(°) < A-1 by theorem 2.7 and its corollary, it must

Mv(n)0 < 11A-10 or < MV(0)M. So MA-1 - v(n)Il is bounded:

for all n, and by (16) it follows that the remainder must go to zero,
co

i=n

i.e., Riyi -40 as n So we have lim - V(11)xil= 0.
h-->
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Corollary: If V(°) <:A71 or V(°) >A71 and Yn - 1 for all n

and the yi form a basis for H, then V(n) point-wise

independent of the choice of an.

Notice that all these results have been established without

regard to the choice of an. We called rn as defined in (3) and (4)

a residual vector. The reason for this terndnologrwill now be

explained.

Suppose rn = 0 for some n. Then V(n)yn = ansn„ and

if (V(n))-1 exists, yn = an(V(n))-1V(n)gn = - angn by (2) and by

(5) we have yn = g* - gn = - ahgn. By (1.14) g* = gn anAsn.

Therefore, anAsn = - angn, so that sn = - A-lgn. Hence, since

Asn =-V(n)gn we have V(11) 
A

-1 
= gn.

As we have seen in chapter 1 (theorem 1.2), the minimum of

is attained by x= xn -A71gn. In the basic algorithm outlined in

section 1 of this chapter, step 2 says if rr = 8 we let an = 1

and repeat step 1. Then the new x* is x* = xn - V(n)gh and we

have shown above that sn = - Nagn, hence, Vngn = A-1gn. Therefore,

by theorem 1.2 x* is the location of the minimum of J. This

explains thereasonfor step 2, and we have proved the following:

Theorem 2.9: If rn = 8 and (V(n))-1 exists, then by applying

step 2 of the basic algorithm -we let an = 1 and we find that the

resulting x* given by x* = xn -V(n)gn is the location of the

minimum of J.



2.3 Convergence if an is Chosen by a

One Dimensional Minimization process

There are two rather obvious ways to choose an at each step:

(1) let an = 1 for all n„ and (2) let ari be such that

25

J(xn + ansn) < J(xn + Asn) for all real A: Both cases have been

investigated by Davidon and Goldfarb and convergence has been established

in the case of a quadratic functional on a finite dimensional Hilbert

space.

We shall now demonstrate the convergence of the algorithm of

section 1 to the location of the minimum of a quadratic functional•

on an infinite dimensional Hilbert space when an is chosen for

every n so that

J(xn + ansn) < J(xn + Asn) (17)

for all real A. This, of course, implies that xn./.1 = x* in step 5

of the algorithm given in section 1. If an is chosen in this manner,

then, by necessity,

dJ(xn + 7\sn) 0

aa

at A = at.

That is, (g*,sn) = (g(xn + ansn),sn) = 0 so that from (1.7)

we have

a -
n (sn,Asn)

(sn„ga)
(19)
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Therefore,

J(x1) = Jo + (b,x1) + 2x1,Ax1) (by def.)

= Jo + 
(b
,
x
o
+a

o
s
o 2 
) + 1.(x

0 
+ a

o 
s
o 
,A(x

o 
+ 

o 
s 
o
)).

= Jo (b5x0) 1(xo)Axo) cGo[Sso,b)
2

2

+ (so,Axo i(so,Aso)

2
= J(x0) + ab(s0„go) + 11(s0,As0) (by (1.6)

= J(x0) 1 (s.,g0)2

In general,

2 (s0„Asc)

J(xn+1) = 3(xo) -
(si, gi)2

2(si„Asi)

(by 19)

Since,.inf ,J > - and J(xn./.1) < J(xu), it must be that

so that

(si,gi)2
lim J(xnia) J(x0) - lim  > m
11-400 11.-)co

1- 
2(si)Asi)

(silgi)2 <

i=0 
2(s As.)



which implies that by necessity

(silgi)2
lim   - 0
i-,00(s.„As.)
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(20)

Since its derivation in no way depended on (2), (20) must be true

for any descent method. This result and the following lemma are given

by Horwitz and Sarachik [201]. They used them to prove convergence of

Ddvidon's first method, steepest descent, and the conjugate gradient

method in an infinite dimensional real Hilbert space for the problem

under consideration.

Lemma 2.1: If gn as n -->100, then xn converges in norm to the

location of the minimum = - A-11b.

Proof: 0 < (xn +A71b,A(xn + Arib)) = (xn + Arlb,gn)

<lxn +

Now ilxn + A-114 is bounded for all n, since for all n, xn is

contained in a bounded set, namely 2;c = cony% H:J(x) < J(xo as0 

in chapter 1. Hence, lira (xn + A-1b1A(xn + Arlb)) = 0 and since A
n-toc,

is strongly positive, we have lim xn + A71b = a.

We can now prove a general convergence theorem for this case.

Theorem 2.10: If there exist'positive reals a,,13 such that

GI <V(n) < g for all . n larger than some N and if an is chosen

as in (17), then lim Hxn + ll = 0, that is, n converges in
n-400

norm tothe location of the minimum.

Proof: Since for all u E H, Jur < (ulAu) <MILI12 we have

1  <  1  < 1

Mi1u112 (ulAu) milul12



and since allue (u1V(n)u) < Our for all n,

Since V(n)

Therefore,

1  <  1 <  1 .
Plia2 (u,V(n)u) Jur

is self-adjoint, we have IIV(Oull < pOull [2].

(sk,gk)2 > (sk,gk)2 

( sic, Ask) mIlsk112

(gk,v(k)gk)2 > (gkiv(k)gk)2

MMV(k)gkM2 — M2-

a Olgke)2 2
> 0 0 ki d' > o
—Mr ligkfla

and by (20) (sk,gk)2/(sk,Ask) -40. Therefore, ligke -40 as

k -400 and by leMma 2.1 xk -*- A-1b in norm.

Corollary 1: If V(°) <A-1 or V(°) >A-1 and

in (17), then J(xn) converges to the minimum of
0
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at is chosen as

J(x), and moreover

xt converges in norm to the location of the minimum.

Proof: If V(°) < A-1, then by theorems 2.6 and 2.7 we have

V(°)' <V(n) < -1 for all- n. Hence, Mt' < V(n) < 
m 

for all n.
- 

2.4 Convergence with a More General ,Choice of an

Let {aa denote a sequence of real numbers. We then apply

the algorithm outlined in section 1 using these {a}'s in step 1

to minimize the quadratic function discussed in chapter 1, section

Select a subsequence K = (akn) so that J(x*) < J(xkn) for all

3.



n = 0,1,2,... To simplify the notation, let us write n for kn.

Then we have

or

since

Then

gn = go + (g1 - go) + (g2 - gl) + + (gn - gn-1)

n-1

gn = go Yi

1=0

yi gi+1 - gi,

V(n)gn = II(n)gn +

n-1

1=0
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V(n)yi. (21)

From the corollary to theorem 2.4, V(n) yi = aisi = A ai. Further,

from step 5 we have xl = xo + 0.0 and x2 = xl + al = xo + ao + al,

etc., so that

xn = xo
1=0

and so on. From equations (1), (21), and (22), we have

X! = xn, - anV(n)gn

= Xo +

1=0

-1 n-

- - an(V(n)go +

(22)



Hence,

n-1

x* = xo - atV(n)go + (1 - at) al

i=0

NoW let us consider

Ox* - (- A-1b)11

Hence

Hx* ATibll

A-1b + xo - atV(n)go + (1 - an

n-1

A-lb + A-1Axo - anV(n) go + (1 - an) ) ai

i=0

(A-1 - anV(n)) go + (1 - an ai

30

(23)

(211-)

In order to establish convergence, we must show that Rx* + A-1130

can be made small as n -)im. Let S;co = conv{x e H:J(x) < J(x0)).

as in chapter 1. Since it is known that Sx is bounded, EOM, we

can prove the following:

Lemma 2.2: If n(an - 1) ->0 as n --> m and there exist c6,(3 > 0 suchth
n-1

aI < V(n) < PI and Yn - 1 for al l n, then 1 - an)

as n -too.

Proof: Daill = = miv(i)gim (by definition).

So,

0



i=0

Consider

~IA-lgo - anV(n)goll =
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Hain = lailHv(i)(Axi + < kikalv(i)IIHAHRxill + dv(01. II1A3 (25)

Since xi E Sk is a bounded set, !kill is bounded and since
. o

ai -*1 as i. ai is bounded. By hypothesis HIT(i)ll < (3 and

IIAII < so everything on the right side of (25) is independent of i

and 11 oill < L for some L > 0 and all i. Hence,

an) y < .1(1 - an) I • L • n --)0

since (at - 1)n -*o as n

Lemma 2.3: If go is an element of the smallest closed subspace

containing the yi's denoted by S(yi)„ if the V(n)ls are uniformly

bounded, an -41

11( A-1 - anV(n)) go
as n H>00 and if

-*0 as n

7n 1 for all n, then

Proof: By hypothesis there exist scalars pk such that

g
o 
=

piyi 
and so A-lg

o 
= =

i=0 i=0

(A-1 - anv(q 0.3'.
i=0

1 (n))A - anV

< - an

n-1

1

i=0

I3iYi
1

A - ary

A-1 - anv(n)
i=n

PiYi
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Since AS Piai and

i=0

go =

i=0

Biyi we know Piai
1=0

is bounded for all n and 1391

i=n

'4 0 as n 03. Since an -4 1,

we know that 11 - an l -*O. Hence;
I A-1go anV(n)go -*0 as n ->co.

We can now assert the following:

Theorem 2.11: If go E S(y1), yn / - 1 for all n, if the V(n)

are uniformly bounded, and (an - 1)n -*0 as n ->im; then

II x* + -*0 as n ->00.

Proof: By (24) we have

ilx* + A -/bli = KA 1 - 
niy(0) go 

(1 
'' 
an)

< VA-1 - anV(n)) +

n-1

1=0

n-1

(1 - an) ai

1=0

and by lemma 2.3 the first term goes to zero. By lemma 2.2 the

second term goes to zero.

In this chapter; we have established conditions under which

two Variations of the basic algorithm converge to the location of

the minimum of a quaBratic functional. These are given in theorems 2.1(

and 2.11. In both of these theorems we are most interested in the

convergence question for an infinite dimensional Eilbert space. In a

finite dimensional space of dimension n, we see that for almost any

collection of an's the algorithm converges to the location of the

minimum in a finite number of steps. The conditions on the an's

and the proof are given in the following theorem.
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Theorem 2.12: If 7j / - 1 and aj / 0 for all j = 0,1„...„

and if (V(i))-1 exists for all j, then after at most n + 1 steps

x* = - A-1b, where n = dim H.

Proof: First we show that the yirs form a.linearly independent set

if ri # 0. Assume that (Yi) is linearly dependent for some Z.
i- =0

Therefore, there exist scalars

Yt =

Ri

I -1

is0

such that

PiYi (26)

By (12) and theorem 2.9

(A-1 - VO))y) = rj j=0„1„2,...„Z - 1 (27)

Moreover, by the fundamental property of V(i)

( A-1 -Vtly.=8 for i < j (28)

By operating on (26) by (A-1 - V(l)) and applying (27) and (28) we

have

Z-1

rl = (A-1 - = TM

1=0 i=0

=, 8.

If @.111=0 
are linearly dependent then ri = e. Therefore, by

step 4 of the algorithm mi is reset to 1 ara by theorem 2.9
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the resulting x* is the location of the minimum. Hence, the

2
theorem is true, if (7j:}i.0 are linearly dependent for 2 < n.

Since H is finite dimensional of dimension n, we have at most

n linearly independent y's. Now, if we apply the algorithm a times

and the resulting rn / S, we have generated n linearly independent

y's and they must form a basis for H. Moreover, by the fund.amental

property of V(n), i.e., theorem 2.4 and its corollary, we have

V(n)yi = i=0„1„2„...„n - 1. Since the two linear operators

V(n) and A-1 agree on the yi's, a basis for the space, it must be

that

V(n) = A-1 on the whole space: (29)

Hence, by definition of x*, (29) and (1.10) we have

= xn - anV(n)gn = xn - anA-1gn = xn - anxn -

Now from (3)

rn = V(n)(g* - gn) + anv(n)gil

= A-1(s* en) anA-1,_=fl,

x* - xn + anA-1gn

= x* - xn + anA-1(Axn +.b)

= x* - xn + anxn + anA-lb

=e

(30)

bY (29)

by (1.12)

by (1.6)

by (30)
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So by step 4 of the algorithm an is reset to one and by

theorem 2.9 x* is the location of the minimum.

Many times in this chapter we have proved'results dependent upon

7n - 1. We shall continue to do this in subsequent chapters. For

this reason, we shall investigate the case of 7n - 1. From.(6) and (7)

we have 
- 

(gn,rn) 
which implies that

= rn 7.477:7

(Yn,rn) = 0. (31)

Now we know from theorem 2.9 that if (V(n)) -1 exists and

(31) holds because rn = 0 that convergence is achieved on the next

iteration with an = 1. Also if (31) holds because yn = 0 then

= gn and by (1.7) then Ax* + b = Axn + b or x* = xn. But if

V(n) > 0 this contradicts (1) since gn / 0.

Now by (5) and (1.17) rn = (V
(n) 

- A
_a.
)vn, hence, (31) can beu 

written as

cyn,(V(n) - A -1)yn) = 0 (32)

V
(n) 

> A-
1 or V(n) ‹: A-1and, if then (32) is iMpossoire f_l or

Yn 

v(

O. Theorem 2.6 states that if V(°) > A-1 or 

< 

A then

V(n) < A-1 or V(n) > A-1 for all n.

Moreover, the convergence of the iterates to the location of

the minimum of a quadratic functional assured by theorem 2.10 and

its corollary is independent of 7n. Hence, if yn = - 1 then

at should be computed by (17).
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3. COMPARISON WITH OTHER CONJUGATE GRADIENT TECHNIQUES

If the functional to be minimized is quadratic as discussed in

chapter 1, then Myers [27] and Horwitz and Sarachik Da] have shown
that whenever H(0)= I the DEP technique generates the same search

directions as those given by the conjugate gradient method. Here, we

shall examine the relationship between these two methods mentioned

above and the method discussed in chapter 2 with at chosen as in

(2.17)assuming that the functional to be minimized,is quadratic..

That is, throughout chapter 3 we shall assume that at satisfies

J(xn + must) < J(xt + ?‘st) for all real T., and that

J(x) = Jo + (b,x) + 2(x„Ax)„ as in chapter 1.

Theorem 3.1: If yi - 1 for all i, then the (ad.) generated by

the algorithm outlined in chapter 2 are A conjugate and the (1:)

are A
-1

conjugate, i.e.,

(ai,Aaj) = (Yi,A-1Yj) = (apyi) = 0 if (1)

if 0 < i < k

if 0 < k < i, (2)

and also

(gk,si) =

(k)
iV Au = u-

gi,si)

holds for all i < k. (5)



Proof: (By mathematical induction) By 2.4

so that

.r.„(n)
an = v Yn rn

where an = ansn.

By (1.12) Aao = yol so that

(1) (1)
V Aao = V yo

(n)
rn = V Yn ansn

(r
0,
y
o

)te.
oV

(1)
Aao = V

(o)
Yo

(ro)yo)

(by (2.9) and
theorem 2.5)

ao (by (4) with
n = 0)

.57

(4)

IHence, (a0„Aal) = (a0„A( -alV(1) gl) = -al(V(1)Aaolg1) since A and

V(1) are self -adjoint. Therefore/ (aophal) = -al(aolg1) since

V(1)Aao = ao. Hence, (a0,Aal) = -al.0 since. al was chosen to be

the minimum in the direction sn,(.ao„g1) = 0 by(2.18). Hence, tne

theorem is true for k = 1. We sha11 now assume that (ai,Aai) = 0

if 0 < j<i<k and V(k)Aai = ai if 0 < i < k. By ,(1.7) and (2.1),

gk = b + Axk = b + A(xk_l + ak_1)

= b + A(xila + + + ak _1)

= gi+1 Aai+1 + Aak-1.



Therefore,

(ai,gk) = (6vgii.1) + (ailAalia) + + (ailAak_l)

= 0 + 0 + 0 = 0

that is,

by choice of art since

38

(ailgk) = o (5)

(qi,gi+1) — 0, and the other terms are zero

by the induction hypothesis.' So we have established the first part
r

of (2) for i < k.

Now for i < k we can see that

(ai„Aak) = (al, akAV(k)gk)

(ai,Aak) = ak(V(1°Aai„gk).

(by (2.1))

(since A and V(k)
are self-adjoint)

(ai,Aak) = - ak(ai,gk) = 0 (6)

by the induction bypothesis and (5). For a quadratic functional,

Aa. = yi by (1.12), hence by substitution into (6) we have proved (1).

We consider for i < k

v(k+1)A = v(k)Aa
(r Aa )r

k
ai

(rk/Yk)

v(k+1)A6. = Q.
(V
(k)

yk - ak,Aai)rk

(rk/Yk)

(by def. of V(k+1))

(by def. of rk)



oi

= a

(V(k)Yk/Yi)rk

(rk/Yk)

(Yk/l/k)yi) r k

(rkak)

(yk,A-lyi)rk

(rkak)

(Aak,ai)rk
ai   - ai

(rk/Yk)

(since
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(akpilas.) = °)

(by theorem 2.1)

(by the corollary to
theorem 2.4)

(since Aak = yk and
(Aak,ai) = 0 for i < k)

Moreover, by (2.9) and (4)

V
(k+l)

Aak = V 
(k+1) ,(k) 

i1V1)

(rkpy)rk
yk = v Yk 

(5 

(k)
= V yk - rk = ak.

Hence we have established 1, 2, and 3, and the first half of 4. We

know that xk = xk+1 - 5k 
and hence, ak for

i >k. Then gk = Axk + b = Axi + b - A(ai + + ak). Hence,

gk = gi A(ai-1

i-k

SO

(gk/si) = (gi/si) 
1 

(AaI. -J •, a.)

- 1=0
i-k

=(gi,s1) -

j=0

0 = (gi,si) for k < i.

We see from the preceeding theorem that this method is a conjugate

direction method. In light of the remarks at the beginning of this



chapter, the question arises as to how our method is related to the

conjugate gradient and DFP techniques. Since our method is a conjugate

direction method we must have, if 7n 1)- 1 for all n, that the a
n

ts

are linearly independent. For if the (aH)
/

n=0 
are linearly dependent

then there exist scalars such that

S'
L, 

e.

i -0

(7)

So if j < Z we have from (7) that 0 = (apAai)„ which implies

i=0

that Sj(ajlAaj) = O. Hence, pj = 0 since aj I 0 and since A

is strongly positive. Since an = ansn the sn's are linearly

independent.

Notice also that V(0)go = Ir(0) •  1 • gO. If we choose coo = 1

then V(°)go = If(°)(?oogi?) and

v(1)g1 = v(o)g (r olgl)v(0)(g, (1- ac)go)

1 (2? 0, Yo )

(ro/g1)) (1 - mo)(ro/g1) 

(ro,Y0) gl (r°53r0) 
Zo

cii„gi for scalars

i=0

col -

- ab)(ro„gi)

(ro,YO)

(ro,g1)

and cll = 1   The above suggests that for every n there
(ro,Y0)'

exist scalars cin, i = 0, 1, ... n, such that

v(n)gn = v(°)

n

L cingi
i=0

(8)
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We shall now establish (8) and find a convenient way to express the

cin's.

Theorem 3.2: If 73 • - 1 for j = 0,1,2,..., then for every integer

k, there exist scalars aik, bikl cik i = 0„1„...„k such that

[ 

k kal

= V(°) ) aikyi +

i;;b i=o

and

=1T(o

i=0

where Yk = gk+1 gk'

Proof: (By mathematical induction)

bikgi

cikgi

v(o)70 = v(o)(1)yo, 
so Paco = 1.

v(1)y1 = V (o)Yl (ro/Y1)ro
by (2.10)

(ro/Yo)

= v(o)yi (ro,Y1YE(0)3To ctov(1)g by (2.5)

(r0,370)

(9)

(io)

= v(0)
- 1

7.
i=0 i=0

bilgi

(ro/Y1)
where all = 1/ a01 - and b

01 
-

(r0/Y0
)3 an , Moreover,

kro/Y0).



V(1)gi = L c'1g*

iA0

where

c11

1 - (r0„g1)-1[ 

,c01

(1 - 
o 
)(r

ol 
g
1 
)

, •
(ro,yo) (ropyo)

'
as shown in the previous paragraph. The induction assumption is:

there exist aji, bji, and cjil i = 0,1,2, ...,k j= 0,1,2, ...,i.

Such that,

1-1

V(i)yi = V(°) ajiyi

j=0 j=0

and

(i) (o
V gi = V

Since

jigj

v(k+1 , u(k)._ (rioYk+1)/ (k1
)Jk~1 v Yk+1 ( , OF% -,yk + akV(k)gk)

J'k,Yk)

k-1
(ripYk+1), (i= V(°)yk+1 - 

) 
yi + aiV(1).gi)

i=0

(rk,Yk+1) (10
(V ,yk + akV(k)gk)

(rk,31)

(n)

(12)

(by (2;5) and
(2.10))

(bY (2.9))



We have

1s-1
.„.(k+1) (riOk+1) 
v )1+1 =11(

0)
Yk+1 (ri,y1)i=0 -

Hence,

k -1

1=0

(riak+1) (o)
aiV

(ri.pyi)

(rkak+1) v(o)

(rkak)

(rkgYk+1 (o)
ak (rk,yk)

u(k+1) u(o)
v Yk+1 = " Yk+1 -

i=0

ed.

k

1=0

i-1

V(°) ajiyi + bolgy

j=0 j=0

cjiZi

j=0

aikyi

VDU. •••••

cikgi

i=0

ri/Yk+1)

k+1

k-1

1=0

)7 bjg.
a.

j=0

k 

bikgi

j=0

aik+lyi bik+161

i=0 i=0

(by (11) and (12))

a.y.
J1 J

Therefore, (9) is established for k + 1, if (11) and (12) hold

for k.



Also

v(k+l)gkia v(k+1)yk v(k+1)ek (Since Yk = gk+1 gk)
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= V(k)y
k (rivYk)

(rk,Y10[E(k)31 akv(k)gd+ v(k+l)gk (by (2.10))

v(k+1) w(k) „(k+1)
gk+1 = akv gk v gk.

Now let us consider

v(k+1) (k) (rlogk) (k) (k)
gk = V gk V yk + akV gk)

krloyk)

v(k+i)gk = v(0)

i=0

k -1

clkg1
(rivyk)(

i=0 

aikYi
(rk,gk)

bikgi + ak cikgi

i=0 i=0

(13)

(by (2.10))

Using yi = - gi in (14) and substituting that back into (13)

and applying (12), we have

v(k+l)gkmo = v(o

k

ak cikgi

i=0 i=0

cikgi

k k-1

.(aik + akcik)gi bikgi

i=0 i=0

(rk,gk)

(rk'Yk)
V. =0

aikgi+1
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Hence, (10) is established for k + 1, and the theorem is provided.

In order to establish the relationship between the three conjugate

direction methods we wish to find an expressión for cik in terms of

the gits and V0). From (2), (gk,si) = 0 if i <-k. Hence.

-(givIr(i)gi) = 0 if i < k. From (8) we have

(gk,v(i)gi) =
Z=0

cli(gk,V(0g2) = 0:

(15)

Let us fix k > 1 and notice that if i ='0, and since (15)

-so = V(°)go = V°(1)go, we have coo = 1. Hence by (15) with i = 0

we have that (gk,V(0)go) = 0, but this is also true from (2), since

V°g0 so=- z-(7 ao. We consider (15) with i = 1 and have

- col(gk,v(°)go) + c11(gk,IT(')g1) = cii(gk,v(°)gi)

since (gk,Vago) = 0 by (1). Now if c11 = 0, then al = (o)
cOlV go

= cOlso, but we observed before that so,s1 are linearly independent.

So it must be true that (gkIV(0)g1) = 0. Moreover from (8), we have

- si = ouso + c11V
(0)

gl, so V(0)gl e S(s ,s1)-

By induction

V(°)go,V(°)gi,...,V(Ogn_i E S(S0,S1,...,Sn_i) (16)

Wheredenotesthesubspacespannedbythes-'s.

Let us assume that (gk,V(°)&1) = 0 for all 2= - 1 for

n < k. By (2) and the induction hypothesis we have



0 = (g,,v(n)g.)
Z=0

01n(gk,v(.°)gz) = 0nn(gk,v(°)g.).

-1 ,

If cnn = 0 we must have from (9) tha't -sn = lng1 so that

2=0

sn e S (V(°)g;111-1 
i=0 

C:S(so,s1,..- sn _1) by (i6). But this implies that
J

(Sj) n is a linearly dependent set of vectors whichicontradicts the
i=0
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remarks following theorem 3.1. Hence, (gkiV(°)g2) = for all

= 0„1,...,k - 1 and we have from (2), if 0 < / < i that/

(V(1)gi,g1) = - (g1,si) = (gi,V(i)gi). Therefore

and for all j

(V(1)g.,g
2 
) = V c

ji 3 
(g-
, - 
V(°)

1 
1
,

j=0

(gi,V(°)gt) = O. So we have

(gilv(i)gi) = czi(gi,v(0) gi) •

(gi,v(i)gi)
Hence, 

c2i 
  which implies that - si = V(i)gi
(gi„V(°)gz)

(gi,V(i)gi)

2=0 (g2,v(°)g2)

gz• Therefore
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- si = (gilV(i)gi)V(O ( 17 )

Hence, we can state the following theorem.

Theorem 3.3: If yn - 1 for all n, an is chosen as in (2.17) and

V(°) = H(0) of the DFP method, then the search directions of the DFP

and the Davidon-Broyden method with an chosen by (2.17) are the same.

Moreover, if V(°) = H(°) = I, then these search directions are the

same as those of the conjugate gradient method.

Proof: Horwitz and Sarachik DC] have shown that for the DFP method,
the ith search direction is given by

- H(°)(gi,H(i)gi)

1,=0

gz
(gl„H(0)g2)

If H(o) = v(o) it follows from (17) that the directions are the same.

In FiA it was shown that for the method of conjugate gradients,the
ith search direction is

igi
2 g1

2=0 II gt
2'

At each point xn the three methods generate a direction sn

then the stepsize is chosen so that the function J(xn + Tsn) is

minimized with respect to T. Since the directions are the same and

the stepsize is chosen in the same fashion for each method, the

sequences of iterates generated by these methods xo, xl, x2„...„
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will be the same. Again, we restate that throughout chapter 3, the

functional to be minimized is quadratic as outlined in chapter 1.

It is well known1-2/ that the rate of convergence to the minimum

of a quadratic functional for the method of steepest descent is given

by

(J(xi) J( -A -lb)) 
M 

 
m
)i (J(x0) m J( -A -1b)) ji = 1,2/... (18)

where m and M are given by (1.3). Daniel [63 has established that
the rate of convergence for the conjugate gradient algorithm is given

by

i(1 )2\ i

(J(xi) - J( -A -1b)) S 4 M  j (J(x0) - J( i= 1,2,.(19)

- A 14-1 )2)

(17) is obviously a faster rate of convergence than (43).

Under the conditions of theorem 3.3 with V(°) = I, we know that

the iterates generated by our algorithm and those of the method of

conjugate gradients are the same. Hence, the rate of convergence of

our algorithm to the minimum is given by (19) and we have the following

theorem:

Theorem 3.4: If for each n, ah is chosen by (2.17), vn / - 1 and

V(°) = I, then the rate of convergence for the algorithm outlined in

chapter 2 is given by (19).
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4. EXTENSION OF POWELL'S IDEA

In this chapter we shall extend an idea of Powell DO] , concerning
the basic algorithm as outlined in chapter 2; to a separable infinite

dimensional Hilbert space. The idea is to use the rank one algorithm of

chapter 2, but with search directions which are independent of the

gradient. Specificslly, we wish to compute the location of the

minimum of a differentiable functional J:H -)R. We let V(0) be a

strongly positive, self-adjoint, bounded linear operator, as in

chapter 2, and let xo e H be the initial estimate of the location

of the minimum. FUrther„ let p be an arbitrary integer. If the

dimension of H is finite, it is advantageous to let p = dim H.

Let Z= (o• C H represent a basis for H. Compute J(x0) and

go, and proceed as follows.

Step 1: Let

x* = xn an, (1)

and compute J(x*) and g*. If 0 then x* satisfies the

necessary condition for a minimum, and we stop. Otherwise,

Step 2: Compute the residual vector as in chapter 2. Let

rn =V(a)yn - an where yn = g* - gn and compute the scalars

Pn = (g*,rn)

Y 
(gn,rn) 

n 
pn

7n 

= 1)

1

if

if

-

7n = -

(2)



Step 3: If V(n)yn = an, let V(n+1) = V(n), otherwise let

IT(11+1) = v(n) + (NI - 1)  B(n)
pn

where B(n):H -*H is defined such that for all x e H

50

(3)

B(n)x = (x„rn)rn. (4)

Step  If J(x*) < J(xn), let xnla = x*. Otherwise, let

xn+1 = xn. If n = pk for some integer k, then let

Evaluate J(zk) and

return to step 1.

zk = xo - v(n)go. (5)

g(zk) and if Ig(zk)11 = 0 stop. Otherwise,

We shall show that zk converges in norm as k -)00 to the

location of the minimum of a quadratic"functional. For an infinite

dimensional Hilbert space, we determine the frequency with which we

apply the Newton-like iteration zk,=xo - V(k)go 'with pk = n., 

With this modification of the basic algorithm, we can prove many
• •

theorems which are analogous to those of chapter 2. Henceforth, as

in chapter 2, we shall assume that the functional to be minimized is

quadratic. That is,

J(x) = 30 + (b,x) 1.(x,Ax) (6)
2
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where A is as in (1.3). Theorems 4.1, 4.2 and 4.4 are independent

of the type of functional being minimized.

Theorem 4.1: B(n)„ as defined in (4), is a self-adjointpositive

operator for all n.

Proof: As in chapter 2.

Theorem 4.2: V(n) is self-adjoint for all n.

Proof: As in chapter 2.

With the next two theorems we see that the properties of V(n)

given in theorems 2.3, 2.4, and their corollaries hold even though

an is a prescribed vector independent of V(n), an, and gn.

Theorem 4.3: If A-lu = V(n)u for some u E H and B:H --)11 is

such that there exists some scalar a such that B - V(n) aB(n)

then A-lu = Bu.

Proof: By (1.12) we know that A lyn = x* - xn = an and by def.

rn = V(n)yn - an = (V(n) - A-1)yn. If (V(n) - A-1)u = e„ then

(rn,u) =((v(n) A-1)Yn/u) =(yn,(V(n) - A-1)u) = (yn,O) = O. Hence,

if B - V(n)= aB(n), (B - V(n))u = µ(rn,u)rn = µ • 0 • rn

Since, by hypothesis V
(n)

u =A u, we have Bu = A lu.

Corollary: If V(n)u = A-lu then V(n+1)u = A-lu.

v(n+l)yh =Theorem 4.4: an, if yn - 1.

Proof: If V(n)yn = an, then VKI11-1) = V(n) by step 3 and the

theorem is obvious. Otherwise, using (5) and (6) we have

V.(n4-1)yn - an = V(n)yn + (An - 1) (rn,yn)rn - an.
On
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Hence, using (1), (2), and (4)

V(11+1) yn - an = rn (1 + (An*- 1) (rn,yn)) = rn • 0 = e
f)n

Corollary: V(n)yi = ai for i < n, if yi - 1.

Theorem 4.5: If yn - 1 then (Tn - 1)/0n = - (rn;Yn)-1.

Proof: Formally the same as the proof ofthe corresponding theorem

in chapter 2 in spite of the change in the definition of an.

Theorem 4.6: If V(°) > A-1, then V(°) > V(1),..., v(n) > ; > A
-1

and similarly, if V(°) < A-1, then V(°) ,--17(1) < <: V(n) < < A-1.
/

Proof: Formally follows the proofs of theorems 2.6 and 2.7 and is based

on theorem 4.5, A-lyn = an, that is, (1.12) and the Schwarz inequa-

lity H. If x e H and V(0) >A-1 and

(2.15), and the Schwarz inequality

•
/ `(x,c11-(n+1)_ A-1)x) (x,cvki" - A-1)x)

Also from (2.10) (x,(v(n+1)_ v(n))x).

We now wish to establish a convergenc

V(n) > A-1, then by (2.10),

0c,(V(n) 7A-1)7n)

(Yh,(1An) - A -1)y.,&>- °.

(x,rn)2
 < 0.
(yn,(V(n) - A-1)yn)

e theorem for this modifi

)7 
cation of the basic algorithm. Since the set is a basis for H,

for each x E H, there exist scalars ci e R, i = 0,1,... such that

A -lx = c•os.

1=0

( 7)



or x= ciAai. Since it is known that Aai = yi (1:12) where

1=0

yi = g* - gi, we have

Then

X = ciYi.

i=0

v(n)x = v(n)
1=0

1 1

By the, corollary to theorem 4.4, if yj - 1, j = 0„1,2„...„n„ we

have V(11)yi = ai for all i <'n. So (9) becomes

Therefore, by (7) and (10) we have

VA-lx - v(n)xfi =
n-1

ciai -

i=0 i=0

i=n

cid - V(n) ciyi

_i=n

e.y..

i=n

cicri - V.(11).

1=n

—

i=n

c • yi
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(8)

(9)

(n)
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If the V(n)
 

are,uniformly bot.mded„ then HAT1 _. v(n)11 is bounded.

By (8) ciyi 1 -* 0 as n ->im for this is the nth remainder

i=n I .

of the expansion of x in terms of the yits. Therefore, we have

11A-lx - V(n)xll -40 as n -*co. Hence, we hate the following:

If V
(n) 

yn i - 1 forTheorem 4.1: are uniformly bounded and

1 (n) -*A-all n then V pointwise.

Corollary: If zk = xo - V(n)go where pk = n, then zit converges

to the location of the minimum as k -400.

Proof: In chapter 1 it was shown that the location of the minimum of

the quadratic functional is -A-1h. Hence

lkit A714 = Ilxo

= ik.

- V(n)go + A-1b1

- V(n)(Axo + b) + A.-11011

< 113c. — v(n)A41 + I A:lb - V(n)bil
(by (1.7))

By theorem 4.1 V(n)(Ax0) -*A-1(Ax0) = xo and V(n)b -*A:1b.

- 1Hence, zk "A b as k- -*.co.

(12)

. The above theorem and its corollary establish the convergence

to the location of the minimum of the quadratic functional for this

modification of the algorithm. As noted earlier, the search directions

here are prescribed and are independent of an, gn, and V(n). The

rate of convergence could perhaps be improved by letting

zk = xn - V(n)gn where pk = n.

a.
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Notice, if H is finite dimensional then z1 is the location

of the ndnimum. This follows since by theorems 4.3 and 4.4 and their

corollaries A-1 and V(P) agree on a0,al,a2,...lap_i, a basis for

H. Hence V(P) = A71. Therefore,

zl = xo - go

= x - A-1g

xo A
-1 
(Axo b)

(by definition)

= - A-lb (by 1.7))

and by theorem 1.2 -A-1b is the location of the minimum of the

quadratic functional J defined in chapter 1. This is the. idea due

to Powell as mentioned in the opening sentence of this dhapter.
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5. CONSTRAINTS

In this chapter we shall consider the problem of computing the

location of the minimum of a differentiable functional defined on a

real Hilbert space, H, subject to linear equality constraints. It is

shown how this problem can be attacked by a modification of the rank

one, quasi-Newton algorithm outlined in section 1 of chapter 2.

5.1 Minimization on a Closed Linear Subspace

We shall assume that J:H -> R is a differentiable functional

and that D is a closed linear subspace of H. We wish to find

e D such that J(x) < J(x) for all x e D. Let D* denote the

orthogonal complement of D so that H = D e D*. Then for any

x e H there exist unique xp e D and xn* E D* such that

x = xD + xDx.. Therefore, we can define an operator

P:H->D

such that P(x) = xi) for each x E H. P is called the projection

operator of H onto D. It is known(111 that P is linear, self -

adjoint, bounded and

P2 = P.

Moreover, by (2), for all z E H,

(z,Pz) = (z,P2z) = (Px,Pz) =

(1)

(2)

(3)



Lemma 5.1: If we apply the basic algorithm outlined in chapter 2

with V(°) = P, the projection operator defined in (1), then

v(k) = v(o)v(k)v(o) and

rk = 17(k)(Yk akg0'

V(4k = rk for all k, where

Proof: (By mathematical induction) since V(°) = P we have

v(o) • v(o) = v(o)

Hence,
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(4)

v(°)r1 = V(°)(1(°)(Y1 + mogo)) (by (2.3))

= V°(Yl - %go) (by (4))

= rl (by (2.3))

Also, V(°)(V(°))V(°) = V(°) by (4). Hence, the theorem is true for

k = O. Assume that

v(o)v(k)v(0) = V(k) (5)

By applying (2.3), (5), and (4), we have

= V.(0)(V(k)(yk + akgk))

V(0)V(°),V(k) • (V(°)(Yk

V(°) ( )V(°)(yk + akgk)

(
= V

k) 
(Yk + akgk)

= rk

+ akgk))

(6)
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If 
v(k) v(k+1) 

the theorem is true. Otherwise

v(k+1) v(k) (Ak - 1) 
pk It> < rk (by (2.9))

where the oberator B(k) given in (2.10) is written in dyadic

notation [12a . Hence,

v(o)v(k+l)v(o) = v(o)v(k)v(o) (Ak - 1) v(0)Jrk>cv(o)r

Pk
k.

By applying (5) and (6) to the right hand side of (8) we have

v(o)v(k+l)v(0) = vk (7\k 

Pk 

, 1) (k+1)
• kby  rk><rk = V (2.9))

Lemma 5.2: If V(P) = P, the projection operator defined in (1),

then for any z E H, We have V(0)V(1° z = V(k)V(°)z = V(k)z.

Proof: By lemma 5.1 and (4), we have for any z E H

11(3)v(k)z = v(0) (v(o)v(k)v(0))z = v(o)v(k)v(0)z = v(k)z.

(7)

(8)

Notice that the proof of the two lemmas above required only that

V(P) • V(P) = V(P).

Theorem 5.1: If the initial estimate xo of the location of the con-

strained minimum of J is an element of D and V(°) = P, the pro-

, jection operator on D defined in (1), then the iterates

xl„x2,...,xn... generated by the basic algorithm outlined in section 1

of chapter 2 are all elements of D.

Proof: (By mathematical induction) since the x1 generated by the

basic algorithm is either xo or x* = xo - V(°)go by (2.1) ando

xo e D by hypothesis, we only need to show that x* E D in order
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to establish the theorem for k = 1. But, since V
(0) 

is the pro-

jection operator onto D, we have V(0)go e D and since D is a

subspace, we obtain xo 
- a0V

(o)
go E D for any ao E R.

Assume xk E D and consider x*.xk -akIT(k)gk=xk-ctkV(0)V(k) _gk

= xk - akV(°)(V(k)gk) (lemma 5.2). Because V(°) is the projection

operator, V0(V(k)gk) E D. Hence, x* = xk - mkV(k)gk E D for all 

ak E R.

Notice that theorem 5.1 and the above lemmas are independent of

the manner of choosing ak and the functional J is only required

to be differentiable. Further, notice that the theorem and lemmas

hold if, in (2.9) V(114-1) = V(n) + pB(n) for any real number p.

Now suppose that the functional to be minimdzed is quadratic as

discussed in chapter 1. The problem is, therefore, to find the

location of the minimum value of J(x) = Jo + (b,x) + 1/2(x„Ax)- for

all x E D, a closed linear subspace of H. Now if P denotes the

projection mapping of H onto D and we denote I P by C,

C is bounded, and the problem becomes to minimize J. subject to

Cx = O. Notice the null space of C is exactly D. If we make the

substitution x = y - A -1b, then

J(x) = Jo + (-A-lb + y,b) + -A -1b + y„A( -A -lb + y))

1,= Jo - (A-1b,b) + (y b) + 
(A b 

2
lip) 

2MA.(-/Cab))

( -A -1b,Ay) + A(y,Ay)
2

= Jo - 2(A-1b,b) +:(y,Ay)
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J(x) = Jo - 2(A-1b,b) +ji(y)

where J(y) = (y,Ay). If Cx = 8 then C(-A -lb + y) = 8 or

Cy = CA-Lb. If we let CA-lb = d then minimizing J(x) subject

to Cx = 8 is equivalent to minimizing J(y) subject to Cy = d.

We shall examine the problem_of minimizing J(y) subject Cy =

and then see what this tells us about the original problem, that is,

to minimiza J(x) subject to -Cx = 8.

We shall define a functional ( )1:H X H -)11 as (xjy)1 = (x,Ay)

for all xjy e H. Notice that for any x E H, (X.PC)1(XIAX) > FIX 11 2

(1.3) so that if X / 0„(x1x)1 > 0 and (xjx)1 = 0 if and only if
'

x = 6. Moreover, the.Inner product ( , ) is linear in the first
„ .

term by definition, hence, we know that,the *function
( )1 

is

linear in the first term. ,Moreover, since A = (1.3) for every

xjy e H, we have

(x,y)1 = (xlAy) = (Ay,x) = (y,A*x)

= (Y,Ax) = (Y,x)1.

That is, ( j )1 is symmetric. Hence, )1 is an inner product

on the linear space H. We shall denote the space (H, ( )1) by H'.

We can see that H' is complete as follows: suppose that

- xnjA(xp - xn)) ->0 as p,n -4 ,m. Then, since for any p,n

(xp - xn,A(xp - xn)) >m(xp - xn,xp - xn) > 0 by (1.3),

(xp - xn,xp -Pxn) 0 and by the completeness of H there exists
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an X E H such that (xn - x,xn --> 0 as n co. Since by (1.3),

M(xn - x,xn -x) > (xn -x,A(xn - x)) 0, we have (xn-x„A(xn x)) 0,

Hence,-: H' is complete. Therefore, H' is a Hilbert space.

Now if we denote by M the closed linear subspace of H' which

is the null space of C and if y E H' is such that d; = d then

the linear variety which satisfies CY = d is given by V = y + M.

By the projection theorem El] there is a unique vector yo in V

of minimum norm with respect to the H' norm. Further, yo is

characterized by the fact that yo is the only element of V

orthogonal to M with respect to the ( ) inner product.

This means that

(yo,Y0)1 < (y,y)1 (9)

for allyEV= 3 + m, that is for all y such that Cy = d.

Moreover, for every y such that Cy = 0,

the fact that

(Y,Y0)1 = O.

That is, in terms of the'definition of (

and (10)

(Y0,AY0) < (Y,AY)

for all y such that Cy = d, and

(ylAy0) 7 0

yo is characterized by

(10)

we have from (9)

(12)
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for all y such that Cy = O. Hence, the solution to the problem of

finding the minimum of J(y) is characterized by (11) and (12). In

terms of the original problem of minimizing J(x) subject to Cx = 0,

this, means that the problem has a unique solution X = -A-lb + yo

and if x satisfies Cx = O then by (12)

(x,A(X + A -1b)) = 0. (13)

But by (1.7) AX + b = g(X). Hence, we have that at (x,g(X))= 0

for all x such that Cx = O. That is, g(x0) is orthogonal to the

null space of C which is D. In other words the projection of

ga) onto D is zero.

Now let us use the modified rank one algorithm to locate x.

Suppose that the scalar at is chosen so that

J(xt + atst) < J(xt + ?\sn)

for all AE R, that is, ,at is chosen by (2.17). Therefore, the

value of at is given by (2.19). We apply the modified basic

algorithm as dismissed in thie Chapter with the initial estimate

xo E D and V
(0) 

= P as defined by (1).

We shall nowestahlish conditions which will guarantee that the

projection onto D of'the gradient at the iterates tends to zero.

As shownabovel this is'a'necessary and sufficient condition for a

minimum.

/ % NBy (2.15), we have (yt,rt) = (ytAV
(n) 

- A
-1 
)yt)

-1 
. Then from

(1.12) and (2.5) we have
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(Yn/A-1Yn) = (Yn/an) = (gn+1 gn/an)

= (gn+1/ an) - (gn/ an)*

By the choice of an we know that (gn+1,an) = O. Hence, by the

definition of an we have

(yn,A5n) = ah(guyv(n) )

Also by (2.5)

(3rii,v(n);) = (g.+1,v(n)g.+1) - (givv(n)gn+1) - (g.+1,

Therefore, by theorem 2.2 and (2.18) (ga,V(n)0. 
) 

n
= 

and

(gn+1/17
(n)

gn) = O. Hence, (14) becomes

(13)

(Yn/V(n)Yn) = (gn+1,1T(n+1)gn+1) + 
(gnIv(n)gn). (15)

Hence, (Yn)(1T(n) - A -1)Yn) = (gn+1,1/(n)gni.1) + (1 - an) (gn,V(n)gn).

Therefore we can say:

Lemma 5.3: If V(n) is a positive operator on D and aa < 1

then (yi,(v(n) -A 1)yn) = (yn,rn) > 0.
Lemma 5.4: If V(°) is the projection operator onto D and the

V(i) are positive uniformly bounded linear operators on D with

bound K > 0, then

(gi,V(i.)gi) > I
V(i)gi

K (16)
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Proof: Define ( , )1:H x H-Ft such that (x„y)i = (x1V(i)y) for

all x„y E H. By lemma 5.1 V(i) = v(o)v(i)v(o), so if x e H then

V(°) x)x e D, hence„ (x = (x,V(i)x) = ((V(°)x),V(i)(V(°)x)) > 0 since

V(i) is positive on 'D. Therefore, the Schwarz inequality holds

for each i, that is, (x,y)i < (x,x)1(y,y)i [2] Hence,

4 = (v(i)gi,v(i)gi)2 = (v(i)gi,gi)i

< (v(i)gi,v(i)gi)i (gi,gi)i

= (v(i)gi,v(i)(v(i)gi)) • (gi,V(1)gi)

11 (i) 2, -(1)< K 0V kgi, v gi).

Therefore, ifilV(i) gi

Hence,

Since

/ 0 we have

(i) 
II 
v(i)g± 2 

kgi,V gi) > K

K(gi, V( i )gi ) > i )gi

By our choice of a-n we know that (2.20) holds. Hence,

(sn'gn)2
lim ,  - 0
n m(sn,Asn)

(svgi)2 (gi,v(i)gi)2

(s ,Asi) 

M II  IT(1)g111 2

V(i)gill 2

KKM

(by (1.3) and
(2.2))

(by (16))

(17)
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we have by (11) (i)gill 0 as i Moreover, since by (12)

(gi,()gi)2
-> 0, and 11V(1)g. -) 0 as i co, we obtain

)gi I

(gi,V(i)gi) -> 0 as i --)00 (18)

If (r21y2) /0 we have in view of (2.14) and (2.10) for any x E H,

Hence,

v(i)x = v(°)x -

1=0

(rz,x) rl

(r1,3r1)

(x,v(i)x) = (x,V(°)x) -

(19)

(20)

Recall from step 2 of the basic algorithm that if (ri„yi) = 0, for

some j, then V(j+1) = V(j) so that the term containing (rpyi)

in the sum given in (19) or (20) is not present. We shall assume

that if (ri,yi) = 0 for some j we have not included that term in

the sum in (19) or (20). Recall that from lemma 5.3, if al < 1

for 2 = 0,1,2 ..., i - 1 then (71,y1) > O. Hence we have

(x,V(i)x) > (x,V(°)x)

(x,v(c)v(0)x) since V(°) = V(°)V(°)

(a)

= 
(v(o)x,v(o)x)

= 11T(0)x 11 2

since (V(0)* = V(°)

From (21) with x = gi we have the following.
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Theorem 5.2: If ai < 1 for all i and the V(i) are uniformly

bounded positive operators on D, then V(°)gi -4 0 as

Proof: If ad. < 1 for all i, then by (21) with x = gi we have

(gi,V(i)gi) > HIT(Ogi 11 2 > 0 and (gi,V(i)gi) -* 0 as co by (18),

Hence, 11V(0)gill 
2 

0.

We have now established conditions which guarantee that the pro-

jection on D of the gradient of the quadratic functional evaluated

at the iterates tends to zero. Notice that if M as defined in (1.4)

11 5- 1 [2] ;is such that M < 1, then since

ilPril ilx IIA-1x II s I x
that is, P < A-1. Since V(°) = P, V(°) <:A 1 we have by theorem 2.6

that V(n) <A71 for every n. Hence the V(n) are uniformly bounded.

5.2 Linear Equnlity Constraints of the Type Cx = w

Suppose the problem is to compute the location of the minimum of

a differentiable function J:H -> R, with gradient g:H-*H„ subject

to the constraint that Cx = w, where C is a bounded linear operator

from H into H, where H is another Hilbert space, and .0 is a

.fixed element of H. That is, we wish to find x E H such that

Cx = m and J(x) > J(x) for all X E H such that Cx = m. With

a slight modification, we can apply the basic algorithm outlined in

chapter 2 to this problem. Moreover, we can show that the sequence

of iterates xl„ x2„...„xn,.., generated by this modification is

such that for each k, Cxk = w.
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Let V(°) be theprojection operator of H onto the null space

of C (a closed subspace of ,TE„ since C is bounded). Let xo be

such that Cxo = w (22) and apply the algorithm. Now/ xl = xo or

x* where x* = xo - moV(o)go. Consider

Cx* = Cxo * - C(m0V(°)go)

= w cloC(V(°go)

where V°g
o 

is in the nu11 space of C by the choice of V(°).

Hence/ CX* = W for all mo s R. Therefore, Cx1 = w in either case.

Since either xn./.1 = xn or x
n+1 

= x
n 
- anV

(n)gn ve know that

if Cxn = m and xn.1.1 =_xn then Cxn+1 =w. Otherwise/ we consider

Cxnid = Cxn - Cag(n)gn. Since the proof of lemma 5.2 depended only

upon the fact that V(°) = V(°) • V(°) and we know that this is true

for the projection operator onto the null space of C, we have that

v(n)gn = v(o)v(n 
)gn. Hence V(n)gn is in the null space of C.

(22)

Therefore, C(anV(n)gn) = O. Hence, Cxn+1 = Cxn = w. Therefore,

by mathematical induction we have established the following theorem:

Theorem 5.3: If V(0) is the projection operator and the   space

of C and V(n) is defined as in (2,10) and Cx = o w then Cxn = w

for all n where the xn's are the iterates generated by the algorithm

outlined in chapter 2.

We shall now show that the problem considered in section 1 of

this chapter is of the type examined in this section. The problem is

that of finding X e DI D a subspace of HI such that J(X) < J(x)

for all x e D, where J is a differentiable function. Suppose
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we let P denote the projection operator of. H onto D and we define

the bounded linear operator from H into H by, C = I - P where I

the identity operator on H, then the problem can be seen as that of

minimizing J subject to Cx = O. Therefore, the problem of section 1

is a special class of those problems considered in this section. Hence

theorem 5.1 follows from 5.3.
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6. APPLICATION TO OPTIMAL CONTROL THEORY

In this chapter the results of the first five chapters are used

to develop a method of computing the solution of various types of optimal

control problems. We shall consider fixed-time problems since by a.

simple transformation D] the free-time problem can be transformed into
a fixed-time problem. Moreover, Horwitz and Sarachik[21.3 have given

several other schemes for solving the free-time problem using fixed-

time techniques, and these schemes are applicable when the basic

algorithm, outlined in chapter 2, is used. Also Leondes and Niemsnn

[24Jhave proposed a computational scheme for handling the free-time

problem by using fixed-time techniques.

6.1 A Quadratic Payoff With Linear Constraining

Differential Equations

From the class Lr
2
Cto„ti] we wish to find that function u*(t)

which minimizes

f= 
2 
- (xT(t)P(t)x(t) + nT(t)R(t)u(0)dt (1)

subject to the constraints

k(t) = G(t) x(t) + B(t)u(t) (2)

and x(to) = xo. where xo„ to, and t1 are fixed.
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Hereby: x is an n-vector;

u is an r-vector;

G(t) is an n X n matrix with components in L
1
[Ito,ty];

B(t) is an n X r matrix with components in L1 [to, tli,

and bounded,

p(t) is an n x n symmetric; positive semi-definite matrix

the components of which are piece-wise continuous on

[toltij; and

R(t ) is an r x r symmetric uniformly positive definite

matrix the components of which are piece-wise

continuous onlito;t1j.

Horwitz and Sarachik [261 have shown that this problem can

be considered as that of finding the location of the minimum of a

quadratic functional on Lrito,t11. This can be seen by defining the

following linear operators:

2r 2-
P:LnLto,ti]

li:LrIto, —> L2r [to; tal

E:Ln
LL tij TZto, ti]

2 2
F:Lr[to,til -4 LnEto, ti

where for 
2 2

y E qt0) tfj, z e Lr[tcptai

(3)



and.

(Py)(t) = P(t)y(t)

(Rz)(t) = R(t)z(t)

(Ey)(t) = 0(t,to)y(t)

t
(Fz)(t) = f (Kt,T)B(T)z(T)dt

to

where (h = GO with «toot() = I.

It is well known DJ that for any u e kr
2
[to,t3i, x = Exo + At,

so that (I) becomes

1atial = 7 <Exo + FulP(Exo + Fu)>

1
<u,Rt.>

where < , > is the usual inner product defined. on Lr
2
Eto,t1J.

lience„

n 1
Jeaj = . 

1 
.‹:Ex0IPExo>.+ F*FEx(i>.

2 '

<(PF)*Exo,› + i<u,(F*PF + R)u>

. If we let

71

(5)

(6)



(6) becomes

= <Faco,PExo>

w = F*PEX o,

A = F*PF + R,

JCu]= Jo + <w,u>+ kulAu>.
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(7)

(8)

Moreover, since P is positive semi-definite and R is uniformly

positive definite, A is a strongly positive linear operator. Hence,

J[a] as given by (8) is a quadratic functional on the real Hilbert

— —
space Lr

2
Lbo,t11 of the type discussed in chapter 1. By (1.7) the

gradient of J is given by

g(u) = Au + w (9)

Moreover, this is exactly the type of function for whieh the conditions

given in theorems 2.10, 2.11, and the corollary to theorem 4.1 guarantee

the convergence of the various modifications of the basic algorithm.

Note that if we wish to find the location of the minimum of (1)

subject to (2) but with x(to) = xo as initial condition, we can

repeat the definitions given in (3) and (7). Then the vector w and

the scalar Jo defined by (7) are changed to w and Jo, say.

However, the operator A also defined by (7) is unchanged.

From theorem 1.2 , the location of the minimun of the resulting

quadratic functional JUI = Jo +Kw„u:)>+ ;.<(:u.,Au:)>is given by

-A-1W. Since the operator V(n) which we computed when solving
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for the minimum of (8), converges pointwise to A-1, by theorem 2.8,

we can use this V(32) as our new initial estimate of Arl. In this

fashion we can accelerate the convergence of the iterates for the

second.problem, that is, of computing the location of the minimum of

J.

6.2 General Optimal Control Problems and the

Gradient of the Payoff

In this section we shall describe a class of problems generally

referred to as optimal control problems [29' or in the Calculus of

Variations as Lagrange Problems [.3.] . Also we shall show how to

apply the algorithms discussed in chapters 2 and 4 to compute solu-

tions to these problems.

Suppose we have a system of n differential equations

i(t) = f(x,u,t) (10)

with x(to) = xo and u e Rr. We wish to choose a function
rti

u =;(t) which minimizes the value of 
J 

L(x(t),u(t),t)dt.
to

We shall assume that f(xlu,t) and L(x,u,t) have continuous partial

derivatives of at least second order in x and u and piecewise

continuous in t. Also, we shall assume that there are no constraints

on u or x, other than x must satisfy (10).

Moreover, we shall assume that L and f are such that corres-

ponding to every u = u(t) e Ir 1.7?0,taj, a real Iiilbert space, there

exists a solution, x = x(t)„ of (10) and that for this x and u
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the integral, / L(x(t),u(t),t)dt, exists., By a solution to (10) we

uto
mean, as is the usual case in ordinary differential equations, an

absolutely continuous function cp = c(t) such that c(to) = xo and

cP(t) = f(cp(t),u(t),t) almost everywhere for.some u = u(t) [71 . By
the continuity conditions on L and f, if we can restrict our attention

to a compact subset of (t,x) space for all u, then standard results of

differential equations theory concerning existence and uniqueness of

solutions hold [5, 16, 17, An assumption on f and L which

guarantees this is to assume that there exists C, a scalar, such that

for all t E [0,t1], x, and u

where f and x denote the vectors (L,f) and (x0,x) respectively,

with jo = L(x,u,t) and x0(to) = O. This implies (X,;) < C 1 + 1; N

so that lx(t)12 <
[i._ ~ I xolle 2Ctl. 

The above inequality is shown by

Hermes and LaSalle in C16] Hence, we can define the functional J:H—)li

by

cluJ =
rt
1
L(x(t),u(t),t) dt

t o

where x(t) is a solution of (10) corresponding to u.

Therefore, our problem appears to be that of locating the minimum of

a functional J on a real Hilbert space H. In order to apply the

algorithms discussed in chapters 2 and 4, we must compute the gradient
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of J. The gradient of J is that part of J[la + 51] - J(0 'which is

linear in Su. From (10) we have

X(t) = +1 f(Tc(T),u(T) A- 8u, T)dt
to

t
x(t) = xo +I f(x(T),u(T),T)dr

to

Therefore,

;(t) _,(t) = jr 4.5u,r) - f(x(T),u(T),T).)dt.
to

If we let 5x denote the linear part of x(t) - x(t), then

(12)

8x = fx8x + fuSu (13)

with 8x(to) = 0 where fx denotes the n x n matrix f and
af

f
u 
= -T-

ou 
an n X r matrix, evaluated at (x(t),u(t),t).

Moreover,

JCu 
Li,t1

+ 8U] - JD.] = (,(x„u + 8u,t) - L(x,u,-0)dt (14)
to

and if We let 5J denote that portion of (14) which is linear in

5x and 5u, then

ftl
53 = Lx8x + Lu5u dt

to

aLwhere L. denotes -T.- and La = -- evaluated at (x(t),u(t),t).ox 6 au
L

(15)



We then let A(t) be an n -vector valued function satisfying

5,(t) = - L.T (16)

with A(t1) = O. Then we have from (16)

d(A
T 
3x) ill
  - A Ox + AT(L)
dt

(17)

r= -A
T 
\Fxbx) - L.Ox + A

T
fxpix + A

T
fupu.

So that integrating (17) from to to t1 we have

A(t1)3,x(t1) - A(to)Sx(to) = - f 
t1 ti 

Lx3x dt + AT 
fubu dt

to to

and since A(t1) = 0 = bx(to), We have

j
pt1 tl

Lx8x dt = Jr AT 
fuSu dt. (18)

to to

So, substituting (18) in (15), we get

3J = rtl(ATfu
to

Hence, the gradient of J is given by

5u dt.

g j'- -17(x(t),u(t),t) + 
" 

(x(t),u(t),t)A(t) (19)
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where T given by (16) can be thought of as an integrating factor for

(13)- D5, 33].

It is seen from (19) that if we define the FFtmiltonian to be

H(x,T,t,u) = L(x1u,t) + XTf(x,u,t) (20)

Then the gradient of J at u is given by

\", H = (Lu(x(t),u(t),t) + AT(t)fu(x(t),u(t),t))T

vhere (21)

x(t) = f(x(t),u(t);t) = 
3X, 

x(to) = xo

aH
5\(t) = - ,Mt1)

The computational steps necessary to compute the gradient of J

at u = uo(t) are t• integrate X = f(x,u0,t) with x(t0) = xo

forward to t = t1, then at t = t1 we integrate

• 
= -fx

T
(x,u0„t)T Lx(x„uolt)

with X(t1)' = 0 backward to t = to. Therefore, we can then compute

the gradient as given in (19) using the control u = uo(t) and the

values of x(t) and X(t) computed above. If the gradient is computed

according to (19), then B
(n) 

and rn can be computed as in (2.10) and

(2.5) by following the algorithms outlined in chapters 2 and 4. Hence;

these algorithms can be used directly to compute the optimal control.
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6.3 Computing the Optimal Control for a Problem With a Compact,

Convex Control Region Via the Algorithm of Chapter 2

The problem considered in section 2 of this chapter, which we shall

' call the first problem, is to find a function u such that

i
nt
1

L(x(t),u(t),t)dt -4 min.
u to,

(22)

subject to x= f(x,u,t) and x(to) = xo. This problem is not entirely

typical of optimal control problems in that the range of u is unrestrictec

For a large class of those problems generally considered to be optimal con-

trol problems, the function u is a member of L
r

1

0,
t
1
] and has its

range in some subset U of R
r
. U is called the control region of the

problemi:29] . For (22), we assume that f and L are as section 6.2

except (11) holds for f at every x,t and u E U.

Problems for which U is a convex, compact subset of Rr and which

can be transformed into control problems with no spacial restriction on

U, were examined by Park 
E281

 . He showed that an optimal control problem

as (22) for which U is a convex and compact subset of a Euclidean space

can be transformed into an "equivalent" problem with its associated

control region - a Euclidean space of dimension p. Hence, the new

control variables have no restriction on their range. We shall see that

this "equivalent" problem can be seen as that of locating the minimum

value of a functional defined on a Hilbert space. The algorithms which

we have previously discussed can be used to compute the location of the

minimum of this functional and. the results then can be transformed. back

to the original problem.
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• 
A problem of the type investigated by Park is to find an Lr

1
Eto,ti]

function u = u(t) with range in U C Er, U a compact convex set,

such that (22) holds. Let

ifr:RP r (23)

be a map of the type discussed by Park, that is, If is continuous,

onto U and there exists a compact subset Z of EP such that

IV(z) = .1J (24)

By Filippov's Lemma E16j for every admissible control u, that is,

u e Lartto,ti] with range in U, there exists a bounded measurable

function z:Eto/ t1 ] ---)Z such that for every t,

u(t) = if • z(t) (25)

Let us suppose that the problem to be solved is as in (22) where

u E Lr
1
[to,ti] has its range in U, a compact,convex subset of Er.

Let if and Z be as in (23) and (24). The "equivalent" problem which

we will call problem 2 then is to find y:[tolti]-4EP such that

ftl
L(x(t),*(y(t)),t )dt -4 min

to
(26)

subject to k = f(x(t),*(y(t)lt) and x(ts) = xo where y E q[bo,t1].

In problem 2, we are minimizing over the Hilbert space lats,tii,

not a subset of LiKto,tij as in problem 1. This follows because for

every y e q[bo,t1.1 y is measurable, and since is a given

.2)b-fr-14,51/P,
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continuous function, *.y is measurable. Moreover * has a bounded

range U, hence, *. y is bounded and measurable on [toyt1]. Therefore

for any y e 1,123[bocti 111•y is an admissible control, that is,

Li
1
fto,tij with range in U. Conversely, for any admissible control

u, the corresponding y given by FilippoaLemma is measurable and has

its range in Z, a compact set. Hence, y is bounded. Therefore,

2
y E Lp[bo„ti]. Hence we see that the space of admissible controls for

problem 2 is a11 of LIDEbo,t11, a Hilbert space, whereas the "equivalent"

lr
problem 1 had as its admissible controls a subset of Iirtyo,t1]-

Note that if the transformation * given in (23) has continuous

derivatives of second order, then problem 2 is of the type discussed in

section 2 of this chapter. Hence, the computation of the location of

the minimum can be carried out by the algorithms given in chapters 2

and 4, and the gradient of the functional to be minimized in problem 2

is given by

g(y(t)) = (TT(t)fu(x(t),*(y(t)),t) ty(Y(t))

+ Lu(x(t),*(Y(t)),t)ty(Y(t)))12,

(27)

where T(t) = -42c(x(t),*(y(t)),t)A(t) - LI(x(t),*(y(t)),t). This

gradient is found by applying to problem 2 the same techniques used to

get (19).

Hence this transformation technique can be useful in computing the

solution to a wide class of optimal control problems. It can also be used

to apply the classical calculus of variations results to various types of

optimal control problems L*5,28.] .
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6.4 Optimal Control Problems With End-Point Constraints -

Suppose we wish to solve the problan posed in section 2 of this

chapter as outlined in (19) subject to the additional constraint that

some of the components of x(t1) are to be fixed numbers. That is)

suppose the first q -components of x(t1) are to be such that

for i = 112)...)q where i7i are given scalars.

One approach to computing the solution to this problem would be a

"penalty function" technique [23] . This technique is the following: use

any admissible control u = u(t)) integrate i = f(x(t))u(t))t) from xo

at to to tl. At t1 the components of x will probably not be the

prescribed values Ej.) i = 1)2)...1q) so we will compute

xottl> = Cci

xi(t1) - 2i 1)21...)q.

al[1] is the error in the ith component of x(t1) corresponding to the

control u = u(t). Then for an arbitrary but fixed set of positive scalars

kl, k2)...)kci, we compute the penalty associated with u as follows:

pE). )7 ki(clEd2.

The functional of u which we seek to minimize by our algorithm is

tr[u]. ft1 L(x(t),u(t),,t)dt + P[u]
to

where PEI] is given in (28).

(28)
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It can be shown by analysis similar to that of s
ection 2 of this

chapter that reti..], the gradient of J in (29)„.is given by

where

Kuj= (TTfu(x(t),u(t),t) + Lu(x(t),u(t),t))T (30)

a(t) = f:(x(t),u(t),t)T(t) - L:(x(t),u(t),ty\(t1)

t=t1

and k(t) = f(x(t),u(t),t).

While this technique appears to handle the problem of the 
end

constraints very nicely, we are left with the problem of choosi
ng the

ki's. Due to the finite number of significant figures on a digital

computer, if the ki's are too large the algorithm will try to satisfy

,
the end conditions at the expense of minimizing L(x,u,t)dt, and

f 

1 

t:

if the ki's are too small the algorithm may not be sensitive to viola-

tions of the end constraints. In some cases, Lasdon et al.[123]

have remarked that the penalty function terms in (29) may "create a

steep-sided valley in the control space." This would slow the conver-

gence of the algorithm.

Another possible method of computing the optimal control for a

problem with end-point constraints is the projection method. This

technique is discussed by Rosen [52] ,Sinnott [310 , and Luenberger[21
for various algorithms. The adaptation of this technique to our slgorithm

appears to be rather straightforward, but we shall not pursue it here.
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In the next section we shall examine the optimal control problem with

end-point constraints for the case where the state differential equations

are linear in the control.

6.5 Optimal Control Problems With Linear Constraining

Equations and End Conditions of the Type Kx(t1) = d

Suppose our optimal control problem is to find that Lr
2
&cotij

function u = u(t) which minimizes

with

ftl L(x(t),u(t),t)dt
to

X(t) = G(t)x(t) + F(t)u(t)

x(to) = xo

(31)

and t1 is fixed with Kx(t1) = d.

We assume that L has continuous partial derivatives of at least

second order in its x 'and u arguments and is piecewise continuous

in t. G and F are matrix valued functions with LiEto,t11 components

and continuous components respectively. K is a qXn matrix of scalars

and d is a q vector of scalara where q < n. Moreover, we assume

that L is such that for any u e Lr[to,til and its corresponding

x = x(t) (31) exists.

If we denote the principle matrix solution of the homogeneous system

i(t) = G(t)x(t) by 0(t„to) where 0(to,t0) = I then the state vector

x corresponding to any admissible control u is given by



t1
x(t;u) = 0(t,t0)x° + JP 0(tDs)F(s)u(s)ds.

o

Hence, by (32) we have for any admissible control u = u(t)„

rt1 Kx(t1) = 10(t1,t0)x° + J lowcps,F(ou(s)ds.to
In order to satisfy Kx(t1) = d, we see from (33) that

rt

Jto
KO(t,$)F(s)u(s)ds = w

84

(32)

(33)

(310

where w = d - KO(t,t0)x° is a fixed q vector of scalars.

If we define a linear operator C from the space of admissible

controls into the Hilbert space RP such that

u must satisfy

tl
Cu = r KO(t1,t)F(t)u(t)dt„

t
0

CU = CU

in order to satisfy Kx(t1) = d. It is known that if

f

t1
F
T 
(s)0(s,t1)K

T
KO(tl,t)F(t)ildsdt <

o Jto

( 35 )

(36)

(37)

then C is a continuous linear operator. Since the components of K

are scalars and 0(t1,t) and F(t) have continuous components on
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(to,t1)„ it follows that the components of n(t1,t) F(t) are

bounded, hence (37) holds.

Hence we know that C as given by (35) is bounded. Then our

optimal control problem as given by (31) becomes: from the set of

admissible controls which satisfy Cu =0.) given in (34), find that

control which minimizes

J [in = J 1 L(x(t;u),u(t ),t )dt
to

where x(t;u) is given by (32). That is, we wish to minimize the

differentiable function J[U] subject to the equality,constraint

Cu = w for the bounded linear operator C given by (35). In

section 2 of chapter 5, this type of problem was examined and the

application of the basic algorithm to compute the solution was

explained.
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7. AN EXAMPIE, CONCLUSION, RECOMMENDATIONS/

A.ND SIMARY

7.1 Example

In order to exhibit the convergence characteristics of the algorithm,

we formally applied the procedures of chapter 2 to a sample optimal con-

trol problem which others have used to display convergence characteristics

of other algorithms [23, 34/ 36] . The problem is the following: Find

the function u = u(t) which minimizes

5( 2 2 21
J = f ~ x2 + udt

0

subject to constraining differential equations described by the

Van der Pol equation [3] with E = 11 that is

with initial conditions

xl = x2

•
x2 = + 1 - x11x2 + u

x1(0)= 3.0
x2(0) = 0.0.

By (6.19) the gradient g of J at u is given by

g(t) = 2u(t) + T2(t)

where

(1)

(2)

(3)



with

Ti = (1 + 2x1x2)T2 7 2x1

5̀ 2 = -A1 - (1 - 4)7\2 -2x2

A (5) = 0.0

A2(5) = o.o
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(JO

In order to compute the gradient g(t) of J at some u = u(t),

we integrate (2) forward to t = 5.0 using u= Ti(t). Next,(4) is

integrated from t = 5.0 back to t = 0.0. Then using u = u(t) and

the computed value of A2, we can compute g(t) given by (3).

Figures 1 and 2 depict the progress toward the minimum of J using

the algorithm outlined in chapter 2 with four different methods of choosing

an' These four methods of choosing at are:

Method 1: at = 1 - (n3 + 2)-1/2 for all n

Method 2: at = 1 for all n

Method 3: an = min'S-J(un) + 770)/(srogn),1.0) where Jo is

the estimated minimum value of J,st is defined by

(2.2) and gn is the gradient of J at u = un(t).

Method 4: an is the minimum with respect to a of J(xn + asn)

as computed by Davidon's one dimensional cubic

minimization method Dj .

Methods 1 and 2 of choosing at satisfy the condition that

(1 - at)n -*0 as n Hpo given in theorem 2.11. As chosen by method
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3, an is a rough estimate of the minimum of J along the line

un + sn. The form of at for method 3 follows by considering

Jo = J(un) + an(sn,gn) + h.o.t., dropping the higher order terms, and

solving for a,n.

Notice that methods 1, 2, and 3 of choosing an involve no extra

functional and gradient evaluations. That is, for each iteration we

must integrate (2) and (4) only once. For the fourth method of choosing

an., although the one dimensional minimum is computed more accurately

than by method 3, the fourth method involves at least one more functional

evaluation per iteration. Hence, with the fourth method of choosing an,

we have at least two functional and gradient evaluations per iteration.

In Figure 1, we have plotted J (un) versus n (i.e., the itera-

tion nuMber) for the four different methods of choosing an. Figure 1

shows that the fastest convergence in terms of iterations is achieved

by the algorithm witd an chosen by method 4. Also, Figure 1 shows

that after 12 iterations, all the methods have converged. Moreover,

after eight iterations for all methods of choosing ah the change in

the value of J is too small to show up in the graph.

In Figure 2, we have plotted J versus the number of functional

evaluations. Notice that in Figure 2, methods 3 and 1 converge faster

with respect.to function evaluations than method 4. Note also that

after at most eight functional evaluations, the change in J is too

small to be noticed in the graph.
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Number of iterations

Figure 1. J(ui) versus i for the four methods of choosing ai

28

Figure 2.

0 Method 1

❑ Method 2 — — —

0 Method 3 ----

Method 4----

No. of functional evaluations

J(ui) versus the nuiber of function evaluations for
the four methods of choosing al
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Figure 3 shows the rates of convergence to the minimmm for.the

example problem for the three first-order.methods given in chapter 1.

These results were reported by Tokumaru, et al., [36] . Note that the

DFP algorithm shows the fastest rate of convergence

Using the same initial estimate of u that we used for the results

shown in Figure 1, we applied the DFP method to the example problem.

Our results for the DFP method were identical to those of the rank one

algorithm with ah chosen by method four. The reduction in the payoff

and the iterates for the tWo methods were the same.

J

27.2

22.00

21.50

21.00

0 1

0 Steepest descent method

0 Conjugate gradient method ---

<> Davidon's method

3 4 5 6 7 8 9 10

Number of iterations

Figure 3. Comparison of first-order methods due to Tokumaru
J(ui) versus i
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In Figure 4, we have plotted the values of gui) versus the

nuMber of function evaluations for the DFP method and our algorithm

when ah is chosen by method 3. Notice that in terms of function

evaluations, our method for this choice of .ah converges faster

than the other algorithm. The linear minimizations for the DFP

algorithm were carried out by method 4. This method was chosen

because high accuracy for the linear minimization is necessary for

the DFP method.

Davidon Fletcher
Powell

❑ Our algorithm
with at chosen by
method 3

3 4 5 6 7 . -8 9 10  11 12
Number of functional evaluations

Figure 4. Comparison of Davidon-Fletcher-Powell method and Rank
One method with at chosen by the 'third method with
J(ui) versus function evaluations
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In Figure 5, we have plotted the iterates of the control ui(t)

for i = 0,1,2,3 of our algorithm. The integrations of (2) and (4)

were carried out by the Adams -Bashforth predictor and Adams-Moulton

corrector method on a CDC 6000 series computer with step size of

0.03125.

+2

+1.

1

0 Initial estimate
❑ First iteration

0 Second iteration

A Third iteration

3 4 5 6

Figure 5. ui versus t for i= 0,1,213 generated by Rark
One algorithm with ah chosen by method 4

7.2 Conclusion

The algorithm outlined in chapter 2, when applied to compute the

location of the minimum of a quadratic functional, has several attract-

ive properties. Theorem 3.3 shows that if an is chosen by (2.17),



93

then our algorithm, the DFP and conjugate gradient methods generate

the same iterates. Hence; the methods will have the same rates of

convergence if the hypothesis of theorem 3.3 hold. Moreover, by

theorem 2.8 V(n) -,A -1 pointwise where V(n) is given by (2.9)

and A is given by (1.3). This property can be used to accelerate.

the convergence when many solutions corresponding to different initial

condiLions are desired. This was discussed in section 1 of chapter 6.

This property is not available to the method of conjugate gradients.

Theorem 3.3 shows that if an is chosen by the fourth method; then our

algorithm, the DFP, and the conjugate gradient methods generate the

same iterates, hence, the same rates of convergence. Moreover, our

algorithm requires one-half the storage necessary for the DFP method.

Also, it requires the computation of one operator per iteration versus

the computation of two operators per DFP iteration.

The results of the example problem show that the algorithm can be

applied with success when ar is chosen in a variety of ways. It

appears that method 3 of choosing a
h 

is best when the functional to

be evaluated is very complex, its computation is time-consuming, and

storage-considerations are not as important. If storage considerations

are pressing and the computation of the functional is not as time -

consuming, then method 4 would seem to be the best choice for 'an.

7.3 Recommendations

Possible research topics related to this work are the following:

(1) Research could be done on the application of the algorithm outlined
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in chapter 2 to the solution of the singular linear operator equation

Kx = d. (5)

Hereby in (5), x c H., a real Hilbert Space, K:H is linear, bounded

and has a closed range and d is fixed element of HI another real

Hilbert Space. Nashed Dij has discussed solving this problem using

the method of steepest descent to compute at least squares solution. So

it appears that the problem could be solved by our algorithm. By using

theorem 2.8, perhaps it could be shown that V
(n)

K* converges pointwise

to the generalized inverse of K. In a finite dimensional space this

could perhaps give another technique for computing the generalized inverse

of K. (2) Research could be done to extend to an infinite dimensional

real Hilbert Space the class of first-order algorithms recently proposed

by Greenstadt .

7.4 Summary

The various elements of the class.of rank one,quasi -Newton mini- .

mization methods are distinguished by the manner in which a particular

parameter is chosen at each iteration. In chapter 2, conditions were

found which guarantee that the rank one,quasi-Newton algorithms generate ,

iterates which converge to the location of the minimum of a quadratic

functional for various choices of this parameter. In chapter 3, the

iterates of the rank one,quasi-Newton algorithm with the parameter

chosen by a linear minimization technique are compared with the iterates

of the Davidon-Fletcher-Powell method and method of conjugate gradients.

It is found that for a quadratic functional with the hypothesis of

theorem 3.3 that the iterates of the three methods are the same. In
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chapter 4, an idea due to Powell is extended to infinite dimensional

Hilbert spaces. In chapter 5, a modification of the rank one,quasi -

Newton method is outlined in order to minimize a functional subject to

linear constraints. Conditions are found which guarantee the conver-

gence to the location of the constrained minimum of a quadratic func-

tional. The application of these rank one, quasi-Newton minimization

methods to various types of optimal control problems is investigated

in chapter 6. In chapter 7, the rank one, quasi-Newton methods are

applied to a sample optimal control problem.* The,resulta are compared

with the results of other known first-order minimization techniques

for the same smnple problem. This comparison is in terms .of speed of

convergence with respect to iterations and number of functional evalua-

tions. The rank one, quasi-Newton algprithms are shown to be superior.
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