) N7I-363 59
Preceding page blank

NASTRAN INSTALLATION: IMPLEMENTATION STEPS
AND POSSIBLE PROBLEMS ENCOUNTERED
By Howard E. Dielmann

Computer Sciences Corporation
SUMMARY

NASTRAN, from its inception, was designed to operate on several
diverse computer systems. It is currently installed and operating
on the CDC 6600, the IBM 360, and the UNIVAC 1108. This paper dis-
cusses the steps found by CSC to be necessary in installing NASTRAN
on a computer system and the possible obstacles that might be encoun-
tered in undertaking NASTRAN installation. Reference is made to
actual problems that arose during installation on the above machines.
With a knowledge of what has happened to date in setting up NASTRAN,
the future user will be better able to cope with and understand the
implications of installing NASTRAN on his computer.

INTRODUCTION

The NASTRAN program had as its primary directive to design and
develop NASTRAN in such a manner that it could be easily implemented
on several different machines. These machines were the IBM 7094
under IBSYS, the UNIVAC 1108 under EXEC II and EXEC 8, the IBM 360
‘under 0S, and the CDC 6600 under SCOPE. The problems associated
with machine dependence were given considerable attention during
the initial phases of NASTRAN's development. An attempt was made
to utilize a subset of FORTRAN IV that was compatible with the spec-
ified machines (reference 1), and to avoid dependencies on machine
characteristics such as 36-bit words or 6-bit characters. Despite
the planning devoted to avoiding dependencies, many obstacles arose
whenever NASTRAN was implemented on a computer system. These obsta-
cles generally occurred because of the enormous size of NASTRAN,
its extreme and varied demands on the operating system, or the lack
of capabilities of the particular operating system involved.

NASTRAN consists of over 700 subroutines and comprises some
145,000 cards. The compiled object code contains approximately
900,000 words, and the absolute or executable program consists
of over 1,800,000 words (IBM 360 statistics).

51T



Early in the development of NASTRAN, the hardware capabilities
and to some extent, the software capabilities of the second genera-
tion IBM 7094 and UNIVAC 1108 EXEC II were taxed excessively, and
NASTRAN evolved into a third generation system. The third genera-
tion systems are better equipped to meet NASTRAN's hardware require-
ments, but no operating system to date has been able to sufficiently
satisfy all of the software requirements of NASTRAN. These third
generation operating systems are not designed to give to any one
application program the total resources that NASTRAN requires (core,
files, etc.) without limiting the execution of NASTRAN or affecting
the operation of the computer system,

The intent of this paper is to identify both the steps and the
obstacles that might be encountered in installing NASTRAN. The
particular problems encountered in adapting NASTRAN to other com-
puter systems cannot, of course, be addressed by this paper, since
these will vary from one computer system to another,.

However, a general observation can be made that will apply to
the implementation of NASTRAN regardless of the particular computer
system involved. The observation is this: that a comprehensive and
flexible operating system greatly aids in the installation effort.
Many of the obstacles we encountered in installing NASTRAN involved
services related to the operating system, such as library editing,
compiling, loading, and I/0 control. If the proper facilities
either were not available, or were insufficient, programs had to
be written to provide these services, We therefore feel that the
following features of an operating system are either necessary or
desirable: (1) a source and object library editing capability,

(2) a standard and efficient FORTRAN IV compiler, (3) a sophisti-
cated loader capable of handling large overlays, (4) an extensive
control language that allows multiple file definitions, dump speci-
"fications, etc., and (5) macro-level I/0 calls.

This paper is presented in the general order of the steps
employed in installing NASTRAN:

1. Hardware evaluation
2. Software implementation
a. Source language creation

b. FORTRAN compilation
c. Source and object library updating
d. Machine-dependent deck conversion

e. Absolute program creation

578



f. NASTRAN execution

g. Tailoring of NASTRAN to the computer system .
HARDWARE EVALUATION

The initial question to be resolved when considering the
installation of NASTRAN on a computer system is whether the hard-
ware configuration will support NASTRAN. The primary requirement
of NASTRAN is a large amount of core. NASTRAN can operate on as
little as 45K words of core (UNIVAC 1108), but problem solving
capability can be limited even with 65K words.2 For large problems,
at least 100K words should be available. The second question is
whether sufficient auxiliary storage space is available. (This
allocation can be provided through disk, drum, or other available
storage devices.) A minimum of 30 files must be defined, each
requiring a space allocation of 50K to 500K words.3 As problem
size increases, so does the need for auxiliary storage. For con-
venient operation, the hardware should be configured with at least
five tape drives available to NASTRAN. 1If only a minimum hardware
configuration is available, NASTRAN will operate, but it will be
limited as to the size of a problem that it can solve. Moreover,
a problem run on a larger system will usually take considerably
longer to run on a smaller configuration, since insufficient core
storage may cause spill in matrix operations. Other hardware
features such as the number and speed of I/0 channels and the speed
of the auxiliary storage devices will also affect the operating
~efficiency of NASTRAN.

SOFTWARE IMPLEMENTATION

Source Language Creation’

When we began to code NASTRAN and create source decks, it soon
became apparent that card decks were too bulky. IBM 7094 IBSYS pro-
vided a card to tape utility, and NASTRAN card image source tapes
were used. Compilations were made from the tape and the tape was
updated via a CSC-written update program as new or modified decks
were added.

2For example, a 45K system should be able to solve a 175-order
complex eigenvalue problem; a 65K system, a 900-order problem;
and a 100K system, a 2,100-order problem.

Skor example, a single 1,000 order double precision matrix that
is 25 percent dense requires 500,000 words of storage.

o279



When the first NASTRAN system was to be developed on the UNIVAC 1108
EXEC II, a corresponding source tape was needed. A utility program
to convert the IBM 7094 tape to UNIVAC 1108 EXEC II format was
written. Once converted, this tape was acceptable as input to the
FORTRAN compiler. Eventually, corresponding programs were written

to provide input source tapes to the UNIVAC 1108 EXEC 8, the IBM 360,
and the CDC 6600.

The first step in putting NASTRAN on a computer is to obtain
or create a source tape that can be used as input to the sytem's
compiler, 1In all likelihood, this will require creating a program
that converts a current UNIVAC 1108, IBM 360, or CDC 6600 source
tape to the required format. However, some operating systems may
already have the capability to handle this task (the RCA SPECTRA 7,
for example, accepts IBM 360 tape) and eliminate this step.

FORTRAN Compilation

The next step, and supposedly the easiest, is the compilation
of all of the source language decks. Surprisingly, however, this
step has activated numerous problems in the past. This situation
no doubt has been due to the large number of source decks (700 sub-
routines, 145,000 source statements) and the variety and complexity
of the code involved; if any errors exist in the target computer's
FORTRAN compiler, they usually show up while the NASTRAN subroutines
are being compiled. These errors appear either as a compilation
abort, extraneous error messages, Oor incorrectly generated object
code. Incorrect code may occur when optimization of the object
code is selected. If this occurs, the use of optimization should
be avoided. 1If other compiler errors are identified, they can
‘usually be circumvented by rewriting the FORTRAN code.?

Another and potentially more serious problem relates to the
definition of standard FORTRAN, CSC in attempting to avoid this
problem defined a subset of the ASA standard FORTRAN IV that was
to be used. This meant that certain features available under one
compiler could not be used unless those features were available on
all compilers. As a result, octal or hexadecimal data statement,
for example, could not be used. However, in spite of our efforts,
it was impossible to define a subset that was compatible on the
LDC 6600. That system's compiler required a different format for
nonstandard returns and did not allow multiple entry points.

4ror example, it was found that EXEC 8 failed to compile properly
when a deck with one entry point contained nonstandard returns. An
additional dummy entry point was inserted into decks having one

entry point and nonstandard returns, and correct code was there-
after generated.

580



When it became necessary to implement NASTRAN on the CDC 6600, a
program was written to convert the source decks to 6600 compiler
format. This program, similar to the FORTRAN II to FORTRAN IV SIFT
program, modifies the format of nonstandard returns and eliminates
multiple entry points.,

With a strong background in working with FORTRAN, and with
data on the integrity of the FORTRAN compiler involved, the degree
of difficulty in compiling NASTRAN can be measured. If a given |
compiler is known to have errors, it should be avoided - presuming, .
of course, that a choice of compilers is available. 1If optimization
has caused problems in the past, it should not be used. If the
FORTRAN IV language differs from the standard that NASTRAN has used,
a SIFT-type program may have to be developed. Overall, however,
with a competent system, this task should be a purely mechanical
one, consisting of a string compilation of all decks.

Source and Object Library Updating

Inherent in the compilation of source language decks is the
creation of an object library tape. In order to maintain library
tapes, a source and object library edit and update program is nec-
essary. In the case of the IBM 7094, a source and object library
edit and update program did not exist, and such a program there-
fore had to be written. Although a third generation system gener-
ally has such a capability, the capability is sometimes cumbersome
to use. (For example, the IBM 360 object tape has to be edited to
provide control section names for input to the Linkage Editor.)

By using library edit features, changes to source programs
can be made by simply specifying in an update deck the changes that
are to be made to the library source program. When this deck is
compiled, the source and object libraries are automatically updated.

A sophisticated library edit capability in a target systenm

can greatly facilitate compilation and subsequent updates to the
system. Desirable features of an edit program include the follow-
ing: (1) an update option for inserting, deleting, or adding cards,
(2) the capability of allowing source and object libraries to be
maintained on random access devices, (3) the ability to automati-
cally update the source and object libraries when a deck is recom-
piled, and (4) the capability of listing and identifying all decks
by time and date compiled.

Machine-Dependent Deck Conversion
Once the FORTRAN decks have been compiled, the machine-dependen
programs must be converted. These machine-dependent programs consis:

of several assembly language decks, some Data Block decks, and some
FORTRAN decks.

581



Through a concerted effort, assembly language coding was kept
to a minimum, since CSC considered it more important to provide
easily convertible FORTRAN code than to obtain the increase in effi-
ciency provided by assembly code. The few assembly language pro-
grams that do exist consist of function-type subroutines (AND, OR,
LSHIFT, etc.) and operating system-type interface routines (CPU
clock, time of day clock, console message, etc.). Of the assembly
language subroutines, some can be simply converted (i.e., AND, OR,
LSHIFT), while others must be implemented according to the interface
with the system (i.e., reading the CPU clock). Generally, the oper-
ating system provides subroutines that return the time of day, that
return the elapsed CPU time, and that send messages to the computer
operator. Under these circumstances, the only change required in
the NASTRAN decks is to code a routine that calls the system sub-
routine providing these capabilities,

During NASTRAN's development, block data programs that con-
tained system parameters were defined. These parameters include
machine characteristics, and various subroutines utilize this
data. In installing NASTRAN, the system parameters must be modi-
fied to identify such characteristics as computer word size, num-
ber of bits per character, number of characters per word, timing
information, etc. The application subroutines utilize this infor-
mation to accomplish such tasks as extracting a character from a
word, based on the character and word length definitions contained
in the data base.

The third set of decks that must be changed are the machine-
dependent FORTRAN decks. These decks generally handle some of the
NASTRAN-operating system interfaces. One of these decks is GINOIO,
which contains the physical I/0 calls to the system output devices.
Preferably, GINOIO should contain macro-level I/0 calls, but can
contain FORTRAN READ/WRITE calls, although such calls are extremely
inefficient. A second deck that must be modified (and that may have
to be in assembly language) is GNFIAT, which must identify and trans-
mit to NASTRAN the number and name of all files allocated to the run.
Several smaller decks that accomplish initialization and link switch-
ing must also be changed.

To accomplish the conversion of these machine-dependent pro-
grams usually requires persons knowledgeable in both the intrica-
cies of NASTRAN and the internal aspects of the operating system.

Absolute Program Creation

One of the most difficult tasks required in installing NASTRAN
is the creation of the overlays and the generation of the absolute
(executable) elements, since no two loaders of third generation com-
puters are even remotely similar. In addition to this problem, most
loaders are not equipped to handle an overlay as large or as complex

582



as that of NASTRAN. Fairly early in the development of NASTRAN,
we exceeded the capacity of the IBM 7094 loader, and subsequently
exceeded a size limitation on the UNIVAC 1108 EXEC II due tos fixed
table sizes. However, even the third generation loaders have not,
been well equipped to handle the NASTRAN overlay.

NASTRAN is divided into 14 separate links, each with its own
overlay tree structure. These links can be created independently
and can be thought of as separate programs. Therefore, if a deck
is changed in one link, only that link has to be regenerated. Com-
munication between the links is handled via data contained on exter-
nal storage. The EXEC 8 overlay loader handled the structuring of
each link extremely well. Only those decks that defined origins
had to be explicitly named, while all other subroutines were included
automatically. However, EXEC 8 failed in providing a convenient
mechanism for crossing between links. This was eventually solved
by using external control cards to determine the link to be executed,
calling the link in, and passing control to it. On the IBM. 360, the
linking concept is entirely different and consists of a super link
occupying a region of its own. The functional links are loaded into
a second region, with the super link program responsible for passing
control between functional links.

In addition, the execution time loading characteristics between
systems differ. The UNIVAC 1108 has a segment loader, which causes
a segment of an overlay to be loaded only when the segment is explic-
itly called. The IBM 360, on the other hand, has a string loader,
loading the segment called and all other segments between it and the
main link. This caused problems; a job might run for example, on
the IBM 360 but not the UNIVAC 1108 because the same segments were
not loaded into core at the same time.

When we began the installation of NASTRAN on the CDC 6600, we
encountered a loader with such limited capability that implementa-
tion was impossible. It was therefore necessary to write a loader
to handle NASTRAN's requirements. A loader was written for the
CDC 6600 (primarily in FORTRAN), and was patterned after the IBM 360
Linkage Editor/Loader,

The difficulty of establishing NASTRAN on a system depends on
the capabilities of the system loader. If other large programs
requiring overlays have been implemented successfully on the target
computer, then NASTRAN can probably be installed. As mentioned
earlier, if the operating system has a sophisticated loader capable
of handling large overlays, the problems connected with NASTRAN
installation will be minimal. If, however, the required loader
capabilities do not exist, a new loader may have to be written.
Since most third generation systems possess competent loaders, how-
ever, the likelihood of having to write a new loader is not great.

583



NASTRAN Execution

Once the absolute programs have all been created, NASTRAN is
ready for execution. The control stream for executing NASTRAN must
now be constructed by the user. NASTRAN requires a large number
of separate I/0 files (more than 30) with a significant amount of
peripheral storage allocated to each file. These files are defined
by means of the operating system's control languages‘and are identi-
fied by FORTRAN logical unit numbers.®

The operating system's control language is also used to specify
the location of absolute programs (i.e., if they are catalogued on
permanent storage) or to cause the programs to be read from tape.

If sufficient auxiliary storage is available, the NASTRAN absolutes
should remain resident, rather than be reloaded from tape for each
run. The control stream must also identify under what abnormal end
conditions a dump is to be taken, what portions of main core storage
are to be dumped, and with what format.

This, of course will not be the first time in implementing
NASTRAN on the target computer that extensive use has been made of
the operating system's control language. Throughout the initial
stages of NASTRAN generation, the compilations and library edits
required the use of many control language features. From our exper-
ience, we found that a control language should be sophisticated
enough to perform the necessary tasks, but not so detailed that it
becomes cumbersome to use and difficult to understand.

Tailoring of NASTRAN to the Computer System

At this point, NASTRAN should be operational on the target
computer. However, the installation should not yet be considered
complete. 1Ideally, NASTRAN should be tailored to the particular
computer system. This customizing includes setting up standard
procedures to reduce the effort required to operate NASTRAN and
extend its flexibility.

Many things can be done to simplify the control stream required
to execute NASTRAN. One of these, already mentioned, is to cata-
log the NASTRAN system on a permanent file that is available to all
users. Another means might be to group the many control cards nec-
essary to define the files into one data set that is c¢aliable by a
single control card. It may be possible to include in this call a

SFor example, on the IBM 360 DD cards are used to define the unit
number, physical device (tape, disk, etc,,) and space allocation,

6For example, the integers 8, 9, 10, 11, etc.

584



parameter that defines the space allocation.’ It may also be possl
ible to specify a region size on the run card, and therefore to
provide a flexible NASTRAN system in terms of core and file size.

By implementing the above suggestions, it is likely that the' num-
ber of control cards needed can be reduced to as few as four or five.

Several changes can also be made to improve the run efficiency
of NASTRAN. The NASTRAN buffer size can be tailored to fit the .
particular random access devices used. That is, buffer size can be
set to correspond to half-track or full-track., Since data buffers
should not cross track boundaries, such tailoring can improve the
efficiency of the 1/0 and provide better utilization of auxiliary
storage.

Machine timing characteristics such as internal arithmetic
speed and I/0 speed are stored in the data base, and are used to
make logical decisions concerning the most efficient means of decom-
posing a matrix. Timing studies can be made to refine the data
base times and thus to enable the decomposition routines to make
proper decisions.

A longer range goal might include the conversion of some of
the time-critical FORTRAN routines to assembly language, since con-
version of these routines can lead to a substantial savings in
machine time. Here, the I/0 and PACK/UNPACK routines are good
candidates for conversion. Also, if macro-level I1/0 was not used
initially in GINOIO, it is well worth considering it at this point.

CONCLUDING REMARKS

The user who intends to install NASTRAN on a computer should
now have a reasonable idea of the nature of the task before him.
He also has an outline of the necessary steps to install NASTRAN,
However, each computer is unique, and the problems as well as the
solutions that he encounters in implementing NASTRAN may be dis-
tinctly different from those of the past.

Users about to install NASTRAN can reduce the magnitude of
the installation effort if three resources are available: first, a
capable and well checked out operating system; second, a person
knowledgeable in the use and internal workings of that system; and

third, a person experienced in the use and internal design of .
NASTRAN.

70n the IBM 360, for example, a PROC was set up to define the DD
cards. A parameter included in the PROC defines the space allo-
cation for each file.

585



" REFERENCE

1. Second Quarterly Report for NASA General Purpose Structural Analysis Program
(1 November 1966 - 1 January 1967) pp. 25-TL, prepared by CSC for Goddard
Space Flight Center, Greenbelt, Maryland.

586





