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ABSTRACT

Considering a two dimensional time dependent model in which the thermosphere

dynamics are excited by the UV heat input within the thermosphere, it is whown that

the wind circulation-drag-diffusion induced variations in the diurnal component

of atomic oxygen dominate over its temperature induced variations up to 200 km. 	 W %.

The assumption of diffusive equilibrium is therefore in general not valid for O

within the lover thermosphere. The effect of the diurnal wind circulation tends

to remove O from the day to night side of the earth with the consequence that (a)

the diuima.l variations in the [O] /L N 2 1  and [O] / [02 ] ratios are damped by about

20% thus contributing to the maintenance of the nighttime F2 region and (b) the

maximum in the diurnal variation of O is shifted by one to two hours away from

the temperature maximum toward noon thus explaining the temperature-density

time lag at thermospheric heights above 200 km where O becomes the major con-

stituent. The mass redistribution due to circulation, which accounts for signifi-

cant density-temperature time delays within the N 2 region of the lower
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thermosphere, is essentially extended into the upper thermosphere through the

diffusion (drag) process which affects most significantly the atmospheric con-

stituents with lower masses.
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INTRODUCTION

Radar backscatter measurements have shown that the ion temperature-which

has been assumed to be identical with the gas temperature-peaks at about 1630

LT (e.g. Mahajan (1969)). Considering that the thermospheric density as deduced

from satellite drag observations peaks at 14 
00 

LT (Jacchia (1964)) a phase dif-

ference of more than two hours became thus apparent.

Stubbe and Chandra (1971) showed that the dissipation of thermospheric wind

energy into the ion component could significantly increase the ion temperature

over the gas temperature, a mechanism which is particularly effective during

night time when other external heat sources are absent and the energy loss rates

reach a minimum. For this reason the magnitude and the local time dependence

of the gas temperature are not known with certainty and the ion temperature

measurements can only be considered as an indication for a density-temperature

phase discrepancy. However any such phase difference would be significant since

the two dimensional models of Dickinson et al. (1968) and Volland and Mayr (1970)

find density and temperature essentially in phase with maxima near 14 00 LT.

Volland (1970), in analyzing the ion temperature measurements, concluded

that (a) the diurnal component peaks at about 15 20 LT which is only about half an

hour after the corresponding density component in the Jacchia model and (b) the

much weaker semidiurnal component in the temperature peaks also at 15 20 LT

and follows the corresponding density peak with a phase difference of more than

two hours.

Chandra and Stubbe (1970) treated the thermosphere in a one dimensional

model and found in agreement with the classical one dimensional model of Harris
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and Priester (1962), that temperature and density peak at 17 00 LT. By introduc-

ing variable boundary conditions at 120 km Chandra and Stubbe then shifted the

density peak in their model toward 14 00 LT and thus reproduced some of the

observations below 300 km.

It has been pointed out (e.g. Dickinson et al. (1968), Volland and Mayr (1969))

that it is most important to treat the thermosphere in two or even three dimen-

sional models since horizontal winds are shown to be significantly involved in the

redistribution of mass and energy thus affecting amplitudes and phases in the

diurnal variations considerably. We must therefore base our discussion on the 	 3

results of the two dimensional models which show temperature and density to

peak only two to three hours after the maximum in the diurnal heat input, the

implication being that we are actually faced with two problems: the possibilities

of the temperature maximum occurring in the late afternoon and of a significant

phase difference between density and temperature.

THE ENERGY MODEL

It was shown by Volland and Mayr (1970) that in the upper thermosphere

where the phase discrepancy is observed, the diurnal variations are primarily

excited by the UV heat input within the thermosphere. This is further emplia-

sized by preliminary results from a three dimensional model of Volland and

Mayr (1971a) in which the energy coupling from the lower atmosphere is shown

to be damped even more rapidly within thermospheric heights. It has been

suggested by Volland and Mayr (1971b) that the semi-diurnal tide, which dominates

in the lower thermosphere (Lindzen (1967)) is rapidly attenuated above 160 km

and therefore the diurnal variations should be expected to prevail within the

upper thermosphere in agreement with satellite observations (Spencer (1971)).
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For these reasons we feel justified to adopt as basis a relatively simple

two dimensional model in which only the diurnal component, excited by the

solar EUV heat input within the thermosphere, is considered.

The solar heat input has been assumed to peak at the minimum of the solar

zenith angle at 12 00 LT (e. g. Volland and Mayr (1570). However, this assumption

is strictly speaking not valid since the heating rates depend on the temporal

variations in the temperatures and densities of the neutral and charged components

of the thermosphere, none of which is symmetrical with respect to noon time.

The most significant heat inputs result from dissociation of the molecular

species 0 2 , N 2 and NO and frcm dissociative recombination involving the den-

sities of molecular ions and electrons.

At present we cannot provide a quantitative description of the diurnal vari--

ations in the heating rates. However, it seems reasonable to assume that the

maximum, in the solar heat input occurs between 12 0O LT and 143O LT considering

that the atmospheric and plasma den y ities peak at 14 30 LT and 1600 LT _respectively.

With the EUV heat input peaking at 13 00 LT the tomperst.ure maximum in the

diurnal component would then occur 3.5 hours later (Volland and Mayr 1970) that

is at 1.6 30 LT which would be ."a agreement with the radar backseatter observations.

The problem then remains to explain the relatively large phas;, difference

between temperature and density. It will be shown in the following that wind

induced diffusion processes tend to deplete atomic oxygen during daytime, thus

shifting its phase sufficiently backwards to explain the phase in the diurnal density

variations above 200k-m (where most of the satellite drag data are obtained,
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The bulk motion of N 2 up to 250 km where this species dominates constitutes

the wind field that affects the O concentration. As a major constituent, N 2 is

not significantly influenced by diffusion. F urchermore, the energy sources that

essentially determine these dynamics are located within the N 2 region up to

250 km. For these reasons, the wind field can be computed in a first approxi-

mation without considering diffusion processes.

Volland and Mayr (1970) have treated the diurnal dynamics of the thermosphere

in a two dimensional model. We shall assume here that their results are valid

for the temperature and for the density-and the wind-fields of N 2 , except in the

phase which we shall modify in accordance with our assumption that the peak

in the energy input does not occur at 12 00 LT but at 13 90 LT.

THE DIFFUSION MODEL

For atomic oxygen the continuity equations of mass and momentum conser-

vation are (at the equator)

2q [02 ; - [o] [N2) (2a1 [o] + a2 [02 ]) - 	 ([o) v 0r ) - 1 a	
[o)v oo = i 01 (1)

(^ [0) 
+[

0) aT + m^	 ^^IK(2[0]
 	 [0] ^T mg

[0) (V o, - V ^) =-D \ Tr
	 T Tr 7T [0 '! - 	 ar + T Tr- + k  [0)	 (2)

No, - V 0 = 0	 (3)

where

k = Boltzmann constant

q = photo production rate due to dissociation of O

at = rate of three body recombination (0 + O + N2 - 02 + N2)

a 2 = rate of three body recombination (0 + 0 2 + N 2 - 0 3 + N3)

(01, [N2 ] , (02 J = number densities for O, 0 2 and N`
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V or , V O& = transport velocities for O in the radial (r) and longitudinal

direction

V r , V^ = wind components for the two directions

K = Eddy diffusion coefficeint (6 x 10 -6 cm  sec- ' )

D = Molecular diffusion coefficient for O through N 2 and 02

(0.2G (T/T , )" ;s (p/p , )-^ , an experimental result

arrived at by Walker (1961)). T S and p s are standard

temperature and pressure, p is the sum of the partial

pressure of N 2 and 02

t = universal time

m, m = mass of atomic oxygen, mean molecular mass

R = gravitational acceleration

In the longitudinal direction the drag term [ O ] (VOX - V.) dominates the

latera l. momentum transfer thus reducing to the simplified equation (3). The

inertia terms d Pt (Vor , Von) have been neglected in Equations (2) and (3) since

they are negligible when compared with the accelerations due to the pressure

gradients.

Although we have formally retained the photo production and loss terns for

O as well as the Eddy diffusion term, these processes are not of great signifi-

cance for the diurnal variations in atomic oxygen since variations with this

period do not penetrate noticably down to altitudes below 120 km.

In order to solve the Equations (1) through (3) a number of simplifying as-

sumptions are made:

1.) The variables are separated into time t, longitude k and altitude

r components in the form
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(01 = 101 0 (r) + (0) 1 (r) eix e iW(t -m o )	 (4)

for atomic oxygen and for the diffusion flux

F	 (01 (Vor - V r ) = F0 (r) t FI (r) eix e "' ( t -^  >	 (5)

where , is the angular frequency corresponding to the period of cne day,

and (t is the phase

2.) From the two dimensional model of Volland and Mayr (1970) the wind

and temperature fields were adopted. This model overestimates the

energy coupling with the lower atmosphere and consequently the am-

plitude of the UV component is underestimated. However, this is of

no significance since we shall not discuss the absolute values of the

amplitudes, Corresponding to our assumption that the maximum in

the diurnal heating rate occurs at 13` )0 LT instead of 12 00 LT all the

parameters in their model are phase shifted by +1 hour.

Thus we assume

j&j(t-^ -1 hours)
Vr = V r (r) elk e	 `	 ((i)

Vk = Vx (r) e j '\ 
ejf^'(t-ok-I hours)

(7)

and

T	 To (r)+T I (r) ej,\e1'O(
t _OT -I hours)	 (a)

3.) Assuming that higher order terms in the frequency and longitude ex-

pansions can be neglected, perturbation theory is applied which leads

in a straight forward manner to a set of first order differential equations

F0 t a1 (01 0 (N2 I + az [01 0 [02 1 [N 2 1 - 2O (02 J = 0	 (9)
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F	 f (D
°

F K)	
a 101 0	 +	 (01 

o	
aT0_ +	 (0) o

fi(' MD + m K)\	
= 0	 (lU

)
)

^)r	 To	 ar k -ro D i K

a[0)of	 i	 I	 o

)r	 (Ol o 	 ar
f+(2a	 [01	 +a )P-1 ^P = -t	 o	 z 1

(0) oar
(i0)	 Vi	 10)	 ^'	 (11)o	 r	 o	 n

+
C

ap	 1	 1	 a [0) 0f	
+

1	 3To fi	 (MD + m K)	 12
)	 (	 )77 (D + K)	 [01 r,	 ar To	 ar kTo 	(D	 K)

1 dT_ 1 aTo T - 

kT

fi (m D + rr K \ 1

CTo 3r 
Ts 

ar	 2 \ D + K l T J
0	 0

with

Ft
f -	 e iA, e i " << ' tr>

Fo	 (13)

and

(0)1 iX i-0-00)

' 7 701 0
  e e	 (14)

The equations (9) and (10) describe the steady state distribution of atomic

oxygen unaffected by wind and temperature variations. As they do not depend on

other variables they can be solved independently. Such a solution has been

described e. g. in Mayr and Volland (1970) and it is here adopted as input,

with a Jacchia (1965) model for an exospheric temperature of 1000 K.

The equations (11) and (12), which are complex and therefore represent four

equations, are then solved by means of a trial ind error scheme with the fol-

lowing boundary ,onditions:

a) A- , iglu above 250 km 0 becomes the major constituent and therefore

;re transport. velcx.'ty for Q becomes the wind velocity; we assume therefore

7
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f - 0 at 250 km

b) The diffusion time increases to four days at 90 krn thus the temporal

variations must he small at this level; we assume therefore

p=oat 90 km

This assumption is somewhat arbitrary and therefore the solution is meaning-

less at the lower boundary level. However, at heights above 100 km the solution

is very insensitive to this artificial constraint and can therefore be considered

as unique.

The equations (11) and (12) have the important characteristic that the com-

plex variables i and p depend linearily on the temperature T and wind fields V

and V,. This implies that the effects induced by temperature and wind variations

can be separated thus providing a means of identifying their relative significance.

DISCUSSION

In Figure 1 the input parameters for the temperature and wind fields are

shown. They were taken from the model component of Volland and Mayr (1970)

which considers the internal EUV heat input as the generation mechanism. How-

ever, owing to our assumption that the heat input peak,- at 13 00 LT instead at

12 00 LT a phase shift of an hour was introduced into all the input parameters.

By solving the diffusion equations (11) and (12) the relative variations in the

concentration of atomic oxygen arc derived separately for the temperature and

wind fields and for the sum of both. Since atomic oxygen becomes a major

constituent above 250 km we assumed that it would be in diffusive (hydrostatic)

equilibrium above that altitude and accordingly the solution was extended up to
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400 km. The results are shown in phase and amplitude as functions of height

in Figure 2. The subscripts "wind" and "T" identify the wind and temperature

induced variations and the superscript, 2D, indicates the two dimensional model.

The heavy lines represent the combined total effect from both these

contributions.

It is apparent from Figure 2a that up to 200 km the wind induced variations

in O exceed the temperature effect. Only at altitudes above 300 km the thermal

expansion in atomic oxygen starts to dominate in the diurnal variations of this

constituent.

Even more significant, however, is the difference in the phase of both com-

ponents. Figure 2b reveals that the density maximum due to the diurnal

temperature variation occurs at about 17 00 LT above 200 km, close to the local

time for the temperature maximum (the temperature phase is shown in dashed

line). In contrast, the density maximum for the wind component occurs nearly

6 hours earlier at 1130 LT above 200 km. This phase difference results pri-

marily from the interaction of the horizontal wind field which tends to deplete

atomic oxygen on the day side and to supply it toward the night side of the earth.

In this redistribution, vertical diffusion, induced by vertical winds, tends to supply

atomic oxygen from below during day and to remove it toward lower altitudes dur-

ing night time, a process that partially damps the effect from the horizontal wind

component.

The sum of both the temperature and wind contributions, which produce the

total density variation in atomic oxygen, shows then a phase shift between

9
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temperature and atomic oxygen concentration which is in the direction of the

observed phase discrepancy.

In Figure 3 the time difference between the maxima of temperature and

oxygen concentration are shown explicitly. The two dimensional model is

again indicated with a superscript 2D. For comparison we show as t.hin line

the phase delay between temperature and density in the model of Volland and

Mayr (1970). Dealing here with the total atmospheric density, we compare

only the phases above 250 km where O becomes the major constituent. From

this comparison it is evident that the diffusion process introduces in the density

of the upper thermosphere a significant phase shift toward noon.

Below 250 km the phase in the total density of the diffusive equilibrium

model corresponds to that of the concentration of N 2 , the dominant constituent

below that height. It is evident from Figure 3 that in N 2 the phase difference

increases significantly down to altitudes of about 130 km where the density

peaks in the morning hour. The reason for this behaviour is similar to that for

the phase shift in O. It is the mass transport due to horizontal winds from the

day to the night side of the earth which constitutes an effective sink thus damping

the amplitude and shifting the phase toward earlier hours. This similarity is

further emphasized in the height distribution of the phases in the diurnal varia-

tions of N 2 and O. Both show a peak at some height but N 2 at 125 km and O at

170 km. The phases decrease higher up toward the phase of the temperature.

However, while the phase difference in N 2 becomes negligible above 250 km the

phase difference in atomic oxygen remains significant up to 400 km.

10
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The picture that emerges from this is therefore the following:

At lower altitudes below about 200 km the atmospheric density, with N 2 being

the major constituent, is in hydrostatic equilibrium. In this region mass trans-

port due to global circulation redistributes the density by removing it from the

day side and supplying it to the night side of the earth. This process constitutes

a sink at times when the thermal expansion would tend to enhance the concentra-

tion and it constitutes a source at times when a thermal contraction occurs. As

a consequence the phase of the N 2 concentration is shifted away from the temp-

erature toward earlier hours in particular in the lower thermosphere where the

thermal expansion and contraction are insignificant, and it approaches the phase

of the temperature in the upper thermosphere above about 200 km where the

temperature effects dominate. Thus a temperature-density phase discrepancy should

be understandable in the lower thermosphere simply from the dynamic properties

apparent from multi- (at least two-) dimensional thermosphere models that describe

the diurnal variations in N 2 , excited by the UV heat source within the thermosphere.

The diurnal variations in atomic oxygen are similarly affected by the global

wind circulation and by the processes of thermal expansion and contraction. The

wind field redistributes the oxygen concentration removing O from the day to the

night side of the earth while thermal expansion or contraction increase or decrease

the density during day or night respectively. The main differences relative to

the dynamics in N 2 , however, are that it is the drag interaction with the major

constituent N 2 that drives the oxygen transport thus, owing to the mass difference

between both species, diffusion processes are set up. Atomic oxygen is therefore

not is diffusive equilibrium, particularly at lower altitudes. Furthermore, owing

to the lower mass of atomic oxygen it is much less sensitive to temperature

11
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effects than N 2 . The balance between wind and temperature induced variations

in O is therefore more significantly weighted toward the wind effect and con-

sequently the density-temperature phase difference extends up to much higher

altitudes in O than it does in N 2 . The phase difference thereby extends up into

the region where atomic oxygen is the major constituent and where satellite

drag density data seem to indicate this kind of a phase discrepancy when com-

pared with temperature data.

We have so far assumed that the thermosphere can be described in a tv. )

dimensional model. Thus, we have completely neglected the meridional wind

field which is associated with the diurnal variations In the thermosphere, From

the work of Kohl and King (1967), anO Geisler (1967) it iG, however, known

that the meridional wind velocities are comparable or even exceed those in the

longitudinal direction. For this reasor. we have most certainly underestimated

the wind induced variations in the concentratior of atomic o ;ygen.

In estimating the effects of the meridional wind velocity we assume a

meridional wind field of the form

V y (r, E, t) - - Va ( r ) cos	 cos (wt - (^7 )	 (15)

where = colatitude.

It is the term
1	

a (sin 6 Va)
r sin 9 a±?

that enters into the continuity equation. Evaluating this expression for a velocity

field of the form (15) leads then to

Vp (r)
(cos t u - sin 2 7) cos (wt - (^A)

r sin 9

12



which becomes

V,, (r) 
cos (W t - (^g)

r

at the equator.

Considering t hat longitudinal as well as meridional winds tend to .reduce or
^-

enhance the density during times when the density is enhanced or reduced

respectively it seems reasonable to assume that the effects (divergences)

of both wind components are in phase implying 0. tip- 6 hours. Under the
ik

conservative estimate that the magnitudes of the meridional wind velocities are

I
	 equal to those of the longitudinal wind component the contribution (16) in the

continuity equation (11) becomes then equal to the term associated with the

longitudinal wind VX on the right hand side of (11).

It is obvious that with the introduction of a meridional circulation also the

vertical wind velocity has to be changed. Here we make the plausible assumption

that the magnitude of the vertical velocity field is increased proportional to the

increase in the divergence of the horizontal wind velocities which is assumed to

be a factor of two.

In Figure 2 we show (marked with superscripts "3D") the wind induced vari-

ations in atomic oxygen when we increase the wind field by a factor of two to

additionally consider the estimated contribution from the meridional component.

Combining it with the temperature effect - which is assumed unchanged - one

finds a significant increase of the amplitude below 250 km where the wind effects

dominate and a relatively small increase at higher altitudes where the tempera-

ture remains the controlling factor.

(16)-
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A very significant effect of the "three dimensional correction" becomes

apparent in the phase of atomic oxygen which is Farther shifted toward noon thus

increasing the temperature-density phase difference to nearly 1.5 hours at

altitudes as high as 350 km (see Figure 3).

At higher altitudes the phase difference between the oxygen concentration

and temperature will of course gradually disappear. However above 600 km 14,

becomes the major constituent and H starts to dominate at altitudes above 900

km, and the transport effects discussed in this paper for atomic oxygen are even

more significant for the lighter constituents. This is particularly true consider-

ing the decreasing significance of the effects of thermal expansion and contrac-

tion as the atomic mass decreases. Preliminary calculations for helium have

verified this. Exospheric transport and planetary escape further complicate the

dynamics and contribute to upset the diffusive equilibrium conditions for these

constituents. So it has been observed (Brinton and Mayr (1971) that the hydrogen

concentration at 350 km peaks during night (thus exhibiting a density temperature

phase difference in the order of 12 hours) consistent with the theoretical pre-

dictions of Kockarts and Nicolet (1962), McAffee (1967) and Patterson (1966).

Temperature density phase differences would therefore be quite understandable

and should be expected especially in the thermosphere at higher altitudes.

SUMMARY AND CONCLUSION

It is recognized that two and three dimensional models of the diurnal varia-

tions in the thermosphere predict the day time maxima in the exospheric density

and temperature to be essentially in phase and to occur about 2 hours after the

maximum in the diurnal heat input. To reproduce the temperature maximum, which -

inferred from radar backscatter observations- seems to occur at 16-17 00 LT,

1-
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it is proposed to shift the maximum in the diurnal heat input from 12"" ) to about

13 00 LT; a phase shift of this magnitude being reasonable and probably conserv-

ative considering that a.) the solar heat Input. is proportional to the atmospheric

density (in the opticaily thin region) which peaks near 14 01 LT and b.) the ther-

mospheric heat input- originating from dissociative recombination is proportional

Io the electron density which peak: near 16 111 LT.

Assurnirg that the thermosphere dynamics of the diurnal component is gen-

erated primarily by the internal heat input within the thermosphere, the two

dimensional model of Volland and Mayr 1 19 i 0) is then adopted to describe the

diurnal variations of the temperature, and the density and wind fit-Ids for N ' , a

constituent which can be assumed in diffusive equilibrium below 250 km.

Assuming that the diffusion velocities become zero at higher altitudes and

that, due to the long diffusion time the density variations vanish at lower altitudes,

the momentum and time dependent continuity equations for O are sol v ed. With

consideration of the temperature field and the N2 -O drag interaction from the

wind field, the diffusion effects in the diurnal variations of atomic oxygen are

discussed.

While at higher altitudes the temperature effects prevail, it is shown that

the wind induced diffusion effects dominate the diurnal variations in O in the

thermosphere below 200 km thus producing deviations from diffusive equilibrium

that cannot be neglected.

15
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It is shown that, through the interaction of horizontal —ands, atomic oxygen is

femovcd frr m the day side and supplied to-vard the night side of the earth with the

vertical diffusion partially supplying O from below during day and supplying it

toward lower altitudes during night, In this rather complicated redistribution the

horizontal transport prevails at altitudes above 140 km thus shifting the phase

of tho wind induced variations in O toward the late moring hours (103  LT).

combining this diffusion component - which has so far been neglected -

with the temperature effects, amplitude and phase in the diurnal variations of

atomic oxygen are significantly changed. Two of the most i.,iportant consequences

are summarized below:

1) The phase (time of maximum) of O is shi fted toward Earlier hours thus

producing a phase difference between temperature and density which is

consistent with the phase discrepancy apparent from satellite drag data

of the density and radar backscatter observations of the exospheric

temperature.

2) Atomic oxygen and molecular nitrogen are shown to be not in phase, with

the maximum in O occuring a few hours before that in N 2 at F2 region

heights. This contributes to a reduction in the amplitude of the [OJAN21

ratio by about 20 110 and shifts the maximum of this ratio into the morning

hours, effects both of which could significantly contribute to the maintenance

of the night time F 2 region. (We gratefully acknowledge a discussion

with Dr. J. W. King in which he poiniud out to us the significance of

these composition changes for the ionosphere. )

Although the model presented here can explain in a self consistent form

the density-temperature phase discrepancy that appears to exist in the

16
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thermosphere, our model should not be considered as unique. Apart from the

deficiency that the three dimensional (r, X, B) nature of the thermosphere

dynamics was not considered rigorously, our model was based on the

assumption that the diurnal variations of the thermosphere are primarily

excited by the u V heat )urce within the thermosphere. This is a very

important qualification since one can show (as has been shown by Mayr and Volland

(1970) in the case of the storm time behavior in the composition) that

significant energy coupling with the lower atmosphere could change amplitude

and phase in the diurnal variations of atomic oxygen such as to reduce or even

reverse the density-temperature phase difference. Furthermore, we have not

considered the semidiurnal component in the temperature and density variations

which, although small could perhaps significanVy determine the time difference

between temperature and density maxima (Volland, 1971).
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Figure 3. The density - temperature time delay. Note that above 250 km, where 0 is the
major constituent, the time difference is between one and iwo hours, in agreement with
"observational" evidences.
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