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I. SUMMARY 

This report  discusses t he  t e s t i n g  performed i n  PZS-1 during t he  time 

period of l 2  March through 28 May 1970. Operation consisted of 28 runs with 

a t o t a l  running time (based on mercury loop operation) of 1,620 hours 15  minutes .  

The conclusion of t e s t i n g  brought the  accrued operating time of several  coin- 

ponents i n to  t he  range of 12,000-14,000 hours. Most s ign i f ican t  i s  the  'I1AA 

which has now operated f o r  12,443 hours. 

The PCS-1 Test Plan ( ~ e f e r e n c e  1) out l ines  various t e s t s  of both system 

and component or ienta t ion.  These t e s t s  were a l l  successfully completed. Addi- 

t i o n a l  t e s t s  were added near the  end of the  t e s t  period t o  invest igate  bo i l e r  

performance and system response t o  condenser- overpressure shutdowns. Each of 

the  t e s t i n g  phases i s  summarized below. 

1. Turbine 

The measured turbine  eff ic iency i s  about 55.0-56.076. This i s  

about midway between the  i n i t i a l  value of 57.5% recorded i n  March 1968 an& the  

minimum value of 54.8% measured September 1969. The improvement since Septem- 

bcr 1969 i s  a t t r i bu t ed  t o  cleaning done during t h e  September-March shutdokni 

pc:riod. 

There i s  one anomaly i n  the  current  turbine  performance. The 

turbine i n l e t  pressure i s  running about 4% high f o r  a given flow. This pceno- 

menon i s  present ly  being a t t r i bu t ed  t o  1 s t  stage nozzle mass t r ans f e r  deposits ,  

r esu l t ing  from i n i t i a l  wet operation wi th  a deconditioned bo i le r .  

2. Boiler  

Extensive bo i l e r  mapping was performed. Mapping was s t ressed 

at; both the design range and over a second range which simulated (on a p e r - ~ u b e  

bas i s )  operation a t  t he  PCS-G s ta te-point .  The performance of t he  bo i l e r  was 

excellent;  the  s t a b i l i t y  ( o u t l e t  mercury pressure var ia t ions)  was the  best  o f  

any bo i le r  t e s t ed  t o  date i n  PCS-1. The only performance weakness o f  the  

bo i l e r  was a negative slope of pressure drop versus mercury flow, which exis ted 

al, both the design range and the  PCS-G s ta te-point .  However, t h i s  phenomenon 



i s  r e a d i l y  correc ted  by a change of i n l e t  r e s t r i c t o r  o r i f i c e  s i z e .  The condit ion 

e x i s t s  because t h e r e  was no requirement t o  avoid a negative s lope  when the b o i l e r  

was designed. 

3. Condenser 

Condenser mapping was very d e t a i l e d .  The t e s t  program was 

es tab l i shed  t o  evaluate the  condenser performance a s  near  a s  poss ib le  t o  the  

PCS-C s ta t e -po in t .  P a r t i c u l a r  e f f o r t  was made t o  s tudy t h e  e f f e c t s  of ehoked- 

flow which occurs a t  very low condensing-pressure condit ions.  The t e s t i n g  

i d e n t i f i e d  two d i s t i n c t  i n t e r n a l  phenomena: l o s s  of temperature p o t e n t i a l  end 

choked flow. 

The lowest condensing pressure  t h a t  can be achieved with t h e  

condenser at PCS-G condit ions i s  about 5 p s i a .  This means t h e  condenser i s  

atlequate f o r  the  PCS-G s ta t e -po in t ,  but  only with a small margin. The mercury 

pressure drop assoc ia ted  with the  s t a t e -po in t  condit ions w a s  a l s o  ider i t i f ied .  

The pressure drop i s  s u f f i c i e n t l y  high t o  warrant f u r t h e r  evaluat ion  of the  

e f f e c t s  on MPMA suc t ion  presE,ure. For s teady-s ta te  ground operat ion,  the re  i s  

no problem, but  i n  a zero-g app l i ca t ion  ( p a r t i c u l a r l y  during s t a r t u p )  the  

suct ion  pressure might be inadequate. 

An objec t ive  of t h e  t e s t  program w a s  t o  generate and evaluate 

the  apparent condenser o u t l e t  r e s t r i c t i o n  experienced i n  pas t  PCS-1 testing. 

The phenomenon d id  not occur during t h e  t e s t  program, p resumbly  because 01' 

plumbing changes which a l t e r e d  t h e  flow condit ions i n  the  a r e a  where the 

apparent r e s t r i c t i o n  used t o  occur. 

Bead l o s s  of t h e  mercury pump was t y p i c a l  of p a s t  PCS-L operation, 

ranging from 4-11 f e e t  throughout t h e  t e s t i n g .  The pump i s  s a t i s f a c t o r y  for use 

i n  PCS-G wi th  t h i s  amount of head l o s s .  

An at tempt t o  c o l l e c t  a  sample of t h e  debr is ,  o r  gas, causing 

t h e  head Loss w a s  made by t ak ing  a sample from t h e  region of the  impeller  eye. 

The r e s u l t s  were inconclusive.  A small amount of gas w a s  co l l ec ted ,  but it 

was i n s u f f i c i e n t  t o  account f o r  any head l o s s .  The sampling method i s  not con- 

s idered  soph i s t i ca ted  enough t o  warrant drawing any conclusions from the  t e s t .  

During t h e  t e s t ,  t h e  MPMA developed a l e a k  which was e~cbibi ted  

by mercury i n  t h e  space s e a l  c a v i t y  d r a i n  t r a p .  The l e a k  s t a r t e d  about 



19 Apri l  1970, and continued f o r  the  remainder of the  t e s t i ng .  The l eak  r a t e  

was about 1 lb/hr.  The leakage i s  t en t a t i ve ly  explained a s  an improperly 

seal ing face  s e a l  which allowed l i qu id  mercury leakage under and/or over t he  

visco pump sleeve.  

5. Al ternator  

Tests were conducted t o  evaluate t he  e f f e c t  of speed-control- 

system harmonics on a l t e rna to r  ef f ic iency.  The e f f ec t s  of the  harmonics were 

i n  the  expected di rect ion,  but the  magnitude was too small t o  be defini.te:Ly 

separated from possible instrumentation e f f ec t s  . The important conclusion i s  

tha t  the  e f f ec t s  of harmonics a r e  small enough t h a t  the  ex i s t i ng  a l t e rna to r  

cl 'ficiency data generated by General E l ec t r i c  Company a r e  adequate. The absence 
oc' harmonics when General E l ec t r i c  Company generated the  e f f i c iency  data  h a s  

ncgi ig ible  e f f ec t  on the  published r e su l t s .  

The a l t e r n a t o r  was operated a t  80 KVA t o  f i n d  t he  resu l t ing  

a l t e rna to r  temperature. The maximum power t h a t  could be maintained withovit 

exceeding the  temperature l i m i t  es tabl ished f o r  the  t e s t  (bus bar temperature 

of 520 '~  w a s  78 KVA. This i s  about equal t o  the  required PCS-G KVA. For the  

ex i s t ing  a l t e rna to r  t o  meet t he  SNAP-8 l i f e  and r e l i a b i l i t y  requirements, i c  is 

recommended t h a t  the maximum bus bar and winding temperatures be l imi ted "c approxi-. 

matcly 4 7 0 ~ ~  and ~ O O ~ F ,  respectively.  This indicates  t h a t  add i t iona l  a l t e rna to r  

cool.i.ng should be considered f o r  PCS-G. 

Speed Control 

Load t r an s f e r s  t o  and from the  PLR were made t o  demonstrate the 

speed con t ro l  performance with t he  new bo i l e r  and t o  evaluate repea tab i l i ty  of' 

performance. Transfers of a s  high as 44 KWE were made, which required operating 

the PLR at i t s  design l i m i t  of 47 KWE. The previous maximum load t r an s f e r  i n  

PCS-1 was 36 KWE. The t e s t i n g  showed good repea tab i l i ty ,  with no chcznge in 

performance from the previous t e s t i n g  i n  September 1969. 

A second t e s t  of the  speed con t ro l  system evaluated the equiiibrivrn 

sa turable  reactor  temperature when operating the  PLR with a 47 KWE load. The 

47 KWE condition w a s  maintained f o r  24 hours. There i s  some question about the  

v a l i d i t y  of the  temperature data.  But it can d e f i n i t e l y  be concluded t h a t  t h e  

sa turable  reactor  operates a t  an acceptable temperature. A 10,000-hour l i f e  

requires the  temperature t o  be no more than 430'~. The recorded PCS-1 data 

indicated 3h°F  ( o r  perhaps 380 '~  i f  adjusted f o r  the  possible e r r o r ) .  



B. SYSTEM PERFORMANCE 

1. Boi ler  

The b o i l e r  deconditioned about 4 minutes a f t e r  i t s  i n i t i a l  

s t a r t  up. The most l i k e l y  explanation f o r  t h e  deconditioning i s  o i l  c ~ n t a ~ i n a -  

t i o n  of the  mercury loop. It i s  proposed t h a t  p re lubr ica t ion  ( p r i o r  t o  r o t a t i o n )  

o r  the  TAA and MPMA bearings introduced t h e  o i l .  It i s  recommended t h a t  PCX- G 

use greases, o r  some o t h e r  method, t o  e l iminate  the  need of o i l -p re lubr ica t ion .  

The b o i l e r  performance gradual ly  improved over succeeding rans 

u n t i l  f u l l y -  conditioned performance was achieved. Ful l -  condit ioning was ra in-  

t a ined  throughout the  numerous remaining s t a r t u p s  and shutdowns of the  t e s t  

s e r i e s .  Boi ler  condit ioning should not be a PCS-G problem, provided proper 

cons idera t ion  i s  given t o  the  matters  of c l ean l iness  and bearing pre lubr ica t ion .  

2.  Non- condens i b l e  Gas 

The f i r s t  s e v e r a l  runs of t h e  t e s t  s e r i e s  experienced a cont inual  

buildup of non- condensible gas i n  the  condenser. The occurrence was i d e n t i c a l  

t o  t h e  experience i n  October 1968. The source of t h e  non-condensible gas is 

thought t o  be oil-decomposition products r e s u l t i n g  from the  o i l  contamination 

caused by the  bearing p re lubr ica t ion  mentioned above. Once the  source of o i l  

was depleted, no f u r t h e r  non-condensible gas developed, a s  evidenced by extensive 

operat ion with numerous s t a r t u p s  and shutdowns. J u s t  a s  wi th  the  b o i l e r  deeondb- 

t ioning,  no PCS-G problem i s  expected, provided t h e  bearing p re lubr ica t ion  method 

i s  proper ly  modified. 

3. Automatic Shutdowns 

A s e r i e s  of condenser-overpressure automatic shutdowns were 

conducted t o  evaluate t h e  e f f e c t s  of various mercury loop dump methods. The 

objec t ive  w a s  t o  f i n d  i f  PCS-G could be proper ly  protec ted  from an excessive 

condenser overpressure i f  only t h e  condenser were dumped, a s  opposed t o  dijjmping 

both Lhe b o i l e r  and t h e  condenser. A previous ( ~ u n e  1965) condenser overpressu.re 

i n  RPL-2 had resu l t ed  i n  an  excessive condenser overpressure when, presumably, 

both the  b o i l e r  and condenser were dumped. 

It was found t h a t  a condenser-dump only (no b o i l e r  dump) has 

:;ui'Si-cient t o  p r o t e c t  PCS- 1 from an  excessive condenser overpressure.  The RPL-2 



experience i s  not considered a similar circumstance, presumably due t o  the 

d i f f e r en t  type b o i l e r  used ( tube  i n  s h e l l ) ,  and a l s o  because of an uncertainty 

t ha t  the  condenser even dumped. 

It i s  concluded t h a t  PCS-G would be adequately protected with 

only a condenser-dump system, provided the  e f f ec t s  of o ther  var iables  sueh as 

l i n e  s i z e s  and valves a r e  equivalent t o  those i n  PCS-1. If the  current  con- 

s ide ra t ion  of l/2-inch valves i n  t h e  condenser dump system i s  pursued, -r,hen 

the sa fe ty  of PCS-G becomes indecisive.  The t o t a l  PCS-G l i n e  and valve res i s -  

tance with l/2-inch valves i s  t e n  times what it i s  i n  ES-1 .  A d i r ec t  appl ica t ion 

of PCS-1 experience d i c t a t e s  that PCS-G should use 1-inch valves. 

4. HeatLoss 

The heat load of the  L/C system w a s  invest igated with a s e r i e s  

of t e s t s  which varied L/C flow and temperature conditions. While mueh of the  

data  agreed with e a r l i e r  component t e s t  f a c i l i t y  data ,  o the r  data  were very 

questionable. It i s  recommended that PCS-G design continue using the  L/C ]?eat 

load data  cur ren t ly  ava i l ab le  from component t e s t  data.  

5.  System Degradation 

The operating time spent i n  a s t r i c t  "hands-off" operating 

condit ion was insuf f i c ien t  t o  accurate ly  evaluate any slow system t rans ien t s ,  

such a s  might be associa ted with some spec i f i c  component degradation. liowever, 

general comment can be made on a reas  of pas t  i n t e r e s t  regarding system and 

component degradation. 

a .  The t yp i ca l  l o s s  of mercury pump head occurred. 

b. The t yp i ca l  l o s s  of mercury pump suct ion pressure,  due t o  

an apparent condenser ou t l e t  r e s t r i c t i o n ,  d id  not occur. 

c .  The b o i l e r  pressure drop w a s  notably cons-t;*ant o~nce 

cqnditioned performance was achieved. 

d. TAA degradation was not detectable .  

I n  all., the system w a s  i n  a very s t ab l e  condit ion throughout t he  t es t ing ,  and 

showed no detectable  s igns  of any s i gn i f i c an t  t ime-related degradation. 



C. OVERALL VALUE OF TESTS 

Because of the  extensive range of t e s t  objectives,  and the system- 

or iented nature of the  t e s t s ,  much ins igh t  i n t o  PCS-G design requirements has  

been gained. One cause of b o i l e r  conditioning and non-condensible gas bui ldup 

has hopefully been i den t i f i ed .  The condenser r e s t r i c t i o n  has apparently been 

eliminated. Automatic shutdowns have been investigated f o r  the  f i r s t  time, 

Component performance has been i den t i f i ed  i n  su f f i c i en t  d e t a i l  t o  surpass pre- 

vious PCS-1 accomplishments. No s imi la r  time period of PCS-1 operation has 

contributed so much t o  understanding the system and i t s  components. 



11. INTRODUCTION 

PCS-1 t e s t i n g  s ince  October 1968 has been extremely successful .  The 

t e s t i n g  was highlighted by two runs exceeding 2,000 hours, a  s ingle-ce t  of 

components opera t ing  7,320 hours, and the  'I!AA (and s e v e r a l  o the r  components) 

passing t h e  10,000-hour mark. A t  t he  completion of t h i s  t e s t i n g  i n  September 

1363, a  6-month major f a c i l i t y  and component inspect ion  per iod  followed. IJuring 

the  inspect ion  period,  t h e  mercury loop l i q u i d  l i n e s  and t h e  condenser were 

cleaned. The TAA, PNPMA, MPMA, and b o i l e r  were removed and analyzed. The T M  

was i n  good condit ion and was r e i n s t a l l e d  as Unit 5/5. The PNPMA had failed 

i n  t h e  nex t - to - l a s t  run, and had t o  be replaced. The MFMA required replacement 

of' s e v e r a l  c r i t i c a l  p a r t s  and i s  considered t o  be a new un i t .  The b o l l e r  was 

replaced wi th  a new un i t  of modified design ( s h o r t e r  o v e r a l l  length  and s h o r t e r  

p lug i n s e r t s )  . The components comprising the  system a r e  l i s t e d  and i d e n t i f i e d  

i n  Table 1. 

This r epor t  covers t h e  t e s t i n g  conducted when operat ion was resumed i n  

March 1970. The time per iod  covered i s  from 12 March t o  May 1970. The objec t ive  

of the  t e s t i n g  was t o  f u r t h e r  def ine  component and system behavior with p a r t i -  

c u l a r  emphasis on performance a t  the  new PCS-G s ta t e -po in t .  The t e s t i n g  i s  

out l ined i n  the  PCS-1 Test  Plan ( ~ e f e r e n c e  1). 

SYSTEM PERFORMANCE 

A. OPERATION SUMMARY 

Operation during t h e  period of t h i s  r epor t  (March-~ay 1970) cocs is ted  

of 28 individual  runs f o r  a  t o t a l  system opera t ing  time of 1,620 hours. Table 

2 l i s t s  the  s t a r t  and s top  times of each run, together  with t h e  run Length, and 

the  reason f o r  each shutdown. The opera t ing  time of ind iv idua l  components i s  

l i s t e d  i n  Table 3. P a r t i c u l a r l y  noteworthy i s  t h e  TAA time which now t o t a l s  

12,442 hours . 
B. BOILER CONDITIONING 

The f i r s t  run of t h e  s e r i e s  (~43-6-45)  began on 12 March 1970. The 

mercury f'low was brought up t o  a  value of about 6,000 lb/hr ,  and a l l  appear-ed 

normal. Then, the  b o i l e r  o u t l e t  mercury temperature s t a r t e d  t o  decrease, aLter- 

nai,or power dropped o f f ,  and the  turbine  speed began t o  decrease. L ' a r io~  

manipulations were made wi th  t h e  mercury flow r a t e  which would tempoirarily 

inc:rca;e the  tu rb ine  speed, but  the  speed could not be maintained a t  ;2,003 rpn* 



The cause of t h e  e r r a t i c  performance was  a deconditioning of the  

b o i l e r .  

The performance of t h e  b o i l e r  i s  shown i n  Figure 1. The data c l e a r l y  

show the  improving performance during the  f i r s t  3-4 minutes of t h e  run. The 

mercury pressure  drop i s  high, t h e  superheat i s  increasing,  t h e  te rminal  tempera- 

t u r e  d i f fe rence  i s  decreasing, and t h e  mercury inventory i s  normal. Then, a 

sudden r e v e r s a l  occurs. The superheat and pressure drop begin t o  decrease, and 

the  te rminal  temperature d i f fe rence  and mercury inventory begin t o  increase .  

Figure 2 p resen t s  b o i l e r  NaK- s i d e  temperature p r o f i l e s  . One prgf i l e  

i:; taken j u s t  before the  peak performance w a s  achieved, and t h e  o the r  represents  

the  performance a f t e r  t h e  dec l ine  had occurred. The s h i f t i n g  of the  b o i l i n g  

region i n  t h e  p l o t s  c l e a r l y  demonstrates t h e  decondit ioning t h a t  had occurred. 

The exact  cause of t h e  b o i l e r  deconditioning i s  not known, but [,here 

i s  s t rong suspic ion of the  cause. An opera t ional  procedure used i n  PCS-1 re- 

qui res  p re lubr ica t ing  t h e  bearings (before r o t a t i o n )  of any TAA. o r  MFMA t h a t  

i s  newly i n s t a l l e d  o r  t h a t  has been i d l e  f o r  an  extended period.  It i s  proposed 

t h a t  t h i s  o i l  i n j e c t i o n ,  without s l i n g e r  ro ta t ion ,  r e s u l t s  i n  o i l  passage i n k 0  

the  mercury loop. The above procedure was followed i n  t h e  cu r ren t  operation; 

both t he  TAA and MPPvIA were p re lubr ica ted  by b r i e f l y  opening t h e  L/C v8.lves to 

t he  two components. The reasons f o r  suspecting t h e  p re lubr ica t ion  a s  the  cause 

of t h e  b o i l e r  condit ioning a r e  two-fold. F i r s t ,  t h e  opera t ing  time before 

decondit ioning occurred ( ~ 3 -  4 minutes) i s  cons i s t en t  wi th  t h e  time required f o r  

mercury (and o i l )  t o  flow from the  MRM t o  the  b o i l e r .  Secondly, t h i s  f i r s t  run 

and severa l  subsequent runs were plagued with non-condensible gas i n  'che con- 

denser,  exac t ly  as occurred i n  t h e  f a l l  of 1968. The f a l l  of 1968 was the  l a s t  

time t h a t  a MPMA w a s  i n s t a l l e d  and pre lubr ica ted .  It i s  proposed' that the  non- 

condensible gas i s  evidence that o i l  i s  i n  t h e  mercury loop, s ince  the  gas i s  

composed of products t h a t  could be formed by o i l  decomposition. 

Operating procedures i n  PCS-1 have now been modified t o  preclade 3 

recurrence of o i l  i n j e c t i o n .  It i s  recommended t h a t  PCS-G use o the r  than o i l  

p re lubr ica t ion  a s  a bearing prepara t ion  method. Consideration should be gj ven 

t o  greases, e t c .  



Presuming the  b o i l e r  was deconditioned by a s i n g l e  i n j e c t i o n  cf a 

f i n i t e  amount of o i l ,  it would be expected t o  see  t h e  b o i l e r  eventual ly  ea~disioc 

and remain conditioned. Such w a s  the  case. Several  hours a f t e r  the  deeondi- 

t i o n i n g  occurred, the  system was again s t a r t e d .  Several  s h o r t  runs followed 

(shutdowns were required t o  remove non-conclensibles from t h e  condenser). During 

each of the  runs, t h e  b o i l e r  performance s t e a d i l y  improved. While the  boller 

was i n  the  process of condit ioning,  each of the  shutdowns r e s u l t e d  in a p a r t i a l  

l o s s  of condit ioning.  This c y c l i c  condit ioning p e r s i s t e d  only u n t i l  t he  b o i l e r  

became f u l l y  conditioned. From t h a t  t ime on, shutdowns had no e f f e c t  cn condi- 

t ion ing .  

Table 4 shows t h e  h i s t o r y  of t h e  b o i l e r  condit ioning.  The f i r s %  

few runs of t h e  t e s t  s e r i e s  a r e  compared a t  equivalent  time periods (10 hours 

and 24 hours i n t o  the  run) .  The c y c l i c  condit ioning on each run i s  ev ide~ i t ,  

a s  wel . las  the  eventual  constant  performance. The lower pressure  drop shown 

f o r  Run ~43-6-54  i:; due t o  a d i f f e rence  of NaK temperature. 

C . NON- CONDENSIBLE GAS 

D i f f i c u l t y  was experienced wi th  non-condensible gas buildups i l l  t h e  

condenser during s e v e r a l  of the  runs. The h i s t o r y  of the  non-condensible gas 

buildup i s  p l o t t e d  i n  Figure 3. The buildup r a t e  i s  e s s e n t i a l l y  t h e  same on 

each of t h e  runs u n t i l  Run ~43-6-51,  a t  which time t h e  buildup r a t e  was cDn- 

s ide rab ly  l e s s .  This ind ica tes  the  source was near ly  deple ted .  On a l l  slrb- 

sequent runs, t h e r e  w a s  no buildup of non-condensibles de tec ted .  

The whole episode wi th  non-condensibles appears i d e n t i c a l  t o  the  

experience which occurred during October-November of 1968. I n  both inc idents ,  

the  buildup r a t e  w a s  about t h e  same, and it f i n a l l y  ceased a f t e r  about s l x  

shor t  runs. I n  both cases,  t h e  gas was i d e n t i f i e d  a s  being pr imar i ly  byd~.oger^i. 

The quest ion n a t u r a l l y  a r i s e s  a s  t o  what w a s  t h e  source and what w a s  similLar 

about the  system and i t s  operat ion during these  two per iods .  

Since tantalum has an a f f i n i t y  f o r  hydrogen, the  b o l l e r  i s  t he  

na tu ra l  f i r s t  suspect .  But the  b o i l e r  i s  not considered t o  be t h e  cause, 

regardless  of the  f a c t  t h a t  t h e  non-condensible gas has been i d e n t i f i e d  as 

being p r imar i ly  hydrogen. The reason t h e  b o i l e r  i s  not suspected i s  tbai 



experience has shown t h a t  t he  bo i l e r  would give off  v i r t u a l l y  a l l  i t s  ha-d.r.ogen 

i n  u matter of a day o r  l e s s ,  For instance, i n  1968 when Boiler  No. 2 aas 

f i r s  L tes ted,  the  bo i l e r  was only outgassed a t  f u l l  temperature ( 1 3 0 0 ~ ~ )  Tor a 

few hours p r io r  t o  s ta r tup .  When the  run began, the  non-condensibles only 

accumulated i n  t he  condenser f o r  about a day, a f t e r  which there  was no fu r the r  

problem. The current  bo i l e r  was even l e s s  l i k e l y  t o  give off hydrogen subse- 

quent t o  s t a r t up  since t he  bo i l e r  was outgassed f o r  a much longer period zhan 

i n  the  case of Boiler  No. 2. A t  most, the  bo i l e r  could not be responsible f o r  

supplying hydrogen f o r  more than perhaps one day. Therefore, it i s  conelrded 

t h a t  the  bo i l e r  i s  not t h e  source of t he  present non-condensible gas. 

As mentioned e a r l i e r ,  there  i s  one aspect of operation t ha t  was the  

same i n  1968 a s  i n  the  current  operation. I n  both cases, the  non-condensible 

buildup s t a r t e d  on the  f i r s t  run, following the  i n s t a l l a t i o n  of a new ( o r  re- 

assembled) mercury pump. Since newly i n s t a l l ed  uni ts  have been prelubricazed 

i n  place p r i o r  t o  rota t ion,  it i s  assumed tha t  t h i s  operation has supplied o i l  

which ult imately ended up i n  t h e  mercury loop; o i l  decomposition could t h e r  

produce the  hydrogen and methane found i n  the  gas samples. 

By de le t ing  the  current  pre lubr icat ion procedure, it i s  hope6 that 

non-condensible gas problems w i l l  not be experienced again. 

D. AUTOMATIC SHUTDOWNS 

An important conclusion regarding the PCS-G design was reached as a 

r e su l t  of  the  PCS-1 tes t ing .  Pr io r  t o  t h e  t es t ing ,  it was not known i f  protee- 

t i o n  against  a condenser-overpressure shutdown would n2cess i ta te  only a condenser 

mercury d q ,  o r  i f  it would require both a bo i l e r  and a condenser dump, During 

a condenser-overpressure shutdown i n  S L 1  (1965)) both the  bo i l e r  and condenser 

were dumped, and there  was no s ign i f ican t  r i s e  i n  condensing pressure foilowing 

t he  ins tan t  the  dumping occurred. However, i n  W E 2  (1965), a s imi la r  shutdown 

mode resul ted i n  a condenser-overpressure t o  180 psia ,  which i s  unacceptabie~ 

Presumably, t he  condenser and bo i l e r  were both dumped i n  the  RPL-2 case, bet a 

pos i t ive  statement i s  not possible from the  data .  It i s  known t h a t  the  bo i l e r  

dumped, but possibly t h e  condenser d id  not dump. With the  evidence conflie?;ing 

a s  it was, and with such an advantage t o  be gained i f  PCS-G could use a condenser 

dump only, it was decided t o  conduct a s e r i e s  of condenser-overpressure automtztle 

s'r~utdowns i n  PCS- 1. 



The t e s t i n g  i n  PCS-1 was done on 26 and 27 May 1970. Six d i f fe ren t  

shutdown modes were used, a s  defined below: 

Test Number Conditions 

1 Boiler  and condenser dump with mercury flow of 

6,000 lb/hr  . 
2 Boiler  and condenser dump with mercury flow of 

12,000 lb/hr  . 
3 Boiler  dump only with mercury flow of 6,000 lb/br. 

4 Boiler  dump only with mercury flow of 12,000 ~b/ lnr .  

5 Condenser dump only with mercury flow of 6,,000 1b/hr 

6 Condenser dump only with mercury flow of 12,000 ~ .b /h r -  

Pr io r  t o  i n i t i a t i n g  each shutdown, the  condensing pressure was s e t  a t  15 psFa, 

and a1.l PIIIAs, with the exception of the  HRFMA, were put  on 400 Hz f a c i l i t y  power. 

The HRPMA w a s  put on 60 Hz f a c i l i t y  power a t  shutoff head with HRL flow provided 

by t he  HR EM pump. The reason f o r  the  EN pump was t o  protect  t he  HRPLVLA. from the 

rapid changes i n  flow t h a t  occur during the  t e s t i ng .  

Each shutdown w a s  i n i t i a t e d  by suddenly stopping HRL flow, thereby 

simulating the  l o s s  of the  HIIPMA. As t he  condensing pressure subsequently rase,  

a condenser-overpressure shutdown automatically occurred when the  cond.ensing 

pressure reached 45 ps ia .  As a precautionary measure, the  t e s t  engineer s4;aod 

by t o  immediately res to re  HRL flow (with the  EM pump) i n  the  event the condensring 

pressure reached 75 ps ia .  

The r e su l t s  of the  t e s t i n g  a r e  shown i n  Figures 4 through 10. Figures 

Ic  through 8 show condenser mercury i n l e t  and o u t l e t  pressures versus time for 

Test Numbers 3, 4, 5, 6, and 6 ( repea t ) .  Test Numbers 1 and 2 a r e  nct sbo7ij.n 

because s t r i p  char t  data  were not avai lable ,  (DINS only). However, the t e s t s  

were simultaneous bo i l e r  and condenser dumps, and turned out t o  be unimportant 

cases. 

The s ign i f ican t  features  t h a t  a r e  evident i n  Figures 4 through F\ are 

l i s t e d  below. 



1. Test Nos. 3 and 4 - Boiler  Dump Only ( ~ i g u r e s  4 and 5) 

a .  A t  6,000 lb/hr mercury flow, t he  condensing pressure has 

no noticeable overshoot beyond the  automatic dumping 

pressure ( 45 ps ia )  . 
b. A t  12,000 lb/hr  mercury flow, the  condensing pressure has 

about a 10 p s i  overshoot beyond the  automatic dumping 

pressure. 

c .  There i s  no immediate response of condensing pressure to 

the  bo i l e r  dumping. The decline of condensing pressme 

only r e su l t s  a s  mercury flow t o  the  condenser decreases, 

This type of shutdown has t he  highest peak pressure of 

, any of t he  t e s t s .  

d. A decrease of condenser mercury inventory ( indicated by 

ou t l e t  pressure minus i n l e t  pressure) coincides with the 

r i s e  of condensing pressure. This i s  a r e s u l t  of a eor- 

responding r i s e  i n  mercury flow and t r ans f e r  of mercury 

t o  the  bo i le r .  

e. No v i s ib l e  mercury was found i n  e i t h e r  the  TAA or Kg IT44 

space s e a l  dra ins .  A su f f i c i en t l y  high condensing pressure 

could overpower the  space sea l s  and force  l i qu id  mercury 

out. 

2 .  Test Nos. 5, 6, and 6 ( ~ e p e a t )  - Condenser Dump On12 (~igures 

6, 7, and 8) 

a. There i s  an immediate response of condensing pressure t o  

a condenser dump. 

b. There i s  very l i t t l e  overshoot of condensing pressure beyond 

the  automatic dump pressure, even a t  12,000 lb/hr mercury 

flow. 

c. The rapid decrease of condensing pressure i s  p a r t i a l l y  

caused by t he  increasing amount of cooler heat t r ans fe r  

area  exposed a s  l i qu id  mercury leaves the  condenser. 



d. A decl ine  i n  t he  r a t e  of decrease of the  conden.sing 

pressure occurs when a l l  t he  l i qu id  i s  emptied out of 

the  condenser so t h a t  l i t t l e  f u r t h e r  exposure t o  cooler  

surfaces i s  possible.  A t  12,000 lb /h r  mercury flow, there  

i s  an ac tua l  r i s e  i n  condensing pressure when the  Last of 

the  l i qu id  leaves the  condenser and the re  i s  no more eooier  

surface t o  be exposed. 

e .  Fluctuations i n  the  condenser o u t l e t  pressure occur es the  

plumbing t o  the  dump tank i s  emptied of a l l  l i qu id  and 

vapor discharges i n to  the  dump tank. 

f .  A 5 p s i  e r r o r  i n  the  condenser o u t l e t  pressure develops 

sho r t l y  a f t e r  the  condenser empties a s  the  l i qu id  l eve l  

drops below the  locat ion of t he  ou t l e t  pressure transducer. 

The 5 p s i  i s  a head correct ion programmed i n t o  t he  DD4S 

output. Therefore, the re  i s  a 5 p s i  discrepancy between 

t he  i n l e t  and ou t l e t  pressures a t  the  end of the  t e s t .  

The di f ference between t he  two pressures i s  ac tua l l y  zero* 

3 .  Combined P lo t  of A l l  Condensing Pressures ( ~ i ~ u r e  9) 

The condensing pressure from each shutdown has been plocted on 

Figure 9 f o r  ease of comparison. The following s ign i f i can t  events can be seen. 

a .  As expected, a much more rapid  r i s e  of condensing pressure 

occurs a t  a mercury f l o w  of 12,000 lb /hr  than a t  6,000 l b l h r .  

b. A double peak occurs when a condenser-dump-only i s  used., 

This phenomenon i s  the  r e s u l t  of t he  increase of cool ing  

ava i l ab le  a s  the  condenser l i qu id  i s  emptied. 'When the  

condenser i s  empty, t he  pressure again r i s e s  i f  the b o i l e r  

i s  s t i l l  supplying su f f i c i en t  mercury. I f  t he  b o i l e r  i s  

dumped, then the re  i s  not a second peak. 

c .  The maximum pressure reached i n  the  s e r i e s  of shutdowlis 

was with a boiler-dump only. 



1 .  Liquid Mercury Inventory ( ~ i ~ u r e  10) 

Figure 10 presents t he  condenser l i qu id  mercury inventory f o r  each 

shutdown. The following s ign i f ican t  occurrences a r e  noted. 

a .  The inventory decreases as the  condensing pressure r i s e s .  

As s t a t ed  e a r l i e r ,  t h i s  is  a r e su l t  of the  increased 

mercury flow and bo i l e r  inventory requirement. 

b. The r a t e  of inventory decline i s  greater  a t  12,000 ~ / h r  

mercury flow than a t  6,000 lb/hr  because of the  more rapid 

r i s e  of condensing pressure a t  12,000 lb/hr  . 
c .  When only t he  b o i l e r  i s  dumped, the re  i s  a subsequent re turn  

of condenser inventory. 

5. Dumping Rate 

O f  p a r t i cu l a r  i n t e r e s t  t o  PCS-G i s  t h e  dumping r a t e  during a 

condenser dung. From Figure 10, a rough estimate can be made of the dumping 

r a t e  through t he  plumbing of PCS-1. The r a t e  appears t o  be about 60,,000 lb/hr. 

An hydraulic analyses of the  PCS-1 plumbing was maae TO provide 

a cross-check on the  measured dumping ra tes .  The PCS-1 plumbing consis ts  of the 

following: 

Item - Quant i ty  

Stra ight  Section 
( 1- inch tubing) 

Bends 

Tees 

Valve ( 1- inch) 

1 4  f e e t  14 f e e t  

5 3 f e e t  

2 9 f e e t  

1 28 f e e t  

The resu l t ing  res is tance of the  PCS- 1 plumbing i s  approximately 

AP = 7.2 x 10 -9 3 
where AP = pressure drop, p s i  C 11 

$ = mercury flow, lb/hr 

For a t yp i ca l  pressure drop a s  measured i n  the  PCS-1 sbuzdowas, 

Equation (1) predic ts  a mercury flow of about 50,000 lb/hr  during a conqn L . la- C J *  

dump. This i s  i n  good agreement with the  measured dump r a t e .  



6. RPL-2 Condenser Overpressure 

The 180 p s i a  condenser pressure t h a t  r esu l t ed  during the  ~365 

TPL-2 c.ondcnser-overpressure shutdown may wel l  have l i t t l e  cor re la t ion  w i t h  

~)o:;sj t ) l r .  PCS-1 o r  PCS-G experience. I n  the  RPL2 case, t he  b o i l e r  was che 

o r ig i  ntl l tube- in- s h e l l  model. This model had high-pressure-drop r e s t r i c t o r s  

and a higher nominal mercury inventory. Therefore, even though the  bo i l e r  

dumped a t  the time of the  condenser overpressure, the  time required t o  empy 

the  b o i l e r  of mercury was g rea te r  than wi th  PCS-1 and PCS-G. This means mercury 

flowed t o  the  condenser f o r  a longer period, which would s i gn i f i c an t l y  r a i s e  the  

condensing pressure.  

It i s  not apparent from the  RPL-2 data  whether the  condenser 

dumped o r  not. It i s  poss ible  that it d id  not, s ince  i n  the  PCS-1 t e s t s  it was 

shown that  no high pressures r e s u l t  when the  condenser i s  dumped, whether o r  not  

the bo i l e r  i s  dumped. However, the  condenser may have dumped, but t he  g rea te r  

mercury flow from the  tube-in'-shell b o i l e r  was enough t o  cause t he  high over- 

pressure.  

Another f a c t o r  that may have had an  e f f e c t  on the  RPL-2 s:iutdown 

was the  dump tank pressure.  More than l ike ly ,  t h e  dump tanks were pressurized 

t o  nome l e v e l  with argon, possibly a s  much as 50 ps ia .  What e f f e c t  this m%y 

have had i s  not known. 

7. Application t o  PCS-G Design 

The r e su l t s  of the  t e s t i n g  show t h a t  a condenser-dump-only i s  

:iufnCicient t o  p ro tec t  agains t  a condenser overpressure i n  PCS-1. The same staze- 

mcnt could be made about PCS-G provided the  plumbing res is tance  from t h e  cijnaenser 

Lo the  dump tank (mercury i n j ec t i on  reservoir )  i s  equal t o ,  o r  l e s s  thac,  "hat f.n 

PCS- 1. The current  PCS- G design has a l i n e  pressure drop, exclusive of vaives,  

of about 0.5 p s i  at ra ted  flow (14,350 lb /hr  mercury). Two valves a r e  i n  the 

1-ine. It i s  cur ren t ly  being considered t o  use 1/2-inch valves because they a r e  

avai lable .  These 1/2-inch valves have a pressure drop of 7.4 p s i  each at rated 

f'low. Combining the  res is tances  of the  l i n e  and valves gives the  ove ra l l  pres- 

sure drop a s  

AP = 79 x 10 -9 # 
where AP = pressure drop, p s i  

f4 = mercury flow, lb /hr  



By comparison, the  PCS-1 pressure drop ( ~ q ~ m t i o n  ( 1 ) )  i s  about one-tenth af 

what it i s  i n  PCS-G. Therefore, i f  t h e  112-inch valves a r e  used i n  PCS-G, the  

PCS- 1 data cannot be d i r e c t l y  applied t o  reach the  conclusion t h a t  PCS-G could 

likcw i :;c t)c safe  with a condenser-dump only. Perhaps PCS-G would be adequately 

protected cven with the  higher res is tance  of the  l/2-inch valves, but it has not 

been demonstrated by t e s t .  Furthermore, PCS-G may use shor te r  condensing lengths 

(more mercury inventory) than used i n  PCS-1 t o  obta in  b e t t e r  response from the  

inventory control  system. This increases the  time required t o  empty the ccn- 

denser and w i l l  increase the  maximum condensing pressure reached. I f ,  on the  

o ther  hanii, 1- inch valves a re  used i n  PCS-G, t he  flow res is tances  of PCS-1 and 

PCS-G would be almost iden t ica l .  With i den t i c a l  res is tances ,  it can be eon- 

c l tded on 1,he s t reng th  of the  PCS-1 t e s t s  t h a t  PCS-G would be adequately pro- 

t ec ted  agains t  a condenser overpressure having only a condenser-dwnp syszem, 

E. COMPOrJENT HEAT LOSS 

On several  occasions i n  PCS-1 t e s t i ng ,  attempts have been made t o  

evaluate the  heat picked up by the  L/C system. This heat represents the energy 

that must be radia ted by t he  L/C rad ia to r  of a f l i g h t  system. Generally, 

attempts t o  evaluate the  heat  load have been inconclusive. This was again the 

case i n  t he  current  t e s t i ng .  Although many of t he  contributions t o  the t o t a l  

heat input appear cor rec t ,  o thers  a r e  apparently i n  e r ro r ,  a t  l e a s t  when 

rneas ured agains t  component loop t e s t  da ta .  

Figures 11 through 1 4  present  the  data  generated during the heat 

10s:; mapping. D a t a  a r e  presented f o r  the HEUPMA, PIPMA, MPMA, and T U ,  Frjr 

each component, spec i f i c  parameters, such a s  L/C flow and temperature, were 

varied t o  observe the  response of the  heat  load. The var ia t ions  of the hcat 

load were small, a s  expected, and a r e  generally l o s t  i n  the  data s c a t t e r .  

Therefore, the trends of parameters a r e  not e n t i r e l y  obvious since they miy 

have been influenced by system per turbat ions  and data  s c a t t e r .  

I n  s p i t e  of t he  indecisive nature of some of the  trends,  the aTrerage 

may:nitudes of t he  various indicated heat  loads a r e  c l e a r .  Table 5 presents 

tabulat ions t o  compare heat loads a s  measured i n  PCS-1 with those current ly  used 

i n  PCS-G design. Some of the  comparisons a r e  good; o thers  a r e  not .  The i;iA 

and NaK PMAs show good agreement, except f o r  the PNPMA which i s  reading hLgli, 



as nxpected, s ince  it i s  a MOD 111 uni t .  The t o t a l  TAA heat  load agrees *rell, 

l ~ ~ s f ,  Chc d i s t r i bu t i on  of heat  load (between space seal ,  bearings, and alternator) 

r i n  o r .  The MPMA and LCR4.A do not show good comparisons. 

The PCS-1 da ta  can only be considered as an approximation tc t he  

actua.1 heat, load of the  L/C system. It i s  recommended t h a t  PCS-G design con- 

ti-nuc with the  same values which have beer1 obtained on a more laboratory- 

controlled bas i s  i n  component t e s t  f a c i l i t i e s .  



I V .  COMPONENT PrnORMANCE 

A. TURBINE ALTERN4TOR ASSEMBLY 

From June 1967 t o  September 1969, t h e  t u r b i n e - a l t e r n a t o r  assemnly 

accrued 10,800 hours of ope ra t ion .  During t h i s  ope ra t ing  per iod ,  t h e  ind ica t ed  

t u r b i n e  aerodynamic e f f i c i e n c y  decreased from 57.5% t o  54.8%. P o s t - t e s t  rnspee- 

t i u n  of t h e  u n i t  d i s c l o s e d  some eros ion/cor ros ion  damage and mass- t ransfer  

dcponit ion.  Based upon t h e  r e l a t i v e l y  l i m i t e d  ex ten t  of t h e  wear, it was eon- 

cludcd t h a t  t h e  t u r b i n e  w a s  capable of a t  l e a s t  20,000 hours of ope ra t ion*  

Accordingly, t h e  u n i t  w a s  reassembled a f t e r  l i m i t e d  cleaning,  and was returned 

t o  s e r v i c e  i n  PCS-1. 

The aerodynamic e f f i c i e n c y  t o  be expected from t h e  reassembled 

t u r b i n e  w a s  somewhat vague. The e r ros ion /co r ros ion  damage d i d  n o t  appear  

:: i l f '  f ' i  c:ient t o  have caused a l l  t h e  observed e f f i c i e n c y  degrada t ion .  Therefore,  

it was a n t i c i p a t e d  t h a t  t h e  e f f i c i e n c y  might be somewhat improved because of 

clcani-ng ( 3 r d  s t a g e  nozzle  mass- transfer  d e p o s i t s ) .  It was es t imated  tha t  

the e r f  i c i ency  might be about  56%. 

TAA performance mapping was performed on 25 March 1970. The d&ta  

a r c  presented  i n  F igures  15, 16, and 17. F igure  15  p r e s e n t s  a l t e r n a t o r  pcwer 

versus mercury vapor flow; F igure  16 p r e s e n t s  t u r b i n e  aerodynamic e f f i c i e n c y  

ver:; us v e l o c i t y  r a t i o ;  and Figure  17 p r e s e n t s  TAA e f f i c i e n c y  versus  merehry 

vapor flow. A comparison of F igure  15 w i t h  t h e  same d a t a  obta ined  when t h e  

ulli t  was f i r s t  t e s t e d  i n  1967 i n d i c a t e s  t h e  output  power a t  a giyen vapor 

I'low i s  about t h e  same. The f i r s t  r e a c t i o n  t o  t h i s  is  t h a t  t h e  t u r b i n e  eff-i- 

ci cbnc:,y has r e tu rned  t o  i t s  o r i g i n a l  value; o r  if t h e  e f f i c i e n c y  i s  not  increase3,  

t i1c .n  {,he b o i l e r  has  l e s s  carry-over ,  r e s u l t i n g  i n  h ighe r  TAA output. .  Unfmtun-  

a t e l y ,  i t  appears  t h a t  n e i t h e r  conclusion i s  c o r r e c t .  

Although t h e  output  power i s  increased  ( t o  o r i g i n a l  va lue)  r o r  a 

given flow, t h e  t u r b i n e  i n l e t  p re s su re  i s  abnormally high.  A t  nominal TI-w, 

t h e  p re s su re  i s  high by about  5-10 p s i .  This  cond i t i on  l eads  t o  two possib;e 

expl-anations as t o  t h e  p re sen t  t u r b i n e  condi t ion .  I f  it i s  assumed t h a t  t h e  

f low meter -is i n  e r r o r  and t h a t  t h e  t u r b i n e  i n l e t  p re s su re  i s  a  more e o r r r c L  

measure of flow, t hen  t h e  t u r b i n e  e f f i c i e n c y  i s  about t h e  same (55%) a s  it was 

whcn t e s t i n g  was concluded i n  September 1969. I f ,  a l t e r n a t i v e l y ,  it i s  a:,sume6 



t h a t  [,he flow meter i s  c o r r e c t ,  t hen  t h e  t u r b i n e  e f f i c i e n c y  i s  improved over 

what it w a s  September 1969; bu t  something has t o  have changed w i t h i n  t h e  

t,urbine t o  cause t h e  h igh  f i r s t - s t a g e  nozzle  i n l e t  p re s su re .  Even wi th  t h i s  

latt,r;r a:;r,umption ( c o r r e c t  f Low meter) ,  t h?  t u r b i n e  e f f i c i e n c y  i s  s t i l l  not 

up t o  i Ls o r i g i n a l  value of 57.5-58.0% i n  s p i t e  of t h e  high power output ;  

because oC t h e  h ighe r  energy a v a i l a b i l i t y  a t  t h e  h ighe r  i n l e t  t en~pe ra tg re ,  

t h e  peak e f f i c i e n c y  i s  s t i l l  on ly  55.0-56.0% ( ~ i ~ u r e  16 ) .  

An anomaly of t h i s  s o r t  immediately l e a d s  t o  t h e  ques t ion  of 

ins t rumenta t ion  accuracy.  Although ins t rumenta t ion  e r r o r  could cause t h e  

apparent  anomal-y, t h e r e  i s  good evidence f o r  accep t ing  t h e  ins t rumenta t ion  

readings .  The t u r b i n e  i n l e t  p re s su re  readings would be d i f f i c u l t  t o  cha l lenge  

because of t h e  cons iderable  redundancy. The vapor l i n e  has p re s su re  t r ans -  

ducers  a t  t h e  b o i l e r  ou t le t ,  f low-venturi  i n l e t ,  t u r b i n e  f i l t e r  i n l e t  ( n o t  

r e l i a b l e ) ,  and t u r b i n e  i n l e t  ( 2 )  . A l l  t h e s e  t ransducers  a r e  i n  agreement 

Also, t h e  t u r b i n e  i n l e t  p re s su re  was confirmed du r ing  t e s t  wi th  a n  on- l ine  

c a l i b r a t i o n .  The vapor flow meter i s  t h e  prime suspec t  f o r  e r r o r ,  bu t  it 

l ikewise  appears  c o r r e c t .  The vapor f low readings  have been confirmed by 

v isua l -meter  d a t a  and by an  on- l ine  c a l i b r a t i o n .  I n  add i t i on ,  h e a t  balance 

da tn ,  while  somewhat inaccura te ,  i n d i c a t e  t h e  vapor flow readings a r e  e o r r e c t .  

The explana t ion  of improved b o i l e r  performance has a l s o  been 

proposed. For  a given vapor flow, l e s s  car ry-over  c e r t a i n l y  r e s u l t s  i n  a 

h ighcr  t u r b i n e  output  power, bu t  l e s s  car ry-over  does not  cause a n  inc rease  

i n  t u r b i n e  i n l e t  p re s su re  a t  a given vapor flow. For  t h i s  reason,  t he  So? l e r  

i s  no t  considered t h e  cause of t h e  unexpected t u r b i n e  behavior .  

The cause of t h e  t u r b i n e  anomaly i s  be ing  i n v e s t i g a t e d  by the  

Rota t ing  Components Group. It i s  p o s s i b l e  t h a t  mass- t ransfer  depos i t s  have 

p a r t i a l l y  blocked t h e  f i r s t - s t a g e  nozzle.  The b o i l e r  was i n i t i a l l y  deeondi- 

t i oned  du r ing  t h e  c u r r e n t  s e r i e s  of runs ( s t a r t i n g  12  March 1970),  and 

decondit ioned b o i l e r  ope ra t ion  has caused mass- t ransfer  d e p o s i t s  i n  t h e  past .  

The t u r b i n e  i n t e r s t a g e  p re s su re  readings give some support  t o  ihc 

i dea  Lhat t h e  f i r s t - s t a g e  nozzle  a r e a  has decreased.  By means of t h e  i n t e r -  

stagf ,  prcusure  readings,  t h e  e f f e c t i v e  a r e a  of each nozzle  can be calcu_'-a1 I*. 

Data on nozzle a r e a s  from December 1968 t o  t h e  p re sen t  a r e  shown i n  3 igu re  18. 

The c a l c u l a t i o n  of  nozzle a r e a  i s  based upon a comparison between t h e  noz7'Le 



pres su re  d a t a  and t h e  vapor-flow r a t e .  Thus, a n  e r r o r  i n  vapor flow w i l l  cause 

t h e  c a l c u l a t e d  nozzle  a r e a s  t o  be i n  e r r o r .  But conversely,  i f  a l l  ca l cu la t ed  

nozzle  a r e a s  were unchanged, t h e n  it would be reasonable t o  conclude t h a t  t h e  

vapor-flow r a t e  i s  c o r r e c t .  For  t h e  case  i n  po in t ,  F igure  18 shows t h e  e f f e c t i v e  

nozzlc a r e a s  of t h e  second, t h i r d ,  and f o u r t h  s t a g e s  t o  be b a s i c a l l y  unchanged* 

The f i r s t  s t age ,  however, appears  t o  p o s s i b l y  have a sma l l e r  a r e a .  These f ind -  

ings  dend credance t o  t h e  p o s t u l a t e  t h a t  t h e  f i rs t  s t a g e  nozzle  a r e a  has changed, 

presumably due t o  mass- t ransfer  depos i t s .  

An a l t e r n a t i v e  explana t ion  might be some s o r t  of mechanical cbange 

wi th in  t h c  t u r b i n e .  But t h i s  i s  only  a remote p o s s i b i l i t y .  It i s  nI.ore Elke ly  

t h a t  f,here i s  a p a r t i a l  blockage of t h e  f i r s t - s t a g e  nozzle  o r  even tha-c t h e  

vapor-flow meter i s  i n  e r r o r ,  i n  s p i t e  of t h e  confirmatory evidence t h a t  it 

i s  accu ra t e .  

B. CONDENSER 

Heat T rans fe r  and Pressure  Drop C h a r a c t e r i s t i c s  

Condenser performance mapping w a s  conducted on 10-13 A p r i l  l.970. 

The. t e s t i n g  w a s  f a r  more ex tens ive  than  any previous  mapping of t h e  condenser.  

TThc reason f o r  t h e  g r e a t e r  d e t a i l  was t h e  need t o  determine t h e  performance of 

t h e  condenser a t  t h e  of f -des ign  condi t ions  r equ i r ed  at  t h e  new PCS-G s t s"c-poin t .  

Recent observa t ions  of condenser ope ra t ion  i n d i c a t e d  t h e  condenser was sub jec t  

t o  c i )ns idcrable  d e v i a t i o n  from i d e a l  performance because of i n t e r n a l  flow and 

h e i t  Lransfer  c h a r a c t e r i s t i c s .  S p e c i f i c a l l y ,  a t  c e r t a i n  of f -des ign  eondi l ions ,  

thc condenser l o s e s  temperature p o t e n t i a l  (mercury temperature - NaK t empera twe)  

cluc: t o  mercury p re s su re  drop, and i n  some cases ,  a ma jo r i t y  of t h e  condenzing 

a r e a  i s  rendered i n e f f e c t i v e  due t o  choked-flow ( ~ e f e r e n c e  2 ) .  

The t e s t  procedure w a s  e s t a b l i s h e d  t o  o b t a i n  a maximum e-~a1uat;on 

of t h e  i n d i v i d u a l  phenomena of p re s su re  drop, tempera ture-poten t ia l  l o s s ,  and 

cholceti-f low. The procedure cons i s t ed  of e s t a b l i s h i n g  a given s e t  of e o n a ~ t  ions 

and then lowering t h e  NaK i n l e t  temperature i n  s t e p s  w i t h  a l l  o t h e r  v a r i a b l l s  

he1.d (:onslant.  This  procedure allowed t h e  condenser t o  start a t  a  r l o rml  

ope ra t ing  condi t ion ,  and then  proceed t o  a n  ever - increas ing  l o s s  of temgersiare  

po tcnh ia l ,  anti u l t i m a t e l y  t o  choked-flow where t h e  ma jo r i t y  o£ t h e  corlden(,er 

wa:; i r i e f f cc t ive .  Associated w i t h  each excurs ion  from nominal t o  choked-i"bw 

was a change i n  t o t a l  mercury p re s su re  drop. This  chanpe i s  a d i r e c t  rneaLjure 



o f  l,hrs change i n  condensing vapor p re s su re  drop. The t e s t  sequence was conducted 

I'rom (.riou{:h s t a r t i n g  p o i n t s  t o  g ive  a n  ex tens ive  map which could readi?y be 

r~xt,r:~j)olat;ed t o  t h e  PCS- G s t a t e - p o i n t  . 
The r e s u l t i n g  d a t a  showed many i n t e r e s t i n g  c h a r a c t e r i s t i c ; .  

At Ii rst ,  it appeared t h a t  t h e  v a r i a t i o n s  i n  t h e  e f f e c t i v e  hea t  tra1isi"er t:o- 

e f f i c : i en t  (because of tempera ture-poten t ia l  l o s s  and choked-flow) were so va r i ed  

t h a t  i t  would only  be p o s s i b l e  t o  c h a r a c t e r i z e  t h e  condenser performance wi th  a 

number of s epa ra t e  p l o t s .  Then, a s i g n i f i c a n t  d i scovery  was nade. It was found 

l,hal, the product of e f f e c t i v e  h e a t  t r a n s f e r  c o e f f i c i e n t  and p o t e n t i a l  condensing 

a r e a  (UA) was completely independent of condensing a r e a .  That i s ,  r ege rd l e s  s 

of t h e  hea t  t r a n s f e r  v a r i a t i o n  due t o  l o s s  of temperature p o t e n t i a l  or t h e  

e f r c c t i v e  condensing a r e a  v a r i a t i o n  due t o  choked-flow, t h e  product ,  UA, r e -  

mir1c.d a cons t an t  r ega rd l e s s  of how much mercury inventory  w a s  i n  t h e  eon- 

denocr .  This cond i t i on  was found t o  hold even when t h e  condenser flow wa; 

cliokcd t o  t h e  ex t en t  t h a t  on ly  a smal l  f r a c t i o n  of t h e  p o t e n t i a l l y - a v a i l a b l e  

condensing a r e a  was a c t u a l l y  be ing  used. The above phenomenon i s  on ly  true 

when the  condenser i s  opera ted  w i t h  a degree of t empera tu re -po ten t i a l  l o s s  o r  

cholr~ti-flow; when t h e  condenser i s  opera ted  a t  cond i t i ons  where temperatc1-e- 

pot,ent,ial l o s s  o r  choked-flow do not  occur,  t h e  condenser inventory  (area) 

becomcs s i g n i f i c a n t .  The s i m p l i f i e d  cond i t i on  (UA independent of area) i i l t ro-  

duct.:; :some e r r o r  a t  t h e  o l d  s t a t e - p o i n t ,  b u t  dec idedly  holds at t h e  new PCS-G 

:; tall(%- p o i n t  . 
With UA be ing  independent of a r ea ,  t h e  d a t a  c o r r e l a t i o n  was 

cons iclerably s imp l i f i ed .  It w a s  poss ib l e  t o  d e r i v e  a n  equat ion  which eomr;letelgr 

de f ined  the condenser performance over  t h e  e n t i r e  mapping range. The e q w t i o n  

accounts  f o r  a l l  ope ra t ing  condi t ions ,  i nc lud ing  l o s s  of tempera ture-poten t ia l  

and. choked-flow. Furthermore, t h e  t r e n d s  f o r  d i f f e r e n t  parameter  combina~,ions 

a r e  suf ' l ' iciently smooth t o  permit  a reasonable accuracy i n  e x t r a p o l a t i n g  Srom 

the t e s t  data t o  t h e  new PCS-G s t a t e - p o i n t .  The equat ion  used t o  de f ine  the  

condcnsor peri'ormance i s  

where t l ie hea t  t r a n s f e r  c o e f f i c i e n t ,  UA, has been matched t o  t h e  t e s t  
d a t a  by 



'SAT = condensing temperature (OF) 

0 

Tm = NaK i n l e t  temperature ( F) 

fiL = l i q u i d  mercury flow ( l b / h r )  

= NaK flow ( lb /hr )  

h - mercury heat  of vapor iza t ion  ( B T U / ~ ~ )  

X = q u a l i t y  

'PN = NaK s p e c i f i c  heat  ( B T U / ~ ~  OF) 

C~~~ 
= mercury s p e c i f i c  heat  (BlTJ/lb OF) 

UA = heat  t r a n s f e r  c o e f f i c i e n t  (~TtJ /h r  OF) 

Equation ( 3 )  i s  t h e  f a m i l i a r  d e f i n i t i o n  of condenser performance, appl icable  

when no choked-flow o r  temperature-potential  l o s s  occur. The e f f e c t s  of choked- 

flow and temperature-potential  l o s s  a r e  contained i n  Equation ( 4) . The complexity 

of' liquation ( 4 )  i s  required t o  properly account f o r  the  c h a r a c t e r i s t i c s  c f  the 

c.onclcnser a t  low pressures  and temperatures. 

A p l o t  of Equations ( 3 )  and (4)  i s  presented i n  Figure 19, 

to{:cther with t e s t  da ta  t o  demonstrate t h e  c o r r e l a t i o n  between t e s t  and theory* 

?'he a{:reement of the  da ta  and t h e  c o r r e l a t i n g  equation i s  q u i t e  good. 

The e f f e c t s  of l o s s  of temperature-potential  and cholced- r LOW 

a r c  very evident  i n  Figure 19. Note t h a t  a t  each mercury flow, a minirrurr, con- 

densing pressure  i s  reached a s  NaK temperature i s  lowered, regardless  of ille 

NaK flow (and, o r  course, regardless  of mercury inventory) . Minimum condensing 

p rcs  surcs of 3- 5 p s i a  a r e  shown; without temperature-potential  l o s s  eho~ed- 

l'low, the condensing pressure  could be lowered we l l  below 1 p s i a .  

The most important outcome of t h e  condenser mapping i s  tl(. a b i l i t y  

i o p r e d i c t  t h e  performance at  the  new PCS-G s t a t e -po in t  . The mathermticai model 



has t ~ e e n  ex t r apo la t ed  t o  t h e  new s t a t e - p o i n t  a s  i s  shown i n  F igure  19. 'Che 

Ya r- right, b lock  of curves r ep re sen t s  a complete d e s c r i p t i o n  of t h e  condenser 

pc:r-l'o~~mancc a t  t h e  new s t a t e - p o i n t .  The theo ry  p r e d i c t s  t h a t  t h e  condenser 

w i  i -1 opernLe a s  low a s  5 p s i a  (PCS-G requirement = 8 p s i a )  and is ,  the re fo re ,  

sati:;J'actory f o r  use without  modif icat ion.  

The NaK-side temperature p r o f i l e s  generated du r ing  t h e  condenser 

mapping a r e  most i n t e r e s t i n g .  Since t h e  p r o f i l e s  d e p i c t  t h e  hea t  t r a n s f e r  

cond i t i ons  w i t h i n  t h e  condenser, t h e y  n e c e s s a r i l y  respond t o  t h e  condizion o f  

chokcd-flow. A t y p i c a l  s e t  of p r o f i l e s  showing choked-flow i s  shown i n  

F igure  20. These d a t a  show 5 p r o f i l e s  r ep re sen t ing  5 d i f f e r e n t  NaK i n l e t  

iempcratures  w i th  a l l  o t h e r  parameters  he ld  cons tan t .  Each lower temperature 

r ep re sen t s  a f u r t h e r  approach toward choked-flow as t h e  condensing p re s su re  

drops and t h e  mercury v e l o c i t y  i nc reases .  It i s  apparent  t h a t  a p o i n t  i s  

reached where t h e  e n t i r e  a v a i l a b l e  condensing l e n g t h  can no longer  be used, 

and t h e  hea t  t r a n s f e r  regime i s  conf'ined t o  a sma l l e r  and sma l l e r  a r e a  of t h e  

condenser.  I n  t h e  l i m i t i n g  case  shown, t h e  f low i s  s u f f i c i e n t l y  choked i o  

movc t h e  condensing a r e a  up above t h e  NaK-side temperature ins t rumenta t ion  so 

that,  t h e  p r o f i l e  i s  seen  a s  a s t r a i g h t  l i n e  only.  I n  t h i s  condi t ion ,  the 

condensing l eng th  i s  some va lue  l e s s  than  10 inches ( l o c a t i o n  of t o p  tberrno- 

couple) ,  a l though t h e  a v a i l a b l e  condensing l e n g t h  ( t o  t h e  l i q u i d  i n t e r f a c e )  

i s  39 inches.  This  i s  a v i v i d  demonstrat ion of t h e  marked e f f e c t  t h a t  c1:o~eC- 

flow can have on condenser performance. 

The mercury vapor p re s su re  drop w a s  a l s o  determined from tile 

t e s t  d a t a .  As explained,  t h e  t e s t i n g  sequence w a s  s e t  up t o  proceed f r o ?  a 

non-choked t o  a choked cond i t i on  by hold ing  a l l  independent parameters cons tan t ,  

except f o r  NaK i n l e t  temperature.  Since mercury inventory  w a s  he ld  cons5ant 

dur ing  a given excurs ion  from normal t o  choked-flow, any change i n  mercuyy 

vapor p re s su re  drop appeared d i r e c t l y  a s  a change Tn t h e  d i f f e r e n c e  be~ween  

i n l e t  and o u t l e t  p re s su re .  Therefore,  changes i n  vapor p re s su re  drop were 

rearii .l.y tlc terrni ned f o r  each s e t  of da t a ,  simply by s u b t r a c t i n g  t h e  orltLeC p res su re  

l'rorn i,hc1 inlcL p re s su re  and c o r r e c t i n g  f o r  t h e  known inventory  l i q u i d  I?ead. 

Although t h e  changes i n  vapor p re s su re  drop were r e a 4 i i y  

tl(,terminod, abso lu t e  va lues  of p re s su re  drop could not  be obta ined  Trom Lhe 



dat,n. Thc, abso lu t e  va lue  of t h e  p re s su re  drop  at  t h e  s t a r t  of each temperature 

:;er.i (>:; was unknown. To p r e d i c t  t h e  s t a r t i n g  p re s su re  drop, use was made of the 

c.ontic!ncer t h e o r e t i c a l  model ( ~ e f  erence 2)  . Using t h e  model, t h e  p re s su re  drop 

wa:; c a l c u l a t e d  f o r  t h e  f i r s t  cond i t i on  (non-choked) of each  temperature s e r i e s .  

Sincc t h i s  f i r s t  cond i t i on  was always a t  a h igh  condensing p re s su re  where no 

choking was occuring,  t h e  c a l c u l a t e d  p re s su re  drop w a s  reasonably accu ra t e .  

With l,he c a l c u l a t e d  p re s su re  drop as a s t a r t i n g  p o i n t ,  t h e  changes i n  p re s su re  

drop obta ined  from t h e  t e s t  data were t h e n  a p p l i e d  t o  a r r i v e  a t  abso lu t e  pres-  

, :urc  drop va lues  f o r  a l l  t e s t  condi t ions .  

Another i n t e r e s t i n g  phenomenon became apparent  when t h e  s b s o l u t e  

valuc?s oi' p r e s su re  drop  were c a l c u l a t e d .  It was found t h a t  f o r  ca ses  oP extreme 

choked-flow, t h e  abso lu t e  va lues  of condenser o u t l e t  p re s su re  were c o m i n ~  out  

negat ive;  a n  obvious i m p o s s i b i l i t y .  The amount by which t h e  p re s su re  -das nega- 

t i v e  was more than  could conceivably be a t t r i b u t e d  t o  d a t a  s c a t t e r  o r  e r r o r  In 

t h e  c a l c u l a t e d  s t a r t i n g  p re s su re  drop va lues .  

The apparent  cause f o r  t h e  negat ive  c a l c u l a t e d  p re s su res  i s  a 

change i n  l i q u i d  holdup on t h e  condenser w a l l s .  As t h e  f low becomes very  choked, 

the condensing reg ion  of t h e  condenser sho r t ens  ( ~ i ~ u r e  20) t o  t h e  ex t en t  t h a t  

rnost of t h e  condenser l eng th  i s  r e l a t i v e l y  s t agnan t  as f a r  a s  vapor movement i s  

concerned; t h c  f low i n  t h i s  reg ion  c o n s i s t s  b a s i c a l l y  of l i q u i d  mercury noving 

a long  t h e  tube  w a l l s .  Under o rd ina ry  condi t ions ,  t h e r e  i s  a  h igh  v e l o c i t y  vapor 

: ; t rc?am i n  t h i s  region,  extending down t o  t h e  l iqu id-vapor  i n t e r f a c e .  Theref ere, 

Lhc d r i v i n g  f o r c e  of t h e  mercury vapor, which o r d i n a r i l y  would a s s i s t  " ~ h c  move- 

ment of t h e  l i q u i d  mercury, i s  absent .  The end r e s u l t ,  then ,  i s  that there i s  

more l i q u i d  holdup on t h e  tube  wa l l s  f o r  choked-flow than  wi th  n o r m i  opera t ion .  

The assumption of increased  holdup exp la ins  t h e  negat ive 

p re s su res  t h a t  were be ing  ca l cu la t ed .  The data were be ing  correctecl f o r  a n  

assumed cons tan t  l i q u i d  inventory  head, whereas t h e  l i q u i d  head was a e 5 h l l y  

changing as t h e  holdup increased .  It i s  c a l c u l a t e d  t h a t  t h e  amount of holCiups 

duc Lo t h e  choked-flow opera t ion ,  i s  about  0.004 inch  i f  d i s t r i b u t e d  e v e r l y  

ovcr  the tube  walls. This q u a n t i t y  of holdup would completely account for t he  

negat ive p re s su res  o r i g i n a l l y  c a l c u l a t e d .  



For t h e  da ta  t o  be useable, it was necessary t o  co r rec t  f o r  

Lkie e r r o r  due t o  holdup. An assumption had t o  be made t o  def ine  the  absc1i;ite 

mat:n.iLude of the  e r r o r  i n  indica ted  pressure  drop due t o  holdup. The asswmrp- 

t i o n  was made t h a t  t h e  condenser o u t l e t  pressure  was zero a t  t h e  most extreme 

case of' choked-flow found during the  t e s t  program. The holdup correc t ion  a t  

t h i s  condit ion w a s  t h a t  value which would a d j u s t  t h e  da ta  t o  make t h e  o u t l e t  

pressure  be zero. A second assumption w a s  then  necessary t o  r e l a t e  t h e  e r r o r  

due t o  holdup t o  the  degree of choking. By examination of NaK temperature 

p r o f i l e s ,  it was determined at  what condit ions choked-flow began. The assump- 

t ion  was made t h a t  t h e  holdup was propor t ional  t o  the  amount by which the 

condensing length  was shortened due t o  choking. 

With these  assumptions regarding holdup e f f e c t s ,  it was 

po:;sible Lo a r r i v e  a t  a mercury vapor pressure  drop f o r  each t e s t  condi t ion ,  

RdmiLt,edly, the  assumptions about pressure  drop were extensive.  The r e s d t i n g  

da ta  a r e  obviously very approximate. But it does provide, f o r  t - le  f i r s t  time: 

some information on pressure  drop from t h e  PCS-1 data,  and it p a r t i c u l a r l y  

i d e n t i f i e s  t h e  f a c t  t h a t  choked-flow gives r i s e  t o  l a r g e  changes i n  t o t a l  

condenser pressure  drop. 

The da ta  derived on pressure  drop a r e  presented i n  Figure 21. 

The da ta  have been arranged as a ca rpe t  p l o t  wi th  t h e  ordinate  being eondzrlser 

c ~ u t l e t  pressure  ( o r  mercury pwnp suc t ion) .  These da ta  a r e  correc ted  f o r  l i q u i d  

head and, the re fo re ,  represent  zero-g operat ion.  The da ta  f o r  mercury fl_~>.w-s o f  

f3,000, 10,000, and 12,000 l b / h r  were generated from the  PCS-1 da ta  a s  desm- L, ibed 

above. The da ta  shown f o r  the  PCS-G s ta t e -po in t  were obtained by ext rapoia t ion  

:inti a r e  l e s s  accura te .  The important f e a t u r e  t o  be noted i s  t h a t  the  condenser 

o u t l e t  pressure  r ap id ly  goes t o  zero (because of choked-flow) a t  r e l a t i v e l y  

iligh condensing pressures .  It appears t h a t  a condensing pressure  of about 

0 p s i a  i s  a s  low a s  t h e  condenser could be operated a t  t h e  PCS-G s t z t e - p o i r ~ t ,  

A t  Lhcv PCS-G s ta t e -po in t  condensing pressure  of 8 ps ia ,  the  o u t l e t  presscre  

i s  11-5 p s i a  wliich i s  s a t i s f a c t o r y  f o r  mercury pump operat ion.  Durinp s t a r l ~ p ,  

howcvc.r, when the  condensing pressure could be very low, the re  i s  t k e  possi-  

b.i Li Ly oi' not having ample mercury pump suc t ion  pressure  ( i n  zero- g c p e r a ~ i o n )  . 



I n  summary, t h e  condenser performance i s  now q u i t e  we l l  cbefined. 

1 r 1  : ; [ ) i  t,e of' some assumptions required i n  t h e  da ta  ana lys i s ,  t h e  overall. cecuracy 

ol' t,hc da ta  and a n a l y s i s  i s  considered good. The condenser appears t o  be s a t i s -  

f a c t o r y  f o r  the  PCS-G s ta t e -po in t .  It should have no problem achieving tlie 

required 8 p s i a  condensing pressure,  but it may be somewhat handicapped d ~ e  t o  

mercury pressure  drop i f  used i n  zero-g. 

Condenser Out le t  Res t r i c t ion  

During p a s t  years '  performance, the  condenser has repeatedly 

Sormetl what appeared t o  be e i t h e r  gas o r  deposi t s  a t ,  o r  near,  t h e  mercury 

o u t l ~ t .  The e f f e c t  was observed as a l o s s  of o u t l e t  pressure  of up to  8-13 p s i .  

P r i o r  t o  t h e  current  t e s t  s e r i e s ,  t h e  mercury o u t l e t  l i n e  of the 

condenser was removed, inspected, and replaced wi th  a new sec t ion  of p ipe .  Ar; 

el'f'ort was made t o  dup l i ca te  t h e  loca t ion  of thermocouples and a pressure  tap, 

I n  addi t ion ,  a tube and e x t e r n a l  bomb were connected t o  t h e  suspected r e s t r i e -  

t i o n  region i n  hope of drawing o f f  a sample of whatever was causing the  pressLre 

l o s s .  

It appears t h a t  the  cause of t h e  pressure  l o s s  may never be 

known. Throughout t h e  current  t e s t  s e r i e s ,  t h e r e  w a s  never any s ign  of a 

j)rescure l o s s  buildup. The opera t ing  time w a s  f a r  i n  excess of t h e  amoun: 

Lhat has t y p i c a l l y  been required t o  develop t h e  phenomenon. 

Most l i k e l y ,  the  flow p a t t e r n  i n  t h e  v i c i n i t y  of the  condenser 

o u i 1 r . t  has been a l t e r e d .  The sec t ion  of p ip ing  i s  poss ib ly  d i f f e r e n t ,  acd it 

is vcry l i k e l y  t h a t  t h e  pressure  t a p  and e x t r a c t i o n  tube have a f f e c t e d  the Cloi'r~, 

It i:; probable t h a t  t h e  problem w i l l  never again  be experienced. 

The most probable explanation of the  phenomenon i s  tnac gas bad 

ttl-ways accumulated a t  t h e  mercury o u t l e t  because of t h e  unique geomlztry t!mt 

rlappened t o  e x i s t  the re .  I f  so, t h e  problem i s  apparent ly  gone perm;znen;ly. 

If', on the  o the r  hand, the  pressure l o s s  w a s  due t o  debr i s  (mass-transfer  

clcposits),  then the  problem could poss ib ly  r e tu rn .  But wi th  t h e  t r a n s l t i x  

i'rom 9-M t o  a tantalum b o i l e r ,  t h i s  a l s o  i s  unlikely.  PCS-G w i l l  probabiy 

have no problem wi th  r e s t r i c t i o n s  a t  t h e  condenser o u t l e t .  



C .  MERCURY PUMP MOTOR ASSEN33LY 

1. HeadLoss 

The mercury pump head was below nominal by 4-11 f e e t  dur;ng 

the period of operation. Data a r e  p lo t ted  i n  Figure 22. The experience 

was typ ica l  i n  t h a t  the  head l o s s  both increased and decreased during operation, 

without any apparent cause. 

I n  an e f for t  t o  determine when the  head l o s s  f i r s t  occurred, 

data  were t raced back t o  t he  beginning of t h e  pump's operation (12 March 1970). 
The Ci r s t  data  scan taken (wi thin  12 seconds of pump s ta r tup)  showed a head 

Loss of 6 fee t ;  t he  pump was operating a t  shutoff-head a t  the  time. Because 

Lhe pump s t a r t e d  with a head loss ,  it i s  not c l ea r  whether t he  head loss  i s  

due l,o gas ( o r  debr is)  a s  has generally been assumed, o r  whether i t  i s  due t o  

some flow i n s t a b i l i t y  which i s  cha rac t e r i s t i c  of the  pump. Similar  belm~sior 

has been noted i n  LML-5 where gas and debris  a r e  l e s s  apt  t o  be presens, 

Further analysis  of t h i s  aspect i s  being conducted by the Rotating Compocents 

Group. 

I n  an attempt t o  evaluate the  cause of the  head loss ,  the  pump 

was f ' i t ted  with a tube connecting the  v i c i n i t y  of t he  impeller eye to an external  

sample bomb. On two occasions, samples were taken during operation when the 

head .i.oss was s ign i f ican t .  The reaction t o  the  sample extract ion was negligible* 

The only e f f ec t  was a s l i g h t  decrease of both suction and discharge pressure. 

Thi:: c.Pfect would occur simply because mercury was removed from the  loop. There 

was not a recovery of pump head r i s e .  

Analysis of the f i r s t  sample bomb showed the  sample t o  be almost 

en t i r e ly  mercury with a small amount of gas. The const i tuents  were a s  i'c;llowc: 

Sample s i z e  150 cc 

Gas quant i ty  (a t  STP) 0.08 cc 

Gas composition 80% hydrogen, 20% a i r  

Remainder mercury 

The second sample was inva l id  since a i r  had apparently leaked in to  the  bom'b. 

The r e su l t s  of the  sampling a re  inconclusive. The laell  of gas 

does not mean t h a t  the  head loss  of the pump i s  not due t o  gas. The oriei1"ction 



of' 1,11(. e x l r a c t i o n  tube  may no t  have been appropr i a t e  f o r  e x t r a c t i n g  gas.  O r  

i t  rrL'L.y hc t h a t  Lhe sampling method was t o o  slow; t h e  sample bomb was f i l l e d  

over a. r e l a t i v e l y  long  t ime pe r iod  (-5 s ec )  as opposed t o  a much more rapid 

f i l l  which would be more conducive t o  p u l l i n g  ou t  a volume of gas,  i f  p r e s e n t -  

It i s  important t o  note  t h a t  t h e  mercury pump head lo se  has a 

l imi t ing  va lue .  Only s o  much volume of gas can c o l l e c t  wi thout  extending i n t o  

t h e  h ighe r -ve loc i ty  a r e a s  of t h e  flow p a t t e r n  where gas would be p u l l e d  on 

through t h e  pump. The d a t a  i n d i c a t e  t h i s  l i m i t  i s  about  11 f e e t  of head 1-oss. 

This  amount of head l o s s  i s  acceptab le  t o  PCS-1 ope ra t ion  s i n c e  t h e  pump i s  

designed w i t h  some excess  head. At t h e  new PCS-G s t a t e - p o i n t ,  t h e r e  i s  even 

morc margin s i n c e  t h e  gene ra l  system p res su re  l e v e l  i s  lower.  171e only  require- 

menL placed  on t h e  system because of t h e  pump head l o s s  i s  a p o s s i b l e  need for 

t h e  mercury f low-cont ro l  va lve  t o  make adjustments  f o r  changes i n  t h e  head l o s s .  

2. Space S e a l  Leakage 

A second problem encountered w i t h  t h e  mercury pump was mcreury 

leakage i n t o  t h e  space s e a l  c a v i t y  d r a i n .  On about  19 A p r i l  1970, t h e  mercury 

inventory  i n  t h e  condenser began t o  decrease .  Concurrently,  mercury was not iced 

i n  t h e  mercury pump space s e a l  c a v i t y  d r a i n  t r a p .  A subsequent eva lua t ion  ind i -  

cated t h e  r a t e  of inventory  l o s s  from t h e  condenser w a s  t h e  same as t h e  -rate of 

increase  i n  t h e  d r a i n  t r a p .  The r a t e  ro se  t o  a va lue  of about 1 l b / h r  w; th in  

two days and remained t h e  same throughout t h e  37 subsequent days of ope ratio^, 

Evalua t ion  of t h e  leakage has been inconclus ive .  At the 

conc.Lusion of t e s t i n g ,  t h e  pump was disassembled and inspec ted .  The o ~ i l y  

i r r e g u l a r i t y  found was some s l i g h t  su r f ace  damage t o  t h e  v i s c o  pump s leeve  

wherc it mates w i th  t h e  Hydrodyne s t a t i c  s e a l .  However, t h e  su r f ace  damage 

was so s l i g h t  it leaves  doubt t h a t  t h i s  was t h e  cause of t h e  leakage ,  T1>le 

Rota t ing  Components Group i s  cont inuing  a n a l y s i s  of t h e  pump. 

The performance of t h e  b o i l e r  was e x c e l l e n t  throughout t he  z e s t  

series. The only  except ion  w a s  t h e  f i r s t  few days when t h e  b o i l e r  was decoil- 

cli t ioned Prom a n  apparent  a c c i d e n t a l  contamination wi th  o i l .  



Analysis  of t h e  b o i l e r  performance has been d iv ided  i n t o  t h r e e  

cate( ;or ies  : ( 1) gene ra l  steady- s t a t e  mapping, (2 )  steady- s t a t e  operatTo:l about 

tho PCS-G s t a t e - p o i n t ,  and (3) ope ra t ion  over  t h e  PCS-G r e a c t o r  temperature 

dcadband. A f o u r t h  a r e a  of s t a r t u p  t e s t i n g  was a l s o  included i n  t h e  testing. 

l'hc s t a r t u p  d a t a  a r e  not  presented  i n  t h i s  r e p o r t ,  bu t  w i l l  be r epc r t ed  a t  a 

l a t e r  d a t e  when d a t a  reduct ion  i s  completed. 

1. General Steady-State  Mapping 

General s t e a d y - s t a t e  mapping of t h e  b o i l e r  was performed  fro^ 

31 March t o  5 A p r i l  1970. The i n t e n t  of t h e  t e s t i n g  w a s  t o  observe the h o l l e r  

perf'ormance over  a wide range of o f f -des ign  condi t ions .  The mapping covered 

the fo l lowing  ranges of parameters  : 

Mercury f low 3,000- 12,000 l b / h r  

NaK f low 25,000- 49,000 lb /h r  

NaK i n l e t  temperature 1150- 1 3 0 0 ~ ~  

These ranges of parameters  provided d a t a  extending from t h e  o r i g i n a l  design 

t eml~e ra tu re  of 1 3 0 0 ~ ~  t o  lower flows and temperatures  which s imulated ope ra t i on  

a t  the new 1 2 0 0 ~ ~  PCS-G s t a t e - p o i n t .  

Data from t h e  genera l  s t e a d y - s t a t e  mapping a r e  shown i n  Figures 

23 through 27. 

a. Mercury Pressure  Drop 

Figure  23 i s  a c a r p e t  p l o t  of t h e  d a t a  showing total ( b o i l e r  

p lus  i n l e t  r e s t r i c t o r )  p re s su re  drop versus  t h e  independent performance para- 

meter:; of mercury flow, NaK flow, and NaK i n l e t  temperature.  The magnitucre of 

t h e  p re s su re  drop i s  i n  accordance w i t h  des ign .  The only undes i rab le  f e a L u r e  

of t h e  p re s su re  drop c h a r a c t e r i s t i c s  i s  a negat ive  s lope  of pressure  drop wi t12  

i n c r e a s i n g  mercury flow. This  nega t ive  s lope  gave r i s e  t o  some system instabl- 

l i t y  i n  PCS-1 t e s t i n g  and would be a n  undes i rab le  cond i t i on  t o  have i n  PCS-G. 

The negat ive  s lope  cannot be considered a des ign  weakness of the  b o i l e r  s-inee 

t h e w  was no s p e c i f i c a t i o n  t h a t  t h e r e  not  be a negat ive  s lope  a t  t h e  t ime the 

boilc2r w a s  designed.  Correc t ion  of t h e  negat ive s lope  i s  s t r a igh t fo rward  (by 

changing i n l e t  r e s t r i c t o r s ) ,  and a p o s i t i v e  s lope  has been incorpora ted  5 7 t o  

t h e  des ign  of t h e  PCS-G b o i l e r .  



Figure  24  shows t h e  same p re s su re  drop d a t a  a s  shown i n  

Figure 23, except  t h e  c o n t r i b u t i o n  of t h e  i n l e t  r e s t r i c t o r s  t o  t h e  t o t a l  p re s su re  

drop has been sub t r ac t ed  out .  These d a t a  t h e r e f o r e  show t h e  a c t u a l  pressure  

drop a s s o c i a t e d  w i t h  t h e  prehea t ,  b o i l i n g ,  and superheat  phases of t h e  b o i l e r  

opera t ion .  Of course,  now t h e  negat ive s lope  i s  more pronounced s i n c e  it I s  

t h e  na ture  of t h e  b o i l e r  t o  opera te  w i t h  t h i s  negat ive s lope .  It i s  t h e  addi- 

t i o n  of i n l e t  r e s t r i c t o r s  which c o r r e c t s  t h e  negat ive  s lope  by adding a s ign i -  

f i c a n t  p o s i t i v e  s lope .  

b . Terminal Temperature Dif fe rence  

F igure  25 shows t e rmina l  temperature d i f f e r e n c e  ( ~ v ' a ~  

inlet-mercury o u t l e t )  f o r  t h e  gene ra l  s t e a d y - s t a t e  mapping, a g a i n  i n  t h e  form 

of a ca rpe t  p l o t .  The t e rmina l  temperature d i f f e r e n c e  i s  i n  accordance wsth 
0 design,  a t  a va lue  of about  40-50 F. It must be added t h a t  PCS-1 d a t a  are all 

gathered wi th  sur face- reading  thermocouples, as opposed t o  immersion therno- 

couples .  PCS-1 experience has shown t h a t  a n  immersion thermocouple i n  t h e  
0 mercury vapor s t ream reads about 30 F h ighe r  t han  t h e  s u r f a c e  thermocouples. 

Therefore,  f o r  a t r u e  comparison w i t h  design,  t h e  PCS-1 d a t a  need t o  be modified 
0 0 

by about 30 F which g ives  a  minimum te rmina l  temperature d i f f e r e n c e  of 10-20 F; 

t h i s  agrees  w i th  des ign  expec ta t ions .  

An i n t e r e s t i n g  phenomenon t o  be observed i s  tha t  t h e  

t e rmina l  temperature d i f f e r e n c e  appears  t o  reach a minimum f o r  a given NaK 

flow and temperature a s  t h e  mercury flow i s  increased .  F u r t h e r  i nc reases  i n  

mercury flow cause a n  inc rease  i n  t e rmina l  temperature d i f f e r e n c e .  The piieno- 

menon i s  d i r e c t l y  r e l a t e d  t o  t h e  pinch-point  temperature d i f f e r e n c e s  (rninxmm 

d i f f e r e n c e  between NaK and mercury temperatures)  a t  which t h e  b o i l e r  w a s  napped. 

The d a t a  where t h e  t e r m i n a l  temperature d i f f e r e n c e  r eve r se s  a r e  a l l  a s s o c ? a t e d  
0 

w i t h  very  low pinch-point  temperature d i f f e r e n c e s  (8-20 F) . A low pinch-point 

temperature d i f f e r e n c e  r ep re sen t s  a cond i t i on  of probable p a r t i a l  p l u g  i n s e r t  

f looding .  This  w a s  ev ident  i n  t h e  t e s t i n g  by a no t i ceab le  decrease i n  bo~ling 

s t a b i l i t y  a t  t h e  low pinch-point  t e s t  condi t ions .  The p a r t i a l  l o s s  of p lug  

reg ion  performance ( l e s s  s t a b i l i t y ,  more l i q u i d  car ryover )  could accoun'; i o r  

t h e  observed inc rease  i n  t e rmina l  temperature d i f f e r e n c e .  This  r e v e r s a l  



of te rminal  temperature d i f fe rence  i s  i n  accordance with normal b o i l e r  performnee.  

The e n t i r e  phenomenon i s  only of academic i n t e r e s t  s ince  t h e  e f f e c t  i s  basEcaLly 

i n s i g n i f i c a n t  and the  b o i l e r  w i l l  not be subjected t o  t h i s  low a pinch-point 

temperature d i f fe rence  a t  t h e  PCS- G s t a t e -po in t  . 
c . pinch-point Temperature Difference 

Figure 26 presents  pinch-point temperature d i f fe renze  

i n  carpet  p l o t  form a s  a funct ion  of mercury flow, N a K  flow, and NaK i n l e t  

temperature. These da ta  show t h e  pinch-point temperature d i f fe rences  a t  which 

t h e  b o i l e r  operated f o r  t h e  v a r i e t y  of t e s t  condit ions run. There i s  nothing 

s i g n i f i c a n t  t o  note i n  t h e  d a t a  except t h a t  t h e  pinch-point was  var ied  over a 

wide range, from about 10- 4 0 0 ~ ~ .  

d. S t a b i l i t y  

The s t a b i l i t y  of the  b o i l e r ,  a s  measured by the  f luc tua t ions  

of t h e  mercury o u t l e t  pressure,  was exce l l en t .  The i n s t a b i l i t y  of the  ontl-et 

pressure  w a s  l e s s  than - +1.0$ a t  t h e  1300 '~  design condit ion of t h e  b o i l e r ,  and 

l e s s  than - +2.0$ a t  the  1200 '~  simulated PCS-G opera t ing  condit ion.  These majri- 

tudes of pressure  i n s t a b i l i t y  represent  a s t a b l e  b o i l e r .  A s  opera t ing  conLit ionc 

were moved f a r  of f  design i n  each d i rec t ion ,  i n s t a b i l i t i e s  of g r e a t e r  an2 l e s s e r  

ex ten t  were, of course, obtained. The maximum i n s t a b i l i t y  observed i n  the xest-  

ing  occurred when the  mercury flow was 10,830 lb /hr  wi th  a N a K  flow of 48,500 

l b / h r  and a NaK i n l e t  temperature of 1194'~ ( ~ e s t  Condition No. 36, Figure 27). 

This z e t  of condit ions gave t h e  minimum ind ica ted  pinch-point temperature &if- 

ference of any t e s t  ( ~ S ~ O F ) ,  which accounts f o r  the  g r e a t e r  i n s t a b i l i t y .  At 

t h i s  condit ion,  t h e  i n s t a b i l i t y  w a s  about - +4.0$. 

Figure 27 shows p l o t s  of b o i l e r  o u t l e t  pressure  versus 

time f o r  t h e  various design and off-design condit ions run. 



2 .  Steady- s t a t e  Operation About the  PCS-G Sta te-point  

Port ions of the  b o i l e r  mapping were designed t o  spec i f i c a l l y  

iden t i fy  the  b o i l e r  performance a t  the PCS-G s ta te-point .  The PCS- (; stacd- 

point  w a s  simulated with a mercury l i qu id  flow of 8,000 lb/hr, a  N a K  flow o f  

32,500 lb/hr,  and a NaK i n l e t  temperature of 1200'~. These conditions, on a 

tube-per-tube bas i s  c lose ly  simulate operation a t  t he  PCS-G s ta te -po in t ,  The 

performance of the  b o i l e r  a t  t he  PCS-G s ta te-point  i s  presented i n  Figures 28 

through 30. Figure 28 presents the  t o t a l  mercury pressure drop a s  a function 

of mercury flow and NaK i n l e t  temperature. The negative pressure drop slope 

of the  b o i l e r  i s  again evident. As discussed ea r l i e r ,  t h i s  cha r ac t e r i s t i c  i s  

e a s i l y  remedied with appropriate i n l e t  r e s t r i c t o r s .  Such a change has been 

incorporated i n  t he  design of t he  PCS-G bo i le r .  

Figure 29 presents terminal  temperature d i f ference a s  a f:mction 

of mercury flow and N a K  i n l e t  temperature. The general  value of the  t e r m i n a l  

temperature d i f ference a t  the PCS-G s ta te-point  i s  about 45- 55'~. When corrected 

t o  the equivalent of an immersion thermocouple reading, t h i s  represents about a 

20°F di f ference which i s  consis tent  with the  PCS-G design. 

Figure 30 presents  b o i l e r  s t a b i l i t y  data  f o r  operation ic The 

v i c i n i t y  of the PCS-G s ta te-point .  The general  i n s t a b i l i t y  of the  ou t l e t  pres- 

sure i s  l e s s  than about 22.0%, which i s  wi thin  t he  design requirements, ?he total ,  

performance of t he  b o i l e r  a t  the  simulated PCS-G condition was e x c e l - l e ~ t .  

3. Operation Over t he  PCS-G Reactor Temperature Deadband 

A t e s t  was conducted t o  evaluate the  response of the  system t o  

the normal va r ia t ion  of the  bo i l e r  NaK i n l e t  temperature over the  reactor  tempera- 

t u r e  deadband. The t e s t  was performed by operating the  system s t r i c t l y  'hands- 

off" ,  with t he  exception of the b o i l e r  NaK i n l e t  temperature. The accuai PCX-G 
0 0 deadband temperature extremes a r e  1185 F and 1210 F, but the  t e s t i n g  was ex- 

tended over a wider range (1170-1235'~) t o  increase the accuracy of the data 

in te rpre ta t ion .  

The responses of various key parameters a r e  shown i n  F i g u e  31. 

A l l  the  trends a r e  i n  accordance with expectations. As an example of the  agree- 

ment between t e s t  and theory, the  following comparisons a r e  made: 



Effect  of Increasing Boiler NaK I n l e t  

Temperature from 1185'~ t o  1210'~ 

Test Results Analysis* 

Mercury flow 1.2% decrease 1.0% decrease 

Alternator output power 0.6% decrease 0.7% decrease 

*See Reference 3 

The t e s t i ng  shows good agreement between ac tua l  bo i l e r  performance and predicted 

r e su l t s .  The agreement substant ia tes  the  v a l i d i t y  of the  current  mathemtica: 

codes being used t o  analyze t he  performance of PCS-G. 

E. ALTERNATOR 

Efficiency 

The avai lable  data  on a l t e rna to r  eff ic iency were generatec? by 

General E lec t r i c  Company. When the  t e s t  program was conducted t o  map the  a l t e r -  

nator efficiency,  the  a l t e rna to r  was loaded with a passive load bank. I n  i z s  

actual. appl icat ion,  the  a l t e rna to r  i s  loaded with a combination of pumps, vehicle 

load, and the  speed control  system. It has been considered possible t h a t  bar- 

rnonic:; generated by the  speed control  system s ign i f ican t ly  a f f e c t  a l t e rna t c r  

eft'iciency. I f  so, then the  eff ic iency data obtained by General E lec t r i c  

Company would not be en t i r e ly  accurate. 

A t e s t  was conducted i n  PCS-1 on 17 Apri l  1970 t o  evalu2te t h e  

effccLs of harmonics on a l t e rna to r  efficiency.  The t e s t  was performed b y  m i c -  

t a in ing  the  system a t  steady-state except f o r  t he  PLR load, which was run  at two 

separate values. PLR loads of 4 KW and 22 KW were used. The low PLR 1-oad 

esscnt , ial ly represents the  nominal operating condition and should r e su l t  Sn 

Lii,Ll(: harmonic content. The high PLR power i s  i n  the  range expected t o  :ive 

3 mttximum of harmonics. 

The data from the  t e s t  a r e  in terpreted by calcula t ing the 

indicated turbine efficiency.  Since turbine eff ic iency calculations are made 

by working backwards from the  a l t e rna to r  output, the  calculated turbine ei'i'i- 

ciency i s  a r fec ted  by t he  pa r t i cu l a r  value of a l t e rna to r  eff ic iency assumed, 



I f  it i s  t r u e  t h a t  t h e  General E l e c t r i c  e f f i c i e n c y  d a t a  a r e  i n  e r r o r  when the 

harmonic content  i s  high, t hen  t h e  c a l c u l a t e d  t u r b i n e  e f f i c i e n c y  should be 

lower when t h e  PLR load  i s  22 KW than  it i s  when t h e  l o a d  i s  4 KW. 

The r e s u l t s  of t h e  PCS-1 t e s t s  were s i g n i f i c a n t ,  b c t  not 

conc.i usivc. The fo l lowing  comments can be made: 

a. The t r e n d  of  c a l c u l a t e d  t u r b i n e  e f f i c i e n c y  was i n  t h e  

d i r ec t ion  expected. At a 4 KW PLR load  (minimum harmonics),  t h e  c a l c u l a t e d  

turbine e f f i c i e n c y  was 55.77%. At a 22 KW PLR l o a d  (maximum harmonics), the 

cal-cul-ated t u r b i n e  e f f i c i e n c y  w a s  55.57%. This  would imply t h a t  t h e  actdal.  

a l t e r n a t o r  e f f i c i e n c y  wi th  a h igh  harmonic content  w a s  a c t u a l l y  l e s s  tiiarl 

i nd i ca t ed  by t h e  General E l e c t r i c  Company da t a .  The c a l c u l a t e d  change i x  

t u r b i n e  cff ' ic iency would r ep re sen t  a l o s s  of about  200 watts due t o  harmai?ies. 

b. The c a l c u l a t e d  l o s s  due t o  harmonics (200 w a t t s )  could be 

ins t rumenta t ion  e r r o r .  Normal d a t a  s c a t t e r  could account f o r  t h e  ind ica t ed  

change of t u r b i n e  e f f i c i e n c y .  Also, w i t h i n  t h e  small range of t h e  i ~ i d l c a t e d  

cliany:c, harmonics might have had a n  e f f e c t  on t h e  PCS- 1 e l e c t r i c a l  i n s ~ r , ~ - -  

menta Lion. 

c. The t e s t s  have shown t h a t  t h e  e f f e c t  of t h e  harmonics i s  

not  l a r g e .  The i n d i c a t e d  e f f e c t  i s  not  s u f f i c i e n t  t o  r e q u i r e  genera t ing  new 

alternator e f f i c i e n c y  da t a .  The e f f e c t  i s  l e s s  t han  t h e  inhe ren t  e r r o r  Sn the 

o r i g i n a l  a l t e r n a t o r  e f f i c i e n c y  t e s t  d a t a .  Therefore,  use of t h e  General E l e c t r i c  

Company d a t a  should cont inue.  

2. 80 KVA Operat ion 

The new PCS-G s t a t e - p o i n t  r equ i r e s  t h e  a l t e r n a t o r  t o  opers te  

aL :*?)out 80 KVA. Operat ion i n  ECW a t  about  70 KVA f o r  t h e  l a s t  15,000 h 3 u r s  

tias i nil icated marginal  condi t ions  which might d i c t a t e  t h e  need of adcliti o ~ i a l  

cool irig f o r  PCS-G. S ince  t h e r e  has been some temperature v a r i a t i o n  from one 

nl1,crnator  t o  t h e  next,  it w a s  decided t o  conduct a n  80 KVA t e s t  on t h e  a i t e r -  

naLor in  PCS-I.. 



The ob jec t ive  of the  PCS-1 t e s t  was t o  f i n d  the  a l t e r n a t o r  

r l c l u i  l ibri um temperatures when opera t ing  a t  80 KVA; or ,  i f  t h e  tempera tu~l> L i m i t :  

wc.r.c. r c a ~ h e d ,  t o  f i n d  t h e  maximum KVA t h a t  could be maintained without c,:eeedin;r 

tllc I,cmpcrature l i m i t s .  Two temperatures a r e  ava i l ab le :  the  a l t e r n a t o r  bus bar 

tompcrature and the  a l t e r n a t o r  winding tenpera ture .  Limits f o r  these  termperatures 

i n  the PCS-1 t e s t  were a r b i t r a r i l y  s e t  a t  520 '~  and lc60°F, respect ive ly .  

The t e s t  was performed over a 24-hour per iod  beginning on 

1 t j  May 1970. The t e s t  was conducted by s t a r t i n g  a t  a reduced mercury f l o w  

(70,000 l.b/hr) and then slowly r a i s i n g  t h e  flow u n t i l  e i t h e r  (1) an 80 KXA 

output, was reached o r  ( 2 )  e i t h e r  a l t e r n a t o r  temperature reached t h e  l i m i t i n g  

val.uc spec i f i ed .  

The t e s t  r e s u l t s  a r e  shown i n  Figure 32. The bus ba r  temperahure 

l i m i t  was reached s l i g h t l y  before t h e  80 KVA output .  A f t e r  about 6 hours, t h e  

rncrcury flow was up t o  13,100 lb /hr .  The KVA reached 77.8 and t h e  bus ba r  
0 

temperature reached 520 F. The winding temperature was 445'~. To keep the 

temperature from r i s i n g  f u r t h e r ,  t h e  mercury flow was reduced s l i g h t l y  (10 

13,000 l b / h r ) .  The remainder of t h e  24-hour t e s t  w a s  run b a s i c a l l y  a t  t T ~ L s  

condit ion.  

It i s  concluded t h a t  t h e  a l t e r n a t o r  i n  PCS-1 reaches a bus b ~ r  

temperature of 5 2 0 ' ~  a t  about 78 KVA; the  winding temperature reaches 4b:joJ? at 

t h i s  KVA load.  

The a l t e r n a t o r  was designed f o r  80 KVA wi th  a maximum buq bar 
0 

temperature of 410 '~  and a maximum winding temperature of 392 F. The PCG-L 

t e s t i n g  shows t h a t  PCS-G opera t ion  w i l l  r e s u l t  i n  temperatures of s l i g h t l y  over 

520~11' a t  the bus ba r  and s l i g h t l y  over 445 '~  i n  t h e  windings. For the  i i x i c t i ng  

a l t e r n a t o r  t o  meet the  SNAP-8 l i f e  and r e l i a b i l i t y  requirements, it i s  reccm- 

mended t h a t  t h e  maximum bus b a r  and winding temperatures be l imi ted  t o  a;proxr- 

mte1.y 4 ' 7 0 ~ ~  and 400°F, r e spec t ive ly  (Reference 4) .  

Therefore, t o  operate t h e  a l t e r n a t o r  a t  a load of 78 KITA i n  

PCS-C, provis ion  f o r  a d d i t i o n a l  cooling should be considered. 

F . SPEED CONTROL 

Load Transfer  Tests  

The e l e c t r i c a l  t e s t s  comprised two p a r t s .  F i r s t ,  load tmrs f e r  

l,t.:;l,:; were conducted where loads ranging from 36 KW up t o  44 KW were t r ans fe r red  

l'rorn, and back t o ,  the  PLR i n  s i n g l e  s t eps .  The f i r s t  few t r a n s f e r s  werc repeats  



of e a r l i e r  t e s t s ,  t h e  purpose being t o  confirm t h e  c a p a b i l i t i e s  of the  speed 

c o n t r o l  system with t h e  new b o i l e r .  Subsequent load t r a n s f e r s  included 1-oads 

o r  increas ing magnitude, culminating with 44 KW t r a n s f e r s  which required the  

PLR t o  be operated a t  i t s  design l i m i t  of 47 KW. The purpose of these  1a"cter 

t e n t , s  was t o  see  i f  t h e r e  were any unexpected l i m i t s  t o  t h e  speed con t ro l  

system operat ion,  and i f  the re  i s  a  s u f f i c i e n t  margin i n  the  v i c i n i t y  of' t he  

cie:;ii:n po in t  (36 KW t r a n s f e r s ) .  

The t e s t s  were performed on 16 A p r i l 1 9 7 0 .  Figure 33 presents  

typ ica l  t r a n s f e r s  of 36 KW wi th  the  PLR opera t ing  a t  39 KW. A l l  was s a t ~ i -  

fac tory .  The r e s u l t s  demonstrated t h e  r e p e a t a b i l i t y  of previous t e s t s ,  The 

des ign  objec t ives ,  which were success fu l ly  met, were maximum frequency per tur -  

ba t ions  of l e s s  than 220 Hz and damping times l e s s  than 5 o s c i l l a t i o n s .  

Figure 34 shows t y p i c a l  t r a n s f e r s  of 44 KW with t h e  PLR n t  i t s  

clesif:n L i m i t  of 47 KW. The design objec t ives  were again  met. The character-  

i s t j c s  were a s  good, o r  b e t t e r ,  a t  t h e  higher power l e v e l s  than a t  the 1-cwer 

levu l o .  

The load t r a n s f e r  t e s t s  have shown the  performance r e p e a t i i i l i t y  

of t h c  speed con t ro l  system, have demonstrated an  adequate s a f e t y  margin a t  

design condit ions,  and have shown t h e  c a p a b i l i t y  of t r a n s f e r r i n g  loads a t  power 

Levels s igni f icani ; ly  beyond t h e  design condit ions.  

2. PLRTest 

The PLR t e s t  cons is ted  of opera t ing  t h e  PLR a t  i t s  design l i m i t  

0 1 '  )I,( KW L'or 211 hours t o  f i n d  t h e  equil ibrium temperature of t h e  sa tu rab le  

reur.i,or. 'The PLR had never been operated at  i t s  design l i m i t  i n  PCS- I. 

The t e s t  was performed on 16-17 A p r i l  1970. Unfortunately, the- 

result,:; a r e  inconclusive.  The maximum sa tu rab le  r eac to r  temperature Tor a '4 j K l t J  

PLR load was the  same (340 '~)  a s  was recorded when a s i m i l a r  t e s t  was r u n  ax 

1/23 KW i n  September 1969. It i s  incons i s t en t  f o r  t h e  sa tu rab le  r eac to r  tempera- 

t u re  t o  be the  same a t  PLR loads of 42 KW and 47 KW. Possibly,  some i n s t ~ u -  

mentation e r r o r  i s  responsible (such a s  a  loose thermocouple). I f  it wer- 

assumed t h a t  the  340 '~  was cor rec t  a t  42 KW, t hen  a more l i k e l y  temperature a t  

)kc( KW would be about 380'~. 

Regardless of which temperature da ta  i s  more cor rec t ,  the  

important point  i s  t h a t  the  sa tu rab le  r e a c t o r  opera tes  a t  a  very acceptable 

ternperal,urc. The design l i m i t  f o r  a  10,000-hour l i f e  i s  a temperature o-T 'i30"1.', 
0 0 which i s  considerably above t h e  measured 340 F ( o r  perhaps more c o r r e c t l y  j ? ~  F). 
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TABLE 1 

Component 

TAA 

PNPMA 

HRPMA 

MPMA 

L C M  

Boi ler  

Condenser 

E l e c t r i c a l  Controls : 

TRA 

LCA 

COMPONENT IDEN'TIFICATION 

S/N 
A- 2 

A- 3 
A- 1 

A- 2 

481503 

BRDC- 4 
A- 2 

Unit 

5/5 

11/4 

4/ 4 
6/7 
3/1- 
11/1 

2/2 



TABLE 2 

SYSTEM OPERATION S-Y 

Run Time 
Stop ( ~ r s   ins .) 

1547 3/12/70 7 

Run 

1jJ1:j-6- 115 

S t a r t  

1540 3/12/70 

Reason f o r  Xhu'cdown -.- 

Sudden d e c o n d i t ~ o n i a g  
of b o i l e r  

N a K  l e a k  near PiWM 
f i l t e r  

Remove non- eondans ible 
gas 

Remove non- condena i b l e  
gas 

Remove noli- condensible 
gas 

Remove non-eondensible 
gas 

Remove non- con2 ensible 
gas 

( 1 )  I n v e s t i g a t e  low !@%%I 
bea r ing  and motor LC 
flow 

(2)  P lace  h e a t e r s  on 
mercury i n l c t  ecd of  
b o i l e r  

F a c i l i t y  400 Hz genera tor  
c l u t c h  m l f  unct ion 

Evacuate mere ury loop, 
r e s t a r t ,  and cheek 
r e p e a t a b i l i t y  o f  con- 
denser  performarice 

Prepare f o r  s ta r tuy ,  
Tes t  No. l 

Prepare f a r  s t a r t  sp 
Test  No. 2 

Prepare f  clr s t a r t  up 
Test  No. 3 

Prepare f c r  s ~ a r t ' g  
Tes t  No. 4 

Prepare f o r  s tar tup 
Tes t  No. 5 

Prepare f o r  s 1;a1-tJ~~.p 
Tes t  No. 6 



SYSTEN OPERATION S W Y  ( ~ o n t . )  

Run 

llji 3- 9- 61 
S t a r t  

0911 5/26/70 

Run Time 
Stop ( ~ r s  . )  ins . ) Reason f o r  Shucdown 

0947 5/26/70 0 36 Prepare  f o r  stsrtup 
Test  No. 7 

1040 5/26/70 0 26 Shutdown t o  pur, BXI%, or, 
EM pwny, f o r  eutopi"&tf~ 
shutdown tesxs 

1137 5/26/70 0 38 Automatie Shutdown No. 1 

1138 5/26/70 0 0 AccidentaA 10- see run 
because condenser filled 
w i t h  Hg V-7 open an2 
MPMA running* Condenser 
overpressure shutdown. 

1329 5/26/70 1 37 Automatic Shutdown No. 2 

1404 5/26/70 0 18 Edison power loss 

09x4 5/27/70 1.0 50 Automatic Shu"cown No. 3 

1117 5/27/70 1 45 Automatic Shu-i;tlown No, 11 

1151 5/27/70 0 24 Automatic Shutbo~~~n TJo. 5 

1314 5/27/70 1 10 Automatic Shutdown No. 6 

1437 5/27/70 1 11 Automatic Shutdown no. 6 
( r e p e a t )  

1453 5/28/70 23 58 Termimt ion  of test 
program - - 



TABLE 3 

Component 

TAA 

PNPMA 

HRPMA 

MPMA 

WPMA 

B o i l e r  

Condenser 

E l e c t r i c a l  Controls  

COMPONENT OPERATION SUMMARY 

Hours a t  S t a r t  
of Tes t  S e r i e s  
(March 1970) 

Hours a t  End 
of  Tes t  S e r i e s  



Run - 

EFFECT OF CONDITIONING ON BOILER PRESSURE DROP 

Time i n t o  
Run 
0 

Mercury Vapor 
Flow 

( l b /h r )  

Press w e  
Drop 

4 5 (2 min.) 6,000 16 5 



TABLE 5 

COMPONENT L/C HEAT LOAD 

Component PCS-1 Test (KW)  PCS-G Design (m 
TAA 8 7 8 -95 

Space Sea l  

Bearings and Sl ingers  

Al ternator  

IvpmvlA 

Space Seal  

Bearings and Sl ingers  

Motor 

LCPMA 

TOTAL (us ing 2.12 KW f o r  PNPMA) 18.0 KW - - 



BOILER PERFOmAMCE 

Page I of 2 

f i g u r e  $. 





PCS-1 PHASE %V STEP 3 



Figure 3 













AUTOPLAFIC: S2UTDOFfi!S ma! LQSS CF FBL FLOW 
CONDEKSINS PRESSURE VS TIME 



.IITT@!AIIC SHlffDC?';%S F3CF LOSS OF : FtL FL0:r' 
CCNDENSER MERCURY INYENTORY IrS TIPIF: 













cdFIPONENT HEAT LOSS 
TAA 

I 1 p / ~  ~s@oQ-~~TN [A-2 Unit 5/5 
1 ~$3-1 mat& 10f~@-2l !la; W70 

. L -, i---+-.C--i-,-r + . - J  
I 

* 
I 

j / l  
i 1 .-.- - 

1 I 

* - -- --- - - 



























fib$ = 189 9 
wv = la285 ; b b h  

M, - L87W ib/w 

P n b  261,7 g d r  

TEsT COWDXTXW,,#8 

T,M @ 185 OF 
w, 11070 ~s/jlr 

w, - 3 7 2 0 0 1 b h  

P w ~  2fB49 pa i r  



TEST COWmTIa  #2S 

T,bf 1241 O1 
W, = 10355 , l b l n r  

W~ 1 $7000 l b h r  

P w ~ @  rn 217.5 pair  

g . 190 
3 

TmT CONMTION #31 

E Tnbi - 1248 QF 
a 180 W, = 8450 lb/hr  
4. 
Q 
rl Wp = 27000 1b/hr  

P H ~  + 178.8 ps i r  

- TEST COND3[TION #36 
Tnbi * 1194 OF 

- W, 10830 l b b r  

Fd13 4 8 5 ~  lbhr 

P H ~  r 220.4 p s i &  - 

- TEST CONaTIW 137 

Tnbf a 1192 'b' 

- MV * BbQo sbhs 
g w 483W ib/hr 

P%bo = 195 ,? p r i r  - 
8 2b 28 3 2 

%me (sw) 



loo 

TEsT COMMTION #51 

Tnbi 1 1139 'F 
W, 1 91251bhr 

5 4 8 m  1b/hr 

P H ~ ~  183.1 psis 

TEST CONDITION #56 

Tnbi 1142 Qlr 
- W, r 8085 lb/hr 

W~ 37400 lb/hr 
P H ~ @  161'. 7 : .$bar 

TEST CONDITION 

Tnbi 1143 
I4 6590 

'dlp = ~65m 

P H ~ ~  "7" 14283 





JPE1:ATlON AT PCS-G STATGPOIKT 
P/W 1266911 S/N BRDC-4 Unit 11/1 

PCS-1 Data of Elarcn 2, 3, k ,  10 PC April 7, 1970 
''E-WIKAL TEFTE2hTIJPF: T31FFXHEMCE VS MERCITRY LIQLllD ;c"&di,i 





, XSPO:\ISE TO HEACTOR DEAD BAQ D TDMPERATURE VARIATIONS 
PCS-G STATEF'OINT 

PCS-1 Data of' April 14, 1970 

Hailer l i 2 K  1:lle-t. Tenpera tu re  ( O F )  
Pr - 1 oi 2 
I+% 1 1  i. 31 



ie5SPOp 5t; TO RICACTOiE DEAD EAI D TEMPERATURE VASIATIONS 
PCS-12 STATEPOINT 

PCS-1 33" ccf A p r i l  U, 13-C 

E o i l e r  KaK Inlet Temperature ( O F )  





IDAD W N G E  TPIPINSIEWS - PCS-1 ETIASE IV,  STEP 39 RUN &3-6-54 

TEST CONDITION 1 - 36 kw l , 0  Power Factor Step Vehicle Load Changes 

54 kw Nominal Alternator Output Power 

39 kw Nominal Parasi t ic  Load Power a t  Zero Vehicle' Load 

A l l  PMA. Power from TAA 

Top Chart - Alternator Frequency, 380 Hz t o  420 Hz a t  1 ~ z / l i n e  (0,5 volts/line, zero center) Airpax FDS-30 Frequency t o  DC Converter 

Bottom Chart - Vehicle Load Voltage, FWl-Wave Bridge Rectified, 100 vol ts  t o  300 volts  a t  5 volts/ l ine (zero suppressed) 

Chart Speed - 5 mm/second 

Brush Mark I1 Recorder - AGC Inventory Number 29751 



LOAD CmNGE 

TEST CONDZTPON 13 - 44 kw 1.0 Power Factor %ep Vehicle Load Changes 

60 kw Nminal Alternator Output Power 

47 kw Nominal Paras i t ic  Load Power a t  Zero Vehicle Eoad 

LSMA Power f r ~ m  F a c i l i t y  400 Hz 

A l l  other PMA Power from TAA 

4=-l6-70 

Top Chart - Alternator  Frequency, 380 Hz t o  420 Hz at 1 ~ z j l i n e  (0.5 vol t s / l ine ,  zero center)  Airpax FDS-30 Frequency t o  DC Converter 

Bottom Fnart - Vehicle Load Voltage, Full-Wave Bridge Rectified9 100 v o l t s  t o 3 0 0  v o l t s  at 5 vol t s / l ine  (.erg suppressed) 


