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Author's Note 

This report is intimately related to a previous publication, Dynamics and Con- 
trol of Flexibk Space Vehicles, Jet Propulsion Laboratory Technical Report 
32-1329, Rev. 1, dated January 15, 1970, by the same author. The earlier report 
is much wider in scope, dealing with discrete coordinate methods and vehicle 
normal-mode coordinate methods as well as hybrid coordinate methods. Within 
the framework of the hybrid coordinate approach, the earlier report offers a small 
section (15 pages) on the equations of motion of a flexible appendage, and presents 
as well an extensive treatment of other ingredients of a hybrid coordinate formula- 
tion for a complete spacecraft. 

The present report consists of a substantial expansion of the original section on 
the equations of motion of a flexible appendage, generalizing the appendage 
mathematical model to permit the distribution of mass throughout the finite elastic 
elements interconnecting the nodes at which all mass is concentrated in the earlier 
report. In addition, the present report provides a procedure for coordinate trans- 
formation which may be more efficient computationally than those considered in 
the earlier report. The present report is, however, much narrower in scope than 
its predecessor, so that it is best appreciated in the broader perspective of the 
1970 report. 

Because users of this report will almost certainly be referring to JPL TR 32-1329 
(Ref. S), it seems appropriate to include here a few technical remarks that may 
contribute to the usefulness of the latter, and to note as well those persistent minor 
errors in the earlier text which have been brought to the author's attention. All 
page references following refer to JPL TR 32-1329. 
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(1)  Page 17 indicates that the deformations us and PS are to be measured rela- 
tive to some "nominal undeformed state." The word "undeformed" is unneces- 
sarily restrictive, and can be stricken without impairing the validity of all that 
follows. 

(2)  Page 22 indicates that the inertia matrix IS is diagonal. This restriction is 
anticipated on page 17 with the remark "it is convenient to select basis {a} and 
the individual mass-center principal axis bases of A,, - . . , A, to be identical." This 
restriction is actually used only twice in the entire report, and the restriction is 
readily removed. The proof of Eq. (88) on page 26 is easily generalized for non- 
diagonal IS, and the result stands. On page 28 the fifth term in Eq. (91) is expanded 
in scalar form, assuming diagonal IS, and the presence of off-diagonal terms in P 
would complicate this expansion. However, the added terms have no consequences 
beyond page 28. 

(3)  Eq. (128), page 36, simplifies with the recognition of certain identities. The 
term SX mS [2  ( R  + rS)T us El o is identically zero, since So = 0. More significantly, 
the coefficients of us can be combined as follows: 

(4) The simplifications indicated in (3) for Eq. (128) provide corresponding 
simplifications of Eq. (129). 

(5) Note the text corrections listed on the following pages. 
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superscripts s 

[~aToTaaToT . . . Q~TOT]T 

Remove bracket 

- 1 
Za (Isaa) = { [as previously] + 
- 2 (I;*,;= + 1ZOf) (1; + I;) w;o; 

-2 (I:O;2 + I;a;=) (1; + I!) 0;w; 

92 OT ,.2T OT . . . , p T  OT]T 

95 f (2EOO)- (2E00J)-~ 

Add R's and 

where pR is a generic position vector 
from rotor mass center 

105 + h X c ]  X c  Boldface c 

34 - 16 112 ( o + Q a ) X z l S * { a s ) ~ @  

- z P X  (0 + Qa)*{a).P Add X's 

34 - 17 112 + B I S * ( & ~  Replace - by * 

34 32 113 + o x ~ I ~ * { ~ ) T ~ - Z I ~ X ~ * { ~ ) ~ @  Add 2's 

36 2 7,8 123 (E - p) {b), both lines Drop T 

36 - 18 128 - 8 1 ~ z @ }  Change tilde 

31 - 2 = Is*(a X {blT$) = {b)TIS~Ps Change tilde 

37 - 7 - by {b)). Drop T 
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139 + ( x E 0  a)- (xEO a)- v Change sign and tilde 

Note implications on 

196 - u,Cm sin u,t + umDm cos umt Drop inverses 

267 (twice) Drop sluperscript A 

Add bar to ua2 

300 [ E - R (s) F (s) ] 0 ( s )  

80 - 31 Wittenburg Change spelling 
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Abstract 

The increasingly common practice of idealizing a spacecraft as a collection of 
interconnected rigid bodies to some of which are attached linearly elastic flexible 
appendages leads to equations of motion expressed in terms of a combination of 
discrete coordinates describing the arbitrary rotational motions of the rigid bodies 
and distributed or modal coordinates describing the small, time-varying deforma- 
tions of the appendages; such a formulation is said to employ a hybrid system 
of coordinates. In the present paper the existing literature is extended to provide 
hybrid coordinate equations of motion for a finite element model of a flexible 
appendage attached to a rigid base undergoing unrestricted motions, and some 
of the advantages of the finite element approach are noted. Transformations to 
the modal coordinates appropriate for the general case and various special cases 
are provided. 
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Finite Element Appendage Equations 

for Hybrid Coordinate Dynamic Analysis 

I. Introduction 

A typical modern spacecraft consists of structural sub- 
systems, some essentially rigid and others extremely flex- 
ible, interconnected often in a time-varying manner, with 
relative motions frequently prescribed by nonlinear auto- 
matic control systems. Such vehicles may in whole or in 
part be spinning, they may be expected to undergo arbi- 
trary large changes in inertial orientation, and they may 
be subjected to external forces due to environmental inter- 
action and due to the actuation of attitude control devices. 
It has become necessary, largely for the purpose of atti- 
tude control system design and analysis, to devise methods 
of dynamic analysis which combine the generalities of 
nonlinearity and unrestricted motions provided by the 
representation of the vehicle as a collection of inter- 
connected discrete rigid bodies (Refs. 1 and 2) with the 
computational efficiency afforded by the use of modal 
coordinates to describe the vehicle normal mode deforma- 
tions (Refs. 35). The result is a procedure which employs 
discrete coordinates to describe the unrestricted motions 
of those structural subsystems idealized as rigid bodies, 
in combination with distributed or modal coordinates to 
describe the time-varying deformations of those structural 

subsystems idealized as flexible elastic appendages. This 
method is called the hybrid coordinate approach to space 
vehicle dynamic simulation. 

Within the framework of the hybrid coordinate nletbds, 
three alternative approaches to the initial mafiematical 
modeling of flexible appendages can be distinguished: 
(I) appendages are idealized as collections of small rigid 
bodies interconnected by massless elastic structure 
(Refs. 6-8); (2) appendages are treated as elastic conlinua 
(Refs. 9-11); and (3) appendages are modeled as collections 
of finite elastic elements possessing mass, interconnected 
at nodes where mass may or may not be concentrated. 
In every case, the formulation of equations of motion for 
the appendage deformations is followed by a transfoma- 
tion to distributed or modal coordinates for the append- 
ages, so that in the final system of equations of motion 
the initial mathematical model adopted for the append- 
ages is obscured; indeed, one can formulate the system 
equations in terms of appendage modal coordinates 
without confronting the question of the origin of these 
coordinates in the equations of motion of a particular 
mathematical model of the appendages (Ref. 12). 
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The first of the three approaches to appendage model- 
ing has been developed to the point of providing infor- 
mation useful for the design of attitude control systems 
of very complex modem spacecraft (Refs. 13-15), and the 
second approach has proven to have practical value when 
the appendages are amenable to idealization as elastic 
beams (Refs. 9-11). It is the purpose of this paper to pro- 
vide the equations required by the third approach, and 
to identify features of these equations which make the 
resulting finite element formulation superior in some ap- 
plications to the two alternatives previously developed, 
and then to develop and evaluate procedures for obtain- 
ing transformations to modal coordinates. 

II. Appendage Idealization 

Any portion of a vehicle which can reasonably be ideal- 
ized as linearly elastic and for which "small" oscillatory 
defomations may be anticipated (perhaps in combination 
vvith large steady-state deformations) is called a flexible 
appendage. 

A flexible appendage is idealized as a finite collection of 
& numbered structural elements, with element number s 
having C)Zs points of contact in common with neighbor- 
ing elements or a supporting rigid body, s = 1, . - . , &. 
Each contact point is called a node, and at each of the n 
nodes there may be located the mass center of a rigid 
body (called a nodal body), but the elastic structural ele- 
ments may also have distributed mass. In the final equa- 
tions, the element masses can be suppressed to obtain 
the results of Ref. 8, or the nodal masses can be suppressed 
if the physical system permits such an idealization. 

Figure 1 is a schematic representation of an appendage 
(enclosed by dashed lines) attached to a rigid body b of 
a spacecraft, which may consist of several interconnected 
rigid bodies and flexible appendages. A typical four-node 
element of the appendage is shown in three configurations 
of interest: (1) prior to structural deformation, (2) subse- 
quent to steady-state deformation, induced perhaps by 
spin, and (3) in an excited state, experiencing both oscil- 
Latory deformations and steady-state deformations. 

The point Q of body 6 is selected as an appendage 
attachment point. The dextral, orthogonal unit vectors 
bl, bZ, b3 ar~e fixed relative to b, and the dextral, orthog- 
onal unit vectors a,, a,, as are so defined that the flexible 
appendage undergoes structural deformations relative to 
a reference frame , established by point @ and vectors 
a,, a2, a,. Gross changes in the relative orientation of , 

- -  1 
/ELEMENT r AFTER 

STEADY-STATE 

FLEXIBLE APPENDAGE 

FIXED) 1 J 

Fig. 1. Appendage idealization 

and b are permitted, in order to accommodate scanning 
antennas and such devices; this is accomplished by intro- 
ducing the time-varying direction cosine matrix C relating 
a, to b, (a = 1,2,3) by 

or, in more compact notation, by 

The equations of motion to follow permit arbitrary 
motion of b and arbitrary time variation in C, although 
practical application of the results requires that the iner- 
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tial angular velocity of b and the angular velocity of , rela- 
tive to b remain in the neighborhood of constant values. 
These angular velocities will not emerge as solutions of 
equations to be derived here; the complete dynamic sim- 
ulation must involve equations of motion of the total 
vehicle and each of its subsystems, as well as differential 
equations characterizing necessary control laws for auto- 
matic control systems, and only the differential equations 
of appendage deformation are to be developed here. 

As shown in Fig. 1, appendage deformations are de- 
scribed in terms of two increments, one steady-state and 
the other oscillatory. This separation is necessary because 
in formulating the equations of motion for the small oscil- 
latory deformations of primary interest here one must 
characterize the elastic properties of the appendage with 

For convenience in calculations it is often desirable to 
introduce for each finite element in its steady-state con- 
dition a local coordinate system; this may be accomplished 
by defining a set of dextral, orthogonal unit vectors 
el, e,, e,, an origin @, and a corresponding set of axes 
t, r],5. (Superscripts are appended to each of these sym- 
bols should it become necessary to distinguish the par- 
ticular element.) The local vector basis is then related to 
the appendage global vector basis a,, a,, a, by a constant 
direction cosine matrix c, as in 

or { e }  = e {a} (2)  

- - - - - 
a stiffness matrix, and the elements of this matrix are in- 

The vector function w is most conveniently expressed in 
fluenced by the structural preload associated with steady- 

terms of local coordinates and the local vector basis; the 
state deformations, as induced, for example, by spin. (3 X 1) matrix function w defined by 

The jth nodal body experiences due to steady-state 
structural deformation the translation uj' = ujk a, (sum- 
mation convention) of its mass center and a rotation 
characterized by ,8j,',pj,',Pj3' for sequential rotations about 
axes parallel to a,, a,, a,. The steady-state deformations 
of a typical element are represented by the function w', 
which is related to the corresponding nodal deformation 
by the procedures of finite element analysis. The task of 
solving for the steady-state deformations of appendages 
on a vehicle with constant angular velocity is mathemat- 
ically identical to a static deflection problem. Because, 
at least formally, large deflections and resulting non- 
linearities are to be accommodated, this task is not trivial, 
but in this paper it is assumed accomplished, so that 
steady-state deformations and structural loads associated 
with nominal vehicle rotation are assumed known. 

Attention is to focus here on the small, time-varying 
deformations of appendages induced by transient loads 
or deviations from nominal vehicle motion. The jth nodal 
body experiences the translation uj = uia, and the rota- 
tion Pi = Pia, (small angle approximation) in addition 
to the previously described steady-state deformations. The 
oscillatory part of the deformation of a generic element 
is represented by the vector function w. (Should it be- 
come necessary to deal with such deformations for more 
than one element simultaneously, the notation w8 is em- 
ployed for element s.) The quantities u?, Pi (j = 1, . . . , n) 
and wS (s = 1, . . . , 6) or their scalar components are re- 
ferred to as variational deformations. 

represents w in the local basis, whereas the (3 X 1) matrix 
function w defined by 

represents w in the global basis. Similar nottation dis- 
tinguishes the vector bases of all matrices representing 
Gibbsian vectors. 

An important aspect of the appendage idealization is 
the assumption, to be incorporated in the following sec- 
tion, that the deformations of each finite element can be 
represented as a function only of the deformations of its 
nodes, and that the nature of that function can be imposed 
a priori. 

Ill. Finite Element Equations of Motion 

Having adopted an appendage idealization, one can pro- 
ceed formally to derive its equations of motion. Since it is 
the variational nodal deformations ui and Pi ( j  = 1, - - .  , n) 
which represent the appendage unknowns, the equations 
of motion of the appendage ultimately consist of the 6n 
scalar second-order differential equations of motion for the 
n nodal bodies. The present section, however, has the 
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intermediate objective of providing an expression relating 
the variational deformation function w of a finite element 
to the variational deformations at its nodes, and in terms 
of this relationship providing expressions for the forces and 
torques applied to the nodal bodies by the adjacent finite 
elements. 

Rather than attempt to work with the infinite number 
of degrees of freedom of the element as a continuous sys- 
tem, one can avoid introducing any additional degrees of 
freedom attributable to element mass by assigning to 
w (t, 7,  [) a functional structure permitting its representa- 
tion in terns of the 602 scalars defining the translational 
and rotational displacements due to oscillatory deforma- 
tions at its nodes.l Although much is left to the dis- 
cretion of the analyst in choosing an expression for the 

function w (t, 7, C), it is required for present purposes that 
this expression involve 631 scalars r,, . . - , re?,, matching 
in number the unknown deformational displacements at 
the 02 nodes of the element. Typically, polynomials in the 
Cartesian coordinates t, 7,( are chosen, with I?,, . - . , I'm, 
providing the coefficients. In matrix form, the indicated 
relationship is written 

A 
where E is defined by Eq. (3), r = [r, r, - . - re7?IT, and 
P is a (3 X 602) matrix establishing the assumed structure 
of the deformational displacement function. For Eq. (5)  
to provide an appropriate polynomial relationship, P is 
written in the form 

If the tetrahedral element of Fig. 1 is adopted and the and the rotation pj is represented in the local basis by the 
rotational degrees of freedom at the nodes are abandoned, matrix 
pemitting only particles to be placed at the nodes, then 
the element has (4 X 3) = 12 nodal deformational dis- 
placements, the dimension of P is (3 X 12), and P may be = - D P  

er. ' lr> t r  
(8) 

chosen to consist of linear functions in the pattern of 
Eq. (6). If, however, rotational nodal deformations are 
retained (as in Fig. l), the dimension of P is (3 X 24), and where 

some choisce of nonlinear functions is required (perhaps in 
each row of P th'ere would appear eight of the 10 terms of 
a quadratic function, with two judiciously suppressed). 

Equation (5) applies throughout a given finite element, 
and hence it applies at the element nodes; if the ith node 
of the appendage is a node of the element in question, 
with local coordinates ti, 7i, Ci, the nodal displacement u j  
as represented by the matrix 2 in the local basis is from 
Eq. (5) given by 

%The symbol ()Zs represents the number of nodes of element s, but 
the symbol will be used for a generic element. 

Equations (7) and (S), written for each of the 02 nodes 
of a given finite element, furnish 602 scalar equations, suf- 
ficient to permit solution for TI, . . . , re7? in terms of the 
6CN nodal deformations. If the nodal numbers of the ele- 
ment are designated k, i, . . . , j (no sequence implied), 
and a (6Ql X 1) matrix ij is introduced to represent, in the 
local basis of the element, all of the deformational dis- 
placements of adjacent nodes, one can construct the matrix 
equation 
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with lated to small variations El, E,, E3 in displacements with 
an equation of the form 

or E = D G, which becomes 

where the notation I j implies evaluation at ti, ~ j ,  Ci, etc. 

Substituting the inverse of Eq. (9) into Eq. (5) yields 

thus establishing the relationship between nodal deforma- 
tions and the deformations distributed throughout the ele- 
ment. The (3 X 6Q) matrix PF-I, which appears frequently 
in what follows, is designated W, permitting 5 to be 
written 

With full knowledge of the variational deformation field 
E throughout the element, one can obtain an expression 
for the variational strain field, represented in the local vec- 
tor basis by E ~ ,  a, y = 1,2,3. This step requires strain- 
displacement relationships. When large displacements are 
considered, as they must be if a steady-state strain due to 
appendage preload is to be calculated, the nonlinear ver- 
sion of the strain-displacement equations is appropriate. 
This results in substantial analytical complexity, normally 
circumvented by a process of incremental use of strain- 
displacement equations linearized about different dis- 
placement states. Nonlinearities in the strain-displacement 
equations are avoided in the present analytical formula- 
tion for the solution for small, variational, time-varying 
deformational displacements by linearizing the strain- 
displacement equations about the state established by the 
steady-state preload. Thus the incremental or variational 
strains in the element beyond any steady-state strains 
(which will be called ZLy; a, y = 1,2,3) can always be re- 

and when these are small deformational displacements - - - 
w,, w,, w,  corresponding to orthogonal axes [, q,5, Eq. (12) 
takes the form 

In addition to the variational strain maMx ;above, one 
may define a steady-state strain matrix 7 with six elements 
chosen from Z& (a, y = 1,2,3), and also a strain mahix E; 
that would result as a consequence of any deviations from 
the steady-state thermal condition of the sbctural  appen- 
dage. If the deviation from the steady-state temperature 
at a given point of the element is designated T, the varia- 
tional thermal strain ET becomes 

where the scalar LY is the coef[icient of thermal expansion 
of the element material. When finite element heat hans- 
fer equations are introduced to augment the dynamical 
equations sought here, the distribution of temperature 
7 ([, y , [ )  in each element would be assumed to have a 
simple functional dependence on tlne nodal tennperakres, 
which become additional unknowns. 
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The increment (T in the stress matrix beyond the steady-state value 7 is related for an elastic material to the difference 
in the total variational strain and the variational thermal strain by 

where E is Young's modulus and v is Poisson's ratio. Sym- 
bolically, Eq. (16) may be written 

which with Eq. (13) becomes 

The (6 X 6M) mab-ix SDW is sometimes called the ele- 
ment stress matrix. 

Variational stresses and strains are related to nodal 
variational displacements in Eqs. (18) and (13) respec- 
tively. This information can be used in conjunction with 
the work-energy equation and the virtual displacement 
concept to obtain expressions for forces and torques that 
must be applied to the element at the nodes in order 
to balance the applied loads while sustaining the iner- 
tial accelerations associated with nodal accelerations by 
Eq. (II). Since equal and opposite forces and torques are 
applied by the elements to the nodal bodies for which 
equations of motion are to be written in the next section, 
these expressions are the primary immediate objective. 

and torques applied to the element at its nodes, the body 
forces (designated by the matrix function G ( [ , r ] ,  g) in the 
locgl basis), and the surface forces. In spacecraft applica- 
tions it is usually sufficient to eliminate the surface loads 
from participation in W by distributing them to the nodes 
(as indeed may often be appropriate for the body forces). 

For the finite element designated s, let the (6a, X 1) 
matrix ta be introduced as 

where Fks and Tks are (3 X I) matrices in the local (ele- 
ment) vector basis, respectively representing force and 
torque applied by the kth nodal body to the sth element, 
and similarly for all (12, nodes of the sth finite element. 
Thus the work W* associated with a virtual displacement 
of the nodes of a generic element relative to a becomes 

For static equilibrium of a mechanical system, the work 
W* accomplished by external forces in the course of a vir- 
tual displacement equals the energy a* stored as strain 
energy in the deforming element; this equality is presewed 
for nondissipative dynamical systems in motion if to the ,here ;i is the (3 1) matrir representing A in the local 
external forces one adds the inertial "force," which for a vector basis. With E ~ ,  (111, the work expression becomes 
differential element of volume du at point p is --A&, 
where A is the inertial acceleration of the point p, and p 

is the mass density at p. In general, then, the external 
"forces" doing work include the inertial "forces," the forces WT ((G - Ar) a*] (20) 
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The strain energy QP is by virtue of Eqs. (la), (13), and (11) given by 

Equating (U" and W ,  dismissing the arbitrary premultiplier y*', and solving for furnishes 

Equation (22) is in useful form only when the inertial 
acceleration matrix 2 is written in terms of the nodal de- 
formation matrix i j  and those functions which define the 
arbitrary motion of the base b to which the appendage is 
attached. This is most readily accomplished first in terms 
of the corresponding Gibbsian vector A, which by defini- 
tion is available in terms of the symbols of Fig. 1 as 

where the presuperscript i denotes an inertial reference 
frame for vector differentiation, and the chain of vectors 
in parentheses is a single vector locating a differential 
element of volume in a finite element with respect to an 
inertially fixed point 8. If it should be necessary to iden- 
tify the particular finite element to which Eq. (23) is being 
applied, the corresponding numerical superscript can be 
attached to the vectors A, Rc, p, and w. 

Since a matrix formulation is ultimately required, (3 X 1) 
matrices are defined for each of the vectors in Eq. (23) in 
terms of the most convenient vector basis. In terms of the 
vector arrays {b), {a), and {e) of Eqs. (1) and (2), and the 
new array {i) of inertially fixed unit vectors related to {b) 
by 

{b) = a {i) (24) 

Note that the last term in Eq. (22) contributes only to the the vectors in Eq. (23) may be written 
steady-state value of 'Zl. 

thereby defining X, c, R, R,, p, p, E, and w. 

The inertial reference frame differen~alions in Eq. (23) 
are facilitated by the identity 

applicable to any vector V and any two references f rmes 
f and g, where o f 0  is the angular velocity of f relative to g. 
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With repeated use of Eq. (26), Eq. (23) takes the form where the tilde on a symbol representing a (3 X 1) matrix 
indicates the corresponding (3 X 3) skew-symmetric mat- 
rix; for example, 

A =  { i lTk  + {bIT6 + 2 0  X {bITi.+& X {bITc 

+ cba X (aITRC + ma X (ma X {a)T R,) 

where w and oa are the inertial angular velocities of b and 
a respectively (so that in the more explicit notation of 

A A 
Eq. 26 one would have m = mE and ma = mai). Equa- 
tion (2) can be used to replace w and p in Eq. (27) by G 
and p respectively, and with the introduction of matrices 

Equation (22) calls for the vector A in the vector basis 
{e), requiring in Eq. (30) the substitutions from Eqs. (I), 
(21, and (24) 

{bIT = {aIT C = {elT GC 
( 2 )  

{i}" = {bIT o = {a)" CQ = {elT ~ G Q  (31) 

From Eqs. (29) and (31) there follows 

w and oa defined by +Z(c  + R) + Z z ( c  + R)] 

one finds 
It should be noted that the quantities Ga, I;;, and C in 

Eq. (32) are related by the kinematical equations 
A = { ~ ) T x  + {bIT [c + 2;Yc + T(c + R) +iYiY(c + R)] 

? = ~ + c & '  
+ (aIT (3 + (Rc + CT p )  

(33) 

Using Eq. (11) to remove E from ;I, and then substitut- 
+ (a}. [CT 6 + 2 2  CT + (3 + 23) e~ G)] (29) ing for A from Eq. (32) into Eq. (22), furnishes 

WTDTSDW dvij + &ox + CC [c  + 2;; + (Z +ZZ) (c + R)] 

(34) 
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The integrals providing the (6CIZ X 6W) matrix coeffi- - A 
cients of G, $, and Z j  are assigned symbols and labels as K = [WT za3 CTwPdv, the element cenhiiugal 

follows : J 

stiffness matrix (38) 

E " wTwPdv, the element consistent mass  ma^ Z 2 /WT 5 3  CTwPdv, the element angular acceler- 

(35) 
ation s t f i e ss  matrix , (39) 

- - 
Note that m, k, and K are symmetric, while g and iE are 

g = 2 wTE 2 C~wPdu, the element gyroscopic " I skew-symmetric. The bar over these matrices is a reminder 
that these matrices are associated with the !local vector 

coupling matrix (36) basis { e ) .  When it becomes necessary to consider these 
matrices as written for the appendage vector basis (a), 

k = WTDTSDWdu, the element structural stiffness -"I these bars are removed. To obtain m from E, for example, 
one may apply a transformation as written below in te~ms 

matrix (37) of the (3 X 3) submatrices E and 0: 

and sirniIarIy for k, K ,  g, and a. The elements of these 
matrices, such as mii, etc., have indices adopting the 6CIZ 
values associated with the six degrees of freedom of each 
of the C11 nodal bodies attached to the element in question. 
(Thus if nodal bodies 11, 12, 13, and 14 are attached to 
element 9, and nodal body 11 has degrees of freedom 
21, . . . ,26 associated with uy, uil, uil, P?, pl,l, PF, while 
nodal body 12 has degrees of freedom 27, . - - ,32, etc., 
the scalar mi,, ,, is the contribution of the ninth finite ele- 
ment to the 25th row. 29th column of a 6n X 6n matrix 
Mc representing the total inertial effect of the & finite ele- 
ments. The role to be played by Me, known as the con- 

preload stibess matrix z A  accommodating the influenee 
on stiffness attributed to the preload and often mansested 
as a consequence of changes in geometry. 

Other integrals in Eq. (34) simplify by the removal of 
terms from the integrand, leaving the matrix flVTpdu. 
Noting that the deformational displacement of the mass 
center of the sth element is given in the Bocal vector basis 
by E",n the equation 

sistent mass matrix, is examined in the penultimate 
section.) where Q%, is the total mass of the sth 6nite element, one 

can define the (3 X 6Q,) matrix W8, as the matrix WS 
~t may facilitate interpretation to note that the matrices evaluated for the element mass center coordinates 

E and CT in Eqs. (36)-(39) serve merely to transform the t", 78,. C", and write 
matrix lying between them into the local vector basis. 

P 

In application to appendages on a spinning base, or to 
otherwise nreIoaded structures. the matrix is usuallv 
consideredain the two parts k, a i d  %A, with elastic stiffness Equation (34) can now be rewritten in terms of the nota- 
matrix To being the stiffness matrix of the element in its tion of Eqs. (35)-(39) and (41), and now, because it will 
unloaded state, and with the geometric stiffness matrix or soon become necessary to consider more than one dinite 
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element at a time, the superscript s for the sth element 
will be added where appropriate, furnishing 

+ clazsW;T {@C@X + cs C (X + 'I;;;) R] 

Equation (42) is still not in the desired final form 
for z8 ,  because the dependence of c on has not yet 
been explicitly accommodated (see Fig. 1 to interpret 
-e  = - {b}*c as the displacement of the vehicle mass 
center CM from its nominal location in b at point 0 sub- 
sequent to steady-state deformation). The mass center 
shift -e can be attributed in part to the shifts of the mass 
center locations of the finite elements during deformation, 
in part to the similar mass center motions of the nodal 
bodies, and in part to the behavior of moving parts other 
than the elastic appendage under consideration. If the 
last of these contributions is simply designated -e, and CI"J1 
represents the total vehicle mass, then by mass center 
definition 

for an appendage with n nodes and & finite elements. 
Writing both sides of Eq. (43) in the same basis {b} and 
substituting from Eq. (40) for 3 yields 

which with Eq. (41) becomes (abandoning the unit vectors) 

Now all terns involving c in Eq. (42) can be removed from the integral over finite element s. Rather than difFerentiate c 
as it appears in Eq. (45) to obtain E and E, one can make further use of Eq. (26) and finally obtain z8 from Eq. (42) in 
the form 

+ (6 c [ox + (;+ ZZ) R] + 1?"2 +ZaZa) R;) 

(46) 
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Equation (46), repeated & times for - elements s = 1, . . . , 6, 
provides in the matrices E, . - - , L6 a representation of 
the contribution of structural interactions to the forces 
P, - - , Fn and the torques T1, . - , Tn applied to the 
n nodal bodies. There remains the task of deriving equa- 
tions of motion of these nodal bodies. 

IV. Nodal Body Equations of Motion 

For the jth nodal body, having mass mi and inertial 
acceleration Aj, the translation equation 

can be expressed in the desired form by inspection of the 
results for a generic point of a finite element. The accelera- 
tion Ai is defined in terms of the syrnbols of Fig. 1 as 

which can be compared to Eq. (23) for the element field 
point. A line of argument parallel to that providing 
Eq. (29) from Eq. (23) produces from Eq. (48) the expres- 
sion 

The matrix c can be substituted from Eq. (45), and by the argument leading from there to Eq. (46) one can develop from 
Eqs. (47) and (49) (with appropriate change of vector basis) 

+ X ( e  + R)] + (ya + ZaZa) TI + u j  

The force Fi applied to the ith nodal body consists of the external force fi = {aITfj applied at that node plus the struc- 
tural interaction forces F" appIied to node i by adjacent structural elements s. If the symbol x g e ~ j  denotes summalion 
over those values of s belonging to the set Gi consisting of that subset of the element numbers 1, . . . , & corresponding 
to elements in contact with node j, then Fj becomes 

If FSj is written in the vector basis {es) as 

A - F8j = Fs1 = {a)T E a ~ j 7 8 f  
(2) 
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- 
and the relationship 2" = - l?jS is accepted as a consequence of Newton's third law, one can extract from Eq. (50) the 
matrix equations 

f i  - 2 EST j 7 j s  = rn C ~ X  + C [if + 2:e + (X + ZZ) (e + R)]  
S E G  j 

Here for convenience in future composition of matrix oc = 1,2,3. Completion of the set requires the equations of 
equations the (3  X 3) unit maixix U has been used to de- rotational motion of the nodal bodies. 
fine the mass matrix 

The basic equation for the rotation of the jth nodal rigid 
mi = m . ~  (54) body is 

By systematically examining the quantities f; defined in 
Eq. (19) and appearing in the & matrix equations repre- 
sented by Eq. (46), one can extract expressions for the 
quantities F ~ ~ p e a i - i n ~  in Eq. (53); upon substitution of 
these expressions, one has in Eq. (53) a set of dynamical 
equations in ui and yS, j = 1, . . , n, s = 1, . - . , 6. BY - 
the definition found after Eq. (9), the matrices yl, - . - ,y6 
are comprisled of the matrices 3 ,  . . . ,?is, p, . . . , p, 
which transforan to wi and ,@ by 2 = cui and ,@ = epi, 
i = 1 , .  . . , n. Thus Eq. (53), with substitutions from 

Eq. (46), provides 3n scalar second-order differential 
equations in the 6n unknowns ul, . . - ,uz,.pl,, . ,&, 

so that Eq. (55) becomes 

where Ti is the applied torque, Hi the angular momentum, 
and Ij the inertia dyadic of the nodal body, all referred to 
the mass center of the body, and over-dot denotes time 
differentiation in an inertial frame of reference. The iner- 
tial angular velocity wi of the jth body may be expressed 
in terms of established notation as 

and its inertial derivative is 

Ti = { a ) T  Ti = {ni)T I i  {ni}  . { , I T  (;a + pj + ;a ;a) 
+ {a}' (wa + B j )  X { d l T  I j  {nj )  {aIT (wa + pj)  
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where {nj) is the (3 X 1) array of dextral, orthogonal unit 
vectors n:, n5, ni,, fixed in nodal body j, and coincident with 
{a) when the appendage is in its steady state (see Fig. 1). 
The direction cosine matrix relating {nj) and {a) subse- 
quent to small appendage deformation is given by the 
relationship 

{nj) = (U - p)  {a) (59) 

where U is the (3 X 3) unit matrix and 3 is the skew- 
symmetric matrix formed of the elements Pi, P5, pj, accord- 
ing to the pattern of Eq. (30); i.e., 

- A pi rue = ~ o i y o P $  

where is the epsilon symbol of tensor analysis. 

Substituting Eq. (59) into Eq. (58) produces a vector 
equation entirely in the {a) basis, or equivalently the 
matrix equation 

where second-degree terms in the matrix pj and its deriva- 
tives have been ignored, and the tilde retains its opera- 
tional significance (see Eq. 30), so that, for example, 

The torque Ti appIied to the ith nodal body consists of 
the external torque t j  = {aITtj applied at that node plus 
the structural interaction torques TSj applied to node i by 
adjacent structural elements s. If, as in Eq. (Sl), the set Gi 
contains the numbers of the elements in contact with 
node j, then Tj  may be written (in parallel with Eqs. 51 
and 52) as 

The combination of Eqs. (60) and (61) ~rovides 

The rotational Eqs. (62) stand in parallel with the trans- 
lational Eqs. (53) as the basic equations of motion of the 
n nodal bodies of the appendage. Once Eqs. (46) and (19) 
have - been used to provide expressions for the matrices 
TjQnd Fa appearing respectively in Eqs. (62) and (53), 
these constitute a complete set of dynamical equations. 

V. Coordinate Transformations 

There remains the critical task of packaging Eqs. (53) 
and (62), with substitutions from Eq. (46), in a form con- 
venient for the generation of coordinate transformations. 
To this end, let 

be the (6n X 1) matrix of nodal deformnation coordinates, 
and rewrite the 6n second-order differential equa~ons irn- 
plied by Eqs. (46), (53), and (62) in the form 

M'q + D'q + G'q + K'q + A" = L' (64) 

where M', D', and K' are (6n X 6n) symmetric matrices 
and where G' and A' are (6n X 612) skew-symmetric ma- 
trices, with L' a (6n X 1) matrix not involving the defor- 
mation variables in q. Since Eqs. (53), (62), and (46) are 
all linear in the variables d ,  pi, and i j j  contained within q, 
and since any square matrix can be written as the sum of 
symmetric and skew-symmetric parts, the possibility of 
expression of these equations in the form of Eq. (64) is 
guaranteed by the symmetric character of the eoeacients 
of iij, pj, and $j in the constituent equations. 
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The (6n X 6n) matrix M' can be represented as the sum trices g" defined generically in Eq. (37) contribute to G' 
of three parts, as symbolized by just as the matrices Tis contribute to M' (see Eqs. 65 

and 66). 

where M is null except for the (3 X 3) matrices ml, P ,  
m" . . . ,I" along its principal diagonal, MC is the con- 
sistent mass matrix whose elements M", are given in terms 
of the constituents of the finite element inertia matrices m 
in Eq. (40) by 

and the contribution 'ri? accommodates the reduction of 
the effective inertia matrix due to mass center shifts 
within the vehicle induced by deformation (see for exam- 
ple the tem2s 

The matrix D' in Eq. (64) accommodates any viscous 
damping that may be introduced to represent energy 
dissipation due to structural vibrations. As Eqs. (62), (53), 
and (46) have been formulated here, such terms have been 
omitted, but they can still be inserted if one accepts the 
practice common among structural dynamicists of incor- 
porating the equivalent of a term D'q into equations of 
vibration only after derivation of equations of motion and 
transformation of coordinates. 

The terms from Eqs. (62), (53), and (46) contributing 
to the matrix K' in Eq. (64) are basically of three kinds: 
(1) those represented by x; in Eq. (46), which reflect the 
elastic stiffness of th~structure in its unloaded state, (2) 
those represented by ki in Eq. (46), which provide the in- 
crement to the elastic stiffness of the structure attributable 
to structural preload, and (3) those represented in Eq. (46) 
by 2 and in Eqs. (46), (53), and (62) by other terms involv- 
ing base acceleration (such as the centripetal acceleration 
term mj?> in Eq. 53). The elements of the matrices - - 
k8,, k;, and ii8 contribute to K' in a manner analogous to the 
contribution of Es to M' (see Eqs. 65 and 66). 

Finally, the matrix A' in Eq. (64) contains all terms from 
Eqs. (46), (53), and (62) involving ha, and in addition the 
coefficient -3 (Zi,a)N of ,Bj in Eq. (62) makes a contribu- 
tion to A'. Because certain of the coordinate transformation 
procedures to be considered depend upon the absence of 
the matrix A', it is worthwhile to examine the skew- 
symmetric part of the matrix -Za (Zjoa)" in detail, since 
when wa has some nominal constant value, say a, and ha is 
nominally zero, this matrix is the sole contributor to A'. In 
terms of its symmetric and skew-symmetric parts, this 
matrix is 

The matrix identity 
Examina~on of the coefficients of ,$, zij, and 2 in 

Eqs. (62), (53), and (46) reveals that all have coefficients -- 
which will appear in .the skew-symmetric matrix G' in x y - 52 = (Zy)" (68) 
Eq. (64)?; since all such terms disappear when wa is nomi- 
nally zero, the matrix G' is said to provide the gyroscopic for any (3 X 1) matrices x and y permits the skew-syrn- 
coupling of the equations of vibration. Note that the ma- metric part of -2 (ljoa)* to be recorded as 

2The identity 31f - (lid)- + Ii ;;b = (tdj) ;a - 2 (1La)- is required in Eq. (62) to reveal the skew-symmetry of the coefficient of pi. 
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where the final substitution replaces wa by its nominal 
value, 0. In terms of scalars representing the elements 
I,s of I j  and Qe of a ,  the independent nonzero terms of 
- (1/2) [ZZ~O]" are given by 

1 1 
- - [SE Ii a]; = - [(I,, - I,,) nlo, + I,, (a: - a:) 2 

to uncoupled equations. Any methods involving modal 
coordinates (see Section I) depend formally upon this as- 
sumption, which is adopted henceforth. With this restric- 
tion, the coefficient matrices of q, 4, and iji in Eq. (64) are 
constants, since products of small quantities are to be 
ignored. In practice, this restriction is negotiable. 

If all of the matrices A', K', G', D', M' and I," in Eq. (64) 
are constant but nonzero, there exists no transfornation of 
the form q = 47, with 7 a (6n X 1) matrix of new coordi- 
nates, which can be used to obtain from Eq. (64) a second- 
order differentia1 equation in 7 with diagonal coeaiicient 
matrices. In order to transform Eq. (64) to a set of un- 
coupled equations it is first necessary to rewrite Eq. (64) 
in first-order form, such as 

and G ~ I Q + ~ Q = J  (71) 

Since such terms as these are the sole contributors to A' A = A [ K ' ; A ' / O ]  - - - - - - - - - - - -  A [  0 I-K'-A'  
@ = - - - - - - -  L - - - - - - - -  

when &" is nominally zero, it becomes clear that the special M' K' + A' D' + 6' 
case A' = 0 applies when the base experiences small ex- 
cursions about a nonzero constant spin only if the nodal N~~ let @ be a (12n x lgn) matrix (complex) eigen- 
bodies are particles or spheres (or in the extraordinary vectors of the differential operator in Eq. (71), and Bet (I,' 
case when, in the steady-state of deformation, all nodal be a (1% x 12n) matrix of (complex) eigenvectors of the 
bodies have principal axes of inertia aligned with the homogeneous adjoint equation 
nominal value of the angular velocity oa.) 

The objective of this section is to find a coordinate 
transformation which will permit the replacement of the so that @ and are related by ( ~ ~ f .  16) 
homogeneous form of Eq. (64) with a set of completely 
uncoupled differential equations. Since the conceptual, a-1 = PQ'T 

analytical, and computational difficulties encountered in 
(73) 

meeting this objective in general terms are greatly dimin- with P a (12n len) diagonal matrix which depends 
ished in special cases of practical interest, consideration the normalization of a and Substitution into Eq. (64) 
will be given both to the general case of Eq. (64) and to a of the transformation 
variety of simpler restricted forms of Eq. (64) for which 
alternative coordinate transformations may be found. Q = @I' (74) 

Inspection of Eqs. (62), (53), and (46) reveals that the 
coefficients of q and q in Eq. (64) depend upon oa, which 
characterizes the rotational motion of the appendage base. 
For the problems of interest, oa is an unknown function of 
time, to be determined only after the appendage Eqs. (64) 
are augmented by other equations of dynamics and con- 
trol for the total vehicle and solved. Only if wa can be 
assumed to experience, in a given time interval, small 
excursions about a constant nominal value (say a )  is there 
any possibility of obtaining from Eq. (64) a transformation 

and premultiplication by furnishes 

The two coefficient matrices enclosed in parentheses are 
diagonal (as is evident from Eq. 73 when W = U ,  which by 
virtue of the nonsingularity of G can be assumed for this 
proof without loss of generality). If A is the (12n X 12n) 
matrix of the (complex) eigenvalues of the digerential 
operator in Eq. (71) (or Eq. 72, which has the same eigen- 
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values), then upon premultiplication by ((atT@@)-I one 
obtains 

which is im a form convenient for computation. (Note that 
the matrix inversion in Eq. (76) consists simply of calculat- 
ing the reciprocals of the diagonal elements of 
In practice, one may expect that physical interpretation 
of the new (complex) state variables Y,, . . . , Y,,, (see 
Ref. 8) will permit truncation to a reduced set of variables 
contained in a new (2N X 1) matrix Y, and with corres- 
ponding truncation of A to the (2N X 2 N )  matrix X and 
truncation of @ and @' to the (12n X 2N) matrices Z and - 
@', one can reduce Eq. (76) to 

Equation (77) may be used in conjunction with vehicle 
equa~ons of motion to simulate system behavior. 

In the special case for which A' = D' = 0, the matrices 
GI and in Eq. (71) are respectively symmetric and skew 
symmetric, so that Eq. (72) becomes 

and the adjoint eigenvector matrix is available as the com- 
plex conjugate3 

After truncation, Eq. (79) can be substituted into Eq. (77), 
so that in this special case the final equations are obtained 
without the necessity of actually computing the eigen- 
vectors constituting @'. 

Construction of Eq. (77) requires, in general, however, 
the computation from and Q3 of the 2N eigenvalues in 
the matrix ;i and the corresponding eigenvectors in the 
two matrices 5 and 5'. It is always possible to avoid the 
task of computing the adjoint equation eigenvectors in ;i;', 
but only at the cost of a matrix inversion and some sacri- 
fice in the rigor of the procedure. Having decided as 
previously upon the relevant modes of appendage defor- 
mation and constructed the 6n X 2N matrix 5, one can 
rewrite Eq. (71) in the form 

where 

and introduce the transformation 

recognizing the constraint that this substitution imposes 
upon the solution, and then premultiply by the pseudo- 
inverse (Ref. 17) 

to obtain 

Since A and contain respectively the eigenvalues and 
eigenveetors of B, one can write 

If now and A are written in partitioned form as 

A - -  
(a = [(a i 51 A ;I A =  - - - I - - -  

[ O  ; HI (85) 

then Eq. (84) becomes 

[ B $  j B X ]  = [ Z X  j ZZ] (86) 

The equality of the matrices in the first partitions leads to 

$ t B i  = ;i (87) 

which when substituted with Eq. (82) into Eq. (83) yields 

- 
Y = XY + ( i ~ 5 ) - 1 3 ~  L (88) 

This  observation is a contribution of Mr. A. S .  Hopkins of UCLA 
(84) and McDonnell-Douglas Corp. 
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as an alternative to Eq. (77).* where in partitioned form 

Substitution of Eq. (77) or Eq. (88) for Eq. (64) intro- 
duces conceptual and computational problems that can 
be avoided if in Eq. (64) the matrix A' = 0 and if in addi- 
tion one of the three following restrictions is applicable: 
(1) G' = 0 (see Ref. 18 for details); (2) G' = 0 and D' is a 
polynomial in M' and K' (see Ref, 19); or (3) D' = 0 (see 
Ref. 20 for the underlying theory). 

Only the last of these special cases requires elaboration 
beyond published references. In this case the homoge- 
neous form of Eq. (64) becomes 

M'q +Gfq + K'q = 0 (89) 

As an alternative to the use of Eq. (77), with advan- 
tage taken of Eq. (79), one can introduce a real trans- 
formation of Eq. (80) which also facilitates truncation 
and computation. 

The eigenvalues of the differential operator in Eq. (89) 
are in the stable ease of interest purely imaginary, and 
may be designated 

and the corresponding complex eigenvectors may be des- 
ignated +' + iyr, with qr and yr  representing real (6n X 1) 
matrices. If now + is constructed as the (6n X 6n) matrix 
whose columns are ql, . . . , q6", and y is constructed as 
the (6n X 6n) matrix whose columns are rl, . . , y6", and 
p is assembled as the (6n X 6n) diagonal matrix with ele- 
ments p,, . - . , p,,, then the transformation 

may be shown to reduce Eq. (89) to the uncoupled form 

where z is a (6n X 1) real matrix of new coordinates. To 
verify this transformation, one can recast Eq. (89) as a 
state equation (see Eq. 80), and introduce the transfor- 
mation 

4This result was obtained in Ref. 8, but by an argument which relied 
incorrectly upon the commutativity of the truncation and, inver- 
sion operations on a. The error was noted by Dr. W. Hooker of 
Lockheed Palo Alto Research Laboratories, and he provided the 
alternative argument, noting its approximate nature. 

By actually solving the homogeneous form of Eq. (80) 
in terms of Z explicitly, (see Ref. 8, pp. 47-51), one h d s  
that Z and Z are related by 

so that if the partitioned upper half of Z is called z, one 
may write 

Then the partitioned bottom half of Eq. (94) confirms 
Eq. (91). Furthermore, by comparing Eq. (94) with the 
result of substituting Eq. (90) into the homogeneous form 
of Eq. (80) and premultiplying by ]-I, one obtains 

Although the homogeneous Eq. (89) is transformed by 
Eq. (90) into the uncoupled second-order f o m  of Eq. (91), 
there exists no transformation which uncoupnes the cor- 
responding second-order inhomogeneous equations. Since 
the latter is of paramount interest, one must in simulation 
deal with first-order equations. Equation (91) serves to 
guide the selection of those N modes of dynamic response 
deemed significant for the purposes at hand, permitting 
the construction of the (6n X N) matrices ';i; and 7 and the 
(N X N) matrix p from selected elements of +, 7, and p. 
These truncated (barred) matrices are then combined ac- 
cording to the pattern of Eq. (93) to establish a matrix J ,  
and the substitution 

into Eq. (80) is imposed to obtain its approximate solution. 
Here Z is a (2N X 1) matrix, so that Eq. (917) provides 
constraints upon the (12n X 1) matrix Q, precluding the 
representation of the general solution of Eq. (80) in terms 
of the variables in Z. If the restrictions imposed by Eq. (97) 
are acceptable, and its substitution into Eq. (80) is fol- 
lowed by premultiplication by the pseudoinverse Ti-, the 
result is 
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Equation (96) suggests, but does not obviously imply, 
that 

This relationship is proven in the Appendix. 

The pseudoinverse Ti. in Eq. (98) can then be expressed 
in the manner of Eq. (82) to obtain a differential equation 
suitable for simulation in the form 

In comparing the alternative truncated modal equa- 
tions (Eqs. 77, 88, and 100) for their relative advantages 
and disadvantages in simulation, one should note that only 
the last of these avoids complex variables, while only the 
first preserves the rigor associated with accomplishing the 
coordinate truncation only after transformation to un- 
coupled equations has been accomplished. The first 
method requires, in general, the computation of the adjoint 
eigenvectors, but no matrix inversion. The last approach 
is restricted to the special case of Eq. (64) for which 
D' = A' = 0, so that in the eigenvalue analysis Eq. (89) 
replaces the homogeneous counterpart to Eq. (64). This 
restriction also permits the use of Eq. (79) to simplify the 
task of obtaining Eq. (77) and simplifies eigenvalue/eigen- 
vector computations. When, in addition, the matrices M' 
and C' in Eq. (89) are banded along the main diagonal, 
special computational algorithms (Ref. 21) may be em- 
ployed to further reduce analysis time, but since this form 
can be achieved only by ignoring for eigenvalue analysis 
the contributions of M* and Mc to M' in Eq. (65) and the 

similar term in G', advantage can be taken of such algo- 
rithms only in special applications. 

VI. Perspective 

The end result of this paper is a system of differential 
equations (Eq. 64 or its constituent parts, Eqs. 62,53, and 
46) which characterize the vibratory deformations of a 
flexible structure attached to a rotating base, together with 
several alternative forms of the transformed and truncated 
modal equations suitable for simulation (Eqs. 77, 88, and 
100). Even after transformation these equations are an 
incomplete set, requiring augmentation by additional 
dynamical, kinematical, and control law equations in the 
case of spacecraft application. 

References 7 and 8 treat the total question of the hybrid 
coordinate approach to the simulation of spacecraft with 
elastic appendages, and in Refs. 13-15 the practical utility 
of this method in application to spacecraft of realistic com- 
plexity is demonstrated. This method requires as input a 
system of appendage equations with an appropriate trans- 
formation to modal coordinates. I t  is the purpose of the 
present paper to provide that input, for a mathematical 
model of a flexible appendage more general than any here- 
tofore considered-namely a finite element, distributed 
mass model. This representation of a flexible appendage 
is shown to possess an important new advantage over the 
nodal body approach, in addition to those previously noted 
(Ref. 22), in that for a vehicle with constant nominal spin 
the matrix A' in Eq. (64) disappears for the finite element 
model and survives for an arbitrary collection of nodal 
bodies. Since the eIimination of A' is an important step in 
reducing Eq. (64) to one of several forms admitting more 
convenient modal coordinate transformation than is pos- 
sible in the general case, this is a potentially important 
advantage for distributed mass, finite element analysis. 
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Appendix 

Proof of Eq. (99) 

To prove Eq. (99), note that Eq. (80) admits the solution one can extract from Eqs. (A-7) and (A-8) the equations 

where A, is an eigenvalue and @J"' the corresponding eigen- 
vector of B, and infer the form 

and 

Substitution of the definition of B following Eq. (80) 
and expansion of Eqs. ,(A-10) and (A-11) lead to the two 
independent equations 

so that 4, may be written in partitioned form as 

and 

~ t - 1 ~ 1 7  + M~-IGIJ  p = 7 j?2 (A-13) 
(" representing complex conjugate). The substitutions 

9 = $ f iy, x = ip (A-4) 

provide 
as well as a group of identities. 

Equation (99) requires the evaluation of 

- 
J ~ B ?  = ( P T ) - ~ F B ~  

@ =  - - - - I  - - - -  I-:, I -:P 

which when substituted with Definitions provide 

into Eq. (84) provides from its real and imaginary parts 
the two equations 

which with Eqs. (A-12) and (A-13) becomes 

and 

providing 

With the additional partitioning 
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Comparing Eq. (A-17) with 

indicates that Eq. (A-14) is of the form 

or, using the formula (Ref. 23) for matrix inversion in 
terms of parti~ons, 

where 

A 
A = -(a - cb-lcT)-I c + a-lc (b  - cTa-lc)-*b 

Note that 

A + Ba-b = a-lc (A-21) 

Equations (A-21) and (A-22) may be combined as 

( A  + Ba-lc) b-lcT - (Ab-lcT + B) = a-lcb-lcT - U 

which is equivalent to 

implying B = U. Thus from Eq. (A-21) the matrix A = 0. 
Similarly, Eqs. (A-23) and (A-24) combined as 

(Cb-lcT + D) a-'c - (C + Da-lc) = - b-lcTa-lc 3- U 

provide 

C = - U  D = O  

Thus Eq. (A-20) becomes 

proving Eq. (99). 
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Nomenclature 

English Symbols (3  X 1) matrix of e  in basis {a) 

A inertial acceleration of point p 

A (3  X 1) matrix of A in basis {e) 

Aj inertial acceleration of node j 

R (1% X 12n) coefficient matrix in Eq.(71) 

reference frame established by @ and 
a,, a,, a3 

contribution to e not attributable to 
appendage deformation, Eq. (43) 

dextral, orthogonal set of unit vectors fixed 
in generic element under steady-state 
deformation 

( 3  X 1) vector array with elements,e,, e,, e,  

(6m X 602) matrix relating y to r, Eq. (9) 
a,, a,, a, dextral, orthogonal set of unit vectors fixed 

in , 

{a) (3  X 1) vector array with elements a,, az, a, 

B (12n X 12n) coefficient matrix in Eq. (80) 

(12n X 12n) coefficient matrix in Eq. (71) 

resultant force on jth nodal body 

( 3  X 1) matrix of Fi in basis {a) 

(3  X 1)  matrix in basis { e l  of force applied 
by body j to element s 

force applied by finite element s to nodal 
body j b reference frame established by base body 

bl, b3, b3 dextral, orthogonal set of unit vectors fixed 
in b 

( 3  X 1) matrix of F" in basis {e) 

resultant for nodal body j of forces external 
to the system C (3  X 3) variable direction cosine matrix; 

{a> = C {b) (3 X 1)  matrix of fj in basis (a} 
c (3  X 3)  constant direction cosine matrix; 

{e) = {a)  
arbitrary reference frames 

(3  X 1) matrix function of element body 
forces in basis (e) CM vehicle mass center 

c8 2; for elements, so {eS) = CS {a) (6n X 6n) gyroscopic coupling matrix in 
Eq. (64) CM" sth element mass center when appendage 

undeformed element gyroscopic coupling matrix 
(6m X 6m)  CM8 sth element mass center when appendage 

in steady state angular momentum of nodal body j for its 
mass center c (3  X 1) matrix of e in basis {a) 
inertia dyadic of nodal body j for its mass 
center 

e vector from CM to point 0 

e' vector from CM to point 0' (3  X 3 )  inertia matrix for Ilj in basis {nj) 

C i j  element of C, i, j = 1,2,3 
element of If; a, y = 1,2,3 

D displacement coefficient matrix in E = D 5  
(Eq. (12)) 

inertiall~ fixed point 

do differential element of volume 
(3  X 1 )  vector array of hertially fixed, dex- 
tral, orthogonal unit vectors i,, i,, i3 E Young's modulus 

& number of finite elements transformation matrix in Eq. (92), in 
(12n X 12n) and truncated (2N X 2N) 
forms 

Gj set of indices of finite elements in contact 
with node i 
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Nomenclature (eontdl 

K' 

- 
k, 

- 
ko 

- 
ka 

- 
L 
- 
LY 

L' 

2 
M' 

M ,  MC, MM* 

nq 

rn 
cMz, 
- 
m, m 

Mj, mj 

N 

cn,, cn 

n 

nf, nf, nj, 

{n> 

0 

0'' 

(6n X 6n) appendage stiffness matrix 
(Eq. '54) 

(60'2 X 6CJE) finite element structural stiff- 
ness matrix, for vector bases { e )  and { a )  
respectively 

(6@ X 6%) stiffness matrix for unloaded 
element for basis { e )  

(6oZ X 6%) preload (geometric) stiffness 
matrix for element, basis { e )  

generic 

(601 X 1) matrix of forces and torques on 
the nodes of element s, Eq. (19) 

(6n X 1) matrix in Eq. (64) 

(12n X 1) matrix in Eq. (71) 

(6n X 6n) generalized inertia matrix, 
Eq. (64) 

constituents of M', Eq. (65) 

element of MC; i, i = 1, . . . ,6n 

vehicle mass 

mass of finite element s 

(602 X W) consistent mass matrix for finite 
element, bases { e )  and { a )  respectively, 
Eqs. (35), (40) 

mass of jth nodal body, and mass matrix 
s n j  = mjU 

number of modal coordinates after 
truncation 

number of nodes for finite element s, and 
generic @, 

number of nodes in appendage 

dextral, orthogonal set of unit vectors fixed 
in nodal body j (superscript omitted for 
generic symbol) 

(3 X 1) vector array with elements n,, n,, n, 

point fixed in b, and vehicle CM for steady- 
state deformation 

point fixed in b, and vehicle CM for appen- 
dage undeformed 

(3 X 6%) matrix relating G7 to I?, Eq. (5) 

(6n X 6n) diagonal matrix with nonzero 
elements pl, . . . P6n 

(N X N) matrix truncation of p 

natural frequency from Eq. (89) 

(12n X 1) state matrix, Eq. (71) 

point common to,  and b 

(6n X 1) matrix of variational deformation 
variables, Eq. (63) 

vector from 0 to @, and (3 X 1) matrix in 
basis {a) 

vector from 0' to a, and (3  X 1) matrix in 
basis { a )  

vector from & to CM8, and (3 X 1) matrix 
in basis { a )  

generic RE, R", 

vector from @ to CM8' 

vector from @ to steady-state node j, and 
(3 X 1) matrix in basis { a )  

vector from & to node i of undeformed 
structure 

(6 X 6) coefficient matrix in stress-strain 
equation (15) 

torque on nodal body j,  vector and (3 X 1) 
matrix in basis {a), respectively 

torque on nodal body i applied by element 
s, vector and (3 X 1) matrix in basis {e ) ,  
respectively 

external torque on nodal body i, vector and 
(3 X 1) matrix in basis { a ) ,  respectively 

(3 X 3) unit matrix 

virtual strain energy 

displacement of node i due to variations 
from steady-state deformation (i.e., varia- 
tional translational nodal deformation), and 
(3 X 1) matrix of d in basis {a) 

displacement of node i due to steady-state 
deformation 
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Nomenclature (contd) 

W (3 X 6N) matrix relating G to Eq. (11) (6 X 1) strain matrix due to variations from 
steady-state deformation, Eq. (12) W* virtual work 
steady-state strain matrix (6 X 1) w (3 X 1) matrix of w in basis {a) 
(6 X 1) strain matrix due to deviations from 
steady-state temperature 

w' displacement of field point of finite element 
due to steady-state deformation 

epsilon symbol of tensor analysis 
w8 displacement of field point of finite element 

s due to variations from steady-state 
deformation (i.e., variational element 
deformation) 

strain element, basis {e) 

Cartesian coordinates corresponding to 
el, e,, e, and origin fixed in element under 
steady-state deformation 

- 
wS (3 X 1) matrix of w% basis {e} 

w, i5 generic for w8 and E8 (3 X 3) direction cosine matrix in 
{b) = o {i} 

(6M X 6%) centripetal stiffness matrix for 
finite elements, and generic K8 

X, X vector from B to CM, and (3 X 1) matrix in 
basis {i) 

x, y arbitrary (3 X 1) matrices 
(12n X 12n) diagonal matrix of eigenvalues 
of B, and truncated (2N X 2N) form Y ,  (12n X 1) transformed state variable 

matrix, Eq. (74) and (2N X 1) truncated 
form mass density of finite element 

Poisson's ratio - 
y8, ij (W, X 1) matrix of deformational nodal 

displacements for finite element s, and 
generic form 

position vector to field point of undeformed 
element s from CMs' 

z,Z (12n X 1) transformed state variable 
matrix, Eq. (92) and (2N X 1) truncated 
form 

position vector and (3  X 1) matrix in (e) 
basis to field point of eIement s in steady 
state from CMS 

z (6n X 1) matrix of transformed variables, 
Eq. (91) 

generic pS and pS 

(6 X 1) stress matrix, Eqs. (16), (17) 

steady-state stress (e.g., due to spin) Greek Symbols 

stress due to deviation from steady-state 
deformation, {e) basis 

coefficient of thermal expansion 

pi rotation of nodal body j for axis a, due to 
variations of deformation from steady state 
(i.e., variational rotational nodal deforma- 
tion) (a = 1,2,3) 

(6 X 1) stress matrix accommodating 
thermal strains 

variation from steady-state temperature 
pi, pi pi, a, + p5 a, + pi, a,, and (3 X 1) matrix in 

basis {a) 
(12n X 12n) transformation matrix of 
eigenvectors, Eq. (74) 

,8z rotation of nodal body j for axis a due to 
steady-state deformation (a = 1,2,3) 

(12n X 12n) matrix of adjoint eigenvectors 
of Eq. (71), see Eq. (72) 

r (6m X 1) matrix in Eq. (5) 
(6n X 6n) real matrix with coliumns 
ql, . . . , +Gn, the imaginary parts of 
eigenvectors of Eq. (89) 

y (6n X 6n) matrix with columns -yl, . . . , u6n 

the real parts of eigenvectors of Eq. (89) 
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Nomenclature (contd) 

n nominal value of wa, with elements a,, Q,, Q, 

of inertial angular velocity of nodal body i 

wa,oa inertial angular velocity vector and (3 X 1) 
matrix in {a) basis of frame , 

c~~~ angular velocity of frame f relative to 
frame g 

W, o inertial angular velocity vector and (3 X 1) 
matrix in basis {b) of frame b 

Operational Symbols 

( )T indicates matrix transposition 

( )"or (-) indicates formation of (3 X 3) skew- 
symmetric matrix from (3 X 1) matrix, as in 
Eq. (30) 

fd 
- (V) time derivative of arbitrary vector V in 

reference frame f 

( ' )  time derivative of scalar or matrix 

( j" virtual quantity (stress, displacement, etc.); 
also conjugate (not conjugate transpose) 

( )+ pseudoinverse of rectangular matrix 

( )-I matrix inverse 

A 
= means equality by definition 

Repeated lower case Greek indices indicate summation 
over range 1,2,3. 
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