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ABSTRACT
STRAETER, TERRY ANTHONY. On the extension of the Davidon-Broyden class
of rank one,quasi-Newton minimization methods to an infinite dimensional
Mlbert space with applications to optimal control problems., (Under the
direction of HANS SAGAN). _

The varioue elements of the class of rank one, quasi-Newbon miniw
mizgbion methods are distinguished by the manner in which a pafticu;ar
pa&ameter is chosen at each iteration. For various choices of tﬁfs:‘
parameter, conditions are found vhich guarantee thab the algorithm's
iterates converge to the location of the minimm of a quadratic func-
tional. Also, conditions are found under which the iterates generated
by the Davidon-Fletcher-Powell rethod, the me£hod of conjugete gradients,
and the renk one,quasi-Newbton method with a particular choice of the
parameter are the same. An idea for minimizing a function by & rank
one, quasi-Newton method due to Powell is extended to infinite dimen=-
sional Hilbert spaces. Also considered is a modifiestion of the rank
one,quasi-Newton methods In order to minimize a functional subject to
linea? constraints. Conditions are found which guarantee the convergence
to the location of the constrained minimum of a -quadratic functional.
The gpplication of these rank one, quasi-Newton: algorithms to various
clasges of optimal control problems is investigated. Also, the
algorithms are applied t0 a sample optimal control problem. The resuits

are compared with the results for the game problem using obher known

first-order minimization technigues,
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1. INTRODUCTION
1.1 Background and Preview

In the past few years the problem of finding the location of
the minimum value of a real valued function of n real variables
by numerical methods has been the subject of a grest deal of
resaarch%[?,lo,lij. éeéerai i;erative procedures have been developed
to salye the problem. Much of the work has been directed toward
deféloPing algori%hms whic% use, the function value and its gradient
to locate the minimumiby'iteraﬁion. This type of algorithm is usually
referred to as a gradient or first-order method. HEistorically the
method of steepest descent was the first such method. In order to
accelera?e convergence the method of conjugate gradients was devel-
oped later by Hestenes and Stiefel'[}é]'and then was gpplied to the
minimization problem by Fletcher and Reeves [}i]. Later first-order
methods were developed which were inspired by Newton's second-order
method.

Two of the most effective of these technigues are due to Davidon.
In 1959 Ei] Davidon proposed two techniques for solving the problem.
The first method, hereafter denoted by D1, was given in the main body
of his report. In 1964 Fletcher and Powell (10} modified DL and
established that for any real valued function the method is stable,
that is, does not diverge. (This modified DI we will denote by DFP.)
Moreover, they showed that for a real valued quadratic function of

n variables, the DFP algorithm converges in a finite number of steps.

In fact, at most n + 1 steps are needed. In 1968 Myers [?f] showed



the relationship between the search directions of the DFP method and
those of the conjugate gradient method if the function t0 be minimized
is a guadratic function 'of n varisbles. Also in 1968 Horwitz and
Sarachik [_2(2} extended the DFP method from an n dimensional
Euclidean vector space to an infinite dimensional,real Hilbert space
and estgblished converéence of the iterates when the :f'unctional to
be minimized is quadratic".' The result due to Myers was also extended
t0 any real Hillberti gpate. In 1970 Tokumaru, Adachi, and Goto [:56]
also extended the DFP algorithm to.an infinite dimensional, real
Hilbert space and gave a comparison of the DFP method, steepest descent
and the conjugaté gradi;ant method on some sample optimal control
pro’ollems.

The second method due %0 Davidon, denoted herein by D2, was
outlined in the appendix to the 1959 report [‘T] . Later in 1968 [8]
he published a modification of the second method and established
conditions insuring its convergence to the minimum of s quad:r‘atic;
function of n varizbles in a finite number of steps and insuring
the stability of the method. In 1969 [9] Davidon proposed a second
modification of the second method. In 1967 Broyden [1#] proposed a
family of methods based on a parameter o +the choice of which was
‘left unspecified. If o = 1, then under certain conditions, Broyden's
method and the second Davidon method, T2, are the same. TIn 1969
Goldfarb Elﬁ:] established convergence of the iterates of the Broyden
algorithm for a class of real functions of n variables when o ig
chosen by means of a linear minimization technique (E €.+, a One-

dimensional search).
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The purpose of this paper is to extend the Davidon-Broyden family
of algorithms to an inf;i.ni‘te dimensional real Hilbert space, to estab-
lish conditions guaranteeing convergence of the iterates for various
algorithms in the Ffamily, and to apply the family of algorithms to
optimal control problems.

In chapter 2 of this paper, the Davidon-Broyden family of
algorithms is extended from an n-dimensionsl Buclidean vector space
to an infinite dimensional real Hilbert space. In the case of a
guadratic functional defined on a real Hilbert space, conditions are
given which guarantee convergence of the iterates to the loecation of
the minimmm for Goldfarb's method of choosing thé parameter and for
g far more general choice of the parameter. In this approach the
need for a linear minimization is eliminated.

In chapter 3, the relationship between the Davidon-Broyden
algorithm with Goldfarb's method for choosing the parameter, thé DFP
method, and the method of conjugate gradients is examined. Also
conditions are given vwhich insure that all three methods generate
the same search directions. Since the step size is chosen the same
way for each method, the same sequence of iterates‘is generated.

In chapter 4, a modification in the method of choosing the
"search directions in the extendgd Davidon-Broyden algorithm is
examined. This modification was‘suggested by Powedl in 1970 [5@] in
an article reviewing the state-of~the-art for finite dimensional
optimization. For this modified method, conditions insuring con-
vergence of the iterates to the location of the minimum of a quad-

ratic functional are giwven.



In chapter 5, the basic algorithm -as given in chapter 2 is
modified so thét it can be applied to a constrained minimization
problem. The conétrained problem is to find the location of the
minimm of a functional J(x) defined on a real Hilbert space H,

finite or infinite dimensional, subject to the constraint that

Ax = b, where b is a fixed element of another real Hilbert

space ﬁ and A:H —aﬁ, is & bounded linear operator.

The mechanics of applying the algorithm to various classes of
optimal control problems are examined and discussed in chapter 6.
In meny optimal control problems, only controls lying in a subset
of the Hilbert spaée are considered. TFor exemple, those 15[0,1]
functions whose range is contained in U, a compact, convex subset
of RP. However, the basic algorithm discussed in chapter 2 updates
the neir estimate of the locati;m of the minimum based only upon the
functiongl's value and its gradient at the old estimste. The new
estimate cen then lie anywhere in the Hilbert space. Because of this,
to apply the basic algorithm to an optimal conbrol problem, its cone
trol region U must be an FEuclidean space. Park [ég] hes examined
various classes of optimal control problems with a compact,convex
control region and by means of certain transformations has reformu-
lated these problems so that their new control region is an Fuclidean
space. The equations necessary to apply this basic algorithm to these
transformed problems are also derived in chapter 6. ‘

In chepter T, the basic slgorithm and its modification are applied
to one of the sample control problems given by Tokumaru et al. The

results are swmarized and compared. The results given by



" Tokimaru. et a.__l_; [56] comparing the co;'rljugaft:e gradient, steepest
. des;ent, and bFP meéhods for the same problem are presented. The
Tokumaru. et al. results show the DFP method superior in :terms of
rate of converge:;me. The DFP method is then com-pared with our rank

one algorithm,

1.2 Outline of Known Methods
Let H denote a real Hilbert space with.the imner product
( , ). Let R denote the real numbers. A functional J:H =R
is said to be differentlable at x if there exists a‘l-inéa.r func -

tional uptH - R such that for h e H

3(x + B) = 3(x) = ug(h) + ep(h) (1)

€l(h)

| 2]

functional wu, exists, then it is unique [53]. Moreover, by the

where

|2 =0 (Frechét differential). If such a

Riesz representation theorem there exists a g(x)eH ‘such that
(g(x),h) = uy(h) for all h e H and g(x) is given by
a¥(x + th) .
at = (g(x);h) (2)
=0
We call g(x) the gradient of the functional J.
Buppose we wish to find the location of the minimum value of

a differentisblé functional J:H — R with gradient g(x) at each
point x. The three iterative techniques, steepest descent, conjugate
gradients, and DFP, could be applied to finding the location of the

minimum of J.! These algorithms are all descent methods and are
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only distinguished from each other by the msnner in which. the sesrech
direction is computed. If x4, € H is the initial estimate of the
minimm and 1 = 0, the algorithms are as follows:
Step 1: Compute J(x;) and g(xi); if '"g(xi)n = 0 stop,
otherwise, .
Step 23 Let Xxjy41 = X{ + a4sy where o, called the gtep size, is
a real number and s; E H is called the search direction. ay 1is
chosen so that J(x; + ay8;) < J(x; + As;) for all A € R, The
search direction sy for the sbove-mentioned methods is chosen in
one of the following three ways.

If sy = - g(x5), then the algorithm is the classical method

of steepest descent [?i] .
(&lx;),e(x;))

(g(xi-l)’g(xi-l) )

If 83 = - 8(x3) + By.38i_1 Wwhere By_j =

and 8o = =~ g(xo) then tﬁe algorithm is called the method of con=
juéate gradients [11, 18, 19, 23, 25, 3] .

Finally we have tl:[e:DFP method, if s; = = H(i)'g(xi) where
the 'H(i): H-H 1 =0,1,2 ... are a sequence of linear operators
defined iteratively as follows:..H(o) is a strongly bositive, linear,
self-adjoint operator-on H and H(i+l) = H(i) + A(i) + c(i) where

A1) ang ¢li): EoH arve so that if x € ®

A1) o (Blt)yy,x) (1)

= —————— ¥i
(.Vj_, Hiyi)



where
Ji = g(xi+l) "g(xi)'
and
01,%)
1), . (o1, o1
(O'j_:Yi)
where

Of = Xi41 = %4

We set 1 4+ 1 =1, return to step 1, and continue.
A summary of the results known concerning, the application of
these three technigues to guadratic functionals will be given at the

end of the next section.

1.3 Quadratic Functionals

Let AtH —»H be a linear, self-adjoint operator such that

mlx)® < (om0 <u | x ) (5)
where

_ sup (x,Ax) _ inf (x,Ax)

R EEARE AL “
and where we assume that O <m <M, Hence, " A " =M [_2] .

Since wm > 0, AL exists [:26:] and A"'l is also gelf-adjoint.

Moreover, we have

2 eal) <k =2 (5)



We call the functional J:H - R given by
' 1
J(x) = 35 + (x,b) + E(X,Ax) (6)

a quadratic functional on H wvhere b is a fixed element in H
and J, € R. Using (5) we can compute the gradient g(x) .of the
quadratic functional given by (6) as follows:

aJ(x + %h)  a(Jg + (x + th,b) + 2(x + th,A(x + th)))

dt : at

a(g))  (nplafs)  alx,m

TTE YT & * =5z

%d[(x,Ax) + 26(h,8%) + % (n,4n)]
at

+

(h;b) + (h)Ax) + t(h:Ah)

and we have
dd(x + th)
“T—‘ = (h’b + AX-).
+=0

Therefore, by (2), the gradient g(x) of the quadratic

funetional J(x) is given by
g(z) = b + &x. (7)

The following well known theorem states & necessary and sufficient

condition for ¥ +o minimize J(x):
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Theorem 1.1l: A necessary and sufficient condition that X minimizes
J(x) as given by (6) is that g(X) =6 wWwhere 6 denotes the zero

elgment of H.

Proof: Suppose g(%) = 8 then A +Db =8 by (7) so that

b = - A%, hence if x # X

J(x) - J(x)

Jo + (;E-:b) + %(E)A;) -do - (xsb) - -sz-(X,AX)

~

~ 1, v s .l
(x’ - Ax) + "é‘(x)AX') + (X,AX) "E(X)AX)

il

since
("]
b = - AX

Therefore, J(X) - J(x) = - %('5‘: - x,A(; - x))- since A = A¥ and
(% - 2),A(x =x)) >ul} & - x| 2s0 by (3). EHence,
J(x) - J(x) < --.;. mjj% - x){2 < 0. So ¥ is the location of the
minimum of J.

Conversely let us suppose that J(X) < J(x) for all x e H.

If we let h e H, h fixed, then for t € R we have
J(x + th) - 3(x) > o. (8)

Hence,

s 1 -~ “~ o ~ e
0<Jo + (X + th,b) # 5 (% + th,AX + th)) - Jo - (&,b)- -Jé'-(X,Ax)
B Ny L1 ,D
= t(h,b) + t(h,8x) + 5 t"(n,An)

= t((n,e(x))+ %-t(h,Ahzl < t(h,e(x)) + E;N_I“ n|2
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Now suppose (h,g(X)) < 0; then since M, Hh! 2 and (g(%),h) are con-
stants and M > 0O, ” h "2 < 0, we can force t(h,g(';:)) +1-:—2- M“ b 2«0
by letting t — OF. So this would imply J{x + th) = J(X) < 0 which
contradicts (8). Similarly, if (h,g(:c))> 0 by letting -t =20~ we
nave t(h,z(x)) + %2&1 finf 2 < 0 which leads to a contradiction to (8).
Hence, it must be true that (h,g(X)) = 0, and since h was an arbi-
trary element in H it follows that g(x) = 6.

Theorem 1.2: If x denotes the location of the minimum of the guad-

ratic functional J given by (6) then
X = = A=lp, (9)
Moreover, if x,h € H are such that x + h = X then
-1
h = - A7 g(x) (10)

Proof: By theorem 1.1 end (7) 6 = g(x) = &% + b, so that x = - ALy
since A™l exists. If x + h = %, then g(x + n) = g(x) = o. So,

A(x +h) -b =86, Ax + Ah = <b. Hence, Ah = - (Ax + b) = g(x) by
(7). ‘Therefore, h = - a~lg(x).

Of course, the equation h = - A™lg(x). is the basis for the well
known Newbon-Raphson method for mihimizing a f\:;nci:’f:ional on & Hilbert
'space [22] .

Other useful results due to the f"'act that J is a guadratic

functional are the following: If x,x* ¢ H; then

AN g(x) - g(x®)) = A"Max + b - &xF b)Y = x - x5, (11)
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Hence, if we let - y = g(x) - g(x*) and O =X = x*, we have

Ay = 0. (12)

Moreover, we can see that s € H and o € R are such that

= x + as (13)

then by (7) and (13) g(x*) = ax¥ = AX + b + als. . So that by (7)
we have again

g(x") = glx) + ahs. (14)

Also, for all x5 ¢ H the smallest closed, convex set containing the
points x € B at which J(x) £ J(xy) is bounded [25] . We denote
this set by s;{o = é&'x‘r{x e H:J(x) < J(xo)} .

It is known [ 20] that if a quadratic functionsl is minimized by

the conjugate gradient method the ith search direction is given by

oo alxy)
g5 = ~ lle(z)]] @ S — (15)
g “ -’;) ” S(XI}“ 2

Horwitz and Sarachik have showm for‘a quadratic functionsal that

the ith search direction of the DFP method is given by

' .

g(xy)
(g(x7),H\ °)g(xz))

55 = - B0 (g(x), B g(x)) Z (15)

if H(O) is the identity denoted by I, then (15) and (16) are the same
directions. Since the step size is picked in the same fashion Tor both

methods they will genexate the same sequence of iterates [2@] .
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The convergence of thé iterétes té ‘the ;ocatién pf.thé miﬁimum
by the method of steepest descent, m'etl;:cnd ;::f‘ éqx}juga.te gfadients‘ , and
the DFP algorithm has been gstablislfled teq] » [36] for the case where
the functional to be minimized is quadratic.

A note éoncerning ‘the n;tation to be used throhghout this paper
would appear to be in order. It shall be\our prac%iée tha£ if réfer-.
ence is made to an equation, identity or relation in the same ché;tex,
only the number at the right-hand side of the page %ill be~énclosed
in parenthesis. However, if the referénce is to an equation, ete.,’
in anbther‘chapter, then the chapter number followed by & period -and theh
by the reference number will be given. Theorems will be numbered
- sequentially with & chapter prefix, that is, as theorem 1.1, and
ﬁill be referenced in that fashion. The numbers enciosed in squafe'
brackets refer to the“references in chapter 8.

Also herein we shall denote by Li[}o,ti] the real Hilbert

space of Lebesque measurable functions u = u(t) defined on

E?o,ti] with range in RY (Buclidean r space) such that

3 %
X /; l{-_ui(t):ladt <o

i=1

vwhere .u, (t), us(t), ... ur(t) are the components of wu.
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2. THE CIASS OF DAVIDON-BROYDEN ALGORTTHMS

In this chapter, we shall discuss’ the extension to an infinite
dimensional Hilbert space of the Da.vidon-Brc;yden minimization algorithms
alluded to in chapter 1. We shall also relate conditions insuring the
convergence of the iterates of various members of this family of ‘algorithms
in The case where the functional to be minimized is quadratic. In the
case of a finite dimensional Hilbert space, Broyden l:ll-:l called this
family of algorithms "quasi-Newton methods." Special cases of this
.family have been called "optimal vaxriance algorithm" by Goldfarb [?j]
and "rank one variance algorithm" by Davidon [9] . The author's contri-
bution is to show the relationship of these methods to each other, to
extend thelr applicability to infinite dimensional real Hilbert spaces,
and to esté.b‘lish conditions insuring convergence of the iterates. For
the latter purpose, new proofs of convergence of the slgorithm's various
manifestations were necessa:ﬁ'y'.

I2.l_ Qutline of the Class of Algorithms

Let T:F ~R .be a differentisble functional with gradient g(x).

Let x, € H be the initial estimate of the location of the minimm of

(o)

d, and let V be a seli-adjoint, strongly positive linear operator
from H onto H. ILet My, 21, >0 be such that m, T < V(O) < M 1.
If J, the functionel tc be minimized, is guadratic as in chapter 1,

then V(O) is an estimate of A™Y. We compute J(x,) and g(x,) and

and obtain the first iteration as follows:
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Step 1: TLet
x¥ =x, - ctnv(n)gn (1)

where g denotes g(x,) and «, is a scalar, the choice of which

ig discussed later. Let
Sy = - V(n)gn (2)

and compute J(x¥) and g{x¥) denoted by g¥; if “g*“ =0, a
necessary condition for x¥* +to be the location of the minifum, we
stop. If J is a quadratic functional and g¥ = 8, then by theorem
1.1 x% is the location of the minimum.

Step 2; Compute the residual vector

= vy oy (3
that is,
o = v (g® - (1 - ap)ey) (1)
or
t = Yy, - e, (5)

vhere yn® g* - g,. If 1, = O, then set ay =1 and return to

step 1.
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Stép 5‘: Define scalars

pn = (ge;rn) (6)
and
7n = - {&ns7n) (1)
pn
and let
-
’n iy, # -1
1+,
Ap = < ©)
L1 i ry=-1
Step b: Let
glol) () (- 1) Hn) (9)
Pn

where B(n):H —=H is defined such that for all x ¢ H
By = (x,ry) 7. (10)

Step 5: If J(x¥) < J(xy), let x:,,7 = x* and, consequently,

I(xns1) = J(x*) and gneq = £%; otherwise, let xy41 = x, so that

J(xpe1) = 3(x,) and 8nil = &p+ Set n=n+ 1 and go to step L.
The elements. of the class of algorithms outlined above are distin-

guished by the manner in which the paremeter a is chosen with each
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iteration. Davidon [8], Broyden D—l-:] , and Goldfarb Eﬁ] proposed tech-
niques for choosing o, in the finite dimensional case. For Davidon's
rank one variance algorithm o, =1 Tor all n, however, the scalar
A, s&iven by (8) is chosen so that certain inequality constraints are
sabisfied. These con:s'.train'[;.s insvure that Davidon's V(n) remain
positive definite. ' Goldfarb's oﬁtimal yearisnce algorithn reguired that
o, be chosen:‘so that J(xp + asy) e minimized with respect to a.
The Broyden quasi-l\feiz:bc;n lmeth_od requires only that o, be chosen so

nt -
that (V( ))« * exists. For a quadratic functional theorem 2.7 proved
: 1 1

lai:,er‘ shows"tha't :E‘o*t.z -V(O) > A" or V(O) < AT either Davidon's or
Goldfarb's, methddl c_::f" cﬁodsjing an satisfy Broyden's criteria.

For the remainder (‘)'_F“ ch.apter 2, jWe shall assume that the functional
t0 be minimized is quadratic as »&e}ined in section 2 of chapbter 1. We
shall mske note of any ’resul'bs which are independent of the type of

functional to be minimized.

2.2 Theorems That Are Independent of the Choice of o.

Theorem 2.1: B(®) as given in (10) is a self-adjoint positive

operator for all n, for any choice of ap.

Proof: If =x € H, then
(n) a
(x,B\Vx) = (x,(x,mn)rn) = (x,mn)" >0
and if =x,y € H, then

(x,80)y) = (x,(7xg)m) = (7,m) (5m,) = (volxmy)ry) = (7,8(0)x)
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Theorem 2.2: V(%) is self-adjoint for all mn, for any choice of

O:,n.
n-1
proof: v(®) = y{o) 4 z 1 - 1) o(1) by (9), and V(®) is sere-
i 1
adjoint by definiticgn. By the above theorem, the B(I)ts are self-
adjoint and the finite sum of self-adjoint operators is self-adjoint.

Notice that the two theorems proved above are independent of the
type of functional that i's to be minimized. '

We have seen in chapter 1 that the location of the minimm %
of 'a quadratic f'unc.tional is given by X = x, - ,A"'lgn. Also recall
from chapbter 1 that the change in X from one iteration to the next
for the Newton Raphson method is given by -A'lgn. In the algorithm
outlined in section 1, the change is —unv(n)gn hence, the name
guasi-Newbon was given to the finite dimensional form of these
algorithms by Broyden [:11-___1 The search directions for the algorithm
outlined in section 1 are given by -v(n)gn and we want V(n) to
play the role of A"l. Hence, it is desirable that the sequence of
operators V(n) retain from one iteration to the next the following
property: if for some w € H, A=y = v(Du then a-lu = y(n+l)y,

By the definition of the vector r

n We have the following general

result.

Theorem 2.3: If w e H 1is such that A~y = v(®u and BH =X

is a linear operator such that B - v(1) = p.B(n) for some real p

then A~lu = Bu.

Proof: Since At (¥ - gy) = x¥ - x, by (1.12) and x* = Xn - ocnv(n)gn

by definition, then
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x* - xp = -anV(n)gn = A7M(e* - gp) (11)

and by (3)
r, = V(n)(g* - &) + crnv(n)gn.

Therefore, T, = V(n)(g‘* - gy) - A g - g,) by (11) and hence

r, = (v(n) - A"l)(g* - g (12)

Since A"lu = V(n)u we have

(v(n) - A"l)u =9 (13)

S0

(o0 = ((V(n) - A‘l)(g* - gn);u) = ((e;* - gn),(v(n‘) -A'l)u)
= (g¥ - g,,9) =0

by theorem 2.2 and equations (12) and (13}, Hence, the hypothesis

( - A" Dy = p.B(n‘)ux implies,
pB(n)u = p{usey)r, = BeOory=29
1

Therefore, Bu = A u.
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(041) _ n) , o - 1) _(n)

Pn
‘Corollary 1l: If Vﬁn)u = a1y for some u € H, then V(n+1)u = a1k,

Since V we have the following:

In chapter 1 we showed that for a quadrstic functional

Anl(g* - &n) = x¥ - Xpe

The following theorem gives the fundamental reason for our choice of
V) thet 1s, so that vhen 7, £ - 1, then V(™D ama -l i1l
agree on the space spanmed by g¥ - g,

Theorem 2.4: (Basic theorem). If Yq # - 1, then

(oHL) (g gn) = x¥ - xp
thet is,
v(n-z-l)

(}.’,nS

Proof: If ry = 0 then by (10) B(n) is the zero operator, therefore

y(8+2) v(n), so ‘that 'v(n+l)yn = apsp. Otherwise, consider

vy o o y(n)y +‘-(—7\£;:——J-").(rn,yn)rn -t (by (9))
o
g s D e oy ()
= rn{l + (7‘211" 1) (r.n,y@ (vy (2))
- {L . (“En‘ 2 (og wnp@ (by (6),(T))

2 0 =8 (vy (8))
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Notice that the basic theorem is independent of the fact that
d 1is a quadratic functional. The following corcliary combines
theorems 2.3 and 2.4 to show that each i‘te.ration, e 7, £~ 1,
raises the dimension of the subspace, on which V(n) and A_l agree,
by one. Hence, some authors [}Q] have called the finite dimensional
form of this algorithm a rank one method.

Corollary 1: (Fundamental property of V(n)) V(n)yi = ay8; for all

i<n if 75 £ - 1 ifor 'j = 0,1,...,0

Proof: (By methematical induction)

V‘(l)yo = Un84 (by theorem 2.4)

Assume V(I'l)yi =afs; Tor all i <n. Consider '\T(n"'l)yi for
A |

i = n. Then by theorem 2.4, V(n+l)yn = a8y, ~Otherwise, for i < n,
since A'l,y'i = a;8; by (1.12) and V(n)yi = a8y, A~) ana v(n)
agree on y;. The corollary to theorem 2.3 implies V(n+l)yi = sy

The above corollsry is most useful in later convergence arguments
and, hence, we have named it "the fundamentsl property of V(n)."

In order to facilitate the proof of some later resulbs, we shall
now find enother way of expressing (A, - L)/p,.

Theorem 2.5: If % # - 1, then

(v -1)

or - (V(i)yi - ﬂ'isi‘!yi)“l = - (Z‘(‘i,y‘i)-;l'.
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Proof: (A -~ 1)/py = (73/(75+1) = 1)/p; = - (p3(7; + 1))+

== (p; = (r,e )t = - (8% - (e ™h = - (w3~
= (Vg cagsg,yg)t
In view of this, (9) can be written as
y(ntl) _ y(n) _ p(n) (1)
(V(n)yn - “nsn’yn)
and since a.s, = A"lyn, we have
vintl) - y(@) 2 ; (15)

( (v(n) A‘l)yn,y_n)

which yields the following theorem:

Theorem 2.6: I V(%) > 4L, then v(1) > a-1 for a1l n ema

similarly, if v(°) <), then v(n) <a-l for a1l .

Proof: We proceed by induction end asswme thst V() > a1, 7
V(n+l) = V(n), i.e.; 7, =~ 1, the result is triviel. Otherwise,
by (15) and (10),

@Y _ 1)) (o) ) | Ger)®
( (v A ) (x (V A )x) (yn,(v(n) - A-l)yn)
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(= - ) ((v® - 2yl

From the C.B.S. inequality [2] : (x v - IR
([ )

The second part of the theorem is obtained by merely considering
(x,(A"l - V(n"'l))x) instead.

The following theorem gives a condition under which the V(n) g

>

form a monotone seguence of self-adjoint bounded linear operators.

Theorem 2.7: If y(o) ZA"J—, then Vv{n) S?V(n'l) < e EV(O) for

all n. Similerly, it v(°) < a-1, then v(n) > y(n-1) > .., y(o).
for allk n.

Proof: By theorem 2.6, if v(©) > A1, then y(n) > a1 for all n.
e yn+l) - y(n), 1.6+, 7 = - 1, then the assertion is cbvious.

Otherwise, we have

(x’,{v(n-i-l) _ V(n))x>= _ (X,B(n)x) <0

(yn,("\f('n) - A-;l)yn) -

by (15). The ineguality holds since theorem 2.1 gives (X,B(n')x) >0

and from theorem 2.6 V(n) - a1 > 0. The second part of the theorem

(n+1)

follows by considering v(n) -V instead.

coroltary 1: 1f V(@ <2l or v(®) >4, then the v(® s rorm

a monotone sequence of strongly positive self-adjoint linear operators
bounded by V(d) and h'l Moreover, there exists a strongly posi‘bive'

se]i'-adgo:.nt operator '\T such that 1im V(n)x = Vx for all x € H.
] > 0

Proof: The. V( )‘s form a bounded monotone sequence of strongly

|l

pos:Lt:Lve, self- adgmnt operators by theorems 2.2.and 2.7. That is, if
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implies the existence of a strongly positive, self-adjoint linear
operator V such that V(n) converges to V poinbtwise [l:] .

Theoren 2.8: IFf V(O) ‘__<_A'l or V(O) _>_A'l and 7n,94 ~ 1l for

2ll n and if S is the closure of the space spanned by {yi}, then

Lim v{®x = A~ for a1l x € 8 independent of the choice of the

I~ 0
Uy 'S (By closure of ‘the space sparmed by a set M, we mean the
smallest topologically closed subspace containing M.)

Proof; For any x € 5 there exist B4 € R such that

x= ) pge (16)
1=0
Consider
e - vl < v = o v Y g
i=0
n-1 0
< (A—l - V(n)) Z Biwsll + (A"'l- V(n))z Biys
1=0 j=n
n-l1
By the corollery to theorem 2.4, (A“l - V(n)) Z Biyi = 6. Since
i=0

v(®) > a1 or y(0) < a1 1y theorem 2.7 and 1ts corollary, it must
ve that [v()] < Ja-t] o < lr(l. so a2 - v®)|  is boundea

for all n, and by (16) it follows that the remainder must go to Zero,

co

d.e., Z Bi¥il|>0 as n -, S0 we have Lim ”A'"lx - V(n)x“= 0.
! h— oo
jL=I1
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Corollary: T2 v(®) <ad or v(°) >4l apa Tn £~ 1 forall n
and the y; Torm a basis for H, then v(n) - A"l point-wise
independent of the choice of «.

Wotice that all these- results have been established without
regerd to the choice of ap. We called x, as defined in (3) and (k)
a residual vector. The reason for this terminology will now be
explained.

Suppose 1, = 8 for some n. Then V(n)yn = OpSp, and
if (V(n)>-1 exists, ¥, = an(v(n))'lv(n)gn = - ayg, by (2) and by
(5) we have y, = g¥ - g = - a.g,. By (L.14) g* = g, + ahs, .
Therefore, opAs, = - ong,s SO that s, = - A‘lgn. Hence, since
sn=—v(n)gn we have V(n)gn = A'lgn.

As we have seen in chapter 1 (theorem 1.2), the minimum of J
is atbained by X = X, - A"lgn. In the basic algori‘l?hm outlined in
sectbion 1 of this chapter, step 2 says if r, = 8 we let a, =1
and repeat step 1. Then the new x* is x¥ = x, - V(n)gn and we
have shown above that s, = - A"lgn, hence, Vngn = A'lgn. Therefore,

by theorem 1.2 x* is the location of the minimm of J. This

explains the reason for step 2, and we have proved the following:

Theorem 2.9: If =, =9 and (V(n))'l exists, then by spplying
step 2 of the basic algorithm we let o, = 1 and we find that the
resulting x¥* given by x¥ = X, - V(n)gn is the location of the

minimm of J.
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2.3 Convergence if %y is Chosen by a
One Dimensional Minimization Frocess

There are two rather obvious ways to.choose o, 8at each step:
(1) let ay =1 for all n, and (2) let o, be such that
J(x, + apsy) < J(x, + As,) for all real A. Both cases have been
investigated by Davidon and Goldfarb and convergence has been established
in the case of a quadratic functional on a finite dimensional Hilbert
space.

We shall now demonstrate the convergence of the algorithm of
section 1 to the .location of the minimum of a quadratic functional

on an infinite dimensional Hilbert space when a, 1s chosen for

every n so0 that

I(xy + apsy) < J(x, + Asy) (17)

for all real A. This, of course, implies that Xpyl = X¥ in step 5
of the algorithm given in section 1. If «n is chosen in this manner,

then, by neces si’cy;

AT (xy + Asp) -0

(18)
da
at A= Oy o
That is, (g¥,sp) = @hy + ansp),sp) = 0 so that from (1.7)
we have
(s
- nEn) (19)

n h (SnJASn)
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Therefore,

I(xq) = To + (b,x7) + i-‘(xl,Axl) . {by def.)

i}

I, +(bx +oc.s)+—(x +or.so,A(x +or.s))

2
1 o,
Jo + (b,xo) + ;(XO,AXO) + a,o[(so,'b) + (SO,AXOE o+ —-29(50,Aso)

2
3(xg) + ay(5408,) + 22(ay,88,) (by (1.6)

2
1 (SoJ go)
2 (sg,48,)

I(xg) - (by 19)

In general,

, RY:
Tagar) = Ilx) - ) 8
100 2(si,Asi)

Since,. inf . J > -« and’ J(xp1) < J(xn), it must be that

n

2
1im J(xn_,_l) = J(xo) - lim (eie1)” > - w

n-3 | n— °°1 2( Si:ASi)
so that

CH
2(si,Asi)

0

i=C
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which implies that by necessity

1im (Siygi)e _

i=-se
(Si,ASi)

0 (20)

_ Since its derivation in no way depended on (2), (20) must be true
for any descent method. This result and the following lemma are given
by Horwitz and Sarachik [E(il . 'They used them to prove convergence of
Davidon's first method, steepest descent, and the conjugate gradient
method in an infinite dimensional real Hilbert space for the problem
under consideration.

Lemma 2.1: If g, -9 as n o, then x, converges in norm to the
location of the minimum ¥ = - A™Yp.
Proof: 0 < (x, + A1b,A(x, + A-1b)) = (x, + A-1b,g)

<l + a2l flg 0

Wow “xn + A'l'b“ is bounded for all n, since for all n, x; is
contained in a bounded set, namely S;:o = Eﬁr@ € H:J(x) < J(xo} as
in chapter 1. Heénce, TI:E_':LGm'(xn + AYb,A(x, + A"3)) =0 and since A

is strongly positive, we have lim x, + A = 8,
=5 oo "

We can now prove a general convergence theorem for this case.

Theorem 2.10: TIf there exist positive reals a,B such that

al < V(n) < BT for all. n larger than some N end if o is chosen
. . ' =1 - . ' .
as in (17? s then %_]inm “X‘n + A4 b" 0, that is, ¥, converges in
norm to the location of the minimum.
;s 1, P JulfP
Proof: Since for all wu € H, miul < (w,Au) < Miull®™ we bhave

11 .1
Ml = (u,4u) ~ mlulP
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end since ollulf < (u,v(n)u) < [3“11”2 for all n,

1 1 A
ol = ae @ = daE

since V(W i self-adjoint, ve nave |h{hy < Bllu“ [2].

Therefore,

(Sk:gk)e > (Sk:gk)g _ (gk,v(k)gk)2 S (81{,V(k)8k)2
(sohs) —Mlle [P wv g2~ vp2 |2

2)2 ~

o (Jlexll < | 2
> = — llggll >0
ME® lgll?  1p?

and by (20) (sk,gk)g/(sk,Ask) — 0. Therefore, ”gkﬂe -0 as
k =-w and by lemme 2.1 Xpp = - iﬂf‘lb in norm.

Corollary 1: If V(O) _<_A“l or v(0) EA"l and o, is chosen as

in (17), then J(x,) converges to the minimum of J {x), and moreover
?

X, converges in norm to the location of the minimum.

Proef: If V(o) < A-l, then by theorems 2.6 and 2.7 we have

v(0h <y < ad for a1l n. Hence, M I < v(®) <11 forall n

2.4 Convergence with a More General Choice of o
Let {or.k} dengte & sequence of real mmbers. We then apply
the algorithm outlined in section 1 using these {a,k}‘s in step 1
to minimize the quadratic function discussed in chapter 1, section 3.

Select a subsequence K = {ock_n} so that J(x¥*) < J(xkn) for all
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n=0,1,2,... To simplify the notation, let us write n dLor k-

Then we have

gn =8t (& -8) + (g ~g) + .0 + (g, - 2,7)

or
£ pel
En = &y + z ¥i
i=0
since
Ji = Bisl - &i-
Then
n-1
V(n)gn == V(n)go 8 Z V(n)yi. (21.)
i=0 .

From the corollary to theorem 2.4, V(n)yi

i
2
o)
1
a
i...l
B
H
A"y

from step 5 we have Xy =Xy + 0, and xp Xy + 01 =Xy + 0y + 07,

etc,, so that
n-1

p = ¥ Z O3 (22)
i=0
and so on. TFrom equations (1}, (21), and (22), we have

x*

. - “nv(n) gn

E

-1 n-1

X, + Z gy - oun'v(n)go + Z a; -
1=0 i=0
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Hence,

n-1l
2=z - a¥®g + (1 - a) Z o3 (23)
i=0

Now let us consider

n-1
flx¥ = (- A-30)l = | A1 + Xy = or.nV(n)go + (1 - ) Z oy
i=0
n_-—ql
= |la~dp + A“leo - aﬁv(n)go + (1 - ay) 24 o4l
1=0
Hence
n-1
I + a3l = fj(a-2 - a7 g, + (1 - an) Z asll- (24)
i=0

In order to establish convergence, we must show that “x* + A"lb"
can be made small as n —w. Let S;co = c_orﬁ{x € H:J(x) < J(xo)}
as in chapter 1. Since it is known that S}‘Co is bounded, [25] y We
can prove the following:

Lemma 2.2 If n{ap - 1) >0 as n —»« and there exist «,B > 0 suchth

Ne
ngv(n) <BI and 7, # -1 for all n, then (1 - ay) Z asfl- 0
i=0
as n —ow,
Proof: llogll = flaysy]l = |i- aiv(i)gill (by definition).

so,
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llosll = e (D) (axe; + DI < Lo IR NNl + T (- Iy (25)
Since x; € 8] is a bounded set, [|x;]| is bounded and since

“o
aj =1 as i -»w, @i dis bounded. By hypothesis "V(i)" <p and
"A” <M, so everything on the right side of (25) is independent of i
and || oyl <L for some L >0 and all i. Hence,

n-1
L-a) ) og) <@ -l - nenno
i=0 !

since (o, - L)n ~»0 as n -,

Lemma 2.53: If go is an element of the smallest closed subspace
containing the ¥4's denoted by m » 1f the V(n)‘s are uniformly
bounded, o, 1 as n o and if Ya £ - 1 for all n, then

"(A'l - orznv(n)) &

Proof: By hypothesis there exist scalars Bx such that

=0 as n ~>oa,

0%

o) co
= 1. - _
g, = Z P;y; and so ATg = Z B;A J-yi = Z Bio; by (1.12).
i=0 1=0 i=0

Consider

”A“lgo - %V(n)go" = (A“l - %V(ﬁ)) Z Biyy

1=0
n-1 . o
ot - ear®) ) e ot - ™)) ag
i=0 i=n
oo 00
<1 - an) Z Bio + At - av(n)l . Z Bivi.
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n-1

o0 0
Since A"lgo = z Bsoy and g, = z B;yy we kmow z Bioi
i=0 i=0 i=0

o0
is bounded for all n and Z Bi¥yi[ =0 as n —w. gince oy -1,
i=n

we know that ll - ‘In‘ - 0. Hence, HA"lgo - crnv(n)goﬂ =0 as n =,
We can now assert the following:

Theorem 2.11: If g, € S(yi), n % -1 for all =n, if the V(n)

are uniformly bounded, and (o, - 1)n =0 as n -, then
“x* + A"l'b“ =0 as n —-w,

Proof: By (2k) we have

n-1
or o a0l = o - ar®) g s - ) ) o
i=0
n-1
<At - @@ gl v @ - e ) o
i=0

and by lemma 2.% the first term goes to zero. By lemma 2.2 the
second term goes to zero.

In this chapter, we have established conditions under which
two variations of the basic algorithm converge to the location of
the minimum of a quadratic functional. These are given in theorems 2.1
and 2.11. TIn both of these theorems we are most interested in the
convergence question for an infinite di:gensional Hilbert space. In a
Tinite dimensional space -of dimension n, we see that for almost any
collection of an's the algordthm con{rerges to the location of the
minimm in a fi:ni'be number of steps. The conditions on the &y, 'S

and the proof are given in the following theorem.
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Theorem 2.12: If 75 # -1 and o5 #0 for all j = 0,1,...,

and if (V(j)) -1 exists for all J, then after at most =n + 1 steps
x% = o A"lb, where n = dim H.

Proof: TFirst we show that the y;'s form a.linearly independen{:, set
if r5 # ©. Assume that <y1}2=0 is linearly dependent for some 1.

Therefore, there exist scalars B4 such that

¥i = Z BV ’ (26)

By (12) and theorem 2.9
. 3
(A 1. V(J))yj =rj#8  j=0,1,2,...,1 - 1 (27)

Moreover, by the fundamental property of V(j)

(A'l - v.(j)) v, =9 for i< (28)

By operating on (26) by (A‘l - V(I)) and applying (27) and (28) we

have

p = (4l v(z)) ¥y = z 8 (.A—l . v(z) Z B 6 =

¢
It {y]} o linearly dependent then r, = 8. Therefore, by

step b of the algorithm ®; is reset to 1 end by theorem 2.9
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the resulting x¥ is the location of the minimum. Hence, the
theorem 1s true, if {yi}szo are linearly dei:endent for T < n,

Since H is finite dimensional of di:mension n, we have at most
n  linearly independent y's. Now, if we apply the algorithm n +times
and the resulting 1, # 8, we have generated n linearly independent
y's and they must form s basis for H. Moreover, by the fundamental
property of V(n) » i.e., theorem 2.4 end its corcllery, we have
V(n)yi = A"]yi i=0,1,2,...,0 - L. Since the two linear operators
() end A™t agree on the y;'s, a basis for the space, it must be

that
v{®) = 4=1 on the whole space. (29)

Hence, by definition of x¥, (29) and (1.10) we have

o= xy - T g, =, - e, < x, - - . ()
Now from (3)
2o = V() (g - g} + (g
= A7M(g* - gy) + apalgy by (£9)
= x* - X + apA~ley by (1.12)
= % - x4 apA™H(Ax, +b) by (1.6)

i

x*-xn%-rcrnxn—l—cxnj-‘flb

=8 by (30)



55

80 by step 4 of the algorithm o is reseb to one and by
theorem 2.9 x¥ dis the location of the minimum.

Many times in this chapter we have proved results dependent upon
7n % ~ 1. We shall continue to do thits. in subsequent chapters. For

this reason, we shall investigate the case of 7y £ - 1. From. (6) and (7)

- (gn: I'n)

= which implies that
n (g* sTn)

we have - 1 =7
(FysTn) = O (31)

Now we know from theorem 2.9 that if (V(n) )-l exists and
(31) holds because r, = 0 that convergence is achieved on the next
iteration with o = 1. Also if (31) holds because y, = © then
g¥ = g, and by (1.7) then Ax* +Db = Axy +b or x* = x,. Bubt if
v(2) > 0 this contradicts (1) since g, £ 0. ‘

Now by (5) and (1.17) =r, = (V(n) - A“l)yn, hence, (31) can be

written as

(7o (v - 2} = o (32)
(n)

and, if v/ >A™ or y(n) £ a-t then (32) is impossible for

Vn # 8. Theorem 2.6 states that if y(o) > 4=l or V(O) <A™ then

y(n) < g1

or V) > for a1l n.
Moreover, the convergence of the iterates to the location of
the minimm of a duadratic functional assured by theorem 2,10 and

its corollary is independent of 7,. Hence, if 7, = - 1 then

o, should be computed by (17).
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3. COMPARISON WITH OTHER CONJUGATE GRADIENT TECENIQUES

If the functional to be minimized i‘s quadratic asg discussed in
chapter 1, then Myers [?f] and Horwitz and Sarachik [?QJ have shown
that whenever H(°)= I the DFP technique generates the same search
directions as those given by the conjugate‘ gradient method. Here, we
shall examine the relationship between these two methods mentioned
above and the method discussed in chapter 2 with &y chogen as in
(2.17)assuming that the functional to be minimized. is quadratic.
That is, throughout chapter 3 we shall assume that @, satisfies
I(xy + aysy) S I(x, + Asy) Tor all real ), and that
I(x) = I, + (b,x) + %(X,Ax), as in chapter 1.

Theorem %.1: If 71 74 -1 for all i, then the (Ui} generated by
the algorithm outlined in chapter 2 are A conjugate and the {yi}

are A™l conjugate, i.e.,

-1 . R .
(O'j_;Ao'j) = (Yi:A YJ) = (UJ‘;Yi) =0 if i# ds (1)
0 if 0<i<k
(gk:si) =
(g1581) if 0<kc<i, (2)
and also
V(k)AO’i = oy holds for all i<k (3)



i
Proof: (By mathematical induetion) By 2.4 r, = V(n)yn - OpSp

so that

Oy = vy Ty ()

n

where Op = Giy8pe

By (1.12) Ao, = y,, sO that

v ag, = v(2)

Yo
r ¥ (by (2.9) and
V(l)Ao'o = (O)yo - —(——9—,—:&-—9— theorem 2.5)
(ro,yo)
= o, | (by () with
n=0)

Hence, (0g,A807) = (UO,A(-alV(l)gl) = -cr,l(V(l)Aco,gl) since A and
V(l) are self-adjoint. Therefore, (UO,AG]_)‘= -a.l(o‘o,gl) since

V(l)AO‘O = gg. Henece, (0g,A07) = =27.0 since. o) was chosen to be
the minimum in the direction S, (rdo’glj, —= 0 by (2.18). " Hence, the

theorem is true for k = 1. We shall now assume that (U,J- ,Aci) = O

ir 0< j<i<keand v(8)as; = o; if 0<i<k. By (1.7) and (2.1),

g = b + Axy

b + A(Xk_l -+ Uk_l)

b+ A(X:u-]_ + Oy Foeee F O )

gl+l + Agi+l T eee + Ao.k-'l.
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Therefore,

(00:8) = (05,84,1) + (05,805 5) + «ov + (04,80 )

]

0+0 ... +0=20

that is,

(o5,8) = 0 | (5)

by choice of a, since (g;,8;,7) = O, and the other terms are zero
by the induction hypothesis. * So we have established the first part
. ‘

of {2) for i < k.

Wow for 1 <k we can see that
(o‘i,Ao’k) = (Ul’ - crkAV(k)gk) , (by (2.1))

Aci,gk)‘ {since A and V(k)

(c:,A0, ) =
k) T %
* are self-adjoint)

(Ui:AUk) = - dk(ci’gk) =0 (6)

by the induction bypothesis and (5). For a quadratic functionali,
Ag; = y; by (1.12), hence by substitution into (6) we have proved (1).
We consider for i <k
(k1) (x) (i I (s
v g = vy o (vy def. of vik+l)y
(I'k,yk)
k
(V( )Yk - Oy, A0 )7y

4 - o7 (by def. of 1)

V( k+l’)Acr. =g
i
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(B)g .
=0 - (V¥ yi )k (since (oy,A0;) = 0)
(%30 73)
(k)
=0 - (e, 7 7)™ x (by theorem 2.1)
(rkyyk)

( Yk A-J'.Vi ) Ty

=g - (by the corollary to
(_rk;yk) theorem 2.k%)
Aoy, 03 )1
-0 - ( i 1) k - O,i (Since Ao’k = yk a,nd
(rk,yk) (Agk,o'i) =0 for 1 <Kk)

Moreover, by (2.9) and (4)

(rysw)ry

k+1) (k+1) (%)
v( Aoy, =V =V -
k Yk .

Yk

k
= V( )yk -rk = Uk-

Hence we have established 1, 2, and 3, and the first half of k., We

know that x, = x5 - o, and hence, X = X; = 0.3 IEERL for

i>k. Then gg = Axyg +b =Ax; +b - Aoy + ... + o). Hence,

gk=gi -A(Ui“l+ e +0—k), sSO

i-k
1
(gk’si) = (gi-’si) - ; z (AO’i_j,o‘i)
1 =0
i-k
=(gi’si) - %?,1- z 0= (gi,si) Tor k S i
j:

We see from the preceeding theorem that this method is a conjugate

direction method. In 1ight of the remarks at the beginning of this
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chapter, the question arises as to how our method is related to the
conjugate gradient and DEP techniques. 8ince our method is a cénjugate
direction method we must have, if 77, # ‘=1 for all =n, that the O'n‘s
are linearly independent. For if the {Gn}r?;-‘-() are linearly dependent

then there exist scalars such that

1
i-0
4
So if j <1 we have from {7) that O = Z (Uj,Adi), which implies
i=0

that Bj(cj,AUj) = 0. Hence, By = O since o £ 0 and since A

is strongly positive. Since Oy = a8y the s8,'s are linearly

independent.

Notice also that V(O)go = V(O) * 1+ gy If we choose ¢gpn = 1

then V(O)go - v(o) (coogo and

(ro)g )
1
V(l)gl - vlolg - —--——)V(°)(g1 - (1-ay)gg)
0270
V(l)g V(O) 1 (ro:gl) gy + (1 - a.o)(l"o,gl)
= - &
1 (roy}'o) L (ro’yo) °
N (1 - ay)(zo,6y)
. i 0 ; 1-a )r.,g
that is, V( )gl = V( ) ' €i1,84 for scalars ¢y = { ° ?’ 1
i——-_O ro)Yo
(ro,gl) .
and c19 =1 - (;-~—T. The above suggests that for every n there
02Yo

exist scalars cipn, 1 =0, 1, ... , n, such that

n
v(tlg, - (o) Z Cingi - (8)
i=0
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We shall now establish (8) and find a convenient way to express the
Ccin'S. (
Theorem 3.2: If 7 74 -1 for j=0,1,2,..., then for every integer

k, there exist scalars &gy, bips ¢4x 1 = 0,1,...,k such that

k kel _
¥y = vlo) > aikyi + Z DikEs (9)
i=0 i=0
and
x
V(k)gk = V(O) Z Cik8i (10)
120

where ¥ = 8,9 ~- -

Proof: (By mathematical induction)

V(o)yo = V(O)(l)yo, 50 ‘apo = 1.
(1) (o) (ro,71)7,
VY = Vg - e by (2.10)
CHN
o’vo
(o) (*os31) {0) (1)
= VO - — VWOlyo 4 agritly | by (2.5)
(For v}
1 0
()] \° \'
=V /. 811+ ) biig
i=0 i=0
(25,77) (x_,7)
vhere aq4 = 1, a8y *= -~ 7 and bgy = - &, 7———-7p, Moreover,
(I'o’yo) (I'O,:Yo)
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1 .
) i=0 .
where
_ l - (ro}gl) - ‘(l = a’o)(ro’gi)
el = |—————] :c0L = .
(To,¥o) o (Posyo)

|
ag shown in the previous paragraph. The induction assumption is:

there exist 241 bji’ and €319 i=0,1,2, ...,k J =0,1,2, ...,1,
Such that,
i i-1
V(l)y = V(O) Ej ajivy + i8; (11)
3=0 3=0
and
i
(1) (@) |\ -
Vg =V /., Ciigjf (12)
J=0
Since
(T30, Viep1 ) (by (2:5) and
V(k"'l)yk_l_l = V(k)yk+l - w(v(k k. + or.kV( )gk) (2.10))

n

yk L - Ej (rliyk+l) V(1) ¥ + in(ilgi)

1’yi

- %(v(k)yk + o {Elg) (by (2.9))
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We have
lS--l ( ) i Lol
K+1) , T59Yrl . )
v Vet =V, - 2{1 oy V(o) ajivi * byisi
s 1204 g —
=0 J=0 =0
k-1l (r ) [
_ i;Yk+1 V(o) Z cjig1
(ri)y‘ )
i=0 J=0
k k-1
(1 Viep1)
- _Tfi_gi%w v(o) E: aikyi + }; bixe1
kK 10 1=0
(s ¥2) :
Ty
ko k4l (o) Cix8s {(by (11) and (12))
(rk;yk T
iz
Hence,
i
V(k+l) (rl’yk.-i-l)
Tkel = Vsl = ) #3193
l i J-—‘-—O
k i-1 ;
E: (T4, ¥41) EZ -
(ri’?fij 8
=0 J=0 .
ksl k
(o)
=V ) Pakaads t Di%k181 | -
i:o i=o

Therefore, (9) is established for Xk + 1, if (11) and (12) hold

for k.



Also

ys)gy g = ylkel)y, o ylkel)g, (Since Jy = ggy1 - 8k)

'

V(k)yk - g%)y[}(k)yk + %V(k)glg‘l*- v(k—:-l)gk (by (2.10))

V(}prl)gk+l _ CLkV(k)gk + V(k+l)gk. (13)

Now let us consider

V(k'*'l)gk = V(k)gk - ..(f..}.c_’_@( (k)y + V( ) ) (by (2.10))
( k:yk)
k ( ) k
k4l) rk)gk
V( + gx = V(O) iZ;) Cik8i = (rk,yk) Z aikyi
= i=0
k-1 k
+ z bikBi * % Z °1385 (1k)
1=0 =0 (by (13)

and (12))

Using ¥; = 841 - 8; in (14) end substituting that back into (13)

and applying (12), we have
k k

; ' Z (rk)gk)
V(k+l)gk+l = V(O) e Cip8q + cixBq - ('—.7
. I'k.'_si"k

i=0 120 i=0

1=

2ik8iy1

k-1

k
+ Z {ag) + oegyple; + Z biy&;

i=0 i=0
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Hence, (10) is established for k + 1, and the theorem is provided.

In order to establish the relationship between the three conjugate
direction methods we wish to find an expréssibn for ey 1in terms of
the gi's and V(O). From (2), fgk,si) = 0 if 1 <k, Hence.
-(gk,V(i)gi) =0 if 1 <k. From (8) we huve

i | (15)
(gk,v(i)gi) = E{: cli(gk,v(o)gl) = 0:
=0 o
Let us fix k > 1 and notice that if 1 ='0, and since (15)
-8g = V(O)go = V2(1)go, we have cgo = 1. Hence by (15) with i = O
we have that (gk,V(O)go) = 0, but- this is'also true from (2), since

Vg, =- 8p=- -0%—0 0. We consider (15) with i =1 and have
0= cOl(gk,V(o)go) + cll(gk,v(o)gl} = cll(gk,v(o)gl)

since (gk,Vogo) = 0 by (1). Now if ¢yy = 0, then sy = - cOlV(O)gO
= CQ1Sps DUt we Observed before that 8os581] are linearly independent.

So it must be true that (gk,v(o)gl) = 0. Moreover from (8), we have
- .81 = cQL8p + cllV(o)gl,so V(O)gl € S(so,sl)-

ﬁy induction
V(o)go;v(o)gl,---;V(O)gn-l € 5(80s875-+435,_7) (16)

where S(so,sl,...,sn_l) denotes the subspace spanned by the s;'s.

Let us assume that (gk,V(O)gl) =0 for all ¢ =1,2,...,n - 1 for

n <k. By (2) and the induction hypothesis we have
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n
0 = (g, v™g ) = Z ey (878, = e (g, 7% ).
=0 '
n-1
If ¢,, = O we must have from (9) that -5y = Z V(?)clngz so that
1=0

n-l ) R .
s, € s({v(o)gi}_ O>§S(So:sl:- weSp_1) by (16). But this implies that
i=0/ - i :

n : 3 d.
{Si}. o is a linearly dependent set of vectors which-contradicts the
q= . . :

remarks following theorem 3.1. Hence, (gk,-V(o)gl) = 0 for all

1=0,1,...,k =1 and we have from (2), if 0 < 1 < i, that

(V(i)gi,gz) = - (8y,84) = (gijv(i)gi), Therefore
L
(V(l)giygz) = }: Cji(gj:v(O)gZ)
J=0

and for all j # 1 (gj,V(o)él) = 0. BSo we have

(gi,V(i)gi) = czi(gpv(o)gz)-

(81,7 Vg, ) e (1)
Hence, Coq = —(—-T-- which implies that -~ s{ = V'7'&1
(g4,V\%/2;)
i
T (g, v }gl)
Z g1. Therefore

g?,’ V( )gl)
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g

(1), yylo) v .
-s5; = (g;, V" /g )V TS (17)
- * . 220 (8i:v © 81)

Hence, we can state the following theorem.

Pheorem 3.3: If 7n 74 -1l for all n, a, 1s chosen as in (2.1"{) and.
V(o) = H(O) of the DFP method, then the search directions of the DFP
and. the Davidon«Broyden method with @, chosen by (2.17) are the same.
Moreover, if V(o) = H(o) = I, then these search directions are the
same as those of the conjugate gradient method.

Proof: Horwitz and Sarachik [ 20] have shown that for the DFP method,

the ith search directicon is given by

i
= glo) . mli),. &1
H (gl:H gl) ZZO _T-—(gl,H O)gz)

¢ 8(°) = v{0) it rolrows from (17) that the directions are the same.

In [19_1 it was shown that for the method of conjugate gradients,the

ith search direction is

i

i
22 83
.
g
120 ]| z"

At each point x_ the three methods generate a direction s

I n

then the stepsize is chosen so that the funetion J(x, + As,) is
minimized with respect to A. Since the directions are the same and,
the stepsize is chosen in the same fashion for each method, the

sequences of iterates generated by these methods Koy X1s Xpyerey
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will be the same. Again, we restate that throughout chapter 3, the
functional o be minimized is quadra%ic as outlined in chapter 1.

It is well known1:2é] that the rate éf convergence to the mintimum
of a guadratic functional for the method of steepest descent is given

by

(3(x4) - J(=2"1)) s(fé ; Z)l (3(x;) - J(uA"lb)) ,i=1,2,... (18)

where m and M are given by (1.3). Daniel [6:[ has established that

the rate of convergence for the conjugate gradient algorithm is given

LE )Y

(3, = 3(-a7ln)y < Ml Ka() = 3(-a"10)), 1= 1,2,.(19)

%

(17) is obviously a faster rate of convergence than (;8).

by

Under the conditions of theorem 3.3 with V¢©) = I, we know that
the iterates generated by our algorithﬁ and those df the method of
conjugate gradients are the same. Hence, the rate of convergence of
our algorithm to the minimum is given by (19) and we have the following
theorems:

Theorem 3.4: If for each n, @, is chosen by (2.17), 7n £ -1 and
V(o) = I, then the rate of convergence for the algorithm outlined in

chapter 2 is given by (19).
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4., EXTENSION OF POWELL'S IDEA

In this chapter we shall extend an idea of Powell [50] 5 concerning
the basic algorithm as outlined in chapter 2; to a separable infinite
dimensional Hilbert space. The idea 1s to use the rank one algorithm cf

chapter 2, but with search directions which are independent of the

gradient. Specifically, we wish to compute the location of the
minimm of a differentisble functionsl J:H —R. Ve let Vi°) be a
strongly positive, self-adjoint, bounded linear operator, as in
chepter 2, and let x, € H be the initial estimate of the location
of the minimum, Further, letb D Dbe an arbitrary integer. I the

dimension of H 4is finite, it 1s advantageous to let p = dim H.

Let Z: {o'j} CH represent a basis for H. Compubte J (xo) and.
Eo, and proceed as follows.

Step 1: let
X* = ¥y + Op, (1)

and compute J(x*) and g*¥. If |g*| =0 then x* satisfies the
necegsary condition for a minimum, and we stop. Otherwise,
Step 2: Compubte the residuwal vector as in chapter 2. Lét .

T, = V(n)yn ~ Op vwhere y, =g* - g, and compute the scalars

le = (g*.!rn) A
Yy = - (gn,rn)
g ) (2)
— B if -1
A =y + 1) b
1 if Y, = -1

S
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Step 3: If V(n)yn = g, let ylo+l) . V(n), -otherwise let

v - (o) . (_’\_n_a:ilg(n) (3)

n

where B(n) :H —»H is defined such that for all x ¢ H
B(n)x = (x,rp) 1, (%)

Step 4: Ir J(x¥) < J(x,), let Xy,1 = x¥.  Otherwise, let

Xnyl = Xp- If n = pk Lfor some integer k, then let
Zk = XO - V(n)goo (5)

Evaluate J(zy) end g(z,) end if ]|g(zk) “ = 0 stop. Otherwise,
return to step 1.

We shall show that Z converges in norm as K — « t0o the
location of the minimum of a quadratic;functional. For an infinite
dimensional Hilbert space, we debermine the frequency with which we
apply the Wewton-like iteration Zg. = Xp - V(k)go "with pk = n.
With this modification of the basic aig‘orithm, We' can prove many
theorems which are analogous to those q'f-chapfer 2. Henceforth, as

in chapter 2, we shall assume that the functional to be minimized is

guadratic. That is,

3(x) = I, + (byx) + g(x,mc) (6)
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where A is as in (1.3). Theorems 4.1, 4.2 and 4.4 are independent
of the type of functional being minimized.

Theorem 4%.1: B(B) , as defined in (4), is a self-adjoint positive

operator for all n.
Proof: As in chapter 2.
Theorem 4.2: V(%) ig self-adjoint for all n.
Proof: As in chapter 2.

With the next two theorems we see that the properties of V(n)
given in theorems 2.3, 2.4, and their corollaries hold even ‘though
on is a prescribed vector independent of V(n), a,, and  gn.

Theorem 4.3: If A~lu =V(n)u For some u € H and B:H~-H is

such that there exists some scalar p such that B - V(n) = uB(n)
then A-lu =3Bu,
Proof: 3By (1.12) we know that A-lyn =x* - X, =0, and by def.

r,=vy _g = (v(n') - A‘l)yn. Tf (v(n) - A'l)u = 9, then

(r,ou) =((V(n) - A'l)yn,u) = (yn,(v(n) - A'l>u) = (¥,,8) = 0. Hence,
ir B - v(?)= ), (B - v(n))u = w(rp,u)ry =1 » 0+ 1y = 8

1y s We have Bu = A"l

Since, by hypothesis V™yu = A~
Corollary: If v(n)u = A”J‘u then V(n"'l)u = A“lu..

Theorem 4.4: V(n+1)yn =on, 1T 7, # - L.

proof: If V(Ry = ¢, then v(m2) - v(n) 1y step 3 and the
theorem is obvious. Otherwise, using (5) and (6) we have

(hg - )

n

—\;r(n+l)y1(1 -0y = v(n)yn + (rns¥n)rn - op.
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Hence, using (1), (2), and (&)

o e O ) o

n

Corollary: V(n)yi =¢g; for i<n, if 7i 9! - 1.

i
Theorem %.5; If 7n £ - 1L then (Ap - l)/ﬁn = - (rn:Yn)—l

Proof: Formally the same as the proof of the corresponding theorem
in chapter 2 in spite of the change in the definition of Op *

Theorem 4.6: 1£ v{(°) > ™1, then y{©) ZV(:L),.. _v(n) >,00e, > AL

and similarly, it V(% <a-l, then v(®) <v(D < ..., <v(®) <, .., <al,
Proof: Formally follows the proofs of theorems 2.6 and 2.7 and is based

on theorvem 4.5, A=ly, = g, that is, {1.12) and the Schwarz inequa-

vity [2]. If xeH and V(0 >4l ana v(®) > a-1, then vy (2.10),

(2.15), end the Schwarz inequality

oo )« et ) )

(yns (V( ). Aml

2
so from (. (o) () (x,1y) )
Also from (2.10) (x (v v )x) (Yn,(v(n) - A-l)yn) <0

We now wish 0 establish a convergence theorem for this modifi-

cation of the basic algorithm. Since the set Z is a basis for H,

for each x € H, there exist scalars c; € R, i =0,1,... such that

Al = Z ci0; (7
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[~e]
or X = Z c;Ac;. Since 1t is known that Aoy =¥y (1.12) where
i=0

yi = g* - gi, we have

X = Z ciyi. (8)
i=0
Then
vimx =y ) ey, (9):
1=0 '

By the corollary to theorem 4.k, if 74 £-31, j=0,1,2,...,10, we

have V(n)yi =gy fTor all i <n. 8o (9) becomes

i
n-1 .o

y(n)y = Z ci04 + y{(n) z C3Vy . (10).
i=0 . i=n

Therefore, by (7) and (10) we have

o0 -1 =
e - (] - ! Z cios - Z esoq - vin) Z eivL |
i 1i=0 =0 1=n J
<) s w0 ) ey
imn 1=
= o=t Z eyl - y(n) Z Ci¥4
i=n 1=n
< “A‘l - v || | Z i ¥ (11)

i=n
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If ‘the V(z) are- uniformly bounded, then ”A"l - V(n)” is bounded.

By (8) z ciyill =0 as n =« for this is the nth remainder
i=n )
of the expansion of x in terms of the yi's. Therefore, we have

”A"lx - V(n)x” =<0 as n -»o, Hence, we have the following:

Theorem 4%.1: If V(n) are uniformly bounded and 7, # -1 for

all n then V(n) - A=t pointwise.
Corollary: If z = x, - V(n)go vhere pk = n, then z, converges
to the location of the minimum as k —>w.

Proof: TIn chapter 1 it was shown that the location of the minimum of

the guadratic functional is -A"l'b. Hence

oo w34 <, - e 2
= ”xo - y(a) (Ax_ + D) + A"lb”
<fxo - v®axo| + [ato - vl (12)

(by (2.7))

By theorem 4.1 V(n)(Axo) —»aMax)) = x, and Vb oa-ly,
Hence, 1z - A"l as k' —.x,

The above theorem and its corollaxy establish the convergence
to the location of the minimum of the quadratic functional for this
modifbication of the algorithm. As noted earlier, the search directions
here are prescribed and are independent of Uy &, and yin), The
rate of convergence could perhaps be improved by letting

Zp = X - V(n)gn where Pk = n.
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Wotice, if H is finite dimens.ilonal then 2z; is the locabion
of the minimum. This follows since by theorems 4.% and 4.4 and their
corollaries A"l and (P agree on 60,61,62,... »0p-1, & basis for

H. Hence V(p) = AL, Therefore,

zp = Xg - V(p)go (by definition)}

— _ oa=1
=X, A g,

Xy - A'l(AxO + D)

]

-2k (by 1.7))

and by theorem 1.2 —A"lb is the location of the minimum of the
gquadratic functional J defined in chapter 1. This is the idea due

to Powell as mentioned in the opening sentence of this chapber.
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5. CONSTRAINTS

In this chapter we shall consider the problem of computing the
location of the minimum of a differentisble functional defined on a
real Hilbert space, H, subject to linear equality constraints. It is
shown how this problem can be attacked by a modification of the rank

one, guasi-Newton algorithm outlined in section 1 of chapter 2.

5.1 Minimization on a Closed Linear Subspace
We ghall assume that J:H 2 R is a differentisble functional
and that D 1is a closed linear subspace of H. We wish to find
X € D such that J(%) <J(x) for all x € D. ILet D¥ denote the
orthogonal complement of D so thet H=D & D¥, Then for any
x € H there exist unique xp € D and xpx € D¥ such that

¥ = Xp + Xpx. Therefore, we can define an operator
P:HE D (1)

such that P(x) = xp for each x € H. P is called the projection
operator of H onto D. It is knowm [1-] that P is linear, self-

adjoint, bounded and

P= = P. (2)

Moreover, by (2), for all =z € E,

+

(2,Pz) = (2,P%z) = (Px,Pz) = "qu2 (3)
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Lemma 5.1: If we apply the basic algorithm outlined in chapbter 2
with V() = P, the projection operstor defined in (1), then

v(E) o yloly(k)y{e) gng v(°1rk =1y for all k, where

Ty = V('k)(yk + g ).

Proof: (By mathematical induction) since V(®) = P we have

(o) . y(o) = ylo) (1)
Hence,
vy = v @Oy, +agy))  (by (2.3))
= (31 ~ %) (by (1))
=y (vy (2.3))

Also, V(O)(V(O))V(o) - y(o) by (4). Hence, the theorem is true for
k= 0. Assume that
V(O)v(k)v(o) = v(k) (5‘)

By applying (2.3), (5), and (4), we have

(O)rk = \i'(o)(v(k)(;grk +ag))

7
= ylolyloly() | (V(O)(yk + ay8))

= V(O)V(k)v(o)(yk + akgk)

V(k)(Yk + ax8ix)

= I‘k (6)
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e v - v} o theorem is true. Otherwise

N - L
ylrL) o y{x) .(__%__)rk>< v (by (2.9)) (7)

where the operator 5(k) given in (2.10) is written in dyadic
notation [?é]'. Hence,

p(edyl)ylo) - yledy(k)y(o) Q}i.pl_{_%l vk ><vlody . (8)

By applying (5) and (6) to the right hand side of (8) we have

po)y(krtly(o) | gk, O\_k;;_l_)rqu = vy (2.9))

Lemma 5.2: If V(O) = P, the projection operator defined in (l),
- : k
then for any 2z e H, we have v(o)v(k)z = V(k)V(O)z = V( )Z_

Proof: By lemma 5.1 and (%), we have for any z ¢ H

o)), _ o) ylodyylody, _ ylodgli) o), _ y(E),.

Notice that the proof of the two lemmas above required only that
v(O) . v(O) = v(O)_
Theorem 5.1: If the initial estimate Xo ©f the loeation of the con-
strained minimum of J is an element of D and V(O) = P, the pro-
_ jection operator on D defined in (1), then the iterates
X1sXoyessyXye.s generated by the basic algorithm outlined in section 1
of chapter 2 are all elements of D.
Proof: (By mathematical induction) since the Xq generated by the

basic algorithm is either x, or x¥ = x5 = aOV(O)gO by (2.1) and

%o € D by hypothesis, we only need to show that x¥ ¢ D in order
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to establish the theorem for k = 1. But, since V(o) is the pro-

Jection operator onto D, we have V(O)go eD and since I is a

subspace, we obtain x otoV(o)go e D for any oo € R.

o =
Assume x3 € D and consider X*=X1;-Cﬁkv(k)gk=xk~ G-kV(O)V(k)gk
= Xy - mkV(o)(V(k)gk) (lemma 5.2). Because- 7(0) 45 the projection
operator, VO(V(k)gk) € D. Hence, x¥ = xx =~ mkv(k)gk € D for all
. € R.

Notice that theorem 5.1 and the above lemmas are independent of
the manner of choosing o and the functional J is only required
to be differentiable. Further, notice that the theorem and lemmas
hold if, in (2.9) V(m'l) = V(n) + uB(n) for any real number .

Now suppose that the functional to be minimized is quadratic as
discussed in chapter 1. The problem is, therefore, to find the
location of the minimum value of J(x) = Jg + (b,x) + 1/2(x,Ax)- for
all x € D, a closed linear subspace of H. Now if P denotes the
projection mapping of H onto D and we denote I - P by C,

C is bounded, and the problem becomes o minimize J. subject to

Cx = 6. Notiee the null space of € is exactly D. If we make the

substitution x =y - A"'l'b, then

IJ(x) = I, + (-A~% + v,b) + %(-A'lb + y,A(-2"1 5 )

-,
Jo = (a7M,b) + (y,0) + LTBR) L L a( -l

b

+ %(-A“lb,Ay) + %(y,Ay)

Jo - 3(a",0) + 3(7,47)

b
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3(x) = 35 - 3(a10,0) + 53 (y)

where I(y) = (y,Ay). If Cx =6 then C(-A"b +3y) =6 or

¢y = cA™p. If we let Al

d then minimizing J(x) subject
to Cx = 6 is equivalent to minimizing T(y) subject to Cy = d.
We shall examine the problem of minimizing T(y) ecubject Cy =4
- and then see vwhat this tells us about the original problem, that is,
to minimize. J{x) subject to -Cx = 8. |
We shall define a functional ( , Ji:EXHE-R as (x,y); = (%,4y)

]2
X

(1.3) %o that if X # 6,(x,x); > 0 and (x,x); = O if and only if

for all x,y € H. Notice that for any x € H, (x,x),=(x,Ax) _>_ml

4 R \
x = 6. Moreover, the imner product { , ) is linear in the first

term by definition, hence, wé know that, the function ( , )l is

linear in the first term. , Moreover, since A = A¥ (1.3} for every

X,¥ ¢ H, we have

(AY:X) = (V;A*X)

I

(x, Y)_l (x,Ay)

|
]

(Y)AX) (Y:X)lo

That is, ( , ); is symmetric. Hence, ( , ); is an immer product

on the linear space H. We shall denote the space (H,( , )y) by H'.
We can see that H' is complete as follows: suppose that

(% - xn,A(x%p - %)) -0 as p,n —»w, Then, since for any p,n

(xp = xpsA(xp ~ %)) 2 mlxp - xp,%p - %) 20 Dby (1.3),

(xp ~ Xn,Xp -'xn) — 0 and by the completeness of H there exists
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an x € H such that (x, - x,x,-x) 20 as n - . Since by (1.3),
M{x, - X,%, =x) > (%, ~x,A(x, - x) =0, we have (x,-x,A(x,-x)) =0,
Hence, : H' 1is complete. Therefore, H' is a Hilbert space.

Wow if we denote by M +the closgsed linesr subspace of H' which
is the null space of C and if '37 e H' is such that C} = d then
the linear variety which satisfies d; =d is given by V = ; + M.
By the projection theorem [JJ there is a unique vector y, in V
of minimum norm with respect to the H' mnorm. Further, Vo is
characterized by the fact that Yy, is the only element of V
orthogonal to M with respect to the ( , ) inner product.

This means that

(yo,¥0), < (Y:Y)l (9)

for all y ¢ V= S.r + m, that is for all ¥y such that Cy = 4.
Moreover, for every y such that Cy = 9, Yo 1s characterized by

the fact that

(y)yb)l = 0. (10)

That is, in terms of the'definition of ( , ). we have from {(9)

L
and (10)

(Y0,870) < (v,4y) (11)
for all y such that Cy = d, and

(vy,87,) = 0 (12)
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for all y such that Cy = 6. Hence, the solution to the problem of
finding the minimm of J(y) is cheracterized by (11) and (12). In
terms of the original problem of minimizing J(x) subject to Cx = o,
this means that the problem has a unique solution % = -A"lb + Yo

and if x satisfies COx = 6 then by (12)
(z,A(% + 4~1p)) = 0. (13)

But by (1.7) AX + b = g(X). Hence, we have that at x, (x,g(x)) =0
for all x such that Cx = . That is, g(x,) is orthogonal to the
null space of C which is D. In other words the projection of
g{x) onto D is zero.

Nov let us use the modified rank one algorithm to locste x.

Suppose that the scalar @, 1is chosen so that

I{x, + ansy) < I(xy + Asy)

for all A € R, that is, «, is chosen by (2.17). Therefore, the
value of @, 1s given by (2.19). We apply the modified basic
algorithm as discussed in this chapter with the initial estimate

(o)

Xg € D and V =P as definéd by (1).

We shall now :establish'condi'lgionks’ which will guarantee that the
projection onto D of:?hé gradient at the iterates tends to zero.
As shownAabove? this is'a' necessary and suffiecient con@ition for a
minimum..

By (2.15), we have (YprTy) = (yh,(v(n) - A'l)yn)'l. Then from

(1.12) and (2.5) we have
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(F02A™y,) = (7p00,) = (€ny1 = 450y)

= (8n4150) - (&g,9,).

By the choice of a, we know that (g.,;,0,) = 0. Hence, by the

definition of 'un we have
(875 ) = a (g, Ve ). (13)
Also by (2.5)

(yn,V(n)yn‘) = (gn+l,v(n)gn+l) - (gn,V(n)gn+l) - (gn+l:v(n)8n) + (gn,V(n)gn:

()
Therefore, by theorem 2.2 and (2.18) (gn,V(n)gn+l) = 0 and
(gn_,_l,V(n)gn) = 0, Hence, (14) becomes
(3, W)y = (gn+1,V(n+l)gn+1) + (gn,V(n)gn)- (15)

mence, (v, (V™) < a™)) = (eney, ¥ ™enn) + (1 - ) (e v®e).
Therefore we can say:

Lemma 5.3: If V(n) is & positive operator on D and o, <1

then (yn,(v(n) -A-l)yn) = (ypsry) > 0.

Temma 5.%: Tf V(®) ig the projection operator onto D and the
V(i) are positive unifqrery bounded lineaxr operators on D with

bound K - O, then

(i)
, v
(g1, 7 ey) > ﬂ-—-ﬁﬂ-— (16)
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Proof: Define ( , );tH X H—=R such that (x,y); = (x,V(i)y)- for
all x,y € E. By lems 5.1 V(1) = v(o)y()y(0) 5o ir x e B then
v(o) 4 ¢ D, hence, (x,x); = .(x,-V(i)x) = ((V(O)x),v(i)(v(o)x)) >0 since
V(i) is positive on ‘D. Tﬁere:t’ore ; The Schwarz. inequality holds

for each i, that is, (x,¥); < (x,x}i(y,y)i [é] . THence,
|79, ¥ = (v 06,2 = (v,
| < (V(iggi,v(i)gi)i“ (815811
- év(f)gi,v(i)(v(i);ai)) - (g1, v(Pg;)
< KllY(i)Siﬂ'g(gi’V(i)gi)-

Fherefore, if

lv(i) g

# 0 we have K(gi,v(i)gi) > l
2

v{ilg, “ 2,

By our choice of o, we know that (2.20) holds. Hence,

V(i)gi
K

i
Hence, (gi,v( )gi) >

2
(SDJ gn) _

lim
n - o(Sp,Asy, )

Since

(s108)° _ (g1,7(1)ey)”
: (vy (1.3) and
) T (1)g; i 2
(S ,ASJ_) Mi Wilgy (2.2)) (l.-()
) ll V(i)gi 2
g (vy (16))
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we have by (11) ll V(l)gi -0 as i -« Moreover, since by (12}

(gi:v(i)gi)e

(i) |
| V(i)gi - 0, and ‘lv gll

If (ry,y;) # O we have in view of (2.14) and (2.10) for any x € H,

-0 as i -, we obtain

(gi,V(i)gi) -0 as 1w (18)

Tl

ONEONY o) 7y (19)
) (ry,7;)
1=0
Henee,
1-1_ (rpx)2

e, v %) = (x, 7)) - Z (20)

(rzayl)

Recall from step 2 of the basic algorithm that if (rj,yj) = 0, for
some j, then y(I+1) _ V(j) so that the term containing (rj,yj)
in the sum given in (19) or (20) is not present. We shall assume

that if ('_r"j ,yj) = 0 for some Jj we have not included that term in

the sum in (19) or (20). Recall that from lemma 5.3, if a, <1
for 1 =0,1,2 ..., i =1 then (71,y1) > 0. Hence we have _
(7)) > (x,v(0)x)
= (x,v(")v(o)x) since (o) = y(o)y(o)
' (21)

= (V(°>x,V(°)x) since (V(O))* = V(O‘)

s

Ie

It

From (21) with x = g; we have the following.
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Theorem 5.2: If af <1 for gll i and the V(i) are wniformly
bounded positive operators on D, then V(O)gi ~ 8 as i oo,

Proof: If o <1 for all i, then by (21) with x = g; we have

(gi’ V(i)gi) >

V(O)gi ne 20 and (gi,v(i)gi) =0 as 1 -e py (18).

2
Hence, ‘V(O)gi“ - Q.

We have now established conditions which guarantee that the pro-
Jection on D of the gradient of the quadratic functional evaluated

at the iterates tends to zero. Notice that if M as defined in (1.4)

'P <12},

el < el sl ] s oD <<

that is, P < A"l,  gince V(O) = P, V(O) SA-l we have by theorem 2.6

is such that M < 1, then since

that v{n) <Al for every n. Hence the (2} are uniformly bounded.

5.2 Linear Equality Constraints of the Type Cx = ®

Suppose the problem is to compute the location of the minimum of
a differentiable function J:H — R, with gradient g:H — H, subject
to the constraint that Cx = ®, where € is a bounded linear operator
from H into I?{, where H is another Hilbert space, and .® is g
.fixed element of H. That is, we wish to find X € H such that
Cx =@ and J(x) > J(X) for all x € H such that Cx = ®. With
a slight modification, we can apply the basic algorithm outlined in
chapter 2 to this problem. N{oreover, we can show that the sequence
of iterates Xj, Xp,eee3Xn,... generated by this modification is

such that for each k, Cxp = 0,
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tet V(0 be the projection operator of H onto the null space

of C (a closed subspace of -H, since C 1is bounded). Lek %o be

such thet Ox_ =o (22) and apply the algorithm. Now, X; = X, or

x* where x¥ = x5 - ubv(o)go. Consider

Cx* Cxo'- C(aov(o)go)

]

o - ae(vlodg ) (22)

where Vogo is in the‘nsll‘space of:'c by the cholce of V(o).
Hence, Cx¥ = ® for all a, € B. Tﬁexefore, Cxl = ® 1in either case.

Since either xp,;1 =%, or X ., =X = ahv(n)gn we know that
1f Cxp =@ and Fpyy = X, then Cx,q = ®. Otherwise, we consider
Cxpe1 = Cxy - Canv(n)gn. S;ncé the proof of lemma 5.2 depended only
upon the fact that 00 = v(®) . () 4na ve wnow that this is true
for the projection operator onto the null space of C, we have that
vindg = v(o)y(m)y | Hence, (g, is in the null space of C.
Therefore, C(anv(n)gn) = 8. Hence, OCxpy] = Cxp = ®. Therefore,
by mathematical induction we have eétablished the following theorem:
Theorem 5.3%: If V(O) is the projection operator and the null space
of C and V(n) is defined as in (2.10) and Cxg = ®, then an =W
'for all n vwhere the xn's are the iterates generated by the algorithm
ocutlined in chapter 2.

We shall now show that the problem considered in section 1 of
this chapter is of the type examined in this section. The problem is

that of finding X ¢ D, D a subspace of H, such that J(¥) < J(x)

for all x € D, where J is a differentiable function. Suppose
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we let P denote the projection operator of. H ontec D and we define
the bounded linear operator from H into H by, C =I - P vhere I
the identity operator on H, then the problem can be seen as that of
minimizing J subject to Cx = 86, ;I‘here;f‘ore, the problem of section 1

is a special class of those problems éonsidered in this section. Hence

theorem 5.1 follows from 5.3.
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6. 'APPLICATION TO OPTIMAL CONTROL THEQORY

In this chapter the results of the first five chapters are used
to develep a method of computing the solution of various types of optimal
control problems., We shall consider fixed-time problems since by a .
simple treansformation [5:] the free-time pr‘o'blem cen be transformed into
8 fixed-time problem, Moreover, Horwitz and Sarachik:EEi] have given
several other schemes for solving the free-time problem using fixed-
time techniques, and these schemes are applicable when the basic
algorithm, outlined in chapter 2, is used. Also Leondes and Niemann
[2&] have proposed a computational scheme for handling the free~time

problem by using fixed~time technigues.

6.1 A Quadratic Payoff With Lincer Constreining
Differential Eguations
2
From the class LrEto,tl] we wish to find that function u*(%)

which minimizes
=% [ zl{xT(t)P(t)x(t) + B (6)R(6)u(s ) av (1)
o
subject to the constraints
x(t) = a(t) x(t) + B(t)u(t) (2)

and  x(t,) = x5 waere x,, ty, and b7 are fixed.
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Hereby: x 1is an n-vector,
u 1is an r~vector,
i i Ll t.,t
¢(t) 4is an n X n matrix with components in [0, l]’
. 1
B(t) is ean n X r mabtrix with components in I [to,tﬂ,

a,nd bounded,

P(t) is en n X n symmetric, positive semi-definite matrix
the components of which ere piece-wise continuous on
['bo,tl], and
R(t) is an r X r symmetric uniformly positive definite
matrix the components of vhich are piece-wise
continuous on [to ,t]_:].
Horwitz and Sarachik [20:] have shown that this problem can
be considered as that of finding the location of the minimum of a

guadratic functional on Li[t This can be seen by defining Tthe

O’tl i

following linear operstors:
2 2
Piln[tg,t1 | = Ln[to,tl]
2r; 2
R:Lr[.toJ tl] = Ly [to’tl]‘ (3)
B11p [fo,ty ] Tty
F:Li[to,tl:] - Lﬁ[:to,tl ]

where for ¥y e I-fl[to,tf]: Z e Li Etojtﬂ’
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(By) () = P(t)y(%)

(Rz)(t) = R(%)z(%)

(Ey)(t) = o(t,t,)y(t) (&)
and

+
(Fz)(%) = ft 4, T)B(T)z(7)arT
o

where ® = G& with @(to,to) = T.
2
It is well known [ 5] that for eny u e Lr[to,tl], x = Ex, + Fu,

50 that (1) becomes

s(u]= 5 <Bx, + Fu,P(Ex, + Ful>
5)
+ % <u,R1> (

- . 2
where < B > is the usual Ilnner product defined on Lr E.'o’t]_.]'

Hence,

J[u] = %—<Ebco,PExo> + %<u,F*ExO>.

%<(PF)*EXO,> + -:2L—<u, (F*PF + R)u>

LIE we let
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J = %<Exo, PExo >

w = F*¥PEx, (7)
A = F¥PF + R,
(6) becomes
Jl:u_]-- J, +<w,u>+ %_‘-<u,Au>. (8)

Moreover, since P is positive semi-definite and R is uniformly
positive definite, A is a strongly positive linear operator. Hence,
J[u] as given by (8) is a quadratic functional on the real Hilbert
space Ii[to,tlj of the type discussed in chapter 1. By (1.7) the

gradient of J 1s given by

g(u) = fu + w (9)

Moreover, this is exactly the type of function for which the conditions

given in theorems 2.10, 2.11, and the corollary to theorem L.l guarantee

the convergence of the various modifications of the basic algorithm.
Note that if we wish to find the location of the minimum of (1)

subject to (2) but with x(t.) = x

o @8 initial condition, we can

repeat the definitions given in (3) and (7). Then the vector w and
the scalar J, defined by (7) are changed to w and Jg, say.
However, the operator A also defined by (7) is unchanged.
From thecorem 1.2 , thé location of the minimum of the resulting
R . g ~ o 1 . .
guadratic functional J[:u:! = Jdg +<W,U.>+ §<u,Au> is given by

—A_lw. Since the operator V(n) which we computed when solving
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for the minimun of (8), converges pointwise to A=l, by theorem 2.8,
we can use this V(F) as our new initial estimate of A-l. In this
fashion we can accelerate the convergence of the iterates for the

second problem, that is, of computing the location of the minimum of

g

6.2 General Optimal Control Problems and the
Gradient of the Payoff
In this section we shall describe a class of problems generally
referred to as optimal control problems [29] or in the Cglculus of
Variations as Lagrange If‘xtoblems [35‘] . Also we shall show how to
apply the algorithms discussed in chapters 2 and 4 to compube solu-
tions to these problems.

Suppose we have a system of n differential eguations
x(t) = f(x,u,t) (10)

with x(t,) =x, and u € R'. We wish to choose & function

~ t,
u = u(t) which minimizes the value of f L{x(t),u(t),t)at.
tO

We shall assume that £(x,u,t) and L(%,4,t) have continuous partial
, derivatives of at least second order in x and u and piecewise
continuous in t. Also, we shall assume that there are no constraints
on u or x, other than x must satisfy (10).

Moreover, we shall a.ss{;lme that L and f are such that cc;rres-
ponding to every wu = u(t) € Lg Eto, tl] s & real Hilbert space, there

exists a soluticn, x = x(t), of (10) and that for this x and u
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the integral, J,i ‘1 L{x(t),u(t),t)dat, exists. By a solution to (10) we
mean, as is the usval case in ordinary differential equations, an
absolutely c;Jntinuous function @ = ¢{t) such that o(ty) = x° and

d(t) = £{o(t),u(t),t) almost everywhere for some u = u(t) [5J . By
the continuity conditions on L and £, if we can restrict our attention
to a compact subset c;f (t,:;c) space for all wu, then standard results of
differential equations theory concerning existence and uniqueness of
solutions hold [5, 16, 17, 29] . An assumption on f and L which
guarantees this :"Ls to assume that there exists €, a scalar, such that

for all % ¢ [to,t]_], X, and u
T I N ~ 2
|G 3Gn, ) | < c[l 1% | ] (11)

vhere T and % denote the vectors (L,f) and (x_,x) respectively,

with ;{0 = L{x,u,t) and %5(t,) = 0. This implies (r}?,x) <c [l + Ix |2
2

s0 that ‘X(t) |2 < E_ + |xo|2‘]e Ctl. The above inequality is shown by

Hermes and LaSalle in [16] . Hence, we can define the functional J:H —» R

by

J['_u] = f:lL(x(t),u(t),t)dt
o}

where x(t) 1is a solution of (10) corresponding to u.
Therefore, our problem appears to be that of locating the minimum of
& functional J on a real Hilbert space H. In order %o apply the

algorithms discussed in chapters 2 and 4, we must compute the gradient
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of J. The gradient of J 1is that part of J{u + &u) - J[1] ‘which is

linear in 8&u.  From (10) we have

N t
x(t) = x° +f_b £(x(7),u(T) + du,T)dt
o]

(12)
t
x(1) =+ | 2x(n),u(r), mar
to
Therefore,
Ead At no
x(t) - x(t) = f {f(x(?),u('r) + du,T) - f(X(T),U_(T),T)}d‘b.
o
If we let &x denote the linear pert of x(%) - x(t), then
5% = £,0x + f,8u (13)
with &x{to) = O where £y denotes the n X n matrix %—E and

of . : i
W= 33 8 nXr matrix, evalusted at (x(t),u(t),t).

Moreover,

- t
[u + su] - [v] = f tl{L(x,u £ Bu,t) - L{x,u,t)}at (1)
f . o]

and if we let 8J denote that portion of (14) which is linear in

ox and ©&u, then

T
5J = f Lydx + Lybu dt (15)
to
oL _ oL
where L, denotes 5 end Iy = 5 evaluated at (x(t),u(t),t).
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We then let A(t) be an n-vector valued function satisfying
A(L) = ~FIN - i (16)

with A(%1) = 0. Then we have from (16)

T
a(A"8x) ‘m o,
T = A Bx + A (SX)
(17)
= N{Eg8x) - Lox + ATegsx + ATEBu.
So that integrating (17) from %, to t; we have
tl 1 T
AE)Bx(ty) - AMig)ox(ty) = - f Lydx dt + f ATf,0u db
to ‘ to
and since A(ty) = 0 = dx(t,), we have
1 ©
1 1
f Ixdx dt = f 7\Tfu6u dt. (18)
2 to

So, substituting (18) in (15), we get

t1
8J = f to{?\Tfu + Ly)ou ds.

Hence, the gradient of J i1s given by

: ) T T
80} = (), (), 8) + S (a(t), u(8), EIACE) (19)
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where A given by (16) can be thought of as an integrating factor for
(13). (25, 33].

It is seen from (19) that if we define the Hamiltonian to be
Hx,7,t,u) = Lix,u,t) + 7\Tf(x,u,t) (20)
Then the gradient of J at wu 1is given by

VE = (Ly(x(6),u(t),5) + N (6)ey(x(t),u(t),))"

where : (21)
5(8) = 2(x(8),u(),8) = Syx(t0) = x°
AL = - %i{- A (tg) =0

The computational steps necessary to compubte the gradient of J
at u = uy(t) arer integrate x = f{x,u5,t) with x(tg) = %o

forward to t = tl, then at € = %, we integrate

. T T
A = ~fp(x,ug, 80N ~ Le(x,u,,t)

with A(ty) = O backward to +% = t,. Therefore, we can then compube
the gradient as given in (19) using the control u = u,(t) and the
values of x(t) and A{t) computed above. If the gradient is computed
according to (19), then B(n) and r, can be computed as in (2.10) and
(2.5) by following the algorithms outlined in chapters 2 and 4. Hence,

these algorithms can be used directly to compute the optimal control.
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6.3 Compubing the Optimal Control for a Problem With a Compact,
Convex Control Region Via the Algorithm of Chapter 2
The problem considered in section 2 of this chapter, which we shall

" call the first problem, is to find a function u such that

i

!
[\ L{x(t),u{t),t)dt - min. {22)
\’to.

subject to x = f(x,u,t) and x(t,) = x,. This problem is not entirely
typical of optimal control problems in that the range of u is unrestricte
For a large class of those problems generally considersd t0 be optimal con-
trol problems, the function u is a member of Li(po,tl] and has its
range in some subset U of Rr. U is called the control region of the
problem[:29] . For (22), we assume that f and L are as section 6.2
except (11) holds for f at every x,t and u & U. -

Problems for which U is a convex, compact subset of R and which
can be transformed into control problems with no spacial restriction on
U, were examined by Park[:QSJ . He showed that an optimsl control problem
as (22) for which U is a convex and compact subset of a Ruclidean space
can be transformed into an "equivalent" problem with its associated
control region - a Buclidean space of dimension p. Hence, the new
control variables have no restriction on their range. We shall see that
this "equivalent” problem can be seen as that of locating the minimum
value of a functional defined on a Hilbert space. The algorithms which
we have previously discussed can be used to compute the location of the
minimum of this functional and the results then can be transformed'ba%k

to the original problem.
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1
A problem of the type investigated by Park is to find an Lr[to,‘tl]
function u = u(t) with range in U C E', U a compact convex set,

such that (22) holds. Iet
¥:RP - R (23)

be a map of the type discussed by Park, that is, V¥ is continuous,

onto U and there exists a compact subset Z of R? such that
Wz) =U (24)

By .Filippov's Lemma [16:} for every admissible control wu, that is,
u e Lrl(:to, tl:] with range in U, there exists a bounded measurable

funetion z:[to,tl —Z such that for every %,
u(t) = ¥ - 2(%) (25)

Let us suppose that the problem to be solved is as in (22) where
u € L%Eto,tl:] has its range in U, a compact, convex subset of RT.
Let ¥ and % be as in (23) and (24). The "equivalent" problem which

we will call problem 2 then is to find y:[t o,tl]-eRp such that

t
ft L(x(), ¥(5(t));b Jab — min (26)

o

subject to % = £(x(t), ¥W(y(t),t) and x(to) = x, where y e I%Eco,tl].
In problem 2, we are minimizing over the Hilbert space Lg[to,tlj B

not a subset of L%E‘"o:tl] as in problem 1. This follows because for

2
every ¥y € LPEto,tl] ¥ is measurable, and since ¥V is g given

Aol 4os5H R
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continuous function, V.y is measurable. Moreover V has a bounded
range U, hence, ¥.y is bounded and measurable on [ﬁortlj- Therefore,
for any 7y e L%E:o,tl:] Y.y 1is an admissible control, that is,
Li[%o,tij with range in U. Conversely, for any admissible control

u, the corresponding y given by Filippov's Lemma is measurable and has
its range in 2, a compact set. Hence, y 1is bounded. Therefore,

¥V e L;[?O,ti]. Hence we see that the space of admissible controls for
problem 2 is all of LS[?O,tlJ, a Hilbert space, whereas the "equivalent"
problem 1 had as its admissible controls a subset of Li[?o,ti]-

Note that if the transformation V¥ given in (23) has conbinuous
derivatives of second order, then problem 2 is of the type discussed in
section 2 of this chapter. Hence, the computation of the location of
the minimum can be carried out by the algorithms given in chapters 2
and b, and the gradient of the functional 40 be minimized in problem 2

is given by

g(y(t) = (A\(1)e,(x(5),¥(x(£)),5) ¥ ((+))
(27)
+ Tu(x(6), ¥(3(6)), ) (7 (),

vhere A(t) = ~Fo(x(t), ¥W(y(£)),E0M(E) - Lgla(t), ¥(y(t)),5). This
gradient is found by applying to problem 2 the same technigues used to
get (19).

Hence this transformation technique can be useful in computing the
solution to a Wi&e ciass of optimal control problems. It can also be used

to apply the classical calculus of variations results to various types of

optimal control problems E}5,2§] .
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6.4 Optimal Control Problems With End-Point Constraints -

Suppose we wish to solve the problem ﬁosed in section 2 of this
chapter as outlined in (19) subject to the additional constraint that
some of the components of x(tl) are to be fixed numbers. That is,
suppose the first gw-components of x(tl) are to be such that xo(tl} = :.;i
for 1=1,2,...,4 wvhere ii are given scalars.

One approach to compubing the solution to this ﬁrdblem would be a
"penalty function" technigque E25] . This technique is the Ffollowing: use
any admissible control u = u(t), integrate *x = £(x(t), u(t),t) from X,
at T, to tq. At t, the components of x will probably not be the

prescribed values Xi, 1 = 1,2,...,4, 80 we will compute
x4(t1) - %y = AiLu],i = 1,2,...,q.

ai[éj is the error in the ith component of x(tl) corresponding to the
econtrol u = u(t). Then for an arbitrary but fixed set of positive scalars

ki, ke,...,kq, we compute the penalty associated with u as follows:

plu]= Z kj_(Ai[u])E' (28)

The functional of wu which we seek to minimize by our aigorithm is

}[u] = \/:l L{x(t),u(t),t)dt + PEJ.]
(o]

where P[#-l is given in (28).
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Tt can be shown by analysis similar to that of section 2 of this

chapter that E[ﬁ], the gradient of ¢ in (29),.is given by

Mo OFeye(),u(8),8) + T(x(8),u(), )" (50)
where
A(8) = 200D, ue), DA(E) - T (o), u(8), 90, M(8) = &
' ox t=ty
and %(t) = £(x(t),u(t),t).

While this technique appears to handle the problem of the end
constraints very nicely, we are left with the problem of choosing the
ki's. Due %o the finite number of significant figures on a digital
coﬁputer, if the ki‘s are too large the algorithm will try to satisfy
the end conditions at the expense of minimizing l/rtl L(x,u,t)dt, and
if the ky's are +too small the algorithm may nob bzoéensitive to viola-
tions of the end constraints. In some cases, Lasdon gﬁ_él-[?jj
have remarked that the penalty function terms in k29) may "create a
steep-sided valley in the control space." This would slow the conver-
gence of the algorithm.

Another possible method of computing éhe optimal control for a
problem with end-point constraints is the projection method. This
technique is discussed by Rosen [52] ,5innott [ﬁ@] , and ILuenberger [?ﬁ]
for various algorithms. The adeptation of this technique to our algorithm

appears to be rather straightforward, but we shall not pursue it here.
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In the next section we shall examine the optimal control problem with

end~point constraints for the case where the state differential equations

are linear in the control.

€.5 Optimal Control Problems With ILinear Constraining
Equations and End Conditions of the Type Kx(t;) = 4
’ 2
Suppose our optimal control problem is to find that Lr[%o:tlj

function u = u(t) which minimizes

By
[ s, u6), )0t (31)
t

e}

with
x(t) = ¢(6)x(t) + P(t)u(s)
x(to) = x°

and %y 1s fixed with Kx(tl) = d.

We assume that L has continuous partial derivatives of at least

€
+

second order in its x ‘and u arguments and is piecewise contimuous
in t. G and F are matrix valued functions with Ll[%o’tl_] components
and continuous components regpectively. X is a g Xn mabtrix of scalars

and d 1is a ¢ vector of scalara where ¢ < n. Moreover, we assume
2
that L 1is such that for any u e L. [to,t13 and its corresponding

x = x(t) (31) exiéts.

If we denote the prineiple mgbrix solubion of the homogeneous system
x(t) = G(t)x(t) by @(t,t,) where &(%p,55) = I then the state vector

X corresponding to any admisgible control u is given by
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t

x(t3u) = 8(t,t,)x° + f * (6,5 )F(s)u(s)ds. (32)

to

Hence; by (32) we have for any admissible control u = u(t),

%
Kx(tq) = K0(ty,5,)x° + ft 1 K®(tq,s)F(s)u(s)ds. (33)
(o]

In order to satisfy Kk(tl) = d, we see from (53) that

%
f Xo(t,s)F(s)uls)ds = ® (34)
&

O

where ® =4 - KO (t,to)xo is a fixed g +vector of scalars.
If we define a linear operator € from the space of admissible

controls into the Hilbert space RP such that

1

t
Cu = Jf; t Ke(t,,)F(t)u(t)as, (35)

1 must satisfy
Cu = (36)
in order to satisfy Kx(tl) = d. It is known that if

S fﬁlFT<s)¢<s,mKTK@(tvﬂF(t) jrse <= o

then C is a continuous linear operator. 8Since the components of X

are scalars and @(tl,t) and. F(t) have continuous components on
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(to,t1), it follows that the components of K2(ty,t) F(t) are
bounded, hence (37) holds.
Hence we know that € as given by (35) is bounded. Then our
optimal control problem as given by (31) becomes: from the set of

admissible controls which satisfy Cu =® given in (34), find that

control which minimizes

t
7 [] = fﬁ ol L(x(t3u),u(t),t)dt

where x{t;u) is given by (32). That is, we wish to minimize the
differentiable function J [u] subject to the equality constraint
Cu = ® for the bounded linear operator C given by (35). In
section 2 of chapter 5, this type of problem was examined and the
gpplication of the basic algorithm to compute the solution was

explained.
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T. AN EXAMPIE, CONCLUSION, RECOMMENDATIONS,

AND SUMMARY

7.1 Example
In order to exhibit the convergence characteristics of the algorithwm,

we Pformally applied the procedures of chapter 2 to a sample opbimal con=-

trol problem which others have used to display convergence characteristics
of other algorithms [23, 3h, 56] . The problem is the following: Find

the function w = u(t) which minimizes
e 2 2
J= | |x] +x0+u Jdt (1)
0 /

gubjeet to constraining differential equations described by the

Van der Pol equation [55_'_] with e = 1, that is

X = Xp
(2)
, 5:2 = =X +<l - x._?_)xe +u
with initial conditions
XQ(O) = OcO-
By (6.19) the gradient g of J at u is glven by
g(t) = 2u(t) + (%) (3)

where
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(l + 2}{11{2)?\2 - 2&1

o
0

()
Ay = A = (1 - %) -2x,

with

7\1(5) 0.0

0.0

1}

AL5)

In order to compute the gradient g{(t) of J at some u= (),
we integrate (2) forward to +t = 5.0 using wu = u(t). Next,(%) is
integrated from t = 5.0 back to t = 0.0. Then using u = u(t) and
the computed value of Ao, we can compute g(t) given by (3).

Figures 1 and 2 depict the progress toward the minimm of J using
the algorithm outlined in chapter 2 with four different methods of choosing
ey o These four methods of choosing a, are:

-1/2

Method 1t ay = 1 - (02 + 2) for all n

1 foralln

Method 2: iy

Method 3: « = min{(-7(u,) +30)/(sn,gn),1.o} where J, 1is
the estimated minimum value of J,s, 1is defined Dby
(2.2) and g, is the gradient of J at u-= un('b).
Method &: Oy is the minimum with respect to o of J(.Xn + a.sn)
as computed by Davidon's one dimensional cubic
minimization method ESJ .
Methods 1 and 2 of choosing a, satisfy the condition that

(Lway)n >0 as n 2w given in theorem 2.11. As chosen by method
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355 % is a rough estimate of the minimum of J along the line

u, + 8,. The form of %, for method 3 follows by considering

36 = J{up) + «,(sp,8,) + h.o.t., dropping the higher order terms, and
solving for e

Notice that methods 1, 2, and 3 of choosing &%, invoilve no extra
functional and gradient evaluations. That is, for each iteration we
must integrate (2) and (L) only once. For the fourth method of choosing
®,, although the one dimensional minimum is compubted more accurately
than by‘metﬁod 3, the fourth method involves at least one more functional
evaluation per iteration. Bence, with the fourth method of choosing Ly
we have at least two fumctional and gradient evaluations per iteration.

In Figure 1, we have plotted J (un) versus n (i.g., the itera-
tion number) for the four different methcds of choosing oy o Figure 1
shows that the fastest convergence in terms of iterations is achieved
by the algorithm with «, chosen by method 4. Also, Figure 1 shows
that after 12 iterations, all the methods have converged. Moreover,
after eight iterations for all methods of choosing ah the change in
the value of J dis too smsll to show up in the graph.

In Figure 2, we have plotted J versus the number of functional
evaluations. Notice that in Figure 2, methods 3 and 1 converge Taster
with respect to function evaluations than method 4. Note also that
after at most eight functional evaluations, the change in J is too

small to be noticed in the graph.
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Figure 3 shows the rates of convergence to the winimm for the .
example problem for the three first-order methods given in chapter 1.
These results were reported by Tokumaru, et al., [56] . Note that the‘
OFF algorithm shows the fastest rate of conwvergence

Using the same initial estimate of u +that we used for the results
shown in Figure 1, we applied the DFP method t0 the example problem.
Our results for the DFP method were identical to those of the rank one
algordithm with %y chosen by method four, The reduction in the payoff

and the iterates for the two methods were the sanme.

27.2

O Steepest descent method eme

y ' [J Conjugate gradient method —w=—

F‘. > Davidon's method —
J 22.00p
21- 50 —
21,00 %~

—d 4+ 1 4 1

'S BT |
0 1 2 3 4‘ 5 6 _7 8 9 10
Number of iterations

Figure 3. Comparison of first-order methods due to Tokumaru
J(uy) versus i
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In Figure 4, we have plotted the values of J(u;) versus the
nutber of function evaluations for the DFP method and our algorithm
when o, is chosen by method 3. Wotice that in terms of function
evaluations, our method for this choice of &, converges faster
than the other algorithm. The linear minimizations for the DFP t
algorithm were carried out by method 4. This method was chosen

because high accuracy for the linear minimization is necessary for

the DFP nethod.

28
27(‘ (O Davidon Fletcher
\\ Powell
\
26 | O oOur algorithm _———
\‘ with o, chosen by
\ . method 3
25\
i
\
23
22~
21}~
20 I 1 i | | ! 1 | | | } |
0 1 2 3 4 5 6 7 .8 9 1 11 12

Number of functional evaluations

Figure 4%. Comparison of Davidon-Fletcher-Powell method and Renk

Ore method with &, chosen by the third method with
J(uy) versus function evaluations
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In Figure 5, we have plotted the iterates of the control wu;(%)

for i =0,1,2,3 of our algorithm. The integrations of (2) and (4)
were carried out by the Adams-Bashforth prediector and Adams-Moulton
corrector method on a CDC 6000 series computer with step size of

0.035125.

+1,

O 1Initial estimate
0 Pirst iteration

{> Second iteration
. N Third iteration

-2, 1 | | i ] |
o 1 2 3 4 5 6

Figure 5. vy versus t for i = 0,1,2,35 generated by Rank
One algorithm with @~ chosen by method L
T.2 Conclusion
The algorithm outlined in chapter 2, when applied to compubte the
location of the minimum of a quadratic functional, has several attract-

ive properties. Theorem 3.3 shows that if %, is chosen by (2.17),
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then our algorithm, the DFP and conjugate gradient methods generate
the same iterates. Hence, the methods will have the same rates of
convergence if the hypothesis of theorem 3.3 hold. Moreover, by

1 pointwise where an) is given by (2.9)

theorem 2.8 V(n) faA—
and A is given by (1.3). This property can be used to accelerate.
the convergence when wany solutions corryesponding to different initial
conditions are desired. This was discussed in section 1 of chapber 6.
This property is not available to the method of conjugate gradients.
Theorem 3.% shows that if Ly is chosen by the fourth method, then our
algorithm, the DFP, and the conjugate gradient methods generabe the
same iterates, hence, the same rates of convergence. Moreover, our
algorithm requires one-half the storage necessary for the DFP method.
Also, it requires the computation of one operator per iteration versus
the computation of two operators per IFP iteration.

The results of the example problem show thaé the algorithm can be
applied with sueccess when o, 1is chosen in a variety of ways. It
appears that method 3 of choosing %y is best vhen the funectional to
be evaluated is very complex, 1ts computatién is time-~consuming, and
storage- considerations are not as impcrtant. If storage considerations

are pressing and the computation of the functional i5 not as time-

consuming, then method U would seem tc be the best choice for ’ah.

T.3 Recommendations

Possible research topics related to this work are the following:

(1) Research could be done on the gpplication of the algorithm oublined
y
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in chapter 2 to the solution of the singular linear operator equation
Kx = d. (5)

Hereby in (5), x ¢ H, & real Hilbert Space, K:H — H is linear, boundéd
and has a closed range and d 1is fixed element of ﬁ, another real
Hilbert Space. Nashed [}%] hag discussed solving this problem using
the method of steepest descent to compute at least squares solubion. So
it appears that the problem could 5e solved by our algorithm. By using

n
theorem 2.8, perhaps it could be shown that V( )

K* converges pointwise
to the generalized inverse of XK. In a finite dimensional space this
could perhaps give another technique for computing the generalized inverse
of K. {2) Research could be done to extend to an infinite dimensional

real Hilbert Space the class of first-order algorithms recently proposed

by Greengtadt [i%] .

T.%  Sumayy

The various elements of the class of rank one, quasi-Newbon mini- -
mization methods are distinguished by the manner in which a particular
parameter is chosen at each iteration. In chapter 2, conditions were
Tound which guarantee that the rank one, quasi-Newton algorithms generate‘
iterates which converge to the location of the minimum of ;_guad}atic
Punctional for various choices of this paramete?. In chapter 3, the
iterates of the rank one, guasi-Newton aléorithm with thé parameter
chosen by a lin?ar minimization technique are compared with the iterstes
of the Davidon«Fletcher-Powell method and method of conjugate gradients.
It is found that for a quadratic functional with the hypothesis'of

theorem 3.3 that the iterates of the three methods are the same. In
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chapter 4, an idea due to Powell is extended to infinite dimensional
Hilbert spaces. In chapber 5, a modification of the rank one,guasi-
Newton method is outlined in order 4o minimize a functional subject to
linear constraints. Conditions are found which guarantee the conver-
gence to the location of the constrainedlminimum of a.quadratic func-
tional. The application of these rank one,'qpaéi-Néwton minimization
methods to various types of optimal control problems is investigated
in chapter 6. In chapter T, the ggﬁk one,‘quasi-Newton me?hods are

13 r
applied to a sample optimal control problem.* The, results are compared

with the results of other known first-order minimization techniques
4 L

» +

for the same sample problem. This compsrison is in terms .of speed of
convergence with respect to iterations and number of functional evalua-

tions. The rank one, guasi-Newbon algprithms.are shown to be superior.
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