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Ablation cooling was successfully used i n  a rocket engine at a 
nominal chamber pressure of 4000 psia (272.2 a t m ) .  
l i n e r  and the  nozzle were constructed of a s i l i c a  phenolic ablative 
material .  
f i r i ngs  were computed from run data. The overall  average r a t e  obtained 
w a s  0.0861 in/sec (0.219 cm/sec). 
f o r  the chamber l i n e r  was 0.071 in/sec (0.180 cm/sec) at t h e  nozzle 
entrance end. 

Both the  chamber 

Linear ablation r a t e s  at the nozzle throat fo r  th i r ty-s ix  

The l inear  ablation r a t e  obtained 

iii 



T. SUMMARY 

Ablation cooling was successfully used t o  cool a rocket engine 
The pur- a t  high chamber pressure (nominal  4000 pr ia ,  272.2 a b ) .  

pose of the research was t o  investigate the  performance add the 
combustion s t a b i l i t y  character is t ics  of the engine. 
comprehensive analysis of ablation was not accomplished. Instead, 
the present report i s  concerned with a qua l i ta t ive  presentation of 
the  r e su l t s  of t h i s  application of a specif ic  ablative material. 

Therefore, 8 

The material used was a s i l i c a  phenolic ablative. Both the 
combustion chamber l i ne r s  and the nozzles were constructed of t h i s  
material. As par t  of the performance and s t a b i l i t y  s tudies  it was 
necessary t o  measure pref i re  and postfire nozzle throat  diameters. 
Since run durations were known as well f o r  each f i r ing ,  it was pos- 
sible t o  calculate corresponding l i nea r  ablation rates fran these 
data. 

Data reported herein include run duration, mixture r a t io ,  
chamber pressure, pulse-no-pulse, in jec tor  tube diameters, number 
of f i r i ngs  on a nozzle, runs numbers corresponding t o  the f i r i ngs  
on a nozzle, and the nozzle throat  l i nea r  ablation rate. 
data were analyzed using several different  methods. 

These 

Examinations of crors-sections of the nozzles (ma chamber l i ne r s ,  
after use during f i r ings  of the engine, revealed a s ignif icant  
difference i n  their  respective char lwers. The char layers  extended 
r e l a t ive ly  deeply i n t o  the w a l l s  of the chamber l i ne r s  and the inside 
w a l l s  were coated with s i l i c a  m e l t .  In contrast ,  the char layers i n  
the nozzle cross-sections were very th in  and no s i l i c a  melt could be 
seen. This difference between the char layers  was a t t r ibu ted  t o  the 
difference in s i l i c a  fiber orientation f o r  the  two engine parts. The 
fibers were oriented parallel t o  the engine axis in the  chsmber l i ne r s  
whereas the fiber or ientat ion i n  the nozzles w a s  perpendicular t o  the 
axis l i n e  of t h e  engine. 

The overal l  average l inear  ablation rate obtained at the nozzle 
throat  was 0.0861 in/sec (0.219 cm/sec). 
formed on a chamber l i n e r  at the nozzle entrance end which yielded an 
ablation r a t e  of 0.071 in/sec (0.180 cm/sec). 

One measurement w a s  per- 



11. RVTRODUCTION 

The purpose of t h i s  report is  t o  record the results of an appli- 
cation of ablative material  i n  a high chmber pressure (4000 psia ,  
272.2 a t m )  rocket engine. 
program was not t o  evaluate the material  but rather t o  study the per- 
formance and canbustion s t a b i l i t y  of a high pressure engine. 
fe l t ,  however, that the performance of t h e  ablat ives  used under these 
conditions might be of i n t e re s t  t o  others working i n  the high pressure 
area. 
herein, w a s  undertaken i n  an e f fo r t  t o  es tab l i sh  a correlation between 
ablation rates end heat t ransfer .  

The primary objective of t he  experimental 

It was 

The investigation of t he  consistency of r e s u l t s ,  described 

Ablation cooling has been successfully applied t o  many reentry 
Ablation cooling vehicle and rocket engine heat t ransfer  problems. 

involves t h e  use of a protective material  t o  cover the  exter ior  par t  
of a s t ructure  which is subjected t o  a high heat f lux.  
material thermally degrades end the  products of t h i s  degradation a re  
carr ied away by the  external f l u i d  flow. 
necessarily limited i n  the  amount of t o t a l  heat f lux protection it 
gives due t o  the  loss of material  from t he  surface. 
t ec t ion  i s  gone once the ablat ive material  has been consumed. The 
t o t a l  heat f lux protection offered by a given system i s  affected by 
the heat t ransfer  mechanism, by the  thickness of the  ablat ive material, 
and by the properties of t he  material  itself. There are many different  
materials that qualify as candidates for ablat ive cooling. 
cular application d ic ta tes  what type of material  i s  actual ly  used. 

The protective 

This type of cooling i s  

The thermal pro- 

The parti- 

I n  the  present report ,  a t tent ion i s  focused upon a par t icular  
c lass  of ablat ive materials known as the charring ablator.  
ablators  generally consis t  of a basic s t ruc tura l  material, such as 
nylon or f iberglass  c loth,  impregnated with some type of bonding 
material (e  .g , phenolic r e s in ) .  

Charring 

111. ExpERlcwElffAc METHOD 

Nozzle throat ablation r a t e s  were measured i n  an ablat ively cooled 
high pressure rocket engine. The ablative material used was Western 
Backing 2230 which is  a campsi te  consisting of s i l i c a  c loth impregnated 
with phenol aldehyde res in .  
per cent r e s i n  by weight. 
stacking of layers  of s i l i c a  c loth upon one another, w i t h  t he  weave on 
each new layer rotated goo t o  the weave of the  previous layer ,  impreg- 
nating the  cloth with res in ,  and then baking the  c a p o s i t e  t o  cure t h e  
res in .  The nozzles were then machined from this material  such that the  
plane of the  s i l i c a  cloth was  perpendicular t o  the  nozzle axis .  
ablat ive chamber l i n e r s  were produced i n  an analogous manner except 
that t h e  s i l i c a  cloth was wrapped around a ayl indrical  mandrel before 
impregnation and curing. The resu l t ing  l i n e r s  had the plane of the  
S i l i ca  cloth parallel t o  the  axis l i n e  of the engine. 

The material contains approximately t h i r t y  
The nozzle material w a s  produced by f la t  

The 
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A. Apparatus 

The rocket engine used developed approximately 4000 pounds (1815 kg) 
of thrus t  with a design chamber pressure of 4000 ps ia  (272.2 a h ) .  
ure 1 i s  a cross-sectional sketch of the engine. 
l i n e r s  were constructed of t h e  ablat ive material. 
l iqu id  bipropellant type using nitrogen tetroxide and Aerozine-50 as pro- 
pel lents .  
flow impingement within t h e  individual quadlets (Figure 2) .  
equipment u t i l i zed  included eleven s t r i p  chart recorders, a twenty 
channel oscillograph, a d i g i t a l  data recording system, and an analog data 
recording system. 

Fig- 
The nozzle and chamber 
The engine w a s  of t h e  

The injector  w a s  a 7 quadlet tube indector w i t h  like-on-like 
Data recording 

B. Test Procedures 

F i f ty  f i r i ngs  of t h e  engine were performed as par t  of a performance 
Of these f i f t y  f i r i ngs ,  thir ty-s ix  were and combustion s t a b i l i t y  study. 

successfully completed (i .e. complete run performance data were obtained). 
The data, presented l a t e r  i n  t h i s  report ,  were taken from these th i r ty-  
six ruus. The reported data include l inear  ablation rate, run duration, 
mixture r a t i o ,  chamber pressure, injector  configuration, pulse-no-pulse, 
number of runs on each nozzle, and the engine f i r i n g  numbers i n  which a 
given nozzle w a s  used. 
data were obtained. 

The ensuing discussion w i l l  explain har these 

The throat ablation rate data resulted From nozzle throat  diameter 
measurements m a d e  both before and after each run, i n  order t o  analyze 
the  performance data. The throa t  diameter was measured with a micro- 
meter at four circumferential locations,  each location being spaced at 
4 5 O  t o  t he  previous measurement location. 
unequally around the circumference of the  throa t ,  as shown i n  Figure 3 
(produced by direct ing l i g h t  through a nozzle and then through a ground 
glass  p la te ,  t racing the  outline of the throat sham on t h e  glass p la te ,  
and enlarging the t racing using dividers) .  The throat diameter used 
i n  canputing ablation rate w a s  t h e  average of the micrometer measurements 
taken a t  t h e  throat.  The l i nea r  th roa t  ablation rate was calculated 
using: 

Throat ablation occurred 

pos t f i re  throat dia. - prefire throa t  dia. ablation rate = 2 (run duration) 

Run duration was determined from the  oscillograph t race  of chamber 
pressure fo r  each run and was  defined as the  length of time between 
attainment of one-half of t h e  steady state run chamber pressure during 
s ta r tup  and the drop t o  one-half of t h e  steady state pressure at shut- 
down (Figure 4 ) .  

Propellent flow rates were measured with turbine meters whose out- 
puts were recorded on the oscillograph. 

Chamber pressure was measured-with a capscibnce tranEdUcer and with 
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a s t r a i n  gage pressure transducer. 
on the  oscillograph, t h e  d i g i t a l  recording system, and the  analog tape 
recording system. 
gressure measurement fo r  a pulsed run i s  shown i n  Figure 4. 

The transducer outputs were recorded 

A typical  oscillograph t race  of the  phutocon chamber 

Other data reported were dependent upon the engine configuration 
for  a given run and the  purpose of the  run. These included pulse-no- 
pulse, nozzle run number, and injector  configuration. The engine w a s  
pulsed during some f i r ings  using a pulse gun crhsrgedwith 56.4 grains 
of RDX waffers, as par t  of t h e  combustion stability study. The re- 
sul t ing pulseao-pulse data simply indicates whether t he  engine was 
or w a s  not pulsed during a given run. 

Nozzles were u t i l i zed  fo r  up t o  four f i r i ngs  each. Nozzle usage 
The engine run numbers w a s  limited by throat  growth due t o  ablation. 

f o r  which a par t icular  nozzle was used as well  as the  number of runs 
on a nozzle a re  reported. 

Injectors  used consisted of seven quadlets w i t h  like-on-like im- 
Two different sizes of f u e l  and oxidizer tubes pingement (Figure 2 ) .  

were used as part of t he  performance and combustion i n s t a b i l i t y  pro- 
p a m s  . 
C .  Test Results 

The data are presented i n  Table 1. An overal l  average l inear  
ablation r a t e  of 0.0861 in/sec (0.219 cm/sec) was obtained at the 
nozzle throat .  The l i n e a r  ablation r a t e  w a s  measured for  one chamber 
l i n e r  and w a s  found t o  be 0.071 in/sec (0.180 cm/sec) at  the  nozzle 
end of the l i ne r .  Pictures of cross-sections of a chamber l i n e r  and 
several nozzles a re  shown i n  Figure 5. 
section, 5a, reveals a discoloration zone along the  inside perimeter 
which extends through approximately 20% of the thickness of the re-  
maining l i n e r  w a l l .  P a r t i a l  pyrolysis of t h e  ablat ive wall has occured 
in this region. Also shown in 5a is a thin l i g h t  colored leyer ,  a t  the 
inside perimeter of t h e  cross-section, which i s  s i l i c a  melt, 
other three photographs, 5b, 5c, 5d, show various cross-sections of t h e  
ablated nozzle material. 
r e l a t ive ly  l i t t l e  char zone and no s i l i c a  m e l t  layer can be discerned. 
This difference i s  t o  be expected, due t o  t h e  difference i n  orientation 
of the  s i l i c a  f ibe r s  with respect t o  the  engine ax is  between the  nozzle 
and chamber l i n e r .  
i n  the chamber than i n  the nozzles as evidenced by the  difference i n  
char depths. 

mamination of the  l i n e r  cross- 

The 

In  contrast  t o  the chamber l i n e r ,  there is  

The r a t e  of heat conduction apparently w a s  greater  

Total  usage time for  t h e  nozzle8 was l imi t ed  by a allowable throat 
diameter growth of about 10% and amounted t o  approximately 2 seconds. 
Chamber l iners  were used up t o  5 seconds t o t a l  time which resulted i n  
a 30 t o  50% loss of l i n e r  material. 
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IV. DISCUSSION OF RESULTS 

The data were studied i n  an attempt t o  find a correlation between 
the  ablation rate and the various measured parameters as part of an 
ef for t  t o  correlate  ablation rate and heat t ransfer .  Four di f fe ren t  
approaches were used i n  studying the data. These approaches a re  dis-  
cussed subsequently and w i l l  be referred t o  as t h e  inspection method, 
t h e  l i nea r  coefficient method, the correlation method, and the  non- 
dimensionalizat ion method. 

1. Inspection Method. This  method simply consisted of ~ I I  organized 
parametric grouping of run data sets. The data were grouped such tha t  
corresponding data i n  a given group had similar values, within limits, 
except f o r  one variable (e.g. mixture r a t i o  or chamber pressure). 
t h i s  manner it was hoped t o  study the individual e f f ec t  of each data 
parameter upon the ablation rate, however, due t o  the wide var ia t ion i n  
run conditions obtained no useful information w a s  acquired wi th  t h i s  
method. 

I n  

2. Linear Coefficient Method. In  t h i s  method systems of simultaneous 
l inear  equations were formed from the  run data by a rb i t r a r i l y  select ing 
a group of run data sets,  the number of sets i n  the group being equal 
t o  t h e  number of parameters being considered. The parameters i n  each 
of these data sets were then a d t i p l i e d  by a given set of unknowns, the 
resul tant  products w e r e  summed by data set, and the  sum6 were equated 
t o  t h e  l i nea r  ablation rate reported i n  each set. The objective here 
was t o  solve a la rge  number of cases and obtain a representative set of 
unknowns f o r  all t h e  data that could be used t o  predict  ablation rate. 
The solutions,  however, f’rom a large number of cases revealed no repre- 
sentat ive s e t  of solution numbers . 

3. Correlation Method. In  t h i s  method the  ablation data w a s  input 
This program cauputed t o  a s t a t i s t i c a l  data correlation program (21). 

correlation coeff ic ients  re la t ing  d 1  t h e  parameters t o  the  ablation 
rate. 
par t ,  of less than .5. 

The computed correlation coeff ic ients  had values, for  the  most 

4. Nondimensionalization Method. The ablation rate was considered 
t o  be a function of run duration, chamber pressure, loca l  mass f lux ,  
and throat  diameter. Application of t h e  Buckingham P i  Theorem yielded 
two nondirnensional parameters. The data w e r e  p lot ted using the  two 
dimensional variables as coordinates. 
t o  indicate the effect  of t he  data parameters upon the ablation rate. 

No trends were found i n  t he  plot  

The primary reason for t he  lack of correlat ion among t h e  ablation 
data i s  thought t o  be the  short durations of t he  engine f i r i ngs .  
ac tua l  length of steady state engine operation for  moat firings w a s  .2 
t o  .3 seconds accounting for  only one-third t o  one-half of the  t o t a l  
test length as se t  on sequence timers. Thererore,startup and shutdown 
t rans ien ts  had a significant e f fec t  upon t h e  performance of the ablative 
mater id. 

The 
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V. SUIWUY OF RESULTS 

Ablation cooling was successfully used t o  cool a l iqu id  bipropellant 
rocket engine a t  a naninal chamber pressure of 4000 ps ia  (272.2 atm) . 
The ablat ive material used was Western h c k i n g  2230, a composite of s i l i c a  
c loth and phenol aldehyde res in .  The average overal l  l i nea r  ablation 
rate obtained at t h e  nozzle throa t  was 0.0861 in/sec (0.219 cm/sec). Abla- 
t i v e  nozzle l i f e  time fo r  the  material was limited by an allowable throat  
diameter growth of about 10% and was approximately 2 seconds. 
chamber l i n e r s  would accomodate about 5 seconds t o t a l  usage. 
ablation rate measurement was performed on a chamber l i n e r  at  the  end 
next t o  t h e  nozzle and w a s  found t o  be 0.071 in/sec (0.180 cm/sec). 
orientation of the s i l i c a  fibers, which was parallel t o  t h e  engine ax is  
i n  the chamber liners and perpendicular t o  the  axis i n  the nozzles, had 
a pronounced ef fec t  on the  depth of t he  char layer  obtained. 

Ablative 
One l inear  

The 
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OUTLINE OF ABLATED NOZZLE THROAT (ENLARGED) 

F IGURE 3. T Y P I C A L  CROSS-SECTION OF 
ABLATED NOZZLE THROAT 
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5 a .  CHAMBER LINER 

5 b .  NOZZLE 

FIGURE 5. CROSS SECTION OF 
ABLATED MATERIAL 



5c .  NOZZLE 

5 d. 

FIGURE 5 ,  CONT. 

NOZZLE 

CROSS SECTION OF 
ABLATED MATERIAL 
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