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PROTOGRAmEIC STUDY OF LIQUID-OXYGEN BOILING 

AND GAS INJECTION I N  "E INJECTOR 

OF A CHUGGING ROCKET ENGD!E* 

by E, W i l l i a m  Conrad, Ned P. Hannum, and Harry E. Bloomer 

Lewis Zesearch Center 

SUMMARY 

High-speed motion p i c tu re s  were taken of conditions i n  t h e  i n j e c t o r  
liquid-oxygen cavity of an RL-10 rocket engine during t h r o t t l e d  engine opera- 
tion. 
region as t h e  helium gas w a s  i n j ec t ed  t o  s t a b i l i z e  combustion, during operation 
a t  r a t ed  t h r u s t ,  and during t r a n s i t i o n  i n t o  chugging conditions as t h e  gas 
in Jec t ion  was discontinued, 

Photographs were taken during operation of t h e  engine i n  t h e  chugging 

Results of t he  inves t iga t ion  ind ica t e  t h a t ,  during chugging rocket opera- 
t i o n  of t h e  RL-10 engine, a high population of f a i r l y  l a r g e  bubbles formed and 
collapsed within t h e  liquid-oxygen cavity a t  t h e  same frequency as t h e  chamber 
pressure osc i l l a t ions .  When gaseous helium w a s  i n j e c t e d  i n t o  t h e  liquid-oxygen 
cavity,  a fog rap id ly  spread over t h e  e n t i r e  f i e l d  of v i e w ,  and t h e  system 
immediately became stable. 

The i n j e c t i o n  of gaseous helium a t  ra ted  conditions produced a very 
s l i g h t  increase i n  engine performance but not enough t o  produce a n e t  gain i n  
a t y p i c a l  mission payload wi th  the  ex t r a  equipment needed. 

The inherent  low-frequency system i n s t a b i l i t y  associated with the  f u e l  
system a t  low t h r u s t  l e v e l s  w a s  reduced by in j ec t ing  e i t h e r  gaseous helium or 
hydrogen, Complete s t a b i l i z a t i o n  was achieved i n  some cases, and a reduction 
i n  t h e  s e v e r i t y  of t h e  o s c i l l a t i o n s  i n  others, This was apparently due t o  t h e  
'anchoring of t h e  phase change f r o n t  t o  t h e  loca t ion  of t h e  gas in jec t ion .  

INTRODUCTION 

Considerable e f f o r t  has been d i rec ted  toward t h r o t t l i n g  a pump-fed l i qu id -  
hydrogen - liquid-oxygen rocket engine. 
t e r e d  a r e  combustion i n s t a b i l i t y  (chugging) and low-frequency (1 t o  5 cps) 

Major problems t h a t  have been encoun- 

9 i t l e ,  Unclassified. 



osc i l l a t ions  i n  t h e  f u e l  system. Chugging regions of engine operation were de- 
fined, and the  el iminat ion of chugging by gas in j ec t ion  i n  the  i n j e c t o r  l i qu id -  
oxygen cavi ty  has been presented e a r l i e r  ( ref .  1). Several questions have per- 
s i s t e d  concerning the  d i s t r i b u t i o n  of t he  in jec ted  h e l i m  or o,xygen gas ( a t  the  
rates of only 0.4 and 4.0 percent, respect ively,  of t he  liquid-oxygen flow) t o  
the  liquid-oxygen tubes of the  in jec tor ;  a l so ,  t he  p o s s i b i l i t y  t h a t  gas bubbles 
r e su l t i ng  from heat  t r ans fe r  from the w a r m  hydrogen t o  the  l i q u i d  oxygen i n  
the  injector  cavi ty  a c t  only i n  loca l ized  regions.  
and similar questions, high-speed motion p ic tures  were made of t h e  conditions 
i n  the  injector  liquid-oxygen cavi ty  of an RL-10 engine during engine opera- 
t ion ,  including operation i n  the  chugging region. 

To gain ins ight  i n t o  these  

Both color and black and white films were made a t  5000 frames per second 
1 through a ly-inch-diameter, 1/8-inch-thick sapphire port,. 

age included operation i n  t h e  normal chugging region as the  helium gas w a s  
i n j ec t ed  t o  s tab i l ize  combustion, operation a t  r a t ed  t h r u s t ,  and operation 
during t r ans i t i on  i n t o  chugging as t h e  gas in j ec t ion  stopped. The information 
obtained is presented i n  t h e  form of se lec ted  frames from t h e  16-m movie f i l m  
and a description of t h e  corresponding engine operating conditions a t  that 
instant .  

Photographic cover- 

A motion-picture film supplement has been prepared and i s  ava i lab le  on 
loan. 
t h e  report. 

A request card and a descr ipt ion of t h e  f i l m  a r e  given a t  t h e  back of 

The other major problem, the  low-frequency i n s t a b i l i t y  of t h e  f u e l  system, 
has a l s o  been invest igated.  The pos i t ive  slope of t he  f u e l  pump charac te r i s -  
t i c  l i n e  a t  l o w  speeds was suspected of causing, or a t  l e a s t  t r igger ing ,  t he  
i n s t a b i l i t y .  
discharge, a fuel pump of new design, and idle  operation of the engine with 
the  pumps not ro t a t ing  have eliminated the  pumps as t h e  source of t h e  in s t a -  
b i l i t y .  
causes, such as the  two-phase f l o w  t r a n s i t i o n  i n  the  hydrogen. Other i nves t i -  
gations ( r e f s .  2 and 3) had shown that a change i n  phase could cause such an 
i n s t a b i l i t y .  

Subsequent operation with an  ad jus tab le  o r i f i c e  a t  the  fuel pump 

These fu r the r  t e s t s  proved t h a t  the  i n s t a b i l i t y  must be due t o  other 

Separate gas in j ec t ions  i n t o  the  f u e l  system, using both hydrogen and 
helium gas, were t r i e d  as a possible  solution. It w a s  assumed t h a t  t h e  gas 
in j ec t ion  would anchor t h e  phase t r a n s i t i o n  much l i k e  a flameholder i n  a com- 
bustion system. 
i n j ec t ed  in to  t h e  l i n e  between t h e  f u e l  pump discharge and t h e  cooling jacket  
i n l e t .  Photographic coverage w a s  not attempted i n  this case, but  t h e  results 
were eas i ly  observable on recording instruments because of t h e  low frequency 
of t h e  osci l la t ions.  

Gaseous weight flows of up t o  20 percent of t h e  f u e l  flow were 

APPARATUS 

A pup-fed liquid-hydrogen - liquid-oxygen engine w a s  used for invest iga-  
t i o n  of the two t h r o t t l i n g  problems. The RL-10 is  ra t ed  a t  15,000 pounds of 
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M i x t u r e  r a t i o  
c o n t r o l  v a l v e  

, t  c h a m b e r  

cs-24801 

d u m p  

Figure 1. - Schematic of standard RL-10 engine cycle. 

t h r u s t  a t  a chamber pressure of 300 pounds per  square inch absolute  and a mix- 
t u r e  r a t i o  of 5 when expanding t o  vacuum through a nozzle with an area r a t i o  

__-2 __ 
cs-24802 - Cool-down 

dump 

Figure 2. - Schematic of RL-IO engine cycle modified for throttling. 

of 40. Figure 1 i l l u s -  
trates t h e  standard 
l i L - l O  engLne p rope l l a i t  
flow schematic, and f i g -  
u re  2 shows t h e  engine 
discussed herein,  which 
w a s  equipped with a 
" t h r o t t l i n g  k i t "  supplied 
by t h e  engine manufac- 
t u re r .  As examination of 
t h e  two f igu res  shows, 
t h e  t h r o t t l i n g  engine was 
provided with an addi- 
t i o n a l  tu rb ine  bypass 
valve and l i n e  t o  allow 
a g r e a t e r  amount of w a r m  
hydrogen from t h e  cooling 
jacke t  t o  bypass t h e  tur -  
b ine  and hence reduce 
pump speeds and r e su l t an t  

propel lan t  flows. The engine can also be operated i n  a pressurized mode (with- 
out t h e  pumps ro t a t ing )  t o  permit operation below the  10-to-1 t h r o t t l i n g  range. 
Much of t h e  engine system i s  not germane t o  t h e  present subjec t  and will not be 
discussed herein,  but  it should be noted t h a t ,  before  enter ing t h e  i n j e c t o r  
cavi ty ,  t h e  hydrogen i s  warmed t o  about 300' F w h i l e  passing through t h e  cool- 
ing jacke t  of t h e  engine. Thus, t he  hydrogen i n  t h e  i n j e c t o r  i s  considerably 
w a r m e r  than t h e  l i q u i d  oxygen (170' R ) ,  and hea t  transfer w i l l  occur. 

A cross-sect ional  drawing of t he  in j ec to r  used i n  t h i s  inves t iga t ion  i s  

3 



r l g n i t e r  cavity 
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Gas 
injector 

/ I  
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Hydrogen manifold -’ 

Figure 3. - Partial cross section of injector showing sapphire viewing port. 

shown i n  f i gu re  3. A con- 
cen t r i c  tube i n j e c t o r  w a s  
used t h a t  had 216 elements 
with 6-turn-per-inch swirlers 
i n  t h e  liquid-oxygen tubes. 
Liquid-oxygen pressure drop 
a t  r a t ed  engine t h r u s t  w a s  
60 pounds per  square inch. 
As shown i n  f igu res  3 and 4, 

por t  w a s  i n s t a l l e d  i n  t h e  
ou te r  w a l l  of t h e  l i qu id -  
oxygen cavity. An annular 
i n e r t  gas purge w a s  provided 
on t h e  outs ide of the  por t  t o  
prevent f rost ing.  

a 1-inch-diameter 1 sapphire 
2 

The thermal conductivity 
of t h e  sapphire viewing po r t  
i s  about 60 percent t h a t  of 
stainless s tee l .  Conse- 
quently, t he re  w a s  l e s s  hea t  
t r a n s f e r  t o  t h e  l i q u i d  oxygen 
from t h e  warmer ambient sur- 

roundings through the  sapphire por t  than through the s t a i n l e s s - s t e e l  outer  w a l l  
of the liquid-oxygen cavi ty .  
viewed through the  port ,  was a representa t ive  sample. 

It may be concluded that the  l i q u i d  oxygen, as 



PROCEDWE 

The gas used to eliminate chugging was i n j e c t e d  i n t o  t h e  l i q u i d  oxygen 
through an ex i s t ing  instrumentation po r t  i n  t h e  liquid-oyygen inlet  f lange  of 
t h e  in jec tor .  
bubble s i z e  i n  t h e  gas-liquid m i x t u r e .  After engine tes t  conditions were ob- 
ta ined ,  t h e  high-speed camera was s t a r t e d  manually. For those  conditions re- 
qui r ing  movies of t h e  t r a n s i t i o n  between s t ab le  and unstable operation, t h e  
gas flow w a s  timed t o  s tar t  (or s top)  0.5 second a f t e r  t h e  camera was started. 
For t hese  t r a n s i t i o n  conditions, t h e  gas flow r a t e  w a s  p r e se t  to ramp to a pre- 
viously determined r a t e  adequate t o  achieve s t a b i l i t y .  
approximately 1 second long. 

No attempt was made t o  d i s t r i b u t e  the  gas flow or t o  con t ro l  t h e  

Each f i l m  record i s  

I n  an attempt t o  eliminate t h e  low-frequency f u e l  system o s c i l l a t i o n s ,  
gas was i n j e c t e d  i n t o  t h e  f u e l  through an instrumentation por t  between t h e  f u e l  
pump discharge and t h e  cooling jacket in le t .  The flow r a t e  w a s  cont ro l led  
manually as t h e  engine was operating. 
room instrumentation, and corresponding adjustments i n  gas flow were made. 

The e f f e c t s  were observed on cont ro l  

RESULTS AND DISCUSSION 

Oxidant System I n s t a b i l i t y  

The frames taken from the Eotiori pictiire aid presented here in  are corre- 
l a t e d  with chamber pressure and oxidant-fuel r a t i o  (O/F) by re ference  to t h e  

engine operating map of f i g u r e  5. The 
region of chugging i n s t a b i l i t y  i s  shown 
by the shaded area. The le t te rs  A to E 
are used t o  i d e n t i f y  operating conditions 
depicted i n  t h e  subsequent figures.  

The photographs of f i g u r e  6 i l l u s -  
t r a t e  t h r e e  liquid-oxygen conditions 
observed i n  t h e  liquid-oxygen cavi ty  
during os tens ib ly  steady operation and 
without i n e r t  gas injection. The l i q u i d -  
oxygen temperatures ind ica ted  i n  t h e  f i g -  
u r e  were measured i n  t h e  supply l i n e  at 
t h e  cavity inlet and, therefore ,  w i l l  be 
s l i g h t l y  lower than t h e  temperature i n  
t h e  cavity i t s e l f .  

1 essen t i a l ly  to operation at  rated thrust .  
The l i q u i d  oyygen appears completely 
c l ea r  and f r e e  of bubbles, and t h e  only 
optica3 evidence of i ts  presence i s  occa- 
s iona l  s t r i a t i o n s  due to dens i ty  gradi-  
e n t s  and subsequent changes i n  r e f r a c t i v e  
index. The accompanying osc i l lograph  
t races  show both chamber pressure and 
liquid-oxygen cavity pressure t o  be 

Point A corresponds 

5 
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Chamber pressure - _ _  

4 
I "  t -  " 

20 lblsq in. 

-.x I 

Dome pressure 

(a) Point A; rated thrust; stable; chamber pressure, 326 pounds per square inch  absolute; oxidant-fuel ratio, 5.25; liquid-oxygen 
temperature, 242" R; liquid-oxygen dome pressure, 399 pounds per square inch  absolute. 

Chamber pressure 

(b) Point B; stable; fog present; chamber pressure, 101 pounds per square i nch  absolute; oxidant-fuel ratio, 4.72; liquid-oxygen 
temperature, M5" R; liquid-oxygen dome pressure, 116.4 pounds per square inch  absolute. 

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ " p ~ ~  
/ 

4 

C-71285 

(c) Point C; low-amplitude instability; violent random boiling; chamber pressure, 22 pounds per square i nch  absolute; oxidant-fuel 
ratio, 4.43; liquid-oxygen temperature, 169" R; liquid-oxygen dome pressure, 28.1 pounds per square i nch  absolute. 

Figure 6. - Appearance of l iquid oxygen in injector dome at various chamber pressures. 
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smooth and steady, 

Point B corresponds t o  operation a t  a chamber pressure j u s t  above t h e  
chugging region (fig. 5 ) .  
f l o a t e d  across t h e  viewing area  and ob l i t e r a t ed  t h e  opposite f ace  of t h e  i n -  
j e c t o r  cavity. The fog apparently w a s  comprised of extremely smal l  bubbles, 
and t h e i r  presence would ind ica t e  t h a t  sa tura t ion  occurred (because of heat 
t r a n s f e r  t o  t h e  l i q u i d  oxygen from the  w a r m  hydrogen) a t  l e a s t  i n  l oca l i zed  
regions of t h e  cavity- 
w a r m  regions and flowed as an entrained gas along with t h e  liquid-oxygen stream 
( r a d i a l l y  outward) ; however, d i sc re t e  bubbles were not  discernible .  
pressure and liquid-oqrgen cavi ty  pressure t r a c e s  were still  smooth. Reference 
t o  a Moll ier  char t  f o r  l i q u i d  oxygen indicates  t h a t  t h e  sa tu ra t ion  temperature 
is about 209' H a t  the  measured liquid-oxygen cavi ty  pressure of 116 pounds per 
square inch absolute; thus t h e  l i q u i d  oyygen was e s s e n t i a l l y  a t  sa tu ra t ion  con- 
d i  ti ons , 

A t  t h i s  condition, l a rge  regions of fog randomly 

The fog apparently broke away from these  loca l i zed  

Chamber 

Point  C w a s  obtained at  a chamber pressure of only 22 pounds per  square 
inch absolute  and w a s  unique i n  t h a t  it was obtained with t h e  engine pumps 
completely stopped and propel lant  supply occurring by tank  pressure alone. 
This pressurized mode of operation, however, should have had no s i g n i f i c a n t  
e f f e c t  on t h e  conditions i n  t h e  liquid-oxygen cavity. 
operation w a s  s t a b l e  and was i n  t h e  region previously determined ( ref .  1) t o  
be below t h e  region of chugging, 
chamber pressure t r a c e  (f ig .  6 ) ,  however, revealed t h a t  a very low amplitude 
pressure o s c i l l a t i o n  w a s  present  a t  a frequency of 140 cps. Violent random 
boi l ing  occurred within t h e  liquid-oxygen cavity. Many d i s c r e t e  bubbles could 
be seen, and l a r g e  vapor pockets were observed forming and detaching i n  t h e  
outer  r i g h t  por t ion  of t h e  viewing area, "he more v io l en t  bo i l ing  ac t ion  near  
t h e  outer  edge corresponds with expectation inasmuch as t h e  liquid-oxygen 
cavi ty  i s  surrounded by t h e  f u e l  manifold f i l l e d  with w a r m  hydrogen. A study 
of t h e  f i l m  supplement t o  t h i s  r epor t  does not,  however, d i sc lose  any v i s i b l e  
cyc l i ca l  dis turbance i n  t h e  liquid-oxygen cavi ty  desp i te  t h e  s m a l l  cyc l i ca l  

Ostensibly, t h e  engine 

Careful examination of t h e  accompanying 

I changes i n  chamber pressure. 

N l y  developed chugging of r e l a t ive ly  low i n t e n s i t y  occurred a t  point  D 
and i s  i l l u s t r a t e d  i n  f igure  7, Visually, chugging i s  seen as t h e  formation 
and col lapse of bubbles i n  t h e  liquid-oxygen cavi ty  a t  t h e  same frequency as 
the o s c i l l a t i o n s  i n  chamber pressure. This f i l m  sequence w a s  taken before  
gaseous helium w a s  introduced i n t o  the  liquid-oxygen cavi ty  supply l i n e  t o  
s t a b i l i z e  t h e  system. By v i sua l  correlat ion of t h e  p ic tures  with the  accom- 
panying pressure t r aces ,  t he  following sequence of events m a y  be postulated. 
During each chugging cycle, a l a r g e  number of bubbles appear i n  t h e  l i q u i d  
oxygen as t h e  liquid-oxygen cavi ty  pressure drops. The bubble s i z e  and popu- 
l a t i o n  increase,  t h e  pressure drop across  the i n j e c t o r  increases ,  and pro- 
p e l l a n t  atomization and combustion improve. The subsequent rise i n  chamber 
pressure decreases t h e  liquid-oxygen flow and raises t h e  pressure i n  t h e  
liquid-oxygen cavi ty  and thus dr ives  the  bubbles back i n t o  t h e  l i q u i d  phase. 
The poorer atomization with t h e  pure l i qu id  oxygen (and low pressure drop 
accompanying this configuration) probably produces a decrease i n  combustion 
e f f ic iency  and chamber pressure and thus a decrease i n  liquid-oxygen cavi ty  
pressure. A s  t h e  liquid-oxygen cavi ty  pressure decreases, t h e  sa tu ra t ion  

7 
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Time, tl 

t1+0.003 

Chugging at 1 8  cps 

Chamber pressure, 

71.7 lblsq in. abs; 

oxidant-fuel, 4.68 

Start helium 
injection 

Stable 

Figure 8. - Appearance of liquid oxygen during elimination of chugging by gaseous-helium injection. 
Helium flow rate, 0.4 percent of liquid-oxygen weight flow. Point D. 
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pressure  i s  aga in  reached; bubbles evolve from t h e  l i q u i d  state, and t h e  cycle 
i s  repeated. 
hand, it cannot y e t  be es tab l i shed  conclusively because of t h e  l a c k  of p rec i se  
timing cor re la t ion  between t h e  motion p i c t u r e  and t h e  osc i l lograph  records re- 
quired t o  e s t ab l i sh  t h e  exact phase r e l a t ion .  

While this model of l i k e l y  events appears t o  f i t  t h e  d a t a  a t  

The sequence of s t i l l s  i n  f i g u r e  8 (poin t  D )  shows t h e  chugging cycle 
immediately p r i o r  t o  and following t h e  in t roduct ion  of gaseous helium, which 
appears as a Tog i.n t h e  lower l e f t  area of t h e  p ic tures -  (The liquid-oxygen 
supply tube attached t o  t h e  center  of t h e  i n j e c t o r  cavi ty  w a s  t o  t h e  l e f t  and 
below t h e  viewing window ( f ig .  4, p. 4)- Discre te  bubbles within t h e  fog were 
too  s m a l l  t o  be  seen, as was t h e  case with t h e  fog at  poin t  B, shown i n  f i g -  
ure 6 (p. 6).  The fog quickly dispersed across  t h e  e n t i r e  viewing p o r t  area 
a t  t h e  ve loc i ty  of t h e  oxygen flow along a radius of t h e  liquid-oxygen cavity- 
The combustion immediately became s t a b l e ,  and chugging w a s  e n t i r e l y  eliminated, 

The spec i f i c  impulse increased about 30 poin ts  during gas in jec t ion .  This  
increased impulse represented t h e  level  t h a t  would be expected from extrapola- 
t i o n  i f  chugging had not occurred ( f i g .  9 ) .  

Chamber pressure, lblsq in. a b  

Figure 9. -Elimination of chugging and restoration of performance by 
gas injection. Oxidant-fuel ratio, 5.0. 

The reverse sequence i s  il- 
l u s t r a t e d  i n  f i g u r e  10 f o r .  
po in t  E, which i s  within t h e  r e -  
gion of m a x i m u m  chugging ampli- 
tude- I n  t h i s  case, t h e  engine, 
operating s t a b l y  with gas in j ec -  
t i o n ,  was caused t o  chug by shut- 
t i n g  of f  t h e  in j ec t an t .  For both 
of t h e  aforementioned t e s t s  t h e  
helium flow r a t e  w a s  approximately 
0.012 pound per second o r  0 - 4  per- 
cent of t h e  liquid-oxygen flow by 
weight. 

A t  r a t e d  conditions,  t h e  
RL-10 engine operates a t  96 per- 
cent of t h e o r e t i c a l  s h i f t i n g  
equilibrium s p e c i f i c  impulse. 
Despite this very respec tab le  
level of performance, one poin t  
i n  impulse i s  of considerable i m -  
portance t o  missions such as 
Centaur-Surveyor; one poin t  i n  

impulse produces a 26-pound change i n  Centaur payload f o r  t h e  Surveyor m i s -  
sion. Accordingly, gas i n j e c t i o n  w a s  used a t  r a t e d  conditions (po in t  A)  i n  an 
attempt t o  produce improved atomization and an accompanying increase  i n  com- 
bus t ion  e f f ic iency  and impulse, even though t h e  increase  would necessar i ly  be 
much smaller than t h e  30 poin ts  obtained a t  25 percent t h rus t .  Liquid-oxygen 
appearance during i n j e c t i o n  was similar t o  t h e  p i c tu re s  of f i g u r e  8. The in -  
j e c t i o n  of helium (0- 04 lb/sec o r  0- 133 percent of l i q u i d  o q g e n  by weight) 
produced only a negl ig ib le  increase  i n  performance- The extra weight of t h e  

lo .- 
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Figure 10. - Appearance of liquid oxygen as helium injection is stopped and chugging operation begins. 
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equipment required for a mission appl ica t ion  would more than o f f s e t  t h e  pay- 
load  gain. 

Fuel- System I n s t a b i l i t y  

Although gaseous i n j e c t i o n  and/or increased i n j e c t o r  pressure  drop can be 
used t o  eliminate chugging (unpublished da ta ) ,  a f u r t h e r  problem prevents t h e  
achievement of a des i red  10-to-1 t h r o t t l i n g  capab i l i t y  with t h e  €U,-10. This 
d i f f i c u l t y  i s  t h e  existence of a region of fuel-system i n s t a b i l i t y  of 1 t o  5 
cps. 
i nd ica t ed  between t h e  s t a b l e  and mild i n s t a b i l i t y  regions and a l s o  between t h e  

The region is  approximated on t h e  map of f i g u r e  11. The t r a n s i t i o n  areas 

mild and severe i n s t a b i l i t y  regions 

Percent gas injection (gas flow ratel 
fuel flow rate) to stabilize oscillations 

19 
21 
22 

Open symbols denote gaseous hydrogen 
Solid symbols denote gaseous helium i 

Figure 11. -Approximate region of fuel-system instabili- 
ty showing stabilizing effects of gas injection into fuel 
system. 

are not wellidefined l i n e s  but  r a t h e r  only 
approximate areas. 
t h a t  t h e  o s c i l l a t i o n s  i n  t h e  severe region 
were such t h a t  oxidant-fuel r a t i o  o s c i l l a -  
t i o n s  were divergent and requi red  engine 
abort  t o  avoid overheating (except during 
operation i n  t h e  pressurized mode). 

It should be noted 

A s  noted i n  t h e  INTRODLJCTCON, t h e  
fue l  system o s c i l l a t i o n s  appear t o  be 
associated with a phase change i n  t h e  
cooling jacket. Several  i nves t iga t ions  
have been made i n t o  t h i s  type of appar- 
en t ly  inherent system i n s t a b i l i t y .  One 
of t hese  inves t iga t ions  ( ref .  2 ) included 
v i s u a l  s tud ie s  of t h e  t r a n s i t i o n  from 
l i q u i d  i n t o  two-phase flow of hydrogen 
i n  a glass-walled tube with heat input. 
The r e s u l t s  have shown that t h e  very ir- 
regular  i n t e r f a c e  a c t i v i t y  with flow pul- 
s a t ions  co r re l a t e s  roughly with a spr ing  
mass analogy. In t e rmi t t en t  wetting and 
r e t r e a t  of t h e  l i q u i d  i n t e r f a c e  occurred 
with a high degree of i r r e g u l a r i t y .  It 
has a l s o  been found, through analog 
s tudies ,  t h a t  when an abrupt dens i ty  
change occurs, such t h a t  t h e  r a t i o  of 
dens i t i e s  i s  g r e a t e r  than 3, flow i n -  
stabil i t ies may occur ( ref .  3). 
reasoning suggested i n  re ferences  2 and 3 
i s  extended, it seems t h a t  an abrupt den- 

If t h e  

s i t y  change i n  t h e  cooling jacke t  i s  t h e  l i k e l y  cont ro l  f a c t o r  f o r  t hese  o s c i l -  
l a t i o n s  i n  t h e  f u e l  system of t h e  KL-10. The fuel-system i n s t a b i l i t y  data were 
analyzed i n  t h e  l i g h t  of t h e  r e s u l t s  of t hese  o the r  inves t iga t ions .  

During engine operation above a chamber pressure of approximately 
90 pounds per  square inch absolute, t h e  pressure  of t h e  hydrogen i n  t h e  cool- 
ing  jacke t  i s  always above t h e  c r i t i c a l  pressure (190 lb / sq  in. abs) and, con- 
sequently, there  i s  no i n t e r f a c e  between phases (dens i ty  i s  a continuous prop- 

1 2  I, 



e r t y ) .  
gion from t h e  stable region, it w a s  observed t h a t  the pressure a t  the discharge 
of t h e  cooling jacket became less than the c r i t i c a l  pressure of hydrogen. Fur- 
t h e r  t h r o t t l i n g  t o  lower chamber pressures (consequently lower jacket pres- 
su res )  meant t h a t  t h e r e  must have been an i n t e r f a c e  between phases and, con- 
sequently, a d iscont inui ty  i n  t h e  density occurring a t  some loca t ion  i n  t h e  
cooling jacke t  or t h e  i n l e t  l i n e  t o  t h e  jacket. Reference t o  t h e  hydrogen 
temperature-entropy diagram ( f ig .  1 2 )  shows that t h e  r a t i o  of t h e  dens i ty  
change across t h i s  i n t e r f a c e  i s  2.1 a t  a pressure of 1 7 5  pounds p e r  square 
inch absolute (chamber pressure of approximately 60 lb/sq in. abs at  an 
oxidant-fuel r a t i o  of 4.0) and is  as high as 15.5 a t  a pressure of 50 pounds 
per  square inch absolute (chamber pressure of approximately 11 lb / sq  in. abs 
a t  an oxidant-fuel r a t i o  of 1.8) assuming an i soba r i c  hea t  addition. This sys- 
t e m  then appears t o  meet t h e  i n s t a b i l i t y  cr i ter ia  of re ference  3. As the oper- 
a t i n g  poin t  was moved i n t o  t h e  severe i n s t a b i l i t y  region from t h e  mild in s t a -  
b i l i t y  region, it was observed that t h e  cooling jacke t  in le t  pressure ap- 
proached and, i n  some cases, became lower than t h e  c r i t i c a l  p ressure  f o r  hydro- 
gen. It w a s ,  therefore,  l i k e l y  that a phase change was occurring i n ,  o r  j u s t  
before, t h e  i n l e t  manifold t o  t h e  cooling jacket (discharge of t h e  f u e l  pump)- 
The f u e l  pump discharge temperature w a s  below t h e  c r i t i c a l  temperature f o r  
hydrogen (59-4O R). 

A s  t h e  engine operating point was moved i n t o  the mild i n s t a b i l i t y  re- 

The hydrogen at  t h e  jacke t  in le t  w a s  below t h i s  c r i t i c a l  condition of 
pressure and temperature when t h e  engine w a s  operating i n  t h e  pressurized mode. 
Large o s c i l l a t i o n s  were present i n  t h e  fue l  flow, but t hese  o s c i l l a t i o n s  were 

Ratio of satura- 
tion densities, 

Pressure = const. 

Vapor density, 
Liquid density, 

Pb 

Entropy 

Figure 12. - Densitychange between saturated liquid and saturated vapor for parahydrogen. 

not divergent. It w a s  
possible,  therefore,  t o  
opera te  a t  t h i s  condition 
without apparent damage 
t o  t h e  hardware. 

It was reasoned 
that, i f  an unstable 
t r a n s i t i o n  i n t e r f a c e  from 
l i q u i d  t o  vapor (such as 
those observed i n  r e f .  1) 
were responsible f o r  t h e  
system osc i l l a t ion ,  an- 
choring t h i s  i n t e r f a c e  a t  
a d i s c r e t e  loca t ion  would 
reduce or eliminate t h e  
i n s t a b i l i t y .  I n  t h e  re- 
gion j u s t  upstream of 
such a t r a n s i t i o n  i n t e r -  
face,  t h e  hydrogen should 
be ready f o r  t r a n s i t i o n ,  
and it w a s  expected t h a t  
very small disturbances 
or heat inputs  would pro- 
duce an immediate phase 
change. To accomplish 
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t h i s  t r ans i t i on  i n  a hopefully more s t a b l e  manner, gaseous hydrogen (or helium) 
w a s  injected through an instrumentation po r t  j u s t  upstream of the cooling 
jacke t  i n l e t  t o  t r i gge r  the  phase change a t  a d i s c r e t e  loca t ion .  

A s  can be seen from the  data points  i n  f igure  11, gaseous weight flows, of 
e i t h e r  helium or hydrogen, approximately 20 percent of t he  liquid-hydrogen 
weight flow, did s t a b i l i z e  the f u e l  system i n  the region of severe o s c i l l a t i o n s  
( a l l  data poin ts  represent  s t ab le  operation);  t h i s  r e s u l t  lends support t o  the  
hypothesis. With only a small amount of gas in jec t ion ,  t he  o s c i l l a t i o n s  ceased 
being divergent and continued t o  decrease i n  amplitude with increased gas flow 
r a t e .  A t  the high-amplitude condition, t he  frequency of o s c i l l a t i o n  w a s  ap- 
proximately 1 cps and increased t o  about 5 cps as the  gas in j ec t ion  r a t e  in -  
creased. 
e s t ab l i sh  c lear ly  defined parameters i n  the  system, but  indicates  that the  
amplitude is cont ro l led  by t h e  abruptness of the  phase change as it is a f f ec t ed  
by the  gas in jec t ion  flow r a t e .  
t o  be p rac t i ca l  unless  an engine cycle change is  considered. 
done by preheating some of the  hydrogen gas and using it as the in j ec t an t  and 
s t a b i l i z i n g  influence. 
mechanical devices such as screens might provide s t a b i l i t y  of the  t r a n s i t i o n  
f r o n t  i n  a manner analogous t o  a flameholder i n  a combustion system. 

This process of s t a b i l i z i n g  the  fuel-system osc i l l a t ions  does not 

The gas in j ec t ion  rates a r e  probably too  high 
This might be 

Ins ight  gained by the  experiment s t rongly suggests t h a t  

CONCLUDING REMARKS 

During chugging operation of the  RL-10 engine, numerous r a the r  l a rge  
bubbles form and col lapse within the  liquid-oxygen cavi ty  a t  the  same frequency 
as the  osc i l la t ions  i n  chamber pressure.  

A chugging rocket engine was s t a b i l i z e d  by in j ec t ing  gaseous helium i n t o  
the  liquid-oxygen cavi ty .  This r e su l t ed  i n  a higher i n j ec to r  d i f f e ren t i a l  
pressure and a decoupling of the  oxygen feed system. This i n j ec t an t  appeared 
t o  be a fog of very f i n e  bubbles when observed through a spec ia l ly  i n s t a l l e d  
viewing port .  A s  t he  in jec t ion  began, the  fog spread rap id ly  over the  e n t i r e  
f i e l d  of view and most l i k e l y  over t he  e n t i r e  oxygen cavi ty .  
evidence of l oca l i za t ion  of t he  in jec ted  gas.  

There w a s  no 

Gas in jec t ion  a t  r a t ed  engine conditions w a s  attempted t o  determine i f  any 
gain i n  combustion performance could be achieved by b e t t e r  oxygen atomization. 
The injected gas produced a uniform fog i n  the  liquid-oxygen cavi ty .  The 
performance measurements ind ica te  an almost negl ig ib le  increase i n  spec i f i c  
impulse such that the extra  equipment required would more than o f f s e t  the  pay- 
load gain.  

The low-frequency i n s t a b i l i t y  of the  fuel system w a s  s t a b i l i z e d  by i n j e c t -  
ing e i t h e r  gaseous helium or gaseous hydrogen i n t o  the  propel lant  l i n e  j u s t  up- 
stream of the cooling jacket  i n l e t .  Achievement of s t a b i l i t y  by t h i s  method 
supported the hypothesis t h a t  t h i s  fuel-system i n s t a b i l i t y  is due t o  t he  abrupt 
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change i n  density of the  propel lant  as it is heated i n  the  cooling jacket .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 7, 1964 
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