NASA TECHNICAK MEMORANDUM

NASA TM X-2375

COMPUTER PROGRAM FOR THE TRANSIENT RESPONSE OF ABLATING AXISYMMETRIC BODIES INCLUDING THE EFFECTS OF SHAPE CHANGE
by Lona M. Houser and Stephen S. Tompkins
Langley Research Center
Hampton, Va, 23365

1. Report No. NASA TM X-2375	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle COMPUTER PROGRAM FOR THE TRANSIENT RESPONSE OF ABLATING AXISYMMETRIC BODIES INCLUDING THE EFFECTS OF SHAPE CHANGE		5. Report Date October 1971
		6. Performing Organization Code
7. Author(s) Lona M. Howser and Stephen S. Tompkins		8. Performing Organization Report No. L-7900
9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23365		10. Work Unit No. 136-13-05-04
		11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		13. Type of Report and Period Covered Technical Memorandum
		14. Sponsoring Agency Code

15. Supplementary Notes
16. Abstract

A computer program to analyze the transient response of an ablating axisymmetric body including the effects of shape change is presented in detail. The program, its subroutines, and their variables are listed and defined. The computer input and output, in printed and plotted form, for three sample problems are presented to aid the user in setting up and running a problem with the program. The governing differential equation, the boundary conditions for the analysis on which the computer program is based, and the method of solution of the resulting finite-difference equations are discussed.

17. Key Words (Suggested by Author(s)) Ablation Heat transfer Computer program		18. Distribution Statement Unclassified - Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	$\begin{aligned} & \text { 21. No. of Pages } \\ & 81 \end{aligned}$	$\begin{aligned} & \text { 22. } \text { Price* }^{*} \\ & \$ 3.00 \end{aligned}$

[^0]Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 2
DESCRIPTION OF MODEL 5
Physical Model 5
Mathematical Model and Solution 6
OPERATION OF PROGRAM 9
Boundary Conditions Along Front Surface 9
Boundary Conditions Along Back Surface and Edge of Body 11
Output Plotting Routine 11
Computing Interval 11
PROGRAM DESCRIPTION 12
Labeled COMMON 12
Descriptions, Flow Charts, and Listings 16
Program D2430 16
Subroutine COLUMN 24
Subroutine ROW 26
Subroutine COLXO 28
Subroutine COLMN 31
Subroutine COLXL 35
Subroutine SQAERO 39
Subroutine ADJUST 43
Subroutine ZPRINT 45
Subroutine SOLMAT 47
PROGRAM INPUT, OUTPUT, AND DIAGNOSTICS 48
Input 48
Output 55
Diagnostics 56
SAMPLE CASES 57
APPENDIX A - LANGLEY LIBRARY SUBROUTINES 59
Subroutine FTLUP 59
Subroutine DISCOT 60
APPENDIX B - SAMPLE LISTINGS 64
REFERENCES 70
FIGURES 71

COMPUTER PROGRAM FOR THE TRANSIENT RESPONSE OF

ABLATING AXISYMMETRIC BODIES INCLUDING THE
 EFFECTS OF SHAPE CHANGE

By Lona M. Howser and Stephen S. Tompkins
Langley Research Center

SUMMARY

A computer program to analyze the transient response of an ablating axisymmetric body including the effects of shape change is presented in detail. The program, its subroutines, and their variables are listed and defined. The computer input and output, in printed and plotted form, for three sample problems are presented to aid the user in setting up and running a problem with the program. The governing differential equation, the boundary conditions for the analysis on which the computer program is based, and the method of solution of the resulting finite-difference equations are discussed.

INTRODUCTION

A numerical analysis of the transient response of an ablating axisymmetric body including the effects of shape change is presented in reference 1. The present paper briefly describes the analysis in reference 1 and presents in detail the associated computer program (program D2430) developed at the Langley Research Center. This paper also provides the user with an operating manual for the program.

Some of the features of the analysis and the associated program are (1) the ablation material is considered to be orthotropic with temperature-dependent thermal properties; (2) the thermal response of the entire body is considered simultaneously; (3) the heat transfer and pressure distribution over the body are adjusted to the new geometry as ablation occurs; (4) the governing equations and several boundary-condition options are formulated in terms of generalized orthogonal coordinates for fixed points in a moving coordinate system; (5) the finite-difference equations are solved implicitly; and (6) other instantaneous body shapes can be displayed with a plotting routine.

The computer program is written in the FORTRAN IV language for the Control Data 6000 series digital computer with the SCOPE 3.0 operating system. The equations have been programed so that either the International System of Units or the U.S. Customary Units may be used.

SYMBOLS

$A=\frac{1}{x_{b}} \frac{\partial \delta}{\partial \xi}$
$A_{c} \quad$ constant in oxidation equation corresponding to specific reaction rate
$\mathrm{A}_{\mathbf{j}}, \mathrm{B}_{\mathbf{j}}, \mathrm{C}_{\mathbf{j}}, \mathrm{D}_{\mathbf{j}} \quad$ coefficients in equations (6)
$A_{S} \quad$ constant in sublimation equation
$\mathrm{B}_{\mathrm{c}} \quad \begin{gathered}\text { constant in exponential of oxidation equation corresponding to activation } \\ \text { energy }\end{gathered}$
$\mathbf{B}_{\mathbf{S}} \quad$ constant in exponential of sublimation equation

C oxygen concentration by mass
$c_{p} \quad$ specific heat
H total enthalpy
$\Delta H_{c} \quad$ heat of combustion
$\Delta H_{S} \quad$ heat of sublimation
$\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3} \quad$ coordinate scale factors (eqs. (2))
K reaction-rate constant for oxidation (eq. (10))
k thermal conductivity
$\mathrm{L} \quad$ number of stations in x -direction

M molecular weight of gas
$\mathrm{M}_{\mathrm{O}_{2}} \quad$ molecular weight of oxygen
m,n integers

m	mass loss rate
$\stackrel{m}{\mathrm{~m}}_{\mathrm{c}}$	mass loss rate due to combustion
$\stackrel{\mathrm{m}}{\mathrm{S}}$	mass loss rate due to sublimation
p	exponent of pressure in sublimation equation (eq. (12))
p_{w}	wall pressure
${ }^{q} C$	convective heating rate to nonablating cold wall
${ }^{q} \mathrm{C,net}$	hot-wall convective heating rate corrected for transpiration (eq. (9))
${ }^{\text {q }}$	radiant heating rate
R	radius of curvature of base curve
$\mathrm{R}_{\text {cyl }}$	cylindrical radius from axis of symmetry to base curve
$\mathrm{R}_{\text {stag }}$	stagnation-point radius of curvature
r	exponent of radius in sublimation equation (eq. (12)); spherical coordinate
S	number of stations in y-direction
T	temperature
t	thickness of heat sink
w,z	Cartesian coordinates (sketch 2)
x,y	curvilinear coordinates (sketch 1)
x_{b}	length of base curve
α	absorptance
α_{c}	weighting factor for transpiration effectiveness of mass loss due to combustion

$\alpha_{s} \quad$ weighting factor for transpiration effectiveness of mass loss due to sublimation
β
either 0 or 1 depending on whether transpiration or ablation theory is used
δ
material thickness
ϵ
emittance
$\xi, \eta \quad$ dimensionless curvilinear coordinates (eqs. (3))
$\theta \quad$ angle between R and $R_{c y l}$ (sketch 1); spherical coordinate
$\lambda \quad$ mass of char removed per unit mass of oxygen
$\rho \quad$ density of material
σ
τ
ψ
angle between axis of symmetry and normal to surface (sketch 1)

Subscripts:
e edge of boundary layer
w
wall condition
$\mathrm{x}, \mathrm{y} \quad$ coordinates
$\xi, \eta \quad$ dimensionless coordinates

Superscripts:
-
$"$
condition along $\mathrm{x}=\mathrm{L}$
condition along $\mathrm{y}=0$

DESCRIPTION OF MODEL

Physical Model

The analysis considers an axisymmetric ablating body exposed to aerodynamic heating; this body is composed of a single orthotropic material of varying thickness with temperature-dependent thermal properties. (See sketch 1.) The back surface of the body may be considered as a thin heat sink and/or radiator. Two coordinate systems are used to study the thermal and ablative response of the body. One is a curvilinear coordinate system, with x, y coordinates (sketch 1), which is used to determine internal temperature distributions. A stationary base curve located at the back surface of the body establishes the x -axis.

Sketch 1
The second coordinate system (sketch 2) is used to define the exterior geometry of the body which changes with time as a result of ablation. This coordinate system, with w, z coordinates, is a Cartesian system with the origin fixed at the original stagnation point of the body. All the geometric parameters needed to compute changes in the stagnation heating rates and the heating-rate and pressure distributions over the surface are defined in this system.

The governing time-dependent heat-conduction equation with variable coefficients for an axisymmetric body is, in fixed coordinates,

$$
\begin{equation*}
\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial x}\left(\frac{h_{2} h_{3}}{h_{1}} k_{x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{h_{1} h_{3}}{h_{2}} k_{y} \frac{\partial T}{\partial y}\right)\right]=\rho c_{p} \frac{\partial T}{\partial \tau} \tag{1}
\end{equation*}
$$

where the coordinate scale factors are

$$
\begin{align*}
& \mathrm{h}_{1}=1+\frac{\mathrm{Y}}{\mathrm{R}} \tag{2a}\\
& \mathrm{~h}_{2}=1 \tag{2b}\\
& \mathrm{~h}_{3}=\mathrm{R}_{\mathrm{cyl}}+\mathrm{y} \cos \theta \tag{2c}
\end{align*}
$$

The transient temperature response of an ablating axisymmetric body is obtained from the solution of equation (1) with the appropriate boundary conditions, which are presented in reference 1. The method of solution is discussed in the following section.

Sketch 2

Mathematical Model and Solution

The finite-difference method was used to obtain the solution to equation (1). However, if equation (1) were expressed in finite-difference form, it would describe the temperature variation at fixed stations in a fixed coordinate system. To maintain a fixed number of stations in a layer which changes thickness with time, it is necessary to change
the location of the stations and to interpolate to determine the temperatures at the new location after each time step. This procedure is time consuming and introduces a small error in each step of the calculation. This difficulty can be eliminated by transforming the equation to a coordinate system in which the stations remain fixed and the coordinates themselves move to accommodate changes in the surface location.

This transformation can be made by introducing a moving coordinate system ξ, η, where

$$
\begin{equation*}
\xi=\frac{\mathrm{x}}{\mathrm{x}_{\mathrm{b}}} \text { and } \eta=\frac{\mathrm{y}}{\delta} \tag{3}
\end{equation*}
$$

In this system, the outer surface remains fixed at $\eta=1$ and all other stations remain at fixed values of η.

The governing time-dependent heat-conduction equation (eq. (1)) in this transformed moving coordinate system is (eq. (9) in ref. 1):

$$
\begin{align*}
& \frac{1}{\mathrm{~h}_{1} \mathrm{~h}_{3}}\left[\frac{1}{\delta^{2}} \frac{\partial}{\partial \eta}\left(\mathrm{~h}_{1} \mathrm{~h}_{3} \mathrm{k}_{\eta} \frac{\partial \mathrm{T}}{\partial \eta}\right)+\frac{1}{\mathrm{x}_{\mathrm{b}}{ }^{2}} \frac{\partial}{\partial \xi}\left(\frac{\mathrm{~h}_{3}}{\mathrm{~h}_{1}} \mathrm{k}_{\xi} \frac{\partial \mathrm{T}}{\partial \xi}\right)-\frac{1}{\mathrm{x}_{\mathrm{b}}} \frac{\partial}{\partial \xi}\left(\frac{\mathrm{~h}_{3}}{\mathrm{~h}_{1}} \mathrm{k}_{\xi} \frac{\eta \mathrm{A}}{\delta} \frac{\partial \mathrm{~T}}{\partial \eta}\right)-\frac{\eta \mathrm{Ak}_{\xi}}{\delta \mathrm{x}_{\mathrm{b}}} \frac{\mathrm{a}}{\partial \eta}\left(\frac{\mathrm{~h}_{3}}{\mathrm{~h}_{1}} \frac{\partial \mathrm{~T}}{\partial \xi}\right)\right. \\
& \left.+\frac{\eta \mathrm{A}}{\delta^{2}} \mathrm{k}_{\xi} \frac{\partial}{\partial \eta}\left(\frac{\mathrm{h}_{3}}{\mathrm{~h}_{1}} \eta \mathrm{~A} \frac{\partial \mathrm{~T}}{\partial \eta}\right)\right]=\rho \mathrm{c}_{\mathrm{p}}\left(\frac{\partial \mathrm{~T}}{\partial \tau}+\frac{\dot{\mathrm{m}} \eta}{\rho \delta} \frac{\partial \mathrm{~T}}{\partial \eta}\right) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
A=\frac{1}{x_{b}} \frac{\partial \delta}{\partial \xi} \tag{5}
\end{equation*}
$$

The unknown temperature field defined by the solution to equation (4) and its boundary condition was obtained by first approximating these equations by finite-difference equations with the use of the node pattern shown in sketch 3. Then the solution to these finite-difference equations is obtained with the method used in reference 2.

This method is classed as an alternating-direction implicit method which has the advantages of being implicit, stable, and amenable to rapid solution. This method involves the alternate use of two finite-difference analogs to equation (1). In the first finitedifference equation at time τ the analog to one of the second derivatives $\frac{\partial^{2} T}{\partial x^{2}}$, for example, is written at the new time $\tau+\Delta \tau$, and the analog to the other derivative $\frac{\partial^{2} T}{\partial y^{2}}$ is written at the old time τ. Therefore, this equation is implicit in the x -direction (row) and explicit in the y-direction (column).

Sketch 3

In the second finite-difference equation, at time $\tau+2 \Delta \tau$, the analog $\frac{\partial^{2} T}{\partial y^{2}}$ is written at the new time $\tau+2 \Delta \tau$ and the analog to $\frac{\partial^{2} T}{\partial x^{2}}$ is written at the old time $\tau+\Delta \tau$. The second equation is implicit in the y-direction (column) and explicit in the x -direction (row). Using the two equations alternately results in a stable solution for any ratio of time increment to space increment as long as the same time increment is used for the successive application of the two equations. The time increment may be changed after the successive application of the equations.

Equation (4) and the boundary conditions, when approximated by finite differences, lead to L sets of S simultaneous equations for a column solution and S sets of L simultaneous equations for a row solution. These equations take the form

$$
\left.\begin{array}{l}
B_{1} T_{1}+C_{1} T_{2}=D_{1} \\
A_{j} T_{j-1}+B_{j} T_{j}+C_{j} T_{j+1}=D_{j} \tag{6}\\
A_{N-1} T_{N-1}+B_{N} T_{N} \quad=D_{N}
\end{array}\right\}
$$

where N is equal to S or L depending upon which finite-difference analog is applied.

Since the coefficients of equations (6) form a tridiagonal matrix, this set of simultaneous equations can be quickly solved for temperatures. The method of solution based on the Gauss elimination method is discussed in reference 3.

The coefficients of equations (6) are temperature dependent. Therefore, an iteration on these coefficients is made to obtain a temperature solution.

OPERATION OF PROGRAM

The physical problem to be modeled with the analysis is described by the FORTRAN input variables listed in a subsequent section. For example, the external body geometry is described in the w, z coordinates (sketch 2) which correspond to the input variables RS and ZS; material density corresponds to the input variable RO; and the stagnation coldwall heating rate corresponds to the input variable $Q C T A B$, which is a time-dependent array. Other input variables are required which control the solution, specify boundary conditions, and determine output from the program. These variables are listed in a subsequent section.

This section describes the various boundary conditions that are available and a plotting routine that may be used with the output. The computation of the computing interval is also discussed.

Boundary Conditions Along Front Surface

An energy balance at the surface is

$$
\begin{align*}
& \mathrm{q}_{\mathrm{C}}\left(1-\frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}\right)\left\{1-(1-\beta)\left[0.6 \frac{\mathrm{H}_{\mathrm{e}}}{\mathrm{q}_{\mathrm{C}}}\left(\alpha_{\mathrm{c}} \dot{\mathrm{~m}}_{\mathrm{c}}+\alpha_{\mathrm{s}} \dot{\mathrm{~m}}_{\mathrm{s}}\right)-0.084\left(\frac{\mathrm{H}_{\mathrm{e}}}{\mathrm{q}_{\mathrm{C}}}\right)^{2}\left(\alpha_{\mathrm{c}} \dot{m}_{\mathrm{c}}+\alpha_{\mathrm{s}} \dot{\mathrm{~m}}_{\mathrm{s}}\right)^{2}\right]\right. \\
& \left.-\beta\left(\alpha_{\mathrm{c}} \dot{\mathrm{~m}}_{\mathrm{c}}+\alpha_{\mathrm{s}} \dot{m}_{\mathrm{s}}\right)\left(\frac{\mathrm{H}_{\mathrm{e}}}{\mathrm{q}_{\mathrm{C}}}\right)\right\}+\alpha \mathrm{q}_{\mathrm{r}}+\dot{\mathrm{m}}_{\mathrm{c}} \Delta \mathrm{H}_{\mathrm{c}}=\mathrm{k}_{\mathrm{y}} \frac{\partial \mathrm{~T}}{\partial \mathrm{y}}+\dot{\mathrm{m}}_{\mathrm{S}} \Delta \mathrm{H}_{\mathrm{S}}+\sigma \epsilon \mathrm{T}_{\mathrm{w}}{ }^{4} \tag{7}
\end{align*}
$$

where the terms on the left of the equality sign represent energy input to the surface and the terms on the right represent energy dissipation at the surface. The energy input may be any combination of convective heating, radiant heating, and the heat resulting from combustion.

This energy input is accommodated by the heat conducted away from the surface and any combination of the heat radiated from the surface and the heat absorbed by sublimation. The quantity of energy involved in each process is specified by the values assigned to the FORTRAN variables associated with that process. For example, the

FORTRAN variables associated with the radiant heating rate q_{r} are QRTAB, ALPHAT, and QRRAT, all of which define the radiant heating to the body with time.

The pressure and the convective and radiant heating rates are functions of the body shape and also vary over the body surface. The changes in q_{C} and q_{r} at the stagnation point and the changes in pressure, q_{C}, and q_{r} around the body are computed within the program by setting IADJUST to a value greater than zero and specifying values for the variables defining the flow field and the body geometry. If IADJUST equals zero, then the variation of q_{C}, q_{r}, and the pressure over the body are tabulated as QRAT, QRRAT, and PRAT, respectively.

Equation (7) shows that the mass loss due to combustion $\dot{\mathrm{m}}_{\mathrm{c}}$ and mass loss due to sublimation $\dot{\mathrm{m}}_{\mathbf{S}}$ affect the energy balance. This effect can be specified by either transpiration theory $(\beta=0)$ or linear ablation theory ($\beta=1$).

The rates of mass loss by both oxidation and sublimation are computed at each time step. However, only the larger of the two is used.

The rate of mass loss by combustion may be specified by a half-order or a firstorder oxidation equation. The input XORDER specifies which equation is used. The equation for a half-order oxidation reaction is (eq. (15) in ref. 1)

$$
\begin{equation*}
\dot{m}_{c}=\frac{1}{2}\left\{-\frac{M_{w}\left(H_{e}-H_{w}\right) K^{2} p_{w}}{M_{O_{2}} q_{C, n e t^{\lambda}}}+\sqrt{\left[\frac{M_{w}\left(H_{e}-H_{w}\right) K^{2} p_{w}}{M_{O_{2}} q_{C, n e t^{\lambda}}}\right]^{2}+4 K^{2} C_{e} \frac{M_{w}}{M_{O_{2}}} p_{w}}\right\} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
q_{C, n e t}= & q_{C}\left(1-\frac{H_{w}}{H_{e}}\right)\left\{1-(1-\beta)\left[0.6 \frac{H_{e}}{q_{C}}\left(\alpha_{c} \dot{m}_{c}+\alpha_{s} \dot{m}_{s}\right)-0.084\left(\frac{H_{e}}{q_{C}}\right)^{2}\left(\alpha_{c} \dot{m}_{c}+\alpha_{s} \dot{m}_{s}\right)^{2}\right]\right. \\
& \left.-\beta\left(\alpha_{c} \dot{m}_{c}+\alpha_{s} \dot{m}_{s}\right)\left(\frac{H_{e}}{q_{C}}\right)\right\} \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
K=A_{c} e^{-B_{c} / T_{w}} \tag{10}
\end{equation*}
$$

The equation for a first-order oxidation reaction is (eq. (16) in ref. 1)

$$
\begin{equation*}
\dot{m}_{c}=\frac{K p_{w} C_{e}}{\frac{\mathrm{M}_{O_{2}}}{\mathrm{~K}_{\mathrm{w}}}+\frac{\mathrm{K}_{\mathrm{w}}\left(\mathrm{H}_{\mathrm{e}}-\mathrm{H}_{\mathrm{w}}\right)}{{ }^{\mathrm{q}} \mathrm{C}, \mathrm{net}^{\lambda}}} \tag{11}
\end{equation*}
$$

The rate of mass loss by sublimation is (eq. (17) in ref. 1)

$$
\begin{equation*}
\dot{m}_{S}=\frac{A_{s}\left(p_{w}\right)^{p}}{\left(R_{s t a g}\right)^{r}} e^{-B_{s} / T_{w}} \tag{12}
\end{equation*}
$$

Boundary Conditions Along Back Surface and Edge of Body

Several boundary conditions may be specified along the surfaces at $\mathrm{y}=0$ and $\mathrm{x}=\mathrm{x}_{\mathrm{b}}$. These conditions are a constant-property heat sink, radiation from these surfaces to a surface at a specified temperature, or any combination of these. A heat sink along the back of the body is specified by the inputs CPDP, RODP, TDPRIME; along the edge of the body, by CPP, ROP, and TPRIME. Radiation from these surfaces is specified by the inputs EPSONPP, EPSONEP, and TBTAB.

Output Plotting Routine

The plotting routine for this program is convenient for studying the results of calculations. This routine is activated by setting IPLOT equal to an integer greater than zero. The following plots are generated: (1) RSS versus ZS at times listed in the PLTIME table (this plot shows the body geometry), (2) MDOT versus X at each PRFREQ time, and (3) $T(N)$ versus X at each PRFREQ time, where N is a specified row of temperatures. For example, to plot the temperatures of rows 2,6 , and 8 , set the input NTP $=3,2,6,8$, where the 3 specifies the number of rows to be plotted. Other input quantities that must be specified are MDMAX, RSSMAX, ZSMAX, PTMAX, and PTMIN. These inputs specify maximum and minimum values which are used to get reasonable plotting scales. Sample plots are shown with example problems discussed in a subsequent section.

The plotting routines used are from the CalComp software package. Plotter output is routed to a tape during job execution and after job completion is plotted on a CalComp digital incremental plotter.

Computing Interval

Although the alternating-direction implicit method used for solution of the finitedifference equations has the advantage of being stable for any time increment, the choice
of a computing interval is important. An initial and a maximum computing interval DELTAU and DTMAX are inputs for the program. After the application of a column and a row solution, the program computes an interval for the next two successive time steps. This is done by examining the number of iterations necessary for convergence at the previous time step. If this number was (a) equal to 1 , the computing interval will be doubled, but will not exceed DTMAX; (b) equal to 2, the interval will not be changed; or (c) equal to 3 , the interval will be halved.

This should not be confused with the input MAXITT. If the number of iterations during a solution that is not a row solution exceeds MAXITT, the computing interval will be halved and the solution restarted.

PROGRAM DESCRIPTION

The computer program D2430 was written in FORTRAN IV language for the Control Data 6000 series digital computer under the SCOPE 3.0 operating system. The program requires approximately 70000 octal locations of core storage.

This section presents the program, its subroutines, and their variables. The variables are grouped in labeled COMMON blocks PICK, INPUTS, and HOLD. Input data are loaded with FORTRAN IV NAMELIST. The variables in INPUTS (except the variable DUMMY) and in HOLD are also in the NAMELIST statement which appears in another section.

Labeled COMMON

The following list contains the FORTRAN variables appearing in labeled COMMON and the dimensions of the array for each variable. The notation is in the form $A(m, n)$.

COMMON
label $\begin{gathered}\text { FORTRAN } \\ \text { variable }\end{gathered}$
PICK
A(10,20) Elements in coefficient matrix for the column solution $\mathrm{AA}(20) \quad \frac{\partial \delta}{\partial \mathbf{x}}$
$\mathrm{AB}(10,20) \quad$ Elements in coefficient matrix for the row solution
ALPHA(20)
α
B(20)
Major diagonal elements in coefficient matrix

COMMON

PICK

BS1 $(10,20)$	Major diagonal elements in coefficient matrix for the column solution minus $\frac{\partial T}{\partial \tau}$ term
$\operatorname{BS1B}(10,20)$	Major diagonal elements in coefficient matrix for the row solution minus $\frac{\partial T}{\partial T}$ term
$\mathrm{C}(10,20)$	Elements in coefficient matrix for the column solution
$C B(10,20)$	Elements in coefficient matrix for the row solution
CK(10)	Temporary storage used to define the thermal conductivity at a half station
CKETA(10,20)	k_{η} at the station
CKXI $(10,20)$	k_{ξ} at the station
COST(20)	$\cos \theta$
CP(10,20)	c_{p}
D $(10,20)$	$\frac{\mathrm{h}_{2} \mathrm{~h}_{3} \mathrm{k}_{\xi}}{\mathrm{h}_{1}}$
DC(20)	Right-hand side of the matrix solution
DELESQ	$(\Delta \eta)^{2}$
DELETA	$\Delta \eta$
DELTA(20)	δ
DELXI	$\Delta \xi$
DELXISQ	$(\Delta \xi)^{2}$
$E(10,20)$	$\frac{\mathrm{h}_{1} \mathrm{~h}_{3} \mathrm{k}_{\eta}}{\mathrm{h}_{2}}$
EIGHT3	Constant, 8.0/3.0
ELAM(20)	λ
ETA(10)	η

EXPG	Computed constant used in computing new heating distribution
$F(10,20)$	$\frac{\mathrm{h}_{\mathbf{2}} \mathrm{h}_{\mathbf{3}} \mathrm{k}_{\xi}{ }^{\prime}}{\mathrm{h}_{1} \delta} \frac{\partial \delta}{\partial \mathrm{x}}$
GG	Computed constant used in computing new heating distribution
GIMACH	Computed constant used in computing new pressure distribution
H1 (10,20)	h_{1}
H2(10, 20)	h_{2}
H3(10,20)	h_{3}
HC(20)	ΔH_{S}
HCOMB(20)	$\Delta \mathrm{H}_{\mathbf{c}}$
HE	H_{e}
HW(20)	H_{w}
IFIRST	Internal code; 0 for first time step in calculation, 1 for any time after first time step
IROCOL	Internal code; 1 for column solution, 2 for row solution
ITC	Number of iterations during the column solution
ITR	Number of iterations during the row solution
ITT	Number of iterations during a solution
ITTO	Total number of iterations from the initial time
LM1	Computed constant ($L-1$)
LM2	Computed constant (L-2)
MCDOT (20)	$\dot{\mathrm{m}}_{\mathbf{c}}$
MDOT (22)	$\stackrel{\text { m }}{ }$
MSDOT(20)	$\dot{\mathrm{m}}_{\mathrm{S}}$

PID2
PRE LOC(20)
QC(20)
QC1
QCNET
QCOMB(20)
QR(20)
QR1
QS(20)
RNS
RODPC
ROPCPP
RSS(22)
RSTO2

SIG
SIGDP
SIGMA
SIGP
SINT(20)
SM1
SM2
TAU
TB
$\mathrm{TT}(10,20)$
TWDELXI

Constant 1.5707963268
Local wall pressure
Adjusted convective heating rate
q_{C}
${ }^{q}{ }_{C, \text { net }}$
Heat due to combustion for oxidation
Adjusted radiant heating rate
q_{r}
Net heat input
Nose radius
$\mathrm{t}{ }^{\prime \prime} \rho^{\prime \prime} c_{p} " / \Delta \tau$
$t^{\prime} \rho^{\prime} c_{p}{ }^{\prime} / \Delta \tau$
Coordinate used to define body geometry, w
Computed constant, ratio of molecular weight of free stream to molecular weight of diatomic oxygen used in oxidation equation

Computed constant $\sigma \epsilon$
Computed constant $\sigma \epsilon \epsilon^{\prime \prime}$
σ
Computed constant $\sigma \epsilon^{\prime}$
$\boldsymbol{\operatorname { s i n }} \theta$
Computed constant (S-1)
Computed constant (S-2)
Time at which calculation is being made
Temperature to which back surfaces radiate
Estimated temperatures at τ
Computed constant $2 \Delta \xi$

COMMON label	FORTRAN variable	
	TWOGI	Computed constant used in computing new heating distribution
	V(20)	Elements in coefficient matrix for column solution

Descriptions, Flow Charts, and Listings
This section identifies the main program and each subroutine in the program D2430. A brief discussion, a flow chart, and a listing for each are given. The numbers appearing in the flow charts represent a FORTRAN statement number in the program. The interpolation subroutines FTLUP and DISCOT are described in detail in appendix A.

Program D2430.- Program D2430 is the control program. It reads the inputs, calls the subroutines to solve for the temperature profile, calls subroutines for plotting, and controls the iteration scheme for the temperature solution. The flow chart for program D2430 is given on the following pages:

The listing for program D2430 is as follows:

```
                PROGRAM D2430 (INPUT,OUTPUT,TAPE5=INPUT,TAPES=CUTPUT,TAPET=201. 100000
1TAPE8=2N1,TAPEG=2011
C
C AXISYMNETRIC AELATICN PROGRAM
C TWO-DIMENSIONAL ABLATICN ANALYSIS FOR AXIALLY SYMMETRIC BODIES OF REVOLUTION
C AT HIGH HEATING RATES, CONSIDERING SHAPE CHANGE
C
C THIS IS THE MAIN PRCGRAM - IT CONTROLS THE GENERAL FLOW CF PROGRAM
C
    CCMMON /PICK/ A(10,20),AA(20),AB(10,20), ALPHA(20),B(20),
    2 BSI(10,20),BSIB(IO,20),C(10,20),CB(10,20),CK(10),CKETA(10,20),
    4 CKXI(:20,20),COST(20),CP(10,20),D(10,20),DC(20),
    6 DELESQ,OELETA,DELTA(20), DELXI,OELXISG,E(10,20), EIGHT3.
    8 ELAM(20),ETA(IC),EXPG,F(1),201,GG,GIMACH,HI(10,22),H2(10,20),
    A H3(10,20),HC(20),HCOMB(20),HE,HW(20),IFIRST,IROCOL,ITC,ITR,ITT,
    C ITTO,LM1,LM2,MCOOT(20),MCOT (22),MSDOT(20),PID2,PRELOC(20),QC(20),
    E CC1,QCINET(20),GCCMB(20),QR(20),QR1,QS(2C),RNS,ROOPC,ROPCPP,
    G RSS(22),RSTO2,SIG,SIGDP,SIGMA,SIGP,SINT(2O),SML,SM2,TAU,TB,
    I TT(1),20),TTF(10,20),TWOELXI,TWOGI,V(20),VB(10),X(22),XDXISQ,
    K XCDXI,Y(10,20),2(20),ZE(10)
    COMMON /INPUTS/ DUMMY(1),AEXP,ALCTAB(10),TTALC(10),MALPHC,NALPHC,
    2 ALPHAT(1G), TALPHA(1OI,MALPHA,NALPHA,ALSTAB(10),TTALS(LC),MALPHS,
    4 NALPHS,ASEXP, BETA,BEXP,BSEXP,CE,CKETATB(5O),TTCKETA(10),
    O ETATAB(5),NCKETA,NETA,CKXITAB(50),TTCKXI(IO),XITAB(5),NCKXI,
    8 NXI,CORDSY,CPDP,CPP,CPTAB(10),TTABCP(10),MCP,NCP,DELTAO(2O),
    A DELTAU,OFLTMIN,OTMAX, ELAMTB(28), TTELAM(7), PELAM(4), NELAM,
    C NPELAM,ENDTAU,EPSCNE, EPSONEP, EPSCNPP,ERRORT,GAMBAR,GAMINF,
    E HCOMBTB(28),TTHCOMB(7), PHCOMB(4),NHCOMB,NPHCCNB,FCTAB(28),
    G TTABHC(7),PHC(4),NHC,NPHC,HETAB(10), TTABHE (10),MFE,NHE,HWTAB(15),
    I TTABHW(15),MHW,NHW,IADJUST, IPLOT,L,MACHNO,NAXITT,MDMAX,
    J MDCTO(20).
    K MWO2,MWSTR,NTF(7),PLTIME(15),PRAT(20),PRFREQ,PSEXP,PSTAGTB(IO),
    M TTPSTAG(1O),MPSTAG,NPSTAG,PTMAX,PTMIN,QCTAB(10),TTABQC(IC),MQC,
    N NQC,QRAT(20),
    O GRRAT (20), QRTAB(10),TTABQR(10),MQR,NQR,R(2O),RIEXP,RNSI,RO,RODP,
    Q RGP,RS(2C),RSSMAX,S,STEBCL,T(1), 20),TAUC,TBTAB(10),TTABTB(10).
        S MTB,NTB,TDPRIME,THETA(ZO),TPRIME, XO,XCRDER,ZS(20),ZSMAX
            DINENSION OELT (10,20),Z2(22),Y3L(2)
            REAL MOOTC,MDOT,MCOOT,MSDOT,MKSTR,MNOL,MACHNO,MDMAX
            INTEGER S,SN1,SM2
            DATA XLABEL,YLABEL,X2L,Y2L,Y3L/ 2HZB,3HRSS,IHX,4HMDOT, I \HTEMPERATU
        1RES/
            NAMELIST /02430/ AEXP,ALCTAB,TTALC,MALPHC,NALPFC,ALPHAT,
        2 TALPHA,MALPHA,NALPHA,ALSTAB,TTALS,MALPHS,NALPHS,ASEXP,
        4 BETA,BEXP,BSEXP,CE,CKETATB,ETATAB,TTCKETA,NCKETA,NETA,
        6 CKXITAB, XITAB,TTCKXI,NCKXI,NXI,CORDSY,CPDP,CPP,CPTAE,TTABCP,MCP,
        8 NCP,DELTAO,DELTAU,DELTMIN,DTMAX, ELAMTB,TTELAM,PELAM,NELAM,NPELAM,
        9 ENDTAU,EFSCNE, EPSONEP, EPSCNPP, ERRORT,GAMBAR,GAMINF,HCCNBTB,
        A TTHCOMB, PHCOMB,NHCOMB,NPHCOMB,HCTAB,TTABHC,PHC, NHC, NPHC,HETAB,
        C TTABHE,MLE,NHE,HWTAB,TTABHW,MHW,NHW, I ADJUST, IPLOT, L,MACHND,
        E MAXITT,MLMAX; MDOTO,MWO2,MWSTR,NTP,PLTIME,PRAT,PRFREG,PSEXP,
        G PSTAGTB,TTPSTAG,MPSTAG,NPSTAG;PTMAX,PTMIN,QCTAB,TTABQC,MQC,
        I NQC,QRAT,QRRAT,QRTAB,TTABQR,MQR,NQR,R,RIEXP,RNSI,RO,RCOP,ROP,RS,
        K RSSMAX,S,STERCL,T,TAUO,TRTAB, TTABTB,MTB,NTB,TDPRIME,THETA,
        M TMIN,TPRIME, XC, XORDER,ZS,ZSMAX
            CCNMCN /HCLD/ TMIN
            TMIN=0.
            DC 10 I= 1,934
        10 DUMMY(1)=C.C
            DTMAX=?*
        1 READ (5,1CC)
    100 FORMAT (80F
            I
                )
            IF (EOF,5) 2,3
        2 STOP
        3 READ (5,D<430)
        WRITE (S,C2430)
        WRITE (6,10C)
C
C SET INITIAL VALUES
```

10.0000

200000
300000
400000
500000
600000
700000
800000
900000
1 ccon 00
1100000
1200000
13000 Cl
1400000
1500000
1600000
1700000
1800003
1900000
2000000
2100000
2200000
2300000
2400000
2600001
2630002
2700000
2800000
2900000
3000001
3100000
3200000
3300000
3400000
3500000
3600000
3700900
3800000
3900000
4000000
4:00000
4200000
4320000
4400000
4500000
4600300
4700000
4800000
4900000
5000001
5100200
5200000
5300000
540000^{1}
5500000
5600000
5700000
5800001
5900000
50000 co
6100000
6200000
5300000
5400000
5500000
6600000
7000000
7100000
7200000
c SET initial values
NNTP $=$ NTP(1) 7500000
$\begin{array}{ll}\text { P102 }=2577963268 & 7600000\end{array}$
TWO GI $=2.0 /(1 G A M I N F-1.0)$ * MACHNO **2 7700000
EXPG = (GAMEAR - 1.OI/ GAMBAR
GIMACH = 1./(GAMINF * MACHNO **2)
$\mathrm{GG}=\mathrm{SQRTI} \operatorname{EXPG} *(1.0+$ TWOGI)*(1.0-GIMACHI)$\quad 8600000$
$G G=S Q R T$ (GG) * 2.0
INCP $=0$
IROW=3
ID T=1
DTAUO $=1.0$
DTAUS $=$ DELTAU 8600000
IROCOL $=1$
C WILL PRINT ONLY AFTER A COL. AND ROW CCMPUTATION HAS BEEN MADE
TAUOO $=$ TAUO + PRFREO
IT TO $=3$
DC $11: M=1, S$
7800000
DC $11 \mathrm{~N}=1$, L
$\operatorname{CELT}(M, N)=1003$.
8 C 00000
8100000
8200000
83000 C0
8400000
8500000
8600000
8700000
88C00C0
8900000
9100000
9200000
CELT(M,N)=1003. 9300000
11 TT(M,N)=T(N,N) 9400000
DELTAU=DELTALZ. 9500000
TAU=TAUIT\& CELTAU 9600000
IFIRST $=0 \quad 9760000$
ITT=1
$L M I=L-I$
$A L M 1=L M_{1}$
$L M 2=L-2$
SM1 $=5-1$
SM2 $=5-2$
DELXI =1./ALMI
98000 CO
9900000
10000000
10100000
10200000
10300000
10400000
DELX $=X O / A L M 1$
RSTO2 $=$ MhSTR/MWO2
$x(1)=0$ 。
DC $12 \mathrm{~N}=2, \mathrm{~L}$
$12 \times(N)=X(A-1)+D E L X$.
DELETA $=1 . /$ SM $_{1}$
DELXISQ $=$ DELXI **2
DELESQ = DELETA **2
TWDELXI = 2.0\% DELXI
EIGHT3 $=8 . \mathrm{C} / 3.0$
DO $18 \mathrm{M}=1$, S
$A N=M-1$
18 ETA $(M)=D E L E T A * A M$
SIGMA=STERCL
SIG = SIGNA* EPSONE
SIGP = SIGNA * EPSONEP
10500000
10600000
10700000
10800000
10900000
11000000
11100000
SIGDP = SIGMA * EPSCNPP
11200000
11300000
11400000
SIGDP $=$ SICMA * EPSCNPP
XODXI $=$ XC * DELXI
RODPC = TDPRINE*RODP * CPDP / DELTAU
ROPCPP $=$ TPRIME * ROP * CPP/ DELTAU 12400000
ROOT $=$ RO/DELTAU 12500000
$\begin{array}{ll}\text { RODT }=\text { RO/DELTAU } & 12500000 \\ \times D X I S Q=X C * * 2 \text { * DELXISQ } & 12600000\end{array}$
$\begin{array}{ll}X D X I S Q & =\text { XC** } 2 \text { * DELXISQ } \\ 12600000\end{array}$
DC $22 \mathrm{~N}=1, \mathrm{~L}$
12700000
$\begin{array}{ll}\operatorname{MDOT}(N)=M E O T O(N) & 12800000\end{array}$
MCDCT(N)=NDCTO(N) 12900000
$\operatorname{MCDCT}(N)=$ NDCTO(N)
$\operatorname{MSDOT}(N)=M D O T O(N)$
13000000
$2)$ DELTA(N)= DELTAC(N) 13100000
$\begin{array}{ll}\text { THETA(N) }=\text { C } 174532925 * T H E T A(N) & 13200000\end{array}$
SINT(N) = SIN(THETA(N))
13300000
$Z Z(N)=Z S(N)+C E L T A O(N) * S I N T(N) \quad 134 C 0000$
$22 \operatorname{COST}(N)=\operatorname{CCS}(T-E T A(N))$
13500000
IF (IPLOT, EG.) GO TO 23
13600000
C PLOT BASE CURVE IF PLCTTING IS CALLED FOR
REWIND 7
13800000
REWIND 3
13900000
REWIND 9
14600000

```
            CALL CALCCNP 14100C00
            IPLT=1 14200000
            IPLTK=9
            IF (CORDSY,NE,CI GO TO 2250
    WRITE (T) (ZZ(N),RS(N),N=1,L)
    GO TO 23
2250 WRITE (7) (ZS(N),DELTA(N),N=1,L)
C
C COMPUTE H-S
C
    23 DC 25 M=1,S
            OO 25 N=1,L
            Y(N,N)=ETA(N)#DELTA(N)
            H1(M,N)=1.0 + ETA(M)* DELTA(M)/R(N)
            H2 (M,N)=1.
        25 H3(M,N)=RS(N) + Y(M,N) &COST(N)
    95 DO 10L M=I,S
            DO 101 N=1,L
            CALL FTLUP (TT(M,N),CP(M,N),MCP,NCP,TTABCP,CPTAB)
            CALL DISCCT (TT(M,N),X (N),TTCKXI ,CKXITAB,XITAB,1L,NCKXI,NXI,
            ICKXI(M,N))
    1)I CALL DISCCT(TT (M,N),Y(M,N),TTCKETA ,CKETATB,ETATAP,II,NCKETA,NETA,
            ZCKETA(M,N))
            AA(I)=0.0
            DO 107 N=2,LM1
    1)Э AA(N)=(DELTA(N+1)-DELTA(N-1))/(TWDELXI*XO)
            AA(L)=(3.C*DELTA(L)-4\varepsilon0*DELTA(LM1)+DELTA(LM2))/(TWDELXI*XO)
            OC 110 N=1,L
            DC 110 M= 2,S
            D(M,N)= F2(M,N)*H3(M,N)* CKKI(M,N)/H1(M,N)
            E(M,N)=H1(M,N)*HZ(M,N) * CKETA(M,N)/H2(M,N)
    120 F(M*N)=D(N,N)*ETA(M)*AA(N)/DELTA(N)
            CALL SQAEFC
            GO TO (31C,320), IROCOL
    31.0 CALL COLUMN
            ITC=ITT
            IFIRST=1
            GO TO 350
    320 CALL ROW
            ITR=ITT
            IF (IROW,EGOOI IROW=2
    350 CONTINUE
350 CONTINUE STMTURES ARE NEGATIVE STOP CALCULATIONS 182J0000
            00 36, N=1, L
            DO 360 M=1.S
            IF (TTF(M,N),LE,O) GO TO 411
    350 CONTINUE
C TEST TO SEE IF TEMPERATURES HAVE CONVERGED
C
    ITTO=ITTO+I
    DO 400 N=1.L
    DO 400 M=1,S
    ABSTT=ABS(TT(M,N))
            ABSTTF=ABS(TTF (M,N)I
            TEST=ABS(ABSTTF-ABSTT)/ABSTT
            IF (TEST - ERRCRT) 4CC:40C.700
        430 CCNTINUE
C
C COMPUTE MDOT
C
    CALL SQAEROM
C COMPUTE DELTA
    DO 410 N=1,L
    DELTA(N)=DELTAC(N)-(MCOTC(N)*MDOT(N))*DELTAU/(2,0*RO)
C RESET DELTAD AND MDOTO
    410 MDOTO(N)=NDOT (N)
C IF DELTA BECONES LESS THAN DELTMIN (SOME MINIMUM DELTA INPUT) STOP
14300000
14400000
14500000
14600000
147C0000
14800000
14900000
15000000
15100000
15200000
15300000
15400000
15500000
15600000
600000
15700000
15800000
15900000
160000C0
16100000
16200000
16300000
16400000
16500000
16600000
15700000
16800000
16900000
17000000
17100000
17200000
17300000
17400000
17500000
17600000
17700000
17800000
17900000
18000000
18100000
18230000
184coccc
18500000
18600000
18790000
18800000
18900000
19050000
19100000
19200000
19300000
19400000
19500000
19600060
19700000
19800000
1.9900000
20000000
20100000
20200000
20300000
20400000
20500000
20600000
20700000
```

```
C THE CALCULATICAS 20800000
            DO 412 A=?,L 20900000
            IF (DELTA(N).GT. DELTMIN: GO TO 412 21000000
    411 CALL ZPRIAT
            STOP
    412 CCNTINUE.
            IF (INOP EG.1) GO T 0 418
            IF (TAU.LT. TAUOCI GO TO 420
            IF (IROCOL.EG.1) GO TO 418
            INCP=1
            GO TO 420
    418 INOP =0
            TAUOO=TAUCE+ PRFREQ
C
C
    CALL ZPRINT
C
    IF (IPLOT:EQ.O) GC TO 42O
            IPLTK= IPLTK + 1
            WRITE(8) ( MDOT(N), N=1,L)
            IF (NNTP.EG.O) CO TO 420 22800000
            DC 419 M=1,NNTP
            I= NTP(M+1)
    419 WRITE (9) (TTFII,N),N=1,L) 23100000
    42う IF (IROW-I) 54C.490.484 23200000
    484 DELTAU=DELTAU*2.0
            IROW=1
            KFRE=KFRE+1
C
C OBTAIN DELTAU AS A FUNCTION OF ITERATION OF PREVIOUS TIME STEP
    490 DTAU1 = DFLTAU
            IF (IROCOL.EQ.1) GQ TO 54C
            IF (ITT-2) 495,54C,530
    475 DELTAU=2.C*DTAUL
            IF (DELTAU,GT.DTMAXI DELTAU=DTMAX
            GO TO 540
    530 DELTAU=DTAC1/2.
            IF (DELTAU.LT:I.E-6) GO TO 900
    540 TAUO = TAU
C CHECK TO SEE IF IT IS TIME TC PLOT
            IF (IPLOT EG.J) GO TO 543
            IF (TAU,LT,PLTIME(IPLT)) GO TO 543
            IPLT=IPLT+1
    IF (CORDSY.NE.O) GO TO }54
            WRITE (7) (ZS(N),RSS(N),N=I,L)
            GO TO 543
    542 WRITE (T) (ZS(A),DELTA(NI,N=1,L) 254COOOO
C
C INCREMENT TIME AND REPEAT CYCLE ALTERNATING ROW AND CCLUMN SCLUTION
    543 TAL=TAU+DELTAU 
    543 TAL=TAU*DELTAU 
    ROPCPP = TPRINE * FOP * CPP/ DELTAU
        RODT = RO/CELTAL
    IF (TAU.GT.ENDTAU) GO TC O50
C
C EXTRAPGLATE TC GET NEW GUESS TEMP(TT)
C
    DO 440}M=1,
    0O 445 N=1,L
            DELT(M,N)=100%.
    DELTN=TTF (N,N)-T(M,N)
            T(M,N)=TTF(M,N)
446 TT (M,N)=TTF(M,N)+(DELTAU/OTAU1)*DELTN
            G0 TO (55C,650), IROCOL
    550 IROCOL =2
    ITT=1
    GO TO 23
21100000
21200000
21300000
21400000
21500000
21600000
21700000
21800000
21900000
22000000
22100000
22200000
224000co
            N=1,L) 22700000
                    22900000
                    23000000
            23300000
                            23400000
23500000
23600000
23700000
23800000
238900000
24000000
000000
24100000
24200000
24300000
24400000
24500000
24600000
24700000
24800000
24900000
25000000
25100000
    GO TD 543
25200000
25300000
25400000
25500000
256000C0
25700000
    ROPCPP = TPRINE * FOP * CPP/ DELTAU
25800000
25900000
25900000
26100000
26100000
26300000
26400000
26500000
26600000
26700000
26800000
    T
26900000
27000000
    ITT=1
27100000
27200000
27300000
27400000
```

```
    65. IROCOL = 2 27500000
    ITT=1 27ECOOCC
    GOTO 23
C
C TEMP: DOES NJT MEET EFROR CRITERIA, MUST ITERATE AGAIA
C NEW GUESS IS TEMP CF PREVICUS ITERATION TT =TTF
C
    730 ITT =ITT +1
    IF (ITT - MAXITT) 705,7C5,800
    705 00 720 N=1,L
        DC 720 M=1,S
        DELT1 = ABS(TTF(M,N)-TT(M,N))
        IF (DELTL,LT.10.) GO TO 718
        IF (DELTI -DELT(M,NI) 718,75C,750
    718 DELT(M,N)=CELT1
    7\geqslant0 CONTINUE
        DC 730 M=1,S
        DO 730 N=1.L
    730 TT (M,N)= TTF(M,N)
        GO TO 95
    750 IF (ITT.LT.3) GO TO 718
C
C PROGRAMED STOFS
C
    WRITE (5,752)
    752 FORMAT (*CTEMPERATURE IS DIVERGING --m-- WHY*)
    758 WRITE (6,755)
    759 FORMAT (*तTT(M,N)*)
        DC 765 M=1,S
        MN=5-(M-1)
    755 WRITE (5,766) ETA(NM),(TT(MM,N),N=1,L1
    765 FCRMAT (FE.3.5X15F8.1/(12X,15F8.11)
    WRITE (6,7Є7) IROCOL
    757 FORMAT (*CIROCCL=* {3)
        CALL ZPRINT
        STOP
    800 IF (IROCOL.EQ.1) GO TO 8C3
    WRITE (6,8C1)
    8)2 FCRMAT (*CTHIS IS A RCW SGLUTION, DELTAU CANNOT CHANGE)
    GO TO 738
C
    893 DTAUL= JELTAU
        DELTAU = DELTAU/2.0
        WRITE (S,ECJ) DELTAU,TAU
    8)5 FCRMAT (*CI DIC IT-- DELTAU=*E14.5.*TAL=*E $4.5)
        IF (OELTAU. LT. 1.E-G) GC TO 900
            TAU = TAU - DELTAU
            DC 81J M=1.S
            DO 810 N=1,L
            DELT(M,N)=1000.
    810 TT(M,N)=T(M,N)
            ITT = l
            GO TO 95
    97) WRITE (6,901)
    O51 FORMAT (*OTEMPERATURE ITERATIOV DOES NOT CCNVERGE*)
            GC TC }75
C
C PLOT ZS VS. RSS, }x\mathrm{ , VS MDOT, }x\mathrm{ VS BACK SURFACE TEMPERATURE
C
```

27ECOOC
27700000
27800000
27500000
28000000
28100000
$282000 \mathrm{C0}$
28300000
28400000
28500000
28600000
28700000
28800000
28900000
29000000
29100000
29200000
29300000
29400000
29500000
29500000
29700060
29800000
29900000
30000000
30100000
20220000
30300000
30450060
30530000
30600000
30700000
30830000
30900000
31030000
31100000
31200000
31300000
31400000
31500000
31600000
31700000
31800000
31900000
22000000
32100000
32200000
23300000
32400000
32500000
32600000
32700000
32800000
32900000
33090000
23100000
33200000
333 C00CO

```
95) CALL ZPRINT 33400000
    IF (IPLOT.EG*3) GQ TO 1 23500000
    END FILE 7 33600C00
    ENO FILE 8 237CJOCU
    END FILE G 33800CO0
    REWLND 7 33930000
    REWIND 8 34000000
    REWIND 9 34100000
    IEC = 0 34200000
    DO 960 M=1,IPLT 34300000
    READ (7) (ZZ(N), RSS(N),N=1,L) 344000C0
    IF (M*EQ.IPLT) IEC =1 34500000
95) CALL INFOFLT (IEC,L,ZZ,1,RSS,1,T.,ZSMAX,O.,RSSMAX,1.,1O,XLABEL,10, 346COCCO
    1 YLABEL,OI 347JCCCO
    IEC=0
    DO 97.) M=1,IPLTK 34900000
    348C00C0
    READ(8) { NCOT(N),N=1,L) 35000000
    IF (M*EQ.IPLTK) IEC=1 351.000CO
77 CALL INFOPLT (IEC,L,X,1,MCDT,L,J.,0.,O.,MDMAX,1.,1O,X2L,1C,Y2L,0) 352000CO
    IEC=?
    IF (NNTP.EGAC) GO TO I
    DO ¢9.J M=1,IPLTK
    ISYM=10
    DC S80 I=?,NNTP 35700000
    READ (q) (ZZ(N),N=1,L) 358009C0
    IF (M.EQ*IPLTK,AND. I.EQ.NNTP) IEC =1 350GOCCO
    ISYM= ISYN + 1 36000000
930 CALL INFOFLT (IEC,L,X,1,ZZ,1,0.,0.,PTMIN,PTMAX,1,010,X2L,20,Y3L, 36100CO)
    1 ISYMI
36200000
970 CONTINUE
    363000C0
    GO TO 1 36400000
    END 350.0%00
```

Subroutine COLUMN.- Subroutine COLUMN calls the appropriate routines to compute the coefficient for the matrix solution and to solve the tridiagonal matrix for each column of temperatures. The flow chart for subroutine COLUMN is as follows:

The program listing for subroutine COLUMN is as follows:

C
C SOLVES THE MATRIX COLUMN BY COLUMN FOR ONE ITERATION
C SOLVES M (NO. OF ROWS) SETS OF SIMULTANEOUS EQUATICNS N (NO. OF COLUMNS C TIMES THEN RETURNS TO MAIN PROGRAM TO TEST FOR CONVERGENCE
C

36600000 36700000 36800000 36900000 37000000 37100000 37200000 37300000 374.00000 37500001 37600000 37700000 37800000 37900000 38000000 38100000 38200000 38300000 38400000 38500000 38600000 38800001 38800002 38900000

```
    E HCOMBTB(28),TTHCCMB(7), PHCOMB(4),NHCOMB,NPHCOMB,HCTAB(28), 39000000
    G TTABHC(7),PHC(4),NHC,NPHC,HETAB(10),TTABHE(10),MFE,NHE,HWTAB(15), 39100000
    I TTABHWII5),MH%,NHW,IADJUST,IPLOT,L,MACHNO,MAXITT,MDMAX, 39200001
    MDCTO(20), 39300000
    K MWO2,MMSTR,NTP(7),PLTIME(15),PRAT(20),PRFREQ,PSEXP,PSTAGTB1101% 39400C00
    M TTPSTAGI201,MPSTAG,NPSTAG,PTMAX,PYMIN,QCTAB(10),TTABQC(10),MQC, 39500000
    N NCC,QRAT(20), 39600000
    O QRRAT(20),QRTAB(10),TTABQR(101,MQR,NQR,R(20),RIEXP,RNSI,RO,RODP; 39700000
    Q ROP,RS(20),RSSMAX,S,STEBOL,T(10,20),TAUO,TBTAB(10),TTABTB(10), 39800000
    S MTB,NTB,TDPRINE,THETA(20),TPRIME,XO,XORDER,ZS(20),ZSMAX 399C0000
    REAL MDOTC,MDOT,MCDOT,MSDOT,MWSTR,MWO2,MACHNO,MDMAX 40000000
    INTEGER S,SM1,SM2 40100000
C COMPUTE COLUMN 1 40200000
    N1 =2 40300000
    N2 =SM1
    CALL COLXC (N1,N2)
    CALL SOLMAT (A(1,11,B,C(1,1),2(1),Y(1),DC,TTF(1,1),S!)}4060000
C COMPUTE COLUMN 2 THRU LM1. 407C00C0
    DO 300 N=2,LM1
    CALL COLMR (N1,N2,N)
    CALL SOLMAT (A(1,N),B,C(1,N),Z(N),V(N),DC,TTF(1,N),S)
    300 CONTINUE
C COMPUTE COLUMN L
        CALL COLXL(N1,N2)
    CALL SOLMAT (A(1,L),B,C(1,L),Z(LI,VIL),DC,TTF(1,L),S)
6JO RETURN 41500000
    END
4 0 4 0 0 0 0 0
40500000
4 0 8 0 0 0 0 0
41100000
4 1 3 0 0 0 0 0
4 1 4 0 0 0 0 0
41600000
```

Subroutine ROW.- Subroutine ROW calls the appropriate routines to compute the coefficients for the matrix solution and to solve the tridiagonal matrix for each row of temperatures. The flow chart for subroutine ROW is as follows:

The program listing for subroutine ROW is as follows:


```
C CIMPUTE RTW ? 45200`00
            DINENSICN ANS(2O), ATEMP(20), CTEMP(20) 453COC00
            INTEGER SMY S
            N1 =2
            N2 =LA!
            CALL COLXC (N*,N2)
            00 3)0 N=2,LM1
            CALL COLMN (NI,N2,N)
    3)0 CONTINUE
            CALL COLXL(N1,N2)
    DO 329 N = I,L
    DO 322N = I,L
32) CTEMP(N) = CB(I,N)
    CALL SOLMAT (ATSMP,B,CTEMP,ZBII),VBIII,DC,ANSIII,L) 465CCOCO
    DC 405 N=I,L
4)0 TTF(I,N)=ANS(N)
C COMPUTE ROW 2 THRU SM1
            DC 6JO N=2,SM1
            NL =M
            N2 =M
            CALL COLXCM (NL,NZ)
            OO 50, N=2,LM:
            CALL COLMNNN(N),N2,N)
    530 CCNTIVUE
            CALL COLXLM (N%,NE)
DC }310\textrm{N}=2,
    ATEMP(N) = AB(N,N)
        510 CTEMP(N)=CB(N,N)
            CALL SOLMAT (ATEMP,B,CTEMP,ZB(M),VB(M),DC,ANS(1),LI
            DO 590 N=1,L
        590 TTF(M,N)=ANS(N)
        SJC CCNTINUE
C COMPUTE RJN S
CALL COLXCLIN:,NZ)
            DO 8:3) N=2,LMS
CALL CCLMAI (N2,N2,N)
        300 CCNTINUE
300 CCNTINOE 
OC 810 N=1,L
            ATEMP(N)=AB(S,N)
        810 CTEMP(N)=CB(S,N)
            CALL SCLMAT (ATEMP,B,CTEMP,ZB(S),VB(S),DC,ANS(1),L)
            DO BGJ V=I,L
    g70 TTF(S,N)=ANS(N)
    900 KETURN
        END
454COCCC
                                    455000C0
                                    456C00C2
                                    457000C0
                                    458COCCO
                                    45800CCO
                                    45900000
    460000C0
    461CCOCO
    462COCOC
463500C0
    464000C0
                                    46500000
                                    46600000
457C0000
468C0000
4596COOO
47000000
47100C00
47200000
7300000
    CCNTIVUE KLM (N*,NE)
47560cco
476C0000
47700C00
47800C00
47900500
48030C00
481000C0
48-00Cc0
483000C0
48400000
48400000
48506090
48600000
48700000
48800000
489000C0
48900060
49000060
49100000
O
coco
492cconc
49400000
4950ccco
95cccco
49700000
```

Subroutine COLXO.- Subroutine COLXO computes the coefficients of the tridiagonal matrix where $\xi=0$ and $0 \leqq \eta \leqq 1$. The flow chart for subroutine COLXO is as follows:

The program listing for subroutine COLXO is as follows:

SUBROUTINC COLXCMA, N2I		49800009
		49900000
C	COMPUTE CIEF. FCR XI=C, COLUNN IMPLICIT	50000000
	IRUCOL $=1$ CCLUMN IMPLICIT	501 corco
C	IROCOL $=$? RCW IMPLICIT	502coreo
C		50200000
	CCMMON /PICK/ A(10,20), AA($201, \mathrm{AB}(10,201, A L P H A(20), R(20)$	50400000
		50500000
	4 CKXI(i), 2 (), $\operatorname{COST}(20), C P(10,20), 0(10,20), D C(20)$.	$50 \in C 0000$
	6 DELESQ, DFLETA, DELTA(20), DELXI, DELXISQ,E(10,20), EIGHT3,	50700001
		5c8ceroo
		50900 coc
	C ITTC,LM1,LME, NCLCT(20), MCCT (22), MSDOT (20), PID2,PRELOC (20), OC, 20),	51 ccoco
	E QCI, QCNET(20), QCCMB(2) , QR(20),QR1,QS(20),RNS,ROCPC,ROPCPP,	51100000
	G RSS(22),RSTO2, SIG, SIGDP, SIGMA, SIGP, SINT(2J), SMI, SMz, TAU, TB,	51200000
	I TT(1), 29 , TTF 110,201 , TWDELXI, TWOGI, V(20$)$, VE(IC), X(22), XDXISQ,	51300000
	K XCDXI, ${ }^{(10,23), 2(20), 28(10) ~}$	51400000
	COMMON /IAPUTS/ DUMMY(1), AEXP, ALCTAB(10), TTALC(1C), MALPHC,NALPHC,	51500000
	2 ALPHAT(1C), TALPHA(10), MALPHA, NALPHA, ALSTAB(10), TTALS(10), MALPHS,	51600000
	4 NALPHS, ASEXP, BETA, BEXP, BSEXP, CE, CKETATB(50), TTCKETAIIO),	51760000
	6 ETATAB(5), NCKETA, NETA, CKXITAB(50), TTCKXI(10), XITAB(5), NCKXI,	518 COCOO
	8 AXI, CJRDSY, CP[P, CPP, CPTAB(10), TTABCP(10), MCP, NCP, DELTAO(23),	52000001
	A DELTAU, DELTMIN, DTMAX, ELANTB(28), TTELAM(7), PELAM(4), NELAN,	52 coonct
	C NPELAM, ENCTAU, EPSONE, EPSCNEP, EPSONPP, ERRORT, GAMBAR,GAMINF,	52100000
		52200000
	G TTABHC(7), PHC (4),NHC, NPHC, HETAB(10), TTABHE (10), MHE, NHE, HWTAB(15),	52300000
	I TTABHW(15), MHW, NHW, IADJUST, IPLOT, L, MACHNO, MAXITT, MONAX,	52400001
	J NDOTO(20).	52500000
		52 t0CCOO
	M TTPSTAG(ICI,MPSTAG, NPSTAG, PTMAX, PTMIN, QCTAB(ICI,TTABGC(1C), MQC,	52700000
	N NGC, QRAT 20$)$,	E2800000
	O QRRAT (20), GRTAB(10), TTABQR(10), MQR, NQR,R(20), RIEXP, RNSI, RO, RODP,	52900000
	Q RCP, RS (2C), RSSMAX, S, STEBCL, T(1), 20), TAUC, TBTAB(10), TTABTB(10),	53000000
	S MTB, NTB, TDPRIME, THETA (20), TPRIME, XO, XORDER, ZS (20), ZSMAX	53100000
	REAL MOOTC, MDOT, MCDUT, MSCCT, MhSTR, MWO2, MACHNO, MDMAX	53230000
	INTEGER S,SM1,SM2	53300con

```
C
C STATION (1,1) XI=C , ETA=?
C
    DO 50 I=1,SM1
        S) CK(I)= (CKETA(I,1)+ CKETA(I+1.1)1/2.0
            DELDE = DELTAIII* DELETA
            PART2= H1(1,1) **2 * XDXISO
            PART1=RODPC
            HLR = H1(1,1) * R(1)
            FF=CKXI(1,1)*(2.0-CORDSY)/(2.0*PART2)
            G=RO*CP(1,1)/OELTAU-2.U*PART1/HIR+8*0*PART1/(3.0*CELCE)
            H=1,)/1 H2(1;1)**2 * DELTA(1)**2)
            SC=H/(3,0* DELESO)
            EPT4=SIGDP* (2.0/(HIR*H2(1,1)**2) - EIGHT3/DELDE)
            EPTB= EPT4 *TB
            EPT4= EPT4 *T(1,1)**3
            BSAVE = G
            GO TO (70, 80), IROCCL
        70 CCNTINUE
            A(1,1) =0.0
            BSI(1,1)=-SC*9.C *CK(1)
            C(1,1)= SC * (9.0 *CK(1) + CK(2) )
            Z(1)=-SC* CK(2)
            B(1)= BSI(1,1) - ESAVE + EPT4
            IF (IFIRST.EQ.O ) GO TO 80
        78 DC(1)=(-RSAVE-BSIB(1,1))*T(1,1) - CB(1,1)*T(1,2)- 2E(1)* T(1,3)
            1+EPTB
            GOTO 9.7
        30 FP=FF
            BS1B(1,1)= -70.** FP
            CB(1,1)= &.0 *FP
            ZB(1) = -FP
            IF (IFIRST.EQ.O I GO TO 78
        35 B(1) = BS:B(1,1)- BSAVE + EPT4
            OC(1) = (-RSAVE - BS1(1,1))*T(1,1) -C(1,1)*T(2,1) - 2(1)*T(2,1)
            1 + EPTB
    97 GO TO (101,600),IROCOL
C
C STATION(M,I) , XI=0 , ETA LESS THAN 1 , GREATER THAN J
C
    ENTRY COLXCM
    132 DO 200 M=N1,N2
        DELDE=DELTA(1)*CELETA
        MP1 = M+1
        MMI =M-1
        p817 = 8.0* DELTA(2) - DELTA(3) - 7.0* DELTA(1)
        PART2 = H:(M,1)**2 * XDXISO
        CORD=(2.(-CORDSY)/2.0
        FF= CKXI(N,1)*CORD/PART2
        G = RD *CF(N,1)/DELTAU
        SC = 1.0 /(H2(M,1)* DELOE **2)
        H=FF* P817/(2.0* OELDE) *ETA(M)
        P = CKETA(M,Z)/(H2(M,1)**2*HL(M⿴1)*R(1) * DELDE)
        BSAVE =G
        G0 TO (17C,180), IROCOL
    170 ccativue
    U= ETA(M)*MDOT(1) * CP(M,1)/(2.0*DELTA(1) * DELETA)
    A(M,1)= + -P + SC* CK(MM1) +U
        BS1(M,1) = SC * (-CK(NM1) - CK(M))
        C(M,I)= -H + p + SC* CK(M) -U
        B(M) = BSL(M,I) - BSAVE
        IF (IFIRST.EQ.O ) GO TO 18C
        179 DC(M)= {-BSAVE-BSIB(M,I))*T(M,1)-ZB(M)*T(M, З)-CB(M,I)*T(M,2)
        GO TO 200
    290 ZB(N) = -FF
        CB(M,I)= &.0 * FF
        BS1B(M,1)=-7.0*FF
        IF (IFIRST.EQ.O ) GO TO 178
    170 B(1) = BSIB(M,1) - BSAVE
        OC(1)=(-BSAVE - BS1(M,1))*T(M,1)-A(M,1)*T(MM1,1)-C(M,1)*T(MP1,1)
    2JO cONTINUE
    GC TO (202,60)I,IROCOL 60500000
```


Subroutine COLMN. - Subroutine COLMN computes the coefficients of the tridiagonal matrix where $0<\xi<1$ and $0 \leqq \eta \leqq 1$. The flow chart for subroutine COLMN is as follows:

The program listing for subroutine COLMN is as follows:


```
    W= H1(1,N)*H;(1;N)* CELETA *DELTARNI *8.C S9ECOOCO
    G1N=41(1,N)*H2(I,N)*H3(1,N)*RO*CP(1,N) 693C0000
    YY=(-VV*W*RODP C-GIN/DELTAU)
    EPT4= -VV *W *SICDP
    EPTP= EPT4* TB
    EPT4 = EPT4 * TII,N)**3
    BSAVE = YY
    GC TO (17C,187), IFCCOL
    170 CCNTINUE
    8S1(1*V) = -VV* 9.0* E32N
    C(1,N)=VV*(7.)* E\2N+EJ2N)
    Z(N) = -VV * EE?N
    B(:)= BSI(I,N) + FSAVE * EPT4
    IF (IFIRST:EQ.C ) GO TO 180
    178 OC(1)=(BSAVE-BSIB(1,N1)*T(1,N)-AB(1,N)*T(1,ANI)-CB(1,N)*
    \ T(1,NPI) + EPTR
        GO TO 2j0
    190 DINPI=(H2(1,NPI)+H2(1,N))*(H3(1,NP1)+H3(1,N))*(CKXI(1,NP1)+CKXI(1,
        1N)//(40*X[XISQ*(+2(1,NPI)+HI(1,N)|)
        D1NM1 =(H2(1,NM1)+H2(2,N))*(H3(1,NM1)+H3(1,N))*(CKXI(1,NM1)+CKXI(1,
        IN|)/(4,*XCXISQ*(HI(I,NMI)+HI(I,N||
            AB(1,N)=D!AM1
            BSiB(1,v)=-CINP1- DINML
            CB{1,N)=D:AP2
            IF (IFIRST.EQ.O ) GO TO 178
    \90 B(N)= BSLP(1,N) + PSAVE + EPT4
            DC(N)=(PSAVF-BS1(1,N))*T(1,N)-C(1,N)*T(2,N)-Z(N)*T(2,N)
            1 + EPTB
    230 CONTINUE
            GC TO (202,80)), IRACOL
c
C SIATION (M,V) XI GREATFR THAN C. LESS THAN I
                    ETA GREATER THAN O, LESS THAN I
    ENTRY COLNANN
    NP1=N+1
    NNi=N-1
2:2 DO 400 M=N1,N2
    MMI = 4-1
    MP1 = M+1
    VV= 1,3 /(DELTA(N)**2 * DELESQ)
    XX = ETA(N)*AA(N)/(DELTA(N)* DELESG)
    G = HI (N,N)* HZ (M,N) * H3(M,N) *RO * CP(M,N)
    EMMIZN=(H:(NM1,N)+H1(N,N))*(H3(MML,N)+H3(M,N))*(CKETA(MM1,N)+CKETA
    1(M,N))/(4**(HZ(NMI;N)*HZ(M,N)))*VV
    ENP12N=(H1 (NP1,A) +HI(M,N))*(H3(MP1,N)+H3(M,N))*(CKETA(MP1,N)+CKETA
    :(M,N))/(4,*(H2(NP1,N)+H2(M,N)))*VV
    DMM12N=(H2(NM1,N)+H2(M,N))*(H3(MM1,N)*H3(M,N))*(CKXI(MM1,N)+CKXI(M
    1M1,N))/(4:*(H:(MM1,N)+H1(M,N)))
    DMP12N=(H2(MPi,N) +H2(M,N))*(H3(MP1,N)+H3(M,N))*(CKXI(MF1,N)+CKXI(M
    1P1,N)}/(4,*(HI(MPI,N)+HI(M,N))
        FNM12N=XX*DNM12N*AA(N)*(ETA(MM1)+ETA(M))/(DELTA(N)*2.)
        FMP\2V =XX*DMP [2N*AA(N)*(ETA(MPI)+ETA(M))/(DELTA(N)*2.)
        W = 4.J * XE * DELXI * DELETA
        DENOM= 4.C* (DELTAI NMI) + DELTA (N)) *(HL(N,NMI) + H1 (M,N))
        FMNM12 = (H3(M,NM1)+H3(M,N)) *(H2(M,NM1)+H2(M,N))* (CKXI(M,NMI)
    1+ CKXI(M,N))* (AAS NMI) + AAS N))* ETA(M)/DENON
    DENOM= 4.C* (DELTAI NP1)+DELTAI N))*(HI(M,NP!)+H3(M,N))
    FMNP12=(H2(M,NP1)+H3(M,N))*(H2(M,NP1) +H2(M,N))*(CKXI(M,NP1)
    1 +CKXI(N,N))*(AA( NPI)+AA( NI)*ETA(M)/DENOM
    D1 = (FMNP12*(T(MPI),NP1)-T(MN1,NPI)+T(MP1,N)-T(MN1,N))-FMNM12**
    1(T(MPI,N)-T(!MI,N)+T(MP1,NM1)-T(MM1,NM1I))/W
    D2 = ETA(N)*AA(N)*CKXI(M,N)* (H2(MP1,N)* F3(NP1,N)* (T(MP1,NP1)
    1 - T(MP1,NMP))/H1(MP1,N) - H2(MM1,N) * H3(MM1,N)* (T(NN1,NP1)
    2-T(MMI,NML))/HL(MML;N) / /(DELTA(N) *W)
    DS = Ol + D2 - G *T(M,N )/ DELTAU
    bSAVE = G/DELTAU
    GU TO (37C,380),IPOCOL
694000C0
69500000
89600000
89700000
69800000
69900000
7000000
701c00cc
70200000
703000C0
70400000
70500000
7CECCOCO
70700000
70800000
709000cc
710000re
71100000
71200000
71300000
7:4:0000
71500000
71600000
717000co
71800000
719000co
72000000
72100000
72200000
72300000
72400000
72500000
72600000
72700000
72800900
72505000
73C00000
73100000
73200000
733C0000
734000rn
73500000
73600000
73700000
73830000
73900000
74000000
74100C00
74200000
74300000
74400000
74500000
74600n00
7470.0600
74800000
740.00000
75000000
751c0000
751coce0
75:00003
75400000
755,00)09
750c00r0
75700000
75800000
75900000
```

```
    370 CONT INUE
    HMN = ETA(N) * MDOT(N)/(DELTA(NI * RO)
    YY= G * HNN/(2.0* DELETA)
    A(M,N)=ENN12N + FMM12N + YY
    BS1(M,N)= -EMM12N - EMP12N -FMP12N - FMM12N
    C(M,N)=ENP12N + FMP12N - YY
    B(M) = BSI(M,N) - BSAVE
    IF (IFIRST.EQ.O ) GO TO 330
    378 DC(M) = DS- BSIE(M,N)*T (M,N) -AB(M,N)*T(M,NM1)-CB(M,N)*T(M,NP1)
    GC TO 4J0
    380 OMNM12=(Hz(M,NM1)+H2(M,N))*(H2(M,NM1)+H3(M,N))*(CKXI(M,NM1)+CKXI(M
    I,N))/(4**(H1(M,NM1)+HL(M,N)))
        AB(M,N)=DNNMI2/XDXISQ
        DMNP12=(H2(N,NPI)+H2(M,N))*(H3(M,NP1) +H3(M,N))*(CKXI(M,NP1) +CKXI(M
    1,N)//4.*(H1(M,NP\)+H1(M,N)I)
        CB(M,N)=DNNP12/XDXISO
        BSIB(Y,N)=-AB(M,N)-CB(M,N)
        IF (IFIRST.EQ.O ) GO TO 378
    300 B(N) = BS:B(M,N) - BSAVE
        DC(N)=DS - BSI (N,N)*T(M,N) - A(M,N)*T(NNL,N)-C(N,N)*T(NP1,N)
    400 CONTINUE
        GC TO (4)1,820), IROCOL
c
STATION (S.N) XI GREATER THAN O, LESS THAN 1, ETA =1
        ENTRY COLMNI
        NP1=N+1
        NM1=N-1
4O1 HIH3=H1(S,N)* H3(S,N)
        XX= 3.) * DELTA(N)**2 * DELESQ
        U = AA(N)/ (2.0 *DELESQ* DELTA(N)
        G = HiH3 *H2(S,N) * RO *CP(S,N)
        PART=AA(N)/(DELTA(N)*4.0*DELETA*DELXI*XO)
        SST= f3(S,N)*CKXI(S,N)*3./HI(S,N)
        DS=PART*(SST*TIS,NPI)-SST*T(S,NMI)
    1 -4,)*F2(SMI,N)*H3(SM!,N)*CKXI(SMI,N)*(TISM&,NP1)-T(SM%,NM1))/
    2H1(SM1,*)+H2(SM2,N)*H3(SME,N)*CKXI(SM2,N)* (T(SM2,NPI)-T(SM2,NM1))
    3/H1(SM2,N))
        ESM32N=(H1(SM, N) +H1(SM2,N))*(H3(SMI,N)+H3(SM2,N))*(CKETA(SM1,N)*
    1CKETA(SM2,N))/(4.*(H2(SM1,N)+H2(SM2,N))*XX)
        ESM1 2N=(H:(SM1,N)+H1(S,N))*(H3(SM1,N)+H3(S,N))*(CKETA(SM1,N) +CKETA
    1(S,N))/(4,*(H2(SM2,N)+H2(S,N))*XX)*g.
        DSM1 2N=(H2(SM1,N) +H2(S,N))*(H3(SM1,N) +H3(S,N))*(CKXI(SM1,N)+CKXI(S
    1,N)l/ (4.C*(HI(SMI,N)+H1(S,N)|)
        FSM12N=DSNI2N*AA(N)*(ETA(SM1)+ETA(S)I/(DELTA(N)*2.)*9**U
        DSM32N=(H2(SM2,N)+H2(SM1,N))*(H3(SM2,N) +H3(SM1,N))*(CKXI(SM2,N) +
    & CKXI(SMI,N)I/(4.*(H1(SMz,N)+HI(SML,N)))
        FSM32N=DSNE2N*AA(N)*(ETA(SM2)+ETA(SM1))/(DELTA(N)*2.)*U
        BSAVE = G/DELTAU
        GO TO (570,5BC),IROCOL
\XiT0 CONTINUE
        YY=G*MDOT(N)/ (RO*2.O*DELTA(N)*DELETA)
        V(N)= -ESN3ZN - FSME2N -YY
        A(S,N) = ESM12N + ESME2N + FSM12N + FSM32N + 4*O*YY
        DD=8.*H1HZ*DELTA(N)*DELETA/XX + 8.*U*
    lHZ(S,N)*DELTA(N)*F(S,N)*DELETA/CKETA(S,N)
        DDQS(N)=DC*OS(N)
        BS1(S,N)=-DC*SIG*T(S,N)**E-ESM12N-FSM12N-3.0*YY
        B(S) = BS!(S,N) - BSAVE
        IF (IFIRST.EQ.O ) GO TO 58G
578 DC(S) =-DC GS(N)+ DS+(-BSAVE-BS1B(S,N))*T(S,N)-AR(S,N)*T(S,NM1)
    1-CB(S,N)*T(S,NP1)+ ODQSR(N)
        GO TO 5>0
53) DSNM12=(HZ(S,NN1)+H2(S,N))*(H3(S,NM1)+H3(S,N))*(CKXI(S,NM1)+CKXI(S
    1,N)I/14**(HI(S,NMI)+HI(S,N)) *XDXISQ)
        OSNP12=(H2(S,NP1)+H2(S,N))*(H3(S,NP1)+H3(S,N))*(CKXI(S,NP:)+CKXI(S
    I,N)I/(4,*(HI(S,NP1)+HI(S,N))*XDXISQ)
        DENOM=4*O*(OELTAS NM1)+DELTAS N))*(H2(S,NMI)+H1(S,N))
        FSNM12=(HZ(S,NMI)+H2(S,N))*(H2(S,NM1)+H2(S,N))* (CKXI(S,NM1)
```

 76000000
 $76: 30060$
7620000
7630000
76400000
76:50000
76600000
767000 c n
75800000
75900500
77000000
77100000
77200000
77300000
774000 CJ
77500000
77e000C0
77700000
77800000
779000 a
$78 \mathrm{C00000}$
78130000
78200000
78300000
784000 co
78500000
78630000
79700000
78800000
78900000
790000 C
79100000
79200000
79300000
79400000
79500000
79600s0
79700000
79800000
79930000
800000 CO
82100003
80200000
80300000
804C00CC
805000 co
806 C0000
80760000
80800000
80scocco
81000000
81100000
81200 CCC
813000 C
81400000
81500000
8160 Cc 0
817000 CO
818 ccac 0
81900000
82000000
82100000
82200000
$82300 C 00$
82400000
82500000
826000ce
82700000
82800000

```
    1+CKXI(S,N))*(AAI NMI)+AAI NHI/DENCM 829200CO
    OENCM=4&O*(OELTA( NPI)&DELTAI NH)*(HI\S,NPI)+HL(S,N)) 83CEOCRO
    FSNP122=(H3(S,NP1)+H3(S,N))*(H2(S,NPI)+H2(S,N))*(CKXI(S,NP1)
    FSNP12=(H3(S,NPL)+H3(S,N))*(H2(S,NPI)+H2(S,N)|*(CKXI(S,NP1)
    DENOM=2.O*XC*DELXI
    GSN= DELTA(N)*H2(S,N)/(CKETA(S,N)*DENCM)
    OSNP1 = DELTA(NP1)* HZ(S,NP1)/(CKETA(S,NP1)* DENCM)
    QSNM1= DELTA(NMI)* H2(S,NM1)/(CXETA(S,NM1)* DENOM)
    QSNM1= DELTA(NMI)* H2(S,NM1)/(CXETA(S,NM1)* DENOM)
    1(QSN*QS(N)+ QSNMI*CS(NM1))
    AB(S,N)=DSNM12-FSNM12*SIG*QSNML#T'(S,NM1)**3
    CB(S,N)=0SNP:2*FSNPI2*QSNP1*SIG*T(S,NP1)**3
    BS1B(S,N)=-DSNPI2-DSNM12+SIG*T(S,N)**3*QSN *(FSNP12-FSNM12)
    IF (IFIRST.EQ,O) GO TO 578
590 B(N)=BSIB(S,N)-PSAVE 
590 B(N)=BSIG(S,N)-PSAVE 
    I-A(S,N)*T(SM1,N)-V(N)*T(SM2,N)+ DOQSR(N)
6O0 CONTINUE 8463COCO
8)0. RETURN
    END
83300C00
834COCCO
    834c00c!
    83500000
826000C0
    DDQSR(V)= FSNP12* (QSNPI*QS(NP1)* QSN*QS(N))-FSNML2* E37CCNCO
838000C0
    839000cn
    *
840.00000
841c0000
84200nco
84320000
    <
I-A(S,N)*T(SM1,N)-V(N)*T(SMZ,NI+ DOQSR(N)
84700000
848000n0
```

Subroutine COLXL. - Subroutine COLXL computes the coefficients of the tridiagonal matrix where $\xi=1$ and $0 \leqq \eta \leqq 1$. The flow chart for subroutine COLXL is as follows:

The program listing for subroutine COLXL is as follows:

```
SUBROUTINE COLXXLN1,N21 84900CCO
C
C COMPUTES GOEF. FOR XI=1 I X=LI COLUMN IMPLICIT
C COMPUTES GOEF FOR XI=1 I X=LI COLUMN IMPLICIT
C IROCOL = 2 ROW IMPLICIT
C
        COMMON /PICK/ A(10,201,AA(20),AB(10,20),ALPHA(20),B(20),
        2 BS1(1),2C),BS1B(10,20),C(10,201,CB(10,20),CK(10),CKETAI10,20),
        4 CKXI(10,20),CCST(20),CP(10,20),D(10,20),CC(20),
        6 CELESQ,DELETA,DELTA(20),DELXI,DELXISQ,E(10,20), EIGHT3,
        8 ELAM( 2)), ETA(10), EXPG,F(10,20),GG,GIMACH,H1(10,20),H2(10,20),
        A H3(10,20),HC(20), HCOMB(2C),HE,HW(20), IFIRST,IROCCL,ITC,ITR,ITT,
        C ITTC,LML,LM2,MCDCT(20),MOOT(22),MSDOT(20),PID2,PPELCC(20),0C(20).
        C QCl,QCNET(20),QCCMB(20),QR(2C),QRI,QS(20),RNS,RODPC,ROPCPP,
        G RSS(22),FSTO2,SIG,SIGDP,SIGMA,SIGP,SINT(20),SMI,SM2,TAU,TB,
        I TT(1),20),TTF(10,20),TWOELXI,TWOGI,V(20),VE(10),X(22),XOXISQ,
        K XCOXI,Y(10,2J),Z(20),ZB(10)
            COMMON /INPUTS/ DUMMY(1),AEXP,ALCTAB(1O),TTALC(10),MALPHC,NALPHC,
        2 ALPHAT(IC),TALPHA(10),MALPHA,NALPHA, ALSTAB(10),TTALS(10),MALPHS,
        4 NALPHS,ASEXP,BETA,BEXP,BSEXP,CE,CKETATB(50),TTCKETA(10).
        6 ETATAB(5),NCKETA,NETA,CKXITAB(50),TTCKXI(10),XITAB(5),NCKXI,
        8 NXI,CORDSY,CPDP,CPP,CPTAB(IO),TTABCP(1O),NCP,NCP,DELTAO(2O),
        A DELTAU, DELYMIN,DTMAX, ELAMTB(28), TTELAM(7), PELAM(4),NELAM,
        C NPELAM, ENDTAU,EPSONE,EPSCNEP,EPSCNPP,ERRORT,GAMBAR,CAMINF,
        E HCCMBTB(28), TTHCOMB(7), PHCOMB(4),NHCOMB,NPHCOMB,HCTAB (28),
        G TTABHC(7),PHC(4),NHC,NPHC ,HETAB(10),TTABHE(10),MFE,NHE,HWTAB(15),
        I TTABHWII5I,MHW,NHW,IADJUST,IPLOT,L,MACHNO,NAXITT,MDNAX,
        J MDOTO(20).
        K MWO2, पWSTR,NTP(7),PLTIME(I5),PRAT(20),PRFREQ,FSEXP,PSTAGTB(10);
        M TTPSTAG(IO),MPSTAG,NPSTAG,PTMAK, PTMIN,GCTAB(IC),TTABQC(ICI,MQC,
        N NQC,QRAT(20).
        O GRRAT (20),QRTAB(1O1,TTABQR(101,MQR,NQR,R(20),RIEXP,RNSI,RO,RODP,
        Q ROP,RS(2C),RSSMAX,S,STEBOL,T(1),20),TAUO,TBTAB(1O),TTABTB(IO),
        S MTR,NTB,TDPRIME,THETA(2O),TPRIME,XO,XORDER,ZS(2C),ZSMAX
        REAL MDCTC,MDOT,MCDOT,MSDOT,MLSTR,MWO2,MACHNO,NDNAX
        DIMENSION AL(10)
        INTEGER S,SM1,SM2
    2)1 FORMAT (7E18.7)
C
C STATION (L,L) X=L , ETA =0,
C
        W=3.)* XC**2 * OELXI
        U=8.0*H2(1,L)*Hz(1,L)*XO
        xX = 3,J*H1(1,L)*H3(1,L)* DELTA(L)
        SC=3.3* DELTA(L)**2 * DELETA
        G= -U*ROPCPP/W-x**RUDPC/SC - H111;L)*H2(1,L)*H3(1,L)*RO*CP(1,L)
1 /DELTAU
    PART1 = SC * OELETA
    E 32L=(HL(Z,L)+HI(L,L))*(H3(2,L)+H3(1,L))*(CKETA(2,L)+CKETA(1,LI)/
1(4**(H2(2,L)+H2(1,L)))*9.
    E52L=(HL(3,L)+HL(2,L))*(H3(3,L)+H3(2,L))*(CKETA(3,L)+CKETA(2,L))/
        i(4.*(H2(3,L)+H2(2,L)))
    D1LM32=(H2(1,LM3)+H2(I,LMC))*(H3(1,LY1)+H3(1,LM2))*(CKXI(1,LM1)+
LCKXI(I,LME2))/(4,*(Hi (I,LMI) +H1(I,LM2)))
    D1LM12=(H2(I,LM1)+H2(1,L))*(H3(1,LM1)+H3(1,L))*(CKXI(1,LM!)+CKXI1I
l,L)//(4**(HI(I,LMI)+HI(1,L)))
    EPT4= (-U*SIGP/W -XX*SIGDP/SC)
    EPTB= EPT4* TB
    EPT4=EPT4*T(1,L)**2
    RSAVE =G
C
    GO TO (15G,1BC),IROCOL
15) CONTINUE
    BSI(I,L)= -E32L/PARTI
    C(1.L)= (E52L + E32L)/PART1
    Z(L)=-E5टL/PART1
    B(1)= BSI(I,L) + BSAVE + EPT4
    IF (IFIRST&EQ.S I GOTO 130
    85000000
8510 coc 0
852 COOCO
85300000
854 COOC
855000 co
85600000
\(8570 C 000\)
858000 CI
858000011
85900000
86000000
86100000
86200000
86300000
86400000
86400000
86600000
86700000
86800000
86900000
87100001
87100002
87200000
87300000
87300000
87400000
87500001
87600000
87700000
87800000
87900000
87960000
88000000
88100000
88200000
88300000
\(884: 20000\)
88500000
886000 CO
88700000
888000 CO
88970000
89000000
89100000
89200000
89300000
89400000
8950000 C
89600000
8970000 C
89800000
89900000
89900000
soococen
501000 CO
90200000
90300000
c0400000
90500000
90630000
90700000
9080000
9090000
91000000
91100000
91100000
91200000
\(9130 c 000\)
91400000
91400000
91500003
916000CO

```

 1. T(1:LM1) + EPTB
 GO TO 198
 130 CCNTINJE
 VB(1)=- D!LM3?/(W*DELXI)
 AB(1.L)= (DILM32* 9.0*DLLM12)/(**DELXI)
 BS1B(L,L)=-9.)*D1LM12/ (W*DELXI)
 IF (IFIRST EQ,S) GO TO 178
 IFC B(L)=ASSE(1,L) + BSAVE + EPT';
 DC(L) = (BSAVE - BSLII,L)I*T(1,L)-C(1,L)*T(2,L)-Z(L)*T(3,L)
 I +EPTB
 :78 CCNTINUE
 GC TO (202,802), IROCOL
 C
C STATICN (A,L) X=L ETA GREATER THAN C, LESS THAN 2
ENTRY GCLXLM
202 DO 21O M=1,S
210 AL(M)= F2(M,L)*H3(M,L)/H1(M,L)
W=3.J * XC \& DELXI
YY = DELTA(L)**2 * DELESQ
DO 3O) M=N1,N?
MMQ = M-1
MP1 = 1+1
XX=ETA(M)*(AA(L)* AA(LMM))/(4*O* (DELTA(LI* DELTA(LMI))*DELETA)
XXI=ETA(N)*(AA(LM1)+AA(LM2))/(4**(DELTA(LMZ)+DELTA(L42))*
1DELETA)
XY = 3.)* C(M,L)*HI(M,L)/ CKXI(M,L)
AN = ETA(N)*A\Delta(L)* CKXI(M,L)/ DELTA(L)
AM = AN/(DELTA(L) * DELESQ)
G = H2(M,L)* H2(M,L)* H3(M,L) * RO * CP(M,L)
AJ = AN /(4.O* DELETA * XO * DELXI)
UL=(H2(MP1,L)+H2(M,L))* (H3(MP1,L)+H3(M,L)) *(ETA(MP1)+ETA(M))
1/(4,)* (HI(MP2,L)+H1(M,L)))*AA(L)
U2= (H2(MNL,L)+H2(M,L))*.(H3(MM1,L)+H3(M,L)) *(ETA(MMI) +ETA(M))
1/(400* (HL(MMI,L) +HI(M,L)))*AA(L)
DMLM32=(H2(N,LM1)+H2(M,LM2))*{H3(M,LM1)+H3(M,LM2))*(CKXI(M,LM1)t
LCKXI(M,LM2))/(4**(HL(M,LMI)*HI(M,LM2)))
DMLM12=(H2(N.LMI) +H2(M,L))*(HZ(M,LMI)+H3(M,L))*(CKXI(M,LMI)+CKXI(M
L,L)//(4**(HL(M,LML)+HI(M,L)))
D1 = -9.3*[MLM12* XX* (T(MPI,L)-T(MM2;L)+
1 T(MPL,LM1) - T(MM1,LM1))
D2 = O4LM22 *(-XX1)* (T(MPI,LM1)-T(MM1,LN1)
2 + T(MPL,LM2)- T(MM1,LM2))
DN = - (D1 +D2)/W
DNL = AJ*(AL(MP1)* (3*O*T(MP1,L)-40C*T(MPL,LM1) +T(MP1,LM2))
i-AL(MM1)*(3.O*T(MMI,L)-4.O*T(MML,LM1)*T(MN1,LM2)))
BSAVE = -FCPCPP * XY/ W - G/DELTAU
EPT4 = -SIGP* XY/W
EPTB= EPT4*TB
EPT4= EPT4*T(M,L) **3
C
GO TO (240, 2801,IROCOL
240 CONTINUE
EMM12 = (H:I(N,L) +HI(MN1,L))*(H3(M,L)+H3(MM1,L)) *(CKETA(M,L)
L +CKETA(MML,L))/ (4.O* (H2(M,L)+H2(MM1,L)))
EMP12=(HI(M,L)+HL(MP1,L))*(H3(M,L)+H3(NPI,L)) *(CKETA(M,L)
I+ CKETA(MP1,L))/ (4*O* (H2(M,L) +H2(MP1,L)))
GH=G*ETA(M)* MDOT(L)/IDELTA(L)*RO *2.O* DELETA)
A(M,L)=AM*UZ + EMM12/YY +GH
C(M,L)=AN*U1 + EMP12/YY -GH
BS1 (M,L)=AM* (-UL-U2) +(-EMM12 -EMP12)/YY
B(M) = BSI(M,LI + BSAVE + EPT4
IF (IFIRST.EQ.O, GO TO 280
27BDC(M)=DN + DN1 + BSAVE*T(M,L) - VB(M)*T(M,LM2) - AB(M,L)*
I T(M,LMI)-BSIE(M,L)*T(M,L) + EPTB
GO TO 300
91700000
918 COC 00
91900000
92000000
92100000
92200000
923000 CO
924 COOOO
¢2500000
92600000
92700000
52800000
9290000 C
93000000
93100000
932000 CO
$933000 C 0$
93400000
935000 CO
93600000
537 COCCO
93800 CCO
93900000
94000000
941000 CO
94200000
94300000
54400000
945 COCCO
54600000
94700060
94890000
94960000
95000000
55:C00C0
95200000
95300000
55409000
95500000
95600000
95700000
¢5800000
95900000
$560 C 0000$
96100000
96200000
96300000
96400000
96500000
96600000
96700000
96800000
96900000
57000000
57100000
57200000
97300000
97400000
97500000
97600000
97700000
97800000
97900000
98000000
58100000
98200000
5830000 C

```
```

 290 continue
 PART = W * XC * CELXI
 PART2=DMLNZ2/PART
 PARTL= F.r * DNLMI2/PART
 VB(M) = - PART2
 AB(M,L) = PART1 +PARTE
 BS1B(M,L) =- PARTl
 IF (IFIRST.EQ.C) GO TO 278
 270 B(L)= BSIB(N,L) + BSAVE + EPT4
 DC(L)=ON*CNI+(BSAVE-BSI(M,L))* T(M,L)-A(M,L)*T(MML,L)-C(M,L)
 1 * T(MP1,L) + EPTB
 3JO CONTINUE
 GOTO (3C1,8)O),IROCGL
 C
C STATION {S,L} XI =1, (X=L), ETA=1,
C
ENTRY COLXLl
3)1 CONTINUE
W = 3.0 * XCDXI
WSQ = 3.0* XDXISQ
DEDETA = DELTA(L) * DELETA
TWDEL = 2.0* DELTAlL)
U1=(AA(L)+AA(LMI))/I2**(DELTA(L)+DELTA(LM1)))
U2=(AA(LMI)+AA(LM2))/(2**(DELTA(LML)+DELTA(LM2)))
SP=(HI(S,L)* XCDXI + 2.)*TPRIME)/(HI(S,L)*XCDXI)
DHK = DELTA(L) * H2(S,L)/ CKETA(S,L) *SP
DHKI = DELTA(LMI)* H2(S,LMI)/ CKETA(S,LMI)
DHK2= DELTA(LMZ)* H2(S,LM2)/ CKETA(S,LM2)
ZZ2 =3,)* CELETA * E(S,L)* DELTA(L) * H2(S,L)* SP/CKETA(S,L)
FF=1.)/(3:C*DEDETA**2)
H=8,0 * Hi(S,L) * D(S,L)/CKXI(S,L)
PART = AA(L) /DEDETA
ADD = PART/3.0
ADDI = (1.C + ETA(SM1))*PART/2.0
ADD2 = (ETA(SM1) + ETA(SM2)) *PART/2.C
PART = 3.0* T(SM1,L)-4.0*T(SM1,LM1) + T(SN1,LM2)
DSM32L=(H2(SM2,L)+H2(SMI,L))*(H3(SM2,L)+H3(SM1,L))*(CKXI(SM2,L)+
: CKXI(SM1,L))/(4.*(H1(SM2,L)+H1(SM2,L)))
PART2=OSME2L*(3.*T(SM2,L)-4.*T(SM2,LM1)+T(SN2,LM2)+PART)
DSM:2L= (H2(SMI,L)+H2(S,L))* (H3(SML,L)+H3(S,L))* (CKXI(SM1,L)
1 +CKXI(S,L))/(4.O* (HI(SMM,L)+HI(S,L)I)
PART1= -9*C*DSM12L*(3.7*T(S,L)-4.0*T(S,LM1) +T(S,LM2)+PART)
GSL=H1(S,L)* HE (S,L)*HZ(S,L)* RO *CP(S,L)
PARTW = - .0/W + ACD
EPT4= SIGP * H*PARTW
EPTB= EPT4 * TB
EPT4 = EPT4 * T(S,L) **3
DN = ADD * (PARTI + PART2)/(4.0* XODXI) + EPTB
BSAVE=H*RCPCPP*(PARTW)-GSL/DELTAU
GC TO (55%,650), IROCOL
550 CCNTINUE
AJ=GSL *MDCT(L)/ (RO*2.0*CELTA(L)*DELETA)
DDSL= -FF*Z22
QSAVE= DOSL* QS(L)
ESM32L=(H1(SM2,L)+HI(SM2,L))* (H3(SM2,L)+H3(SM1,L))* (CKETAISM2,L)
1+ CKETA(SN1,L))/ (4.C*(H2(SM2,L)+H2(SM1,Ll))
PARTE3=FF*ESM32L
PARTD3= AOC*ADD2*DSMZCL
V(L)= -PARTD3- PARTE3-AJ
ESM12L=(H1(SM1,L)+H1(S,L))*(H3(SM1,L)+H3(S,L))*(CKETA(SM1,L)
1 +CKETAIS,LI)/(4.O* (H2(SMI,L)+H2(S,L)))
PARTEI = fF*9.0*ESM12L
PARTOL= ACC*ADC1*S.0*DSMIZL
A(S,L) = PARTDI + PARTD 3 + PARTE3 + PARTEL + 4.0*AJ
BSI(S,L)= COSL*SIG*T(S,L)**3 - PARTDI - PARTEI - 3.O*AJ
B(S)=BSI(S,L) + BSAVE + EPT4
IF (IFIRST.EQ.O) GO TO 650
64B DCI S) = DN-VB(S) \#T(S,LM2) -AB(S,L)*T(S,LML)- (BS1B(S,L)
l -BSAVE) * T(S,L)+ QSAVE + DDQSR
GO TO 300

```
        98400000
        98500000
        98600000
        \(\varsigma 8700000\)
        98860000
98900000
        98920000
        saccocco
        99100 CO
        99200000
        993 coono
        99400000
        99500000
        99630000
        59700000
        998000 CC
        999COCCO
100000000
\(100160 c c 0\)
100200000
100300000
100400000
100500000
100600000
10070000
1 coecocoo
100000000
101000000
101100000
i 12 Coc 0
101300000
101400000
101500000
icienocen
101700000
101800000
101900000
102030000
102100 co
102200000
102330 C 00
102400000
102500000
102600000
102700000
102800000
102900000
103000000
103100000
103200000
103360000
103400000
103530000
103600000
1.37COCOD
203800000
1039 200.co
1040 cocno
10410000
\(1042 \mathrm{COC0} 0\)
104300000
104400000
104500000
104600000
104700000
104800000
104900000
105000 COO
105100000
105200000
105300000
```

650 CONT INUE
105400000
WXODXI = W* XOCXI 1055000C0
DSLM3=(H2\S\&LM1)*H2\S.LM2))*{H3(S.LMI)*H3ISOLM2)|* (CKXI(S,LM]) 105000COC
L\&CKXI(S.LM2))/(4.C* (HI(S.LM1)+H1(S.LM2))) \&057C00C0
DSLML=9.O* (H2(S,L)+H2(S,LM1))*(H3(S,LI*H3(S,LML))*(CKXI(S,L)* 1058COOCO
1 CKXI (S,LM1|)/ {4,0*(Hi(S,L|HHL(S,LH1)|) 1059000G0
QSLML = (-DSLML *UL + DSLMZ* U2)*DHK1/W 1060COO00
QSLM2 = DSLM3*U2 *DHK2/W 106100000
QSL=-U1* DHK* OSLMI/W 1062COOCO
DDQSR= QSLM1* QS(LM1) +QSLM2 *QS(LM2) 4 QSL*QS(L) 106300000
VB(S)=-DSLNZ/WXCOXI+GSLM2*SIG*TIS,LM2)**3 1C64C00CO
AB(S,L)={CSLML*DSLM3)/WXODXI+QSLM1*SIG*T(S,LM1)**3 106500000
BSIB(S,L)=-DSLNI/WXOOXI+QSL*SIG*T(S,L)**3 1C66COOOO
IF (IFIRST.EQ.O GO TO 648
106700000
(IFIRST EQoO)
69C B(L)= BSTE(S,L) + BSAVE + EPT4 106800000
DC(L)=DN+GSAVE + DOQSR
1-V(L)*T(SM2,L) - A(S,L) *T(SMI,LI- (BSI(S,L)-BSAVE)*T(S,L) 1C70COGCC
8)0 RETURN
1c7100c00
END
107200000

```

Subroutine SQAERO. - Subroutine SQAERO computes convective and radiant heating rates and surface mass-loss rates and obtains variables which are functions of time, temperature, and pressure. The flow chart for subroutine SQAERO is as follows:



The program listing for subroutine SQAERO is as follows:
```

SUBROUTINE SQAERO
C
C
rhis routine cCmputes the heating rates anc tre mass loss rates
COMMCV/PICK/ AIIC,20),AA(20),AB(10,20), ALPHA(201, B(201,
2 BSI(1),2C),BS1B(10,20),C(10,20),CB(10,20),CK(10),CKETA(10,201,
4 CKXI(10,20),COST(20),CP(10,201,D(10,20),OC(20).
6 DELESO,OELETA,DELTA(2OI,DELXI,DELXISG,E(1O,20), EIGHT3,
8 ELAM(2J), ETA(10),EXPG,F(10,201,GG,GIMACH,H1(10,2C),F2(1C,20),
A H3(10,2J),HC(201,HCOMB(2C),HE,HW(20),IFIRST,IROCCL,ITC,ITR,ITT.
C ITTO,LM1,LM2,MCDOT(2C),MDOT(221,MSDOT(20),PID2,PRELCC(20),QC(20),
E QC1,QCNET(20),QCCMB(201,QR(20),GR1,QS(20),FNS,RCDPC,ROPCPP,
G RSS(22),RSTO2,SIG,SIGDP,SIGMA,SIGP,SINTI201,SMI,SM2,TAU,TB,
I TT(10,20),TTF(10,20),TWDELXI,TWOGI,V(20),VB(10).N(221,X0xISQ.
K XCDXI,Y(10,20),Z(20),ZB(10)
COMMON /INPUTS/ DUMMYII1,AEXP,ALCTAB\&10), TTALC(10),MALPHC,NALPHC,
2 ALPHAT(1C),TALPHA(IC),MALPHA,NALPHA,ALSTAB(10),TTALS(10),MALPHS.
4 NALPHS,ASEXP,BETA,BEXP,BSEXP,CE,CKETATBISOI,TTCKETAIIOI,
6 ETATAB(5),NCKETA,NETA,CKXITAB(50),TTCKXI(10) XITAB(5),NCKXI,
8 NXI,CORDSY,CPCP,CPP,CPTAB(10),TTABCP(101,MCP,NCP,DELTAO(20),
A DELTAU,DELTMIN,DTMAX,ELAMTB(28), TTELAM(7),PELAM(4),AELAM,
C NPELAM, ENDTAU,EPSONE,EPSONEP, EPSONPP,ERRORT,GAMBAR,GAMINF,
E HCOMBTB(z8),TTHCCMB(7),PHCOMB(4),NHCOMS,NPHCCMB,HCTAB(28):
G TTABHC(7),PHC(4),NHC,NPHC,HETAB(10), TTABHE(10),MFE,NHE,HWTAB(15).
I TTABHW(IE),MHW,NHW,IADJUST, IPLOT,L,MACHNO,MAXITT,MDMAX,
J MOOTO(20).
K MWC2,MMSTR,NTP(7),PLTIME(15),PRAT(20),PRFREQ,PSEXP,PSTAGTB(10),
M TTPSTAG(10),MPSTAG,NPSTAG,PTMAX,PTMIN,QCTAB(10),TTABQC(10),MQC%
N NGC,QRAT (20),
O QRRAT(2)),QRTAE\IO),TTABQR(10),MQR,NGR,R(20),RIEXP,RNSI,RO,ROCP,
Q RCP;RS(2C),RSSMAX,S,STEBCL,T(10,201,TAUO,TBTABIIOI,TTABTBIIO).
S MTB,NTB,TDPRIME,THETA(2O1,TPRIME,XO,XCROER,ZS (2CI,ZSMAX
REAL MDOTC,MDOT,MCDOT,MSDOT, MWSTR,MWO2,MACHNO,MONAX
INTEGER S,SN1,SM2
C LJOK UP CP, CPBAR, CKN ,ETC, AS FUNCTTONS CF TEMFERATURE
DO 11 N=1,L
CALL FTLUP (TT(S,N), ALPHA\N),MALPHA,NALPHA,TALPHA,ALPHAT)
11 CALL FTLUP (TT (S,N),HW(N), MHW,NHW,TTABHW,HWTAB)
IF (ITT.NE.II GO TO ICO
C LJOK UP FUNCTICAS OF TIME
CALL FTLUP (TAU,ALPHAC,MALPHC,NALPHC,TTALC,ALCTAB)
CALL FTLUP (TAU,ALPHAS,MALPHS,NALPHS,TTALS,ALSTAB)
CALL FTLUP (TAU;HE,MPE,NHE,TTABHE,HETAB)
CALL FTLUP (TAU,PSTAG,MPSTAG,NPSTAG\&TTPSTAG,PSTAGTB)
CALL FTLUP (TAL,QCL ,MQC,NQC,TTABQC,QCTAB)
CALL FTLUP (TAU,QRI,MGR,NQR,TTABQR,QRTAB)
CALL FTLUP (TAU,TB;MTB,NTB,TTABTB,TBTAB)
TB=TB4*4
C
C AJJUST CONVECTIVE AND RADIANT HEATING RATES AND THE PRESSURE AND
C HEATING.DISTRIBUTICN TO SHAPE CHANGE (ADJUST QCI,QRI.PRAT,QRAT)
C
IF (CDRDSY.NE.O) GO TO 20
CALL ADJUST
2) DO 30 N=1.L
DELTAO(N)=DELTA(N)
QR(N)=QR1*QRRAT\N|
QC(N)= QCl. *QRAT(N)
PRELOC(N) = PSTAG * PRAT (N)
CALL DISCCT(TT(S,N),PRELOC(NI,TTABHC,HCTAE,PHC,1.1,28,4,HCINII
CALL DISCCT(TT(S,N),PRELOC(N),TTELAM,ELAMTB,PELAM,I1,28,4,ELAM(N)
1)
3) CALL DISCCT (TT(S,N),PRELOC(A), TTHCCMB,HCOMBTB,PHCOMB,11,28,4,
{ HCOMB(N))

```

107200000
107400000
107500000
107600000
107700000
107800000
107900000
108000001
\(1 \mathrm{CB100000}\)
108200000
108300000
108400000
108500000
108600000
108700000
108800000
108900000
109000000
109100000
109300001
109300002
109400000
109500000
109600000
169700001
109800000
109900000
110000000
110100000
110200000
110300000
110400000
110500000
110600000
110700000
110800000
110930000
111000000
111100000
111200000
111300000
111400000
111500000
111600000
111700000
111800000
111900000
112000000
112100000
112200000
112300000
112400000
112500000
112600000
112700000
1128 COOCO
112900000
113000000
113100000
113200000
113300000
113400000
113500000
113600000
```

C CUMPUTE QS ACRCSS FRCNT SURFACE 1137CO000
BAT = LO - BETA 113800000
2)\ DO 200 N=% L
CELL =HE /GC(N)
CAT = QC(A)* (1,C - HW(N)/HE)
BLOCK=(ALPHAC *MCDOT(N) \& ALPHAS *MSOOT(N))* CELL
QCNET(N) = CAT *(1.0 - BAT *(0.6* BLOCK - C.084 * BLOCK**2)
1-BETA * ELOCK)
QCOMB(N)= MCDOT(N) * HCOMB(N)
QS(N)= QCNET(N) + ALPHA* QR(N)-MSDOT(N)*HC(N) + QCOMB(N)
2)0 CONTINUE
RETURN
C
C THIS PART DF RCUTINE CCMFUTES NDOTS
C
ENTRY SQAEROM
DO 1030 N=1,L
C
C COMPUTE MSDOT--- MASS LOSS RATE CUE TE SUBLIMATION
C
IF (ASEXP) 310,3C5,310
335 MSDOT(N)=C.O
GO TO 330
310 BLOCK =-BSEXP/TTF(S,N)
MSDOT(N)= ASEXP* PRELGC(N)**PSEXP * EXP(BLOCK)*R(1)*\&RIEXP
33) COLL = (HE-HW(N))/(QCNET(N)*ELAM(N))
C
C COMPUTE MGDOT-- NASS LOSS RATE DUE TO OXICATION
C
C HALF CRDER OXIDATICN
C
33) IF (AEXP) 390,285,390
385 MCDOT(N) =0.0
GO TO FOO
370 MCDOT(N)= AEXP * EXP(-BEXP/TTF(S,N)|
IF (XORDER-0.5) 9CC,405,600
49) }\textrm{ABC}=4.0* MCDCT(N)**2* PRELOC(N) * CE * RSTO2
PART = COLL * NCDOT(N)**2 * PRELOC(N)* RSTC2
TEST = ABC/ PART**2
IF (TEST.LT.7.E-12)GO TO 420
MCDOT(N)=5*((-PART) + SQRT (PART**2 + ABC))
GO TO 700
420 MCDOT(N) = CE/COLL
GO TO 900
C
C FIRST CRDER OXIDATION
C
6)0 MCDOT(N)=MCDOT(N)* PRELOC(N)*RSTO2*CE/(1*O + MCDOT(N)*PRELOC
-(N)* COLL*RSTO2)
C MOOT IS EQUAL TC THE LARGER OF MSDCT AND MCDOT
C MOOT IS EQUAL TC TFE LARGER OF MSDCT AND MCDOT
C
930 IF (MCDOT(N).LT.MSDOT(N)) GO TO }95
MDOT(N)= MCDOT(N)
MSDCT(N)=0.0
GO TO 100C
950 MDOT(N)=NSDOT (N)
MCOOT(N)=C.O
10)0 CONTINUE
RETURN
END
113900000
114000000
114100000
114200000
114300000
1144000000
114500000
114600000
114700000
114800000
214900000
1150C0000
115000000
115200000
\$
115400000
1155000C0
115600000
115700000
115800000
115900000
116000000
1161C0000
116200000
1163000000
116400000
116500000
116600000
116700000
116800000
116900000
116900000
117100000
1177200000
117300000
11774000000
117500000
117600000
117600000
117700000
117800000
117900000
118000000
118100000
1118200000
118300000
118400000
118500000
118600000
118700000
118800000
118800000
118900000
119000000
119100000
119100000
119300000
119400000
119500000
119600000
119700000

```

Subroutine ADJUST. - Subroutine ADJUST computes the convective and radiant heating rates and the pressure and heating distributions to account for shape change. The flow chart for subroutine ADJUST is as follows:


The program listing for subroutine ADJUST is as follows:
```

```
    SURRDUTINE ADJLST 119800000
```

```
    SURRDUTINE ADJLST 119800000
C
C
C this routine acjusts the convective and radiant heating rates, the pressure
C this routine acjusts the convective and radiant heating rates, the pressure
C AVD HEATING DISTRIGUTION TO SHAPE CHANGE (ADJUST QCI,QRI,PRAT,QRAT I
C AVD HEATING DISTRIGUTION TO SHAPE CHANGE (ADJUST QCI,QRI,PRAT,QRAT I
    CCMMCN /PICK/ A(10,20),AA(20),AB(10,201,ALPHA(20),B(20),
    CCMMCN /PICK/ A(10,20),AA(20),AB(10,201,ALPHA(20),B(20),
    2 BSI110,2C1,BSIB(10,20),C(10,201,CB(10,20),CK(10),CKETA110,20),
    2 BSI110,2C1,BSIB(10,20),C(10,201,CB(10,20),CK(10),CKETA110,20),
    4 CKXI(10,20),COST(20),CP(10,20),D(10,20),DC(20),
    4 CKXI(10,20),COST(20),CP(10,20),D(10,20),DC(20),
    6 DELESQ,DELETA,DELTA(20),DELXI,DELXISQ,E(10,20),EIGHT3,
    6 DELESQ,DELETA,DELTA(20),DELXI,DELXISQ,E(10,20),EIGHT3,
    8 ELAM(20), ETA(10),EXPG,F(10,20),GG,GIMACH,H1(10,20),H2(10,20),
    8 ELAM(20), ETA(10),EXPG,F(10,20),GG,GIMACH,H1(10,20),H2(10,20),
    A H3(10,20),HC(20),HCOMB(2C),HE,HW(20),IFIRST,IROCOL,ITC,ITR,ITT,
    A H3(10,20),HC(20),HCOMB(2C),HE,HW(20),IFIRST,IROCOL,ITC,ITR,ITT,
    C ITTO,LML,LM2,MCDOT(20),MDOT(22),MSDOT(20),PID2,PRELOC(20),QC(20),
    C ITTO,LML,LM2,MCDOT(20),MDOT(22),MSDOT(20),PID2,PRELOC(20),QC(20),
    E QC1,QCNET(20),QCOMB(20),QR(20),QR1,QS(20),RNS,RODPC,ROPCPP,
    E QC1,QCNET(20),QCOMB(20),QR(20),QR1,QS(20),RNS,RODPC,ROPCPP,
    G RSS(22),RSTO2,SIG,SIGDP,SIGMA,SIGP,SINT(20),SM1,SM2,TAU,TB,
    G RSS(22),RSTO2,SIG,SIGDP,SIGMA,SIGP,SINT(20),SM1,SM2,TAU,TB,
    I TT(10,20),TTF(10,20), TWDELXI,TWOGI,V(20),VB(10), X(22),XDXISQ,
    I TT(10,20),TTF(10,20), TWDELXI,TWOGI,V(20),VB(10), X(22),XDXISQ,
    K XCOXI;Y(10,20),Z(20),ZB(10)
    K XCOXI;Y(10,20),Z(20),ZB(10)
    COMMON /INPUTS/ DUMMY(1),AEXP,ALCTAB(10),TTALC(10),MALPHC,NALPHC,
    COMMON /INPUTS/ DUMMY(1),AEXP,ALCTAB(10),TTALC(10),MALPHC,NALPHC,
    2 ALPHAT(10),TALPHA(10),MALPHA,NALPHA,ALSTAB(10),TTALS(10),MALPHS,
    2 ALPHAT(10),TALPHA(10),MALPHA,NALPHA,ALSTAB(10),TTALS(10),MALPHS,
    4 NALPHS,ASEXP, BETA,BEXP,BSEXP,CE,CKETATB(50),TTCKETA(10).
    4 NALPHS,ASEXP, BETA,BEXP,BSEXP,CE,CKETATB(50),TTCKETA(10).
    6 ETATAB(5),NCKETA,NETA,CKXITAB(50),TTCKXI(10), XITAB(5),NCKXI,
    6 ETATAB(5),NCKETA,NETA,CKXITAB(50),TTCKXI(10), XITAB(5),NCKXI,
    8 NXI,CORDSY,CPDP,CPP,CPTAB(10), TTABCP(10), MCP,NCP,DELTAC(20),
    8 NXI,CORDSY,CPDP,CPP,CPTAB(10), TTABCP(10), MCP,NCP,DELTAC(20),
    A OELTAU,DELTMIN,OTMAX,ELAMTB(28),TTELAM(7),PELAM(4),NELAM,
    A OELTAU,DELTMIN,OTMAX,ELAMTB(28),TTELAM(7),PELAM(4),NELAM,
    C NPELAM, ENDTAU,EPSCNE,EPSONEP, EPSONPP,ERRORT,GAMBAR,GAMINF,
    C NPELAM, ENDTAU,EPSCNE,EPSONEP, EPSONPP,ERRORT,GAMBAR,GAMINF,
    E HCOMBTB(28),TTHCCMB(7), PHCOMB(4),NHCOMB,NPHCOMB,HCTAB (28),
    E HCOMBTB(28),TTHCCMB(7), PHCOMB(4),NHCOMB,NPHCOMB,HCTAB (28),
    G TTABHC(7),PHC(4),NHC,NPHC,HETAB(10),TTABHE(10),MHE,NHE,HWTAB(15),
    G TTABHC(7),PHC(4),NHC,NPHC,HETAB(10),TTABHE(10),MHE,NHE,HWTAB(15),
    I TTABHW(15),MHW,NHW,IADJUST,IPLOT,L,MACHNO,MAXITT,MDNAX,
    I TTABHW(15),MHW,NHW,IADJUST,IPLOT,L,MACHNO,MAXITT,MDNAX,
    J moCto(20),
    J moCto(20),
    K MWO2,MWSTR,NTP(7),PLTIME(15),PRAT(20),PRFREQ,PSEXP,PSTAGTB1101,
    K MWO2,MWSTR,NTP(7),PLTIME(15),PRAT(20),PRFREQ,PSEXP,PSTAGTB1101,
    M TTPSTAG(10),MPSTAG,NPSTAG,PTMAK,PTMIN,QCTAB(10),TTABOC(10),MQC,
    M TTPSTAG(10),MPSTAG,NPSTAG,PTMAK,PTMIN,QCTAB(10),TTABOC(10),MQC,
    N NQC,QRAT(20),
    N NQC,QRAT(20),
    O QRRAT(20),QRTAB(10),TTABQR(10),MQR,NQR,R(20),RIEXP,RNSI,RO,RCDP,
    O QRRAT(20),QRTAB(10),TTABQR(10),MQR,NQR,R(20),RIEXP,RNSI,RO,RCDP,
    Q ROP,RS(2C),RSSMAX,S,STEBOL,T(10,20),TAUC,TBTAB(10),TTABTB(10),
    Q ROP,RS(2C),RSSMAX,S,STEBOL,T(10,20),TAUC,TBTAB(10),TTABTB(10),
    S MTB,NTB,TDPRIME,THETA(20),TPRIME,XO, XORDER,ZS(20),ZSMAX
    S MTB,NTB,TDPRIME,THETA(20),TPRIME,XO, XORDER,ZS(20),ZSMAX
        REAL MDOTC,MDOT,MCDOT,MSDOT,MHSTR,MWO2,MACHNO,MDMAX
        REAL MDOTC,MDOT,MCDOT,MSDOT,MHSTR,MWO2,MACHNO,MDMAX
        INTEGER S,SN1,SM2
        INTEGER S,SN1,SM2
        DIMENSION PSI(2O)
        DIMENSION PSI(2O)
        DIMENSION UEUI(20), AL(2C),AINT(20),YY(3)
        DIMENSION UEUI(20), AL(2C),AINT(20),YY(3)
        NSP1 = NSTEP + 1
        NSP1 = NSTEP + 1
        DO 50 N=1,L
        DO 50 N=1,L
        RSS(N)=RS(N) + DELTA(N)*CCST(N)
        RSS(N)=RS(N) + DELTA(N)*CCST(N)
        50 ZS(N) = ZS(N) + (DELTAO(N) - DELTA(N))* SINT(N)
        50 ZS(N) = ZS(N) + (DELTAO(N) - DELTA(N))* SINT(N)
            IF (IADJUST, EQ.O) RETURN
            IF (IADJUST, EQ.O) RETURN
            RNS=(ZS(2)**2 + RSS(2)**2 -2.0*ZS(2)*ZS(1) + ZS(1)**2)/
            RNS=(ZS(2)**2 + RSS(2)**2 -2.0*ZS(2)*ZS(1) + ZS(1)**2)/
            1(2.0*(ZS(2)-ZS(1))
            1(2.0*(ZS(2)-ZS(1))
            SQRNS = SQRT (RNS)
            SQRNS = SQRT (RNS)
C ADJUST RATE TO SHAPE CHANGE
C ADJUST RATE TO SHAPE CHANGE
            QCI = QCI * SQRT ( RNSI/RNS )
            QCI = QCI * SQRT ( RNSI/RNS )
            QRI = QRI * RNS/ RNSI
            QRI = QRI * RNS/ RNSI
            PSI(1)=0.
            PSI(1)=0.
            M=1
            M=1
    130 DO 200 N=2,L
    130 DO 200 N=2,L
        NP1 = N+1
        NP1 = N+1
        NN1=N-1
        NN1=N-1
        IF (N.EQ. L) GC TO 130
        IF (N.EQ. L) GC TO 130
        TANPHI = (RSS(NPI) -RSS(NMI))/(ZS(NP1)- ZS(NMII)
        TANPHI = (RSS(NPI) -RSS(NMI))/(ZS(NP1)- ZS(NMII)
            GO TO 150
            GO TO 150
    130 TANPHI= (RSS(L)-RSS(LM1))/(2SIL)-ZS(LM1))
    130 TANPHI= (RSS(L)-RSS(LM1))/(2SIL)-ZS(LM1))
    150 PHI = ATAA (TANPHI)
    150 PHI = ATAA (TANPHI)
        PSI(N)=PID2-PHI
        PSI(N)=PID2-PHI
    2JO CCNTINUE
    2JO CCNTINUE
C NEW PRESSURE DISTRIBUTION
C NEW PRESSURE DISTRIBUTION
            OC 250 N=1,L
            OC 250 N=1,L
            PRAT(N) = (1.0 - GIMACH) *COS(PSI(N))**2 + GINACH
            PRAT(N) = (1.0 - GIMACH) *COS(PSI(N))**2 + GINACH
            UEUI(N)= SQRT((1.O+ TWOGI) *(1.O-PRAT(N)**EXPG) )
            UEUI(N)= SQRT((1.O+ TWOGI) *(1.O-PRAT(N)**EXPG) )
    250 conttnue
    250 conttnue
C OBTAIN NEW HEAT DISTRIBUTION
C OBTAIN NEW HEAT DISTRIBUTION
C
```

C

```
```

119900000

```
119900000
120000000
120000000
120100000
120100000
120200000
120200000
120300000
120300000
120400000
120400000
120500000
120500000
120600001
120600001
120700000
120700000
120800000
120800000
120900000
120900000
121000000
121000000
121100000
121100000
121200000
121200000
121300000
121300000
121400000
121400000
121500000
121500000
121600000
121600000
121700000
121700000
121900001
121900001
121900002
121900002
122000000
122000000
122100000
122100000
122200000
122200000
122300001
122300001
122400000
122400000
122500000
122500000
122600000
122600000
122700000
122700000
122800000
122800000
122900000
122900000
123000000
123000000
123100c00
123100c00
123200000
123200000
1233000000
1233000000
123400000
123400000
123500000
123500000
123600000
123600000
123700000
123700000
123800000
123800000
123900000
123900000
124000000
124000000
124100000
124100000
124200000
124200000
124300000
124300000
124400000
124400000
124500000
124500000
124600000
124600000
124700000
124700000
124800000
124800000
124900000
124900000
125000000
125000000
125100000
125100000
125200000
125200000
125300000
125300000
125400000
125400000
125500000
125500000
1256000000
1256000000
125700000
125700000
0000
0000
1258000000
1258000000
125900000
125900000
126000000
126000000
126100000
126100000
126200000
126200000
126300000
126300000
126400000
```

126400000

```
```

C EVALUATE INTEGRAL AT L =0 126500000
ALIII=0.0 1266000CO
AINYO=PRAT(1)*UEUI(1)* RSS(1)**2 126700000
270 CCNTINUE
QRAT(1)=1.0
DC 600 N=2.L
NMI=N-1
NM2 =N-2
AINT=AINTC
SUMHI=0.
IF INSEQ. 21 GO TO 310
DO 305 I=2,NM1
300 SUMHI=SUMHI+HI(S,I)
310 AL(N)=X(2)*(SUMH2 + (H1(S,1)+HL(S,N))/2.0)
C
C EVALUATE INTEGRAL
C
IF (N*EQ. 2) GC TO 500
C EVALUATE Y(J),Y(1),Y(Z)
D0 400 K=1.3
NMK = N- (3-K)
490 YY(K)= PRAT(NMK)*UEUI(NMK)*(RSS(NMK)**2)
COEF2= AL(NM2)- AL (N)
POXO= (AL(NM2)-AL(NM1))* CCEF2
P1X1=(AL(NM1)- AL(NM2))* (AL(NM1)- AL(N))
P2\times2=(AL(N)-AL(NM2))* (AL(N)-AL(NM1))
COEF1= (3.0* AL(NM1)-2.0* AL(AM2) - AL(N))/POXC
COEF3=(?.C*AL(N) \& AL(NM2)- 3,O* AL(NMI)|POX2
AINT(N) =((AL(N)- AL(NM2))**2/6.0)* (YY(1)*COEF1 + YY(2)*COEF2/
1 P1X1 + YY(3)*COEF3)
IF (N.GT.Z) AINT (N) = AINT (NMZ) + AINT(N) 129500000
GO TO 590
C N=2
530 YY(2)=(PRAT(1)+ PRAT(2))*(UEUI(1)* UEUI(2))*((RSS(1)+ RSS(2))/2.0
1 1**2 /4*0
YY(3)= PRAT(2)* UEUI(2).*(RSS(2)**2)
AINT(N)=AL(2)*(4.C*YY(2) +YY(3))/6.C
590 ANUM=PRAT(N)*UEUI(N)*RSS(N) *SGRNS
590 ANUM=PRAT(N)*UEUI(N)*RSS(N)*SGRNS
6)0 CONTINUE
RETURN
END
AL(I)=0.0
126800000
126500000
127000000
127100000
127200000
127300000
127400000
127500000
127600000
127700000
127800000
127900000
128000000
128100000
128200000
128300000
128400000
128500000
128600000
128700000
128900000
128900000
129000000
\$29100000
129200000
129300000
129400000
129500000
129600000
129700000
129800000
1299000C0
130000,00
130100000
130200000
130300000
130400000
130500000
130600000

```

Subroutine ZPRINT.- Subroutine ZPRINT writes the output data. The flow chart for subroutine ZPRINT is as follows:


The program listing for subroutine ZPRINT is as follows:
```

C
SUBROUTINE ZPRINT
CCMMON /PICK/ A(10,20),AA(20),AB(10,20),ALPHA(20),B(20),
2 BSI(10,20),BS1B(10,20),C(10,20),CB(10,20),CK(10),CKETA(10,20),
4 CKX1(10,20),COST(20),CP(10,201,D(10,20),DC(20),
6 DELESQ,DELETA,DELTA(20), DELXI,DELXISQ,E(10,20),EIGHT3,
8 ELAM(2J), ETA(10), EXPG,F(10,20),GG,GIMACH,H1(10,2C),H2(10,20),
A H3(10,20),HC(20), HCOMB(2C),HE,HW(20),IFIRST,IROCOL,ITC,ITR,ITT,
C ITTO,LM1,LM2,MCDOT(20),MCOT(22),MSOOT(20),PID2,PPELCC(20),QC(20),
E QC1,QCNET(20),QCOMB(20),QR(20),QR1,QS(20),RNS,RODPC,ROPCPP,
G RSS(22),RSTO2,SIG,SIGDP,SIGMA,SIGP,SINT(20),SM1,SM2,TAU,TB;
I TT(10,20),TTF(10,20),TWDELXI,TWOGI,V(20),VB(10), X(22),XDXISQ,
K XODXI,Y(10,20),2(20),ZB(10)
COMMON /INPUTS/ DUMMY(1),AEXP,ALCTAB(10),TTALC(10),MALPHC,NALPHC,
2 ALPHAT(10),TALPHA(10),MALPHA,NALPHA,ALSTAB(10),TTALS(1C),MALPHS,
4 NALPHS,ASEXP, BETA,BEXP, BSEXP,CE, CKETATB(50), TTCKETA(10),
6 ETATAB(5),NCKETA,NETA,CKXITAB(50),TTCKXI(10), XITAB(5),NCKXI,
8 NXI, CORDSY,CPDP,CPP,CPTAB(10),TTABCP(10),MCP,NCP,DELTAO(20),
A CELTAU,DELTMIA,DTMAX, ELAMTB(28),TTELAM(7),PELAM(4),NELAM,
C NPELAM, ENDTAU,EPSCNE,EPSONEP, EPSONPP,ERRORT,GAMEAR,GAMINF,
E HCOMBTB(28),TTHCCMB(7),PHCONB(4),NHCOMB,NPHCONB,HCTAB(28),
G TTABHC(7),PHC(4),NHC,NPHC,HETAB(10),TTABHE(10),MLE,NHE,HWTAB(15),
I TTABHW(15),MHW,NHW,IADJLST,IPLOT,L,MACHNO,NAXITT,NDMAX,
\jmath mooto(20).
K MWO2,MWSTR,NTP(7),PLTIME(15),PRAT(20),PRFREQ,PSEXP,PSTAGTB(1C),
M TTPSTAG(IO),MPSTAG,NPSTAG,PTMAX,PTMIN,QCTAB(ICI,TTABQC(IO),MQC,
N NQC,QRAT(20),
O QRRAT(20),QRTAB(10),TTABQR(10),MQR,NQR,R(20),RIEXP,RNSI,RO,RCOP,
Q ROP,RS(20),RSSMAX,S,STEBCL,T(10,20),TAUC,TBTAB(1C),TTABTB(10),
S MTB,NTB,TOPRIME,THETA(20),TPRIME, XO, XORDER,ZS(20),Z SMAX
REAL MDCTC,MDOT,MCDOT,MSDOT, MWSTR,MWOL,MACHNO,MCMAX
INTEGER S,SMI,SM2
DIMENSION QRR(2O)
EQUIVALENCE (QRR(1),H1(1,:))
DO 10 N=1,L
10 QRR(N)= SIG * TTF(S,N)**4
WRITE (3, 98)
98 FORMAT (*O*)
WRITE (5,100) TAU,DELTAU
13O FORMAT (*CTAU=*F1C*4,14X*DELTAU=*F9.6)
WRITE (6,1C1) QC1, QR1, HE
1)1 FORMAT (*C*14X*QC=*E11.4,5X,*QR=*E11*4,5X,*HE=*E11.4)
C
WRITE (6,102) T(S,1)
102 FORMAT (15x*T(S,1)=*E11.4)
WRITE (0,105)
105 FORMAT (* (*14X*TEMPERATURE (M,N)*)
WRITE (6,11C)(X (N),N=1,L)
110 FORMAT (* ETA*6X*X=*15F8.5/(12X,15F8.5)1
DO 115 M=1,S
MN=S- (M-1)
115 WRITE (6,120) ETA(MM),(TTF(MM,N),N=1,G)
120 FORMAT (FG. 3,6x15F8.1/(12x,15F8.1)]
140 FORMAT (* ETA*6X*X=*10(F9.5,3x)/(i2X,10(F9.5,3X)))
150 FCRMAT (FE. 2,6x1OE12.4/(12\dot{x},10E12.41)
C
155 FORMAT (*C*14X*MDOT(N)--SURFACE MASS LCSS RATE*)
WRITE (O,140) (X (N);N=1,L)
WRITE (S,150) ETA(S),(MDCT(N),N=1,L)
C
165 FORMAT (*C*14X*MCDOT(N)--SURFACE MASS LESS RATE DUE TO OXIDATICN*)
WRITE (6,.50) ETA(S),(MCOOT(N),N=L,L)
C
WRITE (5,170)
1?0 FORMAT (*C*l4X*DELTA(N)--MATERIAL THICKNESS*)
WRITE (S,:5C). ETA(S), (DELTA(N),N=1,L)

```
127500000
    175 FORMAT (*C*14X*QRAT(N)-m-RATIO DF LOCAL HEATING TC STAGNATION HEATI
        l ING*)
        l (NG#)
C
    WRITE(6,176)
    WRITE(6,176)
        WRITE(S,15C) ETA(S),(PRAT(N),A=1,L)
C
        WRITE (5,180)
    190 FORMAT (*C*14X*GS(N)--NET HEAT INPUT*)
    190 FORMAT (*C*14X*GS(N)--NET HEAT INPUT*)
C
WRITE (0,190)
190 FCRMAT (*C*i4X*QRR(N)--RERADIATION*)
190 FCRMAT (*C*14X*QRR(N)--RERADIATION*)
C
        WRITE (6,200)
    230 FORMAT (*C*14X*QCCMB(N)--HEAT DUE TO COMBUSTION FCR CXIDATION*)
        WRITE (6,150) ETA(S), (QCOMB(N),N=1,L)
C
        WRITE (6,400) ITC,ITR,ITTO ,IRECOL
WRITE (6,400) ITC,ITR,ITTO ,IROCOL NO, ITER. COL, =$I4,5X,*NO. ITER. ROW=*I4,5X,*TOTAL
    INO. ITER* = *I8,5X*IROCCL=*I 3)
        RETURN
137600000
137700000
137800000
137500C00
:381000co
$38230000
138300000
138400000
138500000
1386000c0
138700000
L
138800000
1389900000
139900000
139100000
139200000
```



```
139300000
129400000
139500000
139600000
139600000
139700000
139800000
139900000
140000000
```

END
140100000

Subroutine SOLMAT.- Subroutine SOLMAT solves a system of linear equations in which the matrix of coefficients is a tridiagonal matrix. The method of solution is equivalent to Gaussian elimination. The flow chart for subroutine SOLMAT is as follows:

The program listing for subroutine SOLMAT is as follows:


```
    $40200000
```



```
    COMMON /HCLD/ TMIN
C
C THIS ROUTINE SOLVES THE TRIDIAGONAL SEXCEPT THO ELEMENTSI . MATRIX
C
    W{1%=Bl1%
    SVIID=C|IN/B\ID
            X=2/B/L 
            G(1)= D|IN/WCL|
            NM1=N-2
            NM2 = N-2
            DO 200 K=2,N
            KMI = K-1
            IF IK.GQ*N GO TO 20
            H|K|=B|K) APK|$SV|KMI!
            IF IK,EQ.2 GO TO }2
            4 SV(K)= C\K\/W\K)
            5GIK| = (D|K|-A|K|*G(KMI|/N(K)
            GO TO 100
        10 SV{2)={C(2)-X*A{2)//W{2}
            GO TO 5
        20 吕|N|=B(N|= {A|N|= V*SV|NM2||#SV{NMI|
        30 GEN|=(D{N)-A&N)*G(KM1)-V*G(NM2)+V*SV(NH2)*G(KMII//H(N)
    200 CONTINUE
    T(N)=G(N)
            DO 200 K=1,NH2
            KK= N-K
            T|KK\=G{KK|- SV|KK|*T(KK+l)
    200 CONTINUE
            TII= G|L|=SV|L|家TI2I= X*TI3I
            IF ITMIN,EGOO RETURN
            DO 300 I=1,N
            IFITIIN LTGTMINI TIII=TMIN
    300 CONTIMUE
            RETURM
            END.
```

180200000 140300000 140400000 140500000 140600000 140700000 140800000 140900000 141000000 141100000 141200000 141300000
141400000 141500000
141600000 141700000 141800000 141900000 142000000
142100000
142200000
142300000
142400000
142500000
142600000
142700000
142800000
142900000
143000000
200 CONTTNUE

IF TTMIN EGO O RETURN
143100000
143200000
143300000
143400000
1.43500000

143600000
143700000
143800000

PROGRAM INPUT, OUTPUT, AND DIAGNOSTICS

Input

Examples of input data are given in appendix B. The first card of the input is identification for the job. Any identification may be written in column 1 to and including column 80.

FORTRAN IV NAMELIST with the name D2430 is used to load the input data. Each input variable is initially set equal to zero by the program unless otherwise stated.

At least four inputs are associated with each table input: the dependent-table values, the independent-table values, the number of entries in the table, and the order of interpolation. The number of entries in the dependent and independent table must be the same. This is specified by a FORTRAN variable beginning with the letter N. The order of interpolation is a FORTRAN variable beginning with the letter M and may be 0 , 1, or 2. For example, for first-order interpolation of the specific-heat array, set MCP=1; for secondorder interpolation, set $M C P=2$. If the specific heat is a constant, set $M C P=0$.

The following list contains the input variables with the dimensions used in the program. The size of an array is limited to the dimensions stated. The maximum number of stations in the x-direction is 20 and the maximum number of stations in the y-direction is 10 .

FORTRAN variable	Symbol	Description
AEXP	A_{c}	Coefficient of the exponential term when the Arrhenius expression is used for calculating MCDOT
ALCTAB(10)	$\alpha_{\text {c }}$	Aerodynamic-blocking coefficient for heat and mass transfer associated with MCDOT, a function of time (TTALC)
ALPHAT(10)	α	Absorptance of surface, a function of temperature (TALPHA)
ALSTAB(10)	$\alpha_{\text {S }}$	Aerodynamic-blocking coefficient for heat and mass transfer associated with MSDOT, a function of time (TTALS)
ASEXP	A_{S}	Coefficient in the expression for calculating MSDOT
BETA	β	Determines whether ablation or transpiration theory will be used for effect of mass transfer on heat transfer; for ablation theory, BETA=1; for transpiration theory, BETA=0
BEXP	B	Power of the exponential term in the Arrhenius expression for calculating MCDOT
BSEXP	B_{S}	Power of the exponential term in the expression for calculating MSDOT
CE	$\mathrm{C}_{\text {e }}$	Oxygen concentration, by mass, at edge of boundary layer
CKETATB(50)	\mathbf{k}^{\prime}	Thermal conductivity in η-direction, a function of η (ETATAB) and temperature (TTCKETA)
CKXITAB(50)	k_{ξ}	Thermal conductivity in ξ-direction, a function of ξ (XITAB) and temperature (TTCKXI)
CORDSY		Trigger to indicate coordinate system; if curvilinear coordinates, CORDSY $=0$; if Cartesian coordinates, CORDSY=1

FORTRAN variable	Symbol	Description
CPDP	$c_{p}{ }^{\prime \prime}$	Specific heat of layer along $\mathrm{y}=0$
CPP	$c_{p}{ }^{\prime}$	Specific heat of layer along $\mathrm{x}=\mathrm{L}$
CPTAB(10)	c_{p}	Specific heat, a function of temperature (TTABCP)
DELTAO(20)	δ	Initial material thickness, must have L values
DELTAU	$\Delta \tau$	Initial computing time interval
DELTMIN		Minimum value allowed for DELTA
DTMAX		Maximum DELTAU which can be used; if no value is given, DTMAX=2.0
ELAMTB(28)	λ	Ratio of mass of material removed per unit mass of oxygen that reaches the surface, a function of pressure (PELAM) and temperature (TTELAM)
ENDTAU		Time at which calculation stops
EPSONE	ϵ	Emittance of front surface
EPSONEP	ϵ^{\prime}	Emittance of layer along $x=L$
EPSONPP	$\epsilon^{\prime \prime}$	Emittance of layer along $\mathrm{y}=0$
ERRORT		Acceptable relative error in temperature
ETATAB(5)	η	ETA table for CKETATB
GAMBAR		Mean ratio of specific heats behind bow shock wave, used only in computation of heating-rate distribution around body
GAMINF		Ratio of specific heats in free stream, used only in computing heating-rate distribution around body
HCOMBTB(28)	$\Delta \mathrm{H}_{\mathrm{c}}$	Heat of combustion, a function of pressure (PHCOMB) and temperature (TTHCOMB)
HCTAB(28)	ΔH_{S}	Heat of sublimation, a function of pressure (PHC) and temperature (TTABHC)
HETAB(10)	H_{e}	Total free-stream enthalpy, a function of time (TTABHE)
HWTAB(15)	H_{w}	Enthalpy of gas at the wall temperature, a function of temperature (TTABHW)

FORTRAN variable	Symbol	Description
IADJUST		Trigger for adjusting heating-rate and pressure distributions to shape change; if IADJUST $=0$, QRAT and PRAT are not adjusted; if IADJUST $\neq 0$, QRAT and PRAT will be adjusted to shape change
IPLOT		Trigger for plotting routine; if IPLOT $=0$, no plots; if IPLOT $\neq 0$, the following plots will be made: RSS versus ZS at times indicated in PLTIME table; MDOT versus x at each PRFREQ time; and $T(M, N)$ versus x indicated in NTP array at each PREREQ
L		Number of stations in the x -direction
MACHNO		Free-stream Mach number
MALPHA		Order of interpolation for ALPHAT
MALPHC		Order of interpolation for ALCTAB
MALPHS		Order of interpolation for ALSTAB
MAXITT		Maximum iteration count; when iteration count exceeds this number, DELTAU will be halved until DELTAU is less than 1.0E-6, then the program will stop and a message will be printed
MCP		Order of interpolation for CPTAB
MDMAX		Maximum expected MDOT; this must be given to get a reasonable scale for plots; not needed if IPLOT=0
MDOTO(20)	$\dot{\mathrm{m}}$	Initial mass loss rate at surface, must have L values
MHE		Order of interpolation for HETAB
MHW		Order of interpolation for HWTAB
MPSTAG		Order of interpolation for PSTAGTB
MQC		Order of interpolation for QCTAB
MQR		Order of interpolation for QRTAB

FORTRAN variable

MTB
MWO2

MWSTR

NALPHA
NALPHC
NALPHS
NCKETA
NCKXI
NCP
NELAM
NETA
NHC
NHCOMB
NHE
NHW
NPELAM
NPHC
NPHCOMB
NPSTAG
NQC
NQR
NTB
NTP(7)

Description
Order of interpolation for TBTAB
Molecular weight of diatomic oxygen used in oxidation equation

Molecular weight of free stream used in oxidation equation

Number of entries in ALPHAT
Number of entries in ALCTAB
Number of entries in ALSTAB
Number of entries in CKETATB
Number of entries in CKXITAB
Number of entries in CPTAB
Number of entries in ELAMTB
Number of entries in ETATAB
Number of entries in HCTAB
Number of entries in HCOMBTB
Number of entries in HETAB
Number of entries in HWTAB
Number of entries in PELAM
Number of entries in PHC
Number of entries in PHCOMB
Number of entries in PSTAGTB
Number of entries in QCTAB
Number of entries in QRTAB
Number of entries in TBTAB
Array of seven values which specify the temperatures to be plotted; $\operatorname{NTP}(1)=$ the number of temperature rows to be plotted (may be six or less); NTP(2) through NTP(7), the row number of the temperatures to be plotted. For example,

FORTRAN variable	Symbol	Description
		$\operatorname{NTP}(1)=3, \operatorname{NTP}(2)=1, \operatorname{NTP}(3)=5, \operatorname{NTP}(4)=10$, specifies that three (3) rows of temperature will be plotted and these rows are 1, 5, and 10
NXI		Number of entries in XITAB
PELAM(4)		Pressure table for ELAMTB
PHC(4)		Pressure table for HCTAB
PHCOMB(4)		Pressure table for HCOMBTB
PLTIME(15)		Times at which RSS versus ZS, that is, the body shape, will be plotted; not needed if IPLOT=0
PRAT(20)		Initial ratio of local to stagnation pressure, must have L values, not needed if IADJUST $\neq 0$
PRFREQ		Printing time frequency for output data
PSEXP	p	Exponent of pressure term in sublimation equation
PSTAGTB(10)		Stagnation pressure, a function of time (TTPSTAG)
PTMAX		Maximum expected value of T, used to get reasonable scale in plotting, not needed if IPLOT=0
PTMIN		Minimum expected value of T, used to get reasonable scale in plotting, not needed if IPLOT $=0$
QCTAB(10)	${ }^{q} C$	Cold-wall convective heating rate, a function of time (TTABQC)
QRAT(20)		Initial convective heating-rate distribution must have L values, not needed if IADJUST $\neq 0$
QRRAT(20)		Radiant heating-rate distribution over body, must have L values
QRTAB(10)	q_{r}	Radiant heating-rate tables, a function of time (TTABQR)
R(20)	R	Radius of curvature of base curve at node points, must have L values
RIEXP	r	Exponent of nose-radius term in MSDOT equation
RNSI	$\mathrm{R}_{\text {stag }}$	Initial nose radius

FORTRAN variable	Symbol	Description
RO	ρ	Material density
RODP	$\rho^{\prime \prime}$	Density of layer along $\mathrm{y}=0$
ROP	ρ^{\prime}	Density of layer along $\mathrm{x}=\mathrm{L}$
RS(20)	$\mathrm{R}_{\mathrm{cyl}}$	Cylindrical radius from body axis of symmetry to node points on the base curve, must have L values
RSSMAX		Maximum expected value of RSS, used to get a reasonable scale for plots, not needed if IPLOT=0
S		Number of stations in y-direction
STEBOL	σ	Stefan-Boltzmann constant for radiation
T(10,20)		Initial temperature, must have $\mathrm{S} * \mathrm{~L}$ values
TALPHA(10)		Temperature table for ALPHAT
TAUO	τ	Initial time
TBTAB(10)		Temperature to which back surface is radiating, a function of time (TTABTB)
TDPRIME		Thickness of layer along $\mathrm{y}=0$
THETA(20)	θ	Angle (in degrees) less than or equal to 90° between $R S$ and R, must have L values
TMIN		Minimum temperature value; if TMIN $\neq 0$ and a computed temperature goes below TMIN, the temperature will be set equal to TMIN; if TMIN=0, no restraint will be made on the computed temperatures
TPRIME		Thickness of layer along $\mathrm{x}=\mathrm{L}$
TTABCP(10)		Temperature table for CPTAB
TTABHC(10)		Temperature table for HCTAB
TTABHE(10)		Time table for HETAB
TTABHW(15)		Temperature table for HWTAB
TTABQC(10)		Time table for QCTAB

Heading	
HE	Total free-stream enthalpy
$\mathrm{T}(\mathrm{S}, 1)$	Temperature at time $\tau-\Delta \tau$; this value can indicate whether a reasonable $\Delta \tau$ is being used; by observing this value and the value at τ, unusual behavior might indicate the need for a smaller $\Delta \tau$.
TEMPERATURE (M,N)	Temperatures; to locate the station read ETA to the left and x above the temperature column; up to 15 temperatures are printed on one line; if more columns have been used, the remaining temperatures will be printed on the next line
ETA	Dimensionless y values, printed in the first column on the left side of the page
X	Length along base curve from stagnation point to the station, printed in the second column and reading from left to right
MDOT(N)	Surface mass loss rate at station n
MCDOT(N)	Mass loss due to oxidation at station n
DELTA(N)	Material thickness at station n
QRAT(N)	Ratio of local heating to stagnation heating at station n
PRAT(N)	Ratio of local pressure to stagnation pressure at station n
QS(N)	Net heat input at station n
QRR(N)	Reradiation at station n
QCOMB(N)	Heat due to combustion for oxidation at station n
NO.ITER.COL.	Number of iterations for the previous column solution
NO.ITER.ROW.	Number of iterations for the previous row solution
TOTAL NO.ITER.	Total number of iterations from the beginning of the problem
IROCOL	Tells at which solution the printout was made; value of 1 indicates column solution; 2, row solution
	Diagnostics
The program problems which ap (1) DELTA	veral automatic stops to avoid the waste of computer time on be having computational difficulties. These stops are IN: If any thickness DELTA becomes less than the input
DELTMIN a norma	is made and the program will stop.

(2) Negative temperature: If any temperature becomes negative, a normal printout is made and the program will stop.
(3) DELTAU < 1.0E-6: If the computing time interval DELTAU becomes less than 1.0E-6, the message TEMPERATURE ITERATION DOES NOT CONVERGE will be printed. The current estimated temperatures are printed, a normal printout is made, and the program will stop.
(4) Iteration count exceeded: If the maximum iteration count input MAXITT is exceeded and the calculation is a row solution, the computing interval cannot be halved. The message THIS IS A ROW SOLUTION, DELTAU CANNOT CHANGE is printed. The current estimated temperatures are printed, a normal printout is made, and the program will stop.
(5) Temperature diverging: If any temperature begins diverging, the message TEMPERATURE IS DIVERGING WHY is printed. The current estimated temperatures are printed, a normal printout is made, and the program will stop.

Whenever these diagnostics appear, the input should be checked to make sure that all initial conditions have been given. Check all input tables for any discontinuities. Negative temperatures may result from oscillations caused by time intervals which are too large. High values of MDOT and rapid changes of heat input with time may require smaller time intervals for computational purposes.

SAMPLE CASES

Three sample cases are presented to illustrate the operation of the computer program. All the cases are for ablating bodies of different geometries: a hemisphere, a hemispherically blunted cone, and a right-circular cylinder. A listing of the input data and a sample of the output data for each case are shown in appendix B.

Computer-generated curves of some of the output from the sample cases are shown in figures 1, 2, and 3. The curves show body shape change due to ablation, histories of mass-transfer rate over the surface of the bodies, and selected temperature histories. The body shape is plotted at each time listed in the input PLTIME. The mass-transfer rates over the surface and the temperatures along the rows specified by the input NTP are plotted at each printing frequency for the output data.

The computing time depends on the accuracy desired; the boundary condition, that is, the heating-rate history; and the number of node points. The computational times for the sample cases are 136 seconds for the hemisphere, 312 seconds for the right-circularcylinder, and 150 seconds for the hemispherically blunted cone. These cases have not been optimized with respect to time and, therefore, may run in shorter periods of time.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., September 3, 1971.

APPENDIX A

LANGLEY LIBRARY SUBROUTINES

Subroutine FTLUP

Language: FORTRAN

Purpose: Computes $\mathrm{y}=\mathrm{F}(\mathrm{x})$ from a table of values using first- or second-order interpolation.
An option to give y a constant value for any x is also provided,

Use: CALL FTLUP(X, Y, M, N, VARI, VARD)
X The name of the independent variable x 。
$\mathrm{Y} \quad$ The name of the dependent variable $\mathrm{y}=\mathrm{F}(\mathrm{x})$.
$\mathrm{M} \quad$ The order of interpolation (an integer)
$\mathrm{M}=0$ for y a constant. VARD(I) corresponds to VARI(I) for
$\mathrm{I}=1,2$, . ., N . For $\mathrm{M}=0$ or $\mathrm{N} \leqq 1, \mathrm{y}=\mathrm{F}(\operatorname{VARI}(1))$ for any value of x . The program extrapolates.
$M=1$ or 2. First or second order if VARI is strictly increasing (not equal).
$\mathrm{M}=-1$ or -2 . First or second order if VARI is strictly decreasing (not equal).
N
The number of points in the table (an integer).

VARI The name of a one-dimensional array which contains the N values of the independent variable.

VARD The name of a one-dimensional array which contains the N values of the dependent variable.

Restrictions: All the numbers must be floating point. The values of the independent variable x in the table must be strictly increasing or strictly decreasing. The following arrays must be dimensioned by the calling program as indicated: VARI(N), VARD(N).

Accuracy: A function of the order of interpolation used.

References: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956, pp. 87-91.
(b) Milne, William Edmund: Numerical Calculus. Princeton Univ. Press, c.1949, pp. 69-73.

Storage: 4308 locations.

Error condition: If the VARI values are not in order, the subroutine will print TABLE BELOW OUT OF ORDER FOR FTLUP AT POSITION $x x x$ TABLE IS STORED IN LOCATION $x x x x x x$ (absolute). It then prints the contents of VARI and VARD, and STOPS the program.

Subroutine date: September 12, 1969.

APPENDIX A - Continued

Subroutine DISCOT

Language: FORTRAN

Purpose: DISCOT performs single or double interpolation for continuous or discontinuous functions. Given a table of some function y with two independent variables, x and z, this subroutine performs $\mathrm{K}_{\mathrm{X}} \mathrm{th}$ - and K_{Z} th-order interpolation to calculate the dependent variable. In this subroutine all singleline functions are read in as two separate arrays and all multiline functions are read in as three separate arrays; that is,

$$
\begin{array}{ll}
x_{i} & (i=1,2, \ldots, L) \\
y_{j} & (j=1,2, \ldots, M) \\
z_{k} & (k=1,2, \ldots, N)
\end{array}
$$

Use: CALL DISCOT (XA, ZA, TABX, TABY, TABZ, NC, NY, NZ, ANS)
XA The x argument
ZA The z argument (may be the same name as x on single lines)

TABX A one-dimensional array of x values
TABY A one-dimensional array of y values

TABZ A one-dimensional array of z values
NC A control word that consists of a sign (+ or -) and three digits. The control word is formed as follows:
(1) If $N X=N Y$, the sign is negative. If $N X \neq N Y$, then $N X$ is computed by DISCOT as $\mathrm{NX}=\mathrm{NY} / \mathrm{Nz}$, and the sign is positive and may be omitted if desired.
(2) A one in the hundreds position of the word indicates that no extrapolation occurs above $Z_{\text {max }}$. With a zero in this position, extrapolation occurs when $z>z_{\max }$. The zero may be omitted if desired.
(3) A digit (1 to 7) in the tens position of the word indicates the order of interpolation in the x -direction.
(4) A digit (1 to 7) in the units position of the word indicates the order of interpolation in the z-direction.

NY The number of points in y array
NZ The number of points in z array
ANS The dependent variable y

APPENDDX A - Continued

The following programs will illustrate various ways to use DISCOT:

CASE I: Given $\mathrm{y}=\mathrm{f}(\mathrm{x})$
$\mathrm{NY}=50$
NX (number of points in x array) $=$ NY
Extrapolation when $z>z_{\max }$
Second-order interpolation in x-direction
No interpolation in z-direction
Control word $=-020$
DIMENSION TABX (50), TABY (50)
1 FORMAT (8E 9.5)
$\operatorname{READ}(5,1)$ TABX, TABY
$\operatorname{READ}(5,1)$ XA
CALL DISCOT (XA, XA, TABX, TABY, TABY, -020, 50, 0, ANS)
CASE II: Given $\mathrm{y}=\mathrm{f}(\mathrm{x}, \mathrm{z})$
NY $=800$
$\mathrm{NZ}=10$
$\mathrm{NX}=\mathrm{NY} / \mathrm{NZ}$ (computed by DISCOT)
Extrapolation when $z>z_{\text {max }}$
Linear interpolation in x-direction
Linear interpolation in z-direction
Control word $=11$
DIMENSION TABX (800), TABY (800), TABZ (10)
1 FORMAT (8E 9.5)
READ $(5,1)$ TABX, TABY, TABZ
$\operatorname{READ}(5,1)$ XA, ZA
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, 11, 800, 10, ANS)
CASE III: Given $y=f(x, z)$
NY $=800$
$N Z=10$
NX = NY
Extrapolation when $z>z_{\text {max }}$
Seventh-order interpolation in x-direction
Third-order interpolation in z-direction
Control word $=-73$
DIMENSION TABX (800), TABY (800), TABZ (10)
1 FORMAT (8E 9.5)
READ $(5,1)$ TABX, TABY, TABZ
$\operatorname{READ}(5,1) \mathrm{XA}, \mathrm{ZA}$
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, $-73,800,10$, ANS)
CASE IV: Same as Case III with no extrapolation above $z_{\text {max }}$. Control word $=-173$
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, $-173,800,10$, ANS)

APPENDIX A - Continued

Restrictions: See rule (5c) of section "Method" for restrictions on tabulating arrays and discontinuous functions. The order of interpolation in the x - and z-directions may be from 1 to 7 . The following subprograms are used by DISCOT: UNS, DISSER, LAGRAN.

Method: Lagrange's interpolation formula is used in both the x - and z-directions for interpolation. This method is explained in detail in reference (a) of this subroutine. For a search in either the x - or z -direction, the following rules are observed:
(1) If $x<x_{1}$, the routine chooses the following points for extrapolation:

$$
\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots ., \mathrm{x}_{\mathrm{k}+1} \text { and } \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{k}+1}
$$

(2) If $x>x_{n}$, the routine chooses the following points for extrapolation:

$$
x_{n-k}, x_{n-k+1}, \ldots, x_{n} \text { and } y_{n-k}, y_{n-k+1}, \ldots, y_{n}
$$

(3) If $\mathrm{x} \leqq \mathrm{x}_{\mathrm{n}}$, the routine chooses the following points for interpolation:

When k is odd,

When k is even,

$$
x_{i-\frac{k}{2}} x_{i-\frac{k}{2}+1}, \cdots, x_{i-\frac{k}{2}+k} \text { and } y_{i-\frac{k}{2}}, y_{i-\frac{k}{2}+1}, m_{i-\frac{k}{2}+k}
$$

(4) If any of the subscripts in rule (3) become negative or greater than n (number of points), rules (1) and (2) apply. When discontinuous functions are tabulated, the independent variable at the point of discontinuity is repeated.
(5) The subroutine will automatically examine the points selected before interpolation and if there is a discontinuity, the following rules apply. Let x_{d} and x_{d+1} be the point of discontinuity.
(a) If $\mathrm{x} \leqq \mathrm{x}_{\mathrm{d}}$, points previously chosen are modified for interpolation as shown:

$$
x_{d-k}, x_{d-k+1}, \ldots, x_{d} \text { and } y_{d-k}, y_{d-k+1}, \ldots, y_{d}
$$

(b) If $x>x_{d}$, points previously chosen are modified for interpolation as shown:

$$
x_{d+1}, x_{d+2}, \ldots, x_{d+k} \text { and } y_{d+1}, y_{d+2}, \ldots, y_{d+k}
$$

(c) When tabulating discontinuous functions, there must always be $k+1$ points above and below the discontinuity in order to get proper interpolation.
(6) When tabulating arrays for this subroutine, both independent variables must be in ascending order.

APPENDIX A - Conciuded

(7) In some engineering programs with many tables, it is quite desirable to read in one array of x values that could be used for all lines of a multiline function or different functions. Even though this situation is not always applicable, the subroutine has been written to handle it. This procedure not only saves much time in preparing tabular data, but also can save many locations previously used when every y coordinate had to have a corresponding x coordinate. Another additional feature that may be useful is the possibility of a multiline function with no extrapolation above the top line.

Accuracy: A function of the order of interpolation used.

Reference: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956.

Storage: 555_{8} locations.

Subprograms used:	UNS	${ }^{40_{8}}$ locations.
	DISSER	110_{8} locations.
	LAGRAN	55_{8} locations.

Subroutine date: August 1, 1968.
APPENDIX B

SAMPLE LISTINGS

This appendix gives sample input and output listings for three sample cases. The sample input listing for a teflon hemisphere is given below:

APPENDIX B - Continued
The sample output listing for a teflon hemisphere is given below:

The sample input listing for a graphite hemisphere-cone is given below:

APPENDIX B - Continued
GRAPHITE HEMISPHERE-30 CEG. CONE
The sample output listing for a graphite hemisphere-cone is given below:

TAU=	4.1	16		DELTAU $=$.062500										
		$\begin{aligned} & Q C=20 \\ & T(S, 1) \end{aligned}$	$\begin{array}{r} 7956 E+C \\ =4.096 . \end{array}$	$E+03^{Q R=}$	$1.1354 E$	+07		$H E=9.29$	$76 E+07$						
		TEMP ER	ATURE	, N)											
ETA	$x=$	0.00000	. 05161	.10322	-15483		644	- 25806	-30967 -36	28	041289	$.46450$			
2.000		4087.5	3800.9	2913.6	2084.9		9.4	1554.2	1478.2141		1356.4	1306.0			
. 750		2432.6	2263.4	1768.4	1332.6		1.4	1049.2	1009.3 97	7.0	947.2	922.0			
. 500		1473.2	1397.6	1162.0	949.7		6. 1	797.4	775.775	8.0	741.4	727.4			
.250		1058.2	1022.4	898.6	778.1		. 4	681.6	667.665	. 0	645.1	636.0			
0.000		944.7	\$18.0	823.6	727.6		3.4	647.4	$635.6 \quad 62$	5.7	616.4	608.7			
ETA	$x=$	MDOT (N 0.00000	$- \text { SURF }$	$\begin{aligned} & \text { CE MASS } \\ & 5161 \end{aligned}$	$\begin{array}{r} \text { LOSS RAI } \\ .10322 \end{array}$			5483	. 20644	. 2	5806	.30967	.36128	.41289	. 46450
1.000		5.4218 E	-02 4.	CS4E-02	3.5134	-02		$437 E-02$	8.6107E-03	3.0	432E-03	8.7433E-04	$2.5633 E-04$	$6.9847 E-05$	2.0802E-05
1.000		MCDOT 0.	$\text { N })=- \text { SUR }$	ACE MASS CS4E-02	LCSS RA 3.51348	$\begin{aligned} & \text { TE } \\ & -02 \end{aligned}$		$\begin{aligned} & 0 \text { OXIDAT } \\ & 437 E-02 \end{aligned}$	ION $8.6107 E-03$	3.0	432E-03	8.7433E-04	$2.5633 E-04$	$6.9847 E-05$	2.0802E-05
1.000		$\begin{array}{r} \text { DELTA } \\ 1.8974 E \end{array}$	$\begin{aligned} & N J-M A T \\ & -02 \quad 1 . \end{aligned}$	$\begin{aligned} & \text { RIAL THI } \\ & 979 E-02 \end{aligned}$	CKNESS 1.9003			O32E-02	1.9048E-02	1.	050E-02	1.9050E-02	$1.9050 \mathrm{E}-02$	$1.9050 \mathrm{E}-02$	1.7050E-02
1.000		QRAT (A) 1.0000 E	$\begin{aligned} & 1-R A T I \\ & +00 \quad 9 . \end{aligned}$	$\begin{aligned} & \text { CF LOCA } \\ & \text { SOOE-O1 } \end{aligned}$	$\begin{array}{r} \text { AL FEATIN } \\ 7.3907 E \end{array}$	$\begin{aligned} & \text { G TO } \\ & -01 \end{aligned}$		GNATION $250 E-01$	HEATING $3.2368 \mathrm{E}-01$	2.	931E-01.	$2.8055 \mathrm{E}-01$	2.6552E-02	2. $5153 \mathrm{E}-01$	2.3925E-01
1.000		$\begin{array}{r} \text { PRAT (N } \\ 1.0000 E \end{array}$	$\begin{aligned} & --\mathrm{RATI} \\ & +00 \quad \varepsilon \end{aligned}$	$\begin{aligned} & \text { CF LOCA } \\ & 181 E-01 \end{aligned}$	L PRESS $6.0840 E$	$\begin{aligned} & \text { TOS } \\ & -01 \end{aligned}$	TAG	PRESS 999E-01	2.5237E-01	2.5	150E-01	2.5172E-01	$2.5242 \mathrm{E}-01$	2.5132E-01	2.4960E-.91
1.000		$\begin{gathered} \text { QS(N) } \\ 3.2676 E \end{gathered}$	$\begin{array}{ll} -N E T & H E \\ +O 7 & 2 . \end{array}$	$\begin{aligned} & \text { INPUT } \\ & 857 E+07 \end{aligned}$	1.8544	+07	1.1	$466 E+07$	$8.5680 E+06$	8.1	400E+06	$7.7121 E+06$	7.3254E+06	$6.9510 E+06$	$6.6178 F+06$
1.000		$\begin{aligned} & . O R R(N) \\ & 1.5510 E \end{aligned}$	$\begin{aligned} & - \text { RERAC } \\ & +071 . \end{aligned}$	ATION 597E + 07	4.0042 E	+06		$4985+06$	$4.1125 E+05$	3.2	$420 E+05$	$2.6528 E+05$	$2.2308 E+05$	1.8807E+05	$1.6166 *^{\circ}+05$
1.000		$0^{Q \operatorname{COMBE}}$	$\begin{array}{r} N)--H A \\ 1 \end{array}$	$\begin{aligned} & \text { DUE TO } \\ & \text { CS9E }+06 \end{aligned}$	$\begin{array}{r} \text { COMBUSTI } \\ 4.9219 E \end{array}$	$\begin{aligned} & 0 N F \\ & +05 \end{aligned}$		$\begin{aligned} & \text { XIOATION } \\ & 534 E+05 \end{aligned}$	$7.8413 E+04$	2.5	029E+04	$6.8012 \mathrm{E}+03$	$1.9368 \mathrm{E}+03$	$5.1694 E+02$	1.5195E+0?
	. IT	ER. COL. $=$	2	NC. ITE	R. ROW =	1		TOTAL NO	ITER $=$	134	IR	$Q L=1$			

The sample input listing for a right-circular cylinder is given below:

APPENDIX B - Concluded

The sample output listing for a right-circular cylinder is given below:
SAMPLE PROBLEM IN CARTESIAN COORDINATES $Q C=1,0000 E+06 \quad Q R=0$.
$T(S, 11=5.1910 E+02$$\quad$
$H E=8.0000 E+06$
TAU $=10.0391$
DELTAU $=.062500$

$1.000 \quad \begin{array}{llllll} & \text { QRR(N)-RERACIATION } \\ 4.0590 E+03 & 3.9987 E+03 & 3.8923 E+03 & 3.7882 E+03 & 3.7299 E+03\end{array}$
OCOMBINI-HEAT DUE TO COMBUSTION FOR OXIDATION 0.
1.000

NO. ITER, COL $=1$ NO. ITER. ROW= 1 TOTAL NO. ITER. $=$
Pro

$\begin{array}{ll}00000 & .00600 \\ 3173 E-22 . & 5.3341 E-22\end{array}$
$\stackrel{\|}{x}$

$$
\begin{aligned}
& .01200 \\
& 2.3829 E-22
\end{aligned}
$$

$$
8
$$

1.000
1.000
1.000

1. Tompkins, Stephen S.; Moss, James N.; Pittman, Claud M.; and Howser, Lona M.: Numerical Analysis of the Transient Response of Ablating Axisymmetric Bodies Including the Effects of Shape Change. NASA TN D-6220, 1971.
2. Gavril, Bruce D.; and Lane, Frank: Finite Difference Equation and Their Solution for the Transient Temperature Distribution in Composite, Anisotropic, Generalized Bodies of Revolution. Tech. Rep. No. 230 (Contract No. NOrd 18053), Gen. Appl. Sci. Lab., Inc., May 26, 1961.
3. Hovanessian, Shahen A.; and Pipes, Louis A.: Digital Computer Methods in Engineering. McGraw-Hill Book Co., Inc., c. 1969.

(a) Profile history.

Figure 1. - Computer-generated profile, mass loss, and temperature histories for a teflon hemisphere.

Figure 1.- Continued.

(c) Temperature history at times 1 to 7 sec in intervals of 1 sec at $\eta=0.5$ and $\eta=1$.

Figure 1.- Concluded.

(a) Profile history at $15-\mathrm{sec}$ intervals.

Figure 2.- Computer-generated profile, mass loss, and temperature histories for a graphite hemisphere- 30° cone.

(b) Mass-loss-rate history at times 4 to 60 sec in intervals of 4 sec . Figure 2.- Continued.

(c) Temperature history at times 4 to 60 sec in intervals of 4 sec
at $\eta=0$ and $\eta=1$.
Figure 2.- Concluded.

(a) Profile history.

Figure 3.- Computer-generated profile, mass loss, and temperature histories for a right-circular cylinder.

Figure 3.- Continued.

(c) Temperature history at times 10 to 70 sec in intervals of 10 sec at $\eta=0,0.5$, and 1 .

Figure 3.- Concluded.

NASA SCIENTIEIC AND TECHNICAL PUBLICATIONS

Abstract

 3nowitedge:

TFCHNICAL: MEMORANDUMS:

 uskd by NXASA: that: miay be of Fisticuhat.

SCIENTIFIC AND TECHMICAL. INFORWATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Weabington,

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

