

DMS-DR-1159 AUGUST 1971

CR-119988

-SPACE SHUTTLE-

BASIC HYPERSONIC FORCE DATA FOR GRUMMAN DELTA WING ORBITER CONFIGURATIONS ROS-NBI AND ROS-WBI

by

M. Milhous, GAC J. Levine, GAC

B. Johannesen, GAC

GRUMMAN FARMINGDALE 36 INCH HYPERSONIC TUNNEL

SADSAC SPACE SHUTTLE AEROTHERMODYNAMIC DATA MANAGEMENT SYSTEM

CONTRACT NAS8-4016 MARSHALL SPACE FLIGHT CENTER

8610 ACILITY FORM 602 ON NUMBER) (THRU) ACCE (CODE) (CATEGORY) NÜMBER

DMS-DR-1159 AUGUST, 1971

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

.

CONFIGURATION:	Frumman Configurations ROS-NBL and ROS-WBL
TEST PURPOSE:I	Determine Basic Hypersonic Force Data For Two Delta Wing
(Orbiter Configurations
	· · ·
TEST FACILITY:	Grumman Farmingdale 36" Hypersonic Tunnel
TESTING AGENCY:	Grumman Aerospace Corporation
TEST NO. & DATE: (GFHT-019 4/28/71 to 5/7/71
FACILITY COORDINAT	POR: M. Quan
PROJECT ENGINEER(S	s): <u>M. Milhous</u>
· · ·	J. Levine
*	B. Johannesen

DATA MANAGEMENT SERVICES

DATA OPERATIONS: LIAISON: nn Vaughn Tohn RELEASE APPROVAL: N. D. Kemp, Supervisor Aero Thermo Data Group

CONTRACT NAS 8-4016

AMENDMENT 153

;

DRL 184 - 58

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA. Chrysler assumes no responsibility for the data presented herein other than its display characteristics. FACILITY COORDINATOR:

Mr. Michael Quan. Dept. 401, Plant No. 5 Grumman Aerospace Corp. Bethpage, Long Island, New York 11714

Phone: (516) 575-7044

PROJECT ENGINEERS:

Mr. M. Milhous Plant 25, Space Shuttle Grumman Aerospace Corp. Bethpage, Long Island, New York 11714

Mr. J. Levine Dept. 401, Plant No. 5 Grumman Aerospace Corp. Bethpage, Long Island, New York 11714

Phone: (516) 575-3395

Phone: (516) 575-9515

Mr. B. Johannesen Dept. 401, Plant No. 5 Grumman Aerospace Corp. Bethpage, Long Island, New York 11714

Phone: (516) 575-7044

SADSAC LIAISON:

Mr. John E. Vaughn Chrysler Corp. Space Division 102 Wynn Drive Department 4830 Huntsville, Alabama 35805

Phone: (205) 895-1560

SADSAC OPERATIONS:

Miss B. J. Fricken Department 2780 Chrysler Corp. Space Division P. O. Box 29200 New Orleans, Louisiana 70129 Phone: (504) 255-2304

ABSTRACT

Two 1/200 scale models of the Grumman ROS-NEL and ROS-WEL space shuttle orbiters were tested in the GAC Hypersonic Wind Tunnel at a Mach number of 10. Model angle of attack, α , was varied from 20° to 65° at nominal sideslip angles of 0°, -3°, and -10° (Note: See Data Reduction section). Data were taken at approximately 2° increments while the model was being pitched at a rate of 8° per second.

Two different basic configurations were tested, the narrow body ROS-NBL, and the wide body ROS-WBL. Symmetric and asymmetric elevon deflections were tested to determine longitudinal and lateral control effectiveness. The effect of the rudder body flap, an auxiliary ventral fin and a different fuselage nose was also determined.

All testing was conducted without transition.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

	PAGE NUMBER
LIST OF FIGURES	2
SUMMARY	3
SUMMARY OF SADSAC NOMENCLATURE	4
CONFIGURATIONS INVESTIGATED	5
DATASET COLLATIONS	6
TEST FACILITY DESCRIPTION	8
TEST CONDITIONS	9
DATA REDUCTION	10
SUMMARY DATA PLOT INDEX	11
FIGURES	13
MODEL COMPONENT DESCRIPTION SHEETS	22
STANDARD NOMENCIATURE	30
TABULATED DATA LISTING	35
PLOTTED DATA	36

LIST OF FIGURES

.

FIGURE NUMBER	TITLE	PAGE NUMBER
1.	Beta Variation With Alpha	14
2.	Axis System	^ 15
3.	Photograph of GAC Configuration ROS-NB1	16
4.	General Arrangement - ROS-NB1	17
5.	General Arrangement - ROS-WBL	18
6.	ROS-NBL Body B1 and B1A	19
7.	Ul, Ventral Fin	20
8.	Body Flap, Fl	21

SUMMARY

This report presents the details of the first series of hypersonic tests conducted on 1/200 scale models of the Grumman Aerospace ROS-NB1 and ROS-WB1 orbiter vehicles in the Grumman Farmingdale 36" Hypersonic Tunnel. The period of occupancy was from April 28 to May 7 on a one shift per day basis with the Grumman designation for this test being GFHT-019.

Additional tests were conducted on this same model in other Grumman facilities to more fully cover the Mach number range. The complete series of tests is covered in the following reports:

ł

SADSAC Report No.	Mach No. Range
DMS-DR-1081	0.17
DMS-DR-1161	0.7 to 1.15
DMS-DR-1163	2.0 and 2.5
DMS-DR-1159	10.0

Six component aerodynamic force and moment coefficient data are presented herein in plotted form and cover an angle of attack range from 20° to 65° at nominal values of sideslip of 0° , -3° and -10° .

SUMMARY OF SADSAC NOMENCLATURE

CORDECTEDIO		SADSAC NOMENCLATURE							
COEFFICIENT	COEFFICIENT NAME	BODY AXIS	STABILITY AXIS	-WIND AXIS					
$egin{array}{cl} \mathbf{C}_{\mathbf{A}\mathbf{B}} & \ \mathbf{C}_{\mathbf{A}\mathbf{F}} & \ \mathbf{C}_{\mathbf$	• Total Axial Force Base Axial Force Forebody Axial Force	CA CAB CAF		 - -					
C _D C _{DB} C _{DF}	Total Drag Force Base Drag Force Forebody Drag Force	-	CD CDB CDF	CDTOTL CDBASE CDFORE					
$\mathbf{c}_{\mathbf{L}}$	Lift Force	-	CL	CL.					
CN	Normal Force	CN	-	-					
CY	Side Force	CY.	CY	CC					
° _L	Rolling Moment	CBL	CSL	CWL					
$\mathbf{c}_{\mathbf{m}}$	Pitching Moment	CLM	CLM	СРМ					
C _n	Yawing Moment	CYN	CLN	CLN · ·					
L/D	Lift-To-Drag Force Ratio	, —	L/D	CL/CD					
L/D	Lift-To-Forebody Drag Force Ratio	-	L/DF	CL/CDF					
N/A	Normal-To-Axial Force Ratio	N/A	-	-					
N/A	Normal-To-Forebody Axial Force Ratio	CN/CAF	-	-					

.

CONFIGURATIONS INVESTIGATED

The following model components were utilized during these tests:

B ₁	. -	basic fuselage for ROS-NB1
B _{1A}		basic fuselage modified as shown in Figure 6
В ₂		basic fuselage for ROS-WB1
W1	-	basic delta wing
$\mathbf{v_1}$	<u> </u>	basic vertical tail for ROS-NB1
v_2	` -	twin body tails, basic tails for ROS-WB1
F ₁	-	body flap
U ₁	ŗ	ventral fins

Pertinent dimensional information for each of the above components can be found in the "Model Component Description Sheet" section of this report. The data set collation sheets which follow immediately give a complete test configuration summary.

	T BASIC HY V200 SCALE	est Per: Mot	SON	GF NC S OF	HT For TH	<u>-01</u> ce e G	9 D AC	DAT. ATA Ra	a se os-k	т с N IBI	OLL TEST AND	atio rs Ro	ON S OF S-W	HEET Two IBI OR	BITERS	D PRI	TEST	-
DATA SET	CONFIGURATION	SCI	w.	CONTI	OL D	EFLE	TION	NO. of		·		1	IACH N	UMBERS				4
IDENTIFIER		α	β	∂e∟	de _R	δF	δu	RUNS	10						═┽╼═╾┾╼		{=	Į
RCT002	B, W, V,	A	0	0	0	0	-	_/_	2	ļ	ļ			↓				
RCT004	B, W, V, V,	A	0	-10	0	0	-	<u> </u>	4			ļ		ļ				1
RCT 005	B, W, M, Y,	A	0	/0	0	0	-	1	5		<u> </u>							1
RCT006	B, W, V, F, 10	A	0	0	0	10	-	1	6		<u> </u>		<u> </u>					ł
RCT007	B, W, 10, 10 V, F, 10	A	0	10	10	10		.1	7		<u> </u>							
RCTOOB	B, W, 20, -20 V,	A	0	-20	-20	0	-	/	8	L	ļ		L					
RCTU 09	B, W, 40, 40 V,	A	0	-40	-40	0	-	1	9									
RCTOII	B, W, V, U'^{o}	A	0	0	0	0	10	1	11]
RETOIZ	BIA WiVI	A	0	0	0	0		1	12									
RCT014	$B_i V_i$	A	0	-	1	0	1	1	14			` <u> </u>						1
RCT015	B2 N, V2	A	0	0	0	0	-	1	15			1]
RCT016	$B_2 W_1$.	A	0	0	0	0	ļ	1	16			Ι.	[) °
RCT017	B, W, V, U,	A	0	0	0	0	0	1	17]
RCT018	B, W, V. U.°	A	В	0	0	0	0	1	18				1					1
RCTOZO	B. ω). V.	A	В	0	0	0	-	1	20		<u> </u>							1
RCTOZI	BIAW, V.	A	В	D	0	0	-	1	21		1	<u> </u>						1
ReTA73	B, V,	A	В	-	-	0	-	1	23		•							1
RCT024	B2 W.V2	A	B	0	0	0	-	1	24		1							1
RETO25	B, W.	A	В	0	0	ò	-	1	25		1					12.		1
RCT026	B, W, V.	A	C	0	0	0		1	26		1							1
النسيب <u>، من من الم</u> سيط	7 13	19	L,	2	5.		31		37		3	4t4	9	55	61	67	75 7(_ 6
CN.			I M	ئىسىد /1	BL		CYN	1	.BET	Α.]
COEFFIC	IENTS:	1, 194) 1, 194)		7 6 6			<u> </u>	**************************************		<u></u>						VAR(1) IDP	VAR(2) ND	V
αorβ	$\frac{\propto H = 2}{\sqrt{R}}$	<u>0°</u>	<u>to</u>	65											•		• • •	
SCHEDUL	$ES = \frac{130}{2} = -7$	201	<u>n</u> 2 ($\frac{c_{s}}{c_{s}}$		<u></u>												

-

TEST <u>GFHT-019</u> DATA SET COLLATION SHEET

.

🖸 PRETEST

.

X POSTTEST

DATA SET		SCI	Ю.	CONT	ROL D	EFLI.	TION	NO.				l	IACH I	UMBE	RS]
IDENTIFIER	CONFIGURATION	a	β	Sel	Ser	δr	Su	RUNS	10				 	<u> </u>		<u> </u>		<u> </u>			
RCTÓ27	B, W, V, U,	A	C	0	0	0	0	1	27									1]		ſ
RCT028	BIAW, V,	A	C	0	0	0		1	28												l
RCT030	B,V,	A	C	0	0	0	·	1	30						<u> </u>		<u> </u>				
RCT001	B, W, V,	A	0	0	0	0	-	1	1												
			<u> </u>	 											<u> </u>	ļ	<u> </u>	<u> </u>]
											_		 	ļ	ļ		<u> </u>	ļ	[1
· .												 	 	ļ	 		<u> </u>	<u> </u>	<u> </u>		1
	· · · · · · · · · · · · · · · · · · ·		 	 								ļ	 	 	ļ	ļ	<u> </u>		 		Į
			 	[┨	 		{
	i 										 		<u> </u>	}	ļ	+	<u> </u>	╂	<u> </u>		4
				<u> </u>							 		 	├ ───			┼──				-
······														 		+	╂		 		ł
			<u> </u>										┟	<u> </u>	<u> </u>		· 		 		{
				 									┨────		<u> </u>			+	┟───		ł
				.									<u> </u>	<u> </u>			+	+	<u>}</u>		ł
				<u> </u>							[<u> </u>	}				<u>†</u>			1
				<u> </u>		 ,	<u> </u>							}	 		┼───	<u> </u>	<u> </u>		ł
								·						 	<u> </u>		<u>†</u>	+	<u> </u>		1
												-				<u> </u>	<u> </u>	1			1
ل م معمد معمد مع ما ۱	7 13	19		2	لمسيما 2		31	<u></u>	1	l	نــــــــــــــــــــــــــــــــــــ	· 4	9	5	5	6	1	67		75 76	3
CN	ICA ICY	iC1	M		BL		CYN	٢	BET	A				1						. [
COEFFIC	LENTS:2	<u>~~</u>	4.	15	0	· · · · · · · · · · · · · · · · · · ·										_⇒ I	DPVAR	(1) ID	PVAR(2) ND1	,
a or ß	$\frac{XH^2}{RC} = -3$	20	<u>70</u> COS	$\frac{\omega}{(\alpha)}$					··	·····		<u> </u>									
SCHEDUL	ES					ليور فعلا الي الم		ي مي اين مي			_										

TEST FACILITY DESCRIPTION

GRUMMAN 36-INCH HYPERSONIC TUNNEL

DESCRIPTION: This is an intermittent blowdown to vacuum type tunnel. The test section is 36 inches in diameter. High temperature sir from a pebble bed heater is introduced to the test section through fixed contoured, axisymmetric nozzles.

PERFORMANCE PARAMETERS:

Mach Range:	8, 10, 14
Reynolds Number (x10 ⁶ /ft):	0.2 to 4.5
Stagnation Pressure (psia);	200 to 2200
Dynamic Pressure (psf):	100 to 1200
Stagnation Temperature (°R):	1000 to 3500
Run Time (sec):	30 to 60

TESTING CAPABILITIES: Model mounting consists of a water-cooled, stingbalance sector rig which features a model injection system. Instrumentation for force, pressure, and heat transfer measurement is provided. A Schlieren system is available.

TEST CONDITIONS TEST GEHT 019

MACH NUMBER	REYNOLDS NUMBER per unit length	DYNAMIC PRESSURE (pounds/sq.inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
10.0	2.32 x 10 ⁶ .	2.16	1310 _
	· · · ·		
		-	· · · · · · · · · · · · · · · · · · ·
		L,	· · · · · · · · · · · · · · · · · · ·
,	· · · ·		
		·	
			· · ·

•

.

BALANCE UTILIZED: CHANCE - VOUGHT .625 in. VB-16 CAPACITY: ACCURACY: TOLERANCE:

			3	
NF	200 lbs.	🔹 .269 lbs.	,;	.0060
SF	100 lbs.	<u>+ .228 lbs</u> .		.0051
AF	60 lbs.	+ 178 1bs.		,0040
, PM	<u>200 in-1</u> bs.	<u>±.402 in-1bs.</u>	· - .	.0009
YM	<u>100 in-1</u> bs.	<u>± .455 in-</u> lbs.		.0016
RM	<u>80 in-1</u> bs.	<u>± 601 in-1bs.</u>	-	.0022

.

COMMENTS:

DATA REDUCTION

A Chance-Vought .625 inch VB-16 six component strain gage balance was used to measure orbiter forces and moments. All final data were presented along and about a set of body axis passing through a nominal center of gravity located at F.S. 1485, W.L. 377 and B.L. O. Data were converted to standard NASA Coefficients using the following constants:

Reference area: $S_{ref} = 20.689 \text{ sg. in.}$ Reference length: $f_{ref} = 9.648 \text{ in.}$ Reference span: $b_{ref} = 5.838 \text{ in.}$

No adjustment was made to the final data to account for the model base and balance cavity pressure contributions.

Nominal sideslip angles are indicated under the parameter values with each dataset. However, angles of sideslip in the nominal -3° and -10° cases were actually $\beta = -3^{\circ} \cos (\alpha)$ and $-\beta = 10^{\circ} \cos (\alpha)$ respectively. Care must be exercised when using the data to bear this in mind and to interpret the data accordingly.

Refer to Figure 1 for values of beta as a function of alpha.

10 |

SUMMARY DATA PLOT INDEX

Fig. 1. Longitudinal Characteristics - (A) Fig. 2. Longitudinal Characteristics, (A) Component Breakdown (A) Configuration Fig. 3. Lateral-Directional Stability, (B) Configuration Fig. 3. Lateral-Directional Stability, (B) Configuration Fig. 4. Lateral-Directional Stability, (B) Configuration Component Breakdown, 10. Deg. Sting Offset 24 Fig. 4. Lateral-Directional Stability, (B) Configuration 24 Component Breakdown, 3. Deg. Sting Offset 24 Fig. 5. Longitudinal Control Effectiveness, (A) Elevon Deflection 25 Fig. 6. Effect of Body Flap (A) Flap Deflection 35 Fig. 7. Effect of Ventral Fin, Longitudinal (A) Configuration 44 Fig. 8. Effect of Ventral Fin, Lateral, (B) Configuration 45 Fig. 10. Effect of Ventral Fin, Lateral, (B) Configuration 55 Fig. 11. Effect of Ventral Deflection, (A) Ventral Deflection 56	TITLE	*	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	PAGES
 Fig. 2. Longitudinal Characteristics, (A) Configuration Fig. 3. Lateral-Directional Stability, (B) Configuration Fig. 4. Lateral-Directional Stability, (B) Configuration Fig. 4. Lateral-Directional Stability, (B) Configuration Fig. 4. Lateral-Directional Stability, (B) Configuration Fig. 5. Longitudinal Control Effectiveness, (A) Elevon Deflection Fig. 6. Effect of Body Flap Fig. 7. Effect of Single Deflected Elevon Fig. 8. Effect of Ventral Fin, Longitudinal Fig. 9. Effect of Ventral Fin, Lateral, (B) Configuration Fig. 10. Effect of Ventral Fin, Lateral (B) Configuration Fig. 11. Effect of Ventral Deflection, (A) Ventral Deflection 	Fig. 1.	Longitudinal Characteristics - Repeatability	(A)		1-8
Fig. 3.Lateral-Directional Stability, Component Breakdown, 10. Deg. Sting Offset(B)Configuration1Fig. 4.Lateral-Directional Stability, Component Breakdown, 3. Deg. Sting Offset(B)Configuration24Fig. 5.Longitudinal Control Effectiveness, Elevons(A)Elevon Deflection25Fig. 6.Effect of Body Flap(A)Flap Deflection35Fig. 7.Effect of Single Deflected Elevon(B)Configuration46Fig. 8.Effect of Ventral Fin, Longitudinal(A)Configuration46Fig. 9:Effect of Ventral Fin, Leteral, 10. Deg. Sting Offset(B)Configuration56Fig. 10.Effect of Ventral Fin, Leteral 3. Deg. Sting Offset(B)Configuration56Fig. 11.Effect of Ventral Deflection, 3. Deg. Sting Offset(A)Ventral Deflection56	Fig. 2.	Longitudinal Characteristics, Component Breakdown	(A)	Configuration	9-16
Fig. 4.Lateral-Directional Stability, Component Breakdown, 3. Deg. Sting Offset(B)Configuration24Fig. 5.Longitudinal Control Effectiveness, Elevons(A)Elevon Deflection21Fig. 6.Effect of Body Flap(A)Flap Deflection33Fig. 7.Effect of Single Deflected Elevon(B)Elevon Deflection33Fig. 8.Effect of Ventral Fin, Longitudinal(A)Configuration44Fig. 9:Effect of Ventral Fin, Lateral, 	Fig. 3.	Lateral-Directional Stability, Component Breakdown, 10. Deg. Sting Offset	(B)	Configuration	17-19
Fig. 5.Longitudinel Control Effectiveness, Elevons(A)Elevon Deflection2Fig. 6.Effect of Body Flap(A)Flap Deflection3Fig. 7.Effect of Single Deflected Elevon(B)Elevon Deflection3Fig. 8.Effect of Ventral Fin, Longitudinel(A)Configuration44Fig. 9:Effect of Ventral Fin, Leteral, 10. Deg. Sting Offset(B)Configuration50Fig. 10.Effect of Ventral Fin, Leteral 3. Deg. Sting Offset(B)Configuration50Fig. 11.Effect of Ventral Deflection, 4.(A)Ventral Deflection56	Fig. 4.	Lateral-Directional Stability, Component Breakdown, 3. Deg. Sting Offset	(B)	Configuration	20-22
Fig. 6. Effect of Body Flap(A)Flap Deflection3Fig. 7. Effect of Single Deflected Elevon(B)Elevon Deflection3Fig. 8. Effect of Ventral Fin, Longitudinal(A)Configuration44Fig. 9: Effect of Ventral Fin, Latëral, 10. Deg. Sting Offset(B)Configuration50Fig. 10. Effect of Ventral Fin, Lateral 3. Deg. Sting Offset(B)Configuration50Fig. 11. Effect of Ventral Deflection, Lateral Deflection,(A)Ventral Deflection56	Fig. 5.	Longitudinal Control Effectiveness, Elevons	(A)	Elevon Deflection	23-30
 Fig. 7. Effect of Single Deflected Elevon (B) Elevon Deflection 39 Fig. 8. Effect of Ventral Fin, Longitudinal (A) Configuration 44 Fig. 79: Effect of Ventral Fin, Letëral, (B) Configuration 50 Fig. 10. Effect of Ventral Fin, Lateral (B) Configuration 50 Fig. 10. Effect of Ventral Fin, Lateral (B) Configuration 50 Fig. 11. Effect of Ventral Deflection, (A) Ventral Deflection 56 	Fig. 6.	Effect of Body Flap	(A)	Flap Deflection	31-38
Fig. 8. Effect of Ventral Fin, Longitudinal(A)Configuration44Fig. 79: Effect of Ventral Fin, Lateral, 10. Deg. Sting Offset(B)Configuration50Fig. 10. Effect of Ventral Fin, Lateral 3. Deg. Sting Offset(B)Configuration50Fig. 11. Effect of Ventral Deflection, Lateral Deflection,(A)Ventral Deflection56	Fig. 7.	Effect of Single Deflected Elevon	···~ (•B) ·	Elevon Deflection	· · · · · · · · · · · · · · · · · · ·
Fig. 9: Effect of Ventral Fin; Letëral; (B) Configuration 50 10. Deg. Sting Offset (B) Configuration 50 Fig. 10. Effect of Ventral Fin, Lateral (B) Configuration 50 3. Deg. Sting Offset (B) Configuration 50 Fig. 11. Effect of Ventral Deflection, (A) Ventral Deflection 56	Fig. 8.	Effect of Ventral Fin, Longitudinal	(A)	Configuration	42-49
Fig. 10. Effect of Ventral Fin, Lateral(B)Configuration533. Deg. Sting Offset(A)Ventral Deflection56	Fig.~9:	Effect of Ventral Fin, Latëral, 10. Deg. Sting Offset	· · · · · (B) ····· · · · ·	Configuration	* ` 50÷52
Fig. 11. Effect of Ventral Deflection, (A) Ventral Deflection 56	Fig. 10.	Effect of Ventral Fin, Lateral 3. Deg. Sting Offset	(B)	Configuration	53-55
Toudinat	Fig. 11.	Effect of Ventral Deflection, Longitudinal	(A)	Ventral Deflection	56-63

-

SUMMARY DATA PLOT INDEX

,

(CONTINUED)

		<u> </u>	•	
TITLE		PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	PAGES
Fig. 12.	Effect of Ventral Deflection, Lateral	(B)	Ventral Deflection	64-66
Fig. 13.	Effect of Alternate Forebody, Longitudinal	(A)	Configuration	67-74
Fig. 14.	Effect of Alternate Forebody, Lateral-Directional, 10. Deg. Sting Offset	(B)	Configuration .	75-77
Fig. 15.	Effect of Alternate Forebody, Lateral-Directional, 3. Deg. Sting Offset	(B)	Configuration	78-80
Fig. 16.	Comparison of ROS-NBl and ROS-WBL, Longitudinal	(A)	Configuration .	81 . 88
Fig. 17.	ROS-WBL Effect of Twin Vertical Tails, Longitudinal	(A)	Configuration	89-96
Fig. 18.	ROS-WBL Effect of Vertical Tails, Lateral, 10. Deg. Sting Offset	- (B)	Configuration	97-99

.

PLOTTED COEFFICIENTS SCHEDULE:

(A) - CN, CLM, CA, CL, CD, L/D vs. a
CN vs. CLM, CL vs. CD
(B) - CY, CYN CBL vs. a

.

FIGURES

00 Mapital avadu. A _ _ 4 serv

1.1	, . <i>.</i>		∤		1	::.;	1.11	111	lin		ļij	1		113	ĦF	ĦH	HH	ΗF		T FI	Ti		111			1		= 2	
		1																먍	+	.									•
· · · ·			;; ;										TL	:1'			iiii				11.1			1			•⊷	1	
	·	1	En: Es:				1 1		ΓĹ.				h H					II.							•+•••				** 7
	, 1										IF+						1-1			+			++			: :-		1-4	···-; -·
		·	,		{ ' . T' : :													++							1	: : : ·		· · ·	
			0.6																					1		ļ.,			1
	1											H													:ľ	•,	· · ·	; •	•
• .	;;																詽					lii						1 . 1 .1	
						h†η		Ť۳	τij								ÌÌÌ	Ŧ		titi						7	11**1	1.4	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 :					lin .			冊		Th	₩						$\left \right $									h-16.			13
			8.0	<u> :</u> ;	ĻĻ.						旧						Щ					<u>; </u>				<u> -</u>		<u></u>	<u>;</u> ;
AN	GL	¢	E								Ш							:'' 1'1						· ;				,	
SID	ESL	IP.	Ĩ	111						E		<u> </u>		1			Ň		₿.÷	-	10		0.5	6	X)				/ , , , .
	¦:.•		ļ:•••														詽	\mathbb{R}	<u>N</u>									::	
ŀ.				11				IF,			ti i									Ň						1			 .
ана 1 диа	, -	π	6iP		11	litt;											<u> </u>				NK.		- 1	+				111.	 1 :
1																					詽		<u> </u>	•		1			֥.
	1.12											Щ.					봚	H		4			Щ÷				ke.		
1.1.								μμ.			ijļ	Щ					Ш			ľ.				41	X.				[.÷.]
1																										Ľ.	世	· · · ·	
1							鼦							1											┽┽┥╍		冒		-
		旧	Ξ,				11 r	TT:		-	T	Ħ							T.I.		TTT.								1 .
				†T.†			tit,				甛							¢∐			†**#	İΠ					ΠŢ.		
	l n	117								Ħ					P.		ħ		¢	5(9	椚	111		+, 1					
İ.i.,		<u>Ц</u> Ц	20			[]		 - -	144		 					ļĮ								+i			 ++		
	ļ ,							1.4					Ш			Ĥ	祥				Щ.			+					
				12													<u>t</u>						14						[]
1.	i • •		1						用												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1Ti					1.
	ļ								Τj									T											1
					ΠŊ	E TI				団			FI F			T			ht;		TH				111	H	1.1		1
	l:r								HE							τf					hili								i rij
1.1.				<u>н, з</u>	12	2				0 ^H		┼╢		+4	P				15	0		111	÷	6			17	þ	
:					ļ.,,			A	N ¥	L E		iŔ	F		11		Gr	铝		0									
د. (ب					:_;:										11		[]	4			ЩI.	Цų	┝┙				1.1		
· · ·				ŀ.:								lil																	
.				FIG	UR				36,		U	48	j,				11	H	A										1
	;		111						Ŧ	ΠĿ		IIF		ŀŀ					Į.Į										
	; ;;											H			H i			ţτ	† ii										1
1.1	:;	4				HH						曲		╞╫			Ħ					╏╫╫	詽			1			
	:	14. j	'				1.1					₩			Щ							-						,	ļ
1.1.4					44		44-		444				μ.			Ц	Ц.							lu.			+++++		<u> </u>
			E.	:	圕																					,		ĺ	
													ij													:·;			1
				· · · ·								Ī			T											ŀ.;			
	l;					·••							詌				ŀ.]		1.1		1	
		1	1.11	Li Li Li	1:1		1.11	1.11	111	υШ	нu	Ш	itit	LUL	ĩΠ ₁	1.1	11	L 11	11	• سال ا	1,11.	1.5.	111	1	11.1	1	•	•	з., I

Notes:

- Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes mave been displaced from the center of gravity.

Figure 2. Axis systems, showing direction and sense of force and moment coefficients, angle of attank, and sideslip angle 14.4

GAC 3264 PEZ 3 8-70 325H

د ۲

21

MODEL COMPONENT DESCRIPTION SHEETS

MODEL COMPONENT: CBODY - B		t
GENERAL DESCRIPTION:BASIC ROS-NEL BO	DDY .	
، محمد محمد من محمد محمد محمد محمد محمد مح		5
		``````````````````````````````````````
1		····
DRAWING NUMBER: 518 MOD 900		4
DIMENSIONS:	FULL-SCALE	MODEL SCALE
	(FT. or FT ² )	( IN. OR IN. ² )
Length	160.8	<u>9.648</u>
Max. Width	28.0	1.680
Max. Depth	28.7	<u>1.722</u>
Fineness Ratio	5.61	5.61
Area		ĩ
Max. Cross-Sectional	·616	2.218
Planform		14.364
ketted '	12,610	45.396
Base .	590	2.124
	* ເ	í

MODEL COMPONENT: BODY - B2	<del></del>	·
GENERAL DESCRIPTION: BASIC ROS-WB1 ;	BODY	
• • • • • • • • • • • • • • • • • • •		
	·	· · · · · · · · · · · · · · · · · · ·
DRAWING NUMBER: 518 MOD 903		
	· · · ·	1/200
DIMENSIONS:	FULL-SCALE	MODEL SCAL
Length	(FT. OR FT. ² ) 160.8	(IN. OR IN. 9.648
Max. Width	44.8	2.688
Max. Depth	28.8	1.728
Fineness Ratio	3.6	3.6
Area		
Max. Cross-Sectional		3.442
Planform	5160	18.576
Wetted	13,230	47.628
Base `	744	2.678

.

MODEL COMPONENT:		
GENERAL DESCRIPTION: BASIC ROS-NB 1 WING	<b>.</b>	
	<i>₽</i> ¹	ij N
· ·		· ·
	<u>و</u>	
	····	
DRAWING NUMBER:518 MOD 902	,	£.
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA	(FT. OR FT. ² )	•
Area Planform Wetted Span (equivalent) Aspect Ratio Rate of Taper Taper Ratio Diehedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Toe-In Angle Cant Angle Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Wing Sta. 0.0) Tip, (equivalent) MAC Fus. Sta. of .25 MAC W.P. of .25 MAC	$     \frac{5747}{7780} \\     \frac{97.3}{1.65} \\     1.87 \\     .129 \\     50 \\     + 2^{\circ} @ body \\     \hline                               $	$\begin{array}{r} 20.7 \text{ in.}^{2} \\ \hline 28 \text{ in.}^{2} \\ \hline 5.841n. \\ \hline 1.65 \\ \hline 1.87 \\ \hline .129 \\ \hline 5^{\circ} \\ \hline -3^{\circ} @ \text{ tip} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $
B.L. of .25 MAC Airfoil Section Root Tip EXPOSED DATA	<u> </u>	290 er 1 <u>0% thickness</u> r 10% thickness
Area Span, (equivalent) Aspect Ratio Taper Ratio Chords Root Tip MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	3217 69.3 1.5 .172 78.25 13.5 46.4	11.58 in. ² 4.16 in. 1.5 .172 4.7 in. .0.81 in. .2.78 in.

MODEL	COMPONENT:	Elevon	(For	the W	Wing)	<u>.</u>			
-		-				• •			
GENER/	AL DESCRIPTION:	Move	able	Contro.	L Surface	Associated	With	the W	Wing
		•,			-				•
	· · · · · · · · · · · · · · · · · · ·							····	
						·	<u> </u>		

- .

•

DRAWING NUMBER: 518 MOD 902	• <i>.</i>	
-		1/200
DIMENSIONS:	FULL-SCALE (ft. or ft.)	MODEL SCALE (in. or in. ² )
Area	364.	1.310
Span (equivalent)	35.5	2.130
Root chord	12.75 ·	.765
Outb'd equivalent chord	7.75	.465
Ratio Elevator chord/horizontal tail chord	· ,	
At Inb'd equiv. chord		·
At Outb'd equiv. chord	•	
Sweep Back Angles, degrees	·	•
Leading Edge	0°	· _ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ~ ~ ~ ~ ~ ~ ~ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Tailing Edge	<u>8.4</u> ,°	4°
Hingeline	; ;	
Area Moment (Normal to hinge line)	ł	- , - ,

MODEL COMPONENT :	E VERTICAL TAIL - Vy		ň
GENERAL DESCRIPTION:	BASIC ROS-NB 1 VERTICA	L TAIL	
	-		**************************************
		Critic Carl - Contractor - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Carl - Car	
	- - -		
DRAWING NUMBER:	518 MOD 902		۰. ۲۰۰۰ ۲۰۰۰ ۱
DIMENSIONS:	* · · ·	FULL-SCALE (FT. OR FT. ² )	MODEL SCAL
Area		805	2.898
Span (equivaler	nt)·	333	1.998
Inb'd equivaler	nt chord	34.6	2.076
Outb'd equivale	ent chord	13.75	.825
Ratio movable s total surface	surface chord/ e chord	.*	- (- K ₂
At Inb'd	equiv. chord	3 [/]	.3
At Outb'd	equiv. chord		<u> </u>
Sweep Back Ang	les, degrees	۰	* * *
Leading E	dge	45°	45 [°]
Tailing E	dge	19.70	- 19.7 ⁰
Hingeline		28.7°	28.7°
Area Moment (N	ormal to hinge line)	<u>945</u>	204
		-	:
AIRFOIL SECTIO	NC	<u>644010</u>	644010
			۰،

	ē )	
MODEL COMPONENT: Rudder (for the V	vertical tail)	
	· · ·	
GENERAL DESCRIPTION: Moveable Control	L Surface Associated Wi	th the V
Vertical Tail		
1 } ,		
DRAWING NUMBER: 518 MOD 902	· · · · · · · · · · · · · · · · · · ·	, . 
DIMENSIONS :	FULL-SCALE	1/200 MODEL SCALE
Area	(ft. or ft ⁻ )	(in. or in. ² )
Span (equivalent) ROOT	33.3	1.998
Inbid Equivations chord		.624
Outb'd equivalent chord RUDDER	4.02	.241
Ratio <del>Elevator</del> chord/horizontal tail chord		
At Inb'd equiv. chord		3
At Outb'd equiv. chord	<u></u>	
Sweep Back Angles, degrees	•	,
Leading Edge	29.5°	29.5°
Tailing Edge	<u>19.7°</u>	19.7°
Hingeline	21	ķ.
Area Moment (Normal to hinge line)		<u> (</u>

-

5

.

MODEL COMPONENT: TWIN BODY TAILS - V2	·	[]
GENERAL DESCRIPTION: BASIC ROS-WBL VERTIC	CAL TAILS	r J
1		v
		ţ.
	·	ş Ş
DRAWING NUMBER: 518 MOD 905	_	3
DIMENSIONS:	FULL-SCALE	MODEL SCAL
Area	(FT. OR FT.)	$(1N \cdot OR 1N \cdot 2; 412$
Span (equivalent)	35.5	2.130
Inb'd equivalent chord	<u>33.17</u>	1:990
Outb'd equivalent chord	9.08	545
Ratio movable surface chord/ total surface chord	· ·	x -
At Inb'd equiv. chord	۰ 	•
At Outb'd equiv. chord		
Sweep Back Angles, degrees		× };
Leading Edge	40 ⁰	<u>40</u> °
Tailing Edge	<u> </u>	8,5 ⁰
Hingeline	i	• ••••••
Area Moment (Normal to hinge line)	, 	
AIRFOIL SECTION	<u>NACA 64A010</u>	NAC'A 64A01
CANT ANGLE (OUTBOARD)	15°	15°

## NOMENCLATURE

# (General)

.

	SADGA G	•
SYMBOL	SYMBOL	DEFINITION
a	Alpha	angle of attack, angle between the projection of the wind $X_w$ -axis on the body X, Z-plane and the body X-axis; degrees
β.	BETĄ	sideslip angle, angle between the wind X _w -axis and the projection of this axis on the body X-Z-plane; degrees
ψ	PSI	yaw angle, angle of rotation about the body Z-axis, positive when the positive X-axis is rotated toward the positive Y-axis; degrees
ф 	PHI	roll angle, angle of rotation about the body X-axis, positive when the positive Y-axis is rotated toward the positive Z-axis, degrees
ρ	-	of density to (m3 slugg/et3
	- ·	air density; Kg/m ² , slugs/it ²
8,		speed of sound; m/sec, ft/sec
. <b>V</b>	:	speed of vehicle relative to surrounding atmosphere; m/sec, ft/sec
đ.	Q(PSI) Q(PSF)	dynamic pressure; 1/20V ² , psi, psf
М	MACH	Mach number; V/a
RN/L	RN/L	Reynolds number per unit length; million/ft
p ·	• • •	static pressure; psi
Р		total pressure; psi
c _p	CP (1)	pressure coefficient; $(p-p_{\infty})/q$
•		
¢ _p `		
÷		30
C _p		5-
•		
a l		
'Ɗ <b>\</b>		

# NOMENCLATURE (Continued)

Reference & C. G. Definitions

SYMBOL	SADSAC SYMBOL	DEFINITION
S		wing area; $m^2$ , ft ²
ន	SREF	reference area; $m^2$ , ft ²
5		wing mean aerodynamic chord or reference chord; m, ft, in (see $f_{ref}$ or LREF)
$l_{ref}$	lref	reference length; m, ft, in.; (see $\bar{c}$ ) [;]
bref	BREF	wing span or reference span; m, ft, in
Ab		base area; m ² , ft ² , in ²
с. g.		center of gravity
MRP	MRP	abbreviation for moment reference point
	XMRP	abbreviation for moment reference point on X-axis
	YMRP	abbreviation for moment reference point on Y-axis
	ZMRP	abbreviation for moment reference point on Z-axis

.

·
## NOMENCLATURE (Continued)

# Axis System General

SYMBOL	DEFINITION
म	force; F, 1bs
М	moment; M, in-1b

Subscript	Definition		
N ·	normal force		
A	axial force		
L	lift force		
D	drag force		
¥ •	force or moment about the Y axis		
Z	moment about the Z axis		
X	moment about the X axis		
8	stability axis system		
W	wind axis system		
ref	reference conditions		
∞	free stream conditions		
t	total conditions		
ď	base		

#### NOMENCLATURE (Continued) Body & Stability Axis System

.

SYMBOL	SADSAC SYMBOL	DEFINITION			
Body Axis System					
$\mathbf{c}_{\mathbf{N}}$	CN	normal force coefficient; F _N /qS			
CA	CA	axial force coefficient; $F_A/qS$			
с _А _b	CAB	base axial force coefficient; $\begin{bmatrix} -1 \\ [(p_b - p_{\infty})/q] & (A_b/S) \end{bmatrix}$			
C _A €	CAF	forebody axial force coefficient; $C_A - C_{A_b}$			
Cn	CYN	yawing moment coefficient; $M_Z/cS$ bref			
°ℓ	CBL	rolling moment coefficient; Mx/qS bref			
Common to Both Axis Systems					
cm	CIM	pitching moment coefficient; My/qS $l_{ m ref}$			
Cy	CY	side force coefficient; $F_{\underline{Y}}/qS$			
	Sta	ability Axis System			
$C_{L}$	CL	lift force coefficient; FL/qS			
$c_{D}$	CD :	drag force coefficient; $F_D/qS$			
C _{Db}	CDB	base drag coefficient			
C _{Df}	CDF	forebody drag coefficient; $C_D - C_{Db}$ .			
C'n	CIN	yawing moment coefficient; $M_{Z,s}/qS$ $b_{ref}$			
°l	CSL	rolling moment coefficient; $M_{X,s}/qS b_{ref}$			
L/D	L/D	lift-to-drag ratio; $C_{\rm L}/C_{\rm D}$			
L/D _f	L/DF	lift to forebody drag ratio; $C_{I}/C_{D_{f}}$			

._____33___

• •

#### NOMENCLATURE (Continued)

•

#### Surface Definitions

SYMBOL	SADSAC SYMBOL	DEFINITION		
it.	HORIZT	horizontal tail incidence; positive when trailing edge down; degrees		
δ		symmetrical surface deflection angle; degrees; positive deflections are:		
	AILRON CANARD ELEVON ELEVTR FLAP RUDDER SPOILR TAB	aileron - total aileron deflection; (left aileron - right 'aileron)/2 canard - trailing edge down elevon - trailing edge down elevator - trailing edge down flap - trailing edge down rudder - trailing edge to the left spoiler - trailing edge down tab = trailing edge down with respect		
δ	AIL-L AIL-R ELVN-L ELVN-R SPLR-L SPLR-R	antisymmetrical surface deflection angle, degrees; positive trailing edge down: left aileron - trailing edge down left elevon - trailing edge down right elevon - trailing edge down left spoiler - trailing edge down right spoiler - trailing edge down		
SURFACE SUBSCRIPTS	3	DEFINITION		

UBSCRIPTS	DEFINITION
8	aileron
Ъ	раве
c	canard
e	elevator or elevon
f	flap
<b>2°</b> 1	rudder or ruddervator
8	spoiler
t	tail
-	•

#### TABULATED DATA LISTING

A tabulated data listing, consisting of all aero data sets, both original and those created in arriving at the plotted material to be presented subsequently, is available as an addendum to this report. The tabular listing is made up in two sections:

- (a) a brief summary list of all data sets containing the identifier, the descriptor, and the resident dependent variables.
- (b) a full list of all data sets containing all resident or selected aerodynamic coefficients of the data sets as well as the above mentioned information.

The listing is currently sent on limited distribution to the following organizations:

NASA	AMES	Mr.	V. Stevens
NASA	MSC	Mr.	Ray Nelson
GAC		Mr.	M. Quan

If copies of this listing are desired, please contact the above or the cognizant SADSAC personnel who, for this data, is:

> Miss B. J. Fricken Department 2780 Chrysler Corporation Space Division New Orleans, La. 70129

(504) 255-2304

PLOTTED DATA

36



1



# FIG. 1 LONGITUDINAL CHARACTERISTICS - REPEATABILITY



# FIG. 1 LONGITUDINAL CHARACTERISTICS - REPEATABILITY





5







## FIG. 1 LONGITUDINAL CHARACTERISTICS - REPEATABILITY



FIG. 2 LONGITUDINAL CHARACTERISTICS, COMPONENT BREAKDOWN



PAGE 10



# FIG. 2 LONGITUDINAL CHARACTERISTICS.COMPONENT BREAKDOWN



## FIG. 2 LONGITUDINAL CHARACTERISTICS, COMPONENT BREAKDOWN

10.130

PAGE 12



MACH

· •



# FIG. 2 LONGITUDINAL CHARACTERISTICS, COMPONENT BREAKDOWN

PAGE 14

MACH





# FIG. 2 LONGITUDINAL CHARACTERISTICS, COMPONENT BREAKDOWN



17



10.130



19



NACH 10.130

PAGE 20





22

P/





PAGE

.

²⁴ 



FIG. 5 LONGITUDINAL CONTROL EFFECTIVENESS, ELEVONS

Ĩ





PAGE 27

.



10.130

PAGE 28

.





PAGE 30



Ĭ


PAGE 32



NUL 33







HACH 10.130

PAGE 36





.



FIG. 7 EFFECT OF SINGLE DEFLECTED ELEVON

,



FIG. 7 EFFECT OF SINGLE DEFLECTED ELEVON









FIG. 8 EFFECT OF VENTRAL FIN, LONGITUDINAL



### FIG. 8 EFFECT OF VENTRAL FIN, LONGITUDINAL



,

PAGE 45

•

•



#### FIG. 8 EFFECT OF VENTRAL FIN, LONGITUDINAL



FIG. 8 EFFECT OF VENTRAL FIN.LONGITUDINAL



HACH





## FIG. 9 EFFECT OF VENTRAL FIN, LATERAL, 10. DEG. STING OFFSET



FIG. 9 EFFECT OF VENTRAL FIN, LATERAL, 10. DEG. STING OFFSET





FIG. 10 EFFECT OF VENTRAL FIN, LATERAL, 3. DEG. STING OFFSET

⁵³ 



# FIG. 10 EFFECT OF VENTRAL FIN, LATERAL, 3. DEG. STING OFFSET



FIG. 10 EFFECT OF VENTRAL FIN.LATERAL. 3. DEG. STING OFFSET

PAGE 55

-



56



FIG. 11 EFFECT OF VENTRAL DEFLECTION, LONGITUDINAL



FIG. 11 EFFECT OF VENTRAL DEFLECTION.LONGITUDINAL







FIG. 11 EFFECT OF VENTRAL DEFLECTION.LONGITUDINAL



MACH



FIG. 11 EFFECT OF VENTRAL DEFLECTION, LONGITUDINAL



HACH

PAGE 64



FIG. 12 EFFECT OF VENTRAL DEFLECTION, LATERAL



MACH

10,130



FIG. 13 EFFECT OF ALTERNATE FOREBODY, LONGITUDINAL


FIG. 13 EFFECT OF ALTERNATE FOREBODY, LONGITUDINAL



FIG. 13 EFFECT OF ALTERNATE FOREBODY, LONGITUDINAL



HACH

PAGE 70



FIG. 13 EFFECT OF ALTERNATE FOREBODY, LONGITUDINAL



## FIG. 13 EFFECT OF ALTERNATE FOREBODY, LONGITUDINAL

PAGE 72

MACH



FIG. 13 EFFECT OF ALTERNATE FOREBODY, LONGITUDINAL





PAGE

75



76



10.130

NACH



10.130







FIG. 16 COMPARISON OF ROS-NB1 AND ROS-WB1, LONGITUDINAL

10.130



## FIG. 16 COMPARISON OF ROS-NB1 AND ROS-WB1.LONGITUDINAL

15



FIG. 16 COMPARISON OF ROS-NB1 AND ROS-WB1, LONGITUDINAL





FIG. 16 COMPARISON OF ROS-NB1 AND ROS-WB1, LONGITUDINAL



# FIG. 16 COMPARISON OF ROS-NB1 AND ROS-WB1, LONGITUDINAL



FIG. 16 COMPARISON OF ROS-NB1 AND ROS-NB1, LONGITUDINAL

.



FIG. 16 COMPARISON OF ROS-NB1 AND ROS-WB1.LONGITUDINAL



FIG. 17 ROS-WB1 EFFECT OF TWIN VERTICAL TAILS LONGITUDINAL

10.130 MACH .



# FIG. 17 ROS-WB1 EFFECT OF TWIN VERTICAL TAILS LONGITUDINAL



FIG. 17 ROS-WB1 EFFECT OF TWIN VERTICAL TAILS LONGITUDINAL



HACH 10.130



.



94

FIG. 17 ROS-WB1 EFFECT OF TWIN VERTICAL TAILS LONGITUDINAL

1314



FIG. 17 ROS-WB1 EFFECT OF TWIN VERTICAL TAILS LONGITUDINAL

HACH 10.130

PAGE

95



MACH 10.130

> .PAGE 96





.

